1
|
Ren Y, Wang T, Yin J. The role of soluble epoxide hydrolase in the intestine. Cell Biol Int 2024; 48:1612-1620. [PMID: 39164961 DOI: 10.1002/cbin.12232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
The soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) is an α/β hydrolase fold protein that is, widely distributed throughout the body. Recent studies have highlighted that sEH, in the metabolism of polyunsaturated fatty acids, plays a part in the pathogenesis of various diseases, including cardiovascular disease, Alzheimer's disease and intestine-associated disease. This review discusses the current findings on the role of sEH in the development of intestine- and intestine-associated diseases, including colitis, colorectal cancer, and other intestinal diseases, as well as the potential underlying mechanisms involved.
Collapse
Affiliation(s)
- Yanbei Ren
- Department of obstetrics-gynecology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ting Wang
- Faculty of nursing, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jiuheng Yin
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Hateley C, Olona A, Halliday L, Edin ML, Ko JH, Forlano R, Terra X, Lih FB, Beltrán-Debón R, Manousou P, Purkayastha S, Moorthy K, Thursz MR, Zhang G, Goldin RD, Zeldin DC, Petretto E, Behmoaras J. Multi-tissue profiling of oxylipins reveal a conserved up-regulation of epoxide:diol ratio that associates with white adipose tissue inflammation and liver steatosis in obesity. EBioMedicine 2024; 103:105127. [PMID: 38677183 PMCID: PMC11061246 DOI: 10.1016/j.ebiom.2024.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.
Collapse
Affiliation(s)
- Charlotte Hateley
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Antoni Olona
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Laura Halliday
- Department of Surgery and Cancer, Imperial College London, UK
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Jeong-Hun Ko
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Ximena Terra
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Fred B Lih
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Raúl Beltrán-Debón
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Penelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Sanjay Purkayastha
- Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK; University of Brunel, Kingston Lane, Uxbridge, London, UB8 3PH, UK
| | - Krishna Moorthy
- Department of Surgery and Cancer, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Guodong Zhang
- Department of Nutrition, College of Agriculture and Environmental Sciences, 3135 Meyer Hall, One Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Enrico Petretto
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore; Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, China
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
3
|
Koubova K, Cizkova K, Burianova A, Tauber Z. PTEN and soluble epoxide hydrolase in intestinal cell differentiation. Biochim Biophys Acta Gen Subj 2023; 1867:130496. [PMID: 37866587 DOI: 10.1016/j.bbagen.2023.130496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Intestinal epithelial differentiation is a highly organised process. It is influenced by a variety of signalling pathways and enzymes, such as the PI3K pathway and soluble epoxide hydrolase (sEH) from arachidonic acid metabolism. We investigated the changes in the expression of enzymes and lipid messenger from the PI3K pathway, including PTEN, during intestinal cell differentiation in vitro using HT-29 and Caco2 cells and compared them with immunohistochemical patterns of these proteins in human colon. To investigate the possible crosstalk between the PI3K pathway and sEH, we treated HT-29 and Caco2 cells with the sEH inhibitor TPPU. Administration of TPPU to differentiated cells decreased the expression of PTEN, thus reversing the change in its expression observed during cell differentiation. In addition, multiplex immunofluorescence staining confirmed the relationship between the expression of PTEN and villin, a marker of intestinal cell differentiation, ranging from a moderate correlation in undifferentiated cells to a very strong correlation in differentiated cells treated with TPPU. Furthermore, we confirm that PTEN and sEH mirrored their expression patterns in samples of prenatal and adult human intestine compared to tumours using immunohistochemical staining. Taken together, it appears that PTEN and sEH cooperate in the process of intestinal cell differentiation. A better understanding of the crosstalk between the PI3K pathway and sEH and its consequences for cell differentiation is highly desirable, as several sEH inhibitors are under clinical investigation for the treatment of various diseases.
Collapse
Affiliation(s)
- Katerina Koubova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic.
| | - Adela Burianova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
4
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, Martínez-Guardado I, Navarro-Jiménez E, Laborde-Cárdenas CC, Tornero-Aguilera JF. The Role of Adipokines in Health and Disease. Biomedicines 2023; 11:biomedicines11051290. [PMID: 37238961 DOI: 10.3390/biomedicines11051290] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines are cell-signaling proteins secreted by adipose tissue that has been related to a low-grade state of inflammation and different pathologies. The present review aims to analyze the role of adipokines in health and disease in order to understand the important functions and effects of these cytokines. For this aim, the present review delves into the type of adipocytes and the cytokines produced, as well as their functions; the relations of adipokines in inflammation and different diseases such as cardiovascular, atherosclerosis, mental diseases, metabolic disorders, cancer, and eating behaviors; and finally, the role of microbiota, nutrition, and physical activity in adipokines is discussed. This information would allow for a better understanding of these important cytokines and their effects on body organisms.
Collapse
Affiliation(s)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | | | |
Collapse
|
5
|
Mohamad-Fauzi N, Shaw C, Foutouhi SH, Hess M, Kong N, Kol A, Storey DB, Desai PT, Shah J, Borjesson D, Murray JD, Weimer BC. Salmonella enhances osteogenic differentiation in adipose-derived mesenchymal stem cells. Front Cell Dev Biol 2023; 11:1077350. [PMID: 37009487 PMCID: PMC10055666 DOI: 10.3389/fcell.2023.1077350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
The potential of mesenchymal stem cells (MSCs) for tissue repair and regeneration has garnered great attention. While MSCs are likely to interact with microbes at sites of tissue damage and inflammation, like in the gastrointestinal system, the consequences of pathogenic association on MSC activities have yet to be elucidated. This study investigated the effects of pathogenic interaction on MSC trilineage differentiation paths and mechanisms using model intracellular pathogen Salmonella enterica ssp enterica serotype Typhimurium. The examination of key markers of differentiation, apoptosis, and immunomodulation demonstrated that Salmonella altered osteogenic and chondrogenic differentiation pathways in human and goat adipose-derived MSCs. Anti-apoptotic and pro-proliferative responses were also significantly upregulated (p < 0.05) in MSCs during Salmonella challenge. These results together indicate that Salmonella, and potentially other pathogenic bacteria, can induce pathways that influence both apoptotic response and functional differentiation trajectories in MSCs, highlighting that microbes have a potentially significant role as influencers of MSC physiology and immune activity.
Collapse
Affiliation(s)
- Nuradilla Mohamad-Fauzi
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Claire Shaw
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Soraya H. Foutouhi
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Nguyet Kong
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Dylan Bobby Storey
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Prerak T. Desai
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Jigna Shah
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Dori Borjesson
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - James D. Murray
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
- *Correspondence: James D. Murray, ; Bart C. Weimer,
| | - Bart C. Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
- *Correspondence: James D. Murray, ; Bart C. Weimer,
| |
Collapse
|
6
|
11,12-EET Regulates PPAR-γ Expression to Modulate TGF-β-Mediated Macrophage Polarization. Cells 2023; 12:cells12050700. [PMID: 36899838 PMCID: PMC10000544 DOI: 10.3390/cells12050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Macrophages are highly plastic immune cells that can be reprogrammed to pro-inflammatory or pro-resolving phenotypes by different stimuli and cell microenvironments. This study set out to assess gene expression changes associated with the transforming growth factor (TGF)-β-induced polarization of classically activated macrophages into a pro-resolving phenotype. Genes upregulated by TGF-β included Pparg; which encodes the transcription factor peroxisome proliferator-activated receptor (PPAR)-γ, and several PPAR-γ target genes. TGF-β also increased PPAR-γ protein expression via activation of the Alk5 receptor to increase PPAR-γ activity. Preventing PPAR-γ activation markedly impaired macrophage phagocytosis. TGF-β repolarized macrophages from animals lacking the soluble epoxide hydrolase (sEH); however, it responded differently and expressed lower levels of PPAR-γ-regulated genes. The sEH substrate 11,12-epoxyeicosatrienoic acid (EET), which was previously reported to activate PPAR-γ, was elevated in cells from sEH-/- mice. However, 11,12-EET prevented the TGF-β-induced increase in PPAR-γ levels and activity, at least partly by promoting proteasomal degradation of the transcription factor. This mechanism is likely to underlie the impact of 11,12-EET on macrophage activation and the resolution of inflammation.
Collapse
|
7
|
Lipid mediators generated by the cytochrome P450—Epoxide hydrolase pathway. ADVANCES IN PHARMACOLOGY 2023; 97:327-373. [DOI: 10.1016/bs.apha.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
9
|
Pfabigan DM, Vezzani C, Thorsby PM, Sailer U. Sex difference in human olfactory sensitivity is associated with plasma adiponectin. Horm Behav 2022; 145:105235. [PMID: 35868172 DOI: 10.1016/j.yhbeh.2022.105235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Energy deprivation as well as hormones that regulate appetite and eating can influence olfactory function. This study investigated olfactory sensitivity for a food-related and a non-food odour prior to and after a meal, and its relationship to the energy-regulating hormones ghrelin and adiponectin. The olfactory sensitivity for orange and rose (PEA) odour in healthy, normal-weight volunteers (19 women, 45 men, 1 undisclosed individual) was not affected by the consumption of a meal. Olfactory sensitivity was not associated with concentrations of circulating ghrelin. However, olfactory sensitivity was higher for women than for men, indicating better olfactory performance. This difference between women and men was related to concentrations of plasma adiponectin, an adipose-specific hormone. Adiponectin may thus explain why sex differences in olfactory sensitivity emerge, and may also account for some of the inconsistencies in previous findings on sex differences. Our findings add to the limited literature on the impact of stomach and adipose tissue-derived hormones on olfactory sensitivity. Further studies are needed to establish a causal link between circulating adiponectin and a sex difference in olfactory sensitivity.
Collapse
Affiliation(s)
- Daniela M Pfabigan
- Dept. of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Morbid Obesity Centre, Department of Medicine, Vestfold Hospital Trust, Tønsberg, Norway
| | - Cecilia Vezzani
- Dept. of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Per Medbøe Thorsby
- Hormone Laboratory, Dep of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway
| | - Uta Sailer
- Dept. of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Shi Z, He Z, Wang DW. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123873. [PMID: 35744996 PMCID: PMC9230517 DOI: 10.3390/molecules27123873] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022]
Abstract
Inflammation plays a crucial role in the initiation and development of a wide range of systemic illnesses. Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid (AA) metabolized by CYP450 epoxygenase (CYP450) and are subsequently hydrolyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs), which are merely biologically active. EETs possess a wide range of established protective effects on many systems of which anti-inflammatory actions have gained great interest. EETs attenuate vascular inflammation and remodeling by inhibiting activation of endothelial cells and reducing cross-talk between inflammatory cells and blood vessels. EETs also process direct and indirect anti-inflammatory properties in the myocardium and therefore alleviate inflammatory cardiomyopathy and cardiac remodeling. Moreover, emerging studies show the substantial roles of EETs in relieving inflammation under other pathophysiological environments, such as diabetes, sepsis, lung injuries, neurodegenerative disease, hepatic diseases, kidney injury, and arthritis. Furthermore, pharmacological manipulations of the AA-CYP450-EETs-sEH pathway have demonstrated a contribution to the alleviation of numerous inflammatory diseases, which highlight a therapeutic potential of drugs targeting this pathway. This review summarizes the progress of AA-CYP450-EETs-sEH pathway in regulation of inflammation under different pathological conditions and discusses the existing challenges and future direction of this research field.
Collapse
Affiliation(s)
- Zeqi Shi
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
| | - Zuowen He
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| |
Collapse
|
11
|
Isse FA, El-Sherbeni AA, El-Kadi AOS. The multifaceted role of cytochrome P450-Derived arachidonic acid metabolites in diabetes and diabetic cardiomyopathy. Drug Metab Rev 2022; 54:141-160. [PMID: 35306928 DOI: 10.1080/03602532.2022.2051045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding lipid metabolism is a critical key to understanding the pathogenesis of Diabetes Mellitus (DM). It is known that 60-90% of DM patients are obese or used to be obese. The incidence of obesity is rising owing to the modern sedentary lifestyle that leads to insulin resistance and increased levels of free fatty acids, predisposing tissues to utilize more lipids with less glucose uptake. However, the exact mechanism is not yet fully elucidated. Diabetic cardiomyopathy seems to be associated with these alterations in lipid metabolism. Arachidonic acid (AA) is an important fatty acid that is metabolized to several bioactive compounds by cyclooxygenases, lipoxygenases, and the more recently discovered, cytochrome P450 (P450) enzymes. P450 metabolizes AA to either epoxy-AA (EETs) or hydroxy-AA (HETEs). Studies showed that EETs could have cardioprotective effects and beneficial effects in reversing abnormalities in glucose and insulin homeostasis. Conversely, HETEs, most importantly 12-HETE and 20-HETE, were found to interfere with normal glucose and insulin homeostasis and thus, might be involved in diabetic cardiomyopathy. In this review, we highlight the role of P450-derived AA metabolites in the context of DM and diabetic cardiomyopathy and their potential use as a target for developing new treatments for DM and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Fadumo Ahmed Isse
- Departmet of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ahmed A El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ayman O S El-Kadi
- Departmet of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Suh SH, Oh TR, Choi HS, Kim CS, Lee J, Oh YK, Jung JY, Lee KB, Oh KH, Ma SK, Bae EH, Kim SW. Association of High Serum Adiponectin Level With Adverse Cardiovascular Outcomes and Progression of Coronary Artery Calcification in Patients With Pre-dialysis Chronic Kidney Disease. Front Cardiovasc Med 2022; 8:789488. [PMID: 35097010 PMCID: PMC8792836 DOI: 10.3389/fcvm.2021.789488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Serum adiponectin level predicts cardiovascular (CV) outcomes and progression of coronary artery calcification (CAC) in the general population, although the association has not been validated in patients with chronic kidney disease (CKD). In this study, we investigated the association of high serum adiponectin level with the risk of adverse CV outcomes and progression of CAC in patients with pre-dialysis CKD. Methods: A total of 1,127 patients with pre-dialysis CKD from a nationwide prospective cohort of patients with pre-dialysis CKD in Korea were divided into the tertile by serum adiponectin level at the baseline. CV outcome of interest was fatal and non-fatal CV events and all-cause mortality. Progression of CAC was defined as coronary artery calcium score (CACS) change more than 200 during a 4-year follow-up. Results: Cox regression analysis revealed that high serum adiponectin is associated with increased risk of fatal and non-fatal CV events (adjusted hazard ratio 2.799, 95% CI 1.348–5.811). In contrast, high serum adiponectin level was not significantly associated with all-cause mortality (adjusted hazard ratio 0.655, 95% CI 0.203–2.113). Binary logistic regression analysis revealed that high serum adiponectin level is also associated with increased risk of progression of CAC (adjusted odds ratio [OR] 2.078, 95% CI 1.014–4.260). Subgroup analyses demonstrated that the association of high serum adiponectin with increased risk of fatal and non-fatal CV events is not modified by age, gender, history of diabetes, estimated glomerular filtration rate (eGFR), or spot urine albumin-to-creatinine ratio (ACR). Conclusions: High serum adiponectin level is associated with adverse CV outcomes and progression of CAC in patients with pre-dialysis CKD.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
| | - Tae Ryom Oh
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
| | - Joongyub Lee
- Department of Prevention and Management, School of Medicine, Inha University, Incheon, South Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University, Seoul, South Korea
| | - Ji Yong Jung
- Division of Nephrology, Department of Internal Medicine, Gachon University of Gil Medical Center, Incheon, South Korea
| | - Kyu-Beck Lee
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University, Seoul, South Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
- *Correspondence: Eun Hui Bae
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
- Soo Wan Kim
| |
Collapse
|
13
|
Macêdo APA, Muñoz VR, Cintra DE, Pauli JR. 12,13-diHOME as a new therapeutic target for metabolic diseases. Life Sci 2021; 290:120229. [PMID: 34914931 DOI: 10.1016/j.lfs.2021.120229] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/23/2023]
Abstract
Lipokines are bioactive compounds, derived from adipose tissue depots, that control several molecular signaling pathways. Recently, 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), an oxylipin, has gained prominence in the scientific literature. An increase in circulating 12,13-diHOME has been associated with improved metabolic health, and the action of this molecule appears to be mediated by brown adipose tissue (BAT). Scientific evidence indicates that the increase in serum levels of 12,13-diHOME caused by stimuli such as physical exercise and exposure to cold may favor the absorption of fatty acids by brown adipose tissue and stimulate the browning process in white adipose tissue (WAT). Thus, strategies capable of increasing 12,13-diHOME levels may be promising for the prevention and treatment of obesity and metabolic diseases. This review explores the relationship of 12,13-diHOME with brown adipose tissue and its role in the metabolic health context, as well as the signaling pathways involved between 12,13-diHOME and BAT.
Collapse
Affiliation(s)
- Ana Paula Azevêdo Macêdo
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, São Paulo, Brazil; Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
14
|
Frömel T, Naeem Z, Pirzeh L, Fleming I. Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. Pharmacol Ther 2021; 234:108049. [PMID: 34848204 DOI: 10.1016/j.pharmthera.2021.108049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lale Pirzeh
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany; The Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
16
|
Luther JM, Ray J, Wei D, Koethe JR, Hannah L, DeMatteo A, Manning R, Terker AS, Peng D, Nian H, Yu C, Mashayekhi M, Gamboa J, Brown NJ. GSK2256294 Decreases sEH (Soluble Epoxide Hydrolase) Activity in Plasma, Muscle, and Adipose and Reduces F2-Isoprostanes but Does Not Alter Insulin Sensitivity in Humans. Hypertension 2021; 78:1092-1102. [PMID: 34455816 PMCID: PMC8429121 DOI: 10.1161/hypertensionaha.121.17659] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/27/2021] [Indexed: 01/28/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- James M. Luther
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
| | - Justina Ray
- Icahn School of Medicine at Mount Sinai, Department of Medicine, New York, New York
| | - Dawei Wei
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
| | - John R. Koethe
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Diseases
| | - Latoya Hannah
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Diseases
| | - Anthony DeMatteo
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
| | - Robert Manning
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
| | - Andrew S Terker
- Vanderbilt University Medical Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Dungeng Peng
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
| | - Hui Nian
- Vanderbilt University Medical Center, Department of Biostatistics
| | - Chang Yu
- Vanderbilt University Medical Center, Department of Biostatistics
| | - Mona Mashayekhi
- Vanderbilt University Medical Center, Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism
| | - Jorge Gamboa
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
| | - Nancy J. Brown
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
- Yale School of Medicine
| |
Collapse
|
17
|
Žiberna L, Jenko-Pražnikar Z, Petelin A. Serum Bilirubin Levels in Overweight and Obese Individuals: The Importance of Anti-Inflammatory and Antioxidant Responses. Antioxidants (Basel) 2021; 10:antiox10091352. [PMID: 34572984 PMCID: PMC8472302 DOI: 10.3390/antiox10091352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a chronic condition involving low-grade inflammation and increased oxidative stress; thus, obese and overweight people have lower values of serum bilirubin. Essentially, bilirubin is a potent endogenous antioxidant molecule with anti-inflammatory, immunomodulatory, antithrombotic, and endocrine properties. This review paper presents the interplay between obesity-related pathological processes and bilirubin, with a focus on adipose tissue and adipokines. We discuss potential strategies to mildly increase serum bilirubin levels in obese patients as an adjunctive therapeutic approach.
Collapse
Affiliation(s)
- Lovro Žiberna
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | | | - Ana Petelin
- Faculty of Health Sciences, University of Primorska, SI-6310 Izola, Slovenia;
- Correspondence: ; Tel.: +386-5-66-2469
| |
Collapse
|
18
|
Gautheron J, Morisseau C, Chung WK, Zammouri J, Auclair M, Baujat G, Capel E, Moulin C, Wang Y, Yang J, Hammock BD, Cerame B, Phan F, Fève B, Vigouroux C, Andreelli F, Jeru I. EPHX1 mutations cause a lipoatrophic diabetes syndrome due to impaired epoxide hydrolysis and increased cellular senescence. eLife 2021; 10:68445. [PMID: 34342583 PMCID: PMC8331186 DOI: 10.7554/elife.68445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Epoxide hydrolases (EHs) regulate cellular homeostasis through hydrolysis of epoxides to less-reactive diols. The first discovered EH was EPHX1, also known as mEH. EH functions remain partly unknown, and no pathogenic variants have been reported in humans. We identified two de novo variants located in EPHX1 catalytic site in patients with a lipoatrophic diabetes characterized by loss of adipose tissue, insulin resistance, and multiple organ dysfunction. Functional analyses revealed that these variants led to the protein aggregation within the endoplasmic reticulum and to a loss of its hydrolysis activity. CRISPR-Cas9-mediated EPHX1 knockout (KO) abolished adipocyte differentiation and decreased insulin response. This KO also promoted oxidative stress and cellular senescence, an observation confirmed in patient-derived fibroblasts. Metreleptin therapy had a beneficial effect in one patient. This translational study highlights the importance of epoxide regulation for adipocyte function and provides new insights into the physiological roles of EHs in humans.
Collapse
Affiliation(s)
- Jeremie Gautheron
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, United States.,Deparment of Medicine, Columbia University Irving Medical Center, New York, United States
| | - Jamila Zammouri
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Martine Auclair
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Genevieve Baujat
- Service de Génétique Clinique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Emilie Capel
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Celia Moulin
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Yuxin Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Barbara Cerame
- Goryeb Children's Hospital, Atlantic Health Systems, Morristown Memorial Hospital, Morristown, United States
| | - Franck Phan
- Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Service de Diabétologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Sorbonne Université-Inserm UMRS_1269, Paris, France
| | - Bruno Fève
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service de Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Corinne Vigouroux
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service de Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, AP-HP, Paris, France.,Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Fabrizio Andreelli
- Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Service de Diabétologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Sorbonne Université-Inserm UMRS_1269, Paris, France
| | - Isabelle Jeru
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, AP-HP, Paris, France
| |
Collapse
|
19
|
Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021; 13:nu13041180. [PMID: 33918360 PMCID: PMC8066826 DOI: 10.3390/nu13041180] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Adiponectin (a protein consisting of 244 amino acids and characterized by a molecular weight of 28 kDa) is a cytokine that is secreted from adipose tissues (adipokine). Available evidence suggests that adiponectin is involved in a variety of physiological functions, molecular and cellular events, including lipid metabolism, energy regulation, immune response and inflammation, and insulin sensitivity. It has a protective effect on neurons and neural stem cells. Adiponectin levels have been reported to be negatively correlated with cancer, cardiovascular disease, and diabetes, and shown to be affected (i.e., significantly increased) by proper healthy nutrition. The present review comprehensively overviews the role of adiponectin in a range of diseases, showing that it can be used as a biomarker for diagnosing these disorders as well as a target for monitoring the effectiveness of preventive and treatment interventions.
Collapse
|
20
|
Cizkova K, Koubova K, Foltynkova T, Jiravova J, Tauber Z. Soluble Epoxide Hydrolase as an Important Player in Intestinal Cell Differentiation. Cells Tissues Organs 2021; 209:177-188. [PMID: 33588415 DOI: 10.1159/000512807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
There is growing evidence that soluble epoxide hydrolase (sEH) may play a role in cell differentiation. sEH metabolizes biologically highly active and generally cytoprotective epoxyeicosatrienoic acids (EETs), generated from arachidonic acid metabolism by CYP epoxygenases (CYP2C and CYP2J subfamilies), to less active corresponding diols. We investigated the effect of sEH inhibitor (TPPU) on the expression of villin, CYP2C8, CYP2C9, CYP2J2, and sEH in undifferentiated and in vitro differentiated HT-29 and Caco2 cell lines. The administration of 10 μM TPPU on differentiated HT-29 and Caco2 cells resulted in a significant decrease in expression of villin, a marker for intestinal cell differentiation. It was accompanied by a disruption of the brush border when microvilli appeared sparse and short in atomic force microscope scans of HT-29 cells. Although inhibition of sEH in differentiated HT-29 and Caco2 cells led to an increase in sEH expression in both cell lines, this treatment had an opposite effect on CYP2J2 expression in HT-29 and Caco2 cells. In addition, tissue samples of colorectal carcinoma and adjacent normal tissues from 45 patients were immunostained for sEH and villin. We detected a significant decrease in the expression of both proteins in colorectal carcinoma in comparison to adjacent normal tissue, and the decrease in both sEH and villin expression revealed a moderate positive association. Taken together, our results showed that sEH is an important player in intestinal cell differentiation.
Collapse
Affiliation(s)
- Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Katerina Koubova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Tereza Foltynkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Jana Jiravova
- Department of Medical Biophysics, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia,
| |
Collapse
|
21
|
Wolfs D, Lynes MD, Tseng YH, Pierce S, Bussberg V, Darkwah A, Tolstikov V, Narain NR, Rudolph MC, Kiebish MA, Demerath EW, Fields DA, Isganaitis E. Brown Fat-Activating Lipokine 12,13-diHOME in Human Milk Is Associated With Infant Adiposity. J Clin Endocrinol Metab 2021; 106:e943-e956. [PMID: 33135728 PMCID: PMC7823229 DOI: 10.1210/clinem/dgaa799] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT Little is known about the specific breastmilk components responsible for protective effects on infant obesity. Whether 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), an oxidized linoleic acid metabolite and activator of brown fat metabolism, is present in human milk, or linked to infant adiposity, is unknown. OBJECTIVE To examine associations between concentrations of 12,13-diHOME in human milk and infant adiposity. DESIGN Prospective cohort study from 2015 to 2019, following participants from birth to 6 months of age. SETTING Academic medical centers. PARTICIPANTS Volunteer sample of 58 exclusively breastfeeding mother-infant pairs; exclusion criteria included smoking, gestational diabetes, and health conditions with the potential to influence maternal or infant weight gain. MAIN OUTCOME MEASURES Infant anthropometric measures including weight, length, body mass index (BMI), and body composition at birth and at 1, 3, and 6 months postpartum. RESULTS We report for the first time that 12,13-diHOME is present in human milk. Higher milk 12,13-diHOME level was associated with increased weight-for-length Z-score at birth (β = 0.5742, P = 0.0008), lower infant fat mass at 1 month (P = 0.021), and reduced gain in BMI Z-score from 0 to 6 months (β = -0.3997, P = 0.025). We observed similar associations between infant adiposity and milk abundance of related oxidized linoleic acid metabolites 12,13-Epoxy-9(Z)-octadecenoic acid (12,13-epOME) and 9,10-Dihydroxy-12-octadecenoic acid (9,10-diHOME), and metabolites linked to thermogenesis including succinate and lyso-phosphatidylglycerol 18:0. Milk abundance of 12,13-diHOME was not associated with maternal BMI, but was positively associated with maternal height, milk glucose concentration, and was significantly increased after a bout of moderate exercise. CONCLUSIONS We report novel associations between milk abundance of 12,13-diHOME and adiposity during infancy.
Collapse
Affiliation(s)
- Danielle Wolfs
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts
| | - Matthew D Lynes
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts
| | - Yu-Hua Tseng
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts
| | - Stephanie Pierce
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | | | - Michael C Rudolph
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - David A Fields
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - Elvira Isganaitis
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Overby H, Yang Y, Xu X, Graham K, Hildreth K, Choi S, Wan D, Morisseau C, Zeldin DC, Hammock BD, Wang S, Bettaieb A, Zhao L. Soluble Epoxide Hydrolase Inhibition by t-TUCB Promotes Brown Adipogenesis and Reduces Serum Triglycerides in Diet-Induced Obesity. Int J Mol Sci 2020; 21:ijms21197039. [PMID: 32987880 PMCID: PMC7582898 DOI: 10.3390/ijms21197039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Brown adipose tissue (BAT) is an important target for obesity treatment and prevention. Soluble epoxide hydrolase (sEH) converts bioactive epoxy fatty acids (EpFAs) into less active diols. sEH inhibitors (sEHI) are beneficial in many chronic diseases by stabilizing EpFAs. However, roles of sEH and sEHI in brown adipogenesis and BAT activity in treating diet-induced obesity (DIO) have not been reported. sEH expression was studied in in vitro models of brown adipogenesis and the fat tissues of DIO mice. The effects of the sEHI, trans-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy-benzoic acid (t-TUCB), were studied in vitro and in the obese mice via mini osmotic pump delivery. sEH expression was increased in brown adipogenesis and the BAT of the DIO mice. t-TUCB promoted brown adipogenesis in vitro. Although t-TCUB did not change body weight, fat pad weight, or glucose and insulin tolerance in the obese mice, it decreased serum triglycerides and increased protein expression of genes important for lipid metabolism in the BAT. Our results suggest that sEH may play a critical role in brown adipogenesis, and sEHI may be beneficial in improving BAT protein expression involved in lipid metabolism. Further studies using the sEHI combined with EpFA generating diets for obesity treatment and prevention are warranted.
Collapse
Affiliation(s)
- Haley Overby
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (H.O.); (Y.Y.); (X.X.); (K.G.); (K.H.); (S.C.)
| | - Yang Yang
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (H.O.); (Y.Y.); (X.X.); (K.G.); (K.H.); (S.C.)
| | - Xinyun Xu
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (H.O.); (Y.Y.); (X.X.); (K.G.); (K.H.); (S.C.)
| | - Katherine Graham
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (H.O.); (Y.Y.); (X.X.); (K.G.); (K.H.); (S.C.)
| | - Kelsey Hildreth
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (H.O.); (Y.Y.); (X.X.); (K.G.); (K.H.); (S.C.)
| | - Sue Choi
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (H.O.); (Y.Y.); (X.X.); (K.G.); (K.H.); (S.C.)
| | - Debin Wan
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (D.W.); (C.M.); (B.D.H.)
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (D.W.); (C.M.); (B.D.H.)
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (D.W.); (C.M.); (B.D.H.)
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (H.O.); (Y.Y.); (X.X.); (K.G.); (K.H.); (S.C.)
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (A.B.); (L.Z.); Tel.: +1-865-974-6267 (A.B.); +1-865-974-1833 (L.Z.)
| | - Ling Zhao
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (H.O.); (Y.Y.); (X.X.); (K.G.); (K.H.); (S.C.)
- Correspondence: (A.B.); (L.Z.); Tel.: +1-865-974-6267 (A.B.); +1-865-974-1833 (L.Z.)
| |
Collapse
|
23
|
Waldman M, Arad M, Abraham NG, Hochhauser E. The Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1α-Heme Oxygenase 1 Axis, a Powerful Antioxidative Pathway with Potential to Attenuate Diabetic Cardiomyopathy. Antioxid Redox Signal 2020; 32:1273-1290. [PMID: 32027164 PMCID: PMC7232636 DOI: 10.1089/ars.2019.7989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Significance: From studies of diabetic animal models, the downregulation of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α)-heme oxygenase 1 (HO-1) axis appears to be a crucial event in the development of obesity and diabetic cardiomyopathy (DCM). In this review, we discuss the role of metabolic and biochemical stressors in the rodent and human pathophysiology of DCM. A crucial contributor for many cardiac pathologies is excessive production of reactive oxygen species (ROS) pathologies, which lead to extensive cellular damage by impairing mitochondrial function and directly oxidizing DNA, proteins, and lipid membranes. We discuss the role of ROS production and inflammatory pathways with multiple contributing and confounding factors leading to DCM. Recent Advances: The relevant biochemical pathways that are critical to a therapeutic approach to treat DCM, specifically caloric restriction and its relation to the PGC-1α-HO-1 axis in the attenuation of DCM, are elucidated. Critical Issues: The increased prevalence of diabetes mellitus type 2, a major contributor to unique cardiomyopathy characterized by cardiomyocyte hypertrophy with no effective clinical treatment. This review highlights the role of mitochondrial dysfunction in the development of DCM and potential oxidative targets to attenuate oxidative stress and attenuate DCM. Future Directions: Targeting the PGC-1α-HO-1 axis is a promising approach to ameliorate DCM through improvement in mitochondrial function and antioxidant defenses. A pharmacological inducer to activate PGC-1α and HO-1 described in this review may be a promising therapeutic approach in the clinical setting.
Collapse
Affiliation(s)
- Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Michael Arad
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Nader G. Abraham
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Arad M, Waldman M, Abraham NG, Hochhauser E. Therapeutic approaches to diabetic cardiomyopathy: Targeting the antioxidant pathway. Prostaglandins Other Lipid Mediat 2020; 150:106454. [PMID: 32413571 DOI: 10.1016/j.prostaglandins.2020.106454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
The global epidemic of cardiovascular disease continues unabated and remains the leading cause of death both in the US and worldwide. We hereby summarize the available therapies for diabetes and cardiovascular disease in diabetics. Clearly, the current approaches to diabetic heart disease often target the manifestations and certain mediators but not the specific pathways leading to myocardial injury, remodeling and dysfunction. Better understanding of the molecular events determining the evolution of diabetic cardiomyopathy will provide insight into the development of specific and targeted therapies. Recent studies largely increased our understanding of the role of enhanced inflammatory response, ROS production, as well as the contribution of Cyp-P450-epoxygenase-derived epoxyeicosatrienoic acid (EET), Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α (PGC-1α), Heme Oxygenase (HO)-1 and 20-HETE in pathophysiology and therapy of cardiovascular disease. PGC-1α increases production of the HO-1 which has a major role in protecting the heart against oxidative stress, microcirculation and mitochondrial dysfunction. This review describes the potential drugs and their downstream targets, PGC-1α and HO-1, as major loci for developing therapeutic approaches beside diet and lifestyle modification for the treatment and prevention of heart disease associated with obesity and diabetes.
Collapse
Affiliation(s)
- Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Maayan Waldman
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
Bellner L, Lebovics NB, Rubinstein R, Buchen YD, Sinatra E, Sinatra G, Abraham NG, McClung JA, Thompson EA. Heme Oxygenase-1 Upregulation: A Novel Approach in the Treatment of Cardiovascular Disease. Antioxid Redox Signal 2020; 32:1045-1060. [PMID: 31891663 PMCID: PMC7153645 DOI: 10.1089/ars.2019.7970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Heme oxygenase (HO) plays a pivotal role in both vascular and metabolic functions and is involved in many physiological and pathophysiological processes in vascular endothelial cells (ECs) and adipocytes. Recent Advances: From the regulation of adipogenesis in adipose tissue to the adaptive response of vascular tissue in the ECs, HO plays a critical role in the capability of the vascular system to respond and adjust to insults in homeostasis. Recent studies show that HO-1 through regulation of adipocyte and adipose tissue functions ultimately aid not only in local but also in systemic maintenance of homeostasis. Critical Issues: Recent advances have revealed the existence of a cross talk between vascular ECs and adipocytes in adipose tissue. In the pathological state of obesity, this cross talk contributes to the condition's adverse chronic effects, and we propose that specific targeting of the HO-1 gene can restore signaling pathways and improve both vascular and adipose functions. Future Directions: A complete understanding of the role of HO-1 in regulation of cardiovascular homeostasis is important to comprehend the homeostatic regulation as well as in cardiovascular disease. Efforts are required to highlight the effects and the ability to target the HO-1 gene in models of obesity with an emphasis on the role of pericardial fat on cardiovascular health.
Collapse
Affiliation(s)
- Lars Bellner
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Nachum B Lebovics
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | | | - Yosef D Buchen
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Emilia Sinatra
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Giuseppe Sinatra
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Nader G Abraham
- Department of Pharmacology and New York Medical College, Valhalla, New York.,Department of Medicine, New York Medical College, Valhalla, New York
| | - John A McClung
- Department of Medicine, New York Medical College, Valhalla, New York
| | - Ellen A Thompson
- Department of Medicine, Marshall University, Joan C. Edwards School of Medicine, Huntington, West Virginia
| |
Collapse
|
26
|
Cizkova K, Birke P, Malohlava J, Tauber Z, Huskova Z, Ehrmann J. HT-29 and Caco2 Cell Lines Are Suitable Models for Studying the Role of Arachidonic Acid-Metabolizing Enzymes in Intestinal Cell Differentiation. Cells Tissues Organs 2020; 208:37-47. [PMID: 32248197 DOI: 10.1159/000506735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/23/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Cytochrome (CYP) epoxygenases (CYP2C and CYP2J) and soluble epoxide hydrolase (sEH) participate in the metabolism of arachidonic acid and may also have a potential role in enterocyte differentiation. The first critical step in the study of intestinal cell differentiation is the determination of a suitable in vitro model, which must be as similar as possible to the conditions of a living organism. It is known that HT-29 and Caco2 cell lines derived from human colorectal carcinomas can differentiate into enterocyte-like cells in appropriate culture conditions. MATERIAL AND METHODS We tested 4 different approaches of enterocyte-like differentiation and determined the most appropriate culture conditions for each model. Subsequently, the changes in the expression of CYP epoxygenases and sEH in undifferentiated and differentiated cells were measured by In-Cell ELISA. These results were compared with immunohistochemical profiles of expression of CYP epoxygenases and sEH in samples of human embryonic and fetal intestines as well as adult duodenum and colon. RESULTS Our results show that sodium butyrate (NaBt)-differentiated HT-29 cells and spontaneously differentiated Caco2 cells resemble CYP epoxygenases and sEH profiles, corresponding with different types of intestines. CONCLUSION Our study revealed that the most suitable models for the study of the role of CYP epoxygenases and sEH expression in differentiation of intestinal epithelium are NaBt-differentiated HT-29 cells and spontaneously differentiated Caco2 cells.
Collapse
Affiliation(s)
- Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia,
| | - Petr Birke
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Jakub Malohlava
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Zlata Huskova
- Department of Clinical and Molecular Pathology and Laboratory of Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Jiri Ehrmann
- Department of Clinical and Molecular Pathology and Laboratory of Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| |
Collapse
|
27
|
Petelin A, Jurdana M, Jenko Pražnikar Z, Žiberna L. SERUM BILIRUBIN CORRELATES WITH SERUM ADIPOKINES IN NORMAL WEIGHT AND OVERWEIGHT ASYMPTOMATIC ADULTS. Acta Clin Croat 2020; 59:19-29. [PMID: 32724271 PMCID: PMC7382891 DOI: 10.20471/acc.2020.59.01.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Overweight and obesity are considered as chronic low-grade inflammation accompanied by imbalanced production of adipokines. The aim of this study was to elucidate the relationship between serum bilirubin, which is an endogenous antioxidant with anti-inflammatory activity, and pro- and anti-inflammatory serum adipokines in asymptomatic normal weight and overweight individuals. Healthy men and women aged 25-49 participated in this cross-sectional study. All participants underwent fasting serological measurements of adipokines, interleukin-6, tumor necrosis factor alpha (TNF-α), C-reactive protein (CRP), total and direct serum bilirubin, and other biochemical parameters. Participants were divided into normal weight and overweight groups. We found a significant negative association between total bilirubin and CRP, TNF-α, visfatin and resistin values, and a significant positive association between total bilirubin and adiponectin values in both normal-weight and overweight groups. Importantly, after adjusting for body mass index, we also found a significant negative association between total serum bilirubin levels and both visfatin and CRP serum levels. Moreover, visfatin, resistin and CRP were predictors of the total serum bilirubin levels.
Collapse
Affiliation(s)
| | - Mihaela Jurdana
- 1Faculty of Health Sciences, University of Primorska, Izola, Slovenia; 2Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Zala Jenko Pražnikar
- 1Faculty of Health Sciences, University of Primorska, Izola, Slovenia; 2Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lovro Žiberna
- 1Faculty of Health Sciences, University of Primorska, Izola, Slovenia; 2Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Dos Santos LRB, Fleming I. Role of cytochrome P450-derived, polyunsaturated fatty acid mediators in diabetes and the metabolic syndrome. Prostaglandins Other Lipid Mediat 2019; 148:106407. [PMID: 31899373 DOI: 10.1016/j.prostaglandins.2019.106407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
Over the last decade, cases of metabolic syndrome and type II diabetes have increased exponentially. Exercise and ω-3 polyunsaturated fatty acid (PUFA)-enriched diets are usually prescribed but no therapy is effectively able to restore the impaired glucose metabolism, hypertension, and atherogenic dyslipidemia encountered by diabetic patients. PUFAs are metabolized by different enzymes into bioactive metabolites with anti- or pro-inflammatory activity. One important class of PUFA metabolizing enzymes are the cytochrome P450 (CYP) enzymes that can generate a series of bioactive products, many of which have been attributed protective/anti-inflammatory and insulin-sensitizing effects in animal models. PUFA epoxides are, however, further metabolized by the soluble epoxide hydrolase (sEH) to fatty acid diols. The biological actions of the latter are less well understood but while low concentrations may be biologically important, higher concentrations of diols derived from linoleic acid and docosahexaenoic acid have been linked with inflammation. One potential application for sEH inhibitors is in the treatment of diabetic retinopathy where sEH expression and activity is elevated as are levels of a diol of docosahexaenoic acid that can induce the destabilization of the retina vasculature.
Collapse
Affiliation(s)
- Laila R B Dos Santos
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Germany.
| |
Collapse
|
29
|
Cheng YH, Dong JC, Bian Q. Small molecules for mesenchymal stem cell fate determination. World J Stem Cells 2019; 11:1084-1103. [PMID: 31875870 PMCID: PMC6904864 DOI: 10.4252/wjsc.v11.i12.1084] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/13/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells harboring self-renewal and multilineage differentiation potential that are capable of differentiating into osteoblasts, adipocytes, or chondrocytes in vitro, and regulating the bone marrow microenvironment and adipose tissue remodeling in vivo. The process of fate determination is initiated by signaling molecules that drive MSCs into a specific lineage. Impairment of MSC fate determination leads to different bone and adipose tissue-related diseases, including aging, osteoporosis, and insulin resistance. Much progress has been made in recent years in discovering small molecules and their underlying mechanisms control the cell fate of MSCs both in vitro and in vivo. In this review, we summarize recent findings in applying small molecules to the trilineage commitment of MSCs, for instance, genistein, medicarpin, and icariin for the osteogenic cell fate commitment; isorhamnetin, risedronate, and arctigenin for pro-adipogenesis; and atractylenolides and dihydroartemisinin for chondrogenic fate determination. We highlight the underlying mechanisms, including direct regulation, epigenetic modification, and post-translational modification of signaling molecules in the AMPK, MAPK, Notch, PI3K/AKT, Hedgehog signaling pathways etc. and discuss the small molecules that are currently being studied in clinical trials. The target-based manipulation of lineage-specific commitment by small molecules offers substantial insights into bone marrow microenvironment regulation, adipose tissue homeostasis, and therapeutic strategies for MSC-related diseases.
Collapse
Affiliation(s)
- Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jing-Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qin Bian
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
30
|
Pratt R, Lakhani HV, Zehra M, Desauguste R, Pillai SS, Sodhi K. Mechanistic Insight of Na/K-ATPase Signaling and HO-1 into Models of Obesity and Nonalcoholic Steatohepatitis. Int J Mol Sci 2019; 21:ijms21010087. [PMID: 31877680 PMCID: PMC6982200 DOI: 10.3390/ijms21010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a multifaceted pathophysiological condition that has been associated with lipid accumulation, adipocyte dysfunction, impaired mitochondrial biogenesis and an altered metabolic profile. Redox imbalance and excessive release of inflammatory mediators have been intricately linked in obesity-associated phenotypes. Hence, understanding the mechanisms of redox signaling pathways and molecular targets exacerbating oxidative stress is crucial in improving health outcomes. The activation of Na/K-ATPase/Src signaling, and its downstream pathways, by reactive oxygen species (ROS) has been recently implicated in obesity and subsequent nonalcoholic steatohepatitis (NASH), which causes further production of ROS creating an oxidant amplification loop. Apart from that, numerous studies have also characterized antioxidant properties of heme oxygenase 1 (HO-1), which is suppressed in an obese state. The induction of HO-1 restores cellular redox processes, which contributes to inhibition of the toxic milieu. The novelty of these independent mechanisms presents a unique opportunity to unravel their potential as molecular targets for redox regulation in obesity and NASH. The attenuation of oxidative stress, by understanding the underlying molecular mechanisms and associated mediators, with a targeted treatment modality may provide for improved therapeutic options to combat clinical disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Komal Sodhi
- Correspondence: ; Tel.: +1-(304)-691-1704; Fax: +1-(914)-347-4956
| |
Collapse
|
31
|
Drummond GS, Baum J, Greenberg M, Lewis D, Abraham NG. HO-1 overexpression and underexpression: Clinical implications. Arch Biochem Biophys 2019; 673:108073. [PMID: 31425676 DOI: 10.1016/j.abb.2019.108073] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
Abstract
In this review we examine the effects of both over- and under-production of heme oxygenase-1 (HO-1) and HO activity on a broad spectrum of biological systems and on vascular disease. In a few instances e.g., neonatal jaundice, overproduction of HO-1 and increased HO activity results in elevated levels of bilirubin requiring clinical intervention with inhibitors of HO activity. In contrast HO-1 levels and HO activity are low in obesity and the HO system responds to mitigate the deleterious effects of oxidative stress through increased levels of bilirubin (anti-inflammatory) and CO (anti-apoptotic) and decreased levels of heme (pro-oxidant). Site specific HO-1 overexpression diminishes adipocyte terminal differentiation and lipid accumulation of obesity mediated release of inflammatory molecules. A series of diverse strategies have been implemented that focus on increasing HO-1 and HO activity that are central to reversing the clinical complications associated with diseases including, obesity, metabolic syndrome and vascular disease.
Collapse
Affiliation(s)
- George S Drummond
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Jeffrey Baum
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Menachem Greenberg
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - David Lewis
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
32
|
Fleming I. New Lipid Mediators in Retinal Angiogenesis and Retinopathy. Front Pharmacol 2019; 10:739. [PMID: 31333461 PMCID: PMC6624440 DOI: 10.3389/fphar.2019.00739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Retinal diseases associated with vascular destabilization and the inappropriate proliferation of retinal endothelial cells have major consequences on the retinal vascular network. In extreme cases, the development of hypoxia, the upregulation of growth factors, and the hyper-proliferation of unstable capillaries can result in bleeding and vision loss. While anti-vascular endothelial growth factor therapy and laser retinal photocoagulation can be used to treat the symptoms of late stage disease, there is currently no treatment available that can prevent disease progression. Cytochrome P450 enzymes metabolize endogenous substrates (polyunsaturated fatty acids) to bioactive fatty acid epoxides that demonstrate biological activity with generally protective/anti-inflammatory and insulin-sensitizing effects. These epoxides are further metabolized by the soluble epoxide hydrolase (sEH) to fatty acid diols, high concentrations of which have vascular destabilizing effects. Recent studies have identified increased sEH expression and activity and the subsequent generation of the docosahexaenoic acid-derived diol; 19,20-dihydroxydocosapentaenoic acid, as playing a major role in the development of diabetic retinopathy. This review summarizes current understanding of the roles of cytochrome P450 enzyme and sEH–derived PUFA mediators in retinal disease.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Frankfurt, Germany.,German Centre for Cardiovascular Research (DZHK) partner site RheinMain, Frankfurt, Germany
| |
Collapse
|
33
|
Beneficial Role of HO-1-SIRT1 Axis in Attenuating Angiotensin II-Induced Adipocyte Dysfunction. Int J Mol Sci 2019; 20:ijms20133205. [PMID: 31261892 PMCID: PMC6650875 DOI: 10.3390/ijms20133205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Angiotensin II (Ang II), released by the renin–angiotensin–aldosterone system (RAAS), contributes to the modulatory role of the RAAS in adipose tissue dysfunction. Investigators have shown that inhibition of AngII improved adipose tissue function and insulin resistance in mice with metabolic syndrome. Heme Oxygenase-1 (HO-1), a potent antioxidant, has been demonstrated to improve oxidative stress and adipocyte phenotype. Molecular effects of high oxidative stress include suppression of sirtuin-1 (SIRT1), which is amenable to redox manipulations. The mechanisms involved, however, in these metabolic effects of the RAAS remain incompletely understood. Hypothesis: We hypothesize that AngII-induced oxidative stress has the potential to suppress adipocyte SIRT1 via down regulation of HO-1. This effect of AngII will, in turn, upregulate mineralocorticoid receptor (MR). The induction of HO-1 will rescue SIRT1, hence improving oxidative stress and adipocyte phenotype. Methods and Results: We examined the effect of AngII on lipid accumulation, oxidative stress, and inflammatory cytokines in mouse pre-adipocytes in the presence and absence of cobalt protoporphyrin (CoPP), HO-1 inducer, tin mesoporphyrin (SnMP), and HO-1 inhibitor. Our results show that treatment of mouse pre-adipocytes with AngII increased lipid accumulation, superoxide levels, inflammatory cytokine levels, interleukin-6 (IL-6) and tumor necrosis factor α (TNFα), and adiponectin levels. This effect was attenuated by HO-1 induction, which was further reversed by SnMP, suggesting HO-1 mediated improvement in adipocyte phenotype. AngII-treated pre-adipocytes also showed upregulated levels of MR and suppressed SIRT1 that was rescued by HO-1. Subsequent treatment with CoPP and SIRT1 siRNA in mouse pre-adipocytes increased lipid accumulation and fatty acid synthase (FAS) levels, suggesting that beneficial effects of HO-1 are mediated via SIRT1. Conclusion: Our study demonstrates for the first time that HO-1 has the ability to restore cellular redox, rescue SIRT1, and prevent AngII-induced impaired effects on adipocytes and the systemic metabolic profile.
Collapse
|
34
|
Abd El-Kader SM, Al-Jiffri OH. Impact of weight reduction on insulin resistance, adhesive molecules and adipokines dysregulation among obese type 2 diabetic patients. Afr Health Sci 2018; 18:873-883. [PMID: 30766550 PMCID: PMC6354881 DOI: 10.4314/ahs.v18i4.5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus is usually related to vascular problems and is associated with impairment in endothelial function characterized by impaired endothelial-dependent vasodilation and increased platelet adhesion. There is limitation in clinical studies that have addressed the beneficial effects of weight reduction in modulating biomarkers of endothelial dysfunction and adipokines dysregulation for obesity associated with type 2 diabetes mellitus. OBJECTIVE This study was designed to detect the effects of weight loss on insulin resistance, adhesive molecules and adipokines dysregulation in obese type 2 diabetic patients. METHODS Eighty obese patients with type 2 diabetes mellitus, their age ranged from 35-55 years and their body mass index ranged from 31-37 kg/m2 were equally assigned into 2 groups: the weight reduction group received aerobic exercises in addition to diet regimen, where the control group received medical treatment only for 12 weeks. RESULTS There was a 24.04%, 19.33%, 22.78% ,12.28%, 9.35%, 22.53% & 10.12 % reduction in mean values of Homeostasis Model Assessment-Insulin Resistance Index (HOMA-IR), Leptin, Adiponectin, Resistin, intercellular cell adhesion molecule -1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin & body mass index (BMI) respectively in addition to 26.20% & 24.58% increase in the mean values of adiponectin & the quantitative insulin-sensitivity check index (QUICKI) respectively in group (A) at the end of the study. The mean values of leptin, resistin, insulin, HOMA-IR, ICAM-1, VCAM-1, E-selectin & BMI were significantly decreased in addition to significant increase in the mean values of adiponectin & QUICKI in group (A) those that received aerobic exercise training in addition to diet regimen. While the results of group (B) those that received no treatment intervention were not significant. In addition, there were significant differences between mean levels of the investigated parameters in group (A) and group (B) after treatment (P<0.05). CONCLUSION Within the limit of this study, 10% reduction in body mass index modulates insulin resistance, adhesive molecules and adipokines dysregulation among obese type 2 diabetic patients.
Collapse
Affiliation(s)
- Shehab M Abd El-Kader
- Departmentof Physical Therapy, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama H Al-Jiffri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Zarriello S, Tuazon JP, Corey S, Schimmel S, Rajani M, Gorsky A, Incontri D, Hammock BD, Borlongan CV. Humble beginnings with big goals: Small molecule soluble epoxide hydrolase inhibitors for treating CNS disorders. Prog Neurobiol 2018; 172:23-39. [PMID: 30447256 DOI: 10.1016/j.pneurobio.2018.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/06/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
Soluble epoxide hydrolase (sEH) degrades epoxides of fatty acids including epoxyeicosatrienoic acid isomers (EETs), which are produced as metabolites of the cytochrome P450 branch of the arachidonic acid pathway. EETs exert a variety of largely beneficial effects in the context of inflammation and vascular regulation. sEH inhibition is shown to be therapeutic in several cardiovascular and renal disorders, as well as in peripheral analgesia, via the increased availability of anti-inflammatory EETs. The success of sEH inhibitors in peripheral systems suggests their potential in targeting inflammation in the central nervous system (CNS) disorders. Here, we describe the current roles of sEH in the pathology and treatment of CNS disorders such as stroke, traumatic brain injury, Parkinson's disease, epilepsy, cognitive impairment, dementia and depression. In view of the robust anti-inflammatory effects of stem cells, we also outlined the potency of stem cell treatment and sEH inhibitors as a combination therapy for these CNS disorders. This review highlights the gaps in current knowledge about the pathologic and therapeutic roles of sEH in CNS disorders, which should guide future basic science research towards translational and clinical applications of sEH inhibitors for treatment of neurological diseases.
Collapse
Affiliation(s)
- Sydney Zarriello
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Julian P Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Sydney Corey
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Samantha Schimmel
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Mira Rajani
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Anna Gorsky
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Diego Incontri
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Bruce D Hammock
- Department of Entomology & UCD Comprehensive Cancer Center, NIEHS-UCD Superfund Research Program, University of California - Davis, United States.
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States.
| |
Collapse
|
36
|
Raffaele M, Barbagallo I, Licari M, Carota G, Sferrazzo G, Spampinato M, Sorrenti V, Vanella L. N-Acetylcysteine (NAC) Ameliorates Lipid-Related Metabolic Dysfunction in Bone Marrow Stromal Cells-Derived Adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5310961. [PMID: 30416532 PMCID: PMC6207898 DOI: 10.1155/2018/5310961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022]
Abstract
Recent experimental data suggest that fatty acids and lipotoxicity could play a role in the initiation and evolution of metabolic bone diseases such as osteoporosis. A functional bone marrow adipose tissue (BMAT) may provide support to surrounding cells and tissues or may serve as a lipid reservoir that protects skeletal osteoblasts from lipotoxicity. The present study examined the effect of N-acetylcysteine (NAC), a powerful antioxidant and precursor of glutathione, commonly used to treat chronic obstructive pulmonary disease, on triglycerides accumulation in bone marrow stromal cells-derived adipocytes. Quantification of Oil Red O stained cells showed that lipid droplets decreased following NAC treatment. Additionally, exposure of bone marrow stromal cells (HS-5) to NAC increased adiponectin, PPARγ, HO-1, and SIRT-1 and increased beta-oxidation markers such as PPARα and PPARδ mRNA levels. As there is now substantial interest in alternative medicine, the observed therapeutic value of NAC should be taken into consideration in diabetic patients.
Collapse
Affiliation(s)
- Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria Licari
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Sferrazzo
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mariarita Spampinato
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
37
|
Liu L, Puri N, Raffaele M, Schragenheim J, Singh SP, Bradbury JA, Bellner L, Vanella L, Zeldin DC, Cao J, Abraham NG. Ablation of soluble epoxide hydrolase reprogram white fat to beige-like fat through an increase in mitochondrial integrity, HO-1-adiponectin in vitro and in vivo. Prostaglandins Other Lipid Mediat 2018; 138:1-8. [PMID: 30041041 DOI: 10.1016/j.prostaglandins.2018.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/11/2018] [Accepted: 07/20/2018] [Indexed: 01/07/2023]
Abstract
We have shown that epoxyeicosatrienoic acids (EETs), specifically 11,12- and 14,15-EETs, reduce adipogenesis in human mesenchymal stem cells and mouse preadipocytes (3T-3L1). In this study, we explore the effects of soluble epoxide hydrolase (sEH) deletion on various aspects of adipocyte-function, including programing for white vs. beige-like fat, and mitochondrial and thermogenic gene-expressions. We further hypothesize that EETs and heme-oxygenase 1 (HO-1) form a synergistic, functional module whose effects on adipocyte and vascular function is greater than the effects of sEH deletion alone. In in vitro studies, we examined the effect of sEH inhibitors on MSC-derived adipocytes. MSC-derived adipocytes exposed to AUDA, an inhibitor of sEH, exhibit an increased number of small and healthy adipocytes, an effect reproduced by siRNA for sEH. in vivo studies indicate that sEH deletion results in a significant decrease in adipocyte size, inflammatory adipokines NOV, TNFα, while increasing adiponectin (p < 0.05). These findings are associated with a decrease in body weight (p < 0.05), and visceral fat (p < 0.05). Importantly, sEH deletion was associated with a significant increase in Mfn1, COX 1, UCP1 and adiponectin (p < 0.03). sEH deletion was manifested by a significant increase in EETs isomers 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET and an increased EETs/DHETEs ratio. Notably, activation of HO-1 gene expression further increased the levels of EETs, suggesting that the antioxidant HO-1 system protects EETs from degradation by ROS. These results are novel in that sEH deletion, while increasing EET levels, resulted in reprograming of white fat to express mitochondrial and thermogenic genes, a phenotype characteristic of beige-fat. Thus, EETs agonist(s) and sEH inhibitors may have therapeutic potential in the treatment of metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Lu Liu
- Department of Cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Nitin Puri
- Joan Edward School of Medicine, Marshall University, Huntington, WV, 25701, USA
| | - Marco Raffaele
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Joseph Schragenheim
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Shailendra P Singh
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - J Alyce Bradbury
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Lars Bellner
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Luca Vanella
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Department of Drug Sciences, University of Catania, Catania, Italy
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jian Cao
- Department of Cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan Edward School of Medicine, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
38
|
Huang W, Li K, Liu A, Yang Z, Hu C, Chen D, Wang H. miR‑330‑5p inhibits H2O2‑induced adipogenic differentiation of MSCs by regulating RXRγ. Int J Mol Med 2018; 42:2042-2052. [PMID: 30015907 PMCID: PMC6108853 DOI: 10.3892/ijmm.2018.3773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/06/2018] [Indexed: 01/07/2023] Open
Abstract
The elucidation of the underlying molecular mechanism of H2O2‑induced adipocyte differentiation in mesenchymal stem cells (MSCs) is important for the development of treatments for metabolic diseases. The aim of the present study was to identify microRNA (miR)‑330‑5p, which targets retinoid X receptor γ (RXRγ) and to determine the function of H2O2‑induced adipogenic differentiation of MSCs. During differentiation of MSCs into adipocytes induced by H2O2, miR‑330‑5p expression was decreased with a concomitant increase in RXRγ expression. A luciferase assay with RXRγ 3'‑untranslated region (UTR) reporter plasmid, including the miR‑330‑5p‑binding sequences, identified that the introduction of miR‑330‑5p decreases luciferase activity. However, it did not affect the activity of mutated RXRγ 3'‑UTR reporter. Enforced expression of miR‑330‑5p significantly inhibited adipocyte differentiation by decreasing RXRγ mRNA and protein levels. In contrast, inhibition of the endogenous miR‑330‑5p promoted the formation of lipid droplets by rescuing RXRγ expression. Furthermore, the effects of inhibition of RXRγ were similar to those of overexpression of miR‑330‑5p on H2O2‑induced adipogenic differentiation from MSCs. miR‑330‑5p inhibits H2O2‑induced adipogenic differentiation of MSCs, and this is dependent on RXRγ. Taken together, the results of the present study revealed that miR‑330‑5p acts as a critical regulator of RXRγ, and is able to determinate the fate of MSCs to differentiate into adipocytes. This suggests that miR‑330‑5p and RXRγ may be target molecules for controlling metabolic diseases.
Collapse
Affiliation(s)
- Weiping Huang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Ke Li
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Aijun Liu
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zeyu Yang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Chenxia Hu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongfeng Chen
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hongqi Wang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
39
|
Olona A, Terra X, Ko JH, Grau-Bové C, Pinent M, Ardevol A, Diaz AG, Moreno-Moral A, Edin M, Bishop-Bailey D, Zeldin DC, Aitman TJ, Petretto E, Blay M, Behmoaras J. Epoxygenase inactivation exacerbates diet and aging-associated metabolic dysfunction resulting from impaired adipogenesis. Mol Metab 2018; 11:18-32. [PMID: 29656108 PMCID: PMC6001407 DOI: 10.1016/j.molmet.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE When molecular drivers of healthy adipogenesis are perturbed, this can cause hepatic steatosis. The role of arachidonic acid (AA) and its downstream enzymatic cascades, such as cyclooxygenase, in adipogenesis is well established. The exact contribution of the P450 epoxygenase pathway, however, remains to be established. Enzymes belonging to this pathway are mainly encoded by the CYP2J locus which shows extensive allelic expansion in mice. Here we aimed to establish the role of endogenous epoxygenase during adipogenesis under homeostatic and metabolic stress conditions. METHODS We took advantage of the simpler genetic architecture of the Cyp2j locus in the rat and used a Cyp2j4 (orthologue of human CYP2J2) knockout rat in two models of metabolic dysfunction: physiological aging and cafeteria diet (CAF). The phenotyping of Cyp2j4-/- rats under CAF was integrated with proteomics (LC-MS/MS) and lipidomics (LC-MS) analyses in the liver and the adipose tissue. RESULTS We report that Cyp2j4 deletion causes adipocyte dysfunction under metabolic challenges. This is characterized by (i) down-regulation of white adipose tissue (WAT) PPARγ and C/EBPα, (ii) adipocyte hypertrophy, (iii) extracellular matrix remodeling, and (iv) alternative usage of AA pathway. Specifically, in Cyp2j4-/- rats treated with a cafeteria diet, the dysfunctional adipogenesis is accompanied by exacerbated weight gain, hepatic lipid accumulation, and dysregulated gluconeogenesis. CONCLUSION These results suggest that AA epoxygenases are essential regulators of healthy adipogenesis. Our results uncover their synergistic role in fine-tuning AA pathway in obesity-mediated hepatic steatosis.
Collapse
Affiliation(s)
- Antoni Olona
- Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK
| | - Ximena Terra
- Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK; Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Jeong-Hun Ko
- Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK
| | - Carme Grau-Bové
- Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK; Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Montserrat Pinent
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Anna Ardevol
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Ana Garcia Diaz
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Aida Moreno-Moral
- Duke-NUS Medical School, National University of Singapore, 169857, Singapore
| | - Matthew Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - David Bishop-Bailey
- Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Enrico Petretto
- Duke-NUS Medical School, National University of Singapore, 169857, Singapore
| | - Mayte Blay
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
40
|
Noninvasive Real-Time Characterization of Renal Clearance Kinetics in Diabetic Mice after Receiving Danshensu Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8267560. [PMID: 29670682 PMCID: PMC5833022 DOI: 10.1155/2018/8267560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/28/2017] [Accepted: 12/31/2017] [Indexed: 12/30/2022]
Abstract
Danshensu (DSS) is an active ingredient extracted from the root of the Danshen that could ameliorate oxidative stress via upregulation of heme oxygenase- (HO-) 1. Little is known about the treatment effects of DSS on kidney function in diabetic mice. Therefore, the primary aim of the present study was to characterize the renal clearance kinetics of IRdye800CW in db/db mice after DSS treatment. The secondary aim was to measure several biomarkers of renal function and oxidative stress (urinary F2-isoprostane, HO-1 in kidney and serum bilirubin). Fourteen db/db diabetic mice were randomly assigned into two groups and received either DSS treatment (DM + DSS) or vehicle treatment (DM). A third group that comprised of db/+ nondiabetic mice (non-DM control) received no DSS treatment and served as the nondiabetic control. At the end of a 3-week intervention period, serum and urinary biomarkers of renal function and oxidative stress were assessed and the renal clearance of IRdye800CW dye in all mice was determined noninvasively using Multispectral Optoacoustic Tomography. The major finding from this study suggested that DSS treatment in db/db mice improved renal clearance. Increased expression of HO-1 after DSS treatment also suggested that DSS might represent a potential therapeutic avenue for clinical intervention in diabetic nephropathy.
Collapse
|
41
|
Singh SP, McClung JA, Bellner L, Cao J, Waldman M, Schragenheim J, Arad M, Hochhauser E, Falck JR, Weingarten JA, Peterson SJ, Abraham NG. CYP-450 Epoxygenase Derived Epoxyeicosatrienoic Acid Contribute To Reversal of Heart Failure in Obesity-Induced Diabetic Cardiomyopathy via PGC-1 α Activation. ACTA ACUST UNITED AC 2018; 7. [PMID: 29707604 PMCID: PMC5922773 DOI: 10.4172/2329-6607.1000233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously shown that an Epoxyeicosatrienoic Acid (EET) -agonist has pleiotropic effects and reverses cardiomyopathy by decreasing inflammatory molecules and increasing antioxidant signaling. We hypothesized that administration of an EET agonist would increase Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), which controls mitochondrial function and induction of HO-1 and negatively regulates the expression of the proinflammatory adipokines CCN3/NOV in cardiac and pericardial tissues. This pathway would be expected to further improve left ventricular (LV) systolic function as well as increase insulin receptor phosphorylation. Measurement of the effect of an EET agonist on oxygen consumption, fractional shortening, blood glucose levels, thermogenic and mitochondrial signaling proteins was performed. Control obese mice developed signs of metabolic syndrome including insulin resistance, hypertension, inflammation, LV dysfunction, and increased NOV expression in pericardial adipose tissue. EET agonist intervention decreased pericardial adipose tissue expression of NOV, while normalized FS, increased PGC-1α, HO-1 levels, insulin receptor phosphorylation and improved mitochondrial function, theses beneficial effect were reversed by deletion of PGC-1α. These studies demonstrate that an EET agonist increases insulin receptor phosphorylation, mitochondrial and thermogenic gene expression, decreased cardiac and pericardial tissue NOV levels, and ameliorates cardiomyopathy in an obese mouse model of the metabolic syndrome.
Collapse
Affiliation(s)
- S P Singh
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA
| | - J A McClung
- Departments of Medicine, New York Medical College, Valhalla, New York, USA
| | - L Bellner
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA
| | - J Cao
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA.,Chinese PLA General Hospital, Beijing 100853, China
| | - M Waldman
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA.,Cardiac Research Laboratory, Felsenstein Medical Research Institute and Sackler School of Medicine, Tel-Aviv University, Israel
| | - J Schragenheim
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA
| | - M Arad
- Leviev Heart Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Israel
| | - E Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute and Sackler School of Medicine, Tel-Aviv University, Israel
| | - J R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - J A Weingarten
- Weill Cornell Medicine, New York, USA.,New York Presbyterian Brooklyn Methodist Hospital, New York, USA
| | - S J Peterson
- Weill Cornell Medicine, New York, USA.,New York Presbyterian Brooklyn Methodist Hospital, New York, USA
| | - N G Abraham
- Departments of Medicine, New York Medical College, Valhalla, New York, USA.,Joan Edward School of Medicine, West Virginia, USA
| |
Collapse
|
42
|
Prudovsky I, Anunciado-Koza RP, Jacobs CG, Kacer D, Siviski ME, Koza RA. Mesoderm-specific transcript localization in the ER and ER-lipid droplet interface supports a role in adipocyte hypertrophy. J Cell Biochem 2017; 119:2636-2645. [PMID: 29058774 DOI: 10.1002/jcb.26429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/17/2017] [Indexed: 01/16/2023]
Abstract
Highly variable expression of mesoderm-specific transcript (Mest) in adipose tissue among genetically homogeneous mice fed an obesogenic diet, and its positive association with fat mass expansion, suggests that Mest is an epigenetic determinant for the development of obesity. Although the mechanisms by which MEST augments fat accumulation in adipocytes have not been elucidated, it has sequence homology and catalytic peptide motifs which suggests that it functions as an epoxide hydrolase or as a glycerol- or acylglycerol-3-phosphate acyltransferase. To better understand MEST function, detailed studies were performed to precisely define the intracellular organelle localization of MEST using immunofluorescence confocal microscopy. Lentiviral-mediated expression of a C-terminus Myc-DDK-tagged MEST fusion protein expressed in 3T3-L1 preadipocytes/adipocytes, and ear-derived mesenchymal stem cells (EMSC) from mice was observed in the endoplasmic reticulum (ER) membranes and is consistent with previous studies showing endogenous MEST in the membrane fraction of adipose tissue. MEST was not associated with the Golgi apparatus or mitochondria; however, frequent contacts were observed between MEST-positive ER and mitochondria. MEST-positive domains were also shown on the plasma membrane (PM) of non-permeabilized cells but they did not co-localize with ER-PM bridges. Post-adipogenic differentiated 3T3-L1 adipocytes and EMSC showed significant co-localization of MEST with the lipid droplet surface marker perilipin at contact points between the ER and lipid droplet. Identification of MEST as an ER-specific protein that co-localizes with lipid droplets in cells undergoing adipogenic differentiation supports a function for MEST in the facilitation of lipid accumulation and storage in adipocytes.
Collapse
Affiliation(s)
- Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.,The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Rea P Anunciado-Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Chester G Jacobs
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Doreen Kacer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Matthew E Siviski
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.,The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Robert A Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.,The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| |
Collapse
|
43
|
A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18102010. [PMID: 28934129 PMCID: PMC5666700 DOI: 10.3390/ijms18102010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with hyperglycemia (high blood sugar) related to either insulin resistance or insufficient insulin production. Among the various molecular events and players implicated in the manifestation and development of diabetes mellitus, proteins play several important roles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database has information on 34 human proteins experimentally shown to be related to the T2DM pathogenesis. It is known that many proteins associated with different human maladies are intrinsically disordered as a whole, or contain intrinsically disordered regions. The presented study shows that T2DM is not an exception to this rule, and many proteins known to be associated with pathogenesis of this malady are intrinsically disordered. The multiparametric bioinformatics analysis utilizing several computational tools for the intrinsic disorder characterization revealed that IRS1, IRS2, IRS4, MAFA, PDX1, ADIPO, PIK3R2, PIK3R5, SoCS1, and SoCS3 are expected to be highly disordered, whereas VDCC, SoCS2, SoCS4, JNK9, PRKCZ, PRKCE, insulin, GCK, JNK8, JNK10, PYK, INSR, TNF-α, MAPK3, and Kir6.2 are classified as moderately disordered proteins, and GLUT2, GLUT4, mTOR, SUR1, MAPK1, IKKA, PRKCD, PIK3CB, and PIK3CA are predicted as mostly ordered. More focused computational analyses and intensive literature mining were conducted for a set of highly disordered proteins related to T2DM. The resulting work represents a comprehensive survey describing the major biological functions of these proteins and functional roles of their intrinsically disordered regions, which are frequently engaged in protein–protein interactions, and contain sites of various posttranslational modifications (PTMs). It is also shown that intrinsic disorder-associated PTMs may play important roles in controlling the functions of these proteins. Consideration of the T2DM proteins from the perspective of intrinsic disorder provides useful information that can potentially lead to future experimental studies that may uncover latent and novel pathways associated with the disease.
Collapse
|
44
|
Anunciado-Koza RP, Manuel J, Mynatt RL, Zhang J, Kozak LP, Koza RA. Diet-induced adipose tissue expansion is mitigated in mice with a targeted inactivation of mesoderm specific transcript (Mest). PLoS One 2017. [PMID: 28640866 PMCID: PMC5481029 DOI: 10.1371/journal.pone.0179879] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interindividual variation of white adipose tissue (WAT) expression of mesoderm specific transcript (Mest), a paternally-expressed imprinted gene belonging to the α/β-hydrolase fold protein family, becomes apparent among genetically inbred mice fed high fat diet (HFD) and is positively associated with adipose tissue expansion (ATE). To elucidate a role for MEST in ATE, mice were developed with global and adipose tissue inactivation of Mest. Mice with homozygous (MestgKO) and paternal allelic (MestpKO) inactivation of Mest were born at expected Mendelian frequencies, showed no behavioral or physical abnormalities, and did not perturb expression of the Mest locus-derived microRNA miR-335. MestpKO mice fed HFD showed reduced ATE and adipocyte hypertrophy, improved glucose tolerance, and reduced WAT expression of genes associated with hypoxia and inflammation compared to littermate controls. Remarkably, caloric intake and energy expenditure were unchanged between genotypes. Mice with adipose tissue inactivation of Mest were phenotypically similar to MestpKO, supporting a role for WAT MEST in ATE. Global profiling of WAT gene expression of HFD-fed control and MestpKO mice detected few differences between genotypes; nevertheless, genes with reduced expression in MestpKO mice were associated with immune processes and consistent with improved glucose homeostasis. Ear-derived mesenchymal stem cells (EMSC) from MestgKO mice showed no differences in adipogenic differentiation compared to control cells unless challenged by shRNA knockdown of Gpat4, an enzyme that mediates lipid accumulation in adipocytes. Reduced adipogenic capacity of EMSC from MestgKO after Gpat4 knockdown suggests that MEST facilitates lipid accumulation in adipocytes. Our data suggests that reduced diet-induced ATE in MEST-deficient mice diminishes hypoxia and inflammation in WAT leading to improved glucose tolerance and insulin sensitivity. Since inactivation of Mest in mice has minimal additional effects aside from reduction of ATE, an intervention that mitigates MEST function in adipocytes is a plausible strategy to obviate obesity and type-2-diabetes.
Collapse
Affiliation(s)
- Rea P. Anunciado-Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Justin Manuel
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Randall L. Mynatt
- Transgenics Core Facility, Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, United States of America
| | - Jingying Zhang
- Transgenics Core Facility, Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, United States of America
| | - Leslie P. Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Robert A. Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- * E-mail:
| |
Collapse
|
45
|
Kim Y, Lee J. Effect of (-)-epigallocatechin-3-gallate on anti-inflammatory response via heme oxygenase-1 induction during adipocyte-macrophage interactions. Food Sci Biotechnol 2016; 25:1767-1773. [PMID: 30263473 DOI: 10.1007/s10068-016-0269-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 01/26/2023] Open
Abstract
In this study, we examined the effects of (-)-epigallocatechin-3-gallate (EGCG) on anti-inflammatory responses through the induction of heme oxygenase-1 (HO-1) in cocultured macrophages and adipocytes. EGCG significantly decreased the secretion of nitric oxide (NO) and monocyte chemoattractant protein-1 in the coculture of RAW 264.7 macrophages and differentiated 3T3-L1 adipocytes. In addition, EGCG inhibited the expression of inducible nitric oxide synthase in cocultured macrophages and peroxisome proliferator-activated receptor-gamma in cocultured adipocytes. Furthermore, the HO-1 expression showed an approximately 4-fold increase in cocultured adipocytes and an approximately 6-fold increase in cocultured macrophages. Lastly, HO-1 silencing induced NO generation in cocultured cells regardless of EGCG treatment. These results indicate that EGCG inhibited inflammatory responses by suppressing the production of proinflammatory cytokines through HO-1 induction during adipocyte-macrophage interaction.
Collapse
Affiliation(s)
- Younghwa Kim
- 2School of Food Biotechnology and Nutrition, Kyungsung University, Busan, 48434 Korea
| | - Junsoo Lee
- 1Division of Food and Animal Sciences, College of Agriculture, Life & Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644 Korea
| |
Collapse
|
46
|
Downregulation of PGC-1 α Prevents the Beneficial Effect of EET-Heme Oxygenase-1 on Mitochondrial Integrity and Associated Metabolic Function in Obese Mice. J Nutr Metab 2016; 2016:9039754. [PMID: 28097021 PMCID: PMC5206458 DOI: 10.1155/2016/9039754] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/13/2016] [Accepted: 11/10/2016] [Indexed: 11/17/2022] Open
Abstract
Background/Objectives. Obesity and metabolic syndrome and associated adiposity are a systemic condition characterized by increased mitochondrial dysfunction, inflammation, and inhibition of antioxidant genes, HO-1, and EETs levels. We postulate that EETs attenuate adiposity by stimulating mitochondrial function and induction of HO-1 via activation of PGC-1α in adipose and hepatic tissue. Methods. Cultured murine adipocytes and mice fed a high fat (HF) diet were used to assess the functional relationship among EETs, PGC-1α, HO-1, and mitochondrial signaling using an EET-agonist (EET-A) and PGC-1α-deficient cells and mice using lentiviral PGC-1α(sh). Results. EET-A is a potent inducer of PGC-1α, HO-1, mitochondrial biogenesis (cytochrome oxidase subunits 1 and 4 and SIRT3), fusion proteins (Mfn 1/2 and OPA1) and fission proteins (DRP1 and FIS1) (p < 0.05), fasting glucose, BW, and blood pressure. These beneficial effects were prevented by administration of lenti-PGC-1α(sh). EET-A administration prevented HF diet induced mitochondrial and dysfunction in adipose tissue and restored VO2 effects that were abrogated in PGC-1α-deficient mice. Conclusion. EET is identified as an upstream positive regulator of PGC-1α that leads to increased HO-1, decreased BW and fasting blood glucose and increased insulin receptor phosphorylation, that is, increased insulin sensitivity and mitochondrial integrity, and possible use of EET-agonist for treatment of obesity and metabolic syndrome.
Collapse
|
47
|
Xu X, Li R, Chen G, Hoopes SL, Zeldin DC, Wang DW. The Role of Cytochrome P450 Epoxygenases, Soluble Epoxide Hydrolase, and Epoxyeicosatrienoic Acids in Metabolic Diseases. Adv Nutr 2016; 7:1122-1128. [PMID: 28140329 PMCID: PMC5105036 DOI: 10.3945/an.116.012245] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metabolic diseases are associated with an increased risk of developing cardiovascular disease. The features comprising metabolic diseases include obesity, insulin resistance, hyperglycemia, hyperlipidemia, and hypertension. Recent evidence has emerged showcasing a role for cytochrome P450 epoxygenases, soluble epoxide hydrolase, and epoxyeicosatrienoic acids (EETs) in the development and progression of metabolic diseases. This review discusses the current knowledge related to the modulation of cytochrome P450 epoxygenases and soluble epoxide hydrolase to alter concentrations of biologically active EETs, resulting in effects on insulin resistance, lipid metabolism, obesity, and diabetes. Future areas of research to address current deficiencies in the understanding of these enzymes and their eicosanoid metabolites in various aspects of metabolic diseases are also discussed.
Collapse
Affiliation(s)
- Xizhen Xu
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and
| | - Rui Li
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and
| | - Guangzhi Chen
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and
| | - Samantha L Hoopes
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
| | - Dao Wen Wang
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and
| |
Collapse
|
48
|
Berry E, Liu Y, Chen L, Guo AM. Eicosanoids: Emerging contributors in stem cell-mediated wound healing. Prostaglandins Other Lipid Mediat 2016; 132:17-24. [PMID: 27825971 DOI: 10.1016/j.prostaglandins.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/29/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
Abstract
Eicosanoids are bioactive lipid products primarily derived from the oxidation of arachidonic acid (AA). The individual contributions of eicosanoids and stem cells to wound healing have been of great interest. This review focuses on how stem cells work in concert with eicosanoids to create a beneficial environment in the wound bed and in the promotion of wound healing. Stem cells contribute to wound healing through modulating inflammation, differentiating into skin cells or endothelial cells, and exerting paracrine effects by releasing various potent growth factors. Eicosanoids have been shown to stimulate proliferation, migration, homing, and differentiation of stem cells, all of which contribute to the process of wound healing. Increasing evidence has shown that eicosanoids improve wound healing through increasing stem cell densities, stimulating differentiation, and enhancing the angiogenic properties of stem cells. Chronic wounds have become a major problem in health care. Therefore, research regarding the effects of stem cells and eicosanoids in the promotion wound healing is of great importance.
Collapse
Affiliation(s)
- Elizabeth Berry
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, NY 10595 United States
| | - Yanzhou Liu
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, NY 10595 United States; Department of Pharmacology, School of Medicine, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Li Chen
- State Key Lab of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Austin M Guo
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, NY 10595 United States; Department of Pharmacology, School of Medicine, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
49
|
Epoxyeicosatrienoic Acid as Therapy for Diabetic and Ischemic Cardiomyopathy. Trends Pharmacol Sci 2016; 37:945-962. [DOI: 10.1016/j.tips.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
|
50
|
EETs and HO-1 cross-talk. Prostaglandins Other Lipid Mediat 2016; 125:65-79. [DOI: 10.1016/j.prostaglandins.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/03/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023]
|