1
|
Rindler RS, Robertson H, De Yampert L, Khatri V, Texakalidis P, Eshraghi S, Grey S, Schobel S, Elster EA, Boulis N, Grossberg JA. Predicting Vasospasm and Early Mortality in Severe Traumatic Brain Injury: A Model Using Serum Cytokines, Neuronal Proteins, and Clinical Data. Neurosurgery 2024:00006123-990000000-01390. [PMID: 39471078 DOI: 10.1227/neu.0000000000003224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/28/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Prediction of patient outcomes after severe traumatic brain injury (sTBI) is limited with current clinical tools. This study aimed to improve such prognostication by combining clinical data and serum inflammatory and neuronal proteins in patients with sTBI to develop predictive models for post-traumatic vasospasm (PTV) and mortality. METHODS Fifty-three adult civilian patients were prospectively enrolled in the sTBI arm of the Surgical Critical Care Initiative (SC2i). Clinical, serum inflammatory, and neuronal protein data were combined using the parsimonious machine learning methods of least absolute shrinkage and selection operator (LASSO) and classification and regression trees (CART) to construct parsimonious models for predicting development of PTV and mortality. RESULTS Thirty-six (67.9%) patients developed vasospasm and 10 (18.9%) died. The mean age was 39.2 years; 22.6% were women. CART identified lower IL9, lower presentation pulse rate, and higher eotaxin as predictors of vasospasm development (full data area under curve (AUC) = 0.89, mean cross-validated AUC = 0.47). LASSO identified higher Rotterdam computed tomography score and lower age as risk factors for vasospasm development (full data AUC 0.94, sensitivity 0.86, and specificity 0.94; cross-validation AUC 0.87, sensitivity 0.79, and specificity 0.93). CART identified high levels of eotaxin as most predictive of mortality (AUC 0.74, cross-validation AUC 0.57). LASSO identified higher serum IL6, lower IL12, and higher glucose as predictive of mortality (full data AUC 0.9, sensitivity 1.0, and specificity 0.72; cross-validation AUC 0.8, sensitivity 0.85, and specificity 0.79). CONCLUSION Inflammatory cytokine levels after sTBI may have predictive value that exceeds conventional clinical variables for certain outcomes. IL-9, pulse rate, and eotaxin as well as Rotterdam score and age predict development of PTV. Eotaxin, IL-6, IL-12, and glucose were predictive of mortality. These results warrant validation in a prospective cohort.
Collapse
Affiliation(s)
- Rima S Rindler
- Sierra Neurosurgery Group, Reno, Nevada, USA
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Henry Robertson
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, North Bethesda, Maryland, USA
| | | | - Vivek Khatri
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, North Bethesda, Maryland, USA
| | - Pavlos Texakalidis
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
- Department of Neurosurgery, Northwestern University, Chicago, Illinois, USA
| | - Sheila Eshraghi
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Scott Grey
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, North Bethesda, Maryland, USA
| | - Seth Schobel
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Eric A Elster
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
2
|
Li R, Ye JJ, Gan L, Zhang M, Sun D, Li Y, Wang T, Chang P. Traumatic inflammatory response: pathophysiological role and clinical value of cytokines. Eur J Trauma Emerg Surg 2024; 50:1313-1330. [PMID: 38151578 PMCID: PMC11458723 DOI: 10.1007/s00068-023-02388-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023]
Abstract
Severe trauma is an intractable problem in healthcare. Patients have a widespread immune system response that is complex and vital to survival. Excessive inflammatory response is the main cause of poor prognosis and poor therapeutic effect of medications in trauma patients. Cytokines are signaling proteins that play critical roles in the body's response to injuries, which could amplify or suppress immune responses. Studies have demonstrated that cytokines are closely related to the severity of injuries and prognosis of trauma patients and help present cytokine-based diagnosis and treatment plans for trauma patients. In this review, we introduce the pathophysiological mechanisms of a traumatic inflammatory response and the role of cytokines in trauma patients. Furthermore, we discuss the potential of cytokine-based diagnosis and therapy for post-traumatic inflammatory response, although further clarification to elucidate the underlying mechanisms of cytokines following trauma is warranted.
Collapse
Affiliation(s)
- Rui Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Jing Jing Ye
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Lebin Gan
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Mengwei Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Diya Sun
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Yongzheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People's Republic of China.
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China.
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China.
| | - Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China.
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China.
| |
Collapse
|
3
|
Negrin LL, Ristl R, Wollner G, Hajdu S. Differences in Eotaxin Serum Levels between Polytraumatized Patients with and without Concomitant Traumatic Brain Injury-A Matched Pair Analysis. J Clin Med 2024; 13:4218. [PMID: 39064258 PMCID: PMC11277900 DOI: 10.3390/jcm13144218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Early detection of traumatic brain injury (TBI) is crucial for minimizing secondary neurological damage. Our study aimed to assess the potential of IL-4, IL-6, IL-7, IL-8, IL-10, TNF, and eotaxin serum levels-as a single clinical tool or combined into a panel-for diagnosing TBI in multiple injured patients. Methods: Out of 110 prospectively enrolled polytrauma victims (median age, 39 years; median ISS, 33; 70.9% male) admitted to our level I trauma center over four years, we matched 41 individuals with concomitant TBI (TBI cohort) to 41 individuals without TBI (non-TBI cohort) based on age, gender, Injury Severity Score (ISS), and mortality. Patients' protein levels were measured upon admission (day 0) and on days 1, 3, 5, 7, and 10 during routine blood withdrawal using one separation gel tube each time. Results: The median serum levels of IL-4, IL-6, IL-7, IL-8, IL-10, and TNF exhibited non-similar time courses in the two cohorts and showed no significant differences on days 0, 1, 3, 5, and 7. However, the median eotaxin levels had similar trend lines in both cohorts, with consistently higher levels in the TBI cohort, reaching significance on days 0, 3, and 5. In both cohorts, the median eotaxin level significantly decreased from day 0 to day 1, then significantly increased until day 10. We also found a significant positive association between day 0 eotaxin serum levels and the presence of TBI, indicating that for every 20 pg/mL increase in eotaxin level, the odds of a prevalent TBI rose by 10.5%. ROC analysis provided a cutoff value of 154 pg/mL for the diagnostic test (sensitivity, 0.707; specificity, 0.683; AUC = 0.718). Conclusions: Our findings identified the brain as a significant source, solely of eotaxin release in humans who have suffered a TBI. Nevertheless, the eotaxin serum level assessed upon admission has limited diagnostic value. IL-4, IL-6, IL-7, IL-8, IL-10, and TNF do not indicate TBI in polytraumatized patients.
Collapse
Affiliation(s)
- Lukas L. Negrin
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| | - Robin Ristl
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gregor Wollner
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| | - Stefan Hajdu
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| |
Collapse
|
4
|
Sadek M, Stover KR, Liu X, Reed MA, Weaver DF, Reid AY. IDO-1 inhibition improves outcome after fluid percussion injury in adult male rats. J Neurosci Res 2024; 102:e25338. [PMID: 38706427 DOI: 10.1002/jnr.25338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
The enzyme indoleamine 2,3 dioxygenase 1 (IDO1) catalyzes the rate-limiting step in the kynurenine pathway (KP) which produces both neuroprotective and neurotoxic metabolites. Neuroinflammatory signals produced as a result of pathological conditions can increase production of IDO1 and boost its enzymatic capacity. IDO1 and the KP have been implicated in behavioral recovery after human traumatic brain injury (TBI), but their roles in experimental models of TBI are for the most part unknown. We hypothesized there is an increase in KP activity in the fluid percussion injury (FPI) model of TBI, and that administration of an IDO1 inhibitor will improve neurological recovery. In this study, adult male Sprague Dawley rats were subjected to FPI or sham injury and received twice-daily oral administration of the IDO1 inhibitor PF-06840003 (100 mg/kg) or vehicle control. FPI resulted in a significant increase in KP activity, as demonstrated by an increased ratio of kynurenine: tryptophan, in the perilesional neocortex and ipsilateral hippocampus 3 days postinjury (DPI), which normalized by 7 DPI. The increase in KP activity was prevented by PF-06840003. IDO1 inhibition also improved memory performance as assessed in the Barnes maze and anxiety behaviors as assessed in open field testing in the first 28 DPI. These results suggest increased KP activity after FPI may mediate neurological dysfunction, and IDO1 inhibition should be further investigated as a potential therapeutic target to improve recovery.
Collapse
Affiliation(s)
- Marawan Sadek
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kurt R Stover
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaojing Liu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Aylin Y Reid
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Clarke GJB, Follestad T, Skandsen T, Zetterberg H, Vik A, Blennow K, Olsen A, Håberg AK. Chronic immunosuppression across 12 months and high ability of acute and subacute CNS-injury biomarker concentrations to identify individuals with complicated mTBI on acute CT and MRI. J Neuroinflammation 2024; 21:109. [PMID: 38678300 PMCID: PMC11056044 DOI: 10.1186/s12974-024-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Identifying individuals with intracranial injuries following mild traumatic brain injury (mTBI), i.e. complicated mTBI cases, is important for follow-up and prognostication. The main aims of our study were (1) to assess the temporal evolution of blood biomarkers of CNS injury and inflammation in individuals with complicated mTBI determined on computer tomography (CT) and magnetic resonance imaging (MRI); (2) to assess the corresponding discriminability of both single- and multi-biomarker panels, from acute to chronic phases after injury. METHODS Patients with mTBI (n = 207), defined as Glasgow Coma Scale score between 13 and 15, loss of consciousness < 30 min and post-traumatic amnesia < 24 h, were included. Complicated mTBI - i.e., presence of any traumatic intracranial injury on neuroimaging - was present in 8% (n = 16) on CT (CT+) and 12% (n = 25) on MRI (MRI+). Blood biomarkers were sampled at four timepoints following injury: admission (within 72 h), 2 weeks (± 3 days), 3 months (± 2 weeks) and 12 months (± 1 month). CNS biomarkers included were glial fibrillary acidic protein (GFAP), neurofilament light (NFL) and tau, along with 12 inflammation markers. RESULTS The most discriminative single biomarkers of traumatic intracranial injury were GFAP at admission (CT+: AUC = 0.78; MRI+: AUC = 0.82), and NFL at 2 weeks (CT+: AUC = 0.81; MRI+: AUC = 0.89) and 3 months (MRI+: AUC = 0.86). MIP-1β and IP-10 concentrations were significantly lower across follow-up period in individuals who were CT+ and MRI+. Eotaxin and IL-9 were significantly lower in individuals who were MRI+ only. FGF-basic concentrations increased over time in MRI- individuals and were significantly higher than MRI+ individuals at 3 and 12 months. Multi-biomarker panels improved discriminability over single biomarkers at all timepoints (AUCs > 0.85 for admission and 2-week models classifying CT+ and AUC ≈ 0.90 for admission, 2-week and 3-month models classifying MRI+). CONCLUSIONS The CNS biomarkers GFAP and NFL were useful single diagnostic biomarkers of complicated mTBI, especially in acute and subacute phases after mTBI. Several inflammation markers were suppressed in patients with complicated versus uncomplicated mTBI and remained so even after 12 months. Multi-biomarker panels improved diagnostic accuracy at all timepoints, though at acute and 2-week timepoints, the single biomarkers GFAP and NFL, respectively, displayed similar accuracy compared to multi-biomarker panels.
Collapse
Affiliation(s)
- Gerard Janez Brett Clarke
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway
| | - Turid Follestad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, N-7491, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Sha Tin, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Vik
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Alexander Olsen
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, Trondheim, Norway
| | - Asta Kristine Håberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway.
| |
Collapse
|
6
|
Ciechanowska A, Mika J. CC Chemokine Family Members' Modulation as a Novel Approach for Treating Central Nervous System and Peripheral Nervous System Injury-A Review of Clinical and Experimental Findings. Int J Mol Sci 2024; 25:3788. [PMID: 38612597 PMCID: PMC11011591 DOI: 10.3390/ijms25073788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
7
|
Jin S, Meng J, Zhang C, Qi J, Wu H. Consistency of mouse models with human intracerebral hemorrhage: core targets and non-coding RNA regulatory axis. Aging (Albany NY) 2024; 16:1952-1967. [PMID: 38271077 PMCID: PMC10866413 DOI: 10.18632/aging.205473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
Intracerebral hemorrhage (ICH) has a high mortality and disability rate. Numerous basic studies on pathogenesis and therapeutics have been performed in mice. However, the consistency of the experimental mouse model and the human ICH patient remains unclear. This has slowed progress in translational medicine. Furthermore, effective therapeutic targets and reliable regulatory networks for ICH are needed. Therefore, we determined the differentially expressed (DE) messenger RNAs (mRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) before and after murine ICH and analyzed their regulatory relationships. Subsequently, data on mRNAs from human peripheral blood after ICH were obtained from the Gene Expression Omnibus database. The DE mRNAs after human ICH were compared with those of the mouse. Finally, we obtained seven genes with translational medicine research value and verified them in mice. Then the regulatory network of these genes was analyzed in humans. Similarly, species homologies of these regulatory pathways were identified. In conclusion, we found that the mouse ICH model mimics the human disease mainly in terms of chemokines and inflammatory factors. This has important implications for future research into the mechanisms of ICH injury and repair.
Collapse
Affiliation(s)
- Sinan Jin
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Jincheng Meng
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Chong Zhang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Jiping Qi
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - He Wu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
8
|
Xu Y, Yang Y, Chen X, Jiang D, Zhang F, Guo Y, Hu B, Xu G, Peng S, Wu L, Hu J. NLRP3 inflammasome in cognitive impairment and pharmacological properties of its inhibitors. Transl Neurodegener 2023; 12:49. [PMID: 37915104 PMCID: PMC10621314 DOI: 10.1186/s40035-023-00381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Cognitive impairment is a multifactorial and multi-step pathological process that places a heavy burden on patients and the society. Neuroinflammation is one of the main factors leading to cognitive impairment. The inflammasomes are multi-protein complexes that respond to various microorganisms and endogenous danger signals, helping to initiate innate protective responses in inflammatory diseases. NLRP3 inflammasomes produce proinflammatory cytokines (interleukin IL-1β and IL-18) by activating caspase-1. In this review, we comprehensively describe the structure and functions of the NLRP3 inflammasome. We also explore the intrinsic relationship between the NLRP3 inflammasome and cognitive impairment, which involves immune cell activation, cell apoptosis, oxidative stress, mitochondrial autophagy, and neuroinflammation. Finally, we describe NLRP3 inflammasome antagonists as targeted therapies to improve cognitive impairment.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, Department of the Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Yanling Yang
- The Second Affiliated Hospital of Nanchang University, Department of the Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Xi Chen
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fei Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yao Guo
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
9
|
Radpour M, Khoshkroodian B, Asgari T, Pourbadie HG, Sayyah M. Interleukin 4 Reduces Brain Hyperexcitability after Traumatic Injury by Downregulating TNF-α, Upregulating IL-10/TGF-β, and Potential Directing Macrophage/Microglia to the M2 Anti-inflammatory Phenotype. Inflammation 2023; 46:1810-1831. [PMID: 37259014 DOI: 10.1007/s10753-023-01843-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Macrophage/microglia are activated after Traumatic brain injury (TBI), transform to inflammatory phenotype (M1) and trigger neuroinflammation, which provokes epileptogenesis. Interleukin-4 (IL-4) is a well-known drive of macrophage/microglia to the anti-inflammatory phenotype (M2). We tested effect of IL-4 on speed of epileptogenesis, brain expression of inflammatory and anti-inflammatory cytokines, and lesion size in TBI-injured male rats. Rats underwent TBI by Controlled Cortical Impact. Then 100 ng IL-4 was injected into cerebral ventricles. One day after TBI, pentylenetetrazole (PTZ) kindling started and development of generalized seizures was recorded. The lesion size, cell survival rate, TNF-α, TGF-β, IL-10, and Arginase1 (Arg1) was measured in the brain 6 h, 12 h, 24 h, 48 h, and 5 days after TBI. Astrocytes and macrophage/microglia activation/polarization was assessed by GFAP/Arg1 and Iba1/Arg1 immunostaining. TBI-injured rats were kindled by 50% less PTZ injections than control and sham-operated rats. IL-4 did not change kindling rate in sham-operated rats but inhibited acceleration of kindling rate in the TBI-injured rats. IL-4 decreased damage volume and number of destroyed neurons. IL-4 stopped TNF-α whereas upregulated TGF-β, IL-10, and Arg1 expressions. Iba1/Arg1 positive macrophage/microglia was notably increased 48 h after IL-4 administration. IL-4 suppresses TBI-induced acceleration of epileptogenesis in rats by directing TBI neuroinflammation toward an anti-inflammatory tone and inhibition of cell death.
Collapse
Affiliation(s)
- Mozhdeh Radpour
- Department of Physiology and Pharmacology, Pasteur Institute of Iran , Tehran, Iran
| | - Bahar Khoshkroodian
- Department of Physiology and Pharmacology, Pasteur Institute of Iran , Tehran, Iran
| | - Tara Asgari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran , Tehran, Iran
| | | | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran , Tehran, Iran.
| |
Collapse
|
10
|
Panchenko PE, Hippauf L, Konsman JP, Badaut J. Do astrocytes act as immune cells after pediatric TBI? Neurobiol Dis 2023; 185:106231. [PMID: 37468048 PMCID: PMC10530000 DOI: 10.1016/j.nbd.2023.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is not fully elucidated in adult, and even less described in the developing brain. Children are vulnerable to traumatic brain injury (TBI), which represents a leading cause of death and disability in the pediatric population. Pediatric brain trauma, even with mild severity, can lead to long-term health complications, such as cognitive impairments, emotional disorders and social dysfunction later in life. To date, the underlying pathophysiology is still not fully understood. In this review, we focus on the astrocytic response in pediatric TBI and propose a potential immune role of the astrocyte in response to trauma. We discuss the contribution of astrocytes in the local inflammatory cascades and secretion of various immunomodulatory factors involved in the recruitment of local microglial cells and peripheral immune cells through cerebral blood vessels. Taken together, we propose that early changes in the astrocytic phenotype can alter normal development of the brain, with long-term consequences on neurological outcomes, as described in preclinical models and patients.
Collapse
Affiliation(s)
| | - Lea Hippauf
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
11
|
Dyhrfort P, Wettervik TS, Clausen F, Enblad P, Hillered L, Lewén A. A Dedicated 21-Plex Proximity Extension Assay Panel for High-Sensitivity Protein Biomarker Detection Using Microdialysis in Severe Traumatic Brain Injury: The Next Step in Precision Medicine? Neurotrauma Rep 2023; 4:25-40. [PMID: 36726870 PMCID: PMC9886191 DOI: 10.1089/neur.2022.0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cerebral protein profiling in traumatic brain injury (TBI) is needed to better comprehend secondary injury pathways. Cerebral microdialysis (CMD), in combination with the proximity extension assay (PEA) technique, has great potential in this field. By using PEA, we have previously screened >500 proteins from CMD samples collected from TBI patients. In this study, we customized a PEA panel prototype of 21 selected candidate protein biomarkers, involved in inflammation (13), neuroplasticity/-repair (six), and axonal injury (two). The aim was to study their temporal dynamics and relation to age, structural injury, and clinical outcome. Ten patients with severe TBI and CMD monitoring, who were treated in the Neurointensive Care Unit, Uppsala University Hospital, Sweden, were included. Hourly CMD samples were collected for up to 7 days after trauma and analyzed with the 21-plex PEA panel. Seventeen of the 21 proteins from the CMD sample analyses showed significantly different mean levels between days. Early peaks (within 48 h) were noted with interleukin (IL)-1β, IL-6, IL-8, granulocyte colony-stimulating factor, transforming growth factor alpha, brevican, junctional adhesion molecule B, and neurocan. C-X-C motif chemokine ligand 10 peaked after 3 days. Late peaks (>5 days) were noted with interleukin-1 receptor antagonist (IL-1ra), monocyte chemoattractant protein (MCP)-2, MCP-3, urokinase-type plasminogen activator, Dickkopf-related protein 1, and DRAXIN. IL-8, neurofilament heavy chain, and TAU were biphasic. Age (above/below 22 years) interacted with the temporal dynamics of IL-6, IL-1ra, vascular endothelial growth factor, MCP-3, and TAU. There was no association between radiological injury (Marshall grade) or clinical outcome (Extended Glasgow Outcome Scale) with the protein expression pattern. The PEA method is a highly sensitive molecular tool for protein profiling from cerebral tissue in TBI. The novel TBI dedicated 21-plex panel showed marked regulation of proteins belonging to the inflammation, plasticity/repair, and axonal injury families. The method may enable important insights into complex injury processes on a molecular level that may be of value in future efforts to tailor pharmacological TBI trials to better address specific disease processes and optimize timing of treatments.
Collapse
Affiliation(s)
- Philip Dyhrfort
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Teodor Svedung Wettervik
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden.,Address correspondence to: Teodor Svedung Wettervik, MD, PhD, Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Fredrik Clausen
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Lin IH, Kamnaksh A, Aniceto R, McCullough J, Bekdash R, Eklund M, Ghatan PH, Risling M, Svensson M, Bellander BM, Nelson DW, Thelin EP, Agoston DV. Time-Dependent Changes in the Biofluid Levels of Neural Injury Markers in Severe Traumatic Brain Injury Patients-Cerebrospinal Fluid and Cerebral Microdialysates: A Longitudinal Prospective Pilot Study. Neurotrauma Rep 2023; 4:107-117. [PMID: 36895820 PMCID: PMC9989523 DOI: 10.1089/neur.2022.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Monitoring protein biomarker levels in the cerebrospinal fluid (CSF) can help assess injury severity and outcome after traumatic brain injury (TBI). Determining injury-induced changes in the proteome of brain extracellular fluid (bECF) can more closely reflect changes in the brain parenchyma, but bECF is not routinely available. The aim of this pilot study was to compare time-dependent changes of S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), total Tau, and phosphorylated Tau (p-Tau) levels in matching CSF and bECF samples collected at 1, 3, and 5 days post-injury from severe TBI patients (n = 7; GCS 3-8) using microcapillary-based western analysis. We found that time-dependent changes in CSF and bECF levels were most pronounced for S100B and NSE, but there was substantial patient-to-patient variability. Importantly, the temporal pattern of biomarker changes in CSF and bECF samples showed similar trends. We also detected two different immunoreactive forms of S100B in both CSF and bECF samples, but the contribution of the different immunoreactive forms to total immunoreactivity varied from patient to patient and time point to time point. Our study is limited, but it illustrates the value of both quantitative and qualitative analysis of protein biomarkers and the importance of serial sampling for biofluid analysis after severe TBI.
Collapse
Affiliation(s)
- I-Hsuan Lin
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Jesse McCullough
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Ramsey Bekdash
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Michael Eklund
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Per Hamid Ghatan
- Department of Neuroscience, Uppsala University Hospital, Uppsala, Sweden
| | - Mårten Risling
- Department of Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - David W Nelson
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.,Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
13
|
What Are We Measuring? A Refined Look at the Process of Disrupted Autoregulation and the Limitations of Cerebral Perfusion Pressure in Preventing Secondary Injury after Traumatic Brain Injury. Clin Neurol Neurosurg 2022; 221:107389. [PMID: 35961231 DOI: 10.1016/j.clineuro.2022.107389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
|
14
|
Zheng RZ, Lee KY, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Neuroinflammation Following Traumatic Brain Injury: Take It Seriously or Not. Front Immunol 2022; 13:855701. [PMID: 35392083 PMCID: PMC8981520 DOI: 10.3389/fimmu.2022.855701] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with high mortality and disability, with a substantial socioeconomic burden. With the standardization of the treatment process, there is increasing interest in the role that the secondary insult of TBI plays in outcome heterogeneity. The secondary insult is neither detrimental nor beneficial in an absolute sense, among which the inflammatory response was a complex cascade of events and can thus be regarded as a double-edged sword. Therefore, clinicians should take the generation and balance of neuroinflammation following TBI seriously. In this review, we summarize the current human and animal model studies of neuroinflammation and provide a better understanding of the inflammatory response in the different stages of TBI. In particular, advances in neuroinflammation using proteomic and transcriptomic techniques have enabled us to identify a functional specific delineation of the immune cell in TBI patients. Based on recent advances in our understanding of immune cell activation, we present the difference between diffuse axonal injury and focal brain injury. In addition, we give a figurative profiling of the general paradigm in the pre- and post-injury inflammatory settings employing a bow-tie framework.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Kuin-Yu Lee
- Department of Integrative Medicine and Neurobiology, Institute of Integrative Medicine of Fudan University Institute of Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Shin SS, Gottschalk AC, Mazandi VM, Kilbaugh TJ, Hefti MM. Transcriptional Profiling in a Novel Swine Model of Traumatic Brain Injury. Neurotrauma Rep 2022; 3:178-184. [PMID: 35558731 PMCID: PMC9081013 DOI: 10.1089/neur.2021.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Transcriptomic investigations of traumatic brain injury (TBI) can give us deep insights into the pathological and compensatory processes post-injury. Thus far, transcriptomic studies in TBI have mostly used microarrays and have focused on rodent models. However, a large animal model of TBI bears a much stronger resemblance to human TBI with regard to the anatomical details, mechanics of injury, genetics, and, possibly, molecular response. Because of the advantages of a large animal TBI model, we investigated the gene expression changes between injured and uninjured sides of pig cerebral cortex after TBI. Given acute inflammation that follows after TBI and the important role that immune response plays in neuroplasticity and recovery, we hypothesized that transcriptional changes involving immune function will be upregulated. Eight female 4-week-old piglets were injured on the right hemisphere with controlled cortical impact (CCI). At 5 days after TBI, pericontusional cortex tissues from the injured side and contralateral cortical tissues were collected. After RNA extraction, library preparation and sequencing as well as gene expression changes between the ipsi- and contralateral sides were compared. There were 6642 genes that were differentially expressed between the ipsi- and contralateral sides, and 1993 genes among them had at least 3-fold differences. Differentially expressed genes were enriched for biological processes related to immune system activation, regulation of immune response, and leukocyte activation. Many of the differentially expressed genes, such as CD4, CD86, IL1A, IL23R, and IL1R1, were major regulators of immune function. This study demonstrated some of the major transcriptional changes between the pericontusional and contralateral tissue at an acute time point after TBI in pigs.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, Hospital of University of Pennsylvania, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy C. Gottschalk
- College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Vanessa M. Mazandi
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marco M. Hefti
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
16
|
Tobieson L, Gard A, Ruscher K, Marklund N. Intracerebral Proinflammatory Cytokine Increase in Surgically Evacuated Intracerebral Hemorrhage: A Microdialysis Study. Neurocrit Care 2021; 36:876-887. [PMID: 34850333 PMCID: PMC9110446 DOI: 10.1007/s12028-021-01389-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Background Treatment options for spontaneous intracerebral hemorrhage (ICH) are limited. A possible inflammatory response in the brain tissue surrounding an ICH may exacerbate the initial injury and could be a target for treatment of subsequent secondary brain injury. The study objective was to compare levels of inflammatory mediators in the interstitial fluid of the perihemorrhagic zone (PHZ) and in seemingly normal cortex (SNX) in the acute phase after surgical evacuation of ICH, with the hypothesis being that a difference could be demonstrated between the PHZ and the SNX. Methods In this observational study, ten patients needing surgical evacuation of supratentorial ICH received two cerebral microdialysis catheters: one in the PHZ and one in the SNX that is remote from the ICH. The microdialysate was analyzed for energy metabolites (including lactate pyruvate ratio and glucose) and for inflammatory mediators by using a multiplex immunoassay of 27 cytokines and chemokines at 6–10 h, 20–26 h, and 44–50 h after surgery.
Results A metabolic crisis, indicated by altered energy metabolic markers, that persisted throughout the observation period was observed in the PHZ when compared with the SNX. Proinflammatory cytokines interleukin (IL) 8, tumor necrosis factor α, IL-2, IL-1β, IL-6 and interferon γ, anti-inflammatory cytokine IL-13, IL-4, and vascular endothelial growth factor A were significantly higher in PHZ compared with SNX and were most prominent at 20–26 h following ICH evacuation.
Conclusions Higher levels of both proinflammatory and anti-inflammatory cytokines in the perihemorrhagic brain tissue implies a complex role for inflammatory mediators in the secondary injury cascades following ICH surgery, suggesting a need for targeted pharmacological interventions. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-021-01389-9.
Collapse
Affiliation(s)
- Lovisa Tobieson
- Departments of Neurosurgery in Linköping and Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Anna Gard
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden.,Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hopsital, Lund, Sweden
| |
Collapse
|
17
|
Wang X, Yan L, Tang Y, He X, Zhao X, Liu W, Wu Z, Luo G. Anti-inflammatory effect of HGF responses to oral traumatic ulcers using an HGF-Tg mouse model. Exp Anim 2021; 71:204-213. [PMID: 34819402 PMCID: PMC9130041 DOI: 10.1538/expanim.21-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hepatocyte growth factor (HGF) has been implicated in inhibiting diverse types of inflammation. Oral traumatic ulceration (OTU) is a common disease of the oral mucosa, and inflammation is
the main process for ulcer healing. This study aimed to explore the expression of HGF in oral ulcers and its role in ulcer inflammation. The saliva of 14 recurrent alphous stomatitis (RAS)
patients, 18 OTU patients and 17 healthy controls was collected. Traumatic ulcers of the left mucosa were observed in 42 wild-type (WT) and 42 HGF-overexpressing transgenic (HGF-Tg) mice.
Histological scores, inflammatory cell expression and serum cytokine expression were measured and analyzed on the 5th day. The HGF protein level in ulcer-affected human saliva was 9.3-fold
higher than that in healthy saliva. The HGF protein levels in RAS and OTU saliva were 14- and 5.7-fold higher, respectively, than those in healthy saliva. Traumatic ulcers enhanced HGF
expression in ulcer-affected oral mucosa and in the blood of C57BL/6 mice by 1.21- and 1.40-fold, respectively. In HGF-Tg mouse traumatic ulcers, HGF expression was 1.34-fold higher than
that in wild-type mice. HGF-Tg mice had lower weight loss, less ulcer area and lower histopathology scores than WT mice. The results from immunohistochemistry, flow cytometry and serum
cytokine analysis showed that HGF-Tg animals presented fewer Ly6G-positive neutrophils and higher levels of circulating inflammatory cytokines. HGF overexpression alleviated weight loss,
ulcer area and inflammation, suggesting the role of HGF in promoting the healing of oral ulcers.
Collapse
Affiliation(s)
- Xinhong Wang
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| | - Liting Yan
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine.,Wuxi Stomatology Hospital
| | - Yinghua Tang
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| | - Xiaoxi He
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| | - Xiaomin Zhao
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| | - Weijia Liu
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| | - Zhicong Wu
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| | - Gang Luo
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| |
Collapse
|
18
|
Postolache TT, Wadhawan A, Can A, Lowry CA, Woodbury M, Makkar H, Hoisington AJ, Scott AJ, Potocki E, Benros ME, Stiller JW. Inflammation in Traumatic Brain Injury. J Alzheimers Dis 2021; 74:1-28. [PMID: 32176646 DOI: 10.3233/jad-191150] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is an increasing evidence that inflammation contributes to clinical and functional outcomes in traumatic brain injury (TBI). Many successful target-engaging, lesion-reducing, symptom-alleviating, and function-improving interventions in animal models of TBI have failed to show efficacy in clinical trials. Timing and immunological context are paramount for the direction, quality, and intensity of immune responses to TBI and the resulting neuroanatomical, clinical, and functional course. We present components of the immune system implicated in TBI, potential immune targets, and target-engaging interventions. The main objective of our article is to point toward modifiable molecular and cellular mechanisms that may modify the outcomes in TBI, and contribute to increasing the translational value of interventions that have been identified in animal models of TBI.
Collapse
Affiliation(s)
- Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Saint Elizabeths Hospital, Department of Psychiatry, Washington, DC, USA
| | - Adem Can
- School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Margaret Woodbury
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Michael E Benros
- Copenhagen Research Center for Mental Health-CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - John W Stiller
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland State Athletic Commission, Baltimore, MD, USA.,Saint Elizabeths Hospital, Neurology Consultation Services, Washington, DC, USA
| |
Collapse
|
19
|
Gao C, Yan Y, Chen G, Wang T, Luo C, Zhang M, Chen X, Tao L. Autophagy Activation Represses Pyroptosis through the IL-13 and JAK1/STAT1 Pathways in a Mouse Model of Moderate Traumatic Brain Injury. ACS Chem Neurosci 2020; 11:4231-4239. [PMID: 33170612 DOI: 10.1021/acschemneuro.0c00517] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The newly highlighted research into programmed cell death (PCD), autophagy dependent cell death and pyroptotic cell death, has shown that these processes are both strongly correlated with the pathological progression of traumatic brain injury (TBI). However, their cross-talk in TBI remains unclear. Here, a moderate TBI model was established to explore the relationship between autophagy and pyroptosis. Rapamycin was used to activate the process of autophagy, which was impaired in the moderate TBI model, and this treatment reversed the expression of pyroptosis associated proteins, interleukin-13 (IL-13) and the pJAK-1 pathway, which were upregulated significantly after TBI. The level of IL-13 was downregulated, and the JAK-1 pathway was blocked to reveal the molecular mechanisms by which autophagy inhibits pyroptosis; these two treatments reduced the expression levels of pyroptosis associated proteins. In addition, these three interventions reduced the formation of neuronal NLRP3, the extent of brain edema, and the degree of cortical neuron degeneration. Furthermore, the deficit in motor function post-TBI was also markedly alleviated. Collectively, our results demonstrated that autophagy activation exerts a neuroprotective effect by inhibiting pyroptotic cell death in the moderate TBI model, and the inhibitory effect was dependent on the downregulation of IL-13 and repression of the JAK-1-STAT-1 signaling pathway.
Collapse
Affiliation(s)
- Cheng Gao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Ya’nan Yan
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Guang Chen
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Tao Wang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| |
Collapse
|
20
|
Zhao QH, Xie F, Guo DZ, Ju FD, He J, Yao TT, Zhao PX, Pan SY, Ma XM. Hydrogen inhalation inhibits microglia activation and neuroinflammation in a rat model of traumatic brain injury. Brain Res 2020; 1748:147053. [PMID: 32814064 DOI: 10.1016/j.brainres.2020.147053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 01/04/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide. To date, therapies to treat any forms of TBI are still limited. Recent studies have demonstrated the potential neuroprotective effects of molecular hydrogen on TBI. Although it has been demonstrated that hydrogen inhalation (HI) for about 5 hrs immediately after TBI has a beneficial effect on brain injury, the most effective intervention procedure in the treatment of TBI remains unknown. The mechanism underlying the neuroprotective effects of HI on TBI also needs to be further investigated. Our results showed that inhalation of 4% hydrogen during the first day after TBI was the most effective hydrogen intervention procedure in the treatment of TBI. Pathological examination showed that HI could attenuate TBI-induced reactive astrocytosis and microglial activation. Nissl staining demonstrated a significant decrease in the number of nissl-stained dark neurons (N-DNs) in HI group compared to TBI group at 2 h post-TBI, and the TBI-induced neuronal loss was attenuated by HI at day 3 post-TBI. IHC staining showed that HI resulted a decrease in CD16-positive cells and a further increase in CD206-positive cells as compared to TBI group. Multiplex cytokine assay demonstrated the most profound regulatory effects induced by HI on the levels of IL-12, IFN-γ, and GM-CSF at 24 h post-TBI, which confirmed the inhibitory effect of hydrogen on microglia activation. We concluded that inhalation of 4% hydrogen during the first day after TBI was the most effective intervention procedure in the treatment of TBI. Our results also showed that hydrogen may exert its protective effects on TBI via inhibition of microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Qing-Hui Zhao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China.
| | - Fei Xie
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China.
| | - Da-Zhi Guo
- Department of Hyperbaric Oxygen, The Sixth Medical Center, PLA General Hospital, Beijing 100048, China
| | - Fang-di Ju
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Jin He
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Ting-Ting Yao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Peng-Xiang Zhao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Shu-Yi Pan
- Department of Hyperbaric Oxygen, The Sixth Medical Center, PLA General Hospital, Beijing 100048, China.
| | - Xue-Mei Ma
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China.
| |
Collapse
|
21
|
Niu X, Bai L, Sun Y, Wang Y, Bai G, Yin B, Wang S, Gan S, Jia X, Liu H. Mild traumatic brain injury is associated with effect of inflammation on structural changes of default mode network in those developing chronic pain. J Headache Pain 2020; 21:135. [PMID: 33228537 PMCID: PMC7684719 DOI: 10.1186/s10194-020-01201-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 02/09/2023] Open
Abstract
Background Mild traumatic brain injury (mTBI) has a higher prevalence (more than 50%) of developing chronic posttraumatic headache (CPTH) compared with moderate or severe TBI. However, the underlying neural mechanism for CPTH remains unclear. This study aimed to investigate the inflammation level and cortical volume changes in patients with acute PTH (APTH) and further examine their potential in identifying patients who finally developed CPTH at follow-up. Methods Seventy-seven mTBI patients initially underwent neuropsychological measurements, 9-plex panel of serum cytokines and MRI scans within 7 days post-injury (T-1) and 54 (70.1%) of patients completed the same protocol at a 3-month follow-up (T-2). Forty-two matched healthy controls completed the same protocol at T-1 once. Results At baseline, mTBI patients with APTH presented significantly increased GM volume mainly in the right dorsal anterior cingulate cortex (dACC) and dorsal posterior cingulate cortex (dPCC), of which the dPCC volume can predict much worse impact of headache on patients’ lives by HIT-6 (β = 0.389, P = 0.007) in acute stage. Serum levels of C-C motif chemokine ligand 2 (CCL2) were also elevated in these patients, and its effect on the impact of headache on quality of life was partially mediated by the dPCC volume (mean [SE] indirect effect, 0.088 [0.0462], 95% CI, 0.01–0.164). Longitudinal analysis showed that the dACC and dPCC volumes as well as CCL2 levels had persistently increased in patients developing CPTH 3 months postinjury. Conclusion The findings suggested that structural remodelling of DMN brain regions were involved in the progression from acute to chronic PTH following mTBI, which also mediated the effect of inflammation processes on pain modulation. Trial registration ClinicalTrial.gov ID: NCT02868684; registered 16 August 2016. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-020-01201-7.
Collapse
Affiliation(s)
- Xuan Niu
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yingxiang Sun
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuoqiu Gan
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongjuan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
22
|
Ciechanowska A, Popiolek-Barczyk K, Ciapała K, Pawlik K, Oggioni M, Mercurio D, de Simoni MG, Mika J. Traumatic brain injury in mice induces changes in the expression of the XCL1/XCR1 and XCL1/ITGA9 axes. Pharmacol Rep 2020; 72:1579-1592. [PMID: 33185818 PMCID: PMC7704520 DOI: 10.1007/s43440-020-00187-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022]
Abstract
Background Every year, millions of people suffer from various forms of traumatic brain injury (TBI), and new approaches with therapeutic potential are required. Although chemokines are known to be involved in brain injury, the importance of X-C motif chemokine ligand 1 (XCL1) and its receptors, X-C motif chemokine receptor 1 (XCR1) and alpha-9 integrin (ITGA9), in the progression of TBI remain unknown. Methods Using RT-qPCR/Western blot/ELISA techniques, changes in the mRNA/protein levels of XCL1 and its two receptors, in brain areas at different time points were measured in a mouse model of TBI. Moreover, their cellular origin and possible changes in expression were evaluated in primary glial cell cultures. Results Studies revealed the spatiotemporal upregulation of the mRNA expression of XCL1, XCR1 and ITGA9 in all the examined brain areas (cortex, thalamus, and hippocampus) and at most of the evaluated stages after brain injury (24 h; 4, 7 days; 2, 5 weeks), except for ITGA9 in the thalamus. Moreover, changes in XCL1 protein levels occurred in all the studied brain structures; the strongest upregulation was observed 24 h after trauma. Our in vitro experiments proved that primary murine microglial and astroglial cells expressed XCR1 and ITGA9, however they seemed not to be a main source of XCL1. Conclusions These findings indicate that the XCL1/XCR1 and XCL1/ITGA9 axes may participate in the development of TBI. The XCL1 can be considered as one of the triggers of secondary injury, therefore XCR1 and ITGA9 may be important targets for pharmacological intervention after traumatic brain injury. Graphic abstract ![]()
Collapse
Affiliation(s)
- Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland
| | - Katarzyna Popiolek-Barczyk
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland
| | - Marco Oggioni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156, Milan, Italy
| | - Domenico Mercurio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156, Milan, Italy
| | - Maria-Grazia de Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156, Milan, Italy
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland.
| |
Collapse
|
23
|
Walter J, Schwarting J, Plesnila N, Terpolilli NA. Influence of Organic Solvents on Secondary Brain Damage after Experimental Traumatic Brain Injury. Neurotrauma Rep 2020; 1:148-156. [PMID: 34223539 PMCID: PMC8240898 DOI: 10.1089/neur.2020.0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many compounds tested for a possible neuroprotective effect after traumatic brain injury (TBI) are not readily soluble and therefore organic solvents need to be used as a vehicle. It is, however, unclear whether these organic solvents have intrinsic pharmacological effects on secondary brain damage and may therefore interfere with experimental results. Thus, the aim of the current study was to evaluate the effect of four widely used organic solvents, dimethylsulfoxide (DMSO), Miglyol 812 (Miglyol®), polyethyleneglycol 40 (PEG 40), and N-2-methyl-pyrrolidone (NMP) on outcome after TBI in mice. A total of 143 male C57Bl/6 mice were subjected to controlled cortical impact (CCI). Contusion volume, brain edema formation, and neurological function were assessed 24 h after TBI. Test substances or saline were injected intraperitoneally (i.p.) 10 min before CCI. DMSO, Miglyol, and PEG 40 had no effect on post-traumatic contusion volume after CCI; NMP, however, significantly reduced contusion volume and brain edema formation at different concentrations. The use of DMSO, Miglyol, and PEG 40 is unproblematic for studies investigating neuroprotective treatment strategies as they do not influence post-traumatic brain damage. NMP seems to have an intrinsic neuroprotective effect that should be considered when using this agent in pharmacological experiments; further, a putative therapeutic effect of NMP needs to be elucidated in future studies.
Collapse
Affiliation(s)
- Johannes Walter
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
| | - Julian Schwarting
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
24
|
Tweedie D, Karnati HK, Mullins R, Pick CG, Hoffer BJ, Goetzl EJ, Kapogiannis D, Greig NH. Time-dependent cytokine and chemokine changes in mouse cerebral cortex following a mild traumatic brain injury. eLife 2020; 9:55827. [PMID: 32804078 PMCID: PMC7473773 DOI: 10.7554/elife.55827] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious global health problem, many individuals live with TBI-related neurological dysfunction. A lack of biomarkers of TBI has impeded medication development. To identify new potential biomarkers, we time-dependently evaluated mouse brain tissue and neuronally derived plasma extracellular vesicle proteins in a mild model of TBI with parallels to concussive head injury. Mice (CD-1, 30–40 g) received a sham procedure or 30 g weight-drop and were euthanized 8, 24, 48, 72, 96 hr, 7, 14 and 30 days later. We quantified ipsilateral cortical proteins, many of which differed from sham by 8 hours post-mTBI, particularly GAS-1 and VEGF-B were increased while CXCL16 reduced, 23 proteins changed in 4 or more of the time points. Gene ontology pathways mapped from altered proteins over time related to pathological and physiological processes. Validation of proteins identified in this study may provide utility as treatment response biomarkers.
Collapse
Affiliation(s)
- David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| | - Hanuma Kumar Karnati
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| | - Roger Mullins
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Sylvan Adams Sports Institute, and Dr. Miriam and SheldonG. Adelson Chair and Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv, Israel
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Edward J Goetzl
- Department of Medicine, University of California Medical Center, San Francisco, San Francisco, United States
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| |
Collapse
|
25
|
Abd-El-Basset EM, Rao MS, Alsaqobi A. Interferon-Gamma and Interleukin-1Beta Enhance the Secretion of Brain-Derived Neurotrophic Factor and Promotes the Survival of Cortical Neurons in Brain Injury. Neurosci Insights 2020; 15:2633105520947081. [PMID: 32776009 PMCID: PMC7391446 DOI: 10.1177/2633105520947081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
Neuro-inflammation is associated with the production of cytokines, which influence neuronal and glial functions. Although the proinflammatory cytokines interferon-γ (IFN-γ) and interleukin-1Beta (IL-1β) are thought to be the major mediators of neuro-inflammation, their role in brain injury remains ill-defined. The objective of this study was to examine the effect of IFN-γ and IL-1β on survival of cortical neurons in stab wound injury in mice. A stab wound injury was made in the cortex of male BALB/c mice. Injured mice (I) were divide into IFN-γ and IL-1β treatment experiments. Mice in I + IFN-γ group were treated with IFN-γ (ip, 10 µg/kg/day) for 1, 3 and 7 days and mice in I + IL-1β group were treated with 5 IP injection of IL-1β (0.5 µg /12 h). Appropriate control mice were maintained for comparison. Immunostaining of frozen brain sections for astrocytes (GFAP), microglia (Iba-1) and Fluoro-Jade B staining for degenerating neurons were used. Western blotting and ELISA for brain-derived neurotrophic factor (BDNF) were done on the tissues isolated from the injured sites. Results showed a significant increase in the number of both astrocytes and microglia in I + IFN-γ and I + IL-1β groups. There were no significant changes in the number of astrocytes or microglia in noninjury groups (NI) treated with IFN-γ or IL-1β. The number of degenerating neurons significantly decreased in I + IFN-γ and I + IL-1β groups. GFAP and BDNF levels were significantly increased in I + IFN-γ and I + IL-1β groups. Interferon-γ and IL-1β induce astrogliosis, microgliosis, enhance the secretion of BDNF, one of the many neurotrophic factors after brain injury, and promote the survival of cortical neurons in stab wound brain injury.
Collapse
|
26
|
Tobieson L, Czifra Z, Wåhlén K, Marklund N, Ghafouri B. Proteomic investigation of protein adsorption to cerebral microdialysis membranes in surgically treated intracerebral hemorrhage patients - a pilot study. Proteome Sci 2020; 18:7. [PMID: 32728348 PMCID: PMC7382826 DOI: 10.1186/s12953-020-00163-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Cerebral microdialysis (CMD) is a minimally invasive technique for sampling the interstitial fluid in human brain tissue. CMD allows monitoring the metabolic state of tissue, as well as sampling macromolecules such as proteins and peptides. Recovery of proteins or peptides can be hampered by their adsorption to the CMD membrane as has been previously shown in-vitro, however, protein adsorption to CMD membranes has not been characterized following implantation in human brain tissue. Methods In this paper, we describe the pattern of proteins adsorbed to CMD membranes compared to that of the microdialysate and of cerebrospinal fluid (CSF). We retrieved CMD membranes from three surgically treated intracerebral hemorrhage (ICH) patients, and analyzed protein adsorption to the membranes using two-dimensional gel electrophoresis (2-DE) in combination with nano-liquid mass spectrometry. We compared the proteome profile of three compartments; the CMD membrane, the microdialysate and ventricular CSF collected at time of CMD removal. Results We found unique protein patterns in the molecular weight range of 10–35 kDa for each of the three compartments. Conclusion This study highlights the importance of analyzing the membranes in addition to the microdialysate when using CMD to sample proteins for biomarker investigation.
Collapse
Affiliation(s)
- Lovisa Tobieson
- Department of Neurosurgery in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, University Hospital, SE-581 85 Linköping, Sweden
| | - Zita Czifra
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Karin Wåhlén
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Niklas Marklund
- Department of Neurosurgery in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, University Hospital, SE-581 85 Linköping, Sweden.,Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Neurosurgery, Lund, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
27
|
Ciechanowska A, Popiolek-Barczyk K, Pawlik K, Ciapała K, Oggioni M, Mercurio D, De Simoni MG, Mika J. Changes in macrophage inflammatory protein-1 (MIP-1) family members expression induced by traumatic brain injury in mice. Immunobiology 2020; 225:151911. [PMID: 32059938 DOI: 10.1016/j.imbio.2020.151911] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
A deep knowledge of the profound immunological response induced by traumatic brain injury (TBI) raises the possibility of novel therapeutic interventions. Existing studies have highlighted the important roles of C-C motif ligands in the development of neuroinflammation after brain injury; however, the participation of macrophage inflammatory protein-1 (MIP-1) family members in this phenomenon is still undefined. Therefore, the goal of our study was to evaluate changes in macrophage inflammatory protein-1 (MIP-1) family members (CCL3, CCL4, and CCL9) and their receptors (CCR1 and CCR5) in a mouse model of TBI (induced by controlled cortical impact (CCI)). We also investigated the pattern of activation of immunological cells (such as neutrophils, microglia and astroglia), which on one hand express CCR1/CCR5, and on the other hand might be a source of the tested chemokines in the injured brain. We investigated changes in mRNA (RT-qPCR) and/or protein (ELISA and Western blot) expression in brain structures (the cortex, hippocampus, thalamus, and striatum) at different time points (24 h, 4 days, 7 days, 2 weeks, and/or 5 weeks) after trauma. Our time-course studies revealed the upregulation of the mRNA expression of all members of the MIP-1 family (CCL3, CCL4, and CCL9) in all tested brain structures, mainly in the early stages after injury. A similar pattern of activation was observed at the protein level in the cortex and thalamus, where the strongest activation was observed 1 day after CCI; however, we did not observe any change in CCL3 in the thalamus. Analyses of CCR1 and CCR5 demonstrated the upregulation of the mRNA expression of both receptors in all tested cerebral structures, mainly in the early phases post injury (24 h, 4 days and 7 days). Protein analysis showed the upregulation of CCR1 and CCR5 in the thalamus 24 h after TBI, but we did not detect any change in the cortex. We also observed the upregulation of neutrophil marker (MPO) at the early time points (24 h and 7 days) in the cortex, while the profound activation of microglia (IBA-1) and astroglia (GFAP) was observed mainly on day 7. Our findings highlight for the first time that CCL3, CCL4, CCL9 and their receptors offer promising targets for influencing secondary neuronal injury and improving TBI therapy. The results suggest that the MIP-1 family is an important target for pharmacological intervention for brain injury.
Collapse
Affiliation(s)
- Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Popiolek-Barczyk
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Marco Oggioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy
| | - Domenico Mercurio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy
| | - Maria-Grazia De Simoni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
28
|
Ozen I, Ruscher K, Nilsson R, Flygt J, Clausen F, Marklund N. Interleukin-1 Beta Neutralization Attenuates Traumatic Brain Injury-Induced Microglia Activation and Neuronal Changes in the Globus Pallidus. Int J Mol Sci 2020; 21:ijms21020387. [PMID: 31936248 PMCID: PMC7014296 DOI: 10.3390/ijms21020387] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) increases the risk of delayed neurodegenerative processes, including Parkinson’s disease (PD). Interleukin-1beta (IL-1β), a key pro-inflammatory cytokine, may promote secondary injury development after TBI. Conversely, neutralizing IL-1β was found to improve functional recovery following experimental TBI. However, the mechanisms underlying the behavioral improvements observed by IL-1β neutralization are still poorly understood. The present study investigated the role of IL-1β on the microglia response and neuronal changes in the globus pallidus in response to diffuse TBI. Mice were subjected to sham injury or the central fluid percussion injury (cFPI) (a model of traumatic axonal injury), and were randomly administered an IL-1β neutralizing or a control antibody at 30 min post-injury. The animals were analyzed at 2, 7, or 14 days post-injury. When compared to controls, mice subjected to cFPI TBI had increased microglia activation and dopaminergic innervation in the globus pallidus, and a decreased number of parvalbumin (PV) positive interneurons in the globus pallidus. Neutralization of IL-1β attenuated the microglia activation, prevented the loss of PV+ interneurons and normalized dopaminergic fiber density in the globus pallidus of brain-injured animals. These findings argue for an important role for neuro-inflammation in the PD-like pathology observed in TBI.
Collapse
Affiliation(s)
- Ilknur Ozen
- Lund Brain Injury Laboratory for Neurosurgical Research, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden; (I.O.); (K.R.); (R.N.)
| | - Karsten Ruscher
- Lund Brain Injury Laboratory for Neurosurgical Research, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden; (I.O.); (K.R.); (R.N.)
- Laboratory for Experimental Brain Research, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Robert Nilsson
- Lund Brain Injury Laboratory for Neurosurgical Research, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden; (I.O.); (K.R.); (R.N.)
- Laboratory for Experimental Brain Research, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Johanna Flygt
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, 75185 Uppsala, Sweden; (J.F.); (F.C.)
| | - Fredrik Clausen
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, 75185 Uppsala, Sweden; (J.F.); (F.C.)
| | - Niklas Marklund
- Lund Brain Injury Laboratory for Neurosurgical Research, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden; (I.O.); (K.R.); (R.N.)
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, 75185 Uppsala, Sweden; (J.F.); (F.C.)
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, 22185 Lund, Sweden
- Correspondence:
| |
Collapse
|
29
|
Zvejniece L, Stelfa G, Vavers E, Kupats E, Kuka J, Svalbe B, Zvejniece B, Albert-Weissenberger C, Sirén AL, Plesnila N, Dambrova M. Skull Fractures Induce Neuroinflammation and Worsen Outcomes after Closed Head Injury in Mice. J Neurotrauma 2019; 37:295-304. [PMID: 31441378 PMCID: PMC6964812 DOI: 10.1089/neu.2019.6524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The weight-drop model is used widely to replicate closed-head injuries in mice; however, the histopathological and functional outcomes may vary significantly between laboratories. Because skull fractures are reported to occur in this model, we aimed to evaluate whether these breaks may influence the variability of the weight-drop (WD) model. Male Swiss Webster mice underwent WD injury with either a 2 or 5 mm cone tip, and behavior was assessed at 2 h and 24 h thereafter using the neurological severity score. The expression of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 genes was measured at 12 h and 1, 3, and 14 days after injury. Before the injury, micro-computed tomography (micro-CT) was performed to quantify skull thickness at the impact site. With a conventional tip diameter of 2 mm, 33% of mice showed fractures of the parietal bone; the 5 mm tip produced only 10% fractures. Compared with mice without fractures, mice with fractures had a severity-dependent worse functional outcome and a more pronounced upregulation of inflammatory genes in the brain. Older mice were associated with thicker parietal bones and were less prone to skull fractures. In addition, mice that underwent traumatic brain injury (TBI) with skull fracture had macroscopic brain damage because of skull depression. Skull fractures explain a considerable proportion of the variability observed in the WD model in mice—i.e., mice with skull fractures have a much stronger inflammatory response than do mice without fractures. Using older mice with thicker skull bones and an impact cone with a larger diameter reduces the rate of skull fractures and the variability in this very useful closed-head TBI model.
Collapse
Affiliation(s)
- Liga Zvejniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Address correspondence to: Liga Zvejniece, MD, PhD, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Gundega Stelfa
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Edijs Vavers
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Einars Kupats
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | - Janis Kuka
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Baiba Zvejniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- University of Latvia, Riga, Latvia
| | | | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Nikolaus Plesnila
- University of Munich, Institute for Stroke and Dementia Research, Munich, Germany
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| |
Collapse
|
30
|
Giorgi-Coll S, Thelin EP, Lindblad C, Tajsic T, Carpenter KLH, Hutchinson PJA, Helmy A. Dextran 500 Improves Recovery of Inflammatory Markers: An In Vitro Microdialysis Study. J Neurotrauma 2019; 37:106-114. [PMID: 31298609 PMCID: PMC6921287 DOI: 10.1089/neu.2019.6513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cerebral microdialysis (CMD) is used in severe traumatic brain injury (TBI) in order to recover metabolites in brain extracellular fluid (ECF). To recover larger proteins and avoid fluid loss, albumin supplemented perfusion fluid (PF) has been utilized, but because of regulatory changes in the European Union, this is no longer practicable. The aim with this study was to see whether fluid, absolute (AR), and relative (RR) recovery for the novel carrier, Dextran 500, was better than conventional PF for a range of cytokines and chemokines. An in vitro setup mimicking conditions observed in the neurocritical care of TBI patients was used, utilizing 100-kDa molecular-weight cut-off CMD catheters inserted through a triple-lumen bolt cranial access device into an external solution with diluted cytokine standards in known concentrations for 48 h (divided into 6-h epochs). Samples were run on a 39-plex Luminex (Luminex Corporation, Austin, TX) assay to assess cytokine concentrations. We found that fluid recovery was inadequate in 50% of epochs with conventional PF, whereas Dextran PF overcame this limitation. The AR was higher in the Dextran PF samples for a majority of cytokines, and RR was significantly increased for macrophage colony-stimulating factor and transforming growth factor-alpha. In summary, Dextran PF improved fluid and cytokine recovery as compared to conventional PF and is a suitable alternative to albumin supplemented PF for protein microdialysis.
Collapse
Affiliation(s)
- Susan Giorgi-Coll
- Division of Neurosurgery, Department of Clinical Neurosciences, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Theme Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tamara Tajsic
- Division of Neurosurgery, Department of Clinical Neurosciences, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Su X, Ye Y, Yang Y, Zhang K, Bai W, Chen H, Kang E, Kong C, He X. The Effect of SPTLC2 on Promoting Neuronal Apoptosis is Alleviated by MiR-124-3p Through TLR4 Signalling Pathway. Neurochem Res 2019; 44:2113-2122. [PMID: 31372925 DOI: 10.1007/s11064-019-02849-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/06/2019] [Accepted: 07/27/2019] [Indexed: 12/21/2022]
Abstract
To investigate the role and mechanism of microRNA-124-3p (miR-124-3p) and serine palmitoyltransferase long chain base subunit 2 (SPTLC2) in neuronal apoptosis induced by mechanical injury. Transient transfection was used to modify the expression of miR-124-3p and SPTLC2. After transfection, neuronal apoptosis was evaluated in an in vitro injury model of primary neurons using TUNEL staining and western blot. The correlation between miR-124-3p and SPTLC2 was identified through a dual luciferase reporter assay in HEK293 cells. A rescue experiment in primary neurons was performed to further confirm the result. To explore the downstream mechanisms, co-immunoprecipitation was performed to identify proteins that interact with SPTLC2 in toll-like receptor 4 (TLR4) signalling pathway. Subsequently, the relative expression levels of TLR4 pathway molecules were measured by western blot. Our results showed that increased miR-124-3p can inhibit neuronal apoptosis, which is opposite to the effect of SPTLC2. In addition, miR-124-3p was proved to negatively regulate SPTLC2 expression and suppress the apoptosis-promoting effect of SPTLC2 via the TLR4 signalling pathway.
Collapse
Affiliation(s)
- Xinhong Su
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 169 Changle Western Road, Xi'an, 710032, Shanxi, China
| | - Yuqin Ye
- Department of Neurosurgery, PLA 921rd Hospital, Changsha, 410000, Hunan, China
| | - Yongxiang Yang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 169 Changle Western Road, Xi'an, 710032, Shanxi, China
| | - Kailiang Zhang
- Department of Orthopedic Surgery, Orthopedic Oncology Institute of Chinese PLA, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shanxi, China
| | - Wei Bai
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 169 Changle Western Road, Xi'an, 710032, Shanxi, China
| | - Huijun Chen
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 169 Changle Western Road, Xi'an, 710032, Shanxi, China
| | - Enming Kang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 169 Changle Western Road, Xi'an, 710032, Shanxi, China
| | - Chuiguang Kong
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 169 Changle Western Road, Xi'an, 710032, Shanxi, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 169 Changle Western Road, Xi'an, 710032, Shanxi, China.
| |
Collapse
|
32
|
Mohamadpour M, Whitney K, Bergold PJ. The Importance of Therapeutic Time Window in the Treatment of Traumatic Brain Injury. Front Neurosci 2019; 13:07. [PMID: 30728762 PMCID: PMC6351484 DOI: 10.3389/fnins.2019.00007] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability. Despite its importance in public health, there are presently no drugs to treat TBI. Many reasons underlie why drugs have failed clinical trials, one reason is that most drugs to treat TBI lose much of their efficacy before patients are first treated. This review discusses the importance of therapeutic time window; the time interval between TBI onset and the initiation of treatment. Therapeutic time window is complex, as brain injury is both acute and chronic, resulting in multiple drug targets that appear and disappear with differing kinetics. The speed and increasing complexity of TBI pathophysiology is a major reason why drugs lose efficacy as time to first dose increases. Recent Phase III clinical trials treated moderate to severe TBI patients within 4–8 h after injury, yet they turned away many potential patients who could not be treated within these time windows. Additionally, most head trauma is mild TBI. Unlike moderate to severe TBI, patients with mild TBI often delay treatment until their symptoms do not abate. Thus, drugs to treat moderate to severe TBI likely will need to retain high efficacy for up to 12 h after injury; drugs for mild TBI, however, will likely need even longer windows. Early pathological events following TBI progress with similar kinetics in humans and animal TBI models suggesting that preclinical testing of time windows assists the design of clinical trials. We reviewed preclinical studies of drugs first dosed later than 4 h after injury. This review showed that therapeutic time window can differ depending upon the animal TBI model and the outcome measure. We identify the few drugs (methamphetamine, melanocortin, minocycline plus N-acetylcysteine, and cycloserine) that demonstrated good therapeutic windows with multiple outcome measures. On the basis of their therapeutic window, these drugs appear to be excellent candidates for clinical trials. In addition to further testing of these drugs, we recommend that the assessment of therapeutic time window with multiple outcome measures becomes a standard component of preclinical drug testing.
Collapse
Affiliation(s)
- Maliheh Mohamadpour
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Kristen Whitney
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Peter J Bergold
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
33
|
Jha RM, Kochanek PM. A Precision Medicine Approach to Cerebral Edema and Intracranial Hypertension after Severe Traumatic Brain Injury: Quo Vadis? Curr Neurol Neurosci Rep 2018; 18:105. [PMID: 30406315 PMCID: PMC6589108 DOI: 10.1007/s11910-018-0912-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Standard clinical protocols for treating cerebral edema and intracranial hypertension after severe TBI have remained remarkably similar over decades. Cerebral edema and intracranial hypertension are treated interchangeably when in fact intracranial pressure (ICP) is a proxy for cerebral edema but also other processes such as extent of mass lesions, hydrocephalus, or cerebral blood volume. A complex interplay of multiple molecular mechanisms results in cerebral edema after severe TBI, and these are not measured or targeted by current clinically available tools. Addressing these underpinnings may be key to preventing or treating cerebral edema and improving outcome after severe TBI. RECENT FINDINGS This review begins by outlining basic principles underlying the relationship between edema and ICP including the Monro-Kellie doctrine and concepts of intracranial compliance/elastance. There is a subsequent brief discussion of current guidelines for ICP monitoring/management. We then focus most of the review on an evolving precision medicine approach towards cerebral edema and intracranial hypertension after TBI. Personalization of invasive neuromonitoring parameters including ICP waveform analysis, pulse amplitude, pressure reactivity, and longitudinal trajectories are presented. This is followed by a discussion of cerebral edema subtypes (continuum of ionic/cytotoxic/vasogenic edema and progressive secondary hemorrhage). Mechanisms of potential molecular contributors to cerebral edema after TBI are reviewed. For each target, we present findings from preclinical models, and evaluate their clinical utility as biomarkers and therapeutic targets for cerebral edema reduction. This selection represents promising candidates with evidence from different research groups, overlap/inter-relatedness with other pathways, and clinical/translational potential. We outline an evolving precision medicine and translational approach towards cerebral edema and intracranial hypertension after severe TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA.
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Children's Hospital of Pittsburgh John G. Rangos Research Center, 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| |
Collapse
|
34
|
Prabhakara KS, Kota DJ, Jones GH, Srivastava AK, Cox CS, Olson SD. Teriflunomide Modulates Vascular Permeability and Microglial Activation after Experimental Traumatic Brain Injury. Mol Ther 2018; 26:2152-2162. [PMID: 30037655 PMCID: PMC6127507 DOI: 10.1016/j.ymthe.2018.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Despite intensive research and clinical trials with numerous therapeutic treatments, traumatic brain injury (TBI) is a serious public health problem in the United States. There is no effective FDA-approved treatment to reduce morbidity and mortality associated with TBI. Inflammation plays a pivotal role in the pathogenesis of TBI. We looked to re-purpose existing drugs that reduce immune activation without broad immunosuppression. Teriflunomide, an FDA-approved drug, has been shown to modulate immunological responses outside of its ability to inhibit pyrimidine synthesis in rapidly proliferating cells. In this study, we tested the efficacy of teriflunomide to treat two different injury intensities in rat models of TBI. Our results show that teriflunomide restores blood-brain barrier integrity, decreases inflammation, and increases neurogenesis in the subgranular zone of the hippocampus. While we were unable to detect neurocognitive effects of treatment on memory and special learning abilities after treatment, a 2-week treatment following injury was sufficient to reduce neuroinflammation up to 120 days later.
Collapse
Affiliation(s)
- Karthik S Prabhakara
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Daniel J Kota
- Emory Personalized Immunotherapy Core Labs, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Gregory H Jones
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Amit K Srivastava
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Charles S Cox
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Scott D Olson
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|