1
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
2
|
Krishnamurthy HK, Pereira M, Rajavelu I, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Oxidative stress: fundamentals and advances in quantification techniques. Front Chem 2024; 12:1470458. [PMID: 39435263 PMCID: PMC11491411 DOI: 10.3389/fchem.2024.1470458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative species, generated endogenously via metabolism or from exogenous sources, play crucial roles in the body. At low levels, these species support immune functions by participating in phagocytosis. They also aid in cellular signaling and contribute to vasomodulation. However, when the levels of oxidative species exceed the body's antioxidant capacity to neutralize them, oxidative stress occurs. This stress can damage cellular macromolecules such as lipids, DNA, RNA, and proteins, driving the pathogenesis of diseases and aging through the progressive deterioration of physiological functions and cellular structures. Therefore, the body's ability to manage oxidative stress and maintain it at optimal levels is essential for overall health. Understanding the fundamentals of oxidative stress, along with its reliable quantification, can enable consistency and comparability in clinical practice across various diseases. While direct quantification of oxidant species in the body would be ideal for assessing oxidative stress, it is not feasible due to their high reactivity, short half-life, and the challenges of quantification using conventional techniques. Alternatively, quantifying lipid peroxidation, damage products of nucleic acids and proteins, as well as endogenous and exogenous antioxidants, serves as appropriate markers for indicating the degree of oxidative stress in the body. Along with the conventional oxidative stress markers, this review also discusses the role of novel markers, focusing on their biological samples and detection techniques. Effective quantification of oxidative stress may enhance the understanding of this phenomenon, aiding in the maintenance of cellular integrity, prevention of age-associated diseases, and promotion of longevity.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | | |
Collapse
|
3
|
Kamali C, Brunnbauer P, Kamali K, Saqr AHA, Arnold A, Harman Kamali G, Babigian J, Keshi E, Mohr R, Felsenstein M, Moosburner S, Hillebrandt KH, Bartels J, Sauer IM, Tacke F, Schmelzle M, Pratschke J, Krenzien F. Extracellular NAD + response to post-hepatectomy liver failure: bridging preclinical and clinical findings. Commun Biol 2024; 7:991. [PMID: 39143151 PMCID: PMC11324947 DOI: 10.1038/s42003-024-06661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Liver fibrosis progressing to cirrhosis is a major risk factor for liver cancer, impacting surgical treatment and survival. Our study focuses on the role of extracellular nicotinamide adenine dinucleotide (eNAD+) in liver fibrosis, analyzing liver disease patients undergoing surgery. Additionally, we explore NAD+'s therapeutic potential in a mouse model of extended liver resection and in vitro using 3D hepatocyte spheroids. eNAD+ correlated with aspartate transaminase (AST) and bilirubin after liver resection (AST: r = 0.2828, p = 0.0087; Bilirubin: r = 0.2584, p = 0.0176). Concordantly, post-hepatectomy liver failure (PHLF) was associated with higher eNAD+ peaks (n = 10; p = 0.0063). Post-operative eNAD+ levels decreased significantly (p < 0.05), but in advanced stages of liver fibrosis or cirrhosis, this decline not only diminished but actually showed a trend towards an increase. The expression of NAD+ biosynthesis rate-limiting enzymes, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), were upregulated significantly in the liver tissue of patients with higher liver fibrosis stages (p < 0.0001). Finally, the administration of NAD+ in a 3D hepatocyte spheroid model rescued hepatocytes from TNFalpha-induced cell death and improved viability (p < 0.0001). In a mouse model of extended liver resection, NAD+ treatment significantly improved survival (p = 0.0158) and liver regeneration (p = 0.0186). Our findings reveal that eNAD+ was upregulated in PHLF, and rate-limiting enzymes of NAD+ biosynthesis demonstrated higher expressions under liver fibrosis. Further, eNAD+ administration improved survival after extended liver resection in mice and enhanced hepatocyte viability in vitro. These insights may offer a potential target for future therapies.
Collapse
Affiliation(s)
- Can Kamali
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Philipp Brunnbauer
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Kaan Kamali
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Al-Hussein Ahmed Saqr
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Alexander Arnold
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Gulcin Harman Kamali
- University of Health Sciences, Prof. Dr. Cemil Taşçıoğlu City Hospital, Department of Pathology, Istanbul, Turkey
| | - Julia Babigian
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Eriselda Keshi
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Raphael Mohr
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Matthäus Felsenstein
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Simon Moosburner
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Karl-Herbert Hillebrandt
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Jasmin Bartels
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Igor Maximilian Sauer
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Moritz Schmelzle
- Hannover Medical School, Department of General, Visceral and Transplant Surgery, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Johann Pratschke
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Felix Krenzien
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
4
|
Poljšak B, Milisav I. Decreasing Intracellular Entropy by Increasing Mitochondrial Efficiency and Reducing ROS Formation-The Effect on the Ageing Process and Age-Related Damage. Int J Mol Sci 2024; 25:6321. [PMID: 38928027 PMCID: PMC11203720 DOI: 10.3390/ijms25126321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
A hypothesis is presented to explain how the ageing process might be influenced by optimizing mitochondrial efficiency to reduce intracellular entropy. Research-based quantifications of entropy are scarce. Non-equilibrium metabolic reactions and compartmentalization were found to contribute most to lowering entropy in the cells. Like the cells, mitochondria are thermodynamically open systems exchanging matter and energy with their surroundings-the rest of the cell. Based on the calculations from cancer cells, glycolysis was reported to produce less entropy than mitochondrial oxidative phosphorylation. However, these estimations depended on the CO2 concentration so that at slightly increased CO2, it was oxidative phosphorylation that produced less entropy. Also, the thermodynamic efficiency of mitochondrial respiratory complexes varies depending on the respiratory state and oxidant/antioxidant balance. Therefore, in spite of long-standing theoretical and practical efforts, more measurements, also in isolated mitochondria, with intact and suboptimal respiration, are needed to resolve the issue. Entropy increases in ageing while mitochondrial efficiency of energy conversion, quality control, and turnover mechanisms deteriorate. Optimally functioning mitochondria are necessary to meet energy demands for cellular defence and repair processes to attenuate ageing. The intuitive approach of simply supplying more metabolic fuels (more nutrients) often has the opposite effect, namely a decrease in energy production in the case of nutrient overload. Excessive nutrient intake and obesity accelerate ageing, while calorie restriction without malnutrition can prolong life. Balanced nutrient intake adapted to needs/activity-based high ATP requirement increases mitochondrial respiratory efficiency and leads to multiple alterations in gene expression and metabolic adaptations. Therefore, rather than overfeeding, it is necessary to fine-tune energy production by optimizing mitochondrial function and reducing oxidative stress; the evidence is discussed in this paper.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
6
|
Abbasi SF, Mahjabeen I, Parveen N, Qamar I, Haq MFU, Shafique R, Saeed N, Ashraf NS, Kayani MA. Exploring homologous recombination repair and base excision repair pathway genes for possible diagnostic markers in hematologic malignancies. Mol Genet Genomics 2023; 298:1527-1543. [PMID: 37861816 DOI: 10.1007/s00438-023-02078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Hematologic malignancies (HMs) are a collection of malignant transformations, originating from the cells in the bone marrow and lymphoid organs. HMs comprise three main types; leukemia, lymphoma, and multiple myeloma. Globally, HMS accounts for approximately 10% of newly diagnosed cancer. DNA repair pathways defend the cells from recurrent DNA damage. Defective DNA repair mechanisms such as homologous recombination repair (HRR), nucleotide excision repair (NER), and base excision repair (BER) pathways may lead to genomic instability, which initiates HM progression and carcinogenesis. Expression deregulation of HRR, NER, and BER has been investigated in various malignancies. However, no studies have been reported to assess the differential expression of selected DNA repair genes combinedly in HMs. The present study was designed to assess the differential expression of HRR and BER pathway genes including RAD51, XRCC2, XRCC3, APEX1, FEN1, PARP1, and XRCC1 in blood cancer patients to highlight their significance as diagnostic/ prognostic marker in hematological malignancies. The study cohort comprised of 210 blood cancer patients along with an equal number of controls. For expression analysis, q-RT PCR was performed. DNA damage was measured in blood cancer patients and controls using the comet assay and LORD Q-assay. Data analysis showed significant downregulation of selected genes in blood cancer patients compared to healthy controls. To check the diagnostic value of selected genes, the Area under curve (AUC) was calculated and 0.879 AUC was observed for RAD51 (p < 0.0001) and 0.830 (p < 0.0001) for APEX1. Kaplan-Meier analysis showed that downregulation of RAD51 (p < 0.0001), XRCC3 (p < 0.02), and APEX1 (p < 0.0001) was found to be associated with a significant decrease in survival of blood cancer patients. Cox regression analysis showed that deregulation of RAD51 (p < 0.0001), XRCC2 (p < 0.02), XRCC3 (p < 0.003), and APEX1 (p < 0.00001) was found to be associated with the poor prognosis of blood cancer patients. Comet assay showed an increased number of comets in blood cancer patients compared to controls. These results are confirmed by performing the LORD q-assay and an increased frequency of lesions/Kb was observed in selected genes in cancer patients compared to controls. Our results showed significant downregulation of RAD51, XRCC2, XRCC3, APEX1, FEN1, PARP1, and XRCC1 genes with increased DNA damage in blood cancer patients. The findings of the current research suggested that deregulated expression of HRR and BER pathway genes can act as a diagnostic/prognostic marker in hematologic malignancies.
Collapse
Affiliation(s)
- Sumaira Fida Abbasi
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan.
| | - Neelam Parveen
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Imama Qamar
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Maria Fazal Ul Haq
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Rabia Shafique
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Nadia Saeed
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Nida Sarosh Ashraf
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| |
Collapse
|
7
|
Dwir D, Khadimallah I, Xin L, Rahman M, Du F, Öngür D, Do KQ. Redox and Immune Signaling in Schizophrenia: New Therapeutic Potential. Int J Neuropsychopharmacol 2023; 26:309-321. [PMID: 36975001 PMCID: PMC10229853 DOI: 10.1093/ijnp/pyad012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Redox biology and immune signaling play major roles in the body, including in brain function. A rapidly growing literature also suggests that redox and immune abnormalities are implicated in neuropsychiatric conditions such as schizophrenia (SZ), bipolar disorder, autism, and epilepsy. In this article we review this literature, its implications for the pathophysiology of SZ, and the potential for development of novel treatment interventions targeting redox and immune signaling. Redox biology and immune signaling in the brain are complex and not fully understood; in addition, there are discrepancies in the literature, especially in patient-oriented studies. Nevertheless, it is clear that abnormalities arise in SZ from an interaction between genetic and environmental factors during sensitive periods of brain development, and these abnormalities disrupt local circuits and long-range connectivity. Interventions that correct these abnormalities may be effective in normalizing brain function in psychotic disorders, especially in early phases of illness.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Meredith Rahman
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| |
Collapse
|
8
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
9
|
Poljšak B, Kovač V, Špalj S, Milisav I. The Central Role of the NAD+ Molecule in the Development of Aging and the Prevention of Chronic Age-Related Diseases: Strategies for NAD+ Modulation. Int J Mol Sci 2023; 24:2959. [PMID: 36769283 PMCID: PMC9917998 DOI: 10.3390/ijms24032959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The molecule NAD+ is a coenzyme for enzymes catalyzing cellular redox reactions in several metabolic pathways, encompassing glycolysis, TCA cycle, and oxidative phosphorylation, and is a substrate for NAD+-dependent enzymes. In addition to a hydride and electron transfer in redox reactions, NAD+ is a substrate for sirtuins and poly(adenosine diphosphate-ribose) polymerases and even moderate decreases in its cellular concentrations modify signaling of NAD+-consuming enzymes. Age-related reduction in cellular NAD+ concentrations results in metabolic and aging-associated disorders, while the consequences of increased NAD+ production or decreased degradation seem beneficial. This article reviews the NAD+ molecule in the development of aging and the prevention of chronic age-related diseases and discusses the strategies of NAD+ modulation for healthy aging and longevity.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Stjepan Špalj
- Department of Orthodontics, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
11
|
Akan OD, Qin D, Guo T, Lin Q, Luo F. Sirtfoods: New Concept Foods, Functions, and Mechanisms. Foods 2022; 11:foods11192955. [PMID: 36230032 PMCID: PMC9563801 DOI: 10.3390/foods11192955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Sirtfood is a new concept food that compounds diets that can target sirtuins (SIRTs). SIRTs are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases and ADP-ribosyltransferases (enzymes). SIRTs are mediators of calorie restriction (CR) and their activation can achieve some effects similar to CR. SIRTs play essential roles in ameliorating obesity and age-related metabolic diseases. Food ingredients such as resveratrol, piceatannol, anthocyanidin, and quinine are potential modulators of SIRTs. SIRT modulators are involved in autophagy, apoptosis, aging, inflammation, and energy homeostasis. Sirtfood proponents believe that natural Sirtfood recipes exert significant health effects.
Collapse
Affiliation(s)
- Otobong Donald Akan
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Microbiology Department, Faculty of Biological Science, Akwa-Ibom State University, Ikot Akpaden, Uyo 1167, Nigeria
| | - Dandan Qin
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianyi Guo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: ; Tel.: +86-731-85623240
| |
Collapse
|
12
|
Obara-Michlewska M. The tryptophan metabolism, kynurenine pathway and oxidative stress - Implications for glioma pathobiology. Neurochem Int 2022; 158:105363. [PMID: 35667490 DOI: 10.1016/j.neuint.2022.105363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
The kynurenine pathway receives increasing attention due to its involvement in central nervous system pathologies, i.a. neurodegenerative and psychiatric disorders, but also due to the contribution to the pathomechanism of neoplasms, including brain tumors.The present review focuses on kynurenine pathway activity in gliomas, brain tumors of glial origin. The upregulation of kynurenine pathway enzyme, indoleamine 2,3-dioxygenase (IDO), resulting in a decreased level of tryptophan and augmented kynurenine synthesis (increased (KYN/Trp ratio) are the most recognised hallmark of malignant transformation, characterised with immunomodulatory adaptations, providing an escape from defence mechanisms of the host, growth-beneficial milieu and resistance to some therapeutics. The review addresses, however, the oxidative/nitrosative stress-associated mechanisms of tryptophan catabolism, mainly the kynurenine pathway activity, linking them with glioma pathobiology.
Collapse
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
13
|
Mechanisms underlying the effects of caloric restriction on hypertension. Biochem Pharmacol 2022; 200:115035. [DOI: 10.1016/j.bcp.2022.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022]
|
14
|
Odoh CK, Guo X, Arnone JT, Wang X, Zhao ZK. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Biogerontology 2022; 23:169-199. [PMID: 35260986 PMCID: PMC8904166 DOI: 10.1007/s10522-022-09958-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Molecular causes of aging and longevity interventions have witnessed an upsurge in the last decade. The resurgent interests in the application of small molecules as potential geroprotectors and/or pharmacogenomics point to nicotinamide adenine dinucleotide (NAD) and its precursors, nicotinamide riboside, nicotinamide mononucleotide, nicotinamide, and nicotinic acid as potentially intriguing molecules. Upon supplementation, these compounds have shown to ameliorate aging related conditions and possibly prevent death in model organisms. Besides being a molecule essential in all living cells, our understanding of the mechanism of NAD metabolism and its regulation remain incomplete owing to its omnipresent nature. Here we discuss recent advances and techniques in the study of chronological lifespan (CLS) and replicative lifespan (RLS) in the model unicellular organism Saccharomyces cerevisiae. We then follow with the mechanism and biology of NAD precursors and their roles in aging and longevity. Finally, we review potential biotechnological applications through engineering of microbial lifespan, and laid perspective on the promising candidature of alternative redox compounds for extending lifespan.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - James T Arnone
- Department of Biology, William Paterson University, Wayne, NJ, 07470, USA
| | - Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
| |
Collapse
|
15
|
Maintenance of NAD+ Homeostasis in Skeletal Muscle during Aging and Exercise. Cells 2022; 11:cells11040710. [PMID: 35203360 PMCID: PMC8869961 DOI: 10.3390/cells11040710] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a versatile chemical compound serving as a coenzyme in metabolic pathways and as a substrate to support the enzymatic functions of sirtuins (SIRTs), poly (ADP-ribose) polymerase-1 (PARP-1), and cyclic ADP ribose hydrolase (CD38). Under normal physiological conditions, NAD+ consumption is matched by its synthesis primarily via the salvage pathway catalyzed by nicotinamide phosphoribosyltransferase (NAMPT). However, aging and muscular contraction enhance NAD+ utilization, whereas NAD+ replenishment is limited by cellular sources of NAD+ precursors and/or enzyme expression. This paper will briefly review NAD+ metabolic functions, its roles in regulating cell signaling, mechanisms of its degradation and biosynthesis, and major challenges to maintaining its cellular level in skeletal muscle. The effects of aging, physical exercise, and dietary supplementation on NAD+ homeostasis will be highlighted based on recent literature.
Collapse
|
16
|
Chronic exposure to nonylphenol induces oxidative stress and liver damage in male zebrafish (Danio rerio): Mechanistic insight into cellular energy sensors, lipid accumulation and immune modulation. Chem Biol Interact 2022; 351:109762. [PMID: 34843692 DOI: 10.1016/j.cbi.2021.109762] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
Nonylphenol (NP), an environmentally persistent and toxic endocrine-disrupting chemical with estrogenic properties, has severe implications on humans and wildlife. Accumulating evidence demonstrates the toxic response of NP on the developmental process, nervous system, and reproductive parameters. Although NP exposure has been implicated in chronic liver injury, the underlying events associated with hepatic pathophysiology remain less investigated. Using male zebrafish (Danio rerio) as the model, the present study investigates the impact of environmentally relevant concentrations of NP (50 and 100 μg/L, 21 days) on hepatic redox homeostasis vis-à-vis cellular energy sensors, inflammatory response, and cell death involving a mechanistic insight into estrogen receptor (ER) modulation. Our results demonstrate that congruent with significant alteration in transcript abundance of antioxidant enzymes (SOD1, SOD2, Catalase, GPx1a, GSTα1), chronic exposure to NP promotes ROS synthesis, more specifically superoxide anions and H2O2 levels, and lipid peroxidation potentially through elevated NOX4 expression. Importantly, NP perturbation of markers associated with fatty acid biosynthesis (srebf1/fasn) and cellular energy-sensing network (sirt1/ampkα/pgc1α) indicates dysregulated energy homeostasis, metabolic disruption, and macrovesicular steatosis, albeit with differential sensitivity at the dose level tested. Besides, elevated p38-MAPK phosphorylation (activation) together with loss of ER homeostasis at both mRNA (esr1, esr2a, esr2b) and protein (ERα, ERβ) levels suggest that NP modulation of ER abundance may have a significant influence on hepatic events. Elevated expression of inflammatory markers (TLR4, p-NF-κB, TNF-α, IL-6, IL-1β, and NOS2) and pro-apoptotic and necrotic regulators, e.g., Bax, caspase- 8, -9 and cleaved PARP1 (50 kDa), indicate chronic inflammation and hepatotoxicity in NP-exposed males. Collectively, elevated oxidative stress, metabolic dysregulation and immune modulation may lead to chronic liver injury in organisms exposed to metabolic disrupting chemicals.
Collapse
|
17
|
Overexpression of NMNAT3 improves mitochondrial function and enhances anti-oxidative stress of bone marrow mesenchymal stem cells via the NAD+-Sirt3 pathway. Biosci Rep 2022; 42:230593. [PMID: 34981121 PMCID: PMC8762348 DOI: 10.1042/bsr20211005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/28/2021] [Accepted: 12/22/2021] [Indexed: 12/06/2022] Open
Abstract
Oxidative stress damage is a common problem in bone marrow mesenchymal stem cell (BMSC) transplantation. Under stress conditions, the mitochondrial function of BMSCs is disrupted, which accelerates senescence and apoptosis of BMSCs, ultimately leading to poor efficacy. Therefore, improving mitochondrial function and enhancing the anti-oxidative stress capacity of BMSCs may be an effective way of improving the survival rate and curative effect of BMSCs. In this study, we have confirmed that overexpression of nicotinamide mononucleotide adenylyl transferase 3 (NMNAT3) improves mitochondrial function and resistance to stress-induced apoptosis in BMSCs. We further revealed the mechanism of NMNAT3-mediated resistance to stress-induced apoptosis in BMSCs. We increased the level of nicotinamide adenine dinucleotide (NAD+) by overexpressing NMNAT3 in BMSCs and found that it could significantly increase the activity of silent mating type information regulation 2 homolog 3 (Sirt3) and significantly decrease the acetylation levels of Sirt3-dependent deacetylation-related proteins isocitrate dehydrogenase 2 (Idh2) and Forkhead-box protein O3a (FOXO3a). These findings show that NMNAT3 may increase the activity of Sirt3 by increasing NAD+ levels. Our results confirm that the NMNAT3-NAD+-Sirt3 axis is a potential mechanism for improving mitochondrial function and enhancing anti-oxidative stress of BMSCs. In this study, we take advantage of the role of NMNAT3 in inhibiting stress-induced apoptosis of BMSCs and provide new methods and ideas for breaking through the bottleneck of transplantation efficacy of BMSCs in the clinic.
Collapse
|
18
|
Protective Effect and Potential Antioxidant Role of Kakadu Plum Extracts on Alcohol-Induced Oxidative Damage in HepG2 Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Serial alcohol consumption causes alcoholic liver disease (ALD), which can lead to fatty liver, hepatitis, and cirrhosis. Terminalia ferdinandiana (Kakadu plum) is an indigenous fruit of Australia, which is utilized as a functional food. It is a commercially important antioxidant as it contains a more eloquent level of ascorbic acid than other oranges. In this study, we analyzed the chemical constituents of vitamin C, gallic acid, ellagic acid, and daidzin via High-performance liquid chromatography (HPLC) in the Kakadu plum from two different regions including the Northern Territory (NT) and Western Australia (WA), and compared their biochemical properties. The vitamin C content was much higher (almost 70%) in Kakadu plum (KKD) from the NT than WA. Moreover, ROS generation was inhibited significantly in HepG2 (human hepatoma) cells with the KKD-NT extract treatment when compared to the KKD-WA extract treatment. The cytotoxicity produced by ethanol was significantly suppressed in response to the treatment with both of the samples. In addition, our samples (KKD-NT and KKD-WA) increased the activity of two key enzymes involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) that metabolize ethanol. These results show the biochemical confirmation of the mechanism by which KKD exhibits its biological functions including relief from alcohol hangovers as well as protection of the liver cells by the suppression of ROS production and toxic insults.
Collapse
|
19
|
A Pilot Study on the 1H-NMR Serum Metabolic Profile of Takotsubo Patients Reveals Systemic Response to Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10121982. [PMID: 34943085 PMCID: PMC8750825 DOI: 10.3390/antiox10121982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023] Open
Abstract
Takotsubo syndrome (TTS) presents as an acute coronary syndrome characterized by severe left ventricular (LV) dysfunction and non-obstructive coronary artery disease that typically shows spontaneous recovery within days or weeks. The mechanisms behind TTS are mainly related to beta-adrenergic overstimulation and acute endogenous catecholamine surge, both of which could increase oxidative status that may induce further deterioration of cardiac function. Although several studies reported evidence of inflammation and oxidative stress overload in myocardial tissue of TTS models, systemic biochemical evidence of augmented oxidant activity in patients with TTS is lacking. In this study, serum samples of ten TTS patients and ten controls have been analyzed using 1H-NMR spectroscopy. The results of this pilot study show a marked alteration in the systemic metabolic profile of TTS patients, mainly characterized by significant elevation of ketone bodies, 2-hydroxybutyrate, acetyl-L-carnitine, and glutamate levels, in contrast with a decrease of several amino acid levels. The overall metabolic fingerprint reflects a systemic response to oxidative stress caused by the stressor that triggered the syndrome’s onset.
Collapse
|
20
|
Cheng XS, Shi FX, Zhao KP, Lin W, Li XY, Zhang J, Bu YY, Zhu R, Li XH, Duan DX, Ji XY, Wei JS, Wang JZ, Du J, Zhou XW. Nmnat2 attenuates amyloidogenesis and up-regulates ADAM10 in AMPK activity-dependent manner. Aging (Albany NY) 2021; 13:23620-23636. [PMID: 34644262 PMCID: PMC8580354 DOI: 10.18632/aging.203634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/03/2021] [Indexed: 12/16/2022]
Abstract
Amyloid-β (Aβ) accumulating is considered as a causative factor for formation of senile plaque in Alzheimer’s disease (AD), but its mechanism is still elusive. The Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2), a key redox cofactor for energy metabolism, is reduced in AD. Accumulative evidence has shown that the decrease of α-secretase activity, a disintegrin and metalloprotease domain 10 (ADAM10), is responsible for the increase of Aβ productions in AD patient’s brain. Here, we observe that the activity of α-secretase ADAM10 and levels of Nmnat2 are significantly decreased, meanwhile there is a simultaneous elevation of Aβ in Tg2576 mice. Over-expression of Nmnat2 increases the mRNA expression of α-secretase ADAM10 and its activity and inhibits Aβ production in N2a/APPswe cells, which can be abolished by Compound C, an AMPK antagonist, suggesting that AMPK is involved in over-expression of Nmnat2 against Aβ production. The further assays demonstrate that Nmnat2 activates AMPK by up-regulating the ratio of NAD+/NADH, moreover AMPK agonist AICAR can also increase ADAM10 activity and reduces Aβ1-40/1-42. Taken together, Nmnat2 suppresses Aβ production and up-regulates ADAM10 in AMPK activity-dependent manner, suggesting that Nmnat2 may serve as a new potential target in arresting AD.
Collapse
Affiliation(s)
- Xiang-Shu Cheng
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China.,Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Brain Research Laboratory, Henan University, Kaifeng 475004, Henan, China
| | - Fang-Xiao Shi
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Kun-Peng Zhao
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Psychiatry, Henan Key Lab of Biological Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, Henan, China
| | - Wang Lin
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiao-Ying Li
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China
| | - Jun Zhang
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China
| | - Yao-Yao Bu
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China
| | - Rui Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiao-Hong Li
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dong-Xiao Duan
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xin-Ying Ji
- Department of Microbiology, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jian-She Wei
- Brain Research Laboratory, Henan University, Kaifeng 475004, Henan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jin Du
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China.,Department of Respiratory, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China.,Brain Research Laboratory, Henan University, Kaifeng 475004, Henan, China
| | - Xin-Wen Zhou
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
21
|
Synergistic Protective Effect of Curcumin and Resveratrol against Oxidative Stress in Endothelial EAhy926 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2661025. [PMID: 34518768 PMCID: PMC8434903 DOI: 10.1155/2021/2661025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
Curcumin (C) and resveratrol (R) are two well-known nutraceuticals with strong antioxidant activity that can protect cells from oxidative stress. This study aims to investigate the synergy of CR combinations in protecting human endothelial EAhy926 cells against H2O2-induced oxidative stress and its related mechanisms. C and R as individual compounds as well as CR combinations at different ratios were screened for their protective effects against H2O2 (2.5 mM) induced cell death assessed by cell viability assays. The synergistic interaction was analysed using the combination index model. The effects of optimal CR combinations on caspase-3 activity, ROS level, SOD activity, NAD cellular production, expression of Nrf2 and HO-1, and Nrf2 translocation were determined. CR combinations produced a synergistic protection against that of H2O2-induced changes in cell viability, caspase-3 activity, and ROS production. The strongest effect was observed for CR with the ratio of 8 : 2. Further experiments showed that CR 8 : 2 exhibited significantly greater effects in increasing Nrf2 translocation and expressions of Nrf2 and HO-1 proteins, as well as SOD activity and total cellular NAD production, than that of C or R alone. The findings demonstrate that combination of C and R produced a strong synergy in activity against H2O2-induced oxidative stress in EAhy926 cells. The mechanism of this synergy involves the activation of Nrf2-HO-1 signaling pathway and promotion of antioxidant enzymes. Further studies on CR synergy may help develop a new combination therapy for endothelial dysfunction and other conditions related to oxidative stress.
Collapse
|
22
|
Shahgaldi S, Kahmini FR. A comprehensive review of Sirtuins: With a major focus on redox homeostasis and metabolism. Life Sci 2021; 282:119803. [PMID: 34237310 DOI: 10.1016/j.lfs.2021.119803] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
Sirtuins are Class III protein deacetylases with seven conserved isoforms. In general, Sirtuins are highly activated under cellular stress conditions in which NAD+ levels are increased. Nevertheless, regulation of Sirtuins extends far beyond the influences of cellular NAD+/NADH ratio and a rapidly expanding body of evidence currently suggests that their expression and catalytic activity are highly kept under control at multiple levels by various factors and processes. Owing to their intrinsic ability to enzymatically target various intracellular proteins, Sirtuins are prominently involved in the regulation of fundamental biological processes including inflammation, metabolism, redox homeostasis, DNA repair and cell proliferation and senescence. In fact, Sirtuins are well established to regulate and reprogram different redox and metabolic pathways under both pathological and physiological conditions. Therefore, alterations in Sirtuin levels can be a pivotal intermediary step in the pathogenesis of several disorders. This review first highlights the mechanisms involved in the regulation of Sirtuins and further summarizes the current findings on the major functions of Sirtuins in cellular redox homeostasis and bioenergetics (glucose and lipid metabolism).
Collapse
Affiliation(s)
- Shahab Shahgaldi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fatemeh Rezaei Kahmini
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Poljsak B, Kovač V, Levec T, Milisav I. Nature Versus Nurture: What Can be Learned from the Oldest-Old's Claims About Longevity? Rejuvenation Res 2021; 24:262-273. [PMID: 33544039 DOI: 10.1089/rej.2020.2379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Beneficial genetic or environmental factors that influence the length and quality of life can be evaluated while studying supercentenarians. The oldest-old can withstand serious/fatal illnesses more than their peers and/or their aging rate is decreased. Supercentenarians are an interesting group of individuals whose lifestyle is not particularly healthy according to the common guidelines, namely some of them seem to have similar harmful behaviors, but still manage to stay healthier for longer, and while eventually dying from the same degenerative diseases as the general population, they develop symptoms 20-30 years later. As there are not many supercentenarians by definition, it is worthwhile to diligently collect their data to enable future meta-analyses on larger samples; much can be learned from supercentenarians' habits and lifestyle choices about the aging process. Contributions of genetics, lifestyle choices, and epigenetics to their extended life span are discussed here.
Collapse
Affiliation(s)
- Borut Poljsak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Levec
- Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Poltronieri P, Celetti A, Palazzo L. Mono(ADP-ribosyl)ation Enzymes and NAD + Metabolism: A Focus on Diseases and Therapeutic Perspectives. Cells 2021; 10:cells10010128. [PMID: 33440786 PMCID: PMC7827148 DOI: 10.3390/cells10010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Mono(ADP-ribose) transferases and mono(ADP-ribosyl)ating sirtuins use NAD+ to perform the mono(ADP-ribosyl)ation, a simple form of post-translational modification of proteins and, in some cases, of nucleic acids. The availability of NAD+ is a limiting step and an essential requisite for NAD+ consuming enzymes. The synthesis and degradation of NAD+, as well as the transport of its key intermediates among cell compartments, play a vital role in the maintenance of optimal NAD+ levels, which are essential for the regulation of NAD+-utilizing enzymes. In this review, we provide an overview of the current knowledge of NAD+ metabolism, highlighting the functional liaison with mono(ADP-ribosyl)ating enzymes, such as the well-known ARTD10 (also named PARP10), SIRT6, and SIRT7. To this aim, we discuss the link of these enzymes with NAD+ metabolism and chronic diseases, such as cancer, degenerative disorders and aging.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni 7, 73100 Lecce, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Tommaso de Amicis 95, 80145 Naples, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| |
Collapse
|
25
|
Healthy Lifestyle Recommendations: Do the Beneficial Effects Originate from NAD + Amount at the Cellular Level? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:8819627. [PMID: 33414897 PMCID: PMC7752291 DOI: 10.1155/2020/8819627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
In this review, we describe the role of oxidized forms of nicotinamide adenine dinucleotide (NAD+) as a molecule central to health benefits as the result from observing selected healthy lifestyle recommendations. Namely, NAD+ level can be regulated by lifestyle and nutrition approaches such as fasting, caloric restriction, sports activity, low glucose availability, and heat shocks. NAD+ is reduced with age at a cellular, tissue, and organismal level due to inflammation, defect in NAMPT-mediated NAD+ biosynthesis, and the PARP-mediated NAD+ depletion. This leads to a decrease in cellular energy production and DNA repair and modifies genomic signalling leading to an increased incidence of chronic diseases and ageing. By implementing healthy lifestyle approaches, endogenous intracellular NAD+ levels can be increased, which explains the molecular mechanisms underlying health benefits at the organismal level. Namely, adherence to here presented healthy lifestyle approaches is correlated with an extended life expectancy free of major chronic diseases.
Collapse
|
26
|
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18:134-149. [PMID: 33397266 PMCID: PMC8254823 DOI: 10.2174/1567202617999210104220334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders impact more than one billion individuals worldwide and are intimately tied to metabolic disease that can affect another nine hundred individuals throughout the globe. Nicotinamide is a critical agent that may offer fruitful prospects for neurodegenerative diseases and metabolic disorders, such as diabetes mellitus. Nicotinamide protects against multiple toxic environments that include reactive oxygen species exposure, anoxia, excitotoxicity, ethanolinduced neuronal injury, amyloid (Aß) toxicity, age-related vascular disease, mitochondrial dysfunction, insulin resistance, excess lactate production, and loss of glucose homeostasis with pancreatic β-cell dysfunction. However, nicotinamide offers cellular protection in a specific concentration range, with dosing outside of this range leading to detrimental effects. The underlying biological pathways of nicotinamide that involve the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and mammalian forkhead transcription factors (FoxOs) may offer insight for the clinical translation of nicotinamide into a safe and efficacious therapy through the modulation of oxidative stress, apoptosis, and autophagy. Nicotinamide is a highly promising target for the development of innovative strategies for neurodegenerative disorders and metabolic disease, but the benefits of this foundation depend greatly on gaining a further understanding of nicotinamide's complex biology.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
27
|
Kumari K, Chainy GB, Subudhi U. Prospective role of thyroid disorders in monitoring COVID-19 pandemic. Heliyon 2020; 6:e05712. [PMID: 33344794 PMCID: PMC7733548 DOI: 10.1016/j.heliyon.2020.e05712] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 pandemic has affected more than 200 countries and 1.3 million individuals have deceased within eleven months. Intense research on COVID-19 occurrence and prevalence enable us to understand that comorbidities play a crucial role in spread and severity of SARS-CoV-2 infection. Chronic kidney disease, diabetes, respiratory diseases and hypertension are among the various morbidities that are prevalent in symptomatic COVID-19 patients. However, the effect of altered thyroid-driven disorders cannot be ignored. Since thyroid hormone critically coordinate and regulate the major metabolism and biochemical pathways, this review is on the potential role of prevailing thyroid disorders in SARS-CoV-2 infection. Direct link of thyroid hormone with several disorders such as diabetes, vitamin D deficiency, obesity, kidney and liver disorders etc. suggests that the prevailing thyroid conditions may affect SARS-CoV-2 infection. Further, we discuss the oxidative stress-induced aging is associated with the degree of SARS-CoV-2 infection. Importantly, ACE2 protein which facilitates the host-cell entry of SARS-CoV-2 using the spike protein, are highly expressed in individuals with abnormal level of thyroid hormone. Altogether, we report that the malfunction of thyroid hormone synthesis may aggravate SARS-CoV-2 infection and thus monitoring the thyroid hormone may help in understanding the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Kanchan Kumari
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India
- Department of Molecular Biology, Umea University, Sweden
| | - Gagan B.N. Chainy
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Umakanta Subudhi
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi 110025, India
| |
Collapse
|
28
|
Ilie OD, Ciobica A, Riga S, Dhunna N, McKenna J, Mavroudis I, Doroftei B, Ciobanu AM, Riga D. Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E626. [PMID: 33228124 PMCID: PMC7699382 DOI: 10.3390/medicina56110626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Intra-lysosomal accumulation of the autofluorescent "residue" known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. The latest evidence highlighted that lipofuscin strongly correlates with the excessive production of reactive oxygen species; however, despite this, lipofuscin cannot be removed by the biological recycling mechanisms. The antagonistic effects exerted at the DNA level culminate in a dysregulation of the cell cycle, by inducing a loss of the entire internal environment and abnormal gene(s) expression. Additionally, it appears that a crucial role in the production of reactive oxygen species can be attributed to gut microbiota, due to their ability to shape our behavior and neurodevelopment through their maintenance of the central nervous system.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Sorin Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Nitasha Dhunna
- Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK;
| | - Jack McKenna
- York Hospital, Wigginton road Clifton, York YO31 8HE, UK;
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK;
- Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania;
| | - Adela-Magdalena Ciobanu
- Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, no 37, 020021 Bucharest, Romania;
| | - Dan Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| |
Collapse
|
29
|
Shen Y, Wu Q, Shi J, Zhou S. Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson's disease. Biomed Pharmacother 2020; 132:110928. [PMID: 33128944 DOI: 10.1016/j.biopha.2020.110928] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Sirtuin-3 (SIRT3) is a NAD+-dependent protein deacetylase that is located in mitochondria, regulating mitochondrial proteins and maintaining cellular antioxidant status. Increasing evidence demonstrates that SIRT3 plays a role in degenerative disorders including Parkinson's disease (PD), which is a devastating nervous system disease currently with no effective treatments available. Although the etiology of PD is still largely ambiguous, substantial evidence indicates that mitochondrial dysfunction and oxidative stress play major roles in the pathogenesis of PD. The imbalance of reactive oxygen species (ROS) production and detoxification leads to oxidative stress that can accelerate the progression of PD. By causing conformational changes in the deacetylated proteins SIRT3 modulates the activities and biological functions of a variety of proteins involved in mitochondrial antioxidant defense and various mitochondrial functions. Increasingly more studies have suggested that upregulation of SIRT3 confers beneficial effect on neuroprotection in various PD models. This review discusses the mechanism by which SIRT3 regulates intracellular oxidative status and mitochondrial function with an emphasis in discussing in detail the regulation of SIRT3 on each component of the five complexes of the mitochondrial respiratory chain and mitochondrial antioxidant defense, as well as the pharmacological regulation of SIRT3 in light of therapeutic strategies for PD.
Collapse
Affiliation(s)
- Yanhua Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China.
| |
Collapse
|
30
|
Yu P, Cai X, Liang Y, Wang M, Yang W. Roles of NAD + and Its Metabolites Regulated Calcium Channels in Cancer. Molecules 2020; 25:molecules25204826. [PMID: 33092205 PMCID: PMC7587972 DOI: 10.3390/molecules25204826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for redox enzymes, but also moonlights as a regulator for ion channels, the same as its metabolites. Ca2+ homeostasis is dysregulated in cancer cells and affects processes such as tumorigenesis, angiogenesis, autophagy, progression, and metastasis. Herein, we summarize the regulation of the most common calcium channels (TRPM2, TPCs, RyRs, and TRPML1) by NAD+ and its metabolites, with a particular focus on their roles in cancers. Although the mechanisms of NAD+ metabolites in these pathological processes are yet to be clearly elucidated, these ion channels are emerging as potential candidates of alternative targets for anticancer therapy.
Collapse
Affiliation(s)
- Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Xiaobo Cai
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
| | - Yan Liang
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Mingxiang Wang
- BrioPryme Biologics, Inc., Hangzhou 310058, Zhejiang, China;
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
- Correspondence: ; Tel.: +86-571-8820-8713
| |
Collapse
|
31
|
Morris G, Puri BK, Olive L, Carvalho A, Berk M, Walder K, Gustad LT, Maes M. Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments. BMC Med 2020; 18:305. [PMID: 33070778 PMCID: PMC7570030 DOI: 10.1186/s12916-020-01749-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potential routes whereby systemic inflammation, oxidative stress and mitochondrial dysfunction may drive the development of endothelial dysfunction and atherosclerosis, even in an environment of low cholesterol, are examined. MAIN TEXT Key molecular players involved in the regulation of endothelial cell function are described, including PECAM-1, VE-cadherin, VEGFRs, SFK, Rho GEF TRIO, RAC-1, ITAM, SHP-2, MAPK/ERK, STAT-3, NF-κB, PI3K/AKT, eNOS, nitric oxide, miRNAs, KLF-4 and KLF-2. The key roles of platelet activation, xanthene oxidase and myeloperoxidase in the genesis of endothelial cell dysfunction and activation are detailed. The following roles of circulating reactive oxygen species (ROS), reactive nitrogen species and pro-inflammatory cytokines in the development of endothelial cell dysfunction are then described: paracrine signalling by circulating hydrogen peroxide, inhibition of eNOS and increased levels of mitochondrial ROS, including compromised mitochondrial dynamics, loss of calcium ion homeostasis and inactivation of SIRT-1-mediated signalling pathways. Next, loss of cellular redox homeostasis is considered, including further aspects of the roles of hydrogen peroxide signalling, the pathological consequences of elevated NF-κB, compromised S-nitrosylation and the development of hypernitrosylation and increased transcription of atherogenic miRNAs. These molecular aspects are then applied to neuroprogressive disorders by considering the following potential generators of endothelial dysfunction and activation in major depressive disorder, bipolar disorder and schizophrenia: NF-κB; platelet activation; atherogenic miRs; myeloperoxidase; xanthene oxidase and uric acid; and inflammation, oxidative stress, nitrosative stress and mitochondrial dysfunction. CONCLUSIONS Finally, on the basis of the above molecular mechanisms, details are given of potential treatment options for mitigating endothelial cell dysfunction and activation in neuroprogressive disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | | | - Lisa Olive
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- School of Psychology, Faculty of Health, Deakin University, Geelong, Australia
| | - Andre Carvalho
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Ken Walder
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Lise Tuset Gustad
- Department of Circulation and medical imaging, Norwegian University of Technology and Science (NTNU), Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
| | - Michael Maes
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
32
|
Guo J, Mo J, Zhao Q, Han Q, Kanerva M, Iwata H, Li Q. De novo transcriptomic analysis predicts the effects of phenolic compounds in Ba River on the liver of female sharpbelly (Hemiculter lucidus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114642. [PMID: 32408079 DOI: 10.1016/j.envpol.2020.114642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
This work aimed at predicting the toxic effects of phenolic compounds in Ba River on the health of female sharpbelly (Hemiculter lucidus) by the de novo transcriptomic analysis of the liver. Sharpbelly, a native fish living in freshwater ecosystem of East Asia, were sampled upstream, near, and downstream of a wastewater discharge to the Ba river. Based on the occurrence of bisphenol A (BPA), nonylphenol (NP), and 4-tert-octylphenol (4-t-OP) in the water and fish sampled from each site, up-, mid-, and down-stream were interpreted as control, high, and low treatment groups, respectively. In the mid-stream group the Fulton's condition factor (CF) and body weight were remarkably increased by approximate 20%; the gonado-somatic index (GSI) and hepatosomatic index (HSI) in mid-stream fish showed a similar increasing trend but lacking of statistical difference. Exposure to wastewater effluent caused 160 and 162 differentially expressed genes (DEGs) in up-mid and down-mid stream groups, respectively. Two sets of DEGs were primarily enriched in the signaling pathways of drug metabolism, endocrine system, cellular process, and lipid metabolism in the mid-stream sharpbelly, which may alter the fish behavior, disrupt the reproductive function, and lead to hypothyroidism, hepatic steatosis, etc. Taken together, our results linked the disrupted signaling pathways with activities of phenolic compounds to predict the potential effects of wastewater effluent on the health of wild fish.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qian Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qizhi Han
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577, Japan
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
33
|
Minireview Exploring the Biological Cycle of Vitamin B3 and Its Influence on Oxidative Stress: Further Molecular and Clinical Aspects. Molecules 2020; 25:molecules25153323. [PMID: 32707945 PMCID: PMC7436124 DOI: 10.3390/molecules25153323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin B3, or niacin, is one of the most important compounds of the B-vitamin complex. Recent reports have demonstrated the involvement of vitamin B3 in a number of pivotal functions which ensure that homeostasis is maintained. In addition, the intriguing nature of its synthesis and the underlying mechanism of action of vitamin B3 have encouraged further studies aimed at deepening our understanding of the close link between the exogenous supply of B3 and how it activates dependent enzymes. This crucial role can be attributed to the gut microflora and its ability to shape human behavior and development by mediating the bioavailability of metabolites. Recent studies have indicated a possible interconnection between the novel coronavirus and commensal bacteria. As such, we have attempted to explain how the gastrointestinal deficiencies displayed by SARS-CoV-2-infected patients arise. It seems that the stimulation of a proinflammatory cascade and the production of large amounts of reactive oxygen species culminates in the subsequent loss of host eubiosis. Studies of the relationhip between ROS, SARS-CoV-2, and gut flora are sparse in the current literature. As an integrated component, oxidative stress (OS) has been found to negatively influence host eubiosis, in vitro fertilization outcomes, and oocyte quality, but to act as a sentinel against infections. In conclusion, research suggests that in the future, a healthy diet may be considered a reliable tool for maintaining and optimizing our key internal parameters.
Collapse
|
34
|
The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep 2020; 47:5587-5620. [PMID: 32564227 DOI: 10.1007/s11033-020-05590-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Nitro-oxidative stress and lowered antioxidant defences play a key role in neuropsychiatric disorders such as major depression, bipolar disorder and schizophrenia. The first part of this paper details mitochondrial antioxidant mechanisms and their importance in reactive oxygen species (ROS) detoxification, including details of NO networks, the roles of H2O2 and the thioredoxin/peroxiredoxin system, and the relationship between mitochondrial respiration and NADPH production. The second part highlights and identifies the causes of the multiple pathological sequelae arising from self-amplifying increases in mitochondrial ROS production and bioenergetic failure. Particular attention is paid to NAD+ depletion as a core cause of pathology; detrimental effects of raised ROS and reactive nitrogen species on ATP and NADPH generation; detrimental effects of oxidative and nitrosative stress on the glutathione and thioredoxin systems; and the NAD+-induced signalling cascade, including the roles of SIRT1, SIRT3, PGC-1α, the FOXO family of transcription factors, Nrf1 and Nrf2. The third part discusses proposed therapeutic interventions aimed at mitigating such pathology, including the use of the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside, both of which rapidly elevate levels of NAD+ in the brain and periphery following oral administration; coenzyme Q10 which, when given with the aim of improving mitochondrial function and reducing nitro-oxidative stress in the brain, may be administered via the use of mitoquinone, which is in essence ubiquinone with an attached triphenylphosphonium cation; and N-acetylcysteine, which is associated with improved mitochondrial function in the brain and produces significant decreases in oxidative and nitrosative stress in a dose-dependent manner.
Collapse
|
35
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
36
|
Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Therapeutic potential of nicotinamide adenine dinucleotide (NAD). Eur J Pharmacol 2020; 879:173158. [PMID: 32360833 DOI: 10.1016/j.ejphar.2020.173158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine nucleotide (NAD) is a small ubiquitous hydrophilic cofactor that participates in several aspects of cellular metabolism. As a coenzyme it has an essential role in the regulation of energetic metabolism, but it is also a cosubstrate for enzymes that regulate fundamental biological processes such as transcriptional regulation, signaling and DNA repairing among others. The fluctuation and oxidative state of NAD levels regulate the activity of these enzymes, which is translated into marked effects on cellular function. While alterations in NAD homeostasis are a common feature of different conditions and age-associated diseases, in general, increased NAD levels have been associated with beneficial health effects. Due to its therapeutic potential, the interest in this molecule has been renewed, and the regulation of NAD metabolism has become an attractive target for drug discovery. In fact, different approaches to replenish or increase NAD levels have been tested, including enhancement of biosynthesis and inhibition of NAD breakdown. Despite further research is needed, this review provides an overview and update on NAD metabolism, including the therapeutic potential of its regulation, as well as pharmacokinetics, safety, precautions and formulation challenges of NAD supplementation.
Collapse
Affiliation(s)
- Marta Arenas-Jal
- Pharmacy and Pharmaceutical Technology Department (Faculty of Pharmacy and Food Sciences), University of Barcelona, Barcelona, Spain; ICN2 - Catalan Institute of Nanoscience and Nanotechnology (Autonomous University of Barcelona), Bellaterra (Barcelona), Spain.
| | - J M Suñé-Negre
- Pharmacy and Pharmaceutical Technology Department (Faculty of Pharmacy and Food Sciences), University of Barcelona, Barcelona, Spain
| | - Encarna García-Montoya
- Pharmacy and Pharmaceutical Technology Department (Faculty of Pharmacy and Food Sciences), University of Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E. Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review. Front Physiol 2020; 11:63. [PMID: 32116773 PMCID: PMC7016185 DOI: 10.3389/fphys.2020.00063] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that produces a selective loss of the motor neurons of the spinal cord, brain stem and motor cortex. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain has been shown to be a factor that contributes to neurodegeneration and plays a potential role in the pathogenesis of ALS. The regions of the central nervous system affected have high levels of reactive oxygen species (ROS) and reduced antioxidant defenses. Scientific studies propose treatment with antioxidants to combat the characteristic OS and the regeneration of nicotinamide adenine dinucleotide (NAD+) levels by the use of precursors. This review examines the possible roles of nicotinamide riboside and pterostilbene as therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Doctoral Degree’s School, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
- Department of Nutrition and Dietetics, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Carlos Barrios
- Institute for Research on Musculoskeletal Disorders, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | | | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|
38
|
McAllister MJ, Pigg BL, Renteria LI, Waldman HS. Time-restricted feeding improves markers of cardiometabolic health in physically active college-age men: a 4-week randomized pre-post pilot study. Nutr Res 2019; 75:32-43. [PMID: 31955013 DOI: 10.1016/j.nutres.2019.12.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/14/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022]
Abstract
Time-restricted feeding (TRF) has been shown to improve body composition, blood lipids, and reduce markers of inflammation and oxidative stress. However, most of these studies come from rodent models and small human samples, and it is not clear if the benefits are dependent upon a caloric deficit, or the time restriction nature of TRF. Based off of previous research, we hypothesized that humans following an ad libitum TRF protocol would reduce caloric intake and this caloric deficit would be associated with greater improvements in cardiometabolic health including blood pressure, body composition, blood lipids, and markers of inflammation and antioxidant status compared to an isocaloric TRF protocol. The purpose of this study was to: (1) examine the impact of TRF on markers of cardio-metabolic health and antioxidant status and (2) determine if the adaptations from TRF would differ under ad libitum compared to isocaloric conditions. Twenty-three healthy men were randomized to either an ad libitum or isocaloric 16:8 (fasting: feeding) TRF protocol. A total of 22 men completed the 28-day TRF protocol (mean ± SD; age: 22 ± 2.5 yrs.; height: 178.4 ± 6.9 cm; weight: 90.3 ± 24 kg; BMI: 28.5 ± 8.3 kg/m2). Fasting blood samples were analyzed for glucose, lipids, as well as adiponectin, human growth hormone, insulin, cortisol, C-reactive protein, superoxide dismutase, total nitrate/nitrite, and glutathione. Time-restricted feeding in both groups was associated with significant (P < .05) reductions in body fat, blood pressure, and significant increases in adiponectin and HDL-c. No changes in caloric intake were detected. In summary, the results from this pilot study in metabolically healthy, active young men, suggest that TRF can improve markers of cardiometabolic health.
Collapse
Affiliation(s)
- Matthew J McAllister
- Metabolic and Applied Physiology Lab, Department of Health and Human Performance, Texas State University, San Marcos, TX, 78666.
| | - Brandon L Pigg
- School of Health Studies, The University of Memphis, Memphis TN, 38152
| | - Liliana I Renteria
- Metabolic and Applied Physiology Lab, Department of Health and Human Performance, Texas State University, San Marcos, TX, 78666
| | - Hunter S Waldman
- Human Performance Lab, Department of Kinesiology, University of North Alabama, Florence, AL, 35632
| |
Collapse
|
39
|
Fahy GM, Brooke RT, Watson JP, Good Z, Vasanawala SS, Maecker H, Leipold MD, Lin DTS, Kobor MS, Horvath S. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 2019; 18:e13028. [PMID: 31496122 PMCID: PMC6826138 DOI: 10.1111/acel.13028] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/16/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetic “clocks” can now surpass chronological age in accuracy for estimating biological age. Here, we use four such age estimators to show that epigenetic aging can be reversed in humans. Using a protocol intended to regenerate the thymus, we observed protective immunological changes, improved risk indices for many age‐related diseases, and a mean epigenetic age approximately 1.5 years less than baseline after 1 year of treatment (−2.5‐year change compared to no treatment at the end of the study). The rate of epigenetic aging reversal relative to chronological age accelerated from −1.6 year/year from 0–9 month to −6.5 year/year from 9–12 month. The GrimAge predictor of human morbidity and mortality showed a 2‐year decrease in epigenetic vs. chronological age that persisted six months after discontinuing treatment. This is to our knowledge the first report of an increase, based on an epigenetic age estimator, in predicted human lifespan by means of a currently accessible aging intervention.
Collapse
Affiliation(s)
| | | | - James P. Watson
- UCLA Division of Plastic and Reconstructive Surgery David Geffen School of Medicine Los Angeles CA USA
| | - Zinaida Good
- Departments of Microbiology and Immunology Stanford University Stanford CA USA
| | | | - Holden Maecker
- Institute for Immunity, Transplantation and Infection, Stanford School of Medicine Human Immune Monitoring Center Stanford CA USA
| | - Michael D. Leipold
- Institute for Immunity, Transplantation and Infection, Stanford School of Medicine Human Immune Monitoring Center Stanford CA USA
| | - David T. S. Lin
- Department of Medical Genetics, BC Children's Hospital Research Institute Centre for Molecular Medicine and Therapeutics, University of British Columbia Vancouver BC Canada
| | - Michael S. Kobor
- Department of Medical Genetics, BC Children's Hospital Research Institute Centre for Molecular Medicine and Therapeutics, University of British Columbia Vancouver BC Canada
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine University of California Los Angeles CA USA
| |
Collapse
|
40
|
Koval L, Proshkina E, Shaposhnikov M, Moskalev A. The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional. Biogerontology 2019; 21:45-56. [PMID: 31624983 DOI: 10.1007/s10522-019-09842-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Studies in human and mammalian cell cultures have shown that induction of DNA repair mechanisms is required for the formation of stimulation effects of low doses of ionizing radiation, named "hormesis". Nevertheless, the role of cellular defense mechanisms in the formation of radiation-induced hormesis at the level of whole organism remains poorly studied. The aim of this work was to investigate the role of genes involved in different mechanisms and stages of DNA repair in radioadaptive response and radiation hormesis by lifespan parameters in Drosophila melanogaster. We studied genes that control DNA damage sensing (D-Gadd45, Hus1, mnk), nucleotide excision repair (mei-9, mus210, Mus209), base excision repair (Rrp1), DNA double-stranded break repair by homologous recombination (Brca2, spn-B, okr) and non-homologous end joining (Ku80, WRNexo), and the Mus309 gene that participates in several mechanisms of DNA repair. The obtained results demonstrate that in flies with mutations in studied genes radioadaptive response and radiation hormesis are absent or appear to a lesser extent than in wild-type Canton-S flies. Chronic exposure of γ-radiation in a low dose during pre-imaginal stages of development leads to an increase in expression of the studied DNA repair genes, which is maintained throughout the lifespan of flies. However, the activation of conditional ubiquitous overexpression of DNA repair genes does not induce resistance to an acute exposure to γ-radiation and reinforces its negative impact.
Collapse
Affiliation(s)
- Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic, Russian Federation, 167982
- Pitirim Sorokin Syktyvkar State University, Syktyvkar, Komi Republic, Russian Federation, 167000
| | - Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic, Russian Federation, 167982
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic, Russian Federation, 167982
- Pitirim Sorokin Syktyvkar State University, Syktyvkar, Komi Republic, Russian Federation, 167000
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic, Russian Federation, 167982.
- Pitirim Sorokin Syktyvkar State University, Syktyvkar, Komi Republic, Russian Federation, 167000.
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991.
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation, 141701.
| |
Collapse
|
41
|
Lespay-Rebolledo C, Tapia-Bustos A, Bustamante D, Morales P, Herrera-Marschitz M. The Long-Term Impairment in Redox Homeostasis Observed in the Hippocampus of Rats Subjected to Global Perinatal Asphyxia (PA) Implies Changes in Glutathione-Dependent Antioxidant Enzymes and TIGAR-Dependent Shift Towards the Pentose Phosphate Pathways: Effect of Nicotinamide. Neurotox Res 2019; 36:472-490. [PMID: 31187430 DOI: 10.1007/s12640-019-00064-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Abstract
We have recently reported that global perinatal asphyxia (PA) induces a regionally sustained increase in oxidized glutathione (GSSG) levels and GSSG/GSH ratio, a decrease in tissue-reducing capacity, a decrease in catalase activity, and an increase in apoptotic caspase-3-dependent cell death in rat neonatal brain up to 14 postnatal days, indicating a long-term impairment in redox homeostasis. In the present study, we evaluated whether the increase in GSSG/GSH ratio observed in hippocampus involves changes in glutathione reductase (GR) and glutathione peroxidase (GPx) activity, the enzymes reducing glutathione disulfide (GSSG) and hydroperoxides, respectively, as well as catalase, the enzyme protecting against peroxidation. The study also evaluated whether there is a shift in the metabolism towards the penthose phosphate pathway (PPP), by measuring TIGAR, the TP53-inducible glycolysis and apoptosis regulator, associated with delayed cell death, further monitoring calpain activity, involved in bax-dependent cell death, and XRCC1, a scaffolding protein interacting with genome sentinel proteins. Global PA was induced by immersing fetus-containing uterine horns removed by a cesarean section from on term rat dams into a water bath at 37 °C for 21 min. Asphyxia-exposed and sibling cesarean-delivered fetuses were manually resuscitated and nurtured by surrogate dams. Animals were euthanized at postnatal (P) days 1 or 14, dissecting samples from hippocampus to be assayed for glutathione, GR, GPx (all by spectrophotometry), catalase (Western blots and ELISA), TIGAR (Western blots), calpain (fluorescence), and XRCC1 (Western blots). One hour after delivery, asphyxia-exposed and control neonates were injected with either 100 μl saline or 0.8 mmol/kg nicotinamide, i.p., shown to protect from the short- and long-term consequences of PA. It was found that global PA produced (i) a sustained increase of GSSG levels and GSSG/GSH ratio at P1 and P14; (ii) a decrease of GR, GPx, and catalase activity at P1 and P14; (iii) a decrease at P1, followed by an increase at P14 of TIGAR levels; (iv) an increase of calpain activity at P14; and (v) an increase of XRCC1 levels, but only at P1. (vi) Nicotinamide prevented the effect of PA on GSSG levels and GSSG/GSH ratio, and on GR, GPx, and catalase activity, also on increased TIGAR levels and calpain activity observed at P14. The present study demonstrates that the long-term impaired redox homeostasis observed in the hippocampus of rats subjected to global PA implies changes in GR, GPx, and catalase, and a shift towards PPP, as indicated by an increase of TIGAR levels at P14.
Collapse
Affiliation(s)
- C Lespay-Rebolledo
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile
| | - A Tapia-Bustos
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile
| | - D Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile
| | - P Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile. .,Department of Neuroscience, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile.
| | - M Herrera-Marschitz
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile.
| |
Collapse
|
42
|
Abstract
The free radical theory of ageing (FRTA), presented by Denham Harman in 1950s, proposed that aerobic organisms age due to reactive oxygen species (ROS)/free radical induced damage that accumulates in cells over time. Since antioxidants can neutralize free radicals by electron donation, the most logical approach was to use them as supplements in order to prevent ageing. In this chapter, we will discuss the inability of antioxidant supplementation to improve health and longevity.Although many antioxidants are efficient free radical quenchers in vitro, their in vivo effects are less clear. Recent evidence from human trials implies that antioxidant supplements do not increase lifespan and can even increase the incidence of diseases. Synthetic antioxidants were unable to consistently prevent ROS-induced damage in vivo, possibly as dietary antioxidants may not act only as ROS scavengers. Antioxidants can have dichotomous roles on ROS production. They are easily oxidized and can act as oxidants to induce damage when present in large concentrations. In appropriate amounts, they can modulate cellular metabolism by induction of cell stress responses and/or activate cell damage repair and maintenance systems. Therefore, the antioxidants' beneficial role may be reversed/prevented by excessive amounts of antioxidant supplements. On the other hand, ROS are also involved in many important physiological processes in humans, such as induction of stress responses, pathogen defence, and systemic signalling. Thus, both "anti-oxidative or reductive stress" (the excess of antioxidants) as well as oxidative stress (the excess of ROS) can be damaging and contribute to the ageing processes.
Collapse
|
43
|
|
44
|
Chen R, Huang Z, Wang J, Chen X, Fu Y, Wang W. Silent Information Regulator 1 Negatively Regulates Atherosclerotic Angiogenesis via Mammalian Target of Rapamycin Complex 1 Signaling Pathway. Am J Med Sci 2018; 356:168-176. [PMID: 30219159 DOI: 10.1016/j.amjms.2018.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study aimed to investigate the interactions between silent information regulator 1 (SIRT1) and mammalian target of rapamycin (mTOR) in intraplaque angiogenesis and their potential mechanisms through in vivo and in vitro studies. METHODS An atherosclerosis model was established in 12 rabbits on a high-cholesterol diet. The rabbits were equally divided into 3 groups: a control group (high-lipid diet), RAP group (high-lipid diet supplemented with rapamycin) and RAP + NAM group (high-lipid diet supplemented with rapamycin and nicotinamide). At the end of 4 weeks, the area of plaques in the aorta was determined and the protein expression of CD31 and vascular endothelial growth factor (VEGF) was detected through hematoxylin and eosin staining and immunohistochemical staining, respectively. For in vitro study, a hypoxia model was established in human umbilical vein endothelial cells (HUVECs) by using the chemical method (CoCl2). The MTT assay, scratch assay and tube formation assay were performed to evaluate the proliferation and angiogenesis abilities of HUVECs. Reverse transcription polymerase chain reaction was used to examine the mRNA levels of SIRT1, hypoxia-inducible factor-1α (HIF-1α), mTOR and p70 ribosomal S6 kinase (p70S6K). Western blotting was used to examine the protein levels of SIRT1, HIF-1α, mTOR, p-mTOR, p-raptor and p-p70S6K. RESULTS The results of the in vivo study indicated a significant inhibitory effect of rapamycin on plaque size and intraplaque angiogenesis (0.05 ± 0.02mm2 versus 5.44 ± 0.50mm2, P < 0.05). This effect was attenuated by nicotinamide (0.76 ± 0.15mm2 versus 0.05 ± 0.02mm2, P < 0.05). Compared with the RAP group, CD31- and VEGF-positive vessels were abundant in the RAP + NAM group. The RAP group showed lower expression of p-mTOR, p-p70S6K and HIF-1α than did the control group (P < 0.05), whereas the RAP + NAM group showed slightly higher expression of these factors than did the RAP group (P < 0.05). Furthermore, in vitro studies revealed that the inhibitory effect of rapamycin on the angiogenic ability of HUVECs and its significant inhibitory effects on the protein level of HIF-1α and the phosphorylation of proteins involved in the mTORC1 pathway, including mTOR, raptor and p70S6K (P < 0.05), were enhanced by cotreatment with SRT1720 and rapamycin (P < 0.05). In contrast to mTOR and SIRT1, the mRNA levels of p70S6K and HIF-1α were reduced by rapamycin (P < 0.05) and further reduced by cotreatment with SRT1720 and rapamycin. CONCLUSIONS The study results indicate that SIRT1 might negatively regulate atherosclerotic angiogenesis via mTORC1 and HIF-1α signaling pathway and cointervention of SIRT1 and mTOR may serve as a crucial therapeutic strategy in cardiovascular medicine.
Collapse
Affiliation(s)
- Runtai Chen
- Department of Cardiology of the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Zhenchun Huang
- Department of Cardiology of the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Junyi Wang
- Department of Cardiology of the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Xiaoying Chen
- Department of Cardiology of the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Yucai Fu
- Laboratory of Cell Senescence, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Wei Wang
- Department of Cardiology of the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China.
| |
Collapse
|
45
|
Poljsak B, Milisav I. Restoring NAD(+) Levels with NAD(+) Intermediates, the Second Law of Thermodynamics, and Aging Delay. Rejuvenation Res 2018; 21:506-509. [PMID: 29695187 DOI: 10.1089/rej.2017.2037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hypothesis regarding the role of increased nicotinamide adenine dinucleotide (NAD+) levels with reference to the fundamental concepts of aging and entropy is presented. Considering the second law of thermodynamics, NAD+ seems the appropriate candidate for reversing many aging-associated pathologies. NAD+ is presented as an essential compound that enables organisms to stay highly organized and well maintained, with a lower entropy state.
Collapse
Affiliation(s)
- Borut Poljsak
- 1 Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Irina Milisav
- 1 Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia.,2 Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
46
|
Nazari Soltan Ahmad S, Rashtchizadeh N, Argani H, Roshangar L, Ghorbani Haghjo A, Sanajou D, Panah F, Ashrafi Jigheh Z, Dastmalchi S, Mesgari-Abbasi M. Dunnione protects against experimental cisplatin-induced nephrotoxicity by modulating NQO1 and NAD + levels. Free Radic Res 2018; 52:808-817. [PMID: 29865885 DOI: 10.1080/10715762.2018.1475732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Despite being an efficacious anticancer agent, the clinical utility of cisplatin is hindered by its cardinal side effects. This investigation aimed to appraise potential protective impact of dunnione, a natural naphthoquinone pigment with established NQO1 stimulatory effects, on cisplatin nephrotoxicity of rats. Dunnione was administered orally at 10 and 20 mg/kg doses for 4 d and a single injection of cisplatin was delivered at the second day. Renal histopathology, inflammatory/oxidative stress/apoptotic markers, kidney function, and urinary markers of renal injury were assessed. Dunnione repressed cisplatin-induced inflammation in the kidneys as indicated by decreased TNF-α/IL-1β levels, and reduced nuclear phosphorylated NF-κB p65. This agent also obviated cisplatin-invoked oxidative stress as elucidated by decreased MDA/GSH levels and increased SOD/CAT activities. Dunnione, furthermore, improved renal histological deteriorations as well as caspase-3 activities and terminal deoxynucleotidyl transferase (TUNEL) positive cells, the indicators of apoptosis. Moreover, it up-regulated nuclear Nrf2 and cytosolic haeme-oxygenase-1 (HO-1) and NQO1 levels; meanwhile, promoted NAD+/NADH ratios followed by enhancing the activities of Sirt1 and PARP1; and further attenuated nuclear acetylated NF-κB p65. Dunnione additionally declined cisplatin-evoked retrogression in renal function and upraise in urinary markers of glomerular and tubular injury as demonstrated by decreased serum urea and creatinine with simultaneous reductions in urinary excretions of collagen type IV, podocin, cystatin C, and retinol-binding protein (RBP). Altogether, these findings offer dunnione as a potential protective agent against cisplatin-induced nephrotoxicity in rats.
Collapse
Affiliation(s)
- Saeed Nazari Soltan Ahmad
- a Department of Biochemistry, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nadereh Rashtchizadeh
- b Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hassan Argani
- c Urology and Nephrology Research Center, Beheshti University of Medical Sciences , Tehran , Iran
| | - Leila Roshangar
- d Stem Cell Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Amir Ghorbani Haghjo
- b Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Davoud Sanajou
- a Department of Biochemistry, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Fatemeh Panah
- a Department of Biochemistry, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Zahra Ashrafi Jigheh
- a Department of Biochemistry, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Siavoush Dastmalchi
- b Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehran Mesgari-Abbasi
- e Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
47
|
The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018. [PMID: 29523769 DOI: 10.1042/bst20170121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a result of the advancing age of the global population and the progressive increase in lifespan, neurodegenerative disorders continue to increase in incidence throughout the world. New strategies for neurodegenerative disorders involve the novel pathways of the mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) that can modulate pathways of apoptosis and autophagy. The pathways of mTOR and SIRT1 are closely integrated. mTOR forms the complexes mTOR Complex 1 and mTOR Complex 2 and can impact multiple neurodegenerative disorders that include Alzheimer's disease, Huntington's disease, and Parkinson's disease. SIRT1 can control stem cell proliferation, block neuronal injury through limiting programmed cell death, drive vascular cell survival, and control clinical disorders that include dementia and retinopathy. It is important to recognize that oversight of programmed cell death by mTOR and SIRT1 requires a fine degree of precision to prevent the progression of neurodegenerative disorders. Additional investigations and insights into these pathways should offer effective and safe treatments for neurodegenerative disorders.
Collapse
|
48
|
Maiese K. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer's Disease. Curr Neurovasc Res 2018; 15:367-371. [PMID: 30484407 PMCID: PMC6538488 DOI: 10.2174/1567202616666181128120003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
The world's population continues to age at a rapid pace. By the year 2050, individuals over the age of 65 will account for sixteen percent of the world's population and life expectancy will increase well over eighty years of age. Accompanied by the aging of the global population is a significant rise in Non-Communicable Diseases (NCDs). Neurodegenerative disorders will form a significant component for NCDs. Currently, dementia is the 7th leading cause of death and can be the result of multiple causes that include diabetes mellitus, vascular disease, and Alzheimer's Disease (AD). AD may represent at least sixty percent of these cases. Current treatment for these disorders is extremely limited to provide only some symptomatic relief at present. Sirtuins and in particular, the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), represent innovative strategies for the treatment of cognitive loss. New work has revealed that SIRT1 provides protection against memory loss through mechanisms that involve oxidative stress, Aβ toxicity, neurofibrillary degeneration, vascular injury, mitochondrial dysfunction, and neuronal loss. In addition, SIRT1 relies upon other avenues that can include trophic factors, such as erythropoietin, and signaling pathways, such as Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4). Yet, SIRT1 can have detrimental effects as well that involve tumorigenesis and blockade of stem cell differentiation and maturation that can limit reparative processes for cognitive loss. Further investigations with sirtuins and SIRT1 should be able to capitalize upon these novel targets for dementia and cognitive loss.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
49
|
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15:81-91. [PMID: 29557749 PMCID: PMC6021214 DOI: 10.2174/1567202615666180319151244] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND With the global increase in lifespan expectancy, neurodegenerative disorders continue to affect an ever-increasing number of individuals throughout the world. New treatment strategies for neurodegenerative diseases are desperately required given the lack of current treatment modalities. METHODS Here, we examine novel strategies for neurodegenerative disorders that include circadian clock genes, non-coding Ribonucleic Acids (RNAs), and the mammalian forkhead transcription factors of the O class (FoxOs). RESULTS Circadian clock genes, non-coding RNAs, and FoxOs offer exciting prospects to potentially limit or remove the significant disability and death associated with neurodegenerative disorders. Each of these pathways has an intimate relationship with the programmed death pathways of autophagy and apoptosis and share a common link to the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic target of rapamycin (mTOR). Circadian clock genes are necessary to modulate autophagy, limit cognitive loss, and prevent neuronal injury. Non-coding RNAs can control neuronal stem cell development and neuronal differentiation and offer protection against vascular disease such as atherosclerosis. FoxOs provide exciting prospects to block neuronal apoptotic death and to activate pathways of autophagy to remove toxic accumulations in neurons that can lead to neurodegenerative disorders. CONCLUSION Continued work with circadian clock genes, non-coding RNAs, and FoxOs can offer new prospects and hope for the development of vital strategies for the treatment of neurodegenerative diseases. These innovative investigative avenues have the potential to significantly limit disability and death from these devastating disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
50
|
Aman Y, Qiu Y, Tao J, Fang EF. Therapeutic potential of boosting NAD+ in aging and age-related diseases. TRANSLATIONAL MEDICINE OF AGING 2018. [DOI: 10.1016/j.tma.2018.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|