1
|
Jevon D, Cottle L, Hallahan N, Harwood R, Samra JS, Gill AJ, Loudovaris T, Thomas HE, Thorn P. Capillary contact points determine beta cell polarity, control secretion and are disrupted in the db/db mouse model of diabetes. Diabetologia 2024; 67:1683-1697. [PMID: 38814445 PMCID: PMC11343897 DOI: 10.1007/s00125-024-06180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/26/2024] [Indexed: 05/31/2024]
Abstract
AIMS/HYPOTHESIS Almost all beta cells contact one capillary and insulin granule fusion is targeted to this region. However, there are reports of beta cells contacting more than one capillary. We therefore set out to determine the proportion of beta cells with multiple contacts and the impact of this on cell structure and function. METHODS We used pancreatic slices in mice and humans to better maintain cell and islet structure than in isolated islets. Cell structure was assayed using immunofluorescence and 3D confocal microscopy. Live-cell two-photon microscopy was used to map granule fusion events in response to glucose stimulation. RESULTS We found that 36% and 22% of beta cells in islets from mice and humans, respectively, have separate contact with two capillaries. These contacts establish a distinct form of cell polarity with multiple basal regions. Both capillary contact points are enriched in presynaptic scaffold proteins, and both are a target for insulin granule fusion. Cells with two capillary contact points have a greater capillary contact area and secrete more, with analysis showing that, independent of the number of contact points, increased contact area is correlated with increased granule fusion. Using db/db mice as a model for type 2 diabetes, we observed changes in islet capillary organisation that significantly reduced total islet capillary surface area, and reduced area of capillary contact in single beta cells. CONCLUSIONS/INTERPRETATION Beta cells that contact two capillaries are a significant subpopulation of beta cells within the islet. They have a distinct form of cell polarity and both contact points are specialised for secretion. The larger capillary contact area of cells with two contact points is correlated with increased secretion. In the db/db mouse, changes in capillary structure impact beta cell capillary contact, implying that this is a new factor contributing to disease progression.
Collapse
Affiliation(s)
- Dillon Jevon
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Louise Cottle
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Nicole Hallahan
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Richard Harwood
- Charles Perkins Centre, Sydney Microscopy and Microanalysis, University of Sydney, Camperdown, NSW, Australia
| | - Jaswinder S Samra
- The University of Sydney Northern Clinical School, Sydney, NSW, Australia
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Anthony J Gill
- The University of Sydney Northern Clinical School, Sydney, NSW, Australia
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | | | - Helen E Thomas
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Peter Thorn
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Liu X, Qin H, Liu Y, Ma J, Li Y, He Y, Zhu H, Mao L. The biological functions and pathological mechanisms of CASK in various diseases. Heliyon 2024; 10:e28863. [PMID: 38638974 PMCID: PMC11024568 DOI: 10.1016/j.heliyon.2024.e28863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Background As a scaffold protein, calcium/calmodulin-dependent serine protein kinase (CASK) has been extensively studied in a variety of tissues throughout the body. The Cask gene is ubiquitous in several tissues, such as the neurons, islets, heart, kidneys and sperm, and is mostly localised in the cytoplasm adjacent to the basement membrane. CASK binds to a variety of proteins through its domains to exerting its biological activity. Scope of review Here, we discuss the role of CASK in multiple tissues throughout the body. The role of different CASK domains in regulating neuronal development, neurotransmitter release and synaptic vesicle secretion was emphasised; the regulatory mechanism of CASK on the function of pancreatic islet β cells was analysed; the role of CASK in cardiac physiology, kidney and sperm development was discussed; and the role of CASK in different tumours was compared. Finally, we clarify the importance of the Cask gene in the body, and how deletion or mutation of the Cask gene can have adverse consequences. Major conclusions CASK is a conserved gene with similar roles in various tissues. The function of the Cask gene in the nervous system is mainly involved in the development of the nervous system and the release of neurotransmitters. In the endocrine system, an involvement of CASK has been reported in the process of insulin vesicle transport. CASK is also involved in cardiomyocyte ion channel regulation, kidney and sperm development, and tumour proliferation. CASK is an indispensable gene for the whole body, and CASK mutations can cause foetal malformations or death at birth. In this review, we summarise the biological functions and pathological mechanisms of CASK in various systems, thereby providing a basis for further in-depth studies of CASK functions.
Collapse
Affiliation(s)
- Xingjing Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Haonan Qin
- Department of Orthopedics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yuanyuan Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Jingjing Ma
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yiming Li
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yu He
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Huimin Zhu
- Department of Electrophysiology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Li Mao
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| |
Collapse
|
3
|
Zhu J, Lv C, Henry D, Viviano S, Santos-Sacchi J, Matthews G, Zenisek D. Role of Ribeye PXDLS/T-binding cleft in normal synaptic ribbon function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571266. [PMID: 38168344 PMCID: PMC10760060 DOI: 10.1101/2023.12.12.571266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Non-spiking sensory hair cells of the auditory and vestibular systems encode a dynamic range of graded signals with high fidelity by vesicle exocytosis at ribbon synapses. Ribeye, the most abundant protein in the synaptic ribbon, is composed of a unique A domain specific for ribbons and a B-domain nearly identical to the transcriptional corepressor CtBP2. CTBP2 and the B-domain of Ribeye contain a surface cleft that binds to proteins harboring a PXDLS/T peptide motif. Little is known about the importance of this binding site in synaptic function. Piccolo has a well-conserved PVDLT motif and we find that overexpressed Ribeye exhibits striking co-localization with Piccolo in INS-cells, while two separate mutants containing mutations in PXDLS/T-binding region, fail to co-localize with Piccolo. Similarly, co-transfected Ribeye and a piccolo fragment containing the PVDLT region co-localize in HEK cells. Expression of wild-type Ribeye-YFP in zebrafish neuromast hair cells returns electron densities to ribbon structures and mostly rescued normal synaptic transmission and morphological phenotypes in a mutant zebrafish lacking most Ribeye. By contrast, Ribeye-YFP harboring a mutation in the PXDLS/T-binding cleft resulted in ectopic electron dense aggregates that did not collect vesicles and the persistence of ribbons lacking electron densities. Furthermore, overexpression failed to return capacitance responses to normal levels. These results point toward a role for the PXDLS/T-binding cleft in the recruitment of Ribeye to ribbons and in normal synaptic function.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Caixia Lv
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Diane Henry
- Program in Neuroscience, State University of New York, Stony Brook, New York 11759
| | - Stephen Viviano
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Joseph Santos-Sacchi
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
- Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06520
| | - Gary Matthews
- Program in Neuroscience, State University of New York, Stony Brook, New York 11759
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
- Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06520
- Neuroscience, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
4
|
Fye MA, Kaverina I. Insulin secretion hot spots in pancreatic β cells as secreting adhesions. Front Cell Dev Biol 2023; 11:1211482. [PMID: 37305687 PMCID: PMC10250740 DOI: 10.3389/fcell.2023.1211482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Pancreatic β cell secretion of insulin is crucial to the maintenance of glucose homeostasis and prevention of diseases related to glucose regulation, including diabetes. Pancreatic β cells accomplish efficient insulin secretion by clustering secretion events at the cell membrane facing the vasculature. Regions at the cell periphery characterized by clustered secretion are currently termed insulin secretion hot spots. Several proteins, many associated with the microtubule and actin cytoskeletons, are known to localize to and serve specific functions at hot spots. Among these proteins are the scaffolding protein ELKS, the membrane-associated proteins LL5β and liprins, the focal adhesion-associated protein KANK1, and other factors typically associated with the presynaptic active zone in neurons. These hot spot proteins have been shown to contribute to insulin secretion, but many questions remain regarding their organization and dynamics at hot spots. Current studies suggest microtubule- and F-actin are involved in regulation of hot spot proteins and their function in secretion. The hot spot protein association with the cytoskeleton networks also suggests a potential role for mechanical regulation of these proteins and hot spots in general. This perspective summarizes the existing knowledge of known hot spot proteins, their cytoskeletal-mediated regulation, and discuss questions remaining regarding mechanical regulation of pancreatic beta cell hot spots.
Collapse
Affiliation(s)
| | - Irina Kaverina
- Kaverina Lab, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
5
|
Jin G, Lin L, Li K, Li J, Yu C, Wei Z. Structural basis of ELKS/Rab6B interaction and its role in vesicle capturing enhanced by liquid-liquid phase separation. J Biol Chem 2023:104808. [PMID: 37172719 DOI: 10.1016/j.jbc.2023.104808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
ELKS proteins play a key role in organizing intracellular vesicle trafficking and targeting in both neurons and non-neuronal cells. While it is known that ELKS interacts with the vesicular traffic regulator, the Rab6 GTPase, the molecular basis governing ELKS-mediated trafficking of Rab6-coated vesicles has remained unclear. In this study, we solved the Rab6B structure in complex with the Rab6-binding domain of ELKS1, revealing that a C-terminal segment of ELKS1 forms a helical hairpin to recognize Rab6B through a unique binding mode. We further showed that liquid-liquid phase separation (LLPS) of ELKS1 allows it to compete with other Rab6 effectors for binding to Rab6B and accumulate Rab6B-coated liposomes to the protein condensate formed by ELKS1. We also found that the ELKS1 condensate recruits Rab6B-coated vesicles to vesicle releasing sites and promotes vesicle exocytosis. Together, our structural, biochemical, and cellular analyses suggest that ELKS1, via the LLPS-enhanced interaction with Rab6, captures Rab6-coated vesicles from the cargo transport machine for efficient vesicle releasing at exocytotic sites. These findings shed new light on the understanding of spatiotemporal regulation of vesicle trafficking through the interplay between membranous structures and membraneless condensates.
Collapse
Affiliation(s)
- Gaowei Jin
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Leishu Lin
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kaiyue Li
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiashan Li
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Cong Yu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China 518055.
| | - Zhiyi Wei
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
6
|
Li X, Cai D, Huang Y, Xie Y, Shen D, Yuan Z, Liu X, Huang M, Luo Y, Yu H, Wang X. Aberrant methylation in neurofunctional gene serves as a hallmark of tumorigenesis and progression in colorectal cancer. BMC Cancer 2023; 23:315. [PMID: 37020199 PMCID: PMC10077670 DOI: 10.1186/s12885-023-10765-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND DNA methylation is one of the most promising biomarkers in predicting the prognosis of colorectal cancer (CRC). We aimed to develop a DNA methylation biomarker that could evaluate the prognosis of CRC. METHODS A promising DNA methylation biomarker was developed by hypermethylated genes in cancer tissue that were identified from Illumina EPIC methylation arrays. A cohort comprising 30 pairs of snap-frozen tumor tissue and adjacent normal tissue was used for correlation analysis between the methylation and expression status of the marker. The other cohort comprising 254 formalin-fixed paraffin-embedded (FFPE) tumor tissue from 254 CRC patients was used for prognosis analysis. RESULTS Regulating synaptic membrane exocytosis 2 (RIMS2) was hypermethylated and lowly expressed in CRC comparing to adjacent normal tissue. Hypermethylation of RIMS2 in CRC was correlated with less frequent KRAS mutant and high differentiation. RIMS2 promoter methylation showed independent predictive value for survival outcome (P = 0.015, HR 1.992, 95% CI [(1.140-3.48)]), and a combination of RIMS2 methylation with KRAS status could predict prognosis better. CONCLUSIONS RIMS2 is frequently hypermethylated in CRC, which can silence the expression of RIMS2. RIMS2 methylation is a novel biomarker for predicting the prognosis of CRC.
Collapse
Affiliation(s)
- Xuan Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Du Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yaoyi Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yumo Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dingcheng Shen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ze Yuan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoxia Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Meijin Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Xiaolin Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Barillaro M, Schuurman M, Wang R. β1-Integrin-A Key Player in Controlling Pancreatic Beta-Cell Insulin Secretion via Interplay With SNARE Proteins. Endocrinology 2022; 164:6772824. [PMID: 36282882 DOI: 10.1210/endocr/bqac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/16/2023]
Abstract
Shortcomings in cell-based therapies for patients with diabetes have been revealed to be, in part, a result of an improper extracellular matrix (ECM) environment. In vivo, pancreatic islets are emersed in a diverse ECM that provides physical support and is crucial for healthy function. β1-Integrin receptors have been determined to be responsible for modulation of beneficial interactions with ECM proteins influencing beta-cell development, proliferation, maturation, and function. β1-Integrin signaling has been demonstrated to augment insulin secretion by impacting the actin cytoskeleton via activation of focal adhesion kinase and downstream signaling pathways. In other secretory cells, evidence of a bidirectional relationship between integrins and exocytotic machinery has been demonstrated, and, thus, this relationship could be present in pancreatic beta cells. In this review, we will discuss the role of ECM-β1-integrin interplay with exocytotic proteins in controlling pancreatic beta-cell insulin secretion through their dynamic and unique signaling pathway.
Collapse
Affiliation(s)
- Malina Barillaro
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
| | - Meg Schuurman
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
| | - Rennian Wang
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Medicine, University of Western Ontario, London, ON N6C 2V5, Canada
| |
Collapse
|
8
|
Yang L, Fye MA, Yang B, Tang Z, Zhang Y, Haigh S, Covington BA, Bracey K, Taraska JW, Kaverina I, Qu S, Chen W. Genome-wide CRISPR screen identified a role for commander complex mediated ITGB1 recycling in basal insulin secretion. Mol Metab 2022; 63:101541. [PMID: 35835371 PMCID: PMC9304790 DOI: 10.1016/j.molmet.2022.101541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Pancreatic beta cells secrete insulin postprandially and during fasting to maintain glucose homeostasis. Although glucose-stimulated insulin secretion (GSIS) has been extensively studied, much less is known about basal insulin secretion. Here, we performed a genome-wide CRISPR/Cas9 knockout screen to identify novel regulators of insulin secretion. METHODS To identify genes that cell autonomously regulate insulin secretion, we engineered a Cas9-expressing MIN6 subclone that permits irreversible fluorescence labeling of exocytic insulin granules. Using a fluorescence-activated cell sorting assay of exocytosis in low glucose and high glucose conditions in individual cells, we performed a genome-wide CRISPR/Cas9 knockout screen. RESULTS We identified several members of the COMMD family, a conserved family of proteins with central roles in intracellular membrane trafficking, as positive regulators of basal insulin secretion, but not GSIS. Mechanistically, we show that the Commander complex promotes insulin granules docking in basal state. This is mediated, at least in part, by its function in ITGB1 recycling. Defective ITGB1 recycling reduces its membrane distribution, the number of focal adhesions and cortical ELKS-containing complexes. CONCLUSIONS We demonstrated a previously unknown function of the Commander complex in basal insulin secretion. We showed that by ITGB1 recycling, Commander complex increases cortical adhesions, which enhances the assembly of the ELKS-containing complexes. The resulting increase in the number of insulin granules near the plasma membrane strengthens basal insulin secretion.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Margret A Fye
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bingyuan Yang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Zihan Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yue Zhang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sander Haigh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brittney A Covington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kai Bracey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Jevon D, Deng K, Hallahan N, Kumar K, Tong J, Gan WJ, Tran C, Bilek MM, Thorn P. Local activation of focal adhesion kinase orchestrates the positioning of presynaptic scaffold proteins and Ca 2+ signalling to control glucose dependent insulin secretion. eLife 2022; 11:76262. [PMID: 35559734 PMCID: PMC9126582 DOI: 10.7554/elife.76262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
A developing understanding suggests that spatial compartmentalisation in pancreatic β cells is critical in controlling insulin secretion. To investigate the mechanisms, we have developed live-cell sub-cellular imaging methods using the mouse organotypic pancreatic slice. We demonstrate that the organotypic pancreatic slice, when compared with isolated islets, preserves intact β cell structure, and enhances glucose dependent Ca2+ responses and insulin secretion. Using the slice technique, we have discovered the essential role of local activation of integrins and the downstream component, focal adhesion kinase, in regulating β cells. Integrins and focal adhesion kinase are exclusively activated at the β cell capillary interface and using in situ and in vitro models we show their activation both positions presynaptic scaffold proteins, like ELKS and liprin, and regulates glucose dependent Ca2+ responses and insulin secretion. We conclude that focal adhesion kinase orchestrates the final steps of glucose dependent insulin secretion within the restricted domain where β cells contact the islet capillaries.
Collapse
Affiliation(s)
- Dillon Jevon
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Kylie Deng
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Nicole Hallahan
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Krish Kumar
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Jason Tong
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Wan Jun Gan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Clara Tran
- School of Physics, University of Sydney, Sydney, Australia
| | | | - Peter Thorn
- School of Medical Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Deng K, Thorn P. Presynaptic-like mechanisms and the control of insulin secretion in pancreatic β-cells. Cell Calcium 2022; 104:102585. [DOI: 10.1016/j.ceca.2022.102585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
|
11
|
Noordstra I, van den Berg CM, Boot FWJ, Katrukha EA, Yu KL, Tas RP, Portegies S, Viergever BJ, de Graaff E, Hoogenraad CC, de Koning EJP, Carlotti F, Kapitein LC, Akhmanova A. Organization and dynamics of the cortical complexes controlling insulin secretion in β-cells. J Cell Sci 2022; 135:274234. [PMID: 35006275 PMCID: PMC8918791 DOI: 10.1242/jcs.259430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
Insulin secretion in pancreatic β-cells is regulated by cortical complexes that are enriched at the sites of adhesion to extracellular matrix facing the vasculature. Many components of these complexes, including bassoon, RIM, ELKS and liprins, are shared with neuronal synapses. Here, we show that insulin secretion sites also contain the non-neuronal proteins LL5β (also known as PHLDB2) and KANK1, which, in migrating cells, organize exocytotic machinery in the vicinity of integrin-based adhesions. Depletion of LL5β or focal adhesion disassembly triggered by myosin II inhibition perturbed the clustering of secretory complexes and attenuated the first wave of insulin release. Although previous analyses in vitro and in neurons have suggested that secretory machinery might assemble through liquid–liquid phase separation, analysis of endogenously labeled ELKS in pancreatic islets indicated that its dynamics is inconsistent with such a scenario. Instead, fluorescence recovery after photobleaching and single-molecule imaging showed that ELKS turnover is driven by binding and unbinding to low-mobility scaffolds. Both the scaffold movements and ELKS exchange were stimulated by glucose treatment. Our findings help to explain how integrin-based adhesions control spatial organization of glucose-stimulated insulin release. Summary: Characterization of the composition of cortical complexes controlling insulin secretion, showing that their dynamics is inconsistent with assembly through liquid–liquid phase separation.
Collapse
Affiliation(s)
- Ivar Noordstra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cyntha M van den Berg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fransje W J Boot
- Department of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Eugene A Katrukha
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ka Lou Yu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Roderick P Tas
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sybren Portegies
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bastiaan J Viergever
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Esther de Graaff
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
12
|
Wang X, Gao M, Wang Y, Zhang Y. The progress of pluripotent stem cell-derived pancreatic β-cells regeneration for diabetic therapy. Front Endocrinol (Lausanne) 2022; 13:927324. [PMID: 35966093 PMCID: PMC9365963 DOI: 10.3389/fendo.2022.927324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes is a complex metabolic disorder of carbohydrate metabolism, characterized by high blood glucose levels either due to an absolute deficiency of insulin secretion or an ineffective response of cells to insulin, a hormone synthetized by β-cells in the pancreas. Despite the current substantial progress of new drugs and strategies to prevent and treat diabetes, we do not understand precisely the exact cause of the failure and impairment of β-cells. Therefore, there is an urgent need to find new methods to restore β-cells. In recent years, pluripotent stem cells (PSCs) such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) can serve as an ideal alternative source for the pancreatic β-cells. In this review, we systematically summarize the current progress and protocols of generating pancreatic β-cells from human PSCs. Meanwhile, we also discuss some challenges and future perspectives of human PSCs treatments for diabetes.
Collapse
Affiliation(s)
- Xin Wang
- China-Japan Union Hospital of Jilin University, Changchun, China
- The Third Norman Bethune Clinical College of Jilin University, Changchun, China
| | - Mengxi Gao
- China-Japan Union Hospital of Jilin University, Changchun, China
- The Third Norman Bethune Clinical College of Jilin University, Changchun, China
| | - Yali Wang
- Department of Blood Transfusion, China–Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yucheng Zhang, ; Yali Wang,
| | - Yucheng Zhang
- Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yucheng Zhang, ; Yali Wang,
| |
Collapse
|
13
|
Gaus B, Brüning D, Groß S, Müller M, Rustenbeck I. The changing view of insulin granule mobility: From conveyor belt to signaling hub. Front Endocrinol (Lausanne) 2022; 13:983152. [PMID: 36120467 PMCID: PMC9478610 DOI: 10.3389/fendo.2022.983152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Before the advent of TIRF microscopy the fate of the insulin granule prior to secretion was deduced from biochemical investigations, electron microscopy and electrophysiological measurements. Since Calcium-triggered granule fusion is indisputably necessary to release insulin into the extracellular space, much effort was directed to the measure this event at the single granule level. This has also been the major application of the TIRF microscopy of the pancreatic beta cell when it became available about 20 years ago. To better understand the metabolic modulation of secretion, we were interested to characterize the entirety of the insulin granules which are localized in the vicinity of the plasma membrane to identify the characteristics which predispose to fusion. In this review we concentrate on how the description of granule mobility in the submembrane space has evolved as a result of progress in methodology. The granules are in a state of constant turnover with widely different periods of residence in this space. While granule fusion is associated +with prolonged residence and decreased lateral mobility, these characteristics may not only result from binding to the plasma membrane but also from binding to the cortical actin web, which is present in the immediate submembrane space. While granule age as such affects granule mobility and fusion probability, the preceding functional states of the beta cell leave their mark on these parameters, too. In summary, the submembrane granules form a highly dynamic heterogeneous population and contribute to the metabolic memory of the beta cells.
Collapse
Affiliation(s)
- Bastian Gaus
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sofie Groß
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Müller
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Ingo Rustenbeck,
| |
Collapse
|
14
|
He Q, Qu M, Xu C, Shi W, Hussain M, Jin G, Zhu H, Zeng LH, Wu X. The emerging roles of nitric oxide in ferroptosis and pyroptosis of tumor cells. Life Sci 2021; 290:120257. [PMID: 34952041 DOI: 10.1016/j.lfs.2021.120257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
Tumor cells can develop resistance to cell death which is divided into necrosis and programmed cell death (PCD). PCD, including apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Ferroptosis and pyroptosis, two new forms of cell death, have gradually been of interest to researchers. Boosting ferroptosis and pyroptosis of tumor cells could be a potential cancer therapy. Nitric oxide (NO) is a ubiquitous, lipophilic, highly diffusible, free-radical signaling molecule that plays various roles in tumorigenesis. In addition, NO also has regulatory mechanisms through S-nitrosylation that do not depend on the classic NO/sGC/cGMP signaling. The current tumor treatment strategy for NO is to promote cell death through promoting S-nitrosylation-induced apoptosis while multiple drawbacks dampen this tumor therapy. However, numerous studies have suggested that suppression of NO is perceived to active ferroptosis and pyroptosis, which could be a better anti-tumor treatment. In this review, ferroptosis and pyroptosis are described in detail. We summarize that NO influences ferroptosis and pyroptosis and infer that S-nitrosylation mediates ferroptosis- and pyroptosis-related signaling pathways. It could be a potential cancer therapy different from NO-induced apoptosis of tumor cells. Finally, the information shows the drugs that manipulate endogenous production and exogenous delivery of NO to modulate the levels of S-nitrosylation.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Shi
- Department of Biology and Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Musaddique Hussain
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guojian Jin
- Department of Internal Medicine, Shaoxing Central Hospital Anchang Branch, Shaoxing City 312080, China
| | - Haibin Zhu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
15
|
Trogden KP, Lee J, Bracey KM, Ho KH, McKinney H, Zhu X, Arpag G, Folland TG, Osipovich AB, Magnuson MA, Zanic M, Gu G, Holmes WR, Kaverina I. Microtubules regulate pancreatic β-cell heterogeneity via spatiotemporal control of insulin secretion hot spots. eLife 2021; 10:59912. [PMID: 34783306 PMCID: PMC8635970 DOI: 10.7554/elife.59912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules (MTs) affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that MT stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable MTs. Consistently, MT hyper-stabilization prevents, and MT depolymerization promotes the capacity of single β-cell for GSIS. Analysis of spatiotemporal patterns of secretion events shows that MT depolymerization activates otherwise dormant β-cells via initiation of secretion clusters (hot spots). MT depolymerization also enhances secretion from individual cells, introducing both additional clusters and scattered events. Interestingly, without MTs, the timing of clustered secretion is dysregulated, extending the first phase of GSIS and causing oversecretion. In contrast, glucose-induced Ca2+ influx was not affected by MT depolymerization yet required for secretion under these conditions, indicating that MT-dependent regulation of secretion hot spots acts in parallel with Ca2+ signaling. Our findings uncover a novel MT function in tuning insulin secretion hot spots, which leads to accurately measured and timed response to glucose stimuli and promotes functional β-cell heterogeneity.
Collapse
Affiliation(s)
- Kathryn P Trogden
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Justin Lee
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kai M Bracey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kung-Hsien Ho
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Hudson McKinney
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Medicine, Vanderbilt University, Nashville, United States
| | - Goker Arpag
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Thomas G Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, United States
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Mark A Magnuson
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Marija Zanic
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Guoqiang Gu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - William R Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, United States.,Department of Mathematics, Vanderbilt University, Nashville, United States.,Quantitative Systems Biology Center, Vanderbilt University, Nashville, United States
| | - Irina Kaverina
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
16
|
Abstract
Neurons are highly specialized cells equipped with a sophisticated molecular machinery for the reception, integration, conduction and distribution of information. The evolutionary origin of neurons remains unsolved. How did novel and pre-existing proteins assemble into the complex machinery of the synapse and of the apparatus conducting current along the neuron? In this review, the step-wise assembly of functional modules in neuron evolution serves as a paradigm for the emergence and modification of molecular machinery in the evolution of cell types in multicellular organisms. The pre-synaptic machinery emerged through modification of calcium-regulated large vesicle release, while the postsynaptic machinery has different origins: the glutamatergic postsynapse originated through the fusion of a sensory signaling module and a module for filopodial outgrowth, while the GABAergic postsynapse incorporated an ancient actin regulatory module. The synaptic junction, in turn, is built around two adhesion modules controlled by phosphorylation, which resemble septate and adherens junctions. Finally, neuronal action potentials emerged via a series of duplications and modifications of voltage-gated ion channels. Based on these origins, key molecular innovations are identified that led to the birth of the first neuron in animal evolution.
Collapse
|
17
|
Cottle L, Gan WJ, Gilroy I, Samra JS, Gill AJ, Loudovaris T, Thomas HE, Hawthorne WJ, Kebede MA, Thorn P. Structural and functional polarisation of human pancreatic beta cells in islets from organ donors with and without type 2 diabetes. Diabetologia 2021; 64:618-629. [PMID: 33399909 PMCID: PMC7864831 DOI: 10.1007/s00125-020-05345-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 12/05/2022]
Abstract
AIMS/HYPOTHESIS We hypothesised that human beta cells are structurally and functional polarised with respect to the islet capillaries. We set out to test this using confocal microscopy to map the 3D spatial arrangement of key proteins and live-cell imaging to determine the distribution of insulin granule fusion around the cells. METHODS Human pancreas samples were rapidly fixed and processed using the pancreatic slice technique, which maintains islet structure and architecture. Slices were stained using immunofluorescence for polarity markers (scribble, discs large [Dlg] and partitioning defective 3 homologue [Par3]) and presynaptic markers (liprin, Rab3-interacting protein [RIM2] and piccolo) and imaged using 3D confocal microscopy. Isolated human islets were dispersed and cultured on laminin-511-coated coverslips. Live 3D two-photon microscopy was used on cultured cells to image exocytic granule fusion events upon glucose stimulation. RESULTS Assessment of the distribution of endocrine cells across human islets found that, despite distinct islet-to-islet complexity and variability, including multi-lobular islets, and intermixing of alpha and beta cells, there is still a striking enrichment of alpha cells at the islet mantle. Measures of cell position demonstrate that most beta cells contact islet capillaries. Subcellularly, beta cells consistently position polar determinants, such as Par3, Dlg and scribble, with a basal domain towards the capillaries and apical domain at the opposite face. The capillary interface/vascular face is enriched in presynaptic scaffold proteins, such as liprin, RIM2 and piccolo. Interestingly, enrichment of presynaptic scaffold proteins also occurs where the beta cells contact peri-islet capillaries, suggesting functional interactions. We also observed the same polarisation of synaptic scaffold proteins in islets from type 2 diabetic patients. Consistent with polarised function, isolated beta cells cultured onto laminin-coated coverslips target insulin granule fusion to the coverslip. CONCLUSIONS/INTERPRETATION Structural and functional polarisation is a defining feature of human pancreatic beta cells and plays an important role in the control of insulin secretion.
Collapse
Affiliation(s)
- Louise Cottle
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Wan Jun Gan
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- Temasek Life-Science Laboratory, Singapore, Republic of Singapore
| | - Ian Gilroy
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Jaswinder S Samra
- The University of Sydney Northern Clinical School, Sydney, NSW, Australia
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Anthony J Gill
- The University of Sydney Northern Clinical School, Sydney, NSW, Australia
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | | | - Helen E Thomas
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Health and Medicine, University of Sydney, Sydney, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Peter Thorn
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
18
|
Singh R, Cottle L, Loudovaris T, Xiao D, Yang P, Thomas HE, Kebede MA, Thorn P. Enhanced structure and function of human pluripotent stem cell-derived beta-cells cultured on extracellular matrix. Stem Cells Transl Med 2020; 10:492-505. [PMID: 33145960 PMCID: PMC7900592 DOI: 10.1002/sctm.20-0224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
The differentiation of human stem cells into insulin secreting beta‐like cells holds great promise to treat diabetes. Current protocols drive stem cells through stages of directed differentiation and maturation and produce cells that secrete insulin in response to glucose. Further refinements are now needed to faithfully phenocopy the responses of normal beta cells. A critical factor in normal beta cell behavior is the islet microenvironment which plays a central role in beta cell survival, proliferation, gene expression and secretion. One important influence on native cell responses is the capillary basement membrane. In adult islets, each beta cell makes a point of contact with basement membrane protein secreted by vascular endothelial cells resulting in structural and functional polarization. Interaction with basement membrane proteins triggers local activation of focal adhesions, cell orientation, and targeting of insulin secretion. This study aims to identifying the role of basement membrane proteins on the structure and function of human embryonic stem cell and induced pluripotent stem cell‐derived beta cells. Here, we show that differentiated human stem cells‐derived spheroids do contain basement membrane proteins as a diffuse web‐like structure. However, the beta‐like cells within the spheroid do not polarize in response to this basement membrane. We demonstrate that 2D culture of the differentiated beta cells on to basement membrane proteins enforces cell polarity and favorably alters glucose dependent insulin secretion.
Collapse
Affiliation(s)
- Reena Singh
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Louise Cottle
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | | | - Di Xiao
- Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Helen E Thomas
- St Vincent's Institute, Fitzroy, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Peter Thorn
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
19
|
Abstract
Background Insulin is stored within large dense-core granules in pancreatic beta (β)-cells and is released by Ca2+-triggered exocytosis with increasing blood glucose levels. Polarized and targeted secretion of insulin from β-cells in pancreatic islets into the vasculature has been proposed; however, the mechanisms related to cellular and molecular localization remain largely unknown. Within nerve terminals, the Ca2+-dependent release of a polarized transmitter is limited to the active zone, a highly specialized area of the presynaptic membrane. Several active zone-specific proteins have been characterized; among them, the CAST/ELKS protein family members have the ability to form large protein complexes with other active zone proteins to control the structure and function of the active zone for tight regulation of neurotransmitter release. Notably, ELKS but not CAST is also expressed in β-cells, implying that ELKS may be involved in polarized insulin secretion from β-cells. Scope of review This review provides an overview of the current findings regarding the role(s) of ELKS and other active zone proteins in β-cells and focuses on the molecular mechanism underlying ELKS regulation within polarized insulin secretion from islets. Major conclusions ELKS localizes at the vascular-facing plasma membrane of β-cells in mouse pancreatic islets. ELKS forms a potent insulin secretion complex with L-type voltage-dependent Ca2+ channels on the vascular-facing plasma membrane of β-cells, enabling polarized Ca2+ influx and first-phase insulin secretion from islets. This model provides novel insights into the functional polarity observed during insulin secretion from β-cells within islets at the molecular level. This active zone-like region formed by ELKS at the vascular side of the plasma membrane is essential for coordinating physiological insulin secretion and may be disrupted in diabetes.
Collapse
Affiliation(s)
- Mica Ohara-Imaizumi
- Department of Cellular Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan.
| | - Kyota Aoyagi
- Department of Cellular Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
20
|
Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol 2020; 107:112-125. [PMID: 32317144 PMCID: PMC7152905 DOI: 10.1016/j.semcdb.2020.04.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.
Collapse
Key Words
- ATP, adenosine triphosphate
- BFA, Brefeldin A
- CARTS, CARriers of the TGN to the cell Surface
- CI-MPR, cation-independent mannose-6 phosphate receptor
- Constitutive Secretion
- CtBP3/BARS, C-terminus binding protein 3/BFA adenosine diphosphate–ribosylated substrate
- ER, endoplasmic reticulum
- GPI-anchored proteins, glycosylphosphatidylinositol-anchored proteins
- GlcCer, glucosylceramidetol
- Golgi to plasma membrane sorting
- PAUF, pancreatic adenocarcinoma up-regulated factor
- PKD, Protein Kinase D
- RUSH, retention using selective hooks
- SBP, streptavidin-binding peptide
- SM, sphingomyelin
- SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor
- SPCA1, secretory pathway calcium ATPase 1
- Secretion
- TGN, trans-Golgi Network
- TIRF, total internal reflection fluorescence
- VSV, vesicular stomatitis virus
- pleomorphic tubular carriers
- post-Golgi carriers
- ts, temperature sensitive
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
21
|
Hagiwara A, Sugiyama N, Ohtsuka T. Impaired experience-dependent maternal care in presynaptic active zone protein CAST-deficient dams. Sci Rep 2020; 10:5238. [PMID: 32251313 PMCID: PMC7090055 DOI: 10.1038/s41598-020-62072-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/09/2020] [Indexed: 11/24/2022] Open
Abstract
Although sociological studies affirm the importance of parental care in the survival of offspring, maltreatment—including child neglect—remains prevalent in many countries. While child neglect is well known to affect child development, the causes of maternal neglect are poorly understood. Here, we found that female mice with a deletion mutation of CAST (a presynaptic release-machinery protein) showed significantly reduced weaning rate when primiparous and a recovered rate when multiparous. Indeed, when nurturing, primiparous and nulliparous CAST knock out (KO) mice exhibited less crouching time than control mice and moved greater distances. Contrary to expectations, plasma oxytocin (OXT) was not significantly reduced in CAST KO mice even though terminals of magnocellular neurons in the posterior pituitary expressed CAST. We further found that compared with control mice, CAST KO mice drank significantly less water when nurturing and had a greater preference for sucrose during pregnancy. We suggest that deficiency in presynaptic release-machinery protein impairs the facilitation of some maternal behaviours, which can be compensated for by experience and learning.
Collapse
Affiliation(s)
- Akari Hagiwara
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Naoko Sugiyama
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
22
|
ELKS/Voltage-Dependent Ca 2+ Channel-β Subunit Module Regulates Polarized Ca 2+ Influx in Pancreatic β Cells. Cell Rep 2020; 26:1213-1226.e7. [PMID: 30699350 DOI: 10.1016/j.celrep.2018.12.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 10/29/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
Pancreatic β cells secrete insulin by Ca2+-triggered exocytosis. However, there is no apparent secretory site similar to the neuronal active zones, and the cellular and molecular localization mechanism underlying polarized exocytosis remains elusive. Here, we report that ELKS, a vertebrate active zone protein, is used in β cells to regulate Ca2+ influx for insulin secretion. β cell-specific ELKS-knockout (KO) mice showed impaired glucose-stimulated first-phase insulin secretion and reduced L-type voltage-dependent Ca2+ channel (VDCC) current density. In situ Ca2+ imaging of β cells within islets expressing a membrane-bound G-CaMP8b Ca2+ sensor demonstrated initial local Ca2+ signals at the ELKS-localized vascular side of the β cell plasma membrane, which were markedly decreased in ELKS-KO β cells. Mechanistically, ELKS directly interacted with the VDCC-β subunit via the GK domain. These findings suggest that ELKS and VDCCs form a potent insulin secretion complex at the vascular side of the β cell plasma membrane for polarized Ca2+ influx and first-phase insulin secretion from pancreatic islets.
Collapse
|
23
|
Gan WJ, Do OH, Cottle L, Ma W, Kosobrodova E, Cooper-White J, Bilek M, Thorn P. Local Integrin Activation in Pancreatic β Cells Targets Insulin Secretion to the Vasculature. Cell Rep 2019; 24:2819-2826.e3. [PMID: 30208309 DOI: 10.1016/j.celrep.2018.08.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023] Open
Abstract
The extracellular matrix (ECM) critically affects β cell functions via integrin activation. But whether these ECM actions drive the spatial organization of β cells, as they do in epithelial cells, is unknown. Here, we show that within islets of Langerhans, focal adhesion activation in β cells occurs exclusively where they contact the capillary ECM (vascular face). In cultured β cells, 3D mapping shows enriched insulin granule fusion where the cells contact ECM-coated coverslips, which depends on β1 integrin receptor activation. Culture on micro-contact printed stripes of E-cadherin and fibronectin shows that β cell contact at the fibronectin stripe selectively activates focal adhesions and enriches exocytic machinery and insulin granule fusion. Culture of cells in high glucose, as a model of glucotoxicity, abolishes granule targeting. We conclude that local integrin activation targets insulin secretion to the islet capillaries. This mechanism might be important for islet function and may change in disease.
Collapse
Affiliation(s)
- Wan Jun Gan
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Oanh Hoang Do
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Louise Cottle
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Wei Ma
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Elena Kosobrodova
- School of Physics, University of Sydney, Camperdown, NSW 2006, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Camperdown, NSW 2006, Australia; School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, NSW 2006, Australia; Sydney Nanoscience Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Peter Thorn
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
24
|
Lammert E, Thorn P. The Role of the Islet Niche on Beta Cell Structure and Function. J Mol Biol 2019; 432:1407-1418. [PMID: 31711959 DOI: 10.1016/j.jmb.2019.10.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
The islets of Langerhans or pancreatic islets are pivotal in the control of blood glucose and are complex microorgans embedded within the larger volume of the exocrine pancreas. Humans can have ~3.2 million islets [1] which, to our current knowledge, function in a similar manner to sense circulating blood glucose levels and respond with the secretion of a mix of different hormones that act to maintain glucose concentrations around a specific set point [2]. At a cellular level, the control of hormone secretion by glucose and other secretagogues is well-understood [3]. The key signal cascades have been identified and many details of the secretory process are known. However, if we shift focus from single cells and consider cells within intact islets, we do not have a comprehensive model as to how the islet environment influences cell function and how the islets work as a whole. This is important because there is overwhelming evidence that the structure and function of the individual endocrine cells are dramatically affected by the islet environment [4,5]. Uncovering the influence of this islet niche might drive future progress in treatments for Type 2 diabetes [6] and cell replacement therapies for Type 1 diabetes [7]. In this review, we focus on the insulin secreting beta cells and their interactions with the immediate environment that surrounds them including endocrine-endocrine interactions and contacts with capillaries.
Collapse
Affiliation(s)
- Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Peter Thorn
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
25
|
Dong W, Radulovic T, Goral RO, Thomas C, Suarez Montesinos M, Guerrero-Given D, Hagiwara A, Putzke T, Hida Y, Abe M, Sakimura K, Kamasawa N, Ohtsuka T, Young SM. CAST/ELKS Proteins Control Voltage-Gated Ca 2+ Channel Density and Synaptic Release Probability at a Mammalian Central Synapse. Cell Rep 2019; 24:284-293.e6. [PMID: 29996090 PMCID: PMC6372087 DOI: 10.1016/j.celrep.2018.06.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/25/2018] [Accepted: 06/05/2018] [Indexed: 12/29/2022] Open
Abstract
In the presynaptic terminal, the magnitude and location of Ca2+ entry through voltage-gated Ca2+ channels (VGCCs) regulate the efficacy of neurotransmitter release. However, how presynaptic active zone proteins control mammalian VGCC levels and organization is unclear. To address this, we deleted the CAST/ELKS protein family at the calyx of Held, a CaV2.1 channel-exclusive presynaptic terminal. We found that loss of CAST/ELKS reduces the CaV2.1 current density with concomitant reductions in CaV2.1 channel numbers and clusters. Surprisingly, deletion of CAST/ELKS increases release probability while decreasing the readily releasable pool, with no change in active zone ultrastructure. In addition, Ca2+ channel coupling is unchanged, but spontaneous release rates are elevated. Thus, our data identify distinct roles for CAST/ELKS as positive regulators of CaV2.1 channel density and suggest that they regulate release probability through a post-priming step that controls synaptic vesicle fusogenicity. Dong et al. show that CAST/ELKS have multiple roles in presynaptic function. These proteins positively regulate CaV2.1 channel abundance and negatively regulate release probability. The authors propose that CAST/ELKS regulate release probability at a step in synaptic vesicle release that regulates the energy barrier for synaptic vesicle fusion.
Collapse
Affiliation(s)
- Wei Dong
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA; Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Tamara Radulovic
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - R Oliver Goral
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Connon Thomas
- Max Planck Florida Institute for Neuroscience Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Monica Suarez Montesinos
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Debbie Guerrero-Given
- Max Planck Florida Institute for Neuroscience Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Akari Hagiwara
- Department of Biochemistry, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Travis Putzke
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Yamato Hida
- Department of Biochemistry, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Naomi Kamasawa
- Max Planck Florida Institute for Neuroscience Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Toshihisa Ohtsuka
- Department of Biochemistry, University of Yamanashi, Yamanashi 409-3898, Japan.
| | - Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA; Aging Mind Brain Initiative, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
26
|
Araki K, Araki A, Honda D, Izumoto T, Hashizume A, Hijikata Y, Yamada S, Iguchi Y, Hara A, Ikumi K, Kawai K, Ishigaki S, Nakamichi Y, Tsunekawa S, Seino Y, Yamamoto A, Takayama Y, Hidaka S, Tominaga M, Ohara-Imaizumi M, Suzuki A, Ishiguro H, Enomoto A, Yoshida M, Arima H, Muramatsu SI, Sobue G, Katsuno M. TDP-43 regulates early-phase insulin secretion via CaV1.2-mediated exocytosis in islets. J Clin Invest 2019; 129:3578-3593. [PMID: 31355778 DOI: 10.1172/jci124481] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein 43 kDa (TDP-43), encoded by TARDBP, is an RNA-binding protein, the nuclear depletion of which is the histopathological hallmark of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder affecting both upper and lower motor neurons. Besides motor symptoms, patients with ALS often develop nonneuronal signs including glucose intolerance, but the underlying pathomechanism is still controversial, i.e., whether it is impaired insulin secretion and/or insulin resistance. Here, we showed that ALS subjects reduced early-phase insulin secretion and that the nuclear localization of TDP-43 was lost in the islets of autopsied ALS pancreas. Loss of TDP-43 inhibited exocytosis by downregulating CaV1.2 calcium channels, thereby reducing early-phase insulin secretion in a cultured β cell line (MIN6) and β cell-specific Tardbp knockout mice. Overexpression of CaV1.2 restored early-phase insulin secretion in Tardbp knocked-down MIN6 cells. Our findings suggest that TDP-43 regulates cellular exocytosis mediated by L-type voltage-dependent calcium channels and thus plays an important role in the early phase of insulin secretion by pancreatic islets. Thus, nuclear loss of TDP-43 is implicated in not only the selective loss of motor neurons but also in glucose intolerance due to impaired insulin secretion at an early stage of ALS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Akitoshi Hara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | - Yoko Nakamichi
- Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | | | - Yusuke Seino
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Aichi, Japan
| | - Akiko Yamamoto
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yasunori Takayama
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Shihomi Hidaka
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Aichi, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Atsushi Suzuki
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | | | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Shimotsuke, Tochigi, Japan.,Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | |
Collapse
|
27
|
Zhang K, Yuan Q, Xie J, Yuan L, Wang Y. PPAR-γ activation increases insulin secretion independent of CASK in INS-1 cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:715-722. [PMID: 31168600 DOI: 10.1093/abbs/gmz052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 01/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) is expressed in pancreatic β cells and is involved in insulin secretion. However, the precise mechanisms remain unclear. Calcium/calmodulin-dependent serine protein kinase (CASK), which plays a vital role in the anchoring of insulin granules on pancreatic β cell membrane, is probably a downstream of the transcription factor PPAR-γ. The aim of the present study was to investigate the correlation among PPAR-γ, CASK and insulin secretion. We found that rosiglitazone (RSG) had a positive effect on the expression of CASK and PPAR-γ in INS-1 cells as shown by real-time polymerase chain reaction (PCR) and western blot analysis, but did not change the cellular location of CASK as shown by immunofluorescence assay. Knockdown of PPAR-γ significantly attenuated the mRNA and protein expression levels of CASK. ChIP-qPCR and luciferase assays showed that PPAR-γ bound with the Cask promoter, and promoter activity of Cask was elevated by RSG. RSG significantly enhanced the insulin secretion with potassium stimulation, but did not alter the insulin content as shown by potassium-stimulated insulin secretion assay. In addition, with RSG pretreatment, knockdown of Cask did not significantly affect the PPAR-γ activation-mediated insulin secretion. Moreover, electron microscopy demonstrated that with RSG pretreatment, silence of Cask did not change the number of vesicles anchored on the cell membranes compared with those in siCask-treated cells. Overall, the present study identifies that CASK is one of the PPAR-γ downstream targets and PPAR-γ exerts a positive effect on the expression of CASK in INS-1 cells. PPAR-γ activation increases insulin secretion independent of the upregulation of CASK.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Qingzhao Yuan
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Jinyang Xie
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Li Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yao Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
28
|
Asadi F, Dhanvantari S. Plasticity in the Glucagon Interactome Reveals Novel Proteins That Regulate Glucagon Secretion in α-TC1-6 Cells. Front Endocrinol (Lausanne) 2019; 9:792. [PMID: 30713523 PMCID: PMC6346685 DOI: 10.3389/fendo.2018.00792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
Glucagon is stored within the secretory granules of pancreatic alpha cells until stimuli trigger its release. The alpha cell secretory responses to the stimuli vary widely, possibly due to differences in experimental models or microenvironmental conditions. We hypothesized that the response of the alpha cell to various stimuli could be due to plasticity in the network of proteins that interact with glucagon within alpha cell secretory granules. We used tagged glucagon with Fc to pull out glucagon from the enriched preparation of secretory granules in α-TC1-6 cells. Isolation of secretory granules was validated by immunoisolation with Fc-glucagon and immunoblotting for organelle-specific proteins. Isolated enriched secretory granules were then used for affinity purification with Fc-glucagon followed by liquid chromatography/tandem mass spectrometry to identify secretory granule proteins that interact with glucagon. Proteomic analyses revealed a network of proteins containing glucose regulated protein 78 KDa (GRP78) and histone H4. The interaction between glucagon and the ER stress protein GRP78 and histone H4 was confirmed through co-immunoprecipitation of secretory granule lysates, and colocalization immunofluorescence confocal microscopy. Composition of the protein networks was altered at different glucose levels (25 vs. 5.5 mM) and in response to the paracrine inhibitors of glucagon secretion, GABA and insulin. siRNA-mediated silencing of a subset of these proteins revealed their involvement in glucagon secretion in α-TC1-6 cells. Therefore, our results show a novel and dynamic glucagon interactome within α-TC1-6 cell secretory granules. We suggest that variations in the alpha cell secretory response to stimuli may be governed by plasticity in the glucagon "interactome."
Collapse
Affiliation(s)
- Farzad Asadi
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Savita Dhanvantari
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Metabolism, Diabetes and Imaging Programs, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
29
|
Wang Y, Hao N, Lin H, Wang T, Xie J, Yuan Y. Down-regulation of CASK in glucotoxicity-induced insulin dysfunction in pancreatic β cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:281-287. [PMID: 29293883 DOI: 10.1093/abbs/gmx139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022] Open
Abstract
High-glucose level exerts deleterious effects on pancreatic β cells, but the mechanisms remain unclear. Calcium/calmodulin-dependent serine protein kinase (CASK) plays a vital role in neural development and release of neurotransmitters, and probably plays a role in the anchoring of insulin on pancreatic β cell membrane. Hypoxia-inducible factor 1α (HIF1α) is involved in β-cell dysfunction. The aim of this study was to provide some basic evidence that CASK could be involved in glucotoxicity-induced insulin secretion dysfunction mediated by HIF1α in INS-1E cells. CASK overexpression plasmid, HIF1α agonist (CoCl2), and HIF1α selective inhibitor (KC7F2) were used. The results showed that chronic stimulation with high glucose could induce insulin secretion dysfunction in INS-1E β cells. Overexpression of CASK partially reversed the effects of high glucose on insulin secretion. CoCl2 reduced the expression of CASK, but KC7F2 reversed the glucotoxicity-induced CASK level reduction. These results suggested that glucotoxicity-induced insulin secretion defects in INS-1E cells could be mediated by HIF1α via the down-regulation of CASK.
Collapse
Affiliation(s)
- Yao Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing 210009, China
| | - Nana Hao
- Department of Endocrinology, Affiliated Fuyang Hospital of Anhui Medical University, Fuyang 236000, China
| | - Haiyan Lin
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - Tianyuan Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing 210009, China
| | - Jinyang Xie
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing 210009, China
| | - Yuexing Yuan
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing 210009, China
| |
Collapse
|
30
|
Hamada S, Ohtsuka T. CAST: Its molecular structure and phosphorylation-dependent regulation of presynaptic plasticity. Neurosci Res 2018; 127:25-32. [DOI: 10.1016/j.neures.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 11/16/2022]
|
31
|
Satnav for cells: Destination membrane fusion. Cell Calcium 2017; 68:14-23. [PMID: 29129204 DOI: 10.1016/j.ceca.2017.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/20/2017] [Accepted: 10/07/2017] [Indexed: 11/23/2022]
|
32
|
Patwardhan A, Bardin S, Miserey-Lenkei S, Larue L, Goud B, Raposo G, Delevoye C. Routing of the RAB6 secretory pathway towards the lysosome related organelle of melanocytes. Nat Commun 2017; 8:15835. [PMID: 28607494 PMCID: PMC5474736 DOI: 10.1038/ncomms15835] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/28/2017] [Indexed: 12/23/2022] Open
Abstract
Exocytic carriers convey neo-synthesized components from the Golgi apparatus to the cell surface. While the release and anterograde movement of Golgi-derived vesicles require the small GTPase RAB6, its effector ELKS promotes the targeting and docking of secretory vesicles to particular areas of the plasma membrane. Here, we show that specialized cell types exploit and divert the secretory pathway towards lysosome related organelles. In cultured melanocytes, the secretory route relies on RAB6 and ELKS to directly transport and dock Golgi-derived carriers to melanosomes. By delivering specific cargos, such as MART-1 and TYRP2/ DCT, the RAB6/ELKS-dependent secretory pathway controls the formation and maturation of melanosomes but also pigment synthesis. In addition, pigmentation defects are observed in RAB6 KO mice. Our data together reveal for the first time that the secretory pathway can be directed towards intracellular organelles of endosomal origin to ensure their biogenesis and function. The anterograde movement of Golgi-derived vesicles requires the small GTPase RAB6, while its effector ELKS targets these vesicles to particular areas of the plasma membrane. Here the authors show that RAB6 and ELKS function in the biogenesis of melanosome, demonstrating that the secretory pathway can be directed towards intracellular organelles of endosomal origin.
Collapse
Affiliation(s)
- Anand Patwardhan
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris F-75005, France
| | - Sabine Bardin
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, Paris F-75005, France
| | - Stéphanie Miserey-Lenkei
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, Paris F-75005, France
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay 91405, France.,Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, Orsay 91405, France.,Equipe Labellisée Ligue Contre le Cancer, Orsay 91405, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, Paris F-75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris F-75005, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris F-75005, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris F-75005, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris F-75005, France
| |
Collapse
|
33
|
Abstract
Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.
Collapse
Affiliation(s)
- Ivar Noordstra
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
34
|
Airik R, Schueler M, Airik M, Cho J, Ulanowicz KA, Porath JD, Hurd TW, Bekker-Jensen S, Schrøder JM, Andersen JS, Hildebrandt F. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling. PLoS One 2016; 11:e0156081. [PMID: 27224062 PMCID: PMC4880186 DOI: 10.1371/journal.pone.0156081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 05/09/2016] [Indexed: 12/29/2022] Open
Abstract
Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage response signaling as an underlying disease mechanism in the kidney. However, several other phenotypic and mechanistic features of Sdccag8gt/gt mice remained unexplored. Here we show that Sdccag8gt/gt mice exhibit developmental and structural abnormalities of the skeleton and limbs, suggesting impaired Hedgehog (Hh) signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1), of the endosomal sorting complex (RABEP2, ERC1), and with non-muscle myosin motor proteins (MYH9, MYH10, MYH14) at the centrosome. Furthermore, we show that RABEP2 localization at the centrosome is regulated by SDCCAG8. siRNA mediated RABEP2 knockdown in hTERT-RPE1 cells leads to defective ciliogenesis, indicating a critical role for RABEP2 in this process. Together, this study identifies several centrosome-associated proteins as novel SDCCAG8 interaction partners, and provides new insights into the function of SDCCAG8 at this structure.
Collapse
Affiliation(s)
- Rannar Airik
- Department of Medicine, Division of Nephrology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- * E-mail: (RA); (FH)
| | - Markus Schueler
- Department of Medicine, Division of Nephrology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Merlin Airik
- Department of Medicine, Division of Nephrology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Jang Cho
- Department of Medicine, Division of Nephrology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Kelsey A. Ulanowicz
- Department of Pediatrics, Division of Nephrology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan D. Porath
- Department of Medicine, Division of Nephrology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Toby W. Hurd
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon Bekker-Jensen
- NNF Center for Protein Research, University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark
| | - Jacob M. Schrøder
- Department of Biochemistry and Molecular Biology; University of Southern Denmark, Odense M, Denmark
| | - Jens S. Andersen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark, Odense M, Denmark
| | - Friedhelm Hildebrandt
- Department of Medicine, Division of Nephrology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail: (RA); (FH)
| |
Collapse
|
35
|
Thorn P, Zorec R, Rettig J, Keating DJ. Exocytosis in non-neuronal cells. J Neurochem 2016; 137:849-59. [PMID: 26938142 DOI: 10.1111/jnc.13602] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/02/2016] [Accepted: 03/01/2016] [Indexed: 12/18/2022]
Abstract
Exocytosis is the process by which stored neurotransmitters and hormones are released via the fusion of secretory vesicles with the plasma membrane. It is a dynamic, rapid and spatially restricted process involving multiple steps including vesicle trafficking, tethering, docking, priming and fusion. For many years great steps have been undertaken in our understanding of how exocytosis occurs in different cell types, with significant focus being placed on synaptic release and neurotransmission. However, this process of exocytosis is an essential component of cell signalling throughout the body and underpins a diverse array of essential physiological pathways. Many similarities exist between different cell types with regard to key aspects of the exocytosis pathway, such as the need for Ca(2+) to trigger it or the involvement of members of the N-ethyl maleimide-sensitive fusion protein attachment protein receptor protein families. However, it is also equally clear that non-neuronal cells have acquired highly specialized mechanisms to control the release of their own unique chemical messengers. This review will focus on several important non-neuronal cell types and discuss what we know about the mechanisms they use to control exocytosis and how their specialized output is relevant to the physiological role of each individual cell type. These include enteroendocrine cells, pancreatic β cells, astrocytes, lactotrophs and cytotoxic T lymphocytes. Non-neuronal cells have acquired highly specialized mechanisms to control the release of unique chemical messengers, such as polarised fusion of insulin granules in pancreatic β cells targeted towards the vasculature (top). This review discusses mechanisms used in several important non-neuronal cell types to control exocytosis, and the relevance of intermediate vesicle fusion pore states (bottom) and their specialized output to the physiological role of each cell type. These include enteroendocrine cells, pancreatic β cells, astrocytes, lactotrophs and cytotoxic T lymphocytes. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015).
Collapse
Affiliation(s)
- Peter Thorn
- Charles Perkins Centre, John Hopkins Drive, The University of Sydney, Camperdown, NSW, Australia
| | - Robert Zorec
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|
36
|
Hoang Do O, Thorn P. Insulin secretion from beta cells within intact islets: location matters. Clin Exp Pharmacol Physiol 2015; 42:406-14. [PMID: 25676261 PMCID: PMC4418378 DOI: 10.1111/1440-1681.12368] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/21/2014] [Accepted: 01/06/2015] [Indexed: 12/17/2022]
Abstract
The control of hormone secretion is central to body homeostasis, and its dysfunction is important in many diseases. The key cellular steps that lead to hormone secretion have been identified, and the stimulus-secretion pathway is understood in outline for many endocrine cells. In the case of insulin secretion from pancreatic beta cells, this pathway involves the uptake of glucose, cell depolarization, calcium entry, and the triggering of the fusion of insulin-containing granules with the cell membrane. The wealth of information on the control of insulin secretion has largely been obtained from isolated single-cell studies. However, physiologically, beta cells exist within the islets of Langerhans, with structural and functional specializations that are not preserved in single-cell cultures. This review focuses on recent work that is revealing distinct aspects of insulin secretion from beta cells within the islet.
Collapse
Affiliation(s)
- Oanh Hoang Do
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Qld, Australia
| | | |
Collapse
|
37
|
Spatiotemporal detection and analysis of exocytosis reveal fusion "hotspots" organized by the cytoskeleton in endocrine cells. Biophys J 2015; 108:251-60. [PMID: 25606674 DOI: 10.1016/j.bpj.2014.11.3462] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Total internal reflection fluorescence microscope has often been used to study the molecular mechanisms underlying vesicle exocytosis. However, the spatial occurrence of the fusion events within a single cell is not frequently explored due to the lack of sensitive and accurate computer-assisted programs to analyze large image data sets. Here, we have developed an image analysis platform for the nonbiased identification of different types of vesicle fusion events with high accuracy in different cell types. By performing spatiotemporal analysis of stimulus-evoked exocytosis in insulin-secreting INS-1 cells, we statistically prove that individual vesicle fusion events are clustered at hotspots. This spatial pattern disappears upon the disruption of either the actin or the microtubule network; this disruption also severely inhibits evoked exocytosis. By demonstrating that newcomer vesicles are delivered from the cell interior to the surface membrane for exocytosis, we highlight a previously unappreciated mechanism in which the cytoskeleton-dependent transportation of secretory vesicles organizes exocytosis hotspots in endocrine cells.
Collapse
|
38
|
Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling. Dev Cell 2015; 35:120-30. [PMID: 26439397 DOI: 10.1016/j.devcel.2015.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/05/2015] [Accepted: 09/10/2015] [Indexed: 01/01/2023]
Abstract
Many receptor-mediated endocytic processes are mediated by constitutive budding of clathrin-coated pits (CCPs) at spatially randomized sites before slowly pinching off from the plasma membrane (60-100 s). In contrast, clathrin-mediated endocytosis (CME) coupled with regulated exocytosis in excitable cells occurs at peri-exocytic sites shortly after vesicle fusion (∼10 s). The molecular mechanism underlying this spatiotemporal coupling remains elusive. We show that coupled endocytosis makes use of pre-formed CCPs, which hop to nascent fusion sites nearby following vesicle exocytosis. A dynamic cortical microtubular network, anchored at the cell surface by the cytoplasmic linker-associated protein on microtubules and the LL5β/ELKS complex on the plasma membrane, provides the track for CCP hopping. Local diacylglycerol gradients generated upon exocytosis guide the direction of hopping. Overall, the CCP-cytoskeleton-lipid interaction demonstrated here mediates exocytosis-coupled fast recycling of both plasma membrane and vesicular proteins, and it is required for the sustained exocytosis during repetitive stimulations.
Collapse
|
39
|
Astro V, de Curtis I. Plasma membrane-associated platforms: Dynamic scaffolds that organize membrane-associated events. Sci Signal 2015; 8:re1. [DOI: 10.1126/scisignal.aaa3312] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Cellular mechanisms of alpha herpesvirus egress: live cell fluorescence microscopy of pseudorabies virus exocytosis. PLoS Pathog 2014; 10:e1004535. [PMID: 25474634 PMCID: PMC4256261 DOI: 10.1371/journal.ppat.1004535] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/21/2014] [Indexed: 01/06/2023] Open
Abstract
Egress of newly assembled herpesvirus particles from infected cells is a highly dynamic process involving the host secretory pathway working in concert with viral components. To elucidate the location, dynamics, and molecular mechanisms of alpha herpesvirus egress, we developed a live-cell fluorescence microscopy method to visualize the final transport and exocytosis of pseudorabies virus (PRV) particles in non-polarized epithelial cells. This method is based on total internal reflection fluorescence (TIRF) microscopy to selectively image fluorescent virus particles near the plasma membrane, and takes advantage of a virus-encoded pH-sensitive probe to visualize the precise moment and location of particle exocytosis. We performed single-particle tracking and mean squared displacement analysis to characterize particle motion, and imaged a panel of cellular proteins to identify those spatially and dynamically associated with viral exocytosis. Based on our data, individual virus particles travel to the plasma membrane inside small, acidified secretory vesicles. Rab GTPases, Rab6a, Rab8a, and Rab11a, key regulators of the plasma membrane-directed secretory pathway, are present on the virus secretory vesicle. These vesicles undergo fast, directional transport directly to the site of exocytosis, which is most frequently near patches of LL5β, part of a complex that anchors microtubules to the plasma membrane. Vesicles are tightly docked at the site of exocytosis for several seconds, and membrane fusion occurs, displacing the virion a small distance across the plasma membrane. After exocytosis, particles remain tightly confined on the outer cell surface. Based on recent reports in the cell biological and alpha herpesvirus literature, combined with our spatial and dynamic data on viral egress, we propose an integrated model that links together the intracellular transport pathways and exocytosis mechanisms that mediate alpha herpesvirus egress. Pseudorabies virus, an alpha herpesvirus, is an important veterinary pathogen, and related to human varicella-zoster virus and herpes simplex viruses. New alpha herpesvirus particles are assembled inside an infected cell, and must exit from the infected cell by taking advantage of cellular mechanisms. How these virus particles are transported inside the infected cell and secreted at the cell surface is not understood in great detail. In particular, how this process unfolds over time is not easily observed using previous methods. In this study, we developed a new method to observe this egress process. Using this method, we described how virus particles move on their way out: individual virus particles travel to the cell surface, directly to the exit site, where they pause for several seconds before crossing out of the cell. We identified several cellular proteins that are involved in this process. After exiting, virus particles remained stuck to the outer cell surface. Finally, we draw connections between our observations and other recent studies to propose an integrated model of how alpha herpesvirus particles exit from infected cells.
Collapse
|
41
|
Patel V, Oh A, Voit A, Sultatos LG, Babu GJ, Wilson BA, Ho M, McArdle JJ. Altered active zones, vesicle pools, nerve terminal conductivity, and morphology during experimental MuSK myasthenia gravis. PLoS One 2014; 9:e110571. [PMID: 25438154 PMCID: PMC4249869 DOI: 10.1371/journal.pone.0110571] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs) studied electrophysiologically, morphologically, and biochemically. While all mice produced antibodies to MuSK, only 40% developed respiratory muscle weakness. In vitro study of respiratory nerve-muscle preparations isolated from these affected mice revealed that 78% of NMJs produced endplate currents (EPCs) with significantly reduced quantal content, although potentiation and depression at 50 Hz remained qualitatively normal. EPC and mEPC amplitude variability indicated significantly reduced number of vesicle-release sites (active zones) and reduced probability of vesicle release. The readily releasable vesicle pool size and the frequency of large amplitude mEPCs also declined. The remaining NMJs had intermittent (4%) or complete (18%) failure of neurotransmitter release in response to 50 Hz nerve stimulation, presumably due to blocked action potential entry into the nerve terminal, which may arise from nerve terminal swelling and thinning. Since MuSK-MG-affected muscles do not express the AChR γ subunit, the observed prolongation of EPC decay time was not due to inactivity-induced expression of embryonic acetylcholine receptor, but rather to reduced catalytic activity of acetylcholinesterase. Muscle protein levels of MuSK did not change. These findings provide novel insight into the pathophysiology of autoimmune MuSK-MG.
Collapse
MESH Headings
- Animals
- Female
- Immunization, Passive
- Mice
- Motor Endplate/pathology
- Motor Endplate/physiopathology
- Motor Neurons/pathology
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Myasthenia Gravis, Autoimmune, Experimental/physiopathology
- Neural Conduction
- Neurotransmitter Agents/metabolism
- Protein Structure, Tertiary
- Rats
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/immunology
- Receptors, Cholinergic/metabolism
- Synaptic Vesicles/metabolism
- Vaccination
Collapse
Affiliation(s)
- Vishwendra Patel
- Department of Pharmacology and Physiology, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Anne Oh
- Department of Pharmacology and Physiology, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Antanina Voit
- Department Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Lester G. Sultatos
- Department of Pharmacology and Physiology, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Gopal J. Babu
- Department Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Brenda A. Wilson
- Department of Microbiology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Mengfei Ho
- Department of Microbiology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Joseph J. McArdle
- Department of Pharmacology and Physiology, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
42
|
Low JT, Zavortink M, Mitchell JM, Gan WJ, Do OH, Schwiening CJ, Gaisano HY, Thorn P. Insulin secretion from beta cells in intact mouse islets is targeted towards the vasculature. Diabetologia 2014; 57:1655-63. [PMID: 24795086 PMCID: PMC4079948 DOI: 10.1007/s00125-014-3252-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/03/2014] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS We set out to test the hypothesis that insulin secretion from beta cells is targeted towards the vasculature. METHODS The spatial location of granule fusion was identified by live-cell two-photon imaging of mouse pancreatic beta cells within intact islets, using sulforhodamine B labelling. Three-dimensional (3D) immunofluorescence of pancreatic slices was used to identify the location of proteins associated with neuronal synapses. RESULTS We demonstrated an asymmetric, non-random, distribution of sites of insulin granule fusion in response to glucose and focal targeting of insulin granule secretion to the beta cell membrane facing the vasculature. 3D immunofluorescence of islets showed that structural proteins, such as liprin, piccolo and Rab2-interacting molecule, normally associated with neuronal presynaptic targeting, were present in beta cells and enriched at the vascular face. In contrast, we found that syntaxin 1A and synaptosomal-associated protein 25 kDa (SNAP25) were relatively evenly distributed across the beta cells. CONCLUSIONS/INTERPRETATION Our results show that beta cells in situ, within intact islets, are polarised and target insulin secretion. This evidence for an 'endocrine synapse' has wide implications for our understanding of stimulus-secretion coupling in healthy islets and in disease.
Collapse
Affiliation(s)
- Jiun T Low
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhu ZQ, Wang D, Xiang D, Yuan YX, Wang Y. Calcium/calmodulin-dependent serine protein kinase is involved in exendin-4-induced insulin secretion in INS-1 cells. Metabolism 2014; 63:120-6. [PMID: 24140090 DOI: 10.1016/j.metabol.2013.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/23/2013] [Accepted: 09/15/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Exendin-4 (Ex-4) is an anti-diabetic drug that is a potent agonist of the glucagon-like peptide-1 (GLP-1) receptor. It has already been approved for the treatment of type 2 diabetes mellitus, but its underlying mechanisms of action are not fully understood. Calcium/calmodulin-dependent serine protein kinase (CASK), which plays a vital role in the transport and release of neurotransmitters in neurons, is expressed in pancreatic islet cells and β-cells. This study aimed to investigate whether CASK is involved in the insulin secretagogue action induced by Ex-4 in INS-1 cells. MATERIAL/METHODS A glucose-stimulated insulin secretion (GSIS) assay was performed with or without siRNA treatment against CASK. The expression level and location of CASK were evaluated by real-time PCR, western blotting and immunofluorescence. With the use of a protein kinase A (PKA) inhibitor or an exchange protein directly activated by cAMP-2 (Epac2) agonist, immunoblotting was performed to establish the signaling pathway through which Ex-4 alters CASK expression. RESULTS Knock-down of CASK significantly attenuated the Ex-4-enhanced insulin release, and we showed that Ex-4 could increase transcription of CASK mRNA and expression of CASK protein but did not change the cellular location of CASK. A PKA inhibitor reduced the ability of Ex-4 to stimulate CASK expression, but an Epac2 agonist had no effect suggesting that regulation was mediated by the cAMP/PKA pathway. CONCLUSION Our study suggests that the stimulation of β-cell insulin secretion by Ex-4 is mediated, at least in part, by CASK via a novel signaling mechanism.
Collapse
Affiliation(s)
- Zheng-Qiu Zhu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing 210009, PR China
| | | | | | | | | |
Collapse
|
44
|
Juranek JK, Mukherjee K, Siddiqui TJ, Kaplan BJ, Li JY, Ahnert-Hilger G, Jahn R, Calka J. Active zone protein expression changes at the key stages of cerebellar cortex neurogenesis in the rat. Acta Histochem 2013; 115:616-25. [PMID: 23434052 DOI: 10.1016/j.acthis.2013.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 12/11/2022]
Abstract
Signal transduction and neurotransmitter release in the vertebrate central nervous system are confined to the structurally complex presynaptic electron dense projections called "active zones." Although the nature of these projections remains a mystery, genetic and biochemical work has provided evidence for the active zone (AZ) associated proteins i.e. Piccolo/Aczonin, Bassoon, RIM1/Unc10, Munc13/Unc13, Liprin-α/SYD2/Dliprin and ELKS/CAST/BRP and their specific molecular functions. It still remains unclear, however, what their precise contribution is to the AZ assembly. In our project, we studied in Wistar rats the temporal and spatial distribution of AZ proteins and their colocalization with Synaptophysin in the developing cerebellar cortex at key stages of cerebellum neurogenesis. Our study demonstrated that AZ proteins were already present at the very early stages of cerebellar neurogenesis and exhibited distinct spatial and temporal variations in immunoexpression throughout the course of the study. Colocalization analysis revealed that the colocalization pattern was time-dependent and different for each studied protein. The highest collective mean percentage of colocalization (>85%) was observed at postnatal day (PD) 5, followed by PD10 (>83%) and PD15 (>80%). The findings of our study shed light on AZ protein immunoexpression changes during cerebellar cortex neurogenesis and help frame a hypothetical model of AZ assembly.
Collapse
|
45
|
Ohtsuka T. CAST: Functional scaffold for the integrity of the presynaptic active zone. Neurosci Res 2013; 76:10-5. [DOI: 10.1016/j.neures.2013.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 12/24/2022]
|
46
|
Thevenon J, Callier P, Andrieux J, Delobel B, David A, Sukno S, Minot D, Mosca Anne L, Marle N, Sanlaville D, Bonnet M, Masurel-Paulet A, Levy F, Gaunt L, Farrell S, Le Caignec C, Toutain A, Carmignac V, Mugneret F, Clayton-Smith J, Thauvin-Robinet C, Faivre L. 12p13.33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech. Eur J Hum Genet 2013; 21:82-8. [PMID: 22713806 PMCID: PMC3522191 DOI: 10.1038/ejhg.2012.116] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/10/2022] Open
Abstract
Speech sound disorders are heterogeneous conditions, and sporadic and familial cases have been described. However, monogenic inheritance explains only a small proportion of such disorders, in particular in cases with childhood apraxia of speech (CAS). Deletions of <5 Mb involving the 12p13.33 locus is one of the least commonly deleted subtelomeric regions. Only four patients have been reported with such a deletion diagnosed with fluorescence in situ hybridisation telomere analysis or array CGH. To further delineate this rare microdeletional syndrome, a French collaboration together with a search in the Decipher database allowed us to gather nine new patients with a 12p13.33 subtelomeric or interstitial rearrangement identified by array CGH. Speech delay was found in all patients, which could be defined as CAS when patients had been evaluated by a speech therapist (5/9 patients). Intellectual deficiency was found in 5/9 patients only, and often associated with psychiatric manifestations of various severity. Two such deletions were inherited from an apparently healthy parent, but reevaluation revealed abnormal speech production at least in childhood, suggesting variable expressivity. The ELKS/ERC1 gene, which encodes for a synaptic factor, is found in the smallest region of overlap. These results reinforce the hypothesis that deletions of the 12p13.33 locus may be responsible for variable phenotypes including CAS associated with neurobehavioural troubles and that the presence of CAS justifies a genetic work-up.
Collapse
Affiliation(s)
- Julien Thevenon
- Centre de Génétique et Centre de Référence «Anomalies du Développement et Syndromes Malformatifs», Hôpital d'Enfants, CHU Dijon, Dijon, France
| | | | - Joris Andrieux
- Cytogénétique, Hôpital Jeanne de Flandre, CHRU de Lille, Lille, France
| | - Bruno Delobel
- Centre de Cytogénétique Chromosomique, Hôpital Saint Vincent de Paul, Groupe Hospitalier de l'Institut Catholique Lillois, Faculté Libre de Médecine, Lille, France
| | - Albert David
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Sylvie Sukno
- Service de Neuropédiatrie, Hôpital Saint Vincent de Paul, Groupe Hospitalier de l'Institut Catholique Lillois, Faculté Libre de Médecine, Lille, France
| | - Delphine Minot
- Centre de Génétique et Centre de Référence «Anomalies du Développement et Syndromes Malformatifs», Hôpital d'Enfants, CHU Dijon, Dijon, France
| | | | | | - Damien Sanlaville
- Laboratoire de Cytogénétique, CBPE, Hospices Civils de Lyon, Bron, France
| | - Marlène Bonnet
- Centre de Référence des Troubles du Langage et des Apprentissages, Hôpital d'Enfants, CHU de Dijon, Dijon, France
| | - Alice Masurel-Paulet
- Centre de Génétique et Centre de Référence «Anomalies du Développement et Syndromes Malformatifs», Hôpital d'Enfants, CHU Dijon, Dijon, France
| | - Fabienne Levy
- Centre de Référence des Troubles du Langage et des Apprentissages, Hôpital d'Enfants, CHU de Dijon, Dijon, France
| | - Lorraine Gaunt
- Genetic Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester Biomedical Research Centre, St Mary's Hospital, Manchester, UK
| | - Sandra Farrell
- Genetic Medicine, Credit Valley Hospital, Mississauga, Ontario, Canada
| | - Cédric Le Caignec
- Service de Génétique Médicale, CHU Nantes, Nantes, France
- INSERM, UMR_S915, l'institut du thorax, Nantes, France
| | | | | | | | - Jill Clayton-Smith
- Genetic Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester Biomedical Research Centre, St Mary's Hospital, Manchester, UK
| | - Christel Thauvin-Robinet
- Centre de Génétique et Centre de Référence «Anomalies du Développement et Syndromes Malformatifs», Hôpital d'Enfants, CHU Dijon, Dijon, France
- Equipe GAD, Université de Bourgogne, Faculté de Médecine, Dijon, France
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence «Anomalies du Développement et Syndromes Malformatifs», Hôpital d'Enfants, CHU Dijon, Dijon, France
- Equipe GAD, Université de Bourgogne, Faculté de Médecine, Dijon, France
| |
Collapse
|
47
|
Otoferlin: a multi-C2 domain protein essential for hearing. Trends Neurosci 2012; 35:671-80. [DOI: 10.1016/j.tins.2012.08.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/25/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
|
48
|
Molecular anatomy and physiology of exocytosis in sensory hair cells. Cell Calcium 2012; 52:327-37. [DOI: 10.1016/j.ceca.2012.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 11/23/2022]
|
49
|
Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia 2012; 55:2096-108. [PMID: 22555472 DOI: 10.1007/s00125-012-2562-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/09/2012] [Indexed: 12/25/2022]
Abstract
Clarification of the molecular mechanisms of insulin secretion is crucial for understanding the pathogenesis and pathophysiology of diabetes and for development of novel therapeutic strategies for the disease. Insulin secretion is regulated by various intracellular signals generated by nutrients and hormonal and neural inputs. In addition, a variety of glucose-lowering drugs including sulfonylureas, glinide-derivatives, and incretin-related drugs such as dipeptidyl peptidase IV (DPP-4) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists are used for glycaemic control by targeting beta cell signalling for improved insulin secretion. There has been a remarkable increase in our understanding of the basis of beta cell signalling over the past two decades following the application of molecular biology, gene technology, electrophysiology and bioimaging to beta cell research. This review discusses cell signalling in insulin secretion, focusing on the molecular targets of ATP, cAMP and sulfonylurea, an essential metabolic signal in glucose-induced insulin secretion (GIIS), a critical signal in the potentiation of GIIS, and the commonly used glucose-lowering drug, respectively.
Collapse
Affiliation(s)
- S Seino
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
50
|
Kiyonaka S, Nakajima H, Takada Y, Hida Y, Yoshioka T, Hagiwara A, Kitajima I, Mori Y, Ohtsuka T. Physical and functional interaction of the active zone protein CAST/ERC2 and the β-subunit of the voltage-dependent Ca(2+) channel. J Biochem 2012; 152:149-59. [PMID: 22577167 DOI: 10.1093/jb/mvs054] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the nerve terminals, the active zone protein CAST/ERC2 forms a protein complex with the other active zone proteins ELKS, Bassoon, Piccolo, RIM1 and Munc13-1, and is thought to play an organizational and functional role in neurotransmitter release. However, it remains obscure how CAST/ERC2 regulates the Ca(2+)-dependent release of neurotransmitters. Here, we show an interaction of CAST with voltage-dependent Ca(2+) channels (VDCCs), which are essential for regulating neurotransmitter release triggered by depolarization-induced Ca(2+) influx at the active zone. Using a biochemical assay, we showed that CAST was coimmunoprecipitated with the VDCC β(4)-subunit from the mouse brain. A pull-down assay revealed that the VDCC β(4)-subunit interacted directly with at least the N- and C-terminal regions of CAST. The II-III linker of VDCC α(1)-subunit also interacted with C-terminal regions of CAST; however, the interaction was much weaker than that of β(4)-subunit. Furthermore, coexpression of CAST and VDCCs in baby hamster kidney cells caused a shift in the voltage dependence of activation towards the hyperpolarizing direction. Taken together, these results suggest that CAST forms a protein complex with VDCCs, which may regulate neurotransmitter release partly through modifying the opening of VDCCs at the presynaptic active zones.
Collapse
Affiliation(s)
- Shigeki Kiyonaka
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|