1
|
Zhao Y, Wu Z, Zhou Y, Chen C, Lu Y, Wang H, Xu T, Yang C, Chen X. Cell Sheets Formation Enhances Therapeutic Effects of Human Umbilical Cord Mesenchymal Stem Cells on Spinal Cord Injury. CNS Neurosci Ther 2024; 30:e70163. [PMID: 39670537 PMCID: PMC11638885 DOI: 10.1111/cns.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/04/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND In recent years, the utilization of stem cell therapy and cell sheet technology has emerged as a promising approach for addressing spinal cord injury (SCI). However, the most appropriate cell type and mechanism of action remain unclear at this time. This study sought to develop an SCI rat model and evaluate the therapeutic effects of human umbilical cord mesenchymal stem cell (hUC-MSC) sheets in this model. Furthermore, the mechanisms underlying the vascular repair effect of hUC-MSC sheets following SCI were investigated. METHODS A temperature-responsive cell culture method was employed for the preparation of hUC-MSC sheets. The extracellular matrix (ECM) produced by hUC-MSCs serves two distinct yet interrelated purposes. Firstly, it acts as a biologically active scaffold for transplanted cells, facilitating their attachment and proliferation. Secondly, it provides mechanical support and bridges spinal cord stumps, thereby facilitating the restoration of spinal cord function. The formation of the cavity within the spinal cord was evaluated using the Hematoxylin and Eosin (H&E) staining method. Subsequently, endothelial cells were cultivated with the conditioned medium (CM) obtained from hUC-MSCs or hUC-MSC sheets. The pro-angiogenic impact of the conditioned medium of hUC-MSCs (MSC-CM) and the conditioned medium of hUC-MSC sheets (CS-CM) was evaluated through the utilization of the CCK-8 assay, endothelial wound healing assay, and tube formation assay in an in vitro context. The development of glial scars, blood vessels, neurons, and axons in hUC-MSCs and hUC-MSC sheets was assessed through immunofluorescence staining. RESULTS In comparison to hUC-MSCs, hUC-MSC sheets demonstrated a more pronounced capacity to facilitate vascular formation and induce the regeneration of newborn neurons at the SCI site, while also reducing glial scar formation and significantly enhancing motor function in SCI rats. Notably, under identical conditions, the formation of cell sheets has been associated with a paracrine increase in the ability of the cells themselves to secrete pro-angiogenic growth factors. During the course of the experiment, it was observed that the secretion of uPAR was the most pronounced among the pro-angiogenic factors present in MSC-CM and CS-CM. This finding was subsequently corroborated in subsequent experiments, wherein uPAR was demonstrated to promote angiogenesis via the PI3K/Akt signaling pathway. CONCLUSION The creation of cell sheets not only significantly enhances the biological function of hUC-MSCs but also effectively retains the cells locally in spinal cord injury. Therefore, the transplantation of hUC-MSC sheets can maximize the function of hUC-MSCs, greatly reducing glial scar formation, enhancing vascular formation, and promoting the regeneration of neurons and axons. Additionally, the research findings prove that hUC-MSC sheets activate the PI3K/Akt signaling pathway through uPAR secretion to enhance angiogenesis. The transfer of the entire extracellular matrix by hUC-MSC sheets, in the absence of the introduction of additional exogenous or synthetic biomaterials, serves to further augment their potential for clinical application.
Collapse
Affiliation(s)
- Yulin Zhao
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Zhengchao Wu
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Yuchen Zhou
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Cheng Chen
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Yang Lu
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Heng Wang
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Tao Xu
- Medical School of Nantong UniversityNantongChina
| | - Changwei Yang
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Xiaoqing Chen
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
2
|
Moura MM, Monteiro A, Salgado AJ, Silva NA, Monteiro S. Disrupted autonomic pathways in spinal cord injury: Implications for the immune regulation. Neurobiol Dis 2024; 195:106500. [PMID: 38614275 DOI: 10.1016/j.nbd.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Spinal Cord Injury (SCI) disrupts critical autonomic pathways responsible for the regulation of the immune function. Consequently, individuals with SCI often exhibit a spectrum of immune dysfunctions ranging from the development of damaging pro-inflammatory responses to severe immunosuppression. Thus, it is imperative to gain a more comprehensive understanding of the extent and mechanisms through which SCI-induced autonomic dysfunction influences the immune response. In this review, we provide an overview of the anatomical organization and physiology of the autonomic nervous system (ANS), elucidating how SCI impacts its function, with a particular focus on lymphoid organs and immune activity. We highlight recent advances in understanding how intraspinal plasticity that follows SCI may contribute to aberrant autonomic activity in lymphoid organs. Additionally, we discuss how sympathetic mediators released by these neuron terminals affect immune cell function. Finally, we discuss emerging innovative technologies and potential clinical interventions targeting the ANS as a strategy to restore the normal regulation of the immune response in individuals with SCI.
Collapse
Affiliation(s)
- Maria M Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal.
| |
Collapse
|
3
|
Chen G, Tong K, Li S, Huang Z, Liu S, Zhu H, Zhong Y, Zhou Z, Jiao G, Wei F, Chen N. Extracellular vesicles released by transforming growth factor-beta 1-preconditional mesenchymal stem cells promote recovery in mice with spinal cord injury. Bioact Mater 2024; 35:135-149. [PMID: 38312519 PMCID: PMC10837068 DOI: 10.1016/j.bioactmat.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Spinal cord injury (SCI) causes neuroinflammation, neuronal death, and severe axonal connections. Alleviating neuroinflammation, protecting residual cells and promoting neuronal regeneration via endogenous neural stem cells (eNSCs) represent potential strategies for SCI treatment. Extracellular vesicles (EVs) released by mesenchymal stem cells have emerged as pathological mediators and alternatives to cell-based therapies following SCI. In the present study, EVs isolated from untreated (control, C-EVs) and TGF-β1-treated (T-EVs) mesenchymal stem cells were injected into SCI mice to compare the therapeutic effects and explore the underlying mechanisms. Our study demonstrated for the first time that the application of T-EVs markedly enhanced the proliferation and antiapoptotic ability of NSCs in vitro. The infusion of T-EVs into SCI mice increased the shift from the M1 to M2 polarization of reactive microglia, alleviated neuroinflammation, and enhanced the neuroprotection of residual cells during the acute phase. Moreover, T-EVs increased the number of eNSCs around the epicenter. Consequently, T-EVs further promoted neurite outgrowth, increased axonal regrowth and remyelination, and facilitated locomotor recovery in the chronic stage. Furthermore, the use of T-EVs in Rictor-/- SCI mice (conditional knockout of Rictor in NSCs) showed that T-EVs failed to increase the activation of eNSCs and improve neurogenesis sufficiently, which suggested that T-EVs might induce the activation of eNSCs by targeting the mTORC2/Rictor pathway. Taken together, our findings indicate the prominent role of T-EVs in the treatment of SCI, and the therapeutic efficacy of T-EVs for SCI treatment might be optimized by enhancing the activation of eNSCs via the mTORC2/Rictor signaling pathway.
Collapse
Affiliation(s)
- Guoliang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, 523573, China
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Kuileung Tong
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shiming Li
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zerong Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Shuangjiang Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, 523573, China
| | - Haoran Zhu
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Heyuan, 517400, China
| | - Yanheng Zhong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zhisen Zhou
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, 523573, China
| | - Genlong Jiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, 523573, China
| | - Fuxin Wei
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Ningning Chen
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
4
|
Pei Q, Zhao Q, Lang C, Feng S, Meng J, Tan G, Cui W, Zhang C, Luo X, Xu L, Chen J. Alleviating Severe Cytoskeletal Destruction of Spinal Motor Neurons: Another Effect of Docosahexaenoic Acid in Spinal Cord Injury. ACS Chem Neurosci 2024; 15:1456-1468. [PMID: 38472087 DOI: 10.1021/acschemneuro.3c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Spinal cord injury (SCI) treatment remains a major challenge. Spinal motor neurons (MNs) are seriously injured in the early stage after SCI, but this has not received sufficient attention. Oxidative stress is known to play a crucial role in SCI pathology. Our studies demonstrated that oxidative stress can cause severe damage to the cytoskeleton of spinal MNs. Docosahexaenoic acid (DHA) has been shown to have beneficial effects on SCI, but the mechanism remains unclear, and no study has investigated the effect of DHA on oxidative stress-induced spinal MN injury. Here, we investigated the effect of DHA on spinal MN injury through in vivo and in vitro experiments, focusing on the cytoskeleton. We found that DHA not only promoted spinal MN survival but, more importantly, alleviated the severe cytoskeletal destruction of these neurons induced by oxidative stress in vitro and in mice with SCI in vivo. In addition, the mechanisms involved were investigated and elucidated. These results not only suggested a beneficial role of DHA in spinal MN cytoskeletal destruction caused by oxidative stress and SCI but also indicated the important role of the spinal MN cytoskeleton in the recovery of motor function after SCI. Our study provides new insights for the formulation of SCI treatment.
Collapse
Affiliation(s)
- Qinqin Pei
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qiurong Zhao
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Chunhui Lang
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Shilong Feng
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Juanjuan Meng
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Guangjiao Tan
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Wei Cui
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Cheng Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xiaohe Luo
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Lixin Xu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404000, China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jian Chen
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404000, China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
5
|
Calderone A, Cardile D, De Luca R, Quartarone A, Corallo F, Calabrò RS. Brain Plasticity in Patients with Spinal Cord Injuries: A Systematic Review. Int J Mol Sci 2024; 25:2224. [PMID: 38396902 PMCID: PMC10888628 DOI: 10.3390/ijms25042224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
A spinal cord injury (SCI) causes changes in brain structure and brain function due to the direct effects of nerve damage, secondary mechanisms, and long-term effects of the injury, such as paralysis and neuropathic pain (NP). Recovery takes place over weeks to months, which is a time frame well beyond the duration of spinal shock and is the phase in which the spinal cord remains unstimulated below the level of injury and is associated with adaptations occurring throughout the nervous system, often referred to as neuronal plasticity. Such changes occur at different anatomical sites and also at different physiological and molecular biological levels. This review aims to investigate brain plasticity in patients with SCIs and its influence on the rehabilitation process. Studies were identified from an online search of the PubMed, Web of Science, and Scopus databases. Studies published between 2013 and 2023 were selected. This review has been registered on OSF under (n) 9QP45. We found that neuroplasticity can affect the sensory-motor network, and different protocols or rehabilitation interventions can activate this process in different ways. Exercise rehabilitation training in humans with SCIs can elicit white matter plasticity in the form of increased myelin water content. This review has demonstrated that SCI patients may experience plastic changes either spontaneously or as a result of specific neurorehabilitation training, which may lead to positive outcomes in functional recovery. Clinical and experimental evidence convincingly displays that plasticity occurs in the adult CNS through a variety of events following traumatic or non-traumatic SCI. Furthermore, efficacy-based, pharmacological, and genetic approaches, alone or in combination, are increasingly effective in promoting plasticity.
Collapse
Affiliation(s)
- Andrea Calderone
- Graduate School of Health Psychology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rosaria De Luca
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| |
Collapse
|
6
|
Sánchez-Torres S, Orozco-Barrios C, Salgado-Ceballos H, Segura-Uribe JJ, Guerra-Araiza C, León-Cholula Á, Morán J, Coyoy-Salgado A. Tibolone Improves Locomotor Function in a Rat Model of Spinal Cord Injury by Modulating Apoptosis and Autophagy. Int J Mol Sci 2023; 24:15285. [PMID: 37894971 PMCID: PMC10607734 DOI: 10.3390/ijms242015285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Spinal cord injury (SCI) harms patients' health and social and economic well-being. Unfortunately, fully effective therapeutic strategies have yet to be developed to treat this disease, affecting millions worldwide. Apoptosis and autophagy are critical cell death signaling pathways after SCI that should be targeted for early therapeutic interventions to mitigate their adverse effects and promote functional recovery. Tibolone (TIB) is a selective tissue estrogen activity regulator (STEAR) with neuroprotective properties demonstrated in some experimental models. This study aimed to investigate the effect of TIB on apoptotic cell death and autophagy after SCI and verify whether TIB promotes motor function recovery. A moderate contusion SCI was produced at thoracic level 9 (T9) in male Sprague Dawley rats. Subsequently, animals received a daily dose of TIB orally and were sacrificed at 1, 3, 14 or 30 days post-injury. Tissue samples were collected for morphometric and immunofluorescence analysis to identify tissue damage and the percentage of neurons at the injury site. Autophagic (Beclin-1, LC3-I/LC3-II, p62) and apoptotic (Caspase 3) markers were also analyzed via Western blot. Finally, motor function was assessed using the BBB scale. TIB administration significantly increased the amount of preserved tissue (p < 0.05), improved the recovery of motor function (p < 0.001) and modulated the expression of autophagy markers in a time-dependent manner while consistently inhibiting apoptosis (p < 0.05). Therefore, TIB could be a therapeutic alternative for the recovery of motor function after SCI.
Collapse
Affiliation(s)
- Stephanie Sánchez-Torres
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (S.S.-T.); (H.S.-C.); (Á.L.-C.)
- Consejo Nacional de Ciencia y Tecnología, Mexico City 03940, Mexico
| | - Carlos Orozco-Barrios
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (S.S.-T.); (H.S.-C.); (Á.L.-C.)
| | - Julia J. Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Ángel León-Cholula
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (S.S.-T.); (H.S.-C.); (Á.L.-C.)
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Angélica Coyoy-Salgado
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| |
Collapse
|
7
|
Vangansewinkel T, Lemmens S, Tiane A, Geurts N, Dooley D, Vanmierlo T, Pejler G, Hendrix S. Therapeutic administration of mouse mast cell protease 6 improves functional recovery after traumatic spinal cord injury in mice by promoting remyelination and reducing glial scar formation. FASEB J 2023; 37:e22939. [PMID: 37130013 DOI: 10.1096/fj.202201942rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Traumatic spinal cord injury (SCI) most often leads to permanent paralysis due to the inability of axons to regenerate in the adult mammalian central nervous system (CNS). In the past, we have shown that mast cells (MCs) improve the functional outcome after SCI by suppressing scar tissue formation at the lesion site via mouse mast cell protease 6 (mMCP6). In this study, we investigated whether recombinant mMCP6 can be used therapeutically to improve the functional outcome after SCI. Therefore, we applied mMCP6 locally via an intrathecal catheter in the subacute phase after a spinal cord hemisection injury in mice. Our findings showed that hind limb motor function was significantly improved in mice that received recombinant mMCP6 compared with the vehicle-treated group. In contrast to our previous findings in mMCP6 knockout mice, the lesion size and expression levels of the scar components fibronectin, laminin, and axon-growth-inhibitory chondroitin sulfate proteoglycans were not affected by the treatment with recombinant mMCP6. Surprisingly, no difference in infiltration of CD4+ T cells and reactivity of Iba-1+ microglia/macrophages at the lesion site was observed between the mMCP6-treated mice and control mice. Additionally, local protein levels of the pro- and anti-inflammatory mediators IL-1β, IL-2, IL-4, IL-6, IL-10, TNF-α, IFNγ, and MCP-1 were comparable between the two treatment groups, indicating that locally applied mMCP6 did not affect inflammatory processes after injury. However, the increase in locomotor performance in mMCP6-treated mice was accompanied by reduced demyelination and astrogliosis in the perilesional area after SCI. Consistently, we found that TNF-α/IL-1β-astrocyte activation was decreased and that oligodendrocyte precursor cell (OPC) differentiation was increased after recombinant mMCP6 treatment in vitro. Mechanistically, this suggests effects of mMCP6 on reducing astrogliosis and improving (re)myelination in the spinal cord after injury. In conclusion, these data show for the first time that recombinant mMCP6 is therapeutically active in enhancing recovery after SCI.
Collapse
Affiliation(s)
- Tim Vangansewinkel
- Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Assia Tiane
- Department of Neuroscience, Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Nathalie Geurts
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research University College Dublin, Belfield, Ireland
| | - Tim Vanmierlo
- Department of Neuroscience, Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sven Hendrix
- Institute for Translational Medicine, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Li GS, Chen GH, Wang KH, Wang XX, Hu XS, Wei B, Hu Y. Neurovascular Unit Compensation from Adjacent Level May Contribute to Spontaneous Functional Recovery in Experimental Cervical Spondylotic Myelopathy. Int J Mol Sci 2023; 24:ijms24043408. [PMID: 36834841 PMCID: PMC9962900 DOI: 10.3390/ijms24043408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The progression and remission of cervical spondylotic myelopathy (CSM) are quite unpredictable due to the ambiguous pathomechanisms. Spontaneous functional recovery (SFR) has been commonly implicated in the natural course of incomplete acute spinal cord injury (SCI), while the evidence and underlying pathomechanisms of neurovascular unit (NVU) compensation involved in SFR remains poorly understood in CSM. In this study, we investigate whether compensatory change of NVU, in particular in the adjacent level of the compressive epicenter, is involved in the natural course of SFR, using an established experimental CSM model. Chronic compression was created by an expandable water-absorbing polyurethane polymer at C5 level. Neurological function was dynamically assessed by BBB scoring and somatosensory evoked potential (SEP) up to 2 months. (Ultra)pathological features of NVUs were presented by histopathological and TEM examination. Quantitative analysis of regional vascular profile area/number (RVPA/RVPN) and neuroglial cells numbers were based on the specific EBA immunoreactivity and neuroglial biomarkers, respectively. Functional integrity of blood spinal cord barrier (BSCB) was detected by Evan blue extravasation test. Although destruction of the NVU, including disruption of the BSCB, neuronal degeneration and axon demyelination, as well as dramatic neuroglia reaction, were found in the compressive epicenter and spontaneous locomotor and sensory function recovery were verified in the modeling rats. In particular, restoration of BSCB permeability and an evident increase in RVPA with wrapping proliferated astrocytic endfeet in gray matter and neuron survival and synaptic plasticity were confirmed in the adjacent level. TEM findings also proved ultrastructural restoration of the NVU. Thus, NVU compensation changes in the adjacent level may be one of the essential pathomechanisms of SFR in CSM, which could be a promising endogenous target for neurorestoration.
Collapse
Affiliation(s)
- Guang-Sheng Li
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Guang-Hua Chen
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
- Correspondence: (G.-H.C.); (Y.H.)
| | - Kang-Heng Wang
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Xu-Xiang Wang
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Xiao-Song Hu
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Bo Wei
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Yong Hu
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Correspondence: (G.-H.C.); (Y.H.)
| |
Collapse
|
9
|
Roolfs L, Hubertus V, Spinnen J, Shopperly LK, Fehlings MG, Vajkoczy P. Therapeutic Approaches Targeting Vascular Repair After Experimental Spinal Cord Injury: A Systematic Review of the Literature. Neurospine 2022; 19:961-975. [PMID: 36597633 PMCID: PMC9816606 DOI: 10.14245/ns.2244624.312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/16/2022] [Indexed: 12/27/2022] Open
Abstract
Traumatic spinal cord injury (SCI) disrupts the spinal cord vasculature resulting in ischemia, amplification of the secondary injury cascade and exacerbation of neural tissue loss. Restoring functional integrity of the microvasculature to prevent neural loss and to promote neural repair is an important challenge and opportunity in SCI research. Herein, we summarize the course of vascular injury and repair following SCI and give a comprehensive overview of current experimental therapeutic approaches targeting spinal cord microvasculature to diminish ischemia and thereby facilitate neural repair and regeneration. A systematic review of the published literature on therapeutic approaches to promote vascular repair after experimental SCI was performed using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) standards. The MEDLINE databases PubMed, Embase, and OVID MEDLINE were searched using the keywords "spinal cord injury," "angiogenesis," "angiogenesis inducing agents," "tissue engineering," and "rodent subjects." A total of 111 studies were identified through the search. Five main therapeutic approaches to diminish hypoxia-ischemia and promote vascular repair were identified as (1) the application of angiogenic factors, (2) genetic engineering, (3) physical stimulation, (4) cell transplantation, and (5) biomaterials carrying various factor delivery. There are different therapeutic approaches with the potential to diminish hypoxia-ischemia and promote vascular repair after experimental SCI. Of note, combinatorial approaches using implanted biomaterials and angiogenic factor delivery appear promising for clinical translation.
Collapse
Affiliation(s)
- Laurens Roolfs
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vanessa Hubertus
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jacob Spinnen
- Tissue Engineering Laboratory, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Lennard K. Shopperly
- Tissue Engineering Laboratory, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael G. Fehlings
- Division of Neurosurgery and Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Canada
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany,Corresponding Author Peter Vajkoczy Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
10
|
Li E, Yan R, Yan K, Zhang R, Zhang Q, Zou P, Wang H, Qiao H, Li S, Ma Q, Liao B. Single-cell RNA sequencing reveals the role of immune-related autophagy in spinal cord injury in rats. Front Immunol 2022; 13:987344. [PMID: 36211348 PMCID: PMC9535363 DOI: 10.3389/fimmu.2022.987344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury refers to damage to the spinal cord due to trauma, disease, or degeneration; and the number of new cases is increasing yearly. Significant cellular changes are known to occur in the area of spinal cord injury. However, changes in cellular composition, trajectory of cell development, and intercellular communication in the injured area remain unclear. Here, we used single-cell RNA sequencing to evaluate almost all the cell types that constitute the site of spinal cord injury in rats. In addition to mapping the cells of the injured area, we screened the expression of immune autophagy-related factors in cells and identified signaling pathways by the measuring the expression of the receptor−ligand pairs to regulate specific cell interactions during autophagy after spinal cord injury. Our data set is a valuable resource that provides new insights into the pathobiology of spinal cord injury and other traumatic diseases of the central nervous system.
Collapse
Affiliation(s)
- Erliang Li
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Rongbao Yan
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kang Yan
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Rui Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Qian Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Peng Zou
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Huimei Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Qiao
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Shuang Li
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Qiong Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
- *Correspondence: Bo Liao, ; Qiong Ma,
| | - Bo Liao
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
- *Correspondence: Bo Liao, ; Qiong Ma,
| |
Collapse
|
11
|
Neuroprotective effect of geraniol on neurological disorders: a review article. Mol Biol Rep 2022; 49:10865-10874. [PMID: 35900613 DOI: 10.1007/s11033-022-07755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neurological disorders are structural, biochemical, and electrical abnormalities that affect the peripheral and central nervous systems. Paralysis, muscle weakness, tremors, spasms, and partial or complete loss of sensation are some symptoms of these disorders. Neurorehabilitation is the main treatment for neurological disorders. Treatments can improve the quality of life of patients. Neuroprotective substances of natural origin are used for the treatments of these disorders. METHODS AND RESULTS Online databases, such as Google Scholar, PubMed, ScienceDirect, and Scopus were searched to evaluate articles from 1981-2021 using the Mesh words of geraniol (GER), neurological disorders, epilepsy, spinal cord injury (SCI), Parkinson's diseases (PD), and depression. A total of 87 studies were included in this review. GER with antioxidant, anti-inflammatory, and neuroprotective effects can improve the symptoms and reduce the progression of neurological diseases. GER exhibits neuroprotective effects by binding to GABA and glycine receptors as well as by inhibiting the activation of nuclear factor kappa B (NF-κB) pathway and regulating the expression of nucleotide-binding oligomerization of NLRP3 inflammasome. In this study, the effect of GER was investigated on neurological disorders, such as epilepsy, SCI, PD, and depression. CONCLUSION Although the medicinal uses of GER have been reported, more clinical and experimental studies are needed to investigate the effect of using traditional medicine on improving lifethreatening diseases and the quality of life of patients.
Collapse
|
12
|
Haggerty AE, Maldonado-Lasunción I, Nitobe Y, Yamane K, Marlow MM, You H, Zhang C, Cho B, Li X, Reddy S, Mao HQ, Oudega M. The Effects of the Combination of Mesenchymal Stromal Cells and Nanofiber-Hydrogel Composite on Repair of the Contused Spinal Cord. Cells 2022; 11:cells11071137. [PMID: 35406701 PMCID: PMC8997442 DOI: 10.3390/cells11071137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
A bone marrow-derived mesenchymal stromal cell (MSC) transplant and a bioengineered nanofiber-hydrogel composite (NHC) have been shown to stimulate nervous tissue repair in the contused spinal cord in rodent models. Here, these two modalities were combined to assess their repair effects in the contused spinal cord in adult rats. Cohorts of contused rats were treated with MSC in NHC (MSC-NHC), MSC in phosphate-buffered saline (MSC-PBS), NHC, or PBS injected into the contusion site at 3 days post-injury. One week after injury, there were significantly fewer CD68+ cells in the contusion with MSC-NHC and NHC, but not MSC-PBS. The reduction in CD86+ cells in the injury site with MSC-NHC was mainly attributed to NHC. One and eight weeks after injury, we found a greater CD206+/CD86+ cell ratio with MSC-NHC or NHC, but not MSC-PBS, indicating a shift from a pro-inflammatory towards an anti-inflammatory milieu in the injury site. Eight weeks after injury, the injury size was significantly reduced with MSC-NHC, NHC, and MSC-PBS. At this time, astrocyte, and axon presence in the injury site was greater with MSC-NHC compared with MSC-PBS. We did not find a significant effect of NHC on MSC transplant survival, and hind limb function was similar across all groups. However, we did find fewer macrophages at 1 week post-injury, more macrophages polarized towards a pro-regenerative phenotype at 1 and 8 weeks after injury, and reduced injury volume, more astrocytes, and more axons at 8 weeks after injury in rats with MSC-NHC and NHC alone compared with MSC-PBS; these findings were especially significant between rats with MSC-NHC and MSC-PBS. The data support further study in the use of an NHC-MSC combination transplant in the contused spinal cord.
Collapse
Affiliation(s)
- Agnes E. Haggerty
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA; (A.E.H.); (I.M.-L.); (Y.N.); (K.Y.); (M.M.M.)
| | - Ines Maldonado-Lasunción
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA; (A.E.H.); (I.M.-L.); (Y.N.); (K.Y.); (M.M.M.)
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movements Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Yohshiro Nitobe
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA; (A.E.H.); (I.M.-L.); (Y.N.); (K.Y.); (M.M.M.)
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kentaro Yamane
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA; (A.E.H.); (I.M.-L.); (Y.N.); (K.Y.); (M.M.M.)
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kitaku, Okayama 700-8558, Japan
| | - Megan M. Marlow
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA; (A.E.H.); (I.M.-L.); (Y.N.); (K.Y.); (M.M.M.)
| | - Hua You
- Department of Oncology and Hematology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China;
| | - Chi Zhang
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; (C.Z.); (B.C.); (X.L.)
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Brian Cho
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; (C.Z.); (B.C.); (X.L.)
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Xiaowei Li
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; (C.Z.); (B.C.); (X.L.)
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA;
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sashank Reddy
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA;
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hai-Quan Mao
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; (C.Z.); (B.C.); (X.L.)
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA;
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: (H.-Q.M.); (M.O.)
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movements Sciences, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
- Correspondence: (H.-Q.M.); (M.O.)
| |
Collapse
|
13
|
Mesenchymal Stem Cells in the Treatment of Human Spinal Cord Injury: The Effect on Individual Values of pNF-H, GFAP, S100 Proteins and Selected Growth Factors, Cytokines and Chemokines. Curr Issues Mol Biol 2022; 44:578-596. [PMID: 35723326 PMCID: PMC8929137 DOI: 10.3390/cimb44020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
At present, there is no effective way to treat the consequences of spinal cord injury (SCI). SCI leads to the death of neural and glial cells and widespread neuroinflammation with persisting for several weeks after the injury. Mesenchymal stem cells (MSCs) therapy is one of the most promising approaches in the treatment of this injury. The aim of this study was to characterize the expression profile of multiple cytokines, chemokines, growth factors, and so-called neuromarkers in the serum of an SCI patient treated with autologous bone marrow-derived MSCs (BM-MSCs). SCI resulted in a significant increase in the levels of neuromarkers and proteins involved in the inflammatory process. BM-MSCs administration resulted in significant changes in the levels of neuromarkers (S100, GFAP, and pNF-H) as well as changes in the expression of proteins and growth factors involved in the inflammatory response following SCI in the serum of a patient with traumatic SCI. Our preliminary results encouraged that BM-MSCs with their neuroprotective and immunomodulatory effects could affect the repair process after injury.
Collapse
|
14
|
Romanelli P, Bieler L, Heimel P, Škokić S, Jakubecova D, Kreutzer C, Zaunmair P, Smolčić T, Benedetti B, Rohde E, Gimona M, Hercher D, Dobrivojević Radmilović M, Couillard-Despres S. Enhancing Functional Recovery Through Intralesional Application of Extracellular Vesicles in a Rat Model of Traumatic Spinal Cord Injury. Front Cell Neurosci 2022; 15:795008. [PMID: 35046776 PMCID: PMC8762366 DOI: 10.3389/fncel.2021.795008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
Local inflammation plays a pivotal role in the process of secondary damage after spinal cord injury. We recently reported that acute intravenous application of extracellular vesicles (EVs) secreted by human umbilical cord mesenchymal stromal cells dampens the induction of inflammatory processes following traumatic spinal cord injury. However, systemic application of EVs is associated with delayed delivery to the site of injury and the necessity for high doses to reach therapeutic levels locally. To resolve these two constraints, we injected EVs directly at the lesion site acutely after spinal cord injury. We report here that intralesional application of EVs resulted in a more robust improvement of motor recovery, assessed with the BBB score and sub-score, as compared to the intravenous delivery. Moreover, the intralesional application was more potent in reducing inflammation and scarring after spinal cord injury than intravenous administration. Hence, the development of EV-based therapy for spinal cord injury should aim at an early application of vesicles close to the lesion.
Collapse
Affiliation(s)
- Pasquale Romanelli
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Innovacell AG, Innsbruck, Austria
| | - Lara Bieler
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, University Clinic of Dentistry, Medical University Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Siniša Škokić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dominika Jakubecova
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Christina Kreutzer
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Pia Zaunmair
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Tomislav Smolčić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Bruno Benedetti
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University, Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), Salzburg, Austria
- Research Program "Nanovesicular Therapies", Paracelsus Medical University, Salzburg, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marina Dobrivojević Radmilović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
15
|
Torelli AG, Cristante AF, de Barros-Filho TEP, Dos Santos GB, Morena BC, Correia FF, Paschon V. Effects of ganglioside GM1 and erythropoietin on spinal cord injury in mice: Functional and immunohistochemical assessments. Clinics (Sao Paulo) 2022; 77:100006. [PMID: 35193085 PMCID: PMC8903807 DOI: 10.1016/j.clinsp.2022.100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/30/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES To evaluate the functional and immunohistochemical effects of ganglioside GM1 and erythropoietin following experimental spinal cord injury. METHODS Thirty-two male BALB/c mice were subjected to experimental spinal cord injury using the NYU Impactor device and were randomly divided into the following groups: GM1 group, receiving standard ganglioside GM1 (30 mg/kg); erythropoietin group, receiving erythropoietin (1000 IU/kg); combination group, receiving both drugs; and control group, receiving saline (0.9%). Animals were evaluated according to the Basso Mouse Scale (BMS) and Hindlimb Mouse Function Score (MFS). After euthanasia, the immunohistochemistry of the medullary tissue of mice was analyzed. All animals received intraperitoneal treatment. RESULTS The GM1 group had higher BMS and MFS scores at the end of the experiment when compared to all other groups. The combination group had higher BMS and MFS scores than the erythropoietin and control groups. The erythropoietin group had higher BMS and MFS scores than the control group. Immunohistochemical tissue analysis showed a significant difference among groups. There was a significant increase in myelinated axons and in the myelinated axon length in the erythropoietin group when compared to the other intervention groups (p < 0.01). CONCLUSIONS Erythropoietin and GM1 have therapeutic effects on axonal regeneration in mice subjected to experimental spinal cord injury, and administration of GM1 alone had the highest scores on the BMS and MFS scales.
Collapse
Affiliation(s)
- Alessandro Gonzalez Torelli
- Divisão de Cirurgia de Coluna Vertebral, Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| | - Alexandre Fogaça Cristante
- Divisão de Cirurgia de Coluna Vertebral, Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Tarcísio Eloy Pessoa de Barros-Filho
- Divisão de Cirurgia de Coluna Vertebral, Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Gustavo Bispo Dos Santos
- Laboratório de Investigação Médica (LIM 41), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | | | - Vera Paschon
- Laboratório de Neurogenética, Universidade Federal do ABC, Santo Andre, SP, Brazil
| |
Collapse
|
16
|
Jaiswal S, Brabazon F, von Leden R, Acs D, Collier S, Allison N, Dardzinski B, Byrnes KR. Spinal cord injury chronically depresses glucose uptake in the rodent model. Neurosci Lett 2021; 771:136416. [PMID: 34954116 DOI: 10.1016/j.neulet.2021.136416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
The pathophysiology following spinal cord injury (SCI) progresses from its lesion epicenter resulting in cellular and systemic changes acutely, sub-acutely and chronically. The symptoms of the SCI depend upon the severity of the injury and its location in the spinal cord. However, there is lack of studies that have longitudinally assessed acute through chronic in vivo changes following SCI. In this combinatorial study we fill this gap by evaluating acute to chronic effects of moderate SCI in rats. We have used fluorodeoxyglucose (FDG) imaging with positron emission tomography (PET) as a marker to assess glucose metabolism, motor function, and immunohistochemistry to examine changes following moderate SCI. Our results demonstrate decreased FDG uptake at the injury site chronically at days 28 and 90 post injury compared to baseline. This alteration in glucose uptake was not restricted to the lesion site, showing depressed FDG uptake in non-injured areas (cervical spinal cord and cerebellum). The alteration in glucose uptake was correlated with reductions in neuronal cell viability and increases in glial cell activation at 90 days at the lesion site, as well as chronic impairments in motor function. These data demonstrate the chronic effects of SCI on glucose metabolism both within the lesion and distally within the spinal cord and brain.
Collapse
Affiliation(s)
- Shalini Jaiswal
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, USA; Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
| | - Fiona Brabazon
- Neuroscience Program, Uniformed Services University, Bethesda, MD, USA
| | - Ramona von Leden
- Neuroscience Program, Uniformed Services University, Bethesda, MD, USA
| | - Deanna Acs
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Sean Collier
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Nathanael Allison
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
| | - Bernard Dardzinski
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
| | - Kimberly R Byrnes
- Neuroscience Program, Uniformed Services University, Bethesda, MD, USA; Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
17
|
Hodgetts SI, Lovett SJ, Baron-Heeris D, Fogliani A, Sturm M, Van den Heuvel C, Harvey AR. Effects of amyloid precursor protein peptide APP96-110, alone or with human mesenchymal stromal cells, on recovery after spinal cord injury. Neural Regen Res 2021; 17:1376-1386. [PMID: 34782585 PMCID: PMC8643048 DOI: 10.4103/1673-5374.327357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Delivery of a peptide (APP96-110), derived from amyloid precursor protein (APP), has been shown to elicit neuroprotective effects following cerebral stroke and traumatic brain injury. In this study, the effect of APP96-110 or a mutant version of this peptide (mAPP96-110) was assessed following moderate (200 kdyn, (2 N)) thoracic contusive spinal cord injury (SCI) in adult Nude rats. Animals received a single tail vein injection of APP96-110 or mAPP96-110 at 30 minutes post-SCI and were then assessed for functional improvements over the next 8 weeks. A cohort of animals also received transplants of either viable or non-viable human mesenchymal stromal cells (hMSCs) into the SC lesion site at one week post-injury to assess the effect of combining intravenous APP96-110 delivery with hMSC treatment. Rats were perfused 8 weeks post-SCI and longitudinal sections of spinal cord analyzed for a number of factors including hMSC viability, cyst size, axonal regrowth, glial reactivity and macrophage activation. Analysis of sensorimotor function revealed occasional significant differences between groups using Ladderwalk or Ratwalk tests, however there were no consistent improvements in functional outcome after any of the treatments. mAPP96-110 alone, and APP96-110 in combination with both viable and non-viable hMSCs significantly reduced cyst size compared to SCI alone. Combined treatments with donor hMSCs also significantly increased βIII tubulin+, glial fibrillary acidic protein (GFAP+) and laminin+ expression, and decreased ED1+ expression in tissues. This preliminary study demonstrates that intravenous delivery of APP96-110 peptide has selective, modest neuroprotective effects following SCI, which may be enhanced when combined with hMSC transplantation. However, the effects are less pronounced and less consistent compared to the protective morphological and cognitive impact that this same peptide has on neuronal survival and behaviour after stroke and traumatic brain injury. Thus while the efficacy of a particular therapeutic approach in one CNS injury model may provide justification for its use in other neurotrauma models, similar outcomes may not necessarily occur and more targeted approaches suited to location and severity are required. All animal experiments were approved by The University of Western Australia Animal Ethics Committee (RA3/100/1460) on April 12, 2016.
Collapse
Affiliation(s)
- Stuart I Hodgetts
- School of Human Sciences, The University of Western Australia (UWA); Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Sarah J Lovett
- School of Human Sciences, The University of Western Australia (UWA), Perth, WA, Australia
| | - D Baron-Heeris
- School of Human Sciences, The University of Western Australia (UWA), Perth, WA, Australia
| | - A Fogliani
- School of Human Sciences, The University of Western Australia (UWA), Perth, WA, Australia
| | - Marian Sturm
- Cell and Tissue Therapies WA (CTTWA), Royal Perth Hospital, Perth, WA, Australia
| | - C Van den Heuvel
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia (UWA); Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
18
|
The Unique Properties of Placental Mesenchymal Stromal Cells: A Novel Source of Therapy for Congenital and Acquired Spinal Cord Injury. Cells 2021; 10:cells10112837. [PMID: 34831060 PMCID: PMC8616037 DOI: 10.3390/cells10112837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) is a devasting condition with no reliable treatment. Spina bifida is the most common cause of congenital SCI. Cell-based therapies using mesenchymal stem/stromal cells (MSCS) have been largely utilized in SCI. Several clinical trials for acquired SCI use adult tissue-derived MSC sources, including bone-marrow, adipose, and umbilical cord tissues. The first stem/stromal cell clinical trial for spina bifida is currently underway (NCT04652908). The trial uses early gestational placental-derived mesenchymal stem/stromal cells (PMSCs) during the fetal repair of myelomeningocele. PMSCs have been shown to exhibit unique neuroprotective, angiogenic, and antioxidant properties, all which are promising applications for SCI. This review will summarize the unique properties and current applications of PMSCs and discuss their therapeutic role for acquired SCI.
Collapse
|
19
|
Du W, Deng Y, Jiang R, Tong L, Li R, Jiang X. Clemastine Enhances Myelination, Delays Axonal Loss and Promotes Functional Recovery in Spinal Cord Injury. Neurochem Res 2021; 47:503-515. [PMID: 34661796 PMCID: PMC8827101 DOI: 10.1007/s11064-021-03465-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/04/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022]
Abstract
Recent evidence has shown that demyelination occurs along with axonal degeneration in spinal cord injury (SCI) during the secondary injury phase. Oligodendrocyte precursor cells (OPC) are present in the lesions but fail to differentiate into mature oligodendrocytes and form new myelin. Given the limited recovery of neuronal functions after SCI in adults without effective treatment available so far, it remains unknown whether enhancing OPC differentiation and myelination could benefit the recovery of SCI. To show the significance of myelin regeneration after SCI, the injury was treated with clemastine in the rat model. Clemastine is an FDA-approved drug that is potent in promoting oligodendrocyte differentiation and myelination in vivo, for four weeks following SCI. Motor function was assessed using sloping boards and grid walking tests and scored according to the Basso, Beattie, and Bresnahan protocol. The myelin integrity and protein expression were evaluated using transmission electron microscopy and immunofluorescence, respectively. The results indicated that clemastine treatment preserves myelin integrity, decreases loss of axons and improves functional recovery in the rat SCI model. The presented data suggest that myelination-enhancing strategies may serve as a potential therapeutic approach for the functional recovery in SCI.
Collapse
Affiliation(s)
- Weihong Du
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yongbing Deng
- Department of Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Rong Jiang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Luyao Tong
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ruixue Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Xue Jiang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
20
|
Masterman E, Ahmed Z. Experimental Treatments for Oedema in Spinal Cord Injury: A Systematic Review and Meta-Analysis. Cells 2021; 10:cells10102682. [PMID: 34685662 PMCID: PMC8534777 DOI: 10.3390/cells10102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 12/09/2022] Open
Abstract
The incidence of spinal cord injury (SCI) is ever-growing, resulting in life-changing neurological deficits which can have devastating long-term impacts on a person’s quality of life. There is an unmet clinical need for a treatment which will prevent progression of the injury, allowing improved axonal regeneration and functional recovery to occur. The initial mechanical insult, followed by a cascade of secondary mechanisms, leads to the exacerbation and remodelling of the lesion site, thus inhibiting neurological recovery. Oedema rapidly accumulates following SCI and contributes to the detrimental pathophysiology and worsens functional outcomes. This study systematically reviewed the current experimental treatments being explored in the field of SCI, which specifically target oedema. Abiding by PRISMA guidelines and strict inclusion criteria, 14 studies were identified and analysed from three online databases (PubMed, Web of Science and EMBASE). As a result, we identified three key modalities which attenuate oedema: selective inhibition of the main water channel protein, aquaporin 4 (AQP4), modulation of inflammation and surgical interventions. Collectively, however, they all result in the downregulation of AQP4, which crucially leads to a reduction in oedema and improved functional outcomes. We concluded that trifluoperazine (TFP), a calmodulin kinase inhibitor which prevents the cell-surface localisation of AQP4, was the most efficacious treatment, significantly eliminating oedema within 7 days of administration. To date, this study is the most concise analysis of current experimental treatments for oedema, exposing its molecular mechanisms and assessing potential therapeutic pathways for future research.
Collapse
Affiliation(s)
- Emma Masterman
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Zubair Ahmed
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham B15 2TH, UK
- Correspondence:
| |
Collapse
|
21
|
Mahadewa TGB, Mardhika PE, Awyono S, Putra MB, Saapang GS, Wiyanjana KDF, Putra KK, Natakusuma TISD, Ryalino C. Mesenteric Neural Stem Cell for Chronic Spinal Cord Injury: A Literature Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Spinal cord injury (SCI) is a common and potentially life-threatening condition with no established treatment to treat the primary injury. Mesenteric neural stem cell (NSC) therapy is a promising stem cell therapy to treat primary SCI in the chronic phase. We aimed to review the literature narratively to describe current evidence regarding mesenteric NSC in SCI. Primary SCI refers to tissue damage that occurs at the time of trauma that leads to the death of neuronal cells. In chronic SCI, the ability of neuronal regeneration is compromised by the development of gliotic scar. NSC is a stem cell therapy that targeted SCI in the chronic phase. Enteric NSC is one of the sources of NSC, and autologous gut harvesting in the appendix using endoscopic surgery provides a more straightforward and low-risk procedure. Intramedullary transplantation of stem cell with ultrasound guiding is administration technique which offers long-term regeneration. Mesenteric NSC is a promising stem cell therapy to treat chronic SCI with low risk and easier procedure to isolate cells compared to other NSC sources.
Collapse
|
22
|
Jayakumar N, Suliman A, Joshi A, Holliman D. Intracerebral schwannoma of the angular gyrus: case report. Ann R Coll Surg Engl 2021; 103:e314-e316. [PMID: 34448654 DOI: 10.1308/rcsann.2021.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report an intracerebral schwannoma originating in the angular gyrus of a 20-year-old female that was incidentally diagnosed after she presented with a post-traumatic seizure. After comprehensive investigations, including functional magnetic resonance imaging, she underwent a computed tomography-guided stereotactic resection of the lesion. Pathological examination confirmed features of a schwannoma. After six years of follow-up, she remains well, without any evidence of recurrence. Intracerebral schwannomas are extremely uncommon: fewer than 90 cases have been reported. We present a comprehensive summary of the literature and a discussion of novel theories on the pathogenesis of intracerebral schwannomas.
Collapse
Affiliation(s)
- N Jayakumar
- Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - A Suliman
- Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - A Joshi
- Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - D Holliman
- Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| |
Collapse
|
23
|
Mattucci S, Speidel J, Liu J, Tetzlaff W, Oxland TR. Temporal Progression of Acute Spinal Cord Injury Mechanisms in a Rat Model: Contusion, Dislocation, and Distraction. J Neurotrauma 2021; 38:2103-2121. [PMID: 33820470 DOI: 10.1089/neu.2020.7255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic spinal cord injuries (SCIs) occur due to different spinal column injury patterns, including burst fracture, dislocation, and flexion-distraction. Pre-clinical studies modeling different SCI mechanisms have shown distinct histological differences between these injuries both acutely (3 h and less) and chronically (8 weeks), but there remains a temporal gap. Different rates of injury progression at specific regions of the spinal cord may provide insight into the pathologies that are initiated by specific SCI mechanisms. Therefore, the objective of this study was to evaluate the temporal progression of injury at specific tracts within the white matter, for time-points of 3 h, 24 h, and 7 days, for three distinct SCI mechanisms. In this study, 96 male Sprague Dawley rats underwent one of three SCI mechanisms: contusion, dislocation, or distraction. Animals were sacrificed at one of three times post-injury: 3 h, 24 h, or 7 days. Histological analysis using eriochrome cyanide and immunostaining for MBP, SMI-312, neurofilament-H (NF-H), and β-III tubulin were used to characterize white matter sparing and axon and myelinated axon counts. The regions analyzed were the gracile fasciculus, cuneate fasciculus, dorsal corticospinal tract, and ventrolateral white matter. Contusion, dislocation, and distraction SCIs demonstrated distinct damage patterns that progressed differently over time. Myelinated axon counts were significantly reduced after dislocation and contusion injuries in most locations and time-points analyzed (compared with sham). This indicates early myelin damage often within 3 h. Myelinated axon counts after distraction dropped early and did not demonstrate any significant progression over the next 7 days. Important differences in white matter degeneration were identified between injury types, with distraction injuries showing the least variability across time-points These findings and the observation that white matter injury occurs early, and in many cases, without much dynamic change, highlight the importance of injury type in SCI research-both clinically and pre-clinically.
Collapse
Affiliation(s)
- Stephen Mattucci
- Department of Orthopedics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Speidel
- Department of Orthopedics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas R Oxland
- Department of Orthopedics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Tan C, Yang C, Liu H, Tang C, Huang S. Effect of Schwann cell transplantation combined with electroacupuncture on axonal regeneration and remyelination in rats with spinal cord injury. Anat Rec (Hoboken) 2021; 304:2506-2520. [PMID: 34319000 DOI: 10.1002/ar.24721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Axonal impairment and demyelination after compressed spinal cord injury lead to serious neurological dysfunction. Increasing studies have suggested that Schwann cells (SCs) transplantation is a reliable, effective, and promising method for treating spinal cord injury. However, single SCs transplantation is insufficient to promote the full recovery of neurological function. Additional approaches are required to support SCs transplantation as a treatment for spinal cord injury. In the study, we investigated whether the combination of electroacupuncture (EA) and SCs transplantation was a reliable intervention for spinal cord injury. We found that rats in the combination group had significantly higher functional locomotor scores than those received single treatment. By immunostaining, we found EA can not only improve survival and proliferation of transplanted SCs but also inhibit SC apoptosis and block the formation of an astrocytic scar. Additionally, EA promoted regenerated axons extending "bullet-shaped" growth cones into the lesion. Remarkably, EA can modify astrogliosis to promote axonal regeneration following SCs transplantation through inducing extension of astrocytic processes in the SCs graft interface. More importantly, the combination of SCs engraftment and EA can enhance corticospinal-tract axonal regeneration and remyelination after spinal cord injury through up-regulating neuregulin 1 type III in SCs and its downstream signaling mediators. Thus, it is concluded that SCs effectively promote axonal recovery after spinal cord injury when combined with EA stimulation. The experimental results have reinforced the theoretical basis of EA for its clinical efficacy in patients with spinal cord injury and merited further investigation for potential clinical application.
Collapse
Affiliation(s)
- Chengfang Tan
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Cheng Yang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Chenglin Tang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Siqin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Gao L, Wang C, Qin B, Li T, Xu W, Lenahan C, Ying G, Li J, Zhao T, Zhu Y, Chen G. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase Suppresses Neuronal Apoptosis by Increasing Glycolysis and "cyclin-dependent kinase 1-Mediated Phosphorylation of p27 After Traumatic Spinal Cord Injury in Rats. Cell Transplant 2021; 29:963689720950226. [PMID: 32841050 PMCID: PMC7563815 DOI: 10.1177/0963689720950226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Apoptosis is a vital pathological factor that accounts for the poor prognosis of
traumatic spinal cord injury (t-SCI). The
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is a critical
regulator for energy metabolism and proven to have antiapoptotic effects. This
study aimed to investigate the neuroprotective role of PFKFB3 in t-SCI. A
compressive clip was introduced to establish the t-SCI model. Herein, we
identified that PFKFB3 was extensively distributed in neurons, and PFKFB3 levels
significantly increased and peaked 24 h after t-SCI. Additionally, knockdown of
PFKFB3 inhibited glycolysis, accompanied by aggravated neuronal apoptosis and
white matter injury, while pharmacological activation of PFKFB3 with meclizine
significantly enhanced glycolysis, attenuated t-SCI-induced spinal cord injury,
and alleviated neurological impairment. The PFKFB3 agonist, meclizine, activated
cyclin-dependent kinase 1 (CDK1) and promoted the phosphorylation of p27,
ultimately suppressing neuronal apoptosis. However, the neuroprotective effects
of meclizine against t-SCI were abolished by the CDK1 antagonist, RO3306. In
summary, our data demonstrated that PFKFB3 contributes robust neuroprotection
against t-SCI by enhancing glycolysis and modulating CDK1-related antiapoptotic
signals. Moreover, targeting PFKFB3 may be a novel and promising therapeutic
strategy for t-SCI.
Collapse
Affiliation(s)
- Liansheng Gao
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chun Wang
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bing Qin
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weilin Xu
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- 448838Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Guangyu Ying
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianru Li
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tengfei Zhao
- Department of Orthopedics, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongjian Zhu
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Asadi-Golshan R, Razban V, Mirzaei E, Rahmanian A, Khajeh S, Mostafavi-Pour Z, Dehghani F. Efficacy of dental pulp-derived stem cells conditioned medium loaded in collagen hydrogel in spinal cord injury in rats: Stereological evidence. J Chem Neuroanat 2021; 116:101978. [PMID: 34098013 DOI: 10.1016/j.jchemneu.2021.101978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) causes histological alterations which in turn affects functional activity. Studies have demonstrated that dental pulp-derived stem cells conditioned medium has beneficial effects on the nervous system. Besides, collagen hydrogel acts as a drug releasing system in SCI investigations. This research aimed to evaluate effects of dental pulp-derived stem cells conditioned medium loaded in collagen hydrogel in SCI. After culturing of Stem cells from human exfoliated deciduous teeth (SHEDs), SHED-conditioned medium (SHED-CM) was harvested and concentrated. Collagen hydrogel containing SHED-CM was prepared. The rats were divided into five groups receiving laminectomy, compressive SCI with or without intraspinal injection of biomaterials (SHED-CM and collagen hydrogel with or without SHED-CM). After 6 weeks, histological parameters were estimated using stereological methods. The total volume of preserved white matter and gray matter (p < 0.05) as well as the total number of neurons and oligodendrocytes in the rats received SHED-CM loaded in collagen hydrogel were significantly higher, and also lesion volume and lesion length were significantly lower (p < 0.05) compared to those of the other injured groups. In conclusion, intraspinal administration of SHED-CM loaded in collagen hydrogel leads to neuroprotection, proposing a cell-free therapeutic approach in SCI.
Collapse
Affiliation(s)
- Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Dehghani
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Xue W, Zhang H, Fan Y, Xiao Z, Zhao Y, Liu W, Xu B, Yin Y, Chen B, Li J, Cui Y, Shi Y, Dai J. Upregulation of Apol8 by Epothilone D facilitates the neuronal relay of transplanted NSCs in spinal cord injury. Stem Cell Res Ther 2021; 12:300. [PMID: 34039405 PMCID: PMC8157417 DOI: 10.1186/s13287-021-02375-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/09/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Microtubule-stabilizing agents have been demonstrated to modulate axonal sprouting during neuronal disease. One such agent, Epothilone D, has been used to treat spinal cord injury (SCI) by promoting axonal sprouting at the lesion site after SCI. However, the role of Epothilone D in the differentiation of neural stem cells (NSCs) in SCI repair is unknown. In the present study, we mainly explored the effects and mechanisms of Epothilone D on the neuronal differentiation of NSCs and revealed a potential new SCI treatment. METHODS In vitro differentiation assays, western blotting, and quantitative real-time polymerase chain reaction were used to detect the effects of Epothilone D on NSC differentiation. Retrograde tracing using a pseudotyped rabies virus was then used to detect neuronal circuit construction. RNA sequencing (RNA-Seq) was valuable for exploring the target gene involved in the neuronal differentiation stimulated by Epothilone D. In addition, lentivirus-induced overexpression and RNA interference technology were applied to demonstrate the function of the target gene. Last, an Apol8-NSC-linear ordered collagen scaffold (LOCS) graft was prepared to treat a mouse model of SCI, and functional and electrophysiological evaluations were performed. RESULTS We first revealed that Epothilone D promoted the neuronal differentiation of cultured NSCs and facilitated neuronal relay formation in the injured site after SCI. Furthermore, the RNA-Seq results demonstrated that Apol8 was upregulated during Epothilone D-induced neuronal relay formation. Lentivirus-mediated Apol8 overexpression in NSCs (Apol8-NSCs) promoted NSC differentiation toward neurons, and an Apol8 interference assay showed that Apol8 had a role in promoting neuronal differentiation under the induction of Epothilone D. Last, Apol8-NSC transplantation with LOCS promoted the neuronal differentiation of transplanted NSCs in the lesion site as well as synapse formation, thus improving the motor function of mice with complete spinal cord transection. CONCLUSIONS Epothilone D can promote the neuronal differentiation of NSCs by upregulating Apol8, which may provide a promising therapeutic target for SCI repair.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haipeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of the Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of the Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiyuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of the Chinese Academy of Sciences, Beijing, 100190, China
| | - Bai Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China
| | - Ya Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
28
|
The Effect of Inflammatory Priming on the Therapeutic Potential of Mesenchymal Stromal Cells for Spinal Cord Repair. Cells 2021; 10:cells10061316. [PMID: 34070547 PMCID: PMC8227154 DOI: 10.3390/cells10061316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSC) are used for cell therapy for spinal cord injury (SCI) because of their ability to support tissue repair by paracrine signaling. Preclinical and clinical research testing MSC transplants for SCI have revealed limited success, which warrants the exploration of strategies to improve their therapeutic efficacy. MSC are sensitive to the microenvironment and their secretome can be altered in vitro by exposure to different culture media. Priming MSC with inflammatory stimuli increases the expression and secretion of reparative molecules. We studied the effect of macrophage-derived inflammation priming on MSC transplants and of primed MSC (pMSC) acute transplants (3 days) on spinal cord repair using an adult rat model of moderate-severe contusive SCI. We found a decrease in long-term survival of pMSC transplants compared with unprimed MSC transplants. With a pMSC transplant, we found significantly more anti-inflammatory macrophages in the contusion at 4 weeks post transplantation (wpt). Blood vessel presence and maturation in the contusion at 1 wpt was similar in rats that received pMSC or untreated MSC. Nervous tissue sparing and functional recovery were similar across groups. Our results indicate that macrophage-derived inflammation priming does not increase the overall therapeutic potential of an MSC transplant in the adult rat contused spinal cord.
Collapse
|
29
|
Yao C, Cao X, Yu B. Revascularization After Traumatic Spinal Cord Injury. Front Physiol 2021; 12:631500. [PMID: 33995118 PMCID: PMC8119644 DOI: 10.3389/fphys.2021.631500] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a complex pathological process. The initial mechanical damage is followed by a progressive secondary injury cascade. The injury ruptures the local microvasculature and disturbs blood-spinal cord barriers, exacerbating inflammation and tissue damage. Although endogenous angiogenesis is triggered, the new vessels are insufficient and often fail to function normally. Numerous blood vessel interventions, such as proangiogenic factor administration, gene modulation, cell transplantation, biomaterial implantation, and physical stimulation, have been applied as SCI treatments. Here, we briefly describe alterations and effects of the vascular system on local microenvironments after SCI. Therapies targeted at revascularization for SCI are also summarized.
Collapse
Affiliation(s)
- Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xuemin Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
30
|
Collagen-based scaffolds: An auspicious tool to support repair, recovery, and regeneration post spinal cord injury. Int J Pharm 2021; 601:120559. [PMID: 33831486 DOI: 10.1016/j.ijpharm.2021.120559] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a perplexing traumatic disease that habitually gives ride to permanent disability, motor, and sensory impairment. Despite the existence of several therapeutic approaches for the injured motor or sensory neurons, they can't promote axonal regeneration. Whether prepared by conventional or rapid prototyping techniques, scaffolds can be applied to refurbish the continuity of the injured site, by creating a suitable environment for tissue repair, axonal regeneration, and vascularization. Collagen is a multi-sourced protein, found in animals skin, tendons, cartilage, bones, and human placenta, in addition to marine biomass. Collagen is highly abundant in the extracellular matrix and is known for its biocompatibility, biodegradability, porous structure, good permeability, low immunogenicity and thus is extensively applied in the pharmaceutical, cosmetic, and food industries as well as the tissue engineering field. Collagen in scaffolds is usually functionalized with different ligands and factors such as, stem cells, embryonic or human cells to augment its binding specificity and activity. The review summarizes the significance of collagen-based scaffolds and their influence on regeneration, repair and recovery of spinal cord injuries.
Collapse
|
31
|
Abstract
Traumatic spinal cord injury is a common neurologic insult worldwide that can result in severe disability. Early stabilization of the patient's airway, breathing, and circulation as well as cervical and thoracolumbar spinal immobilization is necessary to prevent additional injury and optimize outcomes. Computed tomography (CT) scan and magnetic resonance imaging (MRI) of the spinal column can assist with determining the extent of bony and ligamentous injury, which will guide surgical management. With or without surgical intervention, patients with spinal cord injury require intensive care unit management and close observation to monitor for potential complications.
Collapse
Affiliation(s)
- Ilyas Eli
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Neurosurgery, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - David P Lerner
- Department of Neurology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Zoher Ghogawala
- Department of Neurosurgery, Lahey Hospital and Medical Center, Burlington, MA, USA.
| |
Collapse
|
32
|
Macrophage migration inhibitory factor as a therapeutic target after traumatic spinal cord injury: a systematic review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1474-1494. [PMID: 33486594 DOI: 10.1007/s00586-021-06718-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/25/2020] [Accepted: 01/01/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Macrophages play an important role in mediating damage after Spinal cord injury (SCI) by secreting macrophage migration inhibitory factor (MMIF) as a secondary injury mediator. We aimed to systematically review the role of MMIF as a therapeutic target after traumatic SCI. METHODS Our systematic review has been performed according to the PRISMA 2009 Checklist. A systematic search in the scientific databases was carried out for studies published before 20 February 2019 from major databases. Two researchers independently screened titles. The risk of bias of eligible articles was assessed, and data were extracted. Finally, we systematically analyzed and interpreted related data. RESULTS 785 papers were selected for the title and abstract screening. 12 papers were included for data extraction. Eight animal studies were of high quality and the remaining two were of medium quality. One of the two human studies was of poor quality and the other was of fair quality. MMIF as a pro-inflammatory mediator can cause increased susceptibility to glutamate-related neurotoxicity, increased nitrite production, increased ERK activation, and increased COX2/PGE2 signaling pathway activation and subsequent stimulation of CCL5-related chemotaxis. Two human studies and six animal studies demonstrated that MMIF level increases after SCI. MMIF inhibition might be a potential therapeutic target in SCI by multiple different mechanisms (6/12 studies). CONCLUSION Most animal studies demonstrate significant neurologic improvement after administration of MMIF inhibitors, but these inhibitors have not been studied in humans yet. Further clinical trials are need to further understand MMIF inhibitor utility in acute or chronic SCI. LEVEL OF EVIDENCE I Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.
Collapse
|
33
|
Singh R, Magu S, Baskar A, Rohilla RK, Kaur K, Kaur S. Correlation of Clinical Findings in Acute Spinal Injury Patients with Magnetic Resonance Including Diffusion Tensor Imaging and Fiber Tractography. Spine Surg Relat Res 2020; 4:305-313. [PMID: 33195854 PMCID: PMC7661030 DOI: 10.22603/ssrr.2020-0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/29/2020] [Indexed: 01/26/2023] Open
Abstract
Introduction Many types of research are being carried out in the fields of understanding of the pathogenesis, early recognition, and improving the outcomes after spinal cord injury (SCI). Diffusion tensor imaging (DTI) is one of the modalities used in vivo microstructural assessment of SCI. The aim of the present study is to evaluate the role of DTI imaging and fiber tractography in acute spinal injury with clinical profile and neurological outcome. Methods The study was carried out on twenty-five patients of acute spinal cord injury who presented within 48 hours of injury and completed minimum of six months follow-up. Results The mean age of patients was 37.32±13.31 years and male & female ratio of 18:7. Total MIS score was 91.64±6.0 initially which improved to 96.92±3.68 after 3 months and 99.4±1.35 after 6 months. Total SIS score was similar at all the time intervals i.e. 224±0. Maximum subjects 14(56%) were classified into AIS C and 5(20%) into AIS D whereas only 6(24%) subjects were having no deficit (AIS E). At the end of 6 months, 13(52%) subjects had no deficit (AIS E). Mean fractional anisotropy (FA) initially was 0.451 (± 0.120) but after 6 months, it increased to 0.482 (± 0.097) (p<0.001). The mean apparent diffusion coefficient (ADC) initially was 3.13 (± 2.68) but after 6 months, it decreased to 3.06 (± 2.68) and this change was found to be statistically highly significant (p<0.001). Mean anisotropy index (AI) initially was 0.420 (± 0.245) but after 6 months, it increased to 0.430 (± 3.41) and this change was found to be statistically significant (p<0.01). Conclusions DTI is a sensitive tool to detect neurological damage in SCI and subsequent neurological recovery. FA correlated with ASIA impairment scale. It can be useful as an adjunct to conventional MRI for better evaluation and predicting prognosis in SCI patients.
Collapse
Affiliation(s)
- Roop Singh
- Department of Orthopaedic Surgery, Paraplegia & Rehabilitation, Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Sciences, Rohtak, India
| | - Sarita Magu
- Department of Radiodiagnosis & Imaging, Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Sciences, Rohtak, India
| | - Arvinth Baskar
- Department of Orthopaedic Surgery, Paraplegia & Rehabilitation, Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Sciences, Rohtak, India
| | - Rajesh Kumar Rohilla
- Department of Orthopaedic Surgery, Paraplegia & Rehabilitation, Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Sciences, Rohtak, India
| | - Kiranpreet Kaur
- Department of Anaesthesiology and Critical Care, Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Sciences, Rohtak, India
| | - Svareen Kaur
- Baba Saheb Ambedkar Medical College, Rohini, India
| |
Collapse
|
34
|
Wood R, Durali P, Wall I. Impact of Dual Cell Co-culture and Cell-conditioned Media on Yield and Function of a Human Olfactory Cell Line for Regenerative Medicine. Bioengineering (Basel) 2020; 7:bioengineering7020037. [PMID: 32290611 PMCID: PMC7355638 DOI: 10.3390/bioengineering7020037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are a promising candidate therapy for neuronal tissue repair. However, appropriate priming conditions to drive a regenerative phenotype are yet to be determined. We first assessed the effect of using a human fibroblast feeder layer and fibroblast conditioned media on primary rat olfactory mucosal cells (OMCs). We found that OMCs cultured on fibroblast feeders had greater expression of the key OEC marker p75NTR (25.1 ± 10.7 cells/mm2) compared with OMCs cultured on laminin (4.0 ± 0.8 cells/mm2, p = 0.001). However, the addition of fibroblast-conditioned media (CM) resulted in a significant increase in Thy1.1 (45.9 ± 9.0 cells/mm2 versus 12.5 ± 2.5 cells/mm2 on laminin, p = 0.006), an undesirable cell marker as it is regarded to be a marker of contaminating fibroblasts. A direct comparison between human feeders and GMP cell line Ms3T3 was then undertaken. Ms3T3 cells supported similar p75NTR levels (10.7 ± 5.3 cells/mm2) with significantly reduced Thy1.1 expression (4.8 ± 2.1 cells/mm2). Ms3T3 cells were used as feeder layers for human OECs to determine whether observations made in the rat model were conserved. Examination of the OEC phenotype (S100β expression and neurite outgrowth from NG108-15 cells) revealed that co-culture with fibroblast feeders had a negative effect on human OECs, contrary to observations of rat OECs. CM negatively affected rat and human OECs equally. When the best and worst conditions in terms of supporting S100β expression were used in NG108-15 neuron co-cultures, those with the highest S100β expression resulted in longer and more numerous neurites (22.8 ± 2.4 μm neurite length/neuron for laminin) compared with the lowest S100β expression (17.9 ± 1.1 μm for Ms3T3 feeders with CM). In conclusion, this work revealed that neither dual co-culture nor fibroblast-conditioned media support the regenerative OEC phenotype. In our case, a preliminary rat model was not predictive of human cell responses.
Collapse
Affiliation(s)
- Rachael Wood
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Pelin Durali
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Correspondence:
| |
Collapse
|
35
|
Huang L, Wang Y, Zhu M, Wan X, Zhang H, Lei T, Blesch A, Liu S. Anisotropic Alginate Hydrogels Promote Axonal Growth across Chronic Spinal Cord Transections after Scar Removal. ACS Biomater Sci Eng 2020; 6:2274-2286. [PMID: 33455324 DOI: 10.1021/acsbiomaterials.9b01802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously reported that cell-seeded alginate hydrogels (AHs) with anisotropic capillaries can restore the continuity of the spinal cord and support axonal regeneration in a rat model of acute partial spinal cord transection. Whether similar effects can be found after transplantation into sites of complete chronic spinal cord transections without additional growth-promoting stimuli has not been investigated. We therefore implanted AHs into the cavity of a chronic thoracic transection following scar resection (SR) 4 weeks postinjury and examined electrophysiological and functional recovery as well as regeneration of descending and ascending projections within and beyond the AH scaffold up to 3 months after engraftment. Our results indicate that both electrophysiological conductivity and locomotor function are significantly improved after AH engraftment. SR transiently impairs locomotor function immediately after surgery but does not affect long-term outcomes. Histological analysis shows numerous host cells migrating into the scaffold channels and a reduction of fibroglial scaring around the lesion by AH grafts. In contrast to corticospinal axons, raphaespinal and propriospinal descending axons and ascending sensory axons regenerate throughout the scaffolds and extend into the distal host parenchyma. These results further support the pro-regenerative properties of AHs and their therapeutic potential for chronic SCI in combination with other strategies to improve functional outcomes after spinal cord injury.
Collapse
Affiliation(s)
- Lulu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Yu Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Xueyan Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Armin Blesch
- Department of Neurosciences, Center for Neural Repair, University of California, San Diego, Biomedical Research Facility 2, Room 2131, 9500 Gilman Drive, La Jolla, California 92093-0626, United States
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
36
|
Tsintou M, Dalamagkas K, Makris N. Taking central nervous system regenerative therapies to the clinic: curing rodents versus nonhuman primates versus humans. Neural Regen Res 2020; 15:425-437. [PMID: 31571651 PMCID: PMC6921352 DOI: 10.4103/1673-5374.266048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
The central nervous system is known to have limited regenerative capacity. Not only does this halt the human body's reparative processes after central nervous system lesions, but it also impedes the establishment of effective and safe therapeutic options for such patients. Despite the high prevalence of stroke and spinal cord injury in the general population, these conditions remain incurable and place a heavy burden on patients' families and on society more broadly. Neuroregeneration and neural engineering are diverse biomedical fields that attempt reparative treatments, utilizing stem cells-based strategies, biologically active molecules, nanotechnology, exosomes and highly tunable biodegradable systems (e.g., certain hydrogels). Although there are studies demonstrating promising preclinical results, safe clinical translation has not yet been accomplished. A key gap in clinical translation is the absence of an ideal animal or ex vivo model that can perfectly simulate the human microenvironment, and also correspond to all the complex pathophysiological and neuroanatomical factors that affect functional outcomes in humans after central nervous system injury. Such an ideal model does not currently exist, but it seems that the nonhuman primate model is uniquely qualified for this role, given its close resemblance to humans. This review considers some regenerative therapies for central nervous system repair that hold promise for future clinical translation. In addition, it attempts to uncover some of the main reasons why clinical translation might fail without the implementation of nonhuman primate models in the research pipeline.
Collapse
Affiliation(s)
- Magdalini Tsintou
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- University College of London Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
| | - Kyriakos Dalamagkas
- University College of London Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The Institute for Rehabilitation and Research Memorial Hermann Research Center, The Institute for Rehabilitation and Research Memorial Hermann Hospital, Houston, TX, USA
| | - Nikos Makris
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
37
|
Combined Method of Neuronal Cell-Inducible Vector and Valproic Acid for Enhanced Gene Expression under Hypoxic Conditions. Tissue Eng Regen Med 2020; 17:55-66. [PMID: 32002843 DOI: 10.1007/s13770-019-00223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Gene therapy shows the ability to restore neuronal dysfunction via therapeutic gene expression. The efficiency of gene expression and delivery to hypoxic injury sites is important for successful gene therapy. Therefore, we established a gene/stem cell therapy system using neuron-specific enolase promoter and induced neural stem cells in combination with valproic acid to increase therapeutic gene expression in hypoxic spinal cord injury. METHODS To examine the effect of combined method on enhancing gene expression, we compared neuronal cell-inducible luciferase levels under normoxia or hypoxia conditions in induced neural stem cells with valproic acid. Therapeutic gene, vascular endothelial growth factor, expression with combined method was investigated in hypoxic spinal cord injury model. We verified gene expression levels and the effect of different methods of valproic acid administration in vivo. RESULTS The results showed that neuron-specific enolase promoter enhanced gene expression levels in induced neural stem cells compared to Simian Virus 40 promoter under hypoxic conditions. Valproic acid treatment showed higher gene expression of neuron-specific enolase promoter than without treatment. In addition, gene expression levels and cell viability were different depending on the various concentration of valproic acid. The gene expression levels were increased significantly when valproic acid was directly injected with induced neural stem cells in vivo. CONCLUSION In this study, we demonstrated that the combination of neuron-specific enolase promoter and valproic acid induced gene overexpression in induced neural stem cells under hypoxic conditions and also in spinal cord injury depending on valproic acid administration in vivo. Combination of valproic acid and neuron-specific enolase promoter in induced neural stem cells could be an effective gene therapy system for hypoxic spinal cord injury.
Collapse
|
38
|
Boraiah V, Modgil S, Sharma K, Podder V, Sivapuram MS, Miranpuri GS, Anand A, Goni V. Altered Expression of Heat Shock Protein-27 and Monocyte Chemoattractant Protein-1 after Acute Spinal Cord Injury: A Pilot Study. J Neurosci Rural Pract 2019; 10:452-458. [PMID: 31595117 PMCID: PMC6779554 DOI: 10.1055/s-0039-1697683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background
Spinal cord injury (SCI) leads to serious complications involving primary trauma and progressive loss due to inflammation, local ischemia, or infection. Despite a worldwide annual incidence of 15 to 40 cases per million, methylprednisolone is the only treatment available to alleviate neurologic dysfunction; therefore, research is currently focused on identifying novel targets by biochemical and molecular studies.
Purpose
Here, we investigated the expression of various molecular markers at the messenger ribonucleic acid (mRNA) and protein level at day 0 and day 30 post-SCI.
Methods
Enzyme-linked immunosorbent assay (ELISA) was performed to determine the expression of CASPASE-3 and heat shock protein-27 (HSP-27) in serum samples. Real-time polymerase chain reaction (RT-PCR) was performed to determine the level of mRNA expression of vascular endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, HSP-27, monocyte chemoattractant protein-1 (MCP-1), and CASPASE-3.
Results
HSP-27 expression at day 30, as compared with day 0, showed significant downregulation. In contrast, there was elevated expression of MCP-1. ELISA analysis showed no significant change in the expression of CASPASE-3 or HSP-27.
Conclusion
There may be possible opposing role of HSP-27 and MCP-1 governing SCI. Their association can be studied by designing in vitro studies.
Collapse
Affiliation(s)
- Vidyasagar Boraiah
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shweta Modgil
- Department of Neurology, Neuroscience Research Laboratory, Post Graduate Institute of Medical Education and Research, Chandigarh, India.,Department of Zoology, Panjab University, Chandigarh, India
| | - Kaushal Sharma
- Department of Neurology, Neuroscience Research Laboratory, Post Graduate Institute of Medical Education and Research, Chandigarh, India.,Centre for System Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Vivek Podder
- Department of General Medicine, Kamineni Institute of Medical Sciences, Narketpally, Telangana, India
| | - Madhava Sai Sivapuram
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Chinna Avutapalli, Andhra Pradesh, India
| | - Gurwattan S Miranpuri
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Akshay Anand
- Department of Neurology, Neuroscience Research Laboratory, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vijay Goni
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
39
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|
40
|
Anguita-Salinas C, Sánchez M, Morales RA, Ceci ML, Rojas-Benítez D, Allende ML. Cellular Dynamics during Spinal Cord Regeneration in Larval Zebrafish. Dev Neurosci 2019; 41:112-122. [PMID: 31390621 DOI: 10.1159/000500185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/04/2019] [Indexed: 11/19/2022] Open
Abstract
The study of spinal cord regeneration using diverse animal models, which range from null to robust regenerative capabilities, is imperative for understanding how regeneration evolved and, eventually, to treat spinal cord injury and paralysis in humans. In this study, we used electroablation to fully transect the spinal cord of zebrafish larvae (3 days postfertilization) and examined regeneration of the tissue over time. We used transgenic lines to follow immune cells, oligodendrocytes, and neurons in vivo during the entire regenerative process. We observed that immune cells are recruited to the injury site, oligodendrocytes progenitor cells (olig2-expressing cells) invade, and axons cross the gap generated upon damage from anterior to reinnervate caudal structures. Together with the recovery of cell types and structures, a complete reversal of paralysis was observed in the lesioned larvae indicating functional regeneration. Finally, using transplantation to obtain mosaic larvae with single-labeled neurons, we show that severed spinal axons exhibited varying regenerative capabilities and plasticity depending on their original dorsoventral position in the spinal cord.
Collapse
Affiliation(s)
- Consuelo Anguita-Salinas
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mario Sánchez
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rodrigo A Morales
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - María Laura Ceci
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Diego Rojas-Benítez
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile,
| |
Collapse
|
41
|
Li J, Liang Z, Wang S, Wang Z, Zhang X, Hu X, Wang K, He Q, Bai J. Study on the pathological and biomedical characteristics of spinal cord injury by confocal Raman microspectral imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:148-158. [PMID: 30453190 DOI: 10.1016/j.saa.2018.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 05/08/2023]
Abstract
Confocal Raman microspectral imaging (CRMI) in combination with multivariate analysis was used to study pathological progression after spinal cord injury (SCI). By establishing moderate contusion in rat models, ex vivo longitudinal spinal cord tissue sections were prepared for microspectroscopic analysis. Comparative studies were then performed to determine the pathological distinctions among before injury (BI), one day post-injury (1 DPI), seven days post-injury (7 DPI), and 14 days post-injury (14 DPI) groups. Multivariate analysis algorithms, including K-mean cluster analysis (KCA) and principal component analysis (PCA), were conducted to highlight biochemical and structural variations after tissue damage. It is confirmed that typical spectral features and profiles can illustrate some fundamental and significant pathological processes post-injury, such as neuron apoptosis, hemorrhage, demyelination, and chondroitin sulfate proteoglycans (CSPGs) upregulation. Further, by establishing spectra-structure correlations, the reconstructed spectral images revealed some minute and important morphological characteristics following tissue injury, such as glial scar formation surrounding the cavity structure. The observed spectral phenomena also provide a detailed view on relevant pathobiological factors, which are involved in the spread of secondary damage after traumatic spinal cord injury. Our findings not only provide a spectral perspective to the well-known cellular mechanisms underlying SCI, but further provide a sound basis for developing real-time Raman methodologies to evaluate the prognostic factors and therapeutic results of SCI.
Collapse
Affiliation(s)
- Jie Li
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China; Department of Physics, Northwest University, Xi'an, Shaanxi, China
| | - Zhuowen Liang
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shuang Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China.
| | - Zhe Wang
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xu Zhang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China; Department of Physics, Northwest University, Xi'an, Shaanxi, China
| | - Xueyu Hu
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Kaige Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Qingli He
- Department of Physics, Northwest University, Xi'an, Shaanxi, China
| | - Jintao Bai
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
42
|
Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury. Acta Biomater 2019; 86:194-206. [PMID: 30586646 DOI: 10.1016/j.actbio.2018.12.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/23/2022]
Abstract
Multi-channel nerve conduits have shown significant advantages in guidance of axonal growth and functional restoration after spinal cord injury (SCI). It was realized that the micro/nano-architectures of these implanted conduits can effectively tune the lesion-induced biological responses, including inflammation and scar formation. In this work, two PLLA multi-channel conduits were fabricated with ladder-like porous channel wall (labelled as LNCs) and nano-fibrous channel wall (labelled as NNCs), respectively, and transferred into complete spinal cord transected injury model in rats. The implantation of such two scaffolds significantly alleviated the infiltration of macrophages/microglia and accumulation of astrocyte and collagen scar, especially in the NNCs group. Meanwhile, recruitment of endogenous stem cells and axonal growth was observed in both of the multi-channel conduits. Compared to the LNCs, the extracellular matrix (ECM) - mimicry nanostructures in the NNCs promoted directional nerve fiber growth within the channels. Moreover, a relatively denser nano-architecture in the channel wall confined the nerve fiber extension within the channels. These results from in vivo evaluations suggested that the NNCs implants possess a great potential in future application for SCI treatment and nerve regeneration. STATEMENTS OF SIGNIFICANCE: The implantation of biocompatible and degradable polymeric scaffolds holds great potential in clinical treatment and tissue regeneration after spinal cord injury (SCI). In this work, the ladder-like nerve conduits (LNCs) and nano-fibrous nerve conduits (NNCs) were fabricated and implanted into completely spinal cord transected rats, respectively. In vivo characteristics showed significant reduction in post-injury inflammation and scar formation, with elevated nerve stem cells (NSCs) recruitment and nerve fiber growth, hence both conduits resulted in significant functional restoration after implantation. Remarkably, we noticed that not only the multi-channels in the conduits can guide nerve fiber regeneration, their micro-/nano-structured walls also played a critical role in modulating the post-implantation biological responses.
Collapse
|
43
|
Application of Hepatocyte Growth Factor for Acute Spinal Cord Injury: The Road from Basic Studies to Human Treatment. Int J Mol Sci 2019; 20:ijms20051054. [PMID: 30823442 PMCID: PMC6429374 DOI: 10.3390/ijms20051054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte growth factor (HGF) was first identified as a potent mitogen for mature hepatocytes, and has also gained attention as a strong neurotrophic factor in the central nervous system. We found that during the acute phase of spinal cord injury (SCI) in rats, c-Met, the specific receptor for HGF, increases sharply, while the endogenous HGF up-regulation is relatively weak. Introducing exogenous HGF into the spinal cord by injecting an HGF-expressing viral vector significantly increased the neuron and oligodendrocyte survival, angiogenesis, and axonal regeneration, to reduce the area of damage and to promote functional recovery in rats after SCI. Other recent studies in rodents have shown that exogenously administered HGF during the acute phase of SCI reduces astrocyte activation to decrease glial scar formation, and exerts anti-inflammatory effects to reduce leukocyte infiltration. We also reported that the intrathecal infusion of recombinant human HGF (intrathecal rhHGF) improves neurological hand function after cervical contusive SCI in the common marmoset, a non-human primate. Based on these collective results, we conducted a phase I/II clinical trial of intrathecal rhHGF for patients with acute cervical SCI who showed a modified Frankel grade of A/B1/B2 72 h after injury onset, from June 2014 to May 2018.
Collapse
|
44
|
Bartus K, Burnside ER, Galino J, James ND, Bennett DLH, Bradbury EJ. ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury. Glia 2019; 67:1036-1046. [PMID: 30637799 PMCID: PMC6491970 DOI: 10.1002/glia.23586] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
We recently discovered a novel role for neuregulin‐1 (Nrg1) signaling in mediating spontaneous regenerative processes and functional repair after spinal cord injury (SCI). We revealed that Nrg1 is the molecular signal responsible for spontaneous functional remyelination of dorsal column axons by peripheral nervous system (PNS)‐like Schwann cells after SCI. Here, we investigate whether Nrg1/ErbB signaling controls the unusual transformation of centrally derived progenitor cells into these functional myelinating Schwann cells after SCI using a fate‐mapping/lineage tracing approach. Specific ablation of Nrg1‐ErbB receptors in central platelet‐derived growth factor receptor alpha (PDGFRα)‐derived lineage cells (using PDGFRαCreERT2/Tomato‐red reporter mice crossed with ErbB3fl/fl/ErbB4fl/fl mice) led to a dramatic reduction in P0‐positive remyelination in the dorsal columns following spinal contusion injury. Central myelination, assessed by Olig2 and proteolipid protein expression, was unchanged. Loss of ErbB signaling in PDGFRα lineage cells also significantly impacted the degree of spontaneous locomotor recovery after SCI, particularly in tests dependent on proprioception. These data have important implications, namely (a) cells from the PDGFRα‐expressing progenitor lineage (which are presumably oligodendrocyte progenitor cells, OPCs) can differentiate into remyelinating PNS‐like Schwann cells after traumatic SCI, (b) this process is controlled by ErbB tyrosine kinase signaling, and (c) this endogenous repair mechanism has significant consequences for functional recovery after SCI. Thus, ErbB tyrosine kinase receptor signaling directly controls the transformation of OPCs from the PDGFRα‐expressing lineage into PNS‐like functional remyelinating Schwann cells after SCI.
Collapse
Affiliation(s)
- Katalin Bartus
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), London, United Kingdom
| | - Emily R Burnside
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), London, United Kingdom
| | - Jorge Galino
- Nuffield Department of Clinical Neurosciences, West Wing John Radcliffe Hospital, Oxford, United Kingdom
| | - Nicholas D James
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), London, United Kingdom
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, West Wing John Radcliffe Hospital, Oxford, United Kingdom
| | - Elizabeth J Bradbury
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), London, United Kingdom
| |
Collapse
|
45
|
Guest JD, Moore SW, Aimetti AA, Kutikov AB, Santamaria AJ, Hofstetter CP, Ropper AE, Theodore N, Ulich TR, Layer RT. Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials 2018; 185:284-300. [DOI: 10.1016/j.biomaterials.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
|
46
|
Wang-Leandro A, Hobert MK, Kramer S, Rohn K, Stein VM, Tipold A. The role of diffusion tensor imaging as an objective tool for the assessment of motor function recovery after paraplegia in a naturally-occurring large animal model of spinal cord injury. J Transl Med 2018; 16:258. [PMID: 30223849 PMCID: PMC6142343 DOI: 10.1186/s12967-018-1630-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022] Open
Abstract
Background Traumatic spinal cord injury (SCI) results in sensory and motor function impairment and may cause a substantial social and economic burden. For the implementation of novel treatment strategies, parallel development of objective tools evaluating spinal cord (SC) integrity during motor function recovery (MFR) is needed. Diffusion tensor imaging (DTI) enables in vivo microstructural assessment of SCI. Methods In the current study, temporal evolvement of DTI metrics during MFR were examined; therefore, values of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured in a population of 17 paraplegic dogs with naturally-occurring acute SCI showing MFR within 4 weeks after surgical decompression and compared to 6 control dogs. MRI scans were performed preoperatively and 12 weeks after MFR was observed. DTI metrics were obtained at the lesion epicentre and one SC segment cranially and caudally. Variance analyses were performed to compare values between evaluated localizations in affected dogs and controls and between time points. Correlations between DTI metrics and clinical scores at follow-up examinations were assessed. Results Before surgery, FA values at epicentres were higher than caudally (p = 0.0014) and control values (p = 0.0097); ADC values were lower in the epicentre compared to control values (p = 0.0035) and perilesional (p = 0.0448 cranially and p = 0.0433 caudally). In follow-up examinations, no significant differences could be found between DTI values from dogs showing MFR and control dogs. Lower ADC values at epicentres correlated with neurological deficits at follow-up examinations (r = − 0.705; p = 0.0023). Conclusions Findings suggest that a tendency to the return of DTI values to the physiological situation after surgical decompression accompanies MFR after SCI in paraplegic dogs. DTI may represent a useful and objective clinical tool for follow-up studies examining in vivo SC recovery in treatment studies. Electronic supplementary material The online version of this article (10.1186/s12967-018-1630-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adriano Wang-Leandro
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany. .,Centre of Systems Neuroscience, Hannover, Lower Saxony, Germany. .,Department of Diagnostics and Clinical Services, Clinic for Diagnostic Imaging, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland.
| | - Marc K Hobert
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Sabine Kramer
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Karl Rohn
- Institute of Biometry, Epidemiology, and Information Processing, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Veronika M Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany.,Division of Clinical Neurology, Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany.,Centre of Systems Neuroscience, Hannover, Lower Saxony, Germany
| |
Collapse
|
47
|
Asadi-Golshan R, Razban V, Mirzaei E, Rahmanian A, Khajeh S, Mostafavi-Pour Z, Dehghani F. Sensory and Motor Behavior Evidences Supporting the Usefulness of Conditioned Medium from Dental Pulp-Derived Stem Cells in Spinal Cord Injury in Rats. Asian Spine J 2018; 12:785-793. [PMID: 30213159 PMCID: PMC6147871 DOI: 10.31616/asj.2018.12.5.785] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/17/2018] [Indexed: 12/29/2022] Open
Abstract
Study Design Experimental animal study. Purpose This study aimed to assess effects of conditioned medium (CM) of dental pulp-derived stem cells loaded in collagen hydrogel on functional recovery following spinal cord injury (SCI). Overview of Literature SCI affects sensory and motor functions, and behavioral recovery is the most essential purpose of therapeutic intervention. Recent studies have reported that CM from dental pulp-derived stem cells has therapeutic benefits. In addition, collagen hydrogel acts as a drug delivery system in SCI experiments. Methods Stem cells from human exfoliated deciduous teeth (SHEDs) were cultured, and SHED-CM was harvested and concentrated. Collagen hydrogel containing SHED-CM was prepared. The rats were divided into five groups receiving laminectomy, compressive SCI with or without intraspinal injection of biomaterials (SHED-CM), and collagen hydrogel with or without SHED-CM. Basso, Beattie, and Bresnahan (BBB) scoring, inclined plane, cold allodynia, and beam walk tests were performed for 6 weeks to assess locomotor, motor, sensory, and sensory-motor performances, respectively. Results Scores of the rats receiving SHED-CM loaded in collagen hydrogel were significantly better than those of the other injured groups at 1-week post-injury for BBB, 2 weeks for inclined plane, 2 weeks for cold allodynia, and 4 weeks for beam walk tests (p <0.05). The differences remained significant throughout the study. Conclusions Intraspinal administration of SHED-CM loaded in collagen hydrogel leads to improved functional recovery and proposes a cell-free therapeutic approach for SCI.
Collapse
Affiliation(s)
- Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.,Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sahar Khajeh
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Recombinant Protein Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Dehghani
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
48
|
Maldonado-Lasunción I, Verhaagen J, Oudega M. Mesenchymal Stem Cell-Macrophage Choreography Supporting Spinal Cord Repair. Neurotherapeutics 2018; 15:578-587. [PMID: 29728851 PMCID: PMC6095786 DOI: 10.1007/s13311-018-0629-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury results in destructive events that lead to tissue loss and functional impairments. A hallmark of spinal cord injury is the robust and persistent presence of inflammatory macrophages. Mesenchymal stem cells (MSCs) are known to benefit repair of the damaged spinal cord often associated with improved functional recovery. Transplanted MSCs immediately encounter the abundance of inflammatory macrophages in the injury site. It is known that MSCs interact closely and reciprocally with macrophages during tissue healing. Here, we will review the roles of (transplanted) MSCs and macrophages in spinal cord injury and repair. Molecular interactions between MSCs and macrophages and the deficiencies in our knowledge about the underlying mechanisms will be reviewed. We will discuss possible ways to benefit from the MSC-macrophage choreography for developing repair strategies for the spinal cord.
Collapse
Affiliation(s)
- Inés Maldonado-Lasunción
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Avenue, Miami, FL 33136, USA.
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, 1105 BA, The Netherlands.
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, 1105 BA, The Netherlands
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Martin Oudega
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Avenue, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33155, USA.
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
49
|
Saraswat Ohri S, Bankston AN, Mullins SA, Liu Y, Andres KR, Beare JE, Howard RM, Burke DA, Riegler AS, Smith AE, Hetman M, Whittemore SR. Blocking Autophagy in Oligodendrocytes Limits Functional Recovery after Spinal Cord Injury. J Neurosci 2018; 38:5900-5912. [PMID: 29793971 PMCID: PMC6021994 DOI: 10.1523/jneurosci.0679-17.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/21/2023] Open
Abstract
Autophagy mechanisms are well documented in neurons after spinal cord injury (SCI), but the direct functional role of autophagy in oligodendrocyte (OL) survival in SCI pathogenesis remains unknown. Autophagy is an evolutionary conserved lysosomal-mediated catabolic pathway that ensures degradation of dysfunctional cellular components to maintain homeostasis in response to various forms of stress, including nutrient deprivation, hypoxia, reactive oxygen species, DNA damage, and endoplasmic reticulum (ER) stress. Using pharmacological gain and loss of function and genetic approaches, we investigated the contribution of autophagy in OL survival and its role in the pathogenesis of thoracic contusive SCI in female mice. Although upregulation of Atg5 (an essential autophagy gene) occurs after SCI, autophagy flux is impaired. Purified myelin fractions of contused 8 d post-SCI samples show enriched protein levels of LC3B, ATG5, and BECLIN 1. Data show that, while the nonspecific drugs rapamycin (activates autophagy) and spautin 1 (blocks autophagy) were pharmacologically active on autophagy in vivo, their administration did not alter locomotor recovery after SCI. To directly analyze the role of autophagy, transgenic mice with conditional deletion of Atg5 in OLs were generated. Analysis of hindlimb locomotion demonstrated a significant reduction in locomotor recovery after SCI that correlated with a greater loss in spared white matter. Immunohistochemical analysis demonstrated that deletion of Atg5 from OLs resulted in decreased autophagic flux and was detrimental to OL function after SCI. Thus, our study provides evidence that autophagy is an essential cytoprotective pathway operating in OLs and is required for hindlimb locomotor recovery after thoracic SCI.SIGNIFICANCE STATEMENT This study describes the role of autophagy in oligodendrocyte (OL) survival and pathogenesis after thoracic spinal cord injury (SCI). Modulation of autophagy with available nonselective drugs after thoracic SCI does not affect locomotor recovery despite being pharmacologically active in vivo, indicating significant off-target effects. Using transgenic mice with conditional deletion of Atg5 in OLs, this study definitively identifies autophagy as an essential homeostatic pathway that operates in OLs and exhibits a direct functional role in SCI pathogenesis and recovery. Therefore, this study emphasizes the need to discover novel autophagy-specific drugs that specifically modulate autophagy for further investigation for clinical translation to treat SCI and other CNS pathologies related to OL survival.
Collapse
Affiliation(s)
| | - Andrew N Bankston
- Kentucky Spinal Cord Injury Research Center
- Departments of Neurological Surgery
| | - S Ashley Mullins
- Kentucky Spinal Cord Injury Research Center
- Departments of Neurological Surgery
| | - Yu Liu
- Kentucky Spinal Cord Injury Research Center
- Departments of Neurological Surgery
| | - Kariena R Andres
- Kentucky Spinal Cord Injury Research Center
- Departments of Neurological Surgery
| | - Jason E Beare
- Kentucky Spinal Cord Injury Research Center
- Cardiovascular Innovation Institute, University of Louisville, School of Medicine, Louisville, Kentucky 40292
| | - Russell M Howard
- Kentucky Spinal Cord Injury Research Center
- Departments of Neurological Surgery
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center
- Departments of Neurological Surgery
| | - Amberly S Riegler
- Kentucky Spinal Cord Injury Research Center
- Departments of Neurological Surgery
| | - Allison E Smith
- Kentucky Spinal Cord Injury Research Center
- Departments of Neurological Surgery
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center
- Departments of Neurological Surgery
- Pharmacology & Toxicology
- Anatomical Sciences & Neurobiology, and
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center,
- Departments of Neurological Surgery
- Pharmacology & Toxicology
- Anatomical Sciences & Neurobiology, and
| |
Collapse
|
50
|
Irrera N, Arcoraci V, Mannino F, Vermiglio G, Pallio G, Minutoli L, Bagnato G, Anastasi GP, Mazzon E, Bramanti P, Squadrito F, Altavilla D, Bitto A. Activation of A2A Receptor by PDRN Reduces Neuronal Damage and Stimulates WNT/β-CATENIN Driven Neurogenesis in Spinal Cord Injury. Front Pharmacol 2018; 9:506. [PMID: 29896101 PMCID: PMC5986913 DOI: 10.3389/fphar.2018.00506] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a complex clinical and progressive condition characterized by neuronal loss, axonal destruction and demyelination. In the last few years, adenosine receptors have been studied as a target for many diseases, including neurodegenerative conditions. The aim of this study was to investigate the effects of an adenosine receptor agonist, PDRN, in an experimental model of SCI. Moreover, since adenosine receptors stimulation may also activate the Wnt pathway, we wanted to study PDRN effects on Wnt signaling following SCI. Spinal trauma was induced by extradural compression of spinal cord at T5-T8 level in C57BL6/J mice. Animals were randomly assigned to the following groups: Sham (n = 10), SCI (n = 14), SCI+PDRN (8 mg/kg/i.p.; n = 14), SCI+PDRN+DMPX (8 and 10 mg/kg/i.p., respectively; n = 14). DMPX was used as an adenosine receptor antagonist to evaluate whether adenosine receptor block might prevent PDRN effects. PDRN systemically administered 1 h following SCI, protected from tissue damage, demyelination, and reduced motor deficits evaluated after 10 days. PDRN also reduced the release of the pro-inflammatory cytokines TNF-α and IL-1β, reduced BAX expression and preserved Bcl-2. Furthermore, PDRN stimulated Wnt/β-catenin pathway and decreased apoptotic process 24 h following SCI, whereas DMPX administration prevented PDRN effects on Wnt/β-catenin signaling. These results confirm PDRN anti-inflammatory activity and demonstrate that a crosstalk between Wnt/β-catenin signaling is possible by adenosine receptors activation. Moreover, these data let us hypothesize that PDRN might promote neural repair through axonal regeneration and/or neurogenesis.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, AOU Policlinico G. Martino, University of Messina, Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, AOU Policlinico G. Martino, University of Messina, Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, AOU Policlinico G. Martino, University of Messina, Messina, Italy
| | - Giovanna Vermiglio
- Department of Biomedical and Dental Sciences and Morphological and Functional Sciences, AOU Policlinico G. Martino, University of Messina, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, AOU Policlinico G. Martino, University of Messina, Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, AOU Policlinico G. Martino, University of Messina, Messina, Italy
| | - Gianluca Bagnato
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Giuseppe Pio Anastasi
- Department of Biomedical and Dental Sciences and Morphological and Functional Sciences, AOU Policlinico G. Martino, University of Messina, Messina, Italy
| | | | | | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, AOU Policlinico G. Martino, University of Messina, Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphological and Functional Sciences, AOU Policlinico G. Martino, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, AOU Policlinico G. Martino, University of Messina, Messina, Italy
| |
Collapse
|