1
|
Yi E, Go J, Yun SH, Lee SE, Kwak J, Kim SW, Kim HS. CEACAM1-engineered MSCs have a broad spectrum of immunomodulatory functions and therapeutic potential via cell-to-cell interaction. Biomaterials 2024; 311:122667. [PMID: 38878480 DOI: 10.1016/j.biomaterials.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024]
Abstract
Mesenchymal stem cells (MSCs) have garnered attention for their regenerative and immunomodulatory capabilities in clinical trials for various diseases. However, the effectiveness of MSC-based therapies, especially for conditions like graft-versus-host disease (GvHD), remains uncertain. The cytokine interferon (IFN)-γ has been known to enhance the immunosuppressive properties of MSCs through cell-to-cell interactions and soluble factors. In this study, we observed that IFN-γ-treated MSCs upregulated the expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), associated with immune evasion through the inhibition of natural killer (NK) cell cytotoxicity. To co-opt this immunomodulatory function, we generated MSCs overexpressing CEACAM1 and found that CEACAM1-engineered MSCs significantly reduced NK cell activation and cytotoxicity via cell-to-cell interaction, independent of NKG2D ligand regulation. Furthermore, CEACAM1-engineered MSCs effectively inhibited the proliferation and activation of T cells along with the inflammatory responses of monocytes. In a humanized GvHD mouse model, CEACAM1-MSCs, particularly CEACAM1-4S-MSCs, demonstrated therapeutic potential by improving survival and alleviating symptoms. These findings suggest that CEACAM1 expression on MSCs contributes to MSC-mediated regulation of immune responses and that CEACAM1-engineered MSC could have therapeutic potential in conditions involving immune dysregulation.
Collapse
Affiliation(s)
- Eunbi Yi
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jinyoung Go
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - So Hyeon Yun
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sang Eun Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jihye Kwak
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam, Republic of Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Hun Sik Kim
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
2
|
Chasov V, Ganeeva I, Zmievskaya E, Davletshin D, Gilyazova E, Valiullina A, Bulatov E. Cell-Based Therapy and Genome Editing as Emerging Therapeutic Approaches to Treat Rheumatoid Arthritis. Cells 2024; 13:1282. [PMID: 39120313 PMCID: PMC11312096 DOI: 10.3390/cells13151282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints. Although much remains unknown about the pathogenesis of RA, there is evidence that impaired immune tolerance and the development of RA are related. And it is precisely the restoration of immune tolerance at the site of the inflammation that is the ultimate goal of the treatment of RA. Over the past few decades, significant progress has been made in the treatment of RA, with higher rates of disease remission and improved long-term outcomes. Unfortunately, despite these successes, the proportion of patients with persistent, difficult-to-treat disease remains high, and the task of improving our understanding of the basic mechanisms of disease development and developing new ways to treat RA remains relevant. This review focuses on describing new treatments for RA, including cell therapies and gene editing technologies that have shown potential in preclinical and early clinical trials. In addition, we discuss the opportunities and limitations associated with the use of these new approaches in the treatment of RA.
Collapse
Affiliation(s)
- Vitaly Chasov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Irina Ganeeva
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Ekaterina Zmievskaya
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Damir Davletshin
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Elvina Gilyazova
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Aygul Valiullina
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Emil Bulatov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119048, Russia
| |
Collapse
|
3
|
Zhang X, Liu T, Ran C, Wang W, Piao F, Yang J, Tian S, Li L, Zhao D. Immunoregulatory paracrine effect of mesenchymal stem cells and mechanism in the treatment of osteoarthritis. Front Cell Dev Biol 2024; 12:1411507. [PMID: 39129785 PMCID: PMC11310049 DOI: 10.3389/fcell.2024.1411507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease caused by chronic inflammation that damages articular cartilage. At present, the treatment of OA includes drug therapy to relieve symptoms and joint replacement therapy for advanced OA. However, these palliatives cannot truly block the progression of the disease from the immunological pathogenesis of OA. In recent years, bone marrow mesenchymal stem cell (BMSC) transplantation has shown great potential in tissue engineering repair. In addition, many studies have shown that BMSC paracrine signals play an important role in the treatment of OA through immune regulation and suppressing inflammation. At present, the mechanism of inflammation-induced OA and the use of BMSC transplantation in joint repair have been reviewed, but the mechanism and significance of BMSC paracrine signals in the treatment of OA have not been fully reviewed. Therefore, this article focused on the latest research progress on the paracrine effects of BMSCs in the treatment of OA and the related mechanisms by which BMSCs secrete cytokines to inhibit the inflammatory response, regulate immune balance, and promote cell proliferation and differentiation. In addition, the application potential of BMSC-Exos as a new type of cell-free therapy for OA is described. This review aimed to provide systematic theoretical support for the clinical application of BMSC transplantation in the treatment of OA.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Tianhao Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chunxiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Weidan Wang
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Fengyuan Piao
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Jiahui Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Simiao Tian
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Lu Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Hudakova N, Mudronova D, Marcincakova D, Slovinska L, Majerova P, Maloveska M, Petrouskova P, Humenik F, Cizkova D. The role of primed and non-primed MSC-derived conditioned media in neuroregeneration. Front Mol Neurosci 2023; 16:1241432. [PMID: 38025267 PMCID: PMC10656692 DOI: 10.3389/fnmol.2023.1241432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction With growing significance in nervous system repair, mesenchymal stem cell-derived conditioned media (MSCCM) have been used in cell-free therapies in regenerative medicine. However, the immunomodulatory and neuroregenerative effects of MSCCM and the influence of priming on these effects are still poorly understood. Methods In this study, by various methods focused on cell viability, proliferation, neuron-like differentiation, neurite outgrowth, cell migration and regrowth, we demonstrated that MSCCM derived from adipose tissue (AT-MSCCM) and amniotic membrane (AM-MSCCM) had different effects on SH-SY5Y cells. Results and discussion AT-MSCCM was found to have a higher proliferative capacity and the ability to impact neurite outgrowth during differentiation, while AM-MSCCM showed more pronounced immunomodulatory activity, migration, and re-growth of SH-SY5Y cells in the scratch model. Furthermore, priming of MSC with pro-inflammatory cytokine (IFN-γ) resulted in different proteomic profiles of conditioned media from both sources, which had the highest effect on SH-SY5Y proliferation and neurite outgrowth in terms of the length of neurites (pAT-MSCCM) compared to the control group (DMEM). Altogether, our results highlight the potential of primed and non-primed MSCCM as a therapeutic tool for neurodegenerative diseases, although some differences must be considered.
Collapse
Affiliation(s)
- Nikola Hudakova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Dana Marcincakova
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Lucia Slovinska
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Luis Pasteur University Hospital, Košice, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marcela Maloveska
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Patricia Petrouskova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Filip Humenik
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Neo SH, Her Z, Othman R, Tee CA, Ong LC, Wang Y, Tan I, Tan J, Yang Y, Yang Z, Chen Q, Boyer LA. Expansion of human bone marrow-derived mesenchymal stromal cells with enhanced immunomodulatory properties. Stem Cell Res Ther 2023; 14:259. [PMID: 37726837 PMCID: PMC10510228 DOI: 10.1186/s13287-023-03481-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have broad potential as a cell therapy including for the treatment of drug-resistant inflammatory conditions with abnormal T cell proliferation such as graft-versus-host disease (GVHD). Clinical success, however, has been complicated by the heterogeneity of culture-expanded MSCs as well as donor variability. Here, we devise culture conditions that promote expansion of MSCs with enhanced immunomodulatory functions both in vitro and in animal models of GVHD. METHODS Human bone marrow-derived MSCs were expanded at high-confluency (MSCHC) and low-confluency state (MSCLC). Their immunomodulatory properties were evaluated with in vitro co-culture assays based on suppression of activated T cell proliferation and secretion of pro-inflammatory cytokines from activated T cells. Metabolic state of these cells was determined, while RNA sequencing was performed to explore transcriptome of these MSCs. Ex vivo expanded MSCHC or MSCLC was injected into human peripheral blood mononuclear cells (PBMC)-induced GVHD mouse model to determine their in vivo therapeutic efficacy based on clinical grade scoring, human CD45+ blood count and histopathological examination. RESULTS As compared to MSCLC, MSCHC significantly reduced both the proliferation of anti-CD3/CD28-activated T cells and secretion of pro-inflammatory cytokines upon MSCHC co-culture across several donors even in the absence of cytokine priming. Mechanistically, metabolic analysis of MSCHC prior to co-culture with activated T cells showed increased glycolytic metabolism and lactate secretion compared to MSCLC, consistent with their ability to inhibit T cell proliferation. Transcriptome analysis further revealed differential expression of immunomodulatory genes including TRIM29, BPIFB4, MMP3 and SPP1 in MSCHC as well as enriched pathways including cytokine-cytokine receptor interactions, cell adhesion and PI3K-AKT signalling. Lastly, we demonstrate in a human PBMC-induced GVHD mouse model that delivery of MSCHC showed greater suppression of inflammation and improved outcomes compared to MSCLC and saline controls. CONCLUSION Our study provides evidence that ex vivo expansion of MSCs at high confluency alters the metabolic and transcriptomic states of these cells. Importantly, this approach maximizes the production of MSCs with enhanced immunomodulatory functions without priming, thus providing a non-invasive and generalizable strategy for improving the use of MSCs for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Shu Hui Neo
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Invivocue Pte Ltd, 51 Science Park Road, #01-11/13 The Aries, Singapore Science Park II, Singapore, 117586, Republic of Singapore
| | - Rashidah Othman
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Ching Ann Tee
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Li Ching Ong
- Invivocue Pte Ltd, 51 Science Park Road, #01-11/13 The Aries, Singapore Science Park II, Singapore, 117586, Republic of Singapore
| | - Yuehua Wang
- Invivocue Pte Ltd, 51 Science Park Road, #01-11/13 The Aries, Singapore Science Park II, Singapore, 117586, Republic of Singapore
| | - Irwin Tan
- Invivocue Pte Ltd, 51 Science Park Road, #01-11/13 The Aries, Singapore Science Park II, Singapore, 117586, Republic of Singapore
| | - Jaylen Tan
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Yanmeng Yang
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Zheng Yang
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
- Department of Orthopaedic Surgery, National University of Singapore, NUHS, 1E Kent Ridge RoadTower Block 11, Singapore, 119288, Republic of Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore, 117510, Republic of Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Republic of Singapore.
| | - Laurie A Boyer
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Sanap A, Kheur S, Kharat A, Bhonde R. Ascorbic acid and IFNγ preconditioning enhance the potency of human mesenchymal stem cells to ameliorate LPS induced cytokine storm. Int Immunopharmacol 2023; 122:110643. [PMID: 37453155 DOI: 10.1016/j.intimp.2023.110643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The mesenchymal Stem Cells (MSCs) is one of the leading contender in therapeutic management of cytokine storm implicated in the COVID-19 and other inflammatory conditions. This study was aimed to investigate the effect of Interferon gamma (IFN-γ) and Ascorbic Acid (AA) preconditioning on the secretome of the human Umbilical Cord Derived MSCs (UCMSCs) and their potential to ameliorate the lipopolysaccharide (LPS) induced cytokine storm in the human peripheral blood mononuclear cells (PBMCs). UCMSCs were preconditioned with IFN-γ, AA and secretome (UCMSCs-S, IFNγ-UCMSCs-S and AA-UCSMCs-S) was analysed for the levels of growth factors and cytokines by flow cytometry. The potential of secretome to ameliorate cytokine storm and augment angiogenesis was assessed in the LPS induced PBMCs and yolk sac membrane (YSM) assay respectively. The mRNA transcript and protein levels of IL-6, IL-1β and TNF-α was analysed by RT-PCR and flow cytometry respectively. IFNγ-UCMSCs-S and AA-UCSMCs-S ameliorated the LPS induced cytokine storm as revealed by the decreased mRNA and protein expression of IL-6, IL-1β and TNF-α as compared to the UCMSCs-S. IFNγ-UCMSCs-S and AA-UCSMCs-S augmented angiogenesis in YSM assay. Furthermore, IFNγ and AA preconditioning of UCMSCs exhibited distinct growth factors and cytokine profile in the secretome. Our results unequivocally show that IFNγ and AA preconditioning of MSCs could give better therapeutic outcomes in the cell mediated therapies for COVID-19 and other inflammatory conditions.
Collapse
Affiliation(s)
- Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India; Department of Oral and Maxilofacial Pathology and Oral Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India.
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| |
Collapse
|
7
|
Mendiratta M, Mendiratta M, Mohanty S, Sahoo RK, Prakash H. Breaking the graft-versus-host-disease barrier: Mesenchymal stromal/stem cells as precision healers. Int Rev Immunol 2023; 43:95-112. [PMID: 37639700 DOI: 10.1080/08830185.2023.2252007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Mesenchymal Stromal/Stem Cells (MSCs) are multipotent, non-hematopoietic progenitor cells with a wide range of immune modulation and regenerative potential which qualify them as a potential component of cell-based therapy for various autoimmune/chronic inflammatory ailments. Their immunomodulatory properties include the secretion of immunosuppressive cytokines, the ability to suppress T-cell activation and differentiation, and the induction of regulatory T-cells. Considering this and our interest, we here discuss the significance of MSC for the management of Graft-versus-Host-Disease (GvHD), one of the autoimmune manifestations in human. In pre-clinical models, MSCs have been shown to reduce the severity of GvHD symptoms, including skin and gut damage, which are the most common and debilitating manifestations of this disease. While initial clinical studies of MSCs in GvHD cases were promising, the results were variable in randomized studies. So, further studies are warranted to fully understand their potential benefits, safety profile, and optimal dosing regimens. Owing to these inevitable issues, here we discuss various mechanisms, and how MSCs can be employed in managing GvHD, as a cellular therapeutic approach for this disease.
Collapse
Affiliation(s)
- Mohini Mendiratta
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Hridayesh Prakash
- Amity Centre for Translational Research, Amity University, Noida, India
| |
Collapse
|
8
|
Cuesta-Gomez N, Medina-Ruiz L, Graham GJ, Campbell JDM. IL-6 and TGF-β-Secreting Adoptively-Transferred Murine Mesenchymal Stromal Cells Accelerate Healing of Psoriasis-like Skin Inflammation and Upregulate IL-17A and TGF-β. Int J Mol Sci 2023; 24:10132. [PMID: 37373278 PMCID: PMC10298958 DOI: 10.3390/ijms241210132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Mesenchymal stromal cells (MSC) show promise as cellular therapeutics. Psoriasis is a chronic inflammatory disease affecting the skin and the joints. Injury, trauma, infection and medications can trigger psoriasis by disrupting epidermal keratinocyte proliferation and differentiation, which activates the innate immune system. Pro-inflammatory cytokine secretion drives a T helper 17 response and an imbalance of regulatory T cells. We hypothesized that MSC adoptive cellular therapy could immunomodulate and suppress the effector T cell hyperactivation that underlies the disease. We used the imiquimod-induced psoriasis-like skin inflammation model to study the therapeutic potential of bone marrow and adipose tissue-derived MSC in vivo. We compared the secretome and the in vivo therapeutic potential of MSC with and without cytokine pre-challenge ("licensing"). The infusion of both unlicensed and licensed MSC accelerated the healing of psoriatic lesions, and reduced epidermal thickness and CD3+ T cell infiltration while promoting the upregulation of IL-17A and TGF-β. Concomitantly, the expression of keratinocyte differentiation markers in the skin was decreased. However, unlicensed MSC promoted the resolution of skin inflammation more efficiently. We show that MSC adoptive therapy upregulates the transcription and secretion of pro-regenerative and immunomodulatory molecules in the psoriatic lesion. Accelerated healing is associated with the secretion of TGF-β and IL-6 in the skin and MSC drives the production of IL-17A and restrains T-cell-mediated pathology.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (N.C.-G.)
| | - Laura Medina-Ruiz
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (N.C.-G.)
| | - Gerard J. Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (N.C.-G.)
| | - John D. M. Campbell
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (N.C.-G.)
- Tissues, Cells and Advanced Therapeutics, The Jack Copland Centre, Scottish National Blood Transfusion Service, Currie EH14 4AP, UK
| |
Collapse
|
9
|
Kahrizi MS, Mousavi E, Khosravi A, Rahnama S, Salehi A, Nasrabadi N, Ebrahimzadeh F, Jamali S. Recent advances in pre-conditioned mesenchymal stem/stromal cell (MSCs) therapy in organ failure; a comprehensive review of preclinical studies. Stem Cell Res Ther 2023; 14:155. [PMID: 37287066 DOI: 10.1186/s13287-023-03374-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs)-based therapy brings the reassuring capability to regenerative medicine through their self-renewal and multilineage potency. Also, they secret a diversity of mediators, which are complicated in moderation of deregulated immune responses, and yielding angiogenesis in vivo. Nonetheless, MSCs may lose biological performance after procurement and prolonged expansion in vitro. Also, following transplantation and migration to target tissue, they encounter a harsh milieu accompanied by death signals because of the lack of proper tensegrity structure between the cells and matrix. Accordingly, pre-conditioning of MSCs is strongly suggested to upgrade their performances in vivo, leading to more favored transplantation efficacy in regenerative medicine. Indeed, MSCs ex vivo pre-conditioning by hypoxia, inflammatory stimulus, or other factors/conditions may stimulate their survival, proliferation, migration, exosome secretion, and pro-angiogenic and anti-inflammatory characteristics in vivo. In this review, we deliver an overview of the pre-conditioning methods that are considered a strategy for improving the therapeutic efficacy of MSCs in organ failures, in particular, renal, heart, lung, and liver.
Collapse
Affiliation(s)
| | - Elnaz Mousavi
- Department of Endodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Armin Khosravi
- Department of Periodontics, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Sara Rahnama
- Department of Pediatric Dentistry, School of Dentistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Samira Jamali
- Department of Endodontics, Stomatological Hospital, College of Stomatology, Xi'an Jiaotong University, Shaanxi, People's Republic of China.
| |
Collapse
|
10
|
Hezam K, Wang C, Fu E, Zhou M, Liu Y, Wang H, Zhu L, Han Z, Han ZC, Chang Y, Li Z. Superior protective effects of PGE2 priming mesenchymal stem cells against LPS-induced acute lung injury (ALI) through macrophage immunomodulation. Stem Cell Res Ther 2023; 14:48. [PMID: 36949464 PMCID: PMC10032272 DOI: 10.1186/s13287-023-03277-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have demonstrated remarkable therapeutic promise for acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS). MSC secretomes contain various immunoregulatory mediators that modulate both innate and adaptive immune responses. Priming MSCs has been widely considered to boost their therapeutic efficacy for a variety of diseases. Prostaglandin E2 (PGE2) plays a vital role in physiological processes that mediate the regeneration of injured organs. METHODS This work utilized PGE2 to prime MSCs and investigated their therapeutic potential in ALI models. MSCs were obtained from human placental tissue. MSCs were transduced with firefly luciferase (Fluc)/eGFP fusion protein for real-time monitoring of MSC migration. Comprehensive genomic analyses explored the therapeutic effects and molecular mechanisms of PGE2-primed MSCs in LPS-induced ALI models. RESULTS Our results demonstrated that PGE2-MSCs effectively ameliorated lung injury and decreased total cell numbers, neutrophils, macrophages, and protein levels in bronchoalveolar lavage fluid (BALF). Meanwhile, treating ALI mice with PGE2-MSCs dramatically reduced histopathological changes and proinflammatory cytokines while increasing anti-inflammatory cytokines. Furthermore, our findings supported that PGE2 priming improved the therapeutic efficacy of MSCs through M2 macrophage polarization. CONCLUSION PGE2-MSC therapy significantly reduced the severity of LPS-induced ALI in mice by modulating macrophage polarization and cytokine production. This strategy boosts the therapeutic efficacy of MSCs in cell-based ALI therapy.
Collapse
Affiliation(s)
- Kamal Hezam
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Chen Wang
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Enze Fu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Hui Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Lihong Zhu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China.
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
11
|
Lopes-Pacheco M, Rocco PRM. Functional enhancement strategies to potentiate the therapeutic properties of mesenchymal stromal cells for respiratory diseases. Front Pharmacol 2023; 14:1067422. [PMID: 37007034 PMCID: PMC10062457 DOI: 10.3389/fphar.2023.1067422] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Respiratory diseases remain a major health concern worldwide because they subject patients to considerable financial and psychosocial burdens and result in a high rate of morbidity and mortality. Although significant progress has been made in understanding the underlying pathologic mechanisms of severe respiratory diseases, most therapies are supportive, aiming to mitigate symptoms and slow down their progressive course but cannot improve lung function or reverse tissue remodeling. Mesenchymal stromal cells (MSCs) are at the forefront of the regenerative medicine field due to their unique biomedical potential in promoting immunomodulation, anti-inflammatory, anti-apoptotic and antimicrobial activities, and tissue repair in various experimental models. However, despite several years of preclinical research on MSCs, therapeutic outcomes have fallen far short in early-stage clinical trials for respiratory diseases. This limited efficacy has been associated with several factors, such as reduced MSC homing, survival, and infusion in the late course of lung disease. Accordingly, genetic engineering and preconditioning methods have emerged as functional enhancement strategies to potentiate the therapeutic actions of MSCs and thus achieve better clinical outcomes. This narrative review describes various strategies that have been investigated in the experimental setting to functionally potentiate the therapeutic properties of MSCs for respiratory diseases. These include changes in culture conditions, exposure of MSCs to inflammatory environments, pharmacological agents or other substances, and genetic manipulation for enhanced and sustained expression of genes of interest. Future directions and challenges in efficiently translating MSC research into clinical practice are discussed.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| |
Collapse
|
12
|
Pretreating mesenchymal stem cells with IL-6 regulates the inflammatory response of DSS-induced ulcerative colitis in rats. Transpl Immunol 2023; 76:101765. [PMID: 36462558 DOI: 10.1016/j.trim.2022.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The immunomodulatory properties of mesenchymal stem cells (MSCs) have been broadly investigated in research on inflammatory diseases including ulcerative colitis. Treating MSCs with an inflammatory stimulus before transplantation is an adaptive strategy that helps MSCs survive in areas of inflammation and promotes the regulation of local immune responses. This study aimed to examine the effects of pretreating bone marrow MSCs (BMSCs) with Interleukin-6 (IL-6) on attenuation of dextran sulfate sodium (DSS)-induced ulcerative colitis in rats. Experimental ulcerative colitis was induced in Wistar rats by administering 2% DSS in their water for 7 days and normal water for the next 3 days. The experimental group received 1 × 106/0.4 ml of BMSCs that were treated with IL-6 for 24 h. Histological changes, colon length, and disease activity index were compared among groups, and the levels of TNF-α, IL-6, and IL-1β in homogenate supernatants were evaluated using ELISA. IL-6-pretreated BMSCs significantly reduced the colonic damage score. The colon length shortened by 6.1 ± 0.14 cm for the rats that received IL-6-pretreated BMSCs, whereas the control group rats' value was 3.8 ± 0.14 cm on the 14th day. The levels of pro-inflammatory cytokines were significantly decreased in the colons of the IL-6-pretreated BMSCs group compared with those of the control group (p < 0.05). This study revealed that IL-6-pretreated BMSCs ameliorated DSS-induced colitis via local anti-inflammatory action and suggested that IL-6-pretreated BMSCs are a promising therapeutic agent for ulcerative colitis treatment.
Collapse
|
13
|
Pretreated Mesenchymal Stem Cells and Their Secretome: Enhanced Immunotherapeutic Strategies. Int J Mol Sci 2023; 24:ijms24021277. [PMID: 36674790 PMCID: PMC9864323 DOI: 10.3390/ijms24021277] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) with self-renewing, multilineage differentiation and immunomodulatory properties, have been extensively studied in the field of regenerative medicine and proved to have significant therapeutic potential in many different pathological conditions. The role of MSCs mainly depends on their paracrine components, namely secretome. However, the components of MSC-derived secretome are not constant and are affected by the stimulation MSCs are exposed to. Therefore, the content and composition of secretome can be regulated by the pretreatment of MSCs. We summarize the effects of different pretreatments on MSCs and their secretome, focusing on their immunomodulatory properties, in order to provide new insights for the therapeutic application of MSCs and their secretome in inflammatory immune diseases.
Collapse
|
14
|
TNF- α Enhances the Therapeutic Effects of MenSC-Derived Small Extracellular Vesicles on Inflammatory Bowel Disease through Macrophage Polarization by miR-24-3p. Stem Cells Int 2023; 2023:2988907. [PMID: 36895784 PMCID: PMC9991477 DOI: 10.1155/2023/2988907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 03/06/2023] Open
Abstract
Human menstrual blood-derived mesenchymal stem cells (MenSCs) and their secreted small extracellular vesicles (EVs) had been proven to relieve inflammation, tissue damage, and fibrosis in various organs. The microenvironment induced by inflammatory cytokines can promote mesenchymal stem cells (MSCs) to secrete more substances (including EVs) that could regulate inflammation. Inflammatory bowel disease (IBD) is a chronic idiopathic intestinal inflammation, the etiology and mechanism of which are unclear. At present, the existing therapeutic methods are ineffective for many patients and have obvious side effects. Hence, we explored the role of tumor necrosis factor α- (TNF-α-) pretreated MenSC-derived small EV (MenSCs-sEVTNF-α ) in a mouse model of dextran sulfate sodium- (DSS-) induced colitis, expecting to find better therapeutic alterations. In this research, the small EVs of MenSCs were obtained by ultracentrifugation. MicroRNAs of small EVs derived from MenSCs before and after TNF-α treatment were sequenced, and the differential microRNAs were analyzed by bioinformatics. The small EVs secreted by TNF-α-stimulating MenSCs were more effective in colonic mice than those secreted directly by MenSCs, as evidenced by the results of histopathology analysis of colonic tissue, immunohistochemistry for tight junction proteins, and enzyme-linked immunosorbent assay (ELISA) for cytokine expression profiles in vivo. The process of MenSCs-sEVTNF-α relieving colonic inflammation was accompanied by the polarization of M2 macrophages in the colon and miR-24-3p upregulation in small EVs. In vitro, both MenSC-derived sEV (MenSCs-sEV) and MenSCs-sEVTNF-α reduced the expression of proinflammatory cytokines, and MenSCs-sEVTNF-α can increase the portion of M2 macrophages. In conclusion, after TNF-α stimulation, the expression of miR-24-3p in small EVs derived from MenSCs was upregulated. MiR-24-3p was proved to target and downregulate interferon regulatory factor 1 (IRF1) expression in the murine colon and then promoted the polarization of M2 macrophages. The polarization of M2 macrophages in colonic tissues then reduced the damage caused by hyperinflammation.
Collapse
|
15
|
Abo-Aziza FAM, Albarrak SM, Zaki AKA, El-Shafey SE. Tumor necrosis factor-alpha antibody labeled-polyethylene glycol-coated nanoparticles: A mesenchymal stem cells-based drug delivery system in the rat model of cisplatin-induced nephrotoxicity. Vet World 2022; 15:2475-2490. [DOI: 10.14202/vetworld.2022.2475-2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: A delivery system consisting of bone marrow mesenchymal stem cells (MSCs) loaded with polyethylene glycol (PEG) coated superparamagnetic iron oxide nanoparticles (SPIONs) was constructed to treat a rat model of cisplatin (Cis)-induced nephrotoxicity with 1/10 of the common dose of anti-tumor necrosis factor-alpha (TNF-α) antibodies (infliximab).
Materials and Methods: Morphology, size, crystallinity, molecular structure, and magnetic properties of uncoated and PEG-coated SPIONs were analyzed. A delivery system consisting of MSCs containing infliximab-labeled PEG-coated SPIONs (Infliximab-PEG-SPIONs-MSCs) was generated and optimized before treatment. Fifty female Wistar rats were divided into five equal groups: Group 1: Untreated control; Group 2 (Cis): Rats were administered Cis through intraperitoneal (i.p.) injection (8 mg/kg) once a week for 4 weeks; Group 3 (Infliximab): Rats were injected once with infliximab (5 mg/kg), i.p. 3 days before Cis administration; Group 4 (Cis + MSCs): Rats were injected with Cis followed by an injection of 2 × 106 MSCs into the tail vein twice at a 1-week interval; and Group 5 (Cis + Infliximab (500 μg/kg)-PEG-SPIONs-MSCs): Rats were injected with the delivery system into the tail vein twice at a 1-week interval. Besides histological examination of the kidney, the Doppler ultrasound scanner was used to scan the kidney with the Gray-color-spectral mode.
Results: In vivo, intra-renal iron uptake indicates the traffic of the delivery system from venous blood to renal tissues. Cis-induced nephrotoxicity resulted in a significant increase in TNF-α and malondialdehyde (MDA) (p < 0.05), bilirubin, creatinine, and uric acid (p < 0.01) levels compared with the untreated control group. The different treatments used in this study resulted in the amelioration of some renal parameters. However, TNF-α levels significantly decreased in Cis + Infliximab and Cis + MSCs (p < 0.05) groups. The serum levels of MDA significantly decreased in Cis + Infliximab (p < 0.05), Cis + MSCs (p < 0.05), and Cis + Infliximab-PEG-SPIONs-MSCs (p < 0.01). Furthermore, the serum activities of antioxidant enzymes were significantly elevated in the Cis + MSCs and Cis + Infliximab-PEG-SPIONs-MSCs groups (p < 0.05) compared to the Cis-induced nephrotoxicity rat model.
Conclusion: With the support of the constructed MSCs-SPIONs infliximab delivery system, it will be possible to track and monitor cell homing after therapeutic application. This infliximab-loading system may help overcome some challenges regarding drug delivery to the target organ, optimize therapeutics' efficacy, and reduce the dose. The outcomes of the current study provide a better understanding of the potential of combining MSCs and antibodies-linked nanoparticles for the treatment of nephrotoxicity. However, further investigation is recommended using different types of other drugs. For new approaches development, we should evaluate whether existing toxicity analysis and risk evaluation strategies are reliable and enough for the variety and complexity of nanoparticles.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Saleh M. Albarrak
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdel-Kader A. Zaki
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
16
|
Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272. [PMID: 35933430 PMCID: PMC9357075 DOI: 10.1038/s41392-022-01134-4] [Citation(s) in RCA: 289] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Duc M Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Phuong T Pham
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh T L Ngo
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Quyen T Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trang T K Phan
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Giang H Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong T T Le
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Nicholas R Forsyth
- Institute for Science & Technology in Medicine, Keele University, Keele, UK
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Liem Thanh Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
17
|
Lipat AJ, Cottle C, Pirlot BM, Mitchell J, Pando B, Helmly B, Kosko J, Rajan D, Hematti P, Chinnadurai R. Chemokine Assay Matrix Defines the Potency of Human Bone Marrow Mesenchymal Stromal Cells. Stem Cells Transl Med 2022; 11:971-986. [PMID: 35881077 PMCID: PMC9492268 DOI: 10.1093/stcltm/szac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Potency analysis of mesenchymal stromal cells (MSCs) is required for their use in advanced clinical trials. Assay matrix strategy evaluating more than a single property of MSCs is an emerging strategy in potency analysis. Here we developed an assay matrix approach focusing on the secretory chemokine responses of MSCs using multiplex analytical method. MSCs’ innate fitness in secreting matrix of chemokines is correlated with their metabolic fitness in differential degrees. In addition, innately secreting chemokines are correlated among themselves in a unique pattern. MSC’s matrix chemokine responses to exogenous stimulation of IFNγ and/or TNFα are distinct. However, the combination of IFNγ and TNFα is superior than individual stimulations in eliciting robust and broad matrix chemokine responses of MSCs. Correlation matrix analysis has identified that chemokine responses to IFNγ and/or TNFα display unique correlative secretion patterns. MSC and peripheral blood mononuclear cells coculture analysis has identified the correlation matrix responses of chemokines that predicted immune suppression. In addition, MSC-mediated blocking of T-cell proliferation predominantly correlates with chemokines in an inverse manner. Knockdown of chemokines has demonstrated that MSC-sourced inherent chemokines do not actively play a role in T-cell suppression and thus are the bystander predictors of T-cell suppression. The present analysis of MSC’s matrix chemokine responses can be deployed in the advanced potency analysis of MSCs.
Collapse
Affiliation(s)
- Ariel Joy Lipat
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Chasen Cottle
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Bonnie M Pirlot
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - James Mitchell
- Diagnostic Radiology, Memorial Health University Medical Center, Savannah, GA, USA
| | - Brian Pando
- Diagnostic Radiology, Memorial Health University Medical Center, Savannah, GA, USA
| | - Brian Helmly
- Diagnostic Radiology, Memorial Health University Medical Center, Savannah, GA, USA
| | - Joanna Kosko
- Department of Pathology, Memorial Health University Medical Center, Savannah, GA, USA
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| |
Collapse
|
18
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
19
|
Zhang Y, Zhong Y, Zou L, Liu X. Significance of Placental Mesenchymal Stem Cell in Placenta Development and Implications for Preeclampsia. Front Pharmacol 2022; 13:896531. [PMID: 35721156 PMCID: PMC9198303 DOI: 10.3389/fphar.2022.896531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
The well-developed placentation is fundamental for the reproductive pregnancy while the defective placental development is the pathogenetic basis of preeclampsia (PE), a dangerous complication of pregnancy comprising the leading causes of maternal and perinatal morbidity and mortality. Placenta-derived mesenchymal stem cells (PMSCs) are a group of multipotent stem cells that own a potent capacity of differentiating into constitutive cells of vessel walls. Additionally, with the paracrine secretion of various factors, PMSCs inextricably link and interact with other component cells in the placenta, collectively improving the placental vasculature, uterine spiral artery remolding, and uteroplacental interface immunoregulation. Recent studies have further indicated that preeclamptic PMSCs, closely implicated in the abnormal crosstalk between other ambient cells, disturb the homeostasis and development in the placenta. Nevertheless, PMSCs transplantation or PMSCs exosome therapies tend to improve the placental vascular network and trophoblastic functions in the PE model, suggesting PMSCs may be a novel and putative therapeutic strategy for PE. Herein, we provide an overview of the multifaceted contributions of PMSCs in early placental development. Thereinto, the intensive interactions between PMSCs and other component cells in the placenta were particularly highlighted and further extended to the implications in the pathogenesis and therapeutic strategies of PE.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqi Zhong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Kyawsoewin M, Limraksasin P, Ngaokrajang U, Pavasant P, Osathanon T. Extracellular adenosine triphosphate induces IDO and IFNγ expression of human periodontal ligament cells through P 2 X 7 receptor signaling. J Periodontal Res 2022; 57:742-753. [PMID: 35510301 DOI: 10.1111/jre.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mechanical stimuli induce the release of adenosine triphosphate into the extracellular environment by human periodontal ligament cells (hPDLCs). Extracellular adenosine triphosphate (eATP) plays the role in both inflammation and osteogenic differentiation. eATP involves in immunosuppressive action by increasing immunosuppressive molecules IDO and IFNγ expression on immune cells. However, the role of eATP on the immunomodulation of hPDLCs remains unclear. This study aimed to examine the effects of eATP on the IDO and IFNγ expression of hPDLCs and the participation of purinergic P2 receptors in this phenomenon. METHODS hPDLCs were treated with eATP. The mRNA and protein expression of indoleamine-pyrrole 2,3-dioxygenase (IDO) and interferon-gamma (IFNγ) were determined. The role of the purinergic P2 receptor was determined using calcium chelator (EGTA) and PKC inhibitor (PKCi). Chemical inhibitors (KN62 and BBG), small interfering RNA (siRNA), and P2 X7 receptor agonist (BzATP) were used to confirm the involvement of P2 X7 receptors on IDO and IFNγ induction by hPDLCs. RESULTS eATP significantly enhanced mRNA expression of IDO and IFNγ. Moreover, eATP increased kynurenine which is the active metabolite of tryptophan breakdown catalyzed by the IDO enzyme and significantly induced IFNγ protein expression. EGTA and PKCi reduced eATP-induced IDO and IFNγ expressions by hPDLCs, confirming the role of calcium signaling. Chemical P2 X7 inhibitors (KN62 and BBG) and siRNA targeting the P2 X7 receptor significantly inhibited the eATP-induced IDO and IFNγ production. Correspondingly, BzATP markedly increased IDO and IFNγ expression. CONCLUSION eATP induced immunosuppressive function of hPDLCs by promoting IDO and IFNγ production via P2 X7 receptor signaling. eATP may become a promising target for periodontal regeneration by modulating immune response and further triggering tissue healing.
Collapse
Affiliation(s)
- Maythwe Kyawsoewin
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Oral Biological Science, University of Dental Medicine, Yangon, Myanmar
| | - Phoonsuk Limraksasin
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Utapin Ngaokrajang
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Li M, Jiang Y, Hou Q, Zhao Y, Zhong L, Fu X. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell Res Ther 2022; 13:146. [PMID: 35379361 PMCID: PMC8981790 DOI: 10.1186/s13287-022-02822-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has been considered as a promising approach targeting a variety of intractable diseases due to remarkable multiple effect of MSCs, such as multilineage differentiation, immunomodulatory property, and pro-regenerative capacity. However, poor engraftment, low survival rate of transplanted MSC, and impaired donor-MSC potency under host age/disease result in unsatisfactory therapeutic outcomes. Enhancement strategies, including genetic manipulation, pre-activation, and modification of culture method, have been investigated to generate highly functional MSC, and approaches for MSC pre-activation are highlighted. In this review, we summarized the current approaches of MSC pre-activation and further classified, analysed the scientific principles and main characteristics of these manipulations, and described the pros and cons of individual pre-activation strategies. We also discuss the specialized tactics to solve the challenges in this promising field so that it improves MSC therapeutic functions to serve patients better.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| | - Yufeng Jiang
- Wound Repairing Department, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| |
Collapse
|
22
|
Tan KX, Chang T, Lin XL. Secretomes as an emerging class of bioactive ingredients for enhanced cosmeceutical applications. Exp Dermatol 2022; 31:674-688. [PMID: 35338666 DOI: 10.1111/exd.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/23/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Skin aging is predominantly caused by either intrinsic or extrinsic factors, leading to undesirable skin features. Advancements in both molecular and cellular fields have created possibilities in developing novel stem cell-derived active ingredients for cosmeceutical applications and the beauty industry. Mesenchymal stromal cell (MSC)-derived secretomes or conditioned media hold great promise for advancing skin repair and regeneration due to the presence of varying cytokines. These cytokines signal our cells and trigger biological mechanisms associated with anti-inflammatory, antioxidant, anti-aging, proliferative, and immunomodulatory effects. In this review, we discuss the potential of MSC secretomes as novel biomaterials for skincare and rejuvenation by illustrating their mechanism of action related to wound healing, anti-aging, and whitening properties. The advantages and disadvantages of secretomes are compared to both plant-based and animal-derived extracts. In addition, this paper reviews the current safety standards, regulations, market products and research work related to the cosmeceutical applications of secretomes along with strategies to maintain and improve the therapeutic efficacy and production of secretomes. The future outlook of beauty industry is also presented. Lastly, we highlight significant challenges to be addressed for the clinical realization of MSC secretomes-based skin therapies as well as providing perspectives for the future direction of secretomes.
Collapse
Affiliation(s)
- Kei-Xian Tan
- Esco Aster, Block 67, Ayer Rajah Crescent, 139950, Singapore
| | - Trixie Chang
- Esco Aster, Block 67, Ayer Rajah Crescent, 139950, Singapore
| | - Xiang-Liang Lin
- Esco Aster, Block 67, Ayer Rajah Crescent, 139950, Singapore
| |
Collapse
|
23
|
Uberti B, Plaza A, Henríquez C. Pre-conditioning Strategies for Mesenchymal Stromal/Stem Cells in Inflammatory Conditions of Livestock Species. Front Vet Sci 2022; 9:806069. [PMID: 35372550 PMCID: PMC8974404 DOI: 10.3389/fvets.2022.806069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) therapy has been a cornerstone of regenerative medicine in humans and animals since their identification in 1968. MSCs can interact and modulate the activity of practically all cellular components of the immune response, either through cell-cell contact or paracrine secretion of soluble mediators, which makes them an attractive alternative to conventional therapies for the treatment of chronic inflammatory and immune-mediated diseases. Many of the mechanisms described as necessary for MSCs to modulate the immune/inflammatory response appear to be dependent on the animal species and source. Although there is evidence demonstrating an in vitro immunomodulatory effect of MSCs, there are disparate results between the beneficial effect of MSCs in preclinical models and their actual use in clinical diseases. This discordance might be due to cells' limited survival or impaired function in the inflammatory environment after transplantation. This limited efficacy may be due to several factors, including the small amount of MSCs inoculated, MSC administration late in the course of the disease, low MSC survival rates in vivo, cryopreservation and thawing effects, and impaired MSC potency/biological activity. Multiple physical and chemical pre-conditioning strategies can enhance the survival rate and potency of MSCs; this paper focuses on hypoxic conditions, with inflammatory cytokines, or with different pattern recognition receptor ligands. These different pre-conditioning strategies can modify MSCs metabolism, gene expression, proliferation, and survivability after transplantation.
Collapse
Affiliation(s)
- Benjamin Uberti
- Instituto de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Anita Plaza
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Claudio Henríquez
| |
Collapse
|
24
|
Strategies to enhance immunomodulatory properties and reduce heterogeneity in mesenchymal stromal cells during ex vivo expansion. Cytotherapy 2022; 24:456-472. [DOI: 10.1016/j.jcyt.2021.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
|
25
|
Li X, Guan Y, Li C, Zhang T, Meng F, Zhang J, Li J, Chen S, Wang Q, Wang Y, Peng J, Tang J. Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury. Stem Cell Res Ther 2022; 13:18. [PMID: 35033187 PMCID: PMC8760713 DOI: 10.1186/s13287-021-02690-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Various immune cells and cytokines are present in the aftermath of peripheral nerve injuries (PNI), and coordination of the local inflammatory response is of great significance for the recovery of PNI. Mesenchymal stem cells (MSCs) exhibit immunosuppressive and anti-inflammatory abilities which can accelerate tissue regeneration and attenuate inflammation, but the role of MSCs in the regulation of the local inflammatory microenvironment after PNI has not been widely studied. Here, we summarize the known interactions between MSCs, immune cells, and inflammatory cytokines following PNI with a focus on the immunosuppressive role of MSCs. We also discuss the immunomodulatory potential of MSC-derived extracellular vesicles as a new cell-free treatment for PNI.
Collapse
Affiliation(s)
- Xiangling Li
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, People's Republic of China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Chaochao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Tieyuan Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Fanqi Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,Department of Spine Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Jian Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Junyang Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,The School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Shengfeng Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Qi Wang
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.,The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, People's Republic of China
| | - Yi Wang
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.
| | - Jinshu Tang
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
26
|
An Affordable Approach of Mesenchymal Stem Cell Therapy in Treating Perianal Fistula Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:73-95. [DOI: 10.1007/5584_2022_716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Choudhery MS. Strategies to improve regenerative potential of mesenchymal stem cells. World J Stem Cells 2021; 13:1845-1862. [PMID: 35069986 PMCID: PMC8727227 DOI: 10.4252/wjsc.v13.i12.1845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/31/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
In the last few decades, stem cell-based therapies have gained attention worldwide for various diseases and disorders. Adult stem cells, particularly mesenchymal stem cells (MSCs), are preferred due to their significant regenerative potential in cellular therapies and are currently involved in hundreds of clinical trials. Although MSCs have high self-renewal as well as differentiation potential, such abilities are compromised with “advanced age” and “disease status” of the donor. Similarly, cell-based therapies require high cell number for clinical applications that often require in vitro expansion of cells. It is pertinent to note that aged individuals are the main segment of population for stem cell-based therapies, however; autologous use of stem cells for such patients (aged and diseased) does not seem to give optimal results due to their compromised potential. In vitro expansion to obtain large numbers of cells also negatively affects the regenerative potential of MSCs. It is therefore essential to improve the regenerative potential of stem cells compromised due to “in vitro expansion”, “donor age” and “donor disease status” for their successful autologous use. The current review has been organized to address the age and disease depleted function of resident adult stem cells, and the strategies to improve their potential. To combat the problem of decline in the regenerative potential of cells, this review focuses on the strategies that manipulate the cell environment such as hypoxia, heat shock, caloric restriction and preconditioning with different factors.
Collapse
Affiliation(s)
- Mahmood S Choudhery
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Punjab, Pakistan
- Department of Genetics and Molecular Biology, University of Health Sciences, Lahore 54600, Punjab, Pakistan
| |
Collapse
|
28
|
Esquivel-Ruiz S, González-Rodríguez P, Lorente JA, Pérez-Vizcaíno F, Herrero R, Moreno L. Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Front Physiol 2021; 12:752287. [PMID: 34887773 PMCID: PMC8650589 DOI: 10.3389/fphys.2021.752287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transferring genetic material, proteins and organelles between different cells types in both health and disease. Recent evidence suggests that these vesicles, more than simply diagnostic markers, are key mediators of the pathophysiology of acute respiratory distress syndrome (ARDS) and other lung diseases. In this review, we will discuss the contribution of EVs released by pulmonary structural cells (alveolar epithelial and endothelial cells) and immune cells in these diseases, with particular attention to their ability to modulate inflammation and alveolar-capillary barrier disruption, a hallmark of ARDS. EVs also offer a unique opportunity to develop new therapeutics for the treatment of ARDS. Evidences supporting the ability of stem cell-derived EVs to attenuate the lung injury and ongoing strategies to improve their therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Paloma González-Rodríguez
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - José A Lorente
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Clinical Section, School of Medicine, European University of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Herrero
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
29
|
Mesenchymal Stem Cell-Based Therapy for Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222111592. [PMID: 34769021 PMCID: PMC8584240 DOI: 10.3390/ijms222111592] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have great potential to differentiate into various types of cells, including but not limited to, adipocytes, chondrocytes and osteoblasts. In addition to their progenitor characteristics, MSCs hold unique immunomodulatory properties that provide new opportunities in the treatment of autoimmune diseases, and can serve as a promising tool in stem cell-based therapy. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder that deteriorates quality and function of the synovium membrane, resulting in chronic inflammation, pain and progressive cartilage and bone destruction. The mechanism of RA pathogenesis is associated with dysregulation of innate and adaptive immunity. Current conventional treatments by steroid drugs, antirheumatic drugs and biological agents are being applied in clinical practice. However, long-term use of these drugs causes side effects, and some RA patients may acquire resistance to these drugs. In this regard, recently investigated MSC-based therapy is considered as a promising approach in RA treatment. In this study, we review conventional and modern treatment approaches, such as MSC-based therapy through the understanding of the link between MSCs and the innate and adaptive immune systems. Moreover, we discuss recent achievements in preclinical and clinical studies as well as various strategies for the enhancement of MSC immunoregulatory properties.
Collapse
|
30
|
TNF-α and IFN-γ Participate in Improving the Immunoregulatory Capacity of Mesenchymal Stem/Stromal Cells: Importance of Cell-Cell Contact and Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22179531. [PMID: 34502453 PMCID: PMC8431422 DOI: 10.3390/ijms22179531] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have an immunoregulatory capacity and have been used in different clinical protocols requiring control of the immune response. However, variable results have been obtained, mainly due to the effect of the microenvironment on the induction, increase, and maintenance of MSC immunoregulatory mechanisms. In addition, the importance of cell–cell contact for MSCs to efficiently modulate the immune response has recently been highlighted. Because these interactions would be difficult to achieve in the physiological context, the release of extracellular vesicles (EVs) and their participation as intermediaries of communication between MSCs and immune cells becomes relevant. Therefore, this article focuses on analyzing immunoregulatory mechanisms mediated by cell contact, highlighting the importance of intercellular adhesion molecule-1 (ICAM-1) and the participation of EVs. Moreover, the effects of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), the main cytokines involved in MSC activation, are examined. These cytokines, when used at the appropriate concentrations and times, would promote increases in the expression of immunoregulatory molecules in the cell and allow the acquisition of EVs enriched with these molecules. The establishment of certain in vitro activation guidelines will facilitate the design of conditioning protocols to obtain functional MSCs or EVs in different pathophysiological conditions.
Collapse
|
31
|
Moeinabadi-Bidgoli K, Babajani A, Yazdanpanah G, Farhadihosseinabadi B, Jamshidi E, Bahrami S, Niknejad H. Translational insights into stem cell preconditioning: From molecular mechanisms to preclinical applications. Biomed Pharmacother 2021; 142:112026. [PMID: 34411911 DOI: 10.1016/j.biopha.2021.112026] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cell-based therapy (CBT) is a revolutionary approach for curing a variety of degenerative diseases. Stem cell-based regenerative medicine is a novel strategy for treating tissue damages regarding stem cells unique properties such as differentiation potential, paracrine impacts, and self-renewal ability. However, the current cell-based treatments encounter considerable challenges to be translated into clinical practice, including low cell survival, migration, and differentiation rate of transplanted stem cells. The poor stem cell therapy outcomes mainly originate from the unfavorable condition of damaged tissues for transplanted stem cells. The promising method of preconditioning improves cell resistance against the host environment's stress by imposing certain conditions similar to the harsh microenvironment of the damaged tissues on the transplanted stem cells. Various pharmacological, biological, and physical inducers are able to establish preconditioning. In addition to their known pharmacological effects on tissues and cells, these preconditioning agents improve cell biological aspects such as cell survival, proliferation, differentiation, migration, immunomodulation, paracrine impacts, and angiogenesis. This review focuses on different protocols and inducers of preconditioning along with underlying molecular mechanisms of their effects on stem cell behavior. Moreover, preclinical applications of preconditioned stem cells in various damaged organs such as heart, lung, brain, bone, cartilage, liver, and kidney are discussed with prospects of their translation into the clinic.
Collapse
Affiliation(s)
- Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Carty F, Dunbar H, Hawthorne IJ, Ting AE, Stubblefield SR, Van't Hof W, English K. IFN-γ and PPARδ influence the efficacy and retention of multipotent adult progenitor cells in graft vs host disease. Stem Cells Transl Med 2021; 10:1561-1574. [PMID: 34397170 PMCID: PMC8550699 DOI: 10.1002/sctm.21-0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 01/14/2023] Open
Abstract
Cell‐based therapy for the treatment of inflammatory disorders has focused on the application of mesenchymal stromal cells (MSCs) and multipotent adult progenitor cells (MAPCs). Despite the recent positive findings in industry‐sponsored clinical trials of MSCs and MAPCs for graft vs host disease (GvHD), cell therapy is efficacious in some but not all patients, highlighting the need to identify strategies to enhance cell‐based therapeutic efficacy. Here, we demonstrate the capacity for interferon (IFN)‐γ licensing to enhance human MAPC efficacy and retention following early administration in a humanized mouse model of acute GvHD (aGvHD). Activation of the nuclear receptor peroxisome proliferator‐activated receptor delta (PPARδ) negatively influenced the retention and efficacy of human MAPCs as well as IFN‐γ‐licensed MAPCs in the aGvHD model. PPARδ antagonism significantly enhanced the efficacy of human MAPCs when administered early in the humanized aGvHD model. COX‐2 expression in human MAPC was significantly decreased in IFN‐γ licensed MAPCs exposed to a PPARδ agonist. Importantly, MAPC exposure to the PPARδ antagonist in the presence of a COX‐2 inhibitor indomethacin before administration significantly reduced the efficacy of PPARδ antagonized MAPCs in the aGvHD humanized mouse model. This is the first study to demonstrate the importance of PPARδ in human MAPC efficacy in vivo and highlights the importance of understanding the disease microenvironment in which cell‐based therapies are to be administered. In particular, the presence of PPARδ ligands may negatively influence MAPC or MSC therapeutic efficacy.
Collapse
Affiliation(s)
- Fiona Carty
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hazel Dunbar
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ian J Hawthorne
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | | | - Wouter Van't Hof
- Athersys, Inc, Cleveland, Ohio, USA.,Cleveland Cord Blood Center, Cleveland, Ohio, USA
| | - Karen English
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
33
|
Karbasiafshar C, Sellke FW, Abid MR. Mesenchymal stem cell-derived extracellular vesicles in the failing heart: past, present, and future. Am J Physiol Heart Circ Physiol 2021; 320:H1999-H2010. [PMID: 33861149 PMCID: PMC8163643 DOI: 10.1152/ajpheart.00951.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. Current treatment options include lifestyle changes, medication, and surgical intervention. However, many patients are unsuitable candidates for surgeries due to comorbidities, diffuse coronary artery disease, or advanced stages of heart failure. The search for new treatment options has recently transitioned from cell-based therapies to stem-cell-derived extracellular vesicles (EVs). A number of challenges remain in the EV field, including the effect of comorbidities, characterization, and delivery. However, recent revolutionary developments and insight into the potential of personalizing EV contents by bioengineering methods to alter specific signaling pathways in the ischemic myocardium hold promise. Here, we discuss the past limitations of cell-based therapies and recent EV studies involving in vivo, in vitro, and omics, and future challenges and opportunities in EV-based treatments in CVD.
Collapse
Affiliation(s)
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
34
|
Wedzinska A, Figiel-Dabrowska A, Kozlowska H, Sarnowska A. The Effect of Proinflammatory Cytokines on the Proliferation, Migration and Secretory Activity of Mesenchymal Stem/Stromal Cells (WJ-MSCs) under 5% O 2 and 21% O 2 Culture Conditions. J Clin Med 2021; 10:1813. [PMID: 33919308 PMCID: PMC8122617 DOI: 10.3390/jcm10091813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/24/2021] [Accepted: 04/17/2021] [Indexed: 11/16/2022] Open
Abstract
Treatment with Mesenchymal Stem/Stromal Cells (MSCs) in clinical trials is becoming one of the most-popular and fast-developing branches of modern regenerative medicine, as it is still in an experimental phase. The cross-section of diseases to which these cells are applied is very wide, ranging from degenerative diseases, through autoimmune processes and to acute inflammatory diseases, e.g., viral infections. Indeed, now that first clinical trials applying MSCs against COVID-19 have started, important questions concern not only the therapeutic properties of MSCs, but also the changes that might occur in the cell features as a response to the "cytokine storm" present in the acute phase of an infection and capable of posing a risk to a patient. The aim of our study was thus to assess changes potentially occurring in the biology of MSCs in the active inflammatory environment, e.g., in regards to the cell cycle, cell migration and secretory capacity. The study using MSCs derived from Wharton's jelly (WJ-MSCs) was conducted under two aerobic conditions: 21% O2 vs. 5% O2, since oxygen concentration is one of the key factors in inflammation. Under both oxygen conditions cells were exposed to proinflammatory cytokines involved significantly in acute inflammation, i.e., IFNγ, TNFα and IL-1β at different concentrations. Regardless of the aerobic conditions, WJ-MSCs in the inflammatory environment do not lose features typical for mesenchymal cells, and their proliferation dynamic remains unchanged. Sudden fluctuations in proliferation, the early indicator of potential genetic disturbance, were not observed, while the cells' migration activity increased. The presence of pro-inflammatory factors was also found to increase the secretion of such anti-inflammatory cytokines as IL-4 and IL-10. It is concluded that the inflammatory milieu in vitro does not cause phenotype changes or give rise to proliferation disruption of WJ-MSCs, and nor does it inhibit the secretory properties providing for their use against acute inflammation.
Collapse
Affiliation(s)
- Aleksandra Wedzinska
- Mossakowski Medical Research Centre, Translational Platform for Regenerative Medicine, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.W.); (A.F.-D.)
| | - Anna Figiel-Dabrowska
- Mossakowski Medical Research Centre, Translational Platform for Regenerative Medicine, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.W.); (A.F.-D.)
| | - Hanna Kozlowska
- Mossakowski Medical Research Centre, Laboratory of Advanced Microscopy Techniques, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Anna Sarnowska
- Mossakowski Medical Research Centre, Translational Platform for Regenerative Medicine, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.W.); (A.F.-D.)
- Mossakowski Medical Research Centre, Stem Cell Bioengineering Unit, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
35
|
Najafi-Ghalehlou N, Roudkenar MH, Langerodi HZ, Roushandeh AM. Taming of Covid-19: potential and emerging application of mesenchymal stem cells. Cytotechnology 2021; 73:253-298. [PMID: 33776206 PMCID: PMC7982879 DOI: 10.1007/s10616-021-00461-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has turned out to cause a pandemic, with a sky scraping mortality. The virus is thought to cause tissue injury by affecting the renin-angiotensin system. Also, the role of the over-activated immune system is noteworthy, leading to severe tissue injury via the cytokine storms. Thus it would be feasible to modulate the immune system response in order to attenuate the disease severity, as well as treating the patients. Today different medicines are being administered to the patients, but regardless of the efficacy of these treatments, adverse effects are pretty probable. Meanwhile, mesenchymal stem cells (MSCs) prove to be an effective candidate for treating the patients suffering from COVID-19 pneumonia, owing to their immunomodulatory and tissue-regenerative potentials. So far, several experiments have been conducted; transplanting MSCs and results are satisfying with no adverse effects being reported. This paper aims to review the recent findings regarding the novel coronavirus and the conducted experiments to treat patients suffering from COVID-19 pneumonia utilizing MSCs.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Department, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Habib Zayeni Langerodi
- Guilan Rheumatology Research Center (GRRC), Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Anatomical Sciences Department, Medicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
36
|
García-Bernal D, García-Arranz M, Yáñez RM, Hervás-Salcedo R, Cortés A, Fernández-García M, Hernando-Rodríguez M, Quintana-Bustamante Ó, Bueren JA, García-Olmo D, Moraleda JM, Segovia JC, Zapata AG. The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy. Front Cell Dev Biol 2021; 9:650664. [PMID: 33796536 PMCID: PMC8007911 DOI: 10.3389/fcell.2021.650664] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) currently constitute the most frequently used cell type in advanced therapies with different purposes, most of which are related with inflammatory processes. Although the therapeutic efficacy of these cells has been clearly demonstrated in different disease animal models and in numerous human phase I/II clinical trials, only very few phase III trials using MSCs have demonstrated the expected potential therapeutic benefit. On the other hand, diverse controversial issues on the biology and clinical applications of MSCs, including their specific phenotype, the requirement of an inflammatory environment to induce immunosuppression, the relevance of the cell dose and their administration schedule, the cell delivery route (intravascular/systemic vs. local cell delivery), and the selected cell product (i.e., use of autologous vs. allogeneic MSCs, freshly cultured vs. frozen and thawed MSCs, MSCs vs. MSC-derived extracellular vesicles, etc.) persist. In the current review article, we have addressed these issues with special emphasis in the new approaches to improve the properties and functional capabilities of MSCs after distinct cell bioengineering strategies.
Collapse
Affiliation(s)
- David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano García-Arranz
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Rosa M Yáñez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Rosario Hervás-Salcedo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Alfonso Cortés
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - María Fernández-García
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Miriam Hernando-Rodríguez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Óscar Quintana-Bustamante
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Juan A Bueren
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Damián García-Olmo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Jose M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - José C Segovia
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Agustín G Zapata
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Complutense University, Madrid, Spain
| |
Collapse
|
37
|
Tynecka M, Moniuszko M, Eljaszewicz A. Old Friends with Unexploited Perspectives: Current Advances in Mesenchymal Stem Cell-Based Therapies in Asthma. Stem Cell Rev Rep 2021; 17:1323-1342. [PMID: 33649900 PMCID: PMC7919631 DOI: 10.1007/s12015-021-10137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have a great regenerative and immunomodulatory potential that was successfully tested in numerous pre-clinical and clinical studies of various degenerative, hematological and inflammatory disorders. Over the last few decades, substantial immunoregulatory effects of MSC treatment were widely observed in different experimental models of asthma. Therefore, it is tempting to speculate that stem cell-based treatment could become an attractive means to better suppress asthmatic airway inflammation, especially in subjects resistant to currently available anti-inflammatory therapies. In this review, we discuss mechanisms accounting for potent immunosuppressive properties of MSCs and the rationale for their use in asthma. We describe in detail an intriguing interplay between MSCs and other crucial players in the immune system as well as lung microenvironment. Finally, we reveal the potential of MSCs in maintaining airway epithelial integrity and alleviating lung remodeling.
Collapse
Affiliation(s)
- Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, Białystok, 15-276, Poland.
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
| |
Collapse
|
38
|
Human Bone Marrow Mesenchymal Stem/Stromal Cells Exposed to an Inflammatory Environment Increase the Expression of ICAM-1 and Release Microvesicles Enriched in This Adhesive Molecule: Analysis of the Participation of TNF- α and IFN- γ. J Immunol Res 2020; 2020:8839625. [PMID: 33335929 PMCID: PMC7723491 DOI: 10.1155/2020/8839625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BM-MSCs) have immunoregulatory capacity; therefore, they have been used in different clinical protocols in which it is necessary to decrease the immune response. This capacity is mainly regulated by TNF-α and IFN-γ, and it has been observed that cell-cell contact, mainly mediated by ICAM-1, is important for MSCs to carry out efficient immunoregulation. Therefore, in the present work, we analyzed the effect of TNF-α alone or in combination with IFN-γ on the expression of ICAM-1. Besides, given the importance of cell contact in the immunoregulatory function of MSCs, we analyzed whether these cells release ICAM-1+ microvesicles (MVs). Our results show for the first time that TNF-α is capable of increasing the early expression of ICAM-1 in human BM-MSCs. Also, we observed that TNF-α and IFN-γ have a synergistic effect on the increase in the expression of ICAM-1. Furthermore, we found that BM-MSCs exposed to an inflammatory environment release MVs enriched in ICAM-1 (MVs-ICAM-1high). The knowledge generated in this study will contribute to the improvement of in vitro conditioning protocols that favor the therapeutic effect of these cells or their products.
Collapse
|
39
|
Jauković A, Kukolj T, Obradović H, Okić-Đorđević I, Mojsilović S, Bugarski D. Inflammatory niche: Mesenchymal stromal cell priming by soluble mediators. World J Stem Cells 2020; 12:922-937. [PMID: 33033555 PMCID: PMC7524701 DOI: 10.4252/wjsc.v12.i9.922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are adult stem cells of stromal origin that possess self-renewal capacity and the ability to differentiate into multiple mesodermal cell lineages. They play a critical role in tissue homeostasis and wound healing, as well as in regulating the inflammatory microenvironment through interactions with immune cells. Hence, MSCs have garnered great attention as promising candidates for tissue regeneration and cell therapy. Because the inflammatory niche plays a key role in triggering the reparative and immunomodulatory functions of MSCs, priming of MSCs with bioactive molecules has been proposed as a way to foster the therapeutic potential of these cells. In this paper, we review how soluble mediators of the inflammatory niche (cytokines and alarmins) influence the regenerative and immunomodulatory capacity of MSCs, highlighting the major advantages and concerns regarding the therapeutic potential of these inflammatory primed MSCs. The data summarized in this review may provide a significant starting point for future research on priming MSCs and establishing standardized methods for the application of preconditioned MSCs in cell therapy.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
40
|
Cabezas J, Rojas D, Wong Y, Telleria F, Manriquez J, Mançanares ACF, Rodriguez-Alvarez LL, Castro FO. In vitro preconditioning of equine adipose mesenchymal stem cells with prostaglandin E 2, substance P and their combination changes the cellular protein secretomics and improves their immunomodulatory competence without compromising stemness. Vet Immunol Immunopathol 2020; 228:110100. [PMID: 32871408 DOI: 10.1016/j.vetimm.2020.110100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSC) are modern tools in regenerative therapies of humans and animals owed to their immunomodulatory properties, which are activated in a pro-inflammatory environment. Different preconditioning strategies had been devised to enhance the immunomodulatory properties of MSC. In this research, we evaluated the immunological attributes of equine adipose MSC (eAMSC) before and after preconditioning in vitro with prostaglandin E2 (PGE2), substance P (SP), their combination and IFNγ. PGE2/SP was the best combination to keep or enhance the mesodermal lineage differentiation of eAMSC. Alongside with this, preconditioning of eMSC with PGE2 and SP did not affect expression of stemness MSC surface phenotype: CD90+, CD44+, MHC class I+, MHC class II- and CD45-, assessed by cytometry. Both naïve and preconditioned eAMSC expressed genes related with immune properties, such as MHC-I, PTGES, IL6, IL1A, TNFα and IL8 assessed by qPCR. Only TNFα was under expressed in treated cells, while the other markers were either overexpressed or not changed. In no cases MHC-II expression was detected. The antiproliferative effect of preconditioned eAMSC exposed to activated peripheral blood mononuclear cells (PBMC) showed that SP treatment significantly inhibited proliferation of LPS stimulated PBMC. When eAMSC were stimulated with Poly I:C, all the treatments significantly inhibited proliferation of stimulated PBMC (p < 0.05). Direct contact (coculture) between the preconditioned eAMSC and PBMC, induced a shift of significantly more (CD4/CD25/FOXP3)+ T-regulatory PBMC than naïve eAMSC. In the experiments of this research, we investigated the secreted proteomic profile of naïve and preconditioned eAMSC, 42 up-regulated and 40 down-regulated proteins were found in the proteomic assay. Our proteomic data revealed profound changes in the secretory pattern of MSC exposed to different treatments, compared to naïve eAMSC as well as among treatments. In overall, compared to naïve cells, the protein profile of preconditioned cells resembled the mesenchymal-epithelial transition (MET). Here we showed that the combined use of PGE2 and SP provoked in overall the highest expression of anti-inflammatory markers as well as lead to an increased acquisition of a T-regulatory phenotype in preconditioned eAMSC without affecting their "stemness".
Collapse
Affiliation(s)
- J Cabezas
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - D Rojas
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Sciences, Department of Animal Pathology, Chile.
| | - Y Wong
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - F Telleria
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - J Manriquez
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - A C F Mançanares
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - L L Rodriguez-Alvarez
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - F O Castro
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| |
Collapse
|
41
|
Costa LA, Eiro N, Fraile M, Gonzalez LO, Saá J, Garcia-Portabella P, Vega B, Schneider J, Vizoso FJ. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cell Mol Life Sci 2020; 78:447-467. [PMID: 32699947 PMCID: PMC7375036 DOI: 10.1007/s00018-020-03600-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are present in all organs and tissues. Several studies have shown the therapeutic potential effect of MSC or their derived products. However, the functional heterogeneity of MSC constitutes an important barrier for transferring these capabilities to the clinic. MSC heterogeneity depends on their origin (biological niche) or the conditions of potential donors (age, diseases or unknown factors). It is accepted that many culture conditions of the artificial niche to which they are subjected, such as O2 tension, substrate and extracellular matrix cues, inflammatory stimuli or genetic manipulations can influence their resulting phenotype. Therefore, to attain a more personalized and precise medicine, a correct selection of MSC is mandatory, based on their functional potential, as well as the need to integrate all the existing information to achieve an optimal improvement of MSC features in the artificial niche.
Collapse
Affiliation(s)
- Luis A Costa
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - María Fraile
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Luis O Gonzalez
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.,Department of Anatomical Pathology, Fundación Hospital de Jove, Gijón, Spain
| | - Jorge Saá
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Pablo Garcia-Portabella
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Belén Vega
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - José Schneider
- Department of Obstetrics and Gynecology, University of Valladolid, Valladolid, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.
| |
Collapse
|
42
|
Lynch K, Treacy O, Chen X, Murphy N, Lohan P, Islam MN, Donohoe E, Griffin MD, Watson L, McLoughlin S, O'Malley G, Ryan AE, Ritter T. TGF-β1-Licensed Murine MSCs Show Superior Therapeutic Efficacy in Modulating Corneal Allograft Immune Rejection In Vivo. Mol Ther 2020; 28:2023-2043. [PMID: 32531237 PMCID: PMC7474271 DOI: 10.1016/j.ymthe.2020.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/14/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are a promising therapeutic option for multiple immune diseases/disorders; however, efficacy of MSC treatments can vary significantly. We present a novel licensing strategy to improve the immunosuppressive capacity of MSCs. Licensing murine MSCs with transforming growth factor-β1 (TGF-β MSCs) significantly improved their ability to modulate both the phenotype and secretome of inflammatory bone marrow-derived macrophages and significantly increased the numbers of regulatory T lymphocytes following co-culture assays. These TGF-β MSC-expanded regulatory T lymphocytes also expressed significantly higher levels of PD-L1 and CD73, indicating enhanced suppressive potential. Detailed analysis of T lymphocyte co-cultures revealed modulation of secreted factors, most notably elevated prostaglandin E2 (PGE2). Furthermore, TGF-β MSCs could significantly prolong rejection-free survival (69.2% acceptance rate compared to 21.4% for unlicensed MSC-treated recipients) in a murine corneal allograft model. Mechanistic studies revealed that (1) therapeutic efficacy of TGF-β MSCs is Smad2/3-dependent, (2) the enhanced immunosuppressive capacity of TGF-β MSCs is contact-dependent, and (3) enhanced secretion of PGE2 (via prostaglandin EP4 [E-type prostanoid 4] receptor) by TGF-β MSCs is the predominant mediator of Treg expansion and T cell activation and is associated with corneal allograft survival. Collectively, we provide compelling evidence for the use of TGF-β1 licensing as an unconventional strategy for enhancing MSC immunosuppressive capacity.
Collapse
Affiliation(s)
- Kevin Lynch
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Nick Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Paul Lohan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Md Nahidul Islam
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Luke Watson
- Orbsen Therapeutics, National University of Ireland, Galway, Galway, Ireland
| | - Steven McLoughlin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Grace O'Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
43
|
Fan Y, Herr F, Vernochet A, Mennesson B, Oberlin E, Durrbach A. Human Fetal Liver Mesenchymal Stem Cell-Derived Exosomes Impair Natural Killer Cell Function. Stem Cells Dev 2020; 28:44-55. [PMID: 30328799 DOI: 10.1089/scd.2018.0015] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are powerful immunomodulators that regulate the diverse functions of immune cells involved in allogeneic reactions, such as T cells and natural killer (NK) cells, through cell-cell contact or secreted factors. Exosomes secreted by MSCs may be involved in their regulatory functions, providing new therapeutic tools. Here, we showed that fetal liver (FL) MSC-derived exosomes inhibit proliferation, activation, and cytotoxicity of NK cells. Exosomes bearing latency associated peptide (LAP), TGFβ, and thrombospondin 1 (TSP1), a regulatory molecule for TGFβ, induced downstream TGFβ/Smad2/3 signaling in NK cells. The inhibition of TGFβ, using a neutralizing anti-TGFβ antibody, restored NK proliferation, differentiation, and cytotoxicity, demonstrating that FL-MSC-derived exosomes exert their inhibition on NK cell function via TGFβ. These results suggest that FL-MSC-derived exosomes regulate NK cell functions through exosome-associated TGFβ.
Collapse
Affiliation(s)
- Ye Fan
- 1 INSERM UMR-S1197, Villejuif, France
| | | | | | - Benoît Mennesson
- 2 Service de Gynécologie-Obstétrique, Hôpital René-Dubos, Pontoise, France
| | | | - Antoine Durrbach
- 1 INSERM UMR-S1197, Villejuif, France
- 3 Département de Néphrologie, Hôpital Le Kremlin Bicêtre, IFRNT, Université Paris Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
44
|
TNF-α and INF-γ primed canine stem cell-derived extracellular vesicles alleviate experimental murine colitis. Sci Rep 2020; 10:2115. [PMID: 32034203 PMCID: PMC7005871 DOI: 10.1038/s41598-020-58909-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
The inflammatory bowel diseases (IBD) are characterized by relapsing inflammation and immune activation diseases of the gastrointestinal tract. Extracellular vesicles, which elicit similar biological activity to the stem cell themselves, have been used experimentally to treat dextran sulfate sodium (DSS)-induced colitis in murine models though immunosuppressive potential. In this study, we investigated whether the Extracellular vesicles (EVs) obtained by stimulating inflammatory cytokine on canine adipose mesenchymal stem cells (cASC) improved anti-inflammatory and/or immunosuppressive potential of EVs, and/or their ability to alleviate inflammation in colitis. We also explored the correlation between immune cells and the inflammatory repressive effect of primed EVs. Pro-inflammatory cytokines such as TNF-α and IFN-γ increased immunosuppressive protein such as HGF, TSG-6, PGE2 and TGF-β in EVs. Moreover, the anti-inflammatory effect of EVs was improved through pretreatment with inflammatory cytokines. Importantly, EVs obtained from primed stem cells effectively induced macrophage polarization toward an anti-inflammatory M2 phenotype and suppressed activated immunity by enhancing regulatory T cells in inflamed colon in mice. Our results provide a new and effective therapy for the EVs obtained from ASC stimulated with TNF-α and IFN-γ against not only IBD, but also immune-mediated disease.
Collapse
|
45
|
Improved therapeutics of modified mesenchymal stem cells: an update. J Transl Med 2020; 18:42. [PMID: 32000804 PMCID: PMC6993499 DOI: 10.1186/s12967-020-02234-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) have attracted intense interest due to their powerful intrinsic properties of self-regeneration, immunomodulation and multi-potency, as well as being readily available and easy to isolate and culture. Notwithstanding, MSC based therapy suffers reduced efficacy due to several challenges which include unfavorable microenvironmental factors in vitro and in vivo. Body In the quest to circumvent these challenges, several modification techniques have been applied to the naïve MSC to improve its inherent therapeutic properties. These modification approaches can be broadly divided into two groups to include genetic modification and preconditioning modification (using drugs, growth factors and other molecules). This field has witnessed great progress and continues to gather interest and novelty. We review these innovative approaches in not only maintaining, but also enhancing the inherent biological activities and therapeutics of MSCs with respect to migration, homing to target site, adhesion, survival and reduced premature senescence. We discuss the application of the improved modified MSC in some selected human diseases. Possible ways of yet better enhancing the therapeutic outcome and overcoming challenges of MSC modification in the future are also elaborated. Conclusion The importance of prosurvival and promigratory abilities of MSCs in their therapeutic applications can never be overemphasized. These abilities are maintained and even further enhanced via MSC modifications against the inhospitable microenvironment during culture and transplantation. This is a turning point in MSC-based therapy with promising preclinical studies and higher future prospect.
Collapse
|
46
|
Lee OJ, Luk F, Korevaar SS, Koch TG, Baan CC, Merino A, Hoogduijn MJ. The Importance of Dosing, Timing, and (in)Activation of Adipose Tissue-Derived Mesenchymal Stromal Cells on Their Immunomodulatory Effects. Stem Cells Dev 2020; 29:38-48. [DOI: 10.1089/scd.2019.0225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Olivia J. Lee
- Section of Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Franka Luk
- Section of Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander S. Korevaar
- Section of Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Thomas G. Koch
- Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Carla C. Baan
- Section of Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ana Merino
- Section of Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin J. Hoogduijn
- Section of Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
47
|
Magatti M, Stefani FR, Papait A, Cargnoni A, Masserdotti A, Silini AR, Parolini O. Perinatal Mesenchymal Stromal Cells and Their Possible Contribution to Fetal-Maternal Tolerance. Cells 2019; 8:E1401. [PMID: 31703272 PMCID: PMC6912620 DOI: 10.3390/cells8111401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022] Open
Abstract
During pregnancy, a successful coexistence between the mother and the semi-allogenic fetus occurs which requires a dynamic immune system to guarantee an efficient immune protection against possible infections and tolerance toward fetal antigens. The mechanism of fetal-maternal tolerance is still an open question. There is growing in vitro and in vivo evidence that mesenchymal stromal cells (MSC) which are present in perinatal tissues have a prominent role in generating a functional microenvironment critical to a successful pregnancy. This review highlights the immunomodulatory properties of perinatal MSC and their impact on the major immune cell subsets present in the uterus during pregnancy, such as natural killer cells, antigen-presenting cells (macrophages and dendritic cells), and T cells. Here, we discuss the current understanding and the possible contribution of perinatal MSC in the establishment of fetal-maternal tolerance, providing a new perspective on the physiology of gestation.
Collapse
Affiliation(s)
- Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Francesca Romana Stefani
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Alice Masserdotti
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| |
Collapse
|
48
|
Ishida N, Ishiyama K, Saeki Y, Tanaka Y, Ohdan H. Cotransplantation of preactivated mesenchymal stem cells improves intraportal engraftment of islets by inhibiting liver natural killer cells in mice. Am J Transplant 2019; 19:2732-2745. [PMID: 30859713 DOI: 10.1111/ajt.15347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/10/2019] [Accepted: 03/03/2019] [Indexed: 01/25/2023]
Abstract
The activation of natural killer (NK) cells in the liver inhibits engraftment of intraportally transplanted islets. We attempted to modulate the activity of NK cells by cotransplanting mesenchymal stem cells (MSCs) with islets in mice. We first investigated the ability of MSCs to secrete prostaglandin E2 , a predominant inhibitor of NK cell function, in various combinations of inflammatory cytokines. Notably, we found that prostaglandin E2 production was partially delayed in MSCs activated by inflammatory cytokines in vitro, whereas liver NK cells were activated early after islet transplant in vivo. Accordingly, preactivated MSCs, but not naive MSCs, substantially suppressed the expression of activation markers in liver NK cells after cotransplant with islets. Similarly, cotransplant with preactivated MSCs, but not naive MSCs, markedly improved the survival of islet grafts. These results highlight MSC cotransplant as an effective and clinically feasible method for enhancing engraftment efficiency.
Collapse
Affiliation(s)
- Nobuki Ishida
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kohei Ishiyama
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yoshihiro Saeki
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
49
|
Bari E, Ferrarotti I, Di Silvestre D, Grisoli P, Barzon V, Balderacchi A, Torre ML, Rossi R, Mauri P, Corsico AG, Perteghella S. Adipose Mesenchymal Extracellular Vesicles as Alpha-1-Antitrypsin Physiological Delivery Systems for Lung Regeneration. Cells 2019; 8:E965. [PMID: 31450843 PMCID: PMC6770759 DOI: 10.3390/cells8090965] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence shows that Mesenchymal Stem/Stromal Cells (MSCs) exert their therapeutic effects by the release of secretome, made of both soluble proteins and nano/microstructured extracellular vesicles (EVs). In this work, for the first time, we proved by a proteomic investigation that adipose-derived (AD)-MSC-secretome contains alpha-1-antitrypsin (AAT), the main elastase inhibitor in the lung, 72 other proteins involved in protease/antiprotease balance, and 46 proteins involved in the response to bacteria. By secretome fractionation, we proved that AAT is present both in the soluble fraction of secretome and aggregated and/or adsorbed on the surface of EVs, that can act as natural carriers promoting AAT in vivo stability and activity. To modulate secretome composition, AD-MSCs were cultured in different stimulating conditions, such as serum starvation or chemicals (IL-1β and/or dexamethasone) and the expression of the gene encoding for AAT was increased. By testing in vitro the anti-elastase activity of MSC-secretome, a dose-dependent effect was observed; chemical stimulation of AD-MSCs did not increase their secretome anti-elastase activity. Finally, MSC-secretome showed anti-bacterial activity on Gram-negative bacteria, especially for Klebsiellapneumoniae. These preliminary results, in addition to the already demonstrated immunomodulation, pave the way for the use of MSC-secretome in the treatment of AAT-deficiency lung diseases.
Collapse
Affiliation(s)
- Elia Bari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Ilaria Ferrarotti
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, F.lli Cervi 93, 20090 Segrate, Milan, Italy
| | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Valentina Barzon
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy
| | - Alice Balderacchi
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- PharmaExceed S.r.l., Piazza Castello, 19, 27100 Pavia, Italy.
| | - Rossana Rossi
- Institute for Biomedical Technologies, F.lli Cervi 93, 20090 Segrate, Milan, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, F.lli Cervi 93, 20090 Segrate, Milan, Italy
| | - Angelo Guido Corsico
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy
- PharmaExceed S.r.l., Piazza Castello, 19, 27100 Pavia, Italy
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
- PharmaExceed S.r.l., Piazza Castello, 19, 27100 Pavia, Italy
| |
Collapse
|
50
|
Seo Y, Shin TH, Kim HS. Current Strategies to Enhance Adipose Stem Cell Function: An Update. Int J Mol Sci 2019; 20:E3827. [PMID: 31387282 PMCID: PMC6696067 DOI: 10.3390/ijms20153827] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) emerged as a promising therapeutic tool targeting a variety of inflammatory disorders due to their multiple remarkable properties, such as superior immunomodulatory function and tissue-regenerative capacity. Although bone marrow (BM) is a dominant source for adult MSCs, increasing evidence suggests that adipose tissue-derived stem cells (ASCs), which can be easily obtained at a relatively high yield, have potent therapeutic advantages comparable with BM-MSCs. Despite its outstanding benefits in pre-clinical settings, the practical efficacy of ASCs remains controversial since clinical trials with ASC application often resulted in unsatisfactory outcomes. To overcome this challenge, scientists established several strategies to generate highly functional ASCs beyond the naïve cells, including (1) pre-conditioning of ASCs with various stimulants such as inflammatory agents, (2) genetic manipulation of ASCs and (3) modification of culture conditions with three-dimensional (3D) aggregate formation and hypoxic culture. Also, exosomes and other extracellular vesicles secreted from ASCs can be applied directly to recapitulate the beneficial performance of ASCs. This review summarizes the current strategies to improve the therapeutic features of ASCs for successful clinical implementation.
Collapse
Affiliation(s)
- Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung-Sik Kim
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|