1
|
Guo Y, Huang D, Sun J, Zhai Z, Xiao H, Hao W, Wang Q, Huang J, Jin M, Lu W. Radioactive Iodine-131 Therapy Reduced the Risk of MACEs and All-Cause Mortality in Elderly with Hyperthyroidism Combined with Type 2 Diabetes. Int J Gen Med 2024; 17:4281-4295. [PMID: 39324146 PMCID: PMC11423839 DOI: 10.2147/ijgm.s484910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
Aim This study aimed to assess the efficacy of antithyroid drugs (ATDs) and radioactive iodine-131 (RAI) therapies in reducing the risk of major adverse cardiovascular events (MACEs) and all-cause mortality in patients with hyperthyroidism complicated with type 2 diabetes mellitus (T2DM). Methods Between January 2013 and December 2021, 540 subjects were included in the analysis. All participants were followed up for 9 years, with a median of 54 months (2451 person-years). The subjects were categorized into two groups: the ATDs group (n = 414) and the RAI group (n = 126). According to the free triiodothyronine (FT3) tertiles, the patients receiving RAI were further grouped as follows: low-level (≤ 4.70 pmol/L, n = 42), moderate-level (4.70-12.98 pmol/L, n = 42), and high-level (≥ 12.98 pmol/L, n = 42). The efficacy of ATDs and RAI therapies in reducing the risk of MACEs and all-cause mortality was assessed. Results Of the 540 participants, 163 experienced MACEs (30.19%), 25 (15.34%) of whom died. Multivariate Cox regression analyses revealed that RAI was associated with a 38.5% lower risk of MACEs (P = 0.016) and a 77.1% lower risk of all-cause mortality (P = 0.046). Stratified analyses indicated that RAI had a protective effect on MACEs in patients aged ≥ 60 years (P = 0.001, P for interaction = 0.031) and patients with a duration of diabetes mellitus ≥ 6 years (P = 0.013, P for interaction = 0.002). Kaplan‒Meier analysis revealed a lower cumulative incidence of MACEs and all-cause mortality in the RAI group (log-rank, all P < 0.05). Moreover, the ROC curve suggested an optimal FT3 cut-off value of 5.4 pmol/mL for MACE (P < 0.001). Conclusion Our findings suggested that RAI therapy effectively reduced the risk of MACEs and all-cause mortality in elderly patients with hyperthyroidism combined with T2DM.
Collapse
Affiliation(s)
- Yanli Guo
- Department of Endocrinology, Heji Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Dinggui Huang
- Project Fund Supervision Center, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Jingxia Sun
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Zhenwei Zhai
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Hewei Xiao
- Scientific Research Cooperation Department, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Weiguang Hao
- Department of Endocrinology, Tongde Hospital, Yuncheng, Shanxi, 044000, People's Republic of China
| | - Qiu Wang
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Jianhao Huang
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Miaomiao Jin
- Department of Endocrinology, Heji Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Wensheng Lu
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| |
Collapse
|
2
|
Kim C, Park K. Association between seaweed intake and risk of type 2 diabetes mellitus: a prospective cohort study. Br J Nutr 2024; 131:1259-1267. [PMID: 38012847 PMCID: PMC10918518 DOI: 10.1017/s0007114523002751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
This study aimed to identify the longitudinal association between seaweed and type 2 diabetes mellitus (T2DM) in the Korean population. Data from 148 404 Korean adults aged 40 years and older without a history of T2DM, cardiovascular disease or cancer at baseline were obtained from the Korean Genome and Epidemiology Study data. The participants' seaweed intake was obtained using a validated semi-quantitative food frequency questionnaire, and the diagnosis of T2DM was surveyed through a self-reported questionnaire during follow-up. The hazard ratio (HR) and 95 % confidence interval (CI) for T2DM were calculated using the Cox proportional hazard regression, and the dose-response relationship was analysed using a restricted cubic spline regression. Participants had a mean follow-up period of 5 years. Participants with the highest seaweed intake had a 7 % lower risk of T2DM compared with the group with the lowest intake (95 % CI (0·87, 0·99)). Interestingly, this association was stronger in those with normal weight (HR: 0·88, 95 % CI (0·81, 0·95)), while no association was observed in participants with obesity. Spline regression revealed an inverse linear relationship between seaweed intake and T2DM risk in participants with normal weight, showing a trend where increased seaweed intake is related to lower instances of T2DM (Pfor nonlinearity = 0·48). Seaweed intake is inversely associated with the onset of T2DM in Korean adults with normal weight.
Collapse
Affiliation(s)
- Chaehyun Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Kyong Park
- Department of Food and Nutrition, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| |
Collapse
|
3
|
Beeby N, Baden AL, Higham JP. Urinary C-peptide and total triiodothyronine as energetic biomarkers for studies of lemurs. Am J Primatol 2023; 85:e23563. [PMID: 37855395 DOI: 10.1002/ajp.23563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023]
Abstract
Measuring energy balance and energy metabolism can provide crucial information for understanding the ecological and behavioral drivers of an animal's energetic and physiological condition. Both urinary C-peptide (uCP) of insulin and urinary total triiodothyronine (uTT3) have been validated as noninvasive biomarkers of energy balance and metabolic activity in haplorrhine primates. This study attempts to validate uCP and uTT3 measures in strepsirrhines, a phylogenetically distinct primate clade, using the ruffed lemur (genus Varecia) as a model. We experimentally manipulated the diet of captive black-and-white (Varecia variegata) and red (Varecia rubra) ruffed lemurs at Duke Lemur Center across a 4-week period. We collected urine samples from subjects (n = 5) each day during 1 week of control diet, 2 weeks of calorie-restricted diet and 1 week of refeeding, designed to temporarily reduce energy balance and metabolism. We also tested the outcome of filter paper as a storage method by comparing to controls (frozen at -20°C) to assess its suitability for studies of wild populations. We successfully measured uCP and uTT3 levels in frozen urine samples using commercial enzyme immunoassay kits and found that both biomarkers were excreted at lower concentrations (C-peptide: 1.35 ng/mL, 54% reduction; TT3: 1.5 ng/mL, 37.5% reduction) during calorie-restricted periods compared to normal diet periods. Filter paper recovery for uCP was 19%, though values were significantly positively correlated with frozen control samples. uTT3 could not be recovered at measurable concentrations using filter paper. These methods enable noninvasive measurement of energetic conditions in wild strepsirrhines and subsequent assessment of relationships between energy balance and numerous socioecological drivers in primate populations.
Collapse
Affiliation(s)
- Nina Beeby
- Department of Anthropology, The Graduate Center of City University of New York, New York, New York, USA
- Department of Anthropology, Hunter College of City University of New York, New York, New York, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Andrea L Baden
- Department of Anthropology, The Graduate Center of City University of New York, New York, New York, USA
- Department of Anthropology, Hunter College of City University of New York, New York, New York, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - James P Higham
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
- Department of Anthropology, New York University, New York, New York, USA
| |
Collapse
|
4
|
Liao S, Tan S, Jiang M, Wen J, Liu J, Cao J, Li M, Zhao Z. Temperature determines the shift of thermal neutral zone and influences thermogenic capacity in striped hamsters. Integr Zool 2023; 18:353-371. [PMID: 36056589 DOI: 10.1111/1749-4877.12678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermoneutral zone (TNZ) reflects the adaptation of mammals to their natural habitat. However, it remains unclear how TNZ shifts in response to variations in ambient temperature. To test the hypothesis that ambient temperature plays a key role in determining TNZ variations between seasons, we measured metabolic rate, body temperature, and cytochrome c oxidase (COX) activity of several visceral organs in striped hamsters (Cricetulus barabensis) either acclimated to semi-natural conditions over a year, or subjected to a gradual decrease in mean temperature from 30 ± 1°C to -15 ± 1°C. The TNZ range in striped hamsters differed seasonally, with a wider TNZ and a lower lower-critical temperature in winter compared to summer. The hamsters showed a considerable leftward shift of lower-critical temperature from 30°C to 20°C after the ambient temperature of acclimation from 30°C down to -15°C, whereas the upper-critical temperature of TNZ remained fixed at 32.5°C. The resting metabolic rate in thermoneutral zone (RMRt), nonshivering thermogenesis (NST), and COX activity of brown adipose tissue, liver, skeletal muscle, brain, and kidneys, increased significantly in hamsters acclimated at lower ambient temperatures. Following acute exposure to 5°C and -15°C, hamsters acclimated to 32.5°C had significantly lower maximal NST and lower serum thyroid tri-iodothyronine (T3 ) levels compared to those kept at 23°C. These findings suggest that acclimation to the upper-critical temperature of TNZ impairs the hamsters' thermogenic capacity to cope with extreme cold temperature. Reduced ambient temperature was mainly responsible for the leftward shift of TNZ in striped hamsters, which reflects the adaptation to cold environments.
Collapse
Affiliation(s)
- Shasha Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Song Tan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.,CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Meizhi Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jing Wen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jinsong Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ming Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhijun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.,Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| |
Collapse
|
5
|
Roth L, Johann K, Hönes GS, Oelkrug R, Wagner L, Hoffmann A, Krohn K, Moeller LC, Weiner J, Heiker JT, Klöting N, Tönjes A, Stumvoll M, Blüher M, Mittag J, Krause K. Thyroid hormones regulate Zfp423 expression in regionally distinct adipose depots through direct and cell-autonomous action. Cell Rep 2023; 42:112088. [PMID: 36753417 DOI: 10.1016/j.celrep.2023.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/05/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The hypothalamic pituitary thyroid axis is a major regulator of many differentiation processes, including adipose tissue. However, it remains unclear whether and how thyroid hormone (TH) signaling contributes to preadipocyte commitment and differentiation into mature adipocytes. Here, we show a cell-autonomous effect of TH on the transcriptional regulation of zinc finger protein 423 (Zfp423), an early adipogenic determination factor, in murine adipose depots. Mechanistically, binding of the unliganded TH receptor to a negative TH responsive element within the Zfp423 promoter activates transcriptional activity that is reversed upon TH binding. Zfp423 upregulation is associated with increased GFP+ preadipocyte recruitment in stromal vascular fraction isolated from white fat of hypothyroid Zfp423GFP reporter mice. RNA sequencing identified Zfp423-driven gene programs that are modulated in response to TH during adipogenic differentiation. Collectively, we identified Zfp423 as a key molecule that integrates TH signaling into the regulation of adipose tissue plasticity.
Collapse
Affiliation(s)
- Lisa Roth
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Kornelia Johann
- Institute for Endocrinology and Diabetes/Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Rebecca Oelkrug
- Institute for Endocrinology and Diabetes/Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Leonie Wagner
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Knut Krohn
- DNA Core Unit Leipzig, University of Leipzig, 04103 Leipzig, Germany
| | - Lars C Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Juliane Weiner
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Anke Tönjes
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Jens Mittag
- Institute for Endocrinology and Diabetes/Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764 Neuherberg, Germany.
| |
Collapse
|
6
|
Ercan Z, Dogru MS, Ertugrul NU, Yardimci A, Canpolat S. The Effect of Irisin on Thyroid Hormone Levels in Chronic Paroxetine-Treated Rats. Biol Trace Elem Res 2023; 201:810-815. [PMID: 35322355 DOI: 10.1007/s12011-022-03204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 01/21/2023]
Abstract
It is known that serotonin reuptake inhibitors (SSRIs), which are widely used in mood disorders, affect the hypothalamic-pituitary-thyroid axis activity. In this study, we investigated the effect of paroxetine, an SSRI, on thyroid hormone levels in rats. We also examined the role of irisin, a newly discovered potential regulatory hormone for metabolism, on paroxetine-induced changes. A total of 64 Sprague-Dawley female and male rats were randomly divided into four subgroups for each gender and treated as follows: sham-operated control (vehicle), paroxetine (treated with 20 mg/kg paroxetine by oral gavage), irisin (100 ng/kg/day for 28 days with mini-osmotic pumps), and paroxetine + irisin group (n = 8). Serum fasting free triiodothyronine (fT3) and free thyroxine (fT4) levels were measured by automated chemiluminescence method. Serum thyroid-stimulating hormone (TSH) level was determined with enzyme-linked immunosorbent analysis (ELISA). Compared to the sham control group (p < 0.05), the significantly reduced fT4 and TSH serum levels in paroxetine-treated male animals were markedly increased by subcutaneous irisin perfusion. fT3 levels significantly increased in both irisin (4.35 ± 0.17 pq/mL) and paroxetine + irisin groups (4.51 ± 0.19 pq/mL) compared to sham control (3.60 ± 0.23 pq/mL) and paroxetine groups (3.57 ± 0.12 pq/mL) (p < 0.05). It was observed that serum fT3, fT4, and TSH levels decreased in female animals receiving paroxetine compared to the sham control group. Subcutaneous administration of irisin increased these hormone levels. However, these changes were not statistically significant. These results suggested that irisin may play a role in the mechanism underlying the beneficial effects of exercise in preventing SSRI-related side effects by increasing thyroid hormone levels, which were decreased by paroxetine.
Collapse
Affiliation(s)
- Zubeyde Ercan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Firat University, Elazig, Turkey.
| | - Meryem Sedef Dogru
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | | | - Ahmet Yardimci
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Sinan Canpolat
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
7
|
Wang Y, Sun Y, Yang B, Wang Q, Kuang H. The management and metabolic characterization: hyperthyroidism and hypothyroidism. Neuropeptides 2023; 97:102308. [PMID: 36455479 DOI: 10.1016/j.npep.2022.102308] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Hyperthyroidism and hypothyroidism are common diseases resulting from thyroid dysfunction, and are simple to diagnose and treat. The traditional treatment for hypothyroidism is thyroid hormone replacement therapy. The traditional treatments for hyperthyroidism include antithyroid drug, iodine radiotherapy, and surgery. Thyroid disease can be fatal in severe cases if untreated. Current statistical reference ranges used for diagnosis based on relevant biochemical parameters have been debated, and insufficient treatment can result in long-term thyroid hormone deficiency, which is associated with increased risk of cardiovascular disease and persistent symptoms. In contrast, overtreatment can result in heart disease and osteoporosis, particularly in older people and pregnant women. Therefore, under- or over-treatment should be avoided and treatment regimens should be monitored closely. A significant proportion of patients who achieve biochemical treatment goals still complain of significant symptoms. Systematic literature review was performed through the Embase (Elsevier), PubMed and Web of Science databases, and studies summarized evidence regarding treatment and management of hypothyroidism and hyperthyroidism, and reviewed clinical practice guidelines. We also reviewed the latest research on the metabolic mechanisms of hyperthyroidism and hypothyroidism, which contributed to understanding of thyroid diseases in the clinic. A reliable algorithm is needed to management, assessment, and treatment patients with hyperthyroidism and hypothyroidism, which can not only improve management efficiency, but also providing a broad application. In addition, the thyroid disorder showed a lipid metabolism tissue specificity in the Ventromedial Hypothalamus, and effect oxidative stress and energy metabolism of whole body. This review summarizes an algorithm for thyroid disease and the latest pathogenesis that would be useful to generalist and subspecialty physicians and others providing care for patients with this condition.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - YanPing Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China.
| |
Collapse
|
8
|
Pileggi C, Hooks B, McPherson R, Dent R, Harper ME. Targeting skeletal muscle mitochondrial health in obesity. Clin Sci (Lond) 2022; 136:1081-1110. [PMID: 35892309 PMCID: PMC9334731 DOI: 10.1042/cs20210506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Metabolic demands of skeletal muscle are substantial and are characterized normally as highly flexible and with a large dynamic range. Skeletal muscle composition (e.g., fiber type and mitochondrial content) and metabolism (e.g., capacity to switch between fatty acid and glucose substrates) are altered in obesity, with some changes proceeding and some following the development of the disease. Nonetheless, there are marked interindividual differences in skeletal muscle composition and metabolism in obesity, some of which have been associated with obesity risk and weight loss capacity. In this review, we discuss related molecular mechanisms and how current and novel treatment strategies may enhance weight loss capacity, particularly in diet-resistant obesity.
Collapse
Affiliation(s)
- Chantal A. Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Breana G. Hooks
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Ruth McPherson
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Robert R.M. Dent
- Division of Endocrinology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
9
|
Sullivan AI, Potthoff MJ, Flippo KH. Tany-Seq: Integrated Analysis of the Mouse Tanycyte Transcriptome. Cells 2022; 11:1565. [PMID: 35563871 PMCID: PMC9104898 DOI: 10.3390/cells11091565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
The ability to maintain energy homeostasis is necessary for survival. Recently, an emerging role for ependymogial cells, which line the third ventricle in the hypothalamus in the regulation of energy homeostasis, has been appreciated. These cells are called tanycytes and are physically at the interface of brain communication with peripheral organs and have been proposed to mediate the transport of circulating hormones from the third ventricle into the parenchyma of the hypothalamus. Despite the important role tanycytes have been proposed to play in mediating communication from the periphery to the brain, we understand very little about the ontology and function of these cells due to their limited abundance and lack of ability to genetically target this cell population reliably. To overcome these hurdles, we integrated existing hypothalamic single cell RNA sequencing data, focusing on tanycytes, to allow for more in-depth characterization of tanycytic cell types and their putative functions. Overall, we expect this dataset to serve as a resource for the research community.
Collapse
Affiliation(s)
- Andrew I. Sullivan
- Department of Neuroscience and Pharmacology, College of Medicine, University of Iowa Carver, Iowa City, IA 52242, USA; (A.I.S.); (M.J.P.)
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew J. Potthoff
- Department of Neuroscience and Pharmacology, College of Medicine, University of Iowa Carver, Iowa City, IA 52242, USA; (A.I.S.); (M.J.P.)
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Kyle H. Flippo
- Department of Neuroscience and Pharmacology, College of Medicine, University of Iowa Carver, Iowa City, IA 52242, USA; (A.I.S.); (M.J.P.)
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Rodrigues-Pereira P, Andrade MN, Santos-Silva AP, Teixeira MP, Soares P, Graceli JB, de Carvalho DP, Dias GRM, Ferreira ACF, Miranda-Alves L. Subacute and low-dose tributyltin exposure disturbs the mammalian hypothalamus-pituitary-thyroid axis in a sex-dependent manner. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109279. [PMID: 35077874 DOI: 10.1016/j.cbpc.2022.109279] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/03/2022]
Abstract
Tributyltin (TBT) is an endocrine disruptor chemical (EDC) capable of altering the proper function of the hypothalamus-pituitary thyroid (HPT) axis. This study aimed to evaluate the subacute effects of TBT on the HPT axis of male and female rats. A dose of 100 ng/kg/day TBT was used in both sexes over a 15-day period, and the morphophysiology and gene expression of the HPT axis were assessed. TBT exposure increased the body weight in both sexes, while food efficiency increased - only in male rats. It was also possible to note alterations in the thyroid, with the presence of a stratified epithelium, cystic degeneration, and increased interstitial collagen deposition. A reduction in T3 and T4 levels was only observed in TBT male rats. A reduction in TSH levels was observed in TBT female rats. Evaluating mRNA expression, we observed a decrease in hepatic D1 and TRH mRNA levels in TBT female rats. An increase in D2 mRNA expression in the hypothalamus was observed in TBT male rats. Additionally, no significant changes in TRH or hepatic D1 mRNA expression in TBT male rats or in hypothalamic D1 and D2 mRNA expression in TBT female rats were observed. Thus, we can conclude that TBT has different toxicological effects on male and female rats by altering thyroid gland morphophysiology, leading to abnormal HPT axis function, and even at subacute and low doses, it may be involved in complex endocrine and metabolic disorders.
Collapse
Affiliation(s)
- Paula Rodrigues-Pereira
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcelle Novaes Andrade
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Ana Paula Santos-Silva
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Núcleo Interdisciplinar NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Pires Teixeira
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal; Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Jones Bernardes Graceli
- Laboratório de Toxicologia e Endocrinologia, Departamento de Morfologia, Universidade Federal do Espírito Santo, Brazil
| | - Denise Pires de Carvalho
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Glaecir Roseni Mundstock Dias
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Andrea Claudia Freitas Ferreira
- Núcleo Interdisciplinar NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Huo DL, Bao MH, Cao J, Zhao ZJ. The nonshivering thermogenesis of brown adipose tissue and fat mobilization of striped hamsters exposed to cycles of cold and warm temperatures. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2025931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- D.-L. Huo
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - M.-H. Bao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - J. Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Z.-J. Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Maushart CI, Senn JR, Loeliger RC, Siegenthaler J, Bur F, Fischer JGW, Betz MJ. Resting Energy Expenditure and Cold-induced Thermogenesis in Patients With Overt Hyperthyroidism. J Clin Endocrinol Metab 2022; 107:450-461. [PMID: 34570185 PMCID: PMC8764338 DOI: 10.1210/clinem/dgab706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Thyroid hormone (TH) is crucial for the adaptation to cold. OBJECTIVE To evaluate the effect of hyperthyroidism on resting energy expenditure (REE), cold-induced thermogenesis (CIT) and changes in body composition and weight. METHODS This was a prospective cohort study at the endocrine outpatient clinic of a tertiary referral center. Eighteen patients with overt hyperthyroidism were included. We measured REE during hyperthyroidism, after restoring euthyroid TH levels and after 3 months of normal thyroid function. In 14 of the 18 patients, energy expenditure (EE) was measured before and after a mild cold exposure of 2 hours and CIT was the difference between EEcold and EEwarm. Skin temperatures at 8 positions were recorded during the study visits. Body composition was assessed by dual X-ray absorption. RESULTS Free thyroxine (fT4) and free triiodothyronine (fT3) decreased significantly over time (fT4, P = .0003; fT3, P = .0001). REE corrected for lean body mass (LBM) decreased from 42 ± 6.7 kcal/24 hour/kg LBM in the hyperthyroid to 33 ± 4.4 kcal/24 hour/kg LBM (-21%, P < .0001 vs hyperthyroid) in the euthyroid state and 3 months later to 33 ± 5.2 kcal/24 hour/kg LBM (-21%, P = .0022 vs hyperthyroid, overall P < .0001). fT4 (P = .0001) and fT3 (P < 0.0001) were predictors of REE. CIT did not change from the hyperthyroid to the euthyroid state (P = .96). Hyperthyroidism led to increased skin temperature at warm ambient conditions but did not alter core body temperature, nor skin temperature after cold exposure. Weight regain and body composition were not influenced by REE and CIT during the hyperthyroid state. CONCLUSION CIT is not increased in patients with overt hyperthyroidism.
Collapse
Affiliation(s)
- Claudia I Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Jaël R Senn
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Rahel C Loeliger
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Judith Siegenthaler
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Fabienne Bur
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Jonas G W Fischer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Matthias J Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| |
Collapse
|
13
|
Noahsen P, Rex KF, Bülow Pedersen I, Mulvad G, Florian-Sørensen HC, Pedersen ML, Andersen S. Adaptation to a High Iodine Intake in Greenland Inuit Suggested by Thyroid Disease Pattern. Thyroid 2021; 31:1850-1857. [PMID: 34605660 DOI: 10.1089/thy.2021.0342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective: Arctic living is influenced by cold winters, short summers, and excessive iodine intake from the traditional Inuit diet providing for habitation of the Arctic for centuries. This is changing and we surveyed thyroid function in populations living in Greenland. Design: Population-based cross-sectional study. Methods: Data were collected in the capital city in West Greenland and in rural East Greenland. Information on lifestyle, dietary habits, and medical history was obtained using questionnaires. Thyrotropin, free thyroxine, free triiodothyronine, thyroglobulin, and thyroglobulin antibody were measured in serum, iodine, and creatinine in spot urine samples. Results: One percent of the Greenlandic population was invited and 535 participated with an overall participation rate of 95%. Iodine excretion was 225 μg/24 hours in East Greenland and 169 μg/24 hours among West Greenland Inuit. Hyperthyroidism occurred in 10.7% of West Greenlandic Inuit (men/women: 4.3%/16.3%) and 7.8% of East Greenlandic Inuit (3.8%/12.8%). Hypothyroidism was found in 2.7% in West Greenland (0.0%/5.0%) and 5.6% (5.6%/5.6%) in East Greenland. Conclusion: Hyperthyroidism was frequent among Inuit and the occurrence of hypothyroidism was low. The pattern of hyper- and hypothyroidism among Greenlandic Inuit with adequate iodine intake was comparable with those seen in populations with iodine deficiency. Inuit may thus have adapted to excessive iodine intake over centuries, causing a need for a higher iodine intake to prevent iodine deficiency disorders.
Collapse
Affiliation(s)
- Paneeraq Noahsen
- Department of Clinical Medicine, Arctic Health Research Centre, Aalborg University, Aalborg, Denmark
- Ilisimatusarfik, University of Greenland, Nuuk, Greenland
- National Board of Health, Nuuk, Greenland
| | - Karsten F Rex
- Department of Clinical Medicine, Arctic Health Research Centre, Aalborg University, Aalborg, Denmark
- Ilisimatusarfik, University of Greenland, Nuuk, Greenland
- Department of Internal Medicine, Queen Ingrid's Hospital, Nuuk, Greenland
| | | | - Gert Mulvad
- Ilisimatusarfik, University of Greenland, Nuuk, Greenland
- Primary Health Care Clinic, Nuuk, Greenland
| | | | | | - Stig Andersen
- Department of Clinical Medicine, Arctic Health Research Centre, Aalborg University, Aalborg, Denmark
- Ilisimatusarfik, University of Greenland, Nuuk, Greenland
- Department of Internal Medicine, Queen Ingrid's Hospital, Nuuk, Greenland
- Department of Geriatric Medicine, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
14
|
Weiner J, Roth L, Kranz M, Brust P, Boelen A, Klöting N, Heiker JT, Blüher M, Tönjes A, Pfluger PT, Stumvoll M, Mittag J, Krause K. Leptin counteracts hypothermia in hypothyroidism through its pyrexic effects and by stabilizing serum thyroid hormone levels. Mol Metab 2021; 54:101348. [PMID: 34610354 PMCID: PMC8556519 DOI: 10.1016/j.molmet.2021.101348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Thyroid hormones (TH) are essential for the homeostatic control of energy metabolism and the regulation of body temperature. The hypothalamic–pituitary–thyroid (HPT) axis is regulated by negative feedback mechanisms, ensuring that TH levels are maintained at a constant level. However, the feedback mechanisms underlying the resetting of the HPT axis regulation in the control of body temperature are still not fully understood. Here, we aimed to determine the thermoregulatory response in hypothyroid mice to different environmental temperatures and the underlying mechanisms. Methods Distinct thermogenic challenges were induced in hypothyroid female C57BL/6N and leptin-deficient ob/ob mice through housing at either room temperature or thermoneutrality. The thermogenic and metabolic effects were analyzed through metabolic chambers, 18F-FDG-PET/MRI, infrared thermography, metabolic profiling, histology, gene expression and Western blot analysis. Results In hypothyroid mice maintained at room temperature, high leptin serum levels induce a pyrexic effect leading to the stabilization of body temperature through brown adipose tissue thermogenesis and white adipose tissue browning. Housing at thermoneutrality leads to the normalization of leptin levels and a reduction of the central temperature set point, resulting in decreased thermogenesis in brown and white adipose tissue and skeletal muscle and a significant decline in body temperature. Furthermore, anapyrexia in hypothyroid leptin-deficient ob/ob mice indicates that besides its pyrexic actions, leptin exerts a stimulatory effect on the HPT axis to stabilize the remaining TH serum levels in hypothyroid mice. Conclusion This study led to the identification of a previously unknown endocrine loop in which leptin acts in concert with the HPT axis to stabilize body temperature in hypothyroid mice. Thyroid hormones are essential for the regulation of body temperature. Thyroid hormone-deficient (hypothyroid) mice show distinct leptin serum concentrations in response to changes in ambient housing temperature. High leptin serum levels confer a stimulatory effect on the hypothalamic-pituitary-thyroid axis. High leptin serum level prevents fall in body temperature in hypothyroid mice at room temperature through its pyrexic effects.
Collapse
Affiliation(s)
- Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Lisa Roth
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Mathias Kranz
- University Hospital of North Norway, Tromsø, Norway; Helmholtz-Zentrum Dresden-Rossendorf, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nora Klöting
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Zentrum München, Helmholtz Institute for Metabolic, Obesity and Vascular Research, Leipzig, Germany
| | - John T Heiker
- Helmholtz Zentrum München, Helmholtz Institute for Metabolic, Obesity and Vascular Research, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Zentrum München, Helmholtz Institute for Metabolic, Obesity and Vascular Research, Leipzig, Germany
| | - Anke Tönjes
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Paul T Pfluger
- Helmholtz Zentrum München, Research Unit NeuroBiology of Diabetes, Neuherberg, Germany; Technical University of Munich (TUM), TUM School of Medicine, NeuroBiology of Diabetes, Munich, Germany
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Zentrum München, Helmholtz Institute for Metabolic, Obesity and Vascular Research, Leipzig, Germany
| | - Jens Mittag
- Institute for Endocrinology & Diabetes/CBBM, University of Lübeck, Lübeck, Germany
| | - Kerstin Krause
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
15
|
Sun L, Goh HJ, Verma S, Govindharajulu P, Sadananthan SA, Michael N, Jadegoud Y, Henry CJ, Velan SS, Yeo PS, Lee Y, Lim BSP, Liew H, Chew CK, Quek TPL, Abdul Shakoor SAKK, Hoi WH, Chan SP, Chew DE, Dalan R, Leow MKS. Metabolic effects of brown fat in transitioning from hyperthyroidism to euthyroidism. Eur J Endocrinol 2021; 185:553-563. [PMID: 34342595 PMCID: PMC8428075 DOI: 10.1530/eje-21-0366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Brown adipose tissue (BAT) controls metabolic rate through thermogenesis. As its regulatory factors during the transition from hyperthyroidism to euthyroidism are not well established, our study investigated the relationships between supraclavicular brown adipose tissue (sBAT) activity and physiological/metabolic changes with changes in thyroid status. DESIGN Participants with newly diagnosed Graves' disease were recruited. A thionamide antithyroid drug (ATD) such as carbimazole (CMZ) or thiamazole (TMZ) was prescribed in every case. All underwent energy expenditure (EE) measurement and supraclavicular infrared thermography (IRT) within a chamber calorimeter, as well as 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography/magnetic resonance (PET/MR) imaging scanning, with clinical and biochemical parameters measured during hyperthyroidism and repeated in early euthyroidism. PET sBAT mean/maximum standardized uptake value (SUV mean/max), MR supraclavicular fat fraction (sFF) and mean temperature (Tscv) quantified sBAT activity. RESULTS Twenty-one (16 female/5 male) participants aged 39.5 ± 2.5 years completed the study. The average duration to attain euthyroidism was 28.6 ± 2.3 weeks. Eight participants were BAT-positive while 13 were BAT-negative. sFF increased with euthyroidism (72.3 ± 1.4% to 76.8 ± 1.4%; P < 0.01), but no changes were observed in PET SUV mean and Tscv. Significant changes in serum-free triiodothyronine (FT3) levels were related to BAT status (interaction P value = 0.04). FT3 concentration at hyperthyroid state was positively associated with sBAT PET SUV mean (r = 0.58, P = 0.01) and resting metabolic rate (RMR) (P < 0.01). CONCLUSION Hyperthyroidism does not consistently lead to a detectable increase in BAT activity. FT3 reduction during the transition to euthyroidism correlated with BAT activity.
Collapse
Affiliation(s)
- Lijuan Sun
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hui Jen Goh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sanjay Verma
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Priya Govindharajulu
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yaligar Jadegoud
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Christiani Jeyakumar Henry
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore
- Departments of Physiology & Medicine, National University of Singapore (NUS), Singapore
| | - Pei Shan Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Yingshan Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Brenda Su Ping Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Huiling Liew
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Chee Kian Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Timothy Peng Lim Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Shaikh A K K Abdul Shakoor
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Wai Han Hoi
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Siew Pang Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel Ek Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Rinkoo Dalan
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Melvin Khee Shing Leow
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Correspondence should be addressed to M K Leow Email
| |
Collapse
|
16
|
Smith LL. The Central Role of Hypothermia and Hyperactivity in Anorexia Nervosa: A Hypothesis. Front Behav Neurosci 2021; 15:700645. [PMID: 34421554 PMCID: PMC8377352 DOI: 10.3389/fnbeh.2021.700645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Typically, the development of anorexia nervosa (AN) is attributed to psycho-social causes. Several researchers have recently challenged this view and suggested that hypothermia and hyperactivity (HyAc) are central to AN. The following hypothesis will attempt to clarify their role in AN. Anorexia nervosa patients (ANs) have significantly lower core temperatures (Tcore) compared to healthy controls (HCs). This reduced temperature represents a reset Tcore that needs to be maintained. However, ANs cannot maintain this Tcore due primarily to a reduced basal metabolic rate (BMR); BMR usually supplies heat to sustain Tcore. Therefore, to generate the requisite heat, ANs revert to the behavioral-thermoregulatory strategy of HyAc. The majority of ANs (~89%) are reportedly HyAc. Surprisingly, engagement in HyAc is not motivated by a conscious awareness of low Tcore, but rather by the innocuous sensation of "cold- hands" frequently reported by ANs. That is, local hand-thermoreceptors signal the brain to initiate HyAc, which boosts perfusion of the hands and alters the sensation of "cold-discomfort" to one of "comfort." This "rewarding" consequence encourages repetition/habit formation. Simultaneously, hyperactivity increases the availability of heat to assist with the preservation of Tcore. Additionally, HyAc induces the synthesis of specific brain neuromodulators that suppress food intake and further promote HyAc; this outcome helps preserve low weight and perpetuates this vicious cycle. Based on this hypothesis and supported by rodent research, external heat availability should reduce the compulsion to be HyAc to thermoregulate. A reduction in HyAc should decrease the production of brain neuromodulators that suppress appetite. If verified, hopefully, this hypothesis will assist with the development of novel treatments to aid in the resolution of this intractable condition.
Collapse
Affiliation(s)
- Lucille Lakier Smith
- Human Performance Laboratory, Department of Kinesiology, School of Health Sciences, East Carolina University, Greenville, NC, United States
| |
Collapse
|
17
|
Little AG. Thyroid hormone regulation of thermal acclimation in ectotherms: Physiological mechanisms and ecoevolutionary implications. Mol Cell Endocrinol 2021; 530:111285. [PMID: 33891994 DOI: 10.1016/j.mce.2021.111285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/07/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
The pathways that regulate adaptive thermal plasticity in ectothermic vertebrates have received little attention relative to those in birds and mammals. However, there is increasing evidence that thyroid hormone represents a critical regulator of thermal plasticity in both ectothermic and endothermic vertebrates. In this review, I summarize the evidence for thyroid hormone-mediated thermal compensation responses in ectothermic vertebrates, with specific focus on effects on the whole animal, skeletal muscle, and cardiac muscle. Interestingly, these effects can differ wildly between focal tissues and species. I move on to discuss what the role of thyroid hormone in ectotherm thermal plasticity can reveal about stressor interactions and central vs. peripheral levels of thyroid hormone regulation. Lastly, I focus on the conserved nature of thyroid hormone signaling in animal thermal responses, with specific reference to the ectotherm → endotherm spectrum. I use this framework to highlight research avenues that will further resolve the evolutionary trajectory of thyroid hormone actions across animals. I hope to emphasize what thyroid hormone-mediated cold acclimation in a 3 cm fish can contribute to ongoing debates surrounding the impacts of stressor interactions, the potential costs of plasticity, the evolution of endothermy, and the impacts of global change.
Collapse
Affiliation(s)
- A G Little
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
18
|
Predictors of Improvement in Quality of Life When Treating Hypothyroidism. J Thyroid Res 2021; 2021:5577217. [PMID: 34194721 PMCID: PMC8214493 DOI: 10.1155/2021/5577217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/05/2021] [Indexed: 11/25/2022] Open
Abstract
Background Primary hypothyroidism is characterized by reduced quality of life (QoL). Although thyrotropin (TSH) is utilized as the primary indicator of thyroid disease and treatment adequacy, no simple correlation between QoL and TSH has been shown. This study aimed to investigate changes in clinically relevant predictors during initiation of levothyroxine (L-T4) therapy and their ability to predict improvement in QoL. Method Quality of life was measured in patients with newly diagnosed hypothyroidism, during the initial 12 months of L-T4 therapy, by the thyroid-related patient-reported outcome questionnaire, ThyPRO-39. The main outcome measures were the Composite QoL scale and the Tiredness and Emotional Susceptibility subscales (0–100, higher scores worse). Clinical variables (resting energy expenditure (REE), body composition, thyroid function, L-T4 dose, and cognitive function tests) were evaluated as predictors of improvement in QoL by univariate and multiple regression analysis. Results Thirty-seven hypothyroid patients with a baseline median TSH of 30 mU/l and a median QoL score of 29 were included. After twelve months of L-T4 treatment, the ThyPRO-39 QoL score had significantly improved to a median score of 14, while REE per kg fat-free mass (FFM) increased significantly from a mean of 26.5 to 28.7 kcal/day/kg (p < 0.001). Change in ThyPRO-39 was not associated with a change in REE/FFM (unstandardized coefficient (USC): 0.09 with confidence interval (CI): −1.93 to 2.11, p=0.93) but was positively predicted by baseline body mass index (BMI) (USC: 1.54 with CI: 0.59 to 2.49, (p=0.002), without association with weight loss (USC: 0.33 with CI: −1.21 to 1.27, p=0.96). Conclusion Improvement in QoL as measured by ThyPRO-39 after initiation of L-T4 therapy for hypothyroidism was not associated with changes in REE. High baseline BMI, but not weight loss during therapy, was associated with improvement in QoL. This trail is registered with www.Clinicaltrials.gov (registration no. https://clinicaltrials.gov/ct2/show/NCT02891668).
Collapse
|
19
|
Sadoughi B, Girard-Buttoz C, Engelhardt A, Heistermann M, Ostner J. Non-invasive assessment of metabolic responses to food restriction using urinary triiodothyronine and cortisol measurement in macaques. Gen Comp Endocrinol 2021; 306:113736. [PMID: 33610572 DOI: 10.1016/j.ygcen.2021.113736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Regulation of energy allocation and metabolic rate plays an important role in determining behavior and fitness in wild animals, calling for the validation of non-invasive markers of energetic condition. Recently, the thyroid hormone triiodothyronine (T3) has emerged as a promising marker as concentrations decrease to lower the metabolic rate during energetically challenging periods. However, it remains largely unclear whether T3 merely represents an alternative or provides additional information compared to other compounds involved in the regulation of energy acquisition and allocation, like cortisol and C-peptide, as few joint measurements have been conducted to date in non-invasively collected samples. We aimed to validate the non-invasive measurement of immunoreactive urinary total T3 (uTT3), in comparison to urinary cortisol (uCort) and urinary C-peptide (uCP), as a marker of metabolic response to variation in food intake in macaques, and to address a number of issues regarding the collection, storage and processing of samples which are important for application of uTT3 measurements under field conditions. We used daily samples and body mass measures from a prior food restriction-refeeding experiment over 4 weeks with six captive macaques and analyzed concentrations of uTT3 and uCort in samples collected prior to (fasting) and after morning feeding (non-fasting). Concentrations of uTT3 decreased in response to restriction in food supply and were also lower during weeks of food restriction compared to weeks of refeeding. Variation in uTT3 also correlated positively with variation in body mass and concentrations of uCP. As expected, uCort showed the reverse pattern, increasing during food restriction and decreasing following refeeding, but was not associated with variation in body mass. Generally, compared to fasting samples, concentrations were higher in post-morning feeding, i.e. non-fasting, samples for uTT3 but not uCort. Contamination of urine samples with fecal matter, but not soil, and exposure to UV light led to a decrease in uTT3. uTT3 was largely unaffected by repeated freeze-thaw cycles and by refrigeration for medium-term storage (2 days) but degraded substantially when stored at ambient temperature for the same period. In conclusion, uTT3 measurements inform on the effect of food intake and its associated metabolic response to variation in energetic status. Since uTT3 is reasonably robust to many issues associated with collection and storage of urine samples under field conditions, it is a promising biomarker for studies of energetic condition and basal metabolic rate in wild macaques.
Collapse
Affiliation(s)
- Baptiste Sadoughi
- Department of Behavioral Ecology, University of Goettingen, Göttingen, Germany; Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany; Leibniz ScienceCampus Primate Cognition, German Primate Center, Göttingen, Germany.
| | - Cédric Girard-Buttoz
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Antje Engelhardt
- Faculty of Science, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Julia Ostner
- Department of Behavioral Ecology, University of Goettingen, Göttingen, Germany; Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany; Leibniz ScienceCampus Primate Cognition, German Primate Center, Göttingen, Germany
| |
Collapse
|
20
|
Non-Invasive Measurement of Thyroid Hormones in Domestic Rabbits. Animals (Basel) 2021; 11:ani11051194. [PMID: 33919388 PMCID: PMC8143305 DOI: 10.3390/ani11051194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Thyroid hormones are essential for metabolism, energy homeostasis and reproduction. Hormones can be measured in various biological source materials: blood, urine, feces, saliva, hair, and others. The most common method for assessing hormone levels, including thyroid hormones, is a blood test, but this method has many limitations, especially in the diagnostic process of non-domestic animals. Non-invasive thyroid hormone measurement methods have been developed in the last decade. The aim of our study was to verify the usefulness of thyroid hormone analysis (total thyroxine, total triiodothyronine, free thyroxine, free triiodothyronine) in urine and feces of the domestic rabbit, comparing them with the serum. Results suggest that free triiodothyronine can be accurately and reliably measured in the feces and urine of the domestic rabbit. Abstract Thyroid hormones are essential for metabolism, energy homeostasis and reproduction. Hormones can be measured in various biological source materials: blood, feces, urine, saliva and others. The aim of our study was to verify usefulness of thyroid hormone analysis in the urine and feces of the domestic rabbit (Oryctolagus cuniculus f. domesticus), comparing them with the serum analyses. Samples were collected from 27 does in the age of 12–14 weeks. Total thyroxine (tT4), total triiodothyronine (tT3), free thyroxine (fT4) and free triiodothyronine (fT3) were tested using the radioimmunological method in serum, feces and urine. The highest concentration of tT4 was found in feces (104.72 ± 59.52 nmol/mg) and the lowest in urine (3.03 ± 3.11 nmol/mL). The highest tT3 concentration was found in blood serum (3.19 ± 0.64 nmol/L) and the lowest in urine (0.31 ± 0.43 nmol/L). The highest concentration of fT4 was observed in feces (43.71 ± 4.79 pmol/mg) and the lowest in blood serum (14.97 ± 3.42 pmol/L). The statistically highest concentration of fT3 (28.56 ± 20.79 pmol/L) was found in urine, whereas the lowest concentration of this hormone was found in feces (3.27 ± 1.33 pmol/mg). There was a positive and statistically significant correlation between serum and urine fT3 (r = 0.76) and a high positive correlation between serum and feces fT3 concentration (r = 0.62). Correlations between concentrations of other thyroid hormones between serum, urine and feces were found to be insignificant. The results suggest that fT3 can be accurately and reliably measured in the feces and urine of the domestic rabbit.
Collapse
|
21
|
The Unity of Redox and Structural Remodeling of Brown Adipose Tissue in Hypothyroidism. Antioxidants (Basel) 2021; 10:antiox10040591. [PMID: 33921249 PMCID: PMC8068806 DOI: 10.3390/antiox10040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Brown adipose tissue (BAT) is important for maintaining whole-body metabolic and energy homeostasis. However, the effects of hypothyroidism, one of the most common diseases worldwide, which increases the risk of several metabolic disorders, on BAT redox and metabolic homeostasis remain mostly unknown. We aimed to investigate the dynamics of protein expression, enzyme activity, and localization of antioxidant defense (AD) enzymes in rat interscapular BAT upon induction of hypothyroidism by antithyroid drug methimazole for 7, 15, and 21 days. Our results showed an increased protein expression of CuZn- and Mn-superoxide dismutase, catalase, glutamyl-cysteine ligase, thioredoxin, total glutathione content, and activity of catalase and thioredoxin reductase in hypothyroid rats, compared to euthyroid control. Concomitant with the increase in AD, newly established nuclear, mitochondrial, and peroxisomal localization of AD enzymes was found. Hypothyroidism also potentiated associations between mitochondria, peroxisomes, and lipid bodies, creating specific structural-functional units. Moreover, hypothyroidism induced protein expression and nuclear translocation of a master regulator of redox-metabolic homeostasis, nuclear factor erythroid 2-related factor 2 (Nrf2), and an increased amount of 4-hydroxynonenal (4-HNE) protein adducts. The results indicate that spatiotemporal overlap in the remodeling of AD is orchestrated by Nrf2, implicating the role of 4-HNE in this process and suggesting the potential mechanism of redox-structural remodeling during BAT adaptation in hypothyroidism.
Collapse
|
22
|
Neuroendocrine control of appetite and metabolism. Exp Mol Med 2021; 53:505-516. [PMID: 33837263 PMCID: PMC8102538 DOI: 10.1038/s12276-021-00597-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
Body homeostasis is predominantly controlled by hormones secreted by endocrine organs. The central nervous system contains several important endocrine structures, including the hypothalamic-pituitary axis. Conventionally, neurohormones released by the hypothalamus and the pituitary gland (hypophysis) have received much attention owing to the unique functions of the end hormones released by their target peripheral organs (e.g., glucocorticoids released by the adrenal glands). Recent advances in mouse genetics have revealed several important metabolic functions of hypothalamic neurohormone-expressing cells, many of which are not readily explained by the action of the corresponding classical downstream hormones. Notably, the newly identified functions are better explained by the action of conventional neurotransmitters (e.g., glutamate and GABA) that constitute a neuronal circuit. In this review, we discuss the regulation of appetite and metabolism by hypothalamic neurohormone-expressing cells, with a focus on the distinct contributions of neurohormones and neurotransmitters released by these neurons.
Collapse
|
23
|
Abstract
Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Yun-Bo Shi, Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 6A82, MSC 4480, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Fu J, Zhang L, An Y, Duan Y, Liu J, Wang G. Association Between Body Mass Index and Thyroid Function in Euthyroid Chinese Adults. Med Sci Monit 2021; 27:e930865. [PMID: 33739959 PMCID: PMC7986724 DOI: 10.12659/msm.930865] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Obesity can influence thyroid function through multiple routes, even in people who are euthyroid. The correlation between weight and thyroid function is a matter of debate. The present study investigated the relationship between body weight and thyroid function in euthyroid Chinese adults. MATERIAL AND METHODS A total of 1564 participants with serum thyrotropin (TSH) and thyroid hormone levels within the reference range were included. All of them were tested for thyroid function parameters and categorized, based on body mass index (BMI), into 3 groups: normal weight, overweight, and obese. The effects of BMI on thyroid function were examined using linear (continuous values) and logistic (dichotomous levels according to medians or means) regression and controlling for age and sex. RESULTS There were significant differences in free triiodothyronine (FT3) levels and FT3/free thyroxine (FT4) ratios among participants who were normal weight, overweight, and obese (both P<0.001). Multivariable regression analysis (P<0.001) showed that BMI was positively associated with FT3 levels and FT3/FT4 ratios. Compared with the normal weight group, the patients who were overweight or obese had significantly higher FT3 levels and FT3/FT4 ratios that were higher than average, according to logistic regression analyses. CONCLUSIONS We found that Chinese adults who are obese may have higher FT3 levels and FT3/FT4 ratios than those who are of normal weight, even if their thyroid function values are within the normal range.
Collapse
Affiliation(s)
- Jing Fu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Lin Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Yu An
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Yan Duan
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jia Liu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Guang Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland).,Department of Endocrinology, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China (mainland)
| |
Collapse
|
25
|
Yao Z, Ding X, Gao X, Yang N, Jia Y, Liu J, Wang G. Irisin as a Potential Biomarker Associated with Myocardial Injuries in Patients with Severe Hypothyroidism. Int J Endocrinol 2021; 2021:3116068. [PMID: 34840567 PMCID: PMC8616683 DOI: 10.1155/2021/3116068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Irisin, a novel myokine, has recently been considered to produce a cardioprotective effect. Potential biomarkers for myocardial injuries in patients with severe hypothyroidism have yet to be identified. We aimed to investigate whether serum irisin may serve as a promising biomarker for early detecting the myocardial injuries in patients with severe hypothyroidism. METHODS This cross-sectional study comprised 25 newly diagnosed drug-naive patients with severe primary hypothyroidism and 17 age- and sex-matched healthy controls. Circulating irisin levels and cardiac magnetic resonance (CMR) were evaluated in each participant. Left ventricular (LV) myocardial injuries were detected by CMR-based T1 mapping technique using a modified look-locker inversion recovery (MOLLI) sequence, which is quantified as native T1 values. RESULTS Compared with healthy controls, the severe hypothyroidism group had significantly lower levels of serum irisin, especially those with pericardial effusion (P < 0.05). The severe hypothyroidism subjects exhibited lower peak filling rates (PFRs) and higher native myocardial T1 values than controls (P < 0.05). Additionally, the ROC analysis displayed that the sensitivity and specificity of serum irisin for diagnosing pericardial effusion in patients with severe hypothyroidism were 73.3% and 100.0%, respectively. The AUC was 0.920 (0.861-1.000) (P < 0.001). The cutoff value was 36.94 ng/mL. Moreover, the results in subgroup analysis revealed that the native T1 values of the low-irisin group were significantly higher than that of the high-irisin group (P < 0.05). According to multivariate linear regression analysis, serum irisin concentrations were negatively and independently correlated with native myocardial T1 values after adjustment for age, sex, and other conventional confounding factors (β = -1.473, P < 0.05). CONCLUSIONS Irisin may be a potential biomarker for predicting myocardial injuries in patients with severe hypothyroidism.
Collapse
Affiliation(s)
- Zhi Yao
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaoyu Ding
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xia Gao
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ning Yang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yumei Jia
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
26
|
Na W, Fu L, Luu N, Shi YB. Thyroid hormone directly activates mitochondrial fission process 1 (Mtfp1) gene transcription during adult intestinal stem cell development and proliferation in Xenopus tropicalis. Gen Comp Endocrinol 2020; 299:113590. [PMID: 32827515 DOI: 10.1016/j.ygcen.2020.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (T3) regulates vertebrate development via T3 receptors (TRs). T3 level peaks during postembryonic development, a period around birth in mammals or metamorphosis in anurans. Anuran metamorphosis offers many advantages for studying T3 and TR function in vivo largely because of its total dependent on T3 and the dramatic changes affecting essentially all organs/tissues that can be easily manipulated. Earlier studies have shown that TRs are both necessary and sufficient for mediating the metamorphic effects of T3. Many candidate TR target genes have been identified during Xenopus tropicalis intestinal metamorphosis, a process that involves apoptotic degeneration of most of the larval epithelial cells and de novo development of adult epithelial stem cells. Among these putative TR target genes is mitochondrial fission process 1 (Mtfp1), a nuclear-encoded mitochondrial gene. Here, we report that Mtfp1gene expression peaks in the intestine during both natural and T3-induced metamorphosis when adult epithelial stem cell development and proliferation take place. Furthermore, we show that Mtfp1 contains a T3-response element within the first intron that is bound by TR to mediate T3-induced local histone H3K79 methylation and RNA polymerase recruitment in the intestine during metamorphosis. Additionally, we demonstrate that the Mtfp1 promoter can be activated by T3 in a reconstituted frog oocyte system in vivo and that this activation is dependent on the intronic TRE. These findings suggest that T3 activates Mtfp1 gene directly via the intronic TRE and that Mtfp1 in turn facilitate adult intestinal stem cell development/proliferation by affecting mitochondrial fission process.
Collapse
Affiliation(s)
- Wonho Na
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Ocobock C, Soppela P, Turunen MT, Stenbäck V, Herzig K. Elevated resting metabolic rates among female, but not male, reindeer herders from subarctic Finland. Am J Hum Biol 2020; 32:e23432. [DOI: 10.1002/ajhb.23432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Cara Ocobock
- Department of Anthropology University of Notre Dame South Bend Indiana USA
- SUNY University at Albany Albany New York USA
| | - Päivi Soppela
- Arctic Centre University of Lapland Rovaniemi Finland
| | | | - Ville Stenbäck
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine Oulu University Hospital Oulu Finland
- Biocenter Oulu Oulu Finland
| | - Karl‐Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine Oulu University Hospital Oulu Finland
- Department of Gastroenterology and Metabolism Poznan University of Medical Sciences Poznan Poland
| |
Collapse
|
28
|
Sun L, Goh HJ, Govindharajulu P, Sun L, Henry CJ, Leow MKS. A Feedforward Loop within the Thyroid-Brown Fat Axis Facilitates Thermoregulation. Sci Rep 2020; 10:9661. [PMID: 32541662 PMCID: PMC7296032 DOI: 10.1038/s41598-020-66697-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/26/2020] [Indexed: 11/22/2022] Open
Abstract
Thyroid hormones (TH) control brown adipose tissue (BAT) activation and differentiation, but their subsequent homeostatic response following BAT activation remains obscure. This study aimed to investigate the relationship between cold- and capsinoids-induced BAT activation and TH changes between baseline and 2 hours post-intervention. Nineteen healthy subjects underwent 18F-fluorodeoxyglucose positron-emission tomography (18F-FDG PET) and whole-body calorimetry (WBC) after 2 hours of cold exposure (~14.5 °C) or capsinoids ingestion (12 mg) in a crossover design. Standardized uptake values (SUV-mean) of the region of interest and energy expenditure (EE) were measured. Plasma free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) were measured before and 2 hours after each intervention. Subjects were divided into groups based on the presence (n = 12) or absence (n = 7) of BAT after cold exposure. 12 of 19 subjects were classified as BAT-positive. Subjects with BAT had higher baseline FT3 concentration, baseline FT3/FT4 ratio compared with subjects without BAT. Controlling for body fat percentage, FT3 concentration at baseline was associated with EE change from baseline after cold exposure (P = 0.037) and capsinoids (P = 0.047). Plasma FT4 level significantly increased associated with reciprocal decline in TSH after acute cold exposure and capsinoids independently of subject and treatment status. Circulating FT3 was higher in BAT-positive subjects and was a stronger predictor of EE changes after cold exposure and capsinoids in healthy humans. BAT activation elevates plasma FT4 acutely and may contribute towards augmentation of thermogenesis via a positive feedback response.
Collapse
Affiliation(s)
- Lijuan Sun
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hui Jen Goh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Priya Govindharajulu
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Christiani Jeyakumar Henry
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, Singapore. .,Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore, Singapore.
| |
Collapse
|
29
|
Direct activation of tRNA methyltransferase-like 1 (Mettl1) gene by thyroid hormone receptor implicates a role in adult intestinal stem cell development and proliferation during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:60. [PMID: 32391142 PMCID: PMC7197180 DOI: 10.1186/s13578-020-00423-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Thyroid hormone (T3) plays an important role in vertebrate development. Compared to the postembryonic development of uterus-enclosed mammalian embryos, T3-dependent amphibian metamorphosis is advantageous for studying the function of T3 and T3 receptors (TRs) during vertebrate development. The effects of T3 on the metamorphosis of anurans such as Xenopus tropicalis is known to be mediated by TRs. Many putative TR target genes have been identified previously. Among them is the tRNA methyltransferase Mettl1. Results We studied the regulation of Mettl1 gene by T3 during intestinal metamorphosis, a process involves near complete degeneration of the larval epithelial cells via apoptosis and de novo formation of adult epithelial stem cells and their subsequent proliferation and differentiation. We observed that Mettl1 was activated by T3 in the intestine during both natural and T3-induced metamorphosis and that its mRNA level peaks at the climax of intestinal remodeling. We further showed that Mettl1 promoter could be activated by liganded TR via a T3 response element upstream of the transcription start site in vivo. More importantly, we found that TR binding to the TRE region correlated with the increase in the level of H3K79 methylation, a transcription activation histone mark, and the recruitment of RNA polymerase II by T3 during metamorphosis. Conclusions Our findings suggest that Mettl1 is activated by liganded TR directly at the transcriptional level via the TRE in the promoter region in the intestine during metamorphosis. Mettl1 in turn regulate target tRNAs to affect translation, thus facilitating stem cell formation and/or proliferation during intestinal remodeling.
Collapse
|
30
|
Panveloski-Costa AC, Kuwabara WMT, Munhoz AC, Lucena CF, Curi R, Carpinelli AR, Nunes MT. The insulin resistance is reversed by exogenous 3,5,3'triiodothyronine in type 2 diabetic Goto-Kakizaki rats by an inflammatory-independent pathway. Endocrine 2020; 68:287-295. [PMID: 31997150 DOI: 10.1007/s12020-020-02208-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/17/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Diabetes mellitus (DM) has a multifactorial etiology that imparts a particular challenge to effective pharmacotherapy. Thyroid hormone actions have demonstrated beneficial effects in diabetic as well as obese rats. In both conditions, inflammation status plays a crucial role in the development of insulin resistance. Taking this into consideration, the present study aimed to demonstrate another possible pathway of thyroid hormone action on insulin sensitivity in a spontaneous type 2 diabetic rat model: the Goto-Kakizaki (GK) rats. GK animals present all typical hallmarks of type 2 DM (T2DM), except the usual peripheric inflammatory condition, observed in the other T2DM animal models. METHODS GK rats were treated or not with 3,5,3'triiodothyronine (T3). Insulin sensitivity, glucose tolerance, and proteins related to glucose uptake and utilization were evaluated in the skeletal muscle, white adipose tissue, and liver. RESULTS GK rats T3-treated presented enhanced insulin sensitivity, increased GLUT-4 content in the white adipose tissue and skeletal muscle, and increased hexokinase and citrate synthase content in skeletal muscle. Both non-treated and T3-treated GK rats did not present alterations in cytokine content in white adipose tissue, skeletal muscle, liver, and serum. CONCLUSIONS These results indicate that T3 improves insulin sensitivity in diabetic rats by a novel inflammatory-independent mechanism.
Collapse
Affiliation(s)
- Ana Carolina Panveloski-Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | - Ana Cláudia Munhoz
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila Ferraz Lucena
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinar Health Science Post-Graduate Program, Cruzeiro do Sul University, São Paulo, Brazil
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
de Oliveira M, Mathias LS, Rodrigues BM, Mariani BG, Graceli JB, De Sibio MT, Castro Olimpio RM, Fontes Moretto FC, Deprá IC, Nogueira CR. The roles of triiodothyronine and irisin in improving the lipid profile and directing the browning of human adipose subcutaneous cells. Mol Cell Endocrinol 2020; 506:110744. [PMID: 32027943 DOI: 10.1016/j.mce.2020.110744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Triiodothyronine (T3) and irisin (I) can modulate metabolic status, increase heat production, and promote differentiation of white adipose tissue (WAT) into brown adipose tissue (BAT). Herein, human subcutaneous white adipocytes were treated with 10 nM T3 or 20 nM I for 24 h to evaluate intracellular lipid accumulation, triglyceride, and glycerol levels, oxidative stress, DNA damage, and protein levels of uncoupling protein 1 (UCP1), adiponectin, leptin, peroxisome proliferator-activated receptor gamma (PPARγ), and fibronectin type III domain-containing protein 5 (FNDC5). T3 and irisin improved UCP1 production, lipid profile, oxidative stress, and DNA damage. T3 elevated adiponectin and leptin levels with a concomitant decrease in PPARy and FNDC5 levels. However, irisin did not alter adipokine, PPARy, and FNDC5 levels. The results indicate that T3 may be used to increase leptin and adiponectin levels to improve insulin sensitivity, and irisin may be used to prevent obesity or maintain weight due to its impact on the lipid profile without altering adipokine levels.
Collapse
Affiliation(s)
- Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Lucas Solla Mathias
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Moretto Rodrigues
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bianca Gonçalves Mariani
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Regiane Marques Castro Olimpio
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Igor Carvalho Deprá
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Célia Regina Nogueira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
32
|
Shibata Y, Tanizaki Y, Shi YB. Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:46. [PMID: 32231780 PMCID: PMC7099810 DOI: 10.1186/s13578-020-00411-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thyroid hormone (T3) is critical for development in all vertebrates. The mechanism underlying T3 effect has been difficult to study due to the uterus-enclosed nature of mammalian embryos. Anuran metamorphosis, which is dependent on T3 but independent of maternal influence, is an excellent model to study the roles of T3 and its receptors (TRs) during vertebrate development. We and others have reported various effects of TR knockout (TRα and TRβ) during Xenopus tropicalis development. However, these studies were largely focused on external morphology. Results We have generated TRβ knockout animals containing an out-frame-mutation of 5 base deletion by using the CRISPR/Cas9 system and observed that TRβ knockout does not affect premetamorphic tadpole development. We have found that the basal expression of direct T3-inducible genes is increased but their upregulation by T3 is reduced in the intestine of premetamorphic homozygous TRβ knockout animals, accompanied by reduced target binding by TR. More importantly, we have observed reduced adult stem cell proliferation and larval epithelial apoptosis in the intestine during T3-induced metamorphosis. Conclusions Our data suggest that TRβ plays a critical role in intestinal remodeling during metamorphosis.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
33
|
Ding J, Li J, Yang F, Gu N. A Multi-Channel System for Temperature Sensing of Neural Stem Cells in Adherent Culture. Anal Chem 2020; 92:3270-3275. [PMID: 32022536 DOI: 10.1021/acs.analchem.9b05134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural stem cells (NSCs) can gradually proliferate or differentiate during adherent culture. It is found that stem cells have different temperature characteristics in different physiological states. In order to detect the temperature of NSCs during adherent culture, in this study, we have designed a temperature monitoring system, in which a thin-film platinum resistor was used as the sensor. The NSCs were seeded on the sensor, and the data acquisition device was connected to the host computer via Bluetooth. Results indicate that there are about 5000 cells attached on the surface of each sensor, and the cell viability is maintained at about 90% after 24 h culture. An electrostatic force microscope (EFM) result proves that there is no electric field on the sensor surface to influence the activity of NSCs. This system can work continuously for more than 24 h with 0.05 °C detection sensitivity. Furthermore, the significant temperature change of NSCs is observed when stimulated by different concentrations of thyroid hormone, which demonstrates that the temperature change related to cell activity. Therefore, by detecting the temperature of the cell population, the fabricated system can provide reference information for studying the metabolic state of NSCs, as well as physiological responses of cells under various conditions in biomedical applications.
Collapse
Affiliation(s)
- Jiaxu Ding
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Jing Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
34
|
Deschner T, Hohmann G, Ortmann S, Schaebs FS, Behringer V. Urinary total T3 levels as a method to monitor metabolic changes in relation to variation in caloric intake in captive bonobos (Pan paniscus). Gen Comp Endocrinol 2020; 285:113290. [PMID: 31563646 DOI: 10.1016/j.ygcen.2019.113290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 01/03/2023]
Abstract
Monitoring metabolic activity in wild living animals has become of particular interest in the field of ecological research. Methods for the repeated non-invasive sampling of individuals are needed. Thyroid hormones (TH) are involved in the regulation of metabolic activity, and their measurement can be used as a proxy to monitor metabolic changes. During periods of low energy intake, serum TH levels are reduced, leading to a decrease in metabolic activity. Using urine samples collected during a food restriction experiment in captive bonobos we validated a total triiodthyronin (TT3) enzyme immunoassay (EIA) for the monitoring of metabolic changes. We found that the majority of immune reactivity of the assay in the urine samples could be explained through immunoreactivity to T3. Furthermore, urinary T3 was stable through repeated freeze-thaw cycles but prolonged exposure to room temperature lead to degradation. Most importantly, we found that for all animals urinary total T3 levels were higher when more digestible energy was consumed. We concluded that urinary total T3 measurements are a suitable method for monitoring metabolic changes in bonobos and potentially in a wide range of animal species.
Collapse
Affiliation(s)
- Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Gottfried Hohmann
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Sylvia Ortmann
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Franka S Schaebs
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Verena Behringer
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
35
|
Davis JD, Kovar AJ. The Cardiovascular Effects of Subclinical Thyroid Dysfunction. J Cardiothorac Vasc Anesth 2020; 34:35-38. [DOI: 10.1053/j.jvca.2019.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023]
|
36
|
Hayashi A, Takano K, Kawakami Y, Hitomi M, Ohata Y, Suzuki A, Kamata Y, Shichiri M. Short-term Change in Resting Energy Expenditure and Body Compositions in Therapeutic Process for Graves' Disease. Intern Med 2020; 59:1827-1833. [PMID: 32741892 PMCID: PMC7474983 DOI: 10.2169/internalmedicine.4462-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective In the medical treatment of Graves' disease, we sometimes encounter patients who gain weight after the onset of the disease. To estimate the energy required during the course of treatment when hyperthyroidism ameliorates, we measured the resting energy expenditure (REE) and body composition in patients with Graves' disease before and during treatment in the short-term. Methods Twenty patients with newly diagnosed Graves' disease were enrolled, and our REE data of 19 healthy volunteers were used. The REE was measured by a metabolic analyzer, and the basal energy expenditure (BEE) was estimated by the Harris-Benedict formula. The body composition, including body weight, fat mass (FM), muscle mass (MM) and lean body mass (LBM), were measured by a multi-frequency body composition analyzer. We tailored the nutritional guidance based on the measured REE. Results Serum thyrotropin levels were significantly increased at three and six months. Serum free thyroxine, free triiodothyronine and REE values were significantly decreased at one, three and six months. The REE/BEE ratio was 1.58±0.28 at the onset and significantly declined to 1.34±0.34, 1.06±0.19 and 1.01±0.16 at 1, 3 and 6 months, respectively. Body weight, MM and LBM significantly increased at three and six months. Conclusion The REE significantly decreased during treatment of Graves' disease. The decline was evident as early as one month after treatment. The REE after treatment was lower than in healthy volunteers, which may lead to weight gain. These data suggest that appropriate nutritional guidance is necessary with short-term treatment before the body weight normalizes in order to prevent an overweight condition and the emergence of metabolic disorders.
Collapse
Affiliation(s)
- Akinori Hayashi
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Japan
| | - Koji Takano
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Japan
| | - Yuko Kawakami
- Department of Nutrition, Kitasato University Hospital, Japan
| | - Mamiko Hitomi
- Department of Nutrition, Kitasato University Hospital, Japan
| | - Yasuhiro Ohata
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Japan
| | - Agena Suzuki
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Japan
| | - Yuji Kamata
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Japan
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Japan
| |
Collapse
|
37
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
38
|
Wang S, Pan MH, Hung WL, Tung YC, Ho CT. From white to beige adipocytes: therapeutic potential of dietary molecules against obesity and their molecular mechanisms. Food Funct 2019; 10:1263-1279. [PMID: 30735224 DOI: 10.1039/c8fo02154f] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global incidence of obesity and its complications continue to rise along with a demand for novel therapeutic approaches. In addition to classic brown adipose tissue (BAT), the formation of brown-like adipocytes called beige adipocytes, within white adipose tissue (WAT), has attracted much attention as a therapeutic target due to its inducible features when stimulated, resulting in the dissipation of extra energy as heat. There are various dietary agents that are able to modulate the beige-development process by interacting with critical molecular signaling cascades, leading to the enhancement of thermogenesis. Although challenges still remain regarding the origin of the beige adipocytes, the crosstalk with activation of BAT and induction of the beiging of white fat may provide attractive potential strategies for management of obesity.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | | | | | | | | |
Collapse
|
39
|
Beige Fat, Adaptive Thermogenesis, and Its Regulation by Exercise and Thyroid Hormone. BIOLOGY 2019; 8:biology8030057. [PMID: 31370146 PMCID: PMC6783838 DOI: 10.3390/biology8030057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 01/01/2023]
Abstract
While it is now understood that the proper expansion of adipose tissue is critically important for metabolic homeostasis, it is also appreciated that adipose tissues perform far more functions than simply maintaining energy balance. Adipose tissue performs endocrine functions, secreting hormones or adipokines that affect the regulation of extra-adipose tissues, and, under certain conditions, can also be major contributors to energy expenditure and the systemic metabolic rate via the activation of thermogenesis. Adipose thermogenesis takes place in brown and beige adipocytes. While brown adipocytes have been relatively well studied, the study of beige adipocytes has only recently become an area of considerable exploration. Numerous suggestions have been made that beige adipocytes can elicit beneficial metabolic effects on body weight, insulin sensitivity, and lipid levels. However, the potential impact of beige adipocyte thermogenesis on systemic metabolism is not yet clear and an understanding of beige adipocyte development and regulation is also limited. This review will highlight our current understanding of beige adipocytes and select factors that have been reported to elicit the development and activation of thermogenesis in beige cells, with a focus on factors that may represent a link between exercise and 'beiging', as well as the role that thyroid hormone signaling plays in beige adipocyte regulation.
Collapse
|
40
|
Jing X, Zhou J, Wang W, Degen A, Guo Y, Kang J, Xu W, Liu P, Yang C, Shi F, Yan Q, Ding L, Shang Z, Fievez V, Long R. Tibetan sheep are better able to cope with low energy intake than Small-tailed Han sheep due to lower maintenance energy requirements and higher nutrient digestibilities. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Cappola AR, Desai AS, Medici M, Cooper LS, Egan D, Sopko G, Fishman GI, Goldman S, Cooper DS, Mora S, Kudenchuk PJ, Hollenberg AN, McDonald CL, Ladenson PW. Thyroid and Cardiovascular Disease: Research Agenda for Enhancing Knowledge, Prevention, and Treatment. Circulation 2019; 139:2892-2909. [PMID: 31081673 PMCID: PMC6851449 DOI: 10.1161/circulationaha.118.036859] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thyroid hormones have long been known to have a range of effects on the cardiovascular system. However, significant knowledge gaps exist concerning the precise molecular and biochemical mechanisms governing these effects and the optimal strategies for management of abnormalities in thyroid function in patients with and without preexisting cardiovascular disease. In September 2017, the National Heart, Lung, and Blood Institute convened a Working Group with the goal of developing priorities for future scientific research relating thyroid dysfunction to the progression of cardiovascular disease. The Working Group reviewed and discussed the roles of normal thyroid physiology, the consequences of thyroid dysfunction, and the effects of therapy in 3 cardiovascular areas: cardiac electrophysiology and arrhythmias, the vasculature and atherosclerosis, and the myocardium and heart failure. This report describes the current state of the field, outlines barriers and challenges to progress, and proposes research opportunities to advance the field, including strategies for leveraging novel approaches using omics and big data. The Working Group recommended research in 3 broad areas: (1) investigation into the fundamental biology relating thyroid dysfunction to the development of cardiovascular disease and into the identification of novel biomarkers of thyroid hormone action in cardiovascular tissues; (2) studies that define subgroups of patients with thyroid dysfunction amenable to specific preventive strategies and interventional therapies related to cardiovascular disease; and (3) clinical trials focused on improvement in cardiovascular performance and cardiovascular outcomes through treatment with thyroid hormone or thyromimetic drugs.
Collapse
Affiliation(s)
- Anne R. Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Akshay S. Desai
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA
| | - Marco Medici
- Department of Internal Medicine and Erasmus MC Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Lawton S. Cooper
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Debra Egan
- Office of Clinical and Regulatory Affairs, National Center for Complementary and Integrative Health, Bethesda, MD
| | - George Sopko
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, MD
| | | | | | - David S. Cooper
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Samia Mora
- Divisions of Preventive and Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Peter J. Kudenchuk
- Division of Cardiology, Arrhythmia Services, the University of Washington, Seattle, WA
| | | | - Cheryl L. McDonald
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Paul W. Ladenson
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
42
|
High TSH Level within Normal Range Is Associated with Obesity, Dyslipidemia, Hypertension, Inflammation, Hypercoagulability, and the Metabolic Syndrome: A Novel Cardiometabolic Marker. J Clin Med 2019; 8:jcm8060817. [PMID: 31181658 PMCID: PMC6616443 DOI: 10.3390/jcm8060817] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Overt and subclinical hypothyroidism has been associated with increased cardiometabolic risks. Here we further explore whether thyroid function within normal range is associated with cardiometabolic risk factors in a large population-based study. (2) Methods: We screened 24,765 adults participating in health examinations in Taiwan. Participants were grouped according to high-sensitive thyroid-stimulating hormone (hsTSH) level as: <50th percentile (0.47–1.48 mIU/L, the reference group), 50–60th percentile (1.49–1.68 mIU/L), 60–70th percentile (1.69–1.94 mIU/L), 70–80th percentile (1.95–2.3 mIU/L), 80–90th percentile (2.31–2.93 mIU/L), and >90th percentile (>2.93 mIU/L). Cardiometabolic traits of each percentile were compared with the reference group. (3) Results: Elevated hsTSH levels within normal range were dose-dependently associated with increased body mass index, body fat percentage, waist circumferences, blood pressure, hemoglobin A1c (HbA1c), fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), high homeostasis model of assessment of beta-cell (HOMA-β), triglycerides, total cholesterols, fibrinogen, and uric acids (p-for-trend <0.001), but not with fasting glucose levels. The association remained significant after adjustment of age, sex, and lifestyle. As compared to the reference group, subjects with the highest hsTSH percentile had significantly increased risk of being overweight (adjusted odds ratio (adjOR): 1.35), increased body fat (adjOR: 1.29), central obesity (adjOR: 1.36), elevated blood pressure (adjOR: 1.26), high HbA1c (adjOR: 1.20), hyperinsulinemia (adjOR: 1.75), increased HOMA-IR (adjOR: 1.45), increased HOMA-β (adjOR: 1.40), hypertriglyceridemia (adjOR: 1.60), hypercholesterolemia (adjOR: 1.25), elevated hsCRP (adjOR: 1.34), increased fibrinogen (adjOR: 1.45), hyperuricemia (adjOR: 1.47), and metabolic syndrome (adjOR: 1.42), but significant risk of low fasting glucose (adjOR: 0.89). Mediation analysis indicates that insulin resistance mediates the majority of the association between thyroid hormone status and the metabolic syndrome. (4) Conclusion: Elevated hsTSH within the normal range is a cardiometabolic risk marker associated with central obesity, insulin resistance, elevated blood pressure, dyslipidemia, hyperuricemia, inflammation, and hypercoagulability.
Collapse
|
43
|
Cappola AR, Desai AS, Medici M, Cooper LS, Egan D, Sopko G, Fishman GI, Goldman S, Cooper DS, Mora S, Kudenchuk PJ, Hollenberg AN, McDonald CL, Ladenson PW. Thyroid and Cardiovascular Disease: Research Agenda for Enhancing Knowledge, Prevention, and Treatment. Thyroid 2019; 29:760-777. [PMID: 31081722 PMCID: PMC6913785 DOI: 10.1089/thy.2018.0416] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid hormones have long been known to have a range of effects on the cardiovascular system. However, significant knowledge gaps exist concerning the precise molecular and biochemical mechanisms governing these effects and the optimal strategies for management of abnormalities in thyroid function in patients with and without preexisting cardiovascular disease. In September 2017, The National Heart, Lung, and Blood Institute convened a Working Group with the goal of developing priorities for future scientific research relating thyroid dysfunction to the progression of cardiovascular disease. The Working Group reviewed and discussed the roles of normal thyroid physiology, the consequences of thyroid dysfunction, and the effects of therapy in three cardiovascular areas: cardiac electrophysiology and arrhythmias, the vasculature and atherosclerosis, and the myocardium and heart failure. This report describes the current state of the field, outlines barriers and challenges to progress, and proposes research opportunities to advance the field, including strategies for leveraging novel approaches using omics and big data. The Working Group recommended research in three broad areas: 1) investigation into the fundamental biology relating thyroid dysfunction to the development of cardiovascular disease and into the identification of novel biomarkers of thyroid hormone action in cardiovascular tissues; 2) studies that define subgroups of patients with thyroid dysfunction amenable to specific preventive strategies and interventional therapies related to cardiovascular disease; and 3) clinical trials focused on improvement in cardiovascular performance and cardiovascular outcomes through treatment with thyroid hormone or thyromimetic drugs.
Collapse
Affiliation(s)
- Anne R. Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Address correspondence to: Anne R. Cappola, MD, MSc, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104
| | - Akshay S. Desai
- Cardiovascular Division; Brigham and Women's Hospital, Boston, Massachusetts
| | - Marco Medici
- Department of Internal Medicine and Erasmus MC Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Lawton S. Cooper
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Debra Egan
- Office of Clinical and Regulatory Affairs, National Center for Complementary and Integrative Health, Bethesda, Maryland
| | - George Sopko
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Glenn I. Fishman
- Division of Cardiology, NYU School of Medicine, New York, New York
| | - Steven Goldman
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - David S. Cooper
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Samia Mora
- Divisions of Preventive and Cardiovascular Medicine; Brigham and Women's Hospital, Boston, Massachusetts
| | - Peter J. Kudenchuk
- Division of Cardiology, Arrhythmia Services, University of Washington, Seattle, Washington
| | | | - Cheryl L. McDonald
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Paul W. Ladenson
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Al Wakeel RA, Saad MF, Abdel Azeez A, Elkhiat F, Shukry M. Both experimental hypo- and hyper-thyroidism exacerbate the adverse effects of chronic heat stress in broilers. Br Poult Sci 2019; 60:330-339. [PMID: 30939896 DOI: 10.1080/00071668.2019.1602248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. The effects of hypo- and hyper-thyroidism in mitigating or exacerbating the negative changes of chronic heat stress (HS) in broilers were investigated.2. Three-week-old broilers were distributed into six groups (n = 13 per group). Three groups were housed at ambient room temperature: control group (CN), propylthiouracil-treated group (AN) and thyroxine-treated group (TN). The other three groups were exposed to HS at 33 ± 1°C for 2 weeks: control heat stress (CH), propylthiouracil + heat stress (AH) and thyroxine + HS (TH).3. Induced hypothyroidy significantly decreased cloacal temperature and body weight gain in the birds in both the normal and HS groups (AN, AH). Conversely, hyperthyroidy resulted in a significant elevation in cloacal temperature in the TN and TH groups and a significant decline in weight gain in the TH group. Hyperthyroidy exacerbated the HS-induced degenerative changes in jejunal mucosa and caused noticeable vascular changes. A significant increase in the expression levels of jejunal nutrient transporter genes was observed in the AH and TH groups. The hyperthyroidic state significantly upregulated the HSP70 expression level in the TH group and the reverse occurred with propylthiouracil (PTU) treatment in the AH group.4. PTU supplementation to chicks reared under HS significantly decreased the triiodothyronine level, antibody (Ab) titre, and increased the heterophil-lymphocyte ratio. Furthermore, it induced higher hepatic glutathione peroxidase (GSH-Px) activity in the AN and AH groups and decreased the malondialdehyde content (MDA) in the AN group. Hyperthyroidy significantly increased triiodothyronine concentration, H/L ratio and decreased Hb concentration and Ab titres in the TH group. Additionally, this status increased the MDA content and decreased the GSH-Px activities.5. In conclusion, manipulation of thyroid status is not a remedy to overcome the undesirable effects of HS in broilers.
Collapse
Affiliation(s)
- R A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - M F Saad
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - A Abdel Azeez
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - F Elkhiat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - M Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
45
|
Ugur K, Aydin S, Kuloglu T, Artas G, Kocdor MA, Sahin İ, Yardim M, Ozercan İH. Comparison of irisin hormone expression between thyroid cancer tissues and oncocytic variant cells. Cancer Manag Res 2019; 11:2595-2603. [PMID: 31114326 PMCID: PMC6497896 DOI: 10.2147/cmar.s201979] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/25/2019] [Indexed: 01/10/2023] Open
Abstract
Objective: The incidence of thyroid cancer has been continuously increasing. The main objective of this study was to investigate irisin expression in various thyroid pathologies and to compare these expression patterns with irisin expression in healthy thyroid tissues. Methods: The study groups consisted of 20 cases each of control thyroid tissue, Hashimoto’s thyroiditis, thyroid papillary carcinoma, oncocytic papillary carcinoma, follicular thyroid carcinoma, oncocytic follicular thyroid carcinoma, medullary thyroid carcinoma, anaplastic thyroid carcinoma. Irisin expression was evaluated using immunohistochemistry. Irisin levels in thyroid tissue supernatants were measured using ELISA. Results: Patients with HT showed increased irisin expression compared with controls (p<0.05). In addition, mild immunoreactivity was observed in the thyroid tissues of patients with papillary carcinoma while significantly increased irisin immunoreactivity was observed tissues of patients with oncocytic papillary carcinoma (p<0.05). There was no difference in irisin immunoreactivity in thyroid tissues between patients with follicular carcinoma and controls. However, irisin immunoreactivity was higher in tissues of patients with oncocytic follicular carcinoma than in tissues of patients with follicular carcinoma (p<0.05). No irisin immunoreactivity was observed in tissues of patients with medullary carcinoma, a malignant tumor the thyroid; however, irisin expression was significantly increased in tissues of patients with anaplastic carcinoma compared with that in tissues of controls (p<0.05). Furthermore, in all thyroid tissues with irisin expression, irisin immunoreactivity was observed in follicular cells, indicating that irisin is produced by these cells. Conclusion: Irisin is a novel potential immunohistochemical marker for differentiating oncocytic variants of papillary and FTCs from papillary and follicular thyroid cancers.
Collapse
Affiliation(s)
- Kader Ugur
- Department of Endocrinology and Metabolism Disease, School of Medicine, Firat University, Elazig, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research group), Firat University Hospital, Elazig, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Gokhan Artas
- Department of Pathology, School of Medicine, Firat University, Elazig, Turkey
| | - Mehmet Ali Kocdor
- Department of General Surgery, School of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - İbrahim Sahin
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research group), Firat University Hospital, Elazig, Turkey.,Department of Medical Biology, School of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Meltem Yardim
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research group), Firat University Hospital, Elazig, Turkey
| | | |
Collapse
|
46
|
|
47
|
Bao L, Roediger J, Park S, Fu L, Shi B, Cheng SY, Shi YB. Thyroid Hormone Receptor Alpha Mutations Lead to Epithelial Defects in the Adult Intestine in a Mouse Model of Resistance to Thyroid Hormone. Thyroid 2019; 29:439-448. [PMID: 30595106 PMCID: PMC6437623 DOI: 10.1089/thy.2018.0340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The thyroid hormone triiodothyronine (T3) is critical for vertebrate development and affects the function of many adult tissues and organs. Its genomic effects are mediated by thyroid hormone nuclear receptors (TRs) present in all vertebrates. The discovery of patients with resistance to thyroid hormone (RTHβ) >50 years ago and subsequent identification of genetic mutations in only the THRB gene in these patients suggest that mutations in the THRA gene may have different pathological manifestations in humans. Indeed, the recent discovery of a number of human patients carrying heterozygous mutations in the THRA gene (RTHα) revealed a distinct phenotype that was not observed in RTH patients with THRB gene mutations (RTHβ). That is, RTHα patients have constipation, implicating intestinal defects caused by THRA gene mutations. METHODS To determine how TRα1 mutations affect the intestine, this study analyzed a mutant mouse expressing a strong dominantly negative TRα1 mutant (denoted TRα1PV; Thra1PV mice). This mutant mouse faithfully reproduces RTHα phenotypes observed in patients. RESULTS In adult Thra1PV/+ mice, constipation was observed just like in patients with TRα mutations. Importantly, significant intestinal defects were discovered, including shorter villi and increased differentiated cells in the crypt, accompanied by reduced stem-cell proliferation in the intestine. CONCLUSIONS The findings suggest that further analysis of this mouse model should help to reveal the molecular and physiological defects in the intestine caused by TRα mutations and to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Lingyu Bao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Julia Roediger
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Sunmi Park
- Gene Regulation Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
| | - Sheue-Yann Cheng
- Gene Regulation Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 49 Room 6A82, Bethesda, MD 20892
| |
Collapse
|
48
|
Uc ZA, Gorar S, Mizrak S, Gullu S. Irisin levels increase after treatment in patients with newly diagnosed Hashimoto thyroiditis. J Endocrinol Invest 2019; 42:175-181. [PMID: 29777516 DOI: 10.1007/s40618-018-0899-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Irisin is a newly identified myokine secreted by skeletal muscle and has significant effects on body metabolism. Thyroidal functional state has a profound influence on the metabolism of human body. Therefore, the aim of this study was to investigate the possible changes in serum irisin concentrations before and after treatment in hypothyroid subjects. METHODS The study included 26 patients with overt hypothyroidism due to Hashimoto thyroiditis and 19 healthy subjects. Baseline serum thyroid function tests and presence of thyroid autoantibodies and levels of creatine kinase (CK) and irisin were measured in both groups. All measurements in the hypothyroid group were repeated after euthyroidism was achieved. RESULTS Serum irisin levels were significantly lower in the hypothyroid groups than the control group (p < 0.001). Negative correlation between irisin and thyroid stimulating hormone and CK levels (r = - 0.623, p < 0.001 and r = - 0.389, p = 0.008, respectively) and a positive correlation between irisin and free thyroxine (fT4) levels (r = 0.570, p < 0.001) was found. Serum CK levels decreased significantly after treatment (p < 0.001). Serum irisin levels significantly increased (from 57.4 to 99.8 U/L, p < 0.001) when the hypothyroid patients were treated to achieve euthyroidism. CONCLUSIONS To the best of our knowledge, this is the first study providing insight that low serum irisin levels significantly increased following treatment to euthyroid state in overt hypothyroid patients with Hashimoto thyroiditis. Larger scale studies are needed to confirm these results and to ensure irisin as a possible biomarker of Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Z A Uc
- Department of Endocrinology, Usak University School of Medicine, Usak, Turkey.
| | - S Gorar
- Department of Endocrinology, Antalya Training and Research Hospital, Antalya, Turkey
| | - S Mizrak
- Department of Biochemistry, Usak University School of Medicine, Usak, Turkey
| | - S Gullu
- Department of Endocrinology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
49
|
Langlet F. Tanycyte Gene Expression Dynamics in the Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:286. [PMID: 31133987 PMCID: PMC6514105 DOI: 10.3389/fendo.2019.00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Animal survival relies on a constant balance between energy supply and energy expenditure, which is controlled by several neuroendocrine functions that integrate metabolic information and adapt the response of the organism to physiological demands. Polarized ependymoglial cells lining the floor of the third ventricle and sending a single process within metabolic hypothalamic parenchyma, tanycytes are henceforth described as key components of the hypothalamic neural network controlling energy balance. Their strategic position and peculiar properties convey them diverse physiological functions ranging from blood/brain traffic controllers, metabolic modulators, and neural stem/progenitor cells. At the molecular level, these functions rely on an accurate regulation of gene expression. Indeed, tanycytes are characterized by their own molecular signature which is mostly associated to their diverse physiological functions, and the detection of variations in nutrient/hormone levels leads to an adequate modulation of genetic profile in order to ensure energy homeostasis. The aim of this review is to summarize recent knowledge on the nutritional control of tanycyte gene expression.
Collapse
|
50
|
Støving RK. MECHANISMS IN ENDOCRINOLOGY: Anorexia nervosa and endocrinology: a clinical update. Eur J Endocrinol 2019; 180:R9-R27. [PMID: 30400050 PMCID: PMC6347284 DOI: 10.1530/eje-18-0596] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
Anorexia nervosa is a syndrome, that is collections of symptoms, which is not defined by its etiology. The severe cases are intractable. The syndrome is associated with multiple, profound endocrine alterations which may be adaptive, reactive or etiologic. Adaptive changes potentially may be inappropriate in clinical settings such as inpatient intensive re-nutrition or in a setting with somatic comorbidity. Electrolyte levels must be closely monitored during the refeeding process, and the need for weight gain must be balanced against potentially fatal refeeding complications. An important focus of clinical research should be to identify biomarkers associated with different stages of weight loss and re-nutrition combined with psychometric data. Besides well-established peripheral endocrine actions, several hormones also are released directly to different brain areas, where they may exert behavioral and psychogenic actions that could offer therapeutic targets. We need reliable biomarkers for predicting outcome and to ensure safe re-nutrition, however, first of all we need them to explore the metabolism in anorexia nervosa to open new avenues with therapeutic targets. A breakthrough in our understanding and treatment of this whimsical disease remains. Considering this, the aim of the present review is to provide an updated overview of the many endocrine changes in a clinical perspective.
Collapse
Affiliation(s)
- René Klinkby Støving
- Nutrition Clinic, Center for Eating Disorders, Odense University Hospital
- Endocrine Elite Research Centre, Institute of Clinical Research, University of South Denmark, Faculty of Health Sciences
- Psychiatric Services in the Region of Southern Denmark, Odense, Denmark
- Correspondence should be addressed to R K Støving;
| |
Collapse
|