1
|
Pahal S, Mainali N, Balasubramaniam M, Shmookler Reis RJ, Ayyadevara S. Mitochondria in aging and age-associated diseases. Mitochondrion 2025; 82:102022. [PMID: 40023438 DOI: 10.1016/j.mito.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Mitochondria, essential for cellular energy, are crucial in neurodegenerative disorders (NDDs) and their age-related progression. This review highlights mitochondrial dynamics, mitovesicles, homeostasis, and organelle communication. We examine mitochondrial impacts from aging and NDDs, focusing on protein aggregation and dysfunction. Prospective therapeutic approaches include enhancing mitophagy, improving respiratory chain function, maintaining calcium and lipid balance, using microRNAs, and mitochondrial transfer to protect function. These strategies underscore the crucial role of mitochondrial health in neuronal survival and cognitive functions, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | | | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| |
Collapse
|
2
|
Mansour RM, Shaker AAS, Abulsoud AI, Mageed SSA, Ashraf A, Elsakka EGE, Dahab MI, Sadek MM, Awad FA, Lutfy RH, Elimam H, Faraag AHI, Nassar YA, Ali MA, Mohammed OA, Abdel-Reheim MA, Doghish AS. The Role of MicroRNAs in Neurodegeneration: Insights from Huntington's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04750-7. [PMID: 40009259 DOI: 10.1007/s12035-025-04750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
MicroRNA (miRNAs) is a single non-coding strand with a small sequence of approximately 21-25 nucleotides, which could be a biomarker or act as a therapeutic agent for disease. This review explores the dynamic role of miRNAs in Huntington's disease (HD), encompassing their regulatory function, potential as diagnostic biomarker tools, and emerging therapeutic applications. We delved into the dysregulation of specific miRNAs in HD, for instance, downregulated levels of miR-9 and miR-124 and increased levels of miR-155 and miR-196a. These alterations highlight the promise of miRNAs as non-invasive tools for early HD detection and disease progression monitoring. Moving beyond diagnosis, the exciting potential of miRNA-based therapies. By mimicking downregulated miRNAs or inhibiting dysregulated ones, we can potentially restore the balance of mutant target gene expression and modify disease progression. Recent research using engineered miRNAs delivered via an adeno-associated virus (AAV) vector in a transgenic HD minipig model demonstrates encouraging results in reducing mutant HD and improving motor function.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, 11795, Helwan, Egypt
- Biology Department, School of Biotechnology, Badr University in Cairo, 11829, Badr City, Cairo, Egypt
| | - Abanoub A S Shaker
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, 11785, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt
| | - Mohammed I Dahab
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Mohamed M Sadek
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat, 32897, Sadat City, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
- Botany and Microbiology Department, Faculty of Science, Helwan University, 11795, Helwan, Egypt
| | - Yara A Nassar
- Department of Botany, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt.
| |
Collapse
|
3
|
Bajpai A, Bharathi V, Patel BK. Therapeutic targeting of the oxidative stress generated by pathological molecular pathways in the neurodegenerative diseases, ALS and Huntington's. Eur J Pharmacol 2025; 987:177187. [PMID: 39645221 DOI: 10.1016/j.ejphar.2024.177187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
Neurodegenerative disorders are characterized by a progressive decline of specific neuronal populations in the brain and spinal cord, typically containing aggregates of one or more proteins. They can result in behavioral alterations, memory loss and a decline in cognitive and motor abilities. Various pathways and mechanisms have been outlined for the potential treatment of these diseases, where redox regulation is considered as one of the most common druggable targets. For example, in amyotrophic lateral sclerosis (ALS) with superoxide dismutase-1 (SOD1) pathology, there is a downregulation of the antioxidant response nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. TDP-43 proteinopathy in ALS is associated with elevated levels of reactive oxygen species and mitochondrial dyshomeostasis. In ALS with mutant FUS, poly ADP ribose polymerase-dependent X ray repair cross complementing 1/DNA-ligase recruitment to the sites of oxidative DNA damage is affected, thereby causing defects in DNA damage repair. Oxidative stress in Huntington's disease (HD) with mutant huntingtin accumulation manifests as protein oxidation, metabolic energetics dysfunction, metal ion dyshomeostasis, DNA damage and mitochondrial dysfunction. The impact of oxidative stress in the progression of these diseases further warrants studies into the role of antioxidants in their treatment. While an antioxidant, edaravone, has been approved for therapeutics of ALS, numerous antioxidant molecules failed to pass the clinical trials despite promising initial studies. In this review, we summarize the oxidative stress pathways and redox modulators that are investigated in ALS and HD using various models.
Collapse
Affiliation(s)
- Akarsh Bajpai
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Vidhya Bharathi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
4
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
5
|
Chang CP, Wu CW, Chern Y. Metabolic dysregulation in Huntington's disease: Neuronal and glial perspectives. Neurobiol Dis 2024; 201:106672. [PMID: 39306013 DOI: 10.1016/j.nbd.2024.106672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutant huntingtin protein with an abnormal CAG/polyQ expansion in the N-terminus of HTT exon 1. HD is characterized by progressive neurodegeneration and metabolic abnormalities, particularly in the brain, which accounts for approximately 20 % of the body's resting metabolic rate. Dysregulation of energy homeostasis in HD includes impaired glucose transporters, abnormal functions of glycolytic enzymes, changes in tricarboxylic acid (TCA) cycle activity and enzyme expression in the basal ganglia and cortical regions of both HD mouse models and HD patients. However, current understanding of brain cell behavior during energy dysregulation and its impact on neuron-glia crosstalk in HD remains limited. This review provides a comprehensive summary of the current understanding of the differences in glucose metabolism between neurons and glial cells in HD and how these differences contribute to disease development compared with normal conditions. We also discuss the potential impact of metabolic shifts on neuron-glia communication in HD. A deeper understanding of these metabolic alterations may reveal potential therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Wen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Carrillo-Garmendia A, Madrigal-Perez LA, Regalado-Gonzalez C. The multifaceted role of quercetin derived from its mitochondrial mechanism. Mol Cell Biochem 2024; 479:1985-1997. [PMID: 37656383 DOI: 10.1007/s11010-023-04833-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Quercetin is a flavonoid with promising therapeutic applications; nonetheless, the phenotype exerted in some diseases is contradictory. For instance, anticancer properties may be explained by a cytotoxic mechanism, whereas antioxidant-related neuroprotection is a pro-survival process. According to the available literature, quercetin exerts a redox interaction with the electron transport chain (ETC) in the mitochondrion, affecting its membrane potential. It also affects ATP generation by oxidative phosphorylation, where ATP deprivation could partly explain its cytotoxic effect. Moreover, quercetin may support the generation of free radicals through redox reactions, causing a prooxidant effect. The nutrimental stress and prooxidant effect induced by quercetin might promote pro-survival properties such as antioxidant processes. Thus, in this review, we discuss the evidence supporting that quercetin redox interaction with the ETC could explain its beneficial and toxic properties.
Collapse
Affiliation(s)
| | - Luis Alberto Madrigal-Perez
- Tecnológico Nacional de México/Instituto Tecnológico Superior de Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez #2120, Ciudad Hidalgo, Michoacán, 61100, México.
| | - Carlos Regalado-Gonzalez
- Cerro de las Campanas, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, 76010, México.
| |
Collapse
|
7
|
Shen Y, Wang X, Nan N, Fu X, Zeng R, Yang Y, Xian S, Shi J, Wu Q, Zhou S. SIRT3-Mediated Deacetylation of SDHA Rescues Mitochondrial Bioenergetics Contributing to Neuroprotection in Rotenone-Induced PD Models. Mol Neurobiol 2024; 61:4402-4420. [PMID: 38087172 DOI: 10.1007/s12035-023-03830-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/25/2023] [Indexed: 07/11/2024]
Abstract
Mitochondrial dysfunction is critically involved in the degeneration of dopamine (DA) neurons in the substantia nigra, a common pathological feature of Parkinson's disease (PD). Previous studies have demonstrated that the NAD+-dependent acetylase Sirtuin 3 (SIRT3) participates in maintaining mitochondrial function and is downregulated in aging-related neurodegenerative disorders. The exact mechanism of action of SIRT3 on mitochondrial bioenergetics in PD pathogenesis, however, has not been fully described. In this study, we investigated the regulatory role of SIRT3-mediated deacetylation of mitochondrial complex II (succinate dehydrogenase) subunit A (SDHA) and its effect on neuronal cell survival in rotenone (ROT)-induced rat and differentiated MN9D cell models. The results revealed that SIRT3 activity was suppressed in both in vivo and in vitro PD models. Accompanying this downregulation of SIRT3 was the hyperacetylation of SDHA, impaired activity of mitochondrial complex II, and decreased ATP production. It was found that the inhibition of SIRT3 activity was attributed to a reduction in the NAD+/NADH ratio caused by ROT-induced inhibition of mitochondrial complex I. Activation of SIRT3 by icariin and honokiol inhibited SDHA hyperacetylation and increased complex II activity, leading to increased ATP production and protection against ROT-induced neuronal damage. Furthermore, overexpression of SDHA also exerted potent protective benefits in cells treated with ROT. In addition, treatment of MN9D cells with the NAD+ precursor nicotinamide mononucleotide increased SIRT3 activity and complex II activity and promoted the survival of cells exposed to ROT. These findings unravel a regulatory SIRT3-SDHA axis, which may be closely related to PD pathology. Bioenergetic rescue through SIRT3 activation-dependent improvement of mitochondrial complex II activity may provide an effective strategy for protection from neurodegeneration.
Collapse
Affiliation(s)
- Yanhua Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xueting Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nan Nan
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaolong Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ru Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yonggang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Siting Xian
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
8
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
9
|
Goetzman E, Gong Z, Zhang B, Muzumdar R. Complex II Biology in Aging, Health, and Disease. Antioxidants (Basel) 2023; 12:1477. [PMID: 37508015 PMCID: PMC10376733 DOI: 10.3390/antiox12071477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Aging is associated with a decline in mitochondrial function which may contribute to age-related diseases such as neurodegeneration, cancer, and cardiovascular diseases. Recently, mitochondrial Complex II has emerged as an important player in the aging process. Mitochondrial Complex II converts succinate to fumarate and plays an essential role in both the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). The dysfunction of Complex II not only limits mitochondrial energy production; it may also promote oxidative stress, contributing, over time, to cellular damage, aging, and disease. Intriguingly, succinate, the substrate for Complex II which accumulates during mitochondrial dysfunction, has been shown to have widespread effects as a signaling molecule. Here, we review recent advances related to understanding the function of Complex II, succinate signaling, and their combined roles in aging and aging-related diseases.
Collapse
Affiliation(s)
- Eric Goetzman
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhenwei Gong
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bob Zhang
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Radhika Muzumdar
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
10
|
Jurcau A, Jurcau CM. Mitochondria in Huntington's disease: implications in pathogenesis and mitochondrial-targeted therapeutic strategies. Neural Regen Res 2023; 18:1472-1477. [PMID: 36571344 PMCID: PMC10075114 DOI: 10.4103/1673-5374.360289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Huntington's disease is a genetic disease caused by expanded CAG repeats on exon 1 of the huntingtin gene located on chromosome 4. Compelling evidence implicates impaired mitochondrial energetics, altered mitochondrial biogenesis and quality control, disturbed mitochondrial trafficking, oxidative stress and mitochondrial calcium dyshomeostasis in the pathogenesis of the disorder. Unfortunately, conventional mitochondrial-targeted molecules, such as cysteamine, creatine, coenzyme Q10, or triheptanoin, yielded negative or inconclusive results. However, future therapeutic strategies, aiming to restore mitochondrial biogenesis, improving the fission/fusion balance, and improving mitochondrial trafficking, could prove useful tools in improving the phenotype of Huntington's disease and, used in combination with genome-editing methods, could lead to a cure for the disease.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea; Neurology 3 Ward, Clinical Emergency Hospital, Oradea, Romania
| | | |
Collapse
|
11
|
Brondani M, Roginski AC, Ribeiro RT, de Medeiros MP, Hoffmann CIH, Wajner M, Leipnitz G, Seminotti B. Mitochondrial dysfunction, oxidative stress, ER stress and mitochondria-ER crosstalk alterations in a chemical rat model of Huntington's disease: potential benefits of bezafibrate. Toxicol Lett 2023; 381:48-59. [PMID: 37116597 DOI: 10.1016/j.toxlet.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Redox homeostasis, mitochondrial functions, and mitochondria-endoplasmic reticulum (ER) communication were evaluated in the striatum of rats after 3-nitropropionic acid (3-NP) administration, a recognized chemical model of Huntington's disease (HD). 3-NP impaired redox homeostasis by increasing malondialdehyde levels at 28 days, decreasing glutathione (GSH) concentrations at 21 and 28 days, and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione S-transferase at 7, 21, and 28 days, catalase at 21 days, and glutathione reductase at 21 and 28 days. Impairment of mitochondrial respiration at 7 and 28 days after 3-NP administration was also observed, as well as reduced activities of succinate dehydrogenase (SDH) and respiratory chain complexes. 3-NP also impaired mitochondrial dynamics and the interactions between ER and mitochondria and induced ER-stress by increasing the levels of mitofusin-1, and of DRP1, VDAC1, Grp75 and Grp78. Synaptophysin levels were augmented at 7 days but reduced at 28 days after 3-NP injection. Finally, bezafibrate prevented 3-NP-induced alterations of the activities of SOD, GPx, SDH and respiratory chain complexes, DCFH oxidation and on the levels of GSH, VDAC1 and synaptophysin. Mitochondrial dysfunction and synaptic disruption may contribute to the pathophysiology of HD and bezafibrate may be considered as an adjuvant therapy for this disorder.
Collapse
Affiliation(s)
- Morgana Brondani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Paula de Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio, 21111, Porto Alegre, RS, 90035-003, Brazil
| | - Chrístofer Ian Hernandez Hoffmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio, 21111, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio, 21111, Porto Alegre, RS, 90035-003, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio, 21111, Porto Alegre, RS, 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
Dai Y, Wang H, Lian A, Li J, Zhao G, Hu S, Li B. A comprehensive perspective of Huntington's disease and mitochondrial dysfunction. Mitochondrion 2023; 70:8-19. [PMID: 36906250 DOI: 10.1016/j.mito.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/04/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease. It is caused by the expansion of the CAG trinucleotide repeat sequence in the HTT gene. HD mainly manifests as involuntary dance-like movements and severe mental disorders. As it progresses, patients lose the ability to speak, think, and even swallow. Although the pathogenesis is unclear, studies have found that mitochondrial dysfunctions occupy an important position in the pathogenesis of HD. Based on the latest research advances, this review sorts out and discusses the role of mitochondrial dysfunction on HD in terms of bioenergetics, abnormal autophagy, and abnormal mitochondrial membranes. This review provides researchers with a more complete perspective on the mechanisms underlying the relationship between mitochondrial dysregulation and HD.
Collapse
Affiliation(s)
- Yinghong Dai
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Haonan Wang
- Department of Physical Education and Research, Central South University, 932 Lushan South Rd., Changsha, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shenghui Hu
- The Second Xiangya Hospital of Central South University, China
| | - Bin Li
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
13
|
McDonald TS, Lerskiatiphanich T, Woodruff TM, McCombe PA, Lee JD. Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders. J Cereb Blood Flow Metab 2023; 43:26-43. [PMID: 36281012 PMCID: PMC9875350 DOI: 10.1177/0271678x221135061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Abstract
Neurodegeneration refers to the selective and progressive loss-of-function and atrophy of neurons, and is present in disorders such as Alzheimer's, Huntington's, and Parkinson's disease. Although each disease presents with a unique pattern of neurodegeneration, and subsequent disease phenotype, increasing evidence implicates alterations in energy usage as a shared and core feature in the onset and progression of these disorders. Indeed, disturbances in energy metabolism may contribute to the vulnerability of neurons to apoptosis. In this review we will outline these disturbances in glucose metabolism, and how fatty acids are able to compensate for this impairment in energy production in neurodegenerative disorders. We will also highlight underlying mechanisms that could contribute to these alterations in energy metabolism. A greater understanding of these metabolism-neurodegeneration processes could lead to improved treatment options for neurodegenerative disease patients.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Queensland Brain Institute, The University of Queensland, St.
Lucia, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Department of Neurology, Royal Brisbane & Women’s Hospital,
Herston, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| |
Collapse
|
14
|
Huntingtin and Other Neurodegeneration-Associated Proteins in the Development of Intracellular Pathologies: Potential Target Search for Therapeutic Intervention. Int J Mol Sci 2022; 23:ijms232415533. [PMID: 36555175 PMCID: PMC9779313 DOI: 10.3390/ijms232415533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are currently incurable. Numerous experimental data accumulated over the past fifty years have brought us closer to understanding the molecular and cell mechanisms responsible for their development. However, these data are not enough for a complete understanding of the genesis of these diseases, nor to suggest treatment methods. It turns out that many cellular pathologies developing during neurodegeneration coincide from disease to disease. These observations give hope to finding a common intracellular target(s) and to offering a universal method of treatment. In this review, we attempt to analyze data on similar cellular disorders among neurodegenerative diseases in general, and polyglutamine neurodegenerative diseases in particular, focusing on the interaction of various proteins involved in the development of neurodegenerative diseases with various cellular organelles. The main purposes of this review are: (1) to outline the spectrum of common intracellular pathologies and to answer the question of whether it is possible to find potential universal target(s) for therapeutic intervention; (2) to identify specific intracellular pathologies and to speculate about a possible general approach for their treatment.
Collapse
|
15
|
Vanisova M, Stufkova H, Kohoutova M, Rakosnikova T, Krizova J, Klempir J, Rysankova I, Roth J, Zeman J, Hansikova H. Mitochondrial organization and structure are compromised in fibroblasts from patients with Huntington's disease. Ultrastruct Pathol 2022; 46:462-475. [PMID: 35946926 DOI: 10.1080/01913123.2022.2100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Huntington´s disease (HD) is a progressive neurodegenerative disease with onset in adulthood that leads to a complete disability and death in approximately 20 years after onset of symptoms. HD is caused by an expansion of a CAG triplet in the gene for huntingtin. Although the disease causes most damage to striatal neurons, other parts of the nervous system and many peripheral tissues are also markedly affected. Besides huntingtin malfunction, mitochondrial impairment has been previously described as an important player in HD. This study focuses on mitochondrial structure and function in cultivated skin fibroblasts from 10 HD patients to demonstrate mitochondrial impairment in extra-neuronal tissue. Mitochondrial structure, mitochondrial fission, and cristae organization were significantly disrupted and signs of elevated apoptosis were found. In accordance with structural changes, we also found indicators of functional alteration of mitochondria. Mitochondrial disturbances presented in fibroblasts from HD patients confirm that the energy metabolism damage in HD is not localized only to the central nervous system, but also may play role in the pathogenesis of HD in peripheral tissues. Skin fibroblasts can thus serve as a suitable cellular model to make insight into HD pathobiochemical processes and for the identification of possible targets for new therapies.
Collapse
Affiliation(s)
- Marie Vanisova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Stufkova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Kohoutova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Rakosnikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Krizova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiri Klempir
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Irena Rysankova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiri Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
16
|
Olesen MA, Villavicencio-Tejo F, Quintanilla RA. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl Neurodegener 2022; 11:36. [PMID: 35787292 PMCID: PMC9251940 DOI: 10.1186/s40035-022-00308-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neurological disorders (NDs) are characterized by progressive neuronal dysfunction leading to synaptic failure, cognitive impairment, and motor injury. Among these diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have raised a significant research interest. These disorders present common neuropathological signs, including neuronal dysfunction, protein accumulation, oxidative damage, and mitochondrial abnormalities. In this context, mitochondrial impairment is characterized by a deficiency in ATP production, excessive production of reactive oxygen species, calcium dysregulation, mitochondrial transport failure, and mitochondrial dynamics deficiencies. These defects in mitochondrial health could compromise the synaptic process, leading to early cognitive dysfunction observed in these NDs. Interestingly, skin fibroblasts from AD, PD, HD, and ALS patients have been suggested as a useful strategy to investigate and detect early mitochondrial abnormalities in these NDs. In this context, fibroblasts are considered a viable model for studying neurodegenerative changes due to their metabolic and biochemical relationships with neurons. Also, studies of our group and others have shown impairment of mitochondrial bioenergetics in fibroblasts from patients diagnosed with sporadic and genetic forms of AD, PD, HD, and ALS. Interestingly, these mitochondrial abnormalities have been observed in the brain tissues of patients suffering from the same pathologies. Therefore, fibroblasts represent a novel strategy to study the genesis and progression of mitochondrial dysfunction in AD, PD, HD, and ALS. This review discusses recent evidence that proposes fibroblasts as a potential target to study mitochondrial bioenergetics impairment in neurological disorders and consequently to search for new biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Coelho P, Fão L, Mota S, Rego AC. Mitochondrial function and dynamics in neural stem cells and neurogenesis: Implications for neurodegenerative diseases. Ageing Res Rev 2022; 80:101667. [PMID: 35714855 DOI: 10.1016/j.arr.2022.101667] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Mitochondria have been largely described as the powerhouse of the cell and recent findings demonstrate that this organelle is fundamental for neurogenesis. The mechanisms underlying neural stem cells (NSCs) maintenance and differentiation are highly regulated by both intrinsic and extrinsic factors. Mitochondrial-mediated switch from glycolysis to oxidative phosphorylation, accompanied by mitochondrial remodeling and dynamics are vital to NSCs fate. Deregulation of mitochondrial proteins, mitochondrial DNA, function, fission/fusion and metabolism underly several neurodegenerative diseases; data show that these impairments are already present in early developmental stages and NSC fate decisions. However, little is known about mitochondrial role in neurogenesis. In this Review, we describe the recent evidence covering mitochondrial role in neurogenesis, its impact in selected neurodegenerative diseases, for which aging is the major risk factor, and the recent advances in stem cell-based therapies that may alleviate neurodegenerative disorders-related neuronal deregulation through improvement of mitochondrial function and dynamics.
Collapse
Affiliation(s)
- Patrícia Coelho
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal.
| | - Lígia Fão
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal; FMUC- Faculty of Medicine, University of Coimbra Polo 3, Coimbra, Portugal.
| | - Sandra Mota
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal; III, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - A Cristina Rego
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal; FMUC- Faculty of Medicine, University of Coimbra Polo 3, Coimbra, Portugal.
| |
Collapse
|
18
|
Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Prog Neurobiol 2022; 215:102289. [DOI: 10.1016/j.pneurobio.2022.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
19
|
Ciancia M, Rataj-Baniowska M, Zinter N, Baldassarro VA, Fraulob V, Charles AL, Alvarez R, Muramatsu SI, de Lera AR, Geny B, Dollé P, Niewiadomska-Cimicka A, Krezel W. Retinoic acid receptor beta protects striatopallidal medium spiny neurons from mitochondrial dysfunction and neurodegeneration. Prog Neurobiol 2022; 212:102246. [DOI: 10.1016/j.pneurobio.2022.102246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/07/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022]
|
20
|
Cheng R, Dhorajia VV, Kim J, Kim Y. Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology 2022; 88:88-101. [PMID: 34748789 PMCID: PMC8748425 DOI: 10.1016/j.neuro.2021.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Iron is a key element for mitochondrial function and homeostasis, which is also crucial for maintaining the neuronal system, but too much iron promotes oxidative stress. A large body of evidence has indicated that abnormal iron accumulation in the brain is associated with various neurodegenerative diseases such as Huntington's disease, Alzheimer's disease, Parkinson's disease, and Friedreich's ataxia. However, it is still unclear how irregular iron status contributes to the development of neuronal disorders. Hence, the current review provides an update on the causal effects of iron overload in the development and progression of neurodegenerative diseases and discusses important roles of mitochondrial iron homeostasis in these disease conditions. Furthermore, this review discusses potential therapeutic targets for the treatments of iron overload-linked neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruiying Cheng
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, USA
| | | | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, USA.
| | - Yuho Kim
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, USA.
| |
Collapse
|
21
|
Dietrich P, Alli S, Mulligan MK, Cox R, Ashbrook DG, Williams RW, Dragatsis I. Identification of cyclin D1 as a major modulator of 3-nitropropionic acid-induced striatal neurodegeneration. Neurobiol Dis 2022; 162:105581. [PMID: 34871739 PMCID: PMC8717869 DOI: 10.1016/j.nbd.2021.105581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondria dysfunction occurs in the aging brain as well as in several neurodegenerative disorders and predisposes neuronal cells to enhanced sensitivity to neurotoxins. 3-nitropropionic acid (3-NP) is a naturally occurring plant and fungal neurotoxin that causes neurodegeneration predominantly in the striatum by irreversibly inhibiting the tricarboxylic acid respiratory chain enzyme, succinate dehydrogenase (SDH), the main constituent of the mitochondria respiratory chain complex II. Significantly, although 3-NP-induced inhibition of SDH occurs in all brain regions, neurodegeneration occurs primarily and almost exclusively in the striatum for reasons still not understood. In rodents, 3-NP-induced striatal neurodegeneration depends on the strain background suggesting that genetic differences among genotypes modulate toxicant variability and mechanisms that underlie 3-NP-induced neuronal cell death. Using the large BXD family of recombinant inbred (RI) strains we demonstrate that variants in Ccnd1 - the gene encoding cyclin D1 - of the DBA/2 J parent underlie the resistance to 3-NP-induced striatal neurodegeneration. In contrast, the Ccnd1 variant inherited from the widely used C57BL/6 J parental strain confers sensitivity. Given that cellular stress triggers induction of cyclin D1 expression followed by cell-cycle re-entry and consequent neuronal cell death, we sought to determine if the C57BL/6 J and DBA/2 J Ccnd1 variants are differentially modulated in response to 3-NP. We confirm that 3-NP induces cyclin D1 expression in striatal neuronal cells of C57BL/6 J, but this response is blunted in the DBA/2 J. We further show that striatal-specific alternative processing of a highly conserved 3'UTR negative regulatory region of Ccnd1 co-segregates with the C57BL/6 J parental Ccnd1 allele in BXD strains and that its differential processing accounts for sensitivity or resistance to 3-NP. Our results indicate that naturally occurring Ccnd1 variants may play a role in the variability observed in neurodegenerative disorders involving mitochondria complex II dysfunction and point to cyclin D1 as a possible therapeutic target.
Collapse
Affiliation(s)
- Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA,Corresponding authors: ,
| | - Shanta Alli
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Rachel Cox
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA,The University of Tennessee, Knoxville, TN 37996, USA
| | - David G. Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA,Corresponding authors: ,
| |
Collapse
|
22
|
Selective striatal cell loss is ameliorated by regulated autophagy of the cortex. Life Sci 2021; 282:119822. [PMID: 34271058 DOI: 10.1016/j.lfs.2021.119822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
AIMS The harmful cellular environment leads to brain damage, and each brain subregion exhibits a differential vulnerability to its effects. This study investigated the causes of selectively striatal cell loss in systemic 3-nitropropionic acid (3-NP) infused mice. MAIN METHODS This study was performed in the neuronal cell line, primary neuron, cultured mouse brain, and mice brain tissues. The 3-NP solution was delivered using an osmotic mini-pump system for 7 days. ROS in brain tissue were detected and evaluated with the signals of CM-H2DCFDA for total cellular ROS and MitoSOX Red for mitochondrial ROS. Cellular ROS and the functional status of mitochondria were assessed with a detection kit and analyzed using flow cytometry. To quantify oxidative damaged DNA, apurinic/apyrimidinic (AP) site numbers in DNA were measured. The protein expression level was assessed using Western blotting, and immunohistochemistry was performed. Cleaved caspase-3 activities were measured by using an enzyme-linked immunosorbent assay (ELISA) kit. KEY FINDINGS By 3-NP, mitochondrial dysfunction was higher in the striatum than in the cortex, and mitochondria-derived ROS levels were higher in the striatum than in the cortex. However, autophagy that may restore the energy depletion resulting from mitochondrial dysfunction occurred comparably less in the striatum than in the cortex. Inhibition of ASK1 by NQDI1 regulates MAPK signaling, apoptosis, and autophagy. Regulated autophagy of the cortex improved non-cell autonomously striatal damaged condition. SIGNIFICANCE This study illustrated that the different vulnerabilities of the brain subregions, striatum or cortex, against 3-NP are rooted in different mitochondria-derived ROS amounts and autophagic capacity.
Collapse
|
23
|
Tomczyk M, Glaser T, Slominska EM, Ulrich H, Smolenski RT. Purine Nucleotides Metabolism and Signaling in Huntington's Disease: Search for a Target for Novel Therapies. Int J Mol Sci 2021; 22:ijms22126545. [PMID: 34207177 PMCID: PMC8234552 DOI: 10.3390/ijms22126545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Huntington’s disease (HD) is a multi-system disorder that is caused by expanded CAG repeats within the exon-1 of the huntingtin (HTT) gene that translate to the polyglutamine stretch in the HTT protein. HTT interacts with the proteins involved in gene transcription, endocytosis, and metabolism. HTT may also directly or indirectly affect purine metabolism and signaling. We aimed to review existing data and discuss the modulation of the purinergic system as a new therapeutic target in HD. Impaired intracellular nucleotide metabolism in the HD affected system (CNS, skeletal muscle and heart) may lead to extracellular accumulation of purine metabolites, its unusual catabolism, and modulation of purinergic signaling. The mechanisms of observed changes might be different in affected systems. Based on collected findings, compounds leading to purine and ATP pool reconstruction as well as purinergic receptor activity modulators, i.e., P2X7 receptor antagonists, may be applied for HD treatment.
Collapse
Affiliation(s)
- Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Correspondence: (M.T.); (R.T.S.)
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil; (T.G.); (H.U.)
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil; (T.G.); (H.U.)
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Correspondence: (M.T.); (R.T.S.)
| |
Collapse
|
24
|
Hadrava Vanova K, Kraus M, Neuzil J, Rohlena J. Mitochondrial complex II and reactive oxygen species in disease and therapy. Redox Rep 2021; 25:26-32. [PMID: 32290794 PMCID: PMC7178880 DOI: 10.1080/13510002.2020.1752002] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence points to the respiratory Complex II (CII) as a source and modulator of reactive oxygen species (ROS). Both functional loss of CII as well as its pharmacological inhibition can lead to ROS generation in cells, with a relevant impact on the development of pathophysiological conditions, i.e. cancer and neurodegenerative diseases. While the basic framework of CII involvement in ROS production has been defined, the fine details still await clarification. It is important to resolve these aspects to fully understand the role of CII in pathology and to explore its therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
| | - Michal Kraus
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic
| |
Collapse
|
25
|
Han R, Liang J, Zhou B. Glucose Metabolic Dysfunction in Neurodegenerative Diseases-New Mechanistic Insights and the Potential of Hypoxia as a Prospective Therapy Targeting Metabolic Reprogramming. Int J Mol Sci 2021; 22:5887. [PMID: 34072616 PMCID: PMC8198281 DOI: 10.3390/ijms22115887] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Glucose is the main circulating energy substrate for the adult brain. Owing to the high energy demand of nerve cells, glucose is actively oxidized to produce ATP and has a synergistic effect with mitochondria in metabolic pathways. The dysfunction of glucose metabolism inevitably disturbs the normal functioning of neurons, which is widely observed in neurodegenerative disease. Understanding the mechanisms of metabolic adaptation during disease progression has become a major focus of research, and interventions in these processes may relieve the neurons from degenerative stress. In this review, we highlight evidence of mitochondrial dysfunction, decreased glucose uptake, and diminished glucose metabolism in different neurodegeneration models such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). We also discuss how hypoxia, a metabolic reprogramming strategy linked to glucose metabolism in tumor cells and normal brain cells, and summarize the evidence for hypoxia as a putative therapy for general neurodegenerative disease.
Collapse
Affiliation(s)
- Rongrong Han
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (R.H.); (J.L.)
| | - Jing Liang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (R.H.); (J.L.)
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (R.H.); (J.L.)
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
26
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
27
|
Genetic Screen in Adult Drosophila Reveals That dCBP Depletion in Glial Cells Mitigates Huntington Disease Pathology through a Foxo-Dependent Pathway. Int J Mol Sci 2021; 22:ijms22083884. [PMID: 33918672 PMCID: PMC8069648 DOI: 10.3390/ijms22083884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Huntington’s disease (HD) is a progressive and fatal autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the first exon of the huntingtin gene (HTT). In spite of considerable efforts, there is currently no treatment to stop or delay the disease. Although HTT is expressed ubiquitously, most of our knowledge has been obtained on neurons. More recently, the impact of mutant huntingtin (mHTT) on other cell types, including glial cells, has received growing interest. It is currently unclear whether new pathological pathways could be identified in these cells compared to neurons. To address this question, we performed an in vivo screen for modifiers of mutant huntingtin (HTT-548-128Q) induced pathology in Drosophila adult glial cells and identified several putative therapeutic targets. Among them, we discovered that partial nej/dCBP depletion in these cells was protective, as revealed by strongly increased lifespan and restored locomotor activity. Thus, dCBP promotes the HD pathology in glial cells, in contrast to previous opposite findings in neurons. Further investigations implicated the transcriptional activator Foxo as a critical downstream player in this glial protective pathway. Our data suggest that combinatorial approaches combined to specific tissue targeting may be required to uncover efficient therapies in HD.
Collapse
|
28
|
Mazzoli A, Spagnuolo MS, Nazzaro M, Gatto C, Iossa S, Cigliano L. Fructose Removal from the Diet Reverses Inflammation, Mitochondrial Dysfunction, and Oxidative Stress in Hippocampus. Antioxidants (Basel) 2021; 10:487. [PMID: 33804637 PMCID: PMC8003595 DOI: 10.3390/antiox10030487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Young age is often characterized by high consumption of processed foods and fruit juices rich in fructose, which, besides inducing a tendency to become overweight, can promote alterations in brain function. The aim of this study was therefore to (a) clarify brain effects resulting from fructose consumption in juvenile age, a critical phase for brain development, and (b) verify whether these alterations can be rescued after removing fructose from the diet. Young rats were fed a fructose-rich or control diet for 3 weeks. Fructose-fed rats were then fed a control diet for a further 3 weeks. We evaluated mitochondrial bioenergetics by high-resolution respirometry in the hippocampus, a brain area that is critically involved in learning and memory. Glucose transporter-5, fructose and uric acid levels, oxidative status, and inflammatory and synaptic markers were investigated by Western blotting and spectrophotometric or enzyme-linked immunosorbent assays. A short-term fructose-rich diet induced mitochondrial dysfunction and oxidative stress, associated with an increased concentration of inflammatory markers and decreased Neurofilament-M and post-synaptic density protein 95. These alterations, except for increases in haptoglobin and nitrotyrosine, were recovered by returning to a control diet. Overall, our results point to the dangerous effects of excessive consumption of fructose in young age but also highlight the effect of partial recovery by switching back to a control diet.
Collapse
Affiliation(s)
- Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System, National Research Council, 80147 Naples, Italy;
| | - Martina Nazzaro
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Cristina Gatto
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| |
Collapse
|
29
|
Abstract
Significance: The molecular processes that determine Huntington's disease (HD) pathogenesis are not yet fully understood, and until now no effective neuroprotective therapeutic strategies have been developed. Mitochondria are one of most important organelles required for neuronal homeostasis, by providing metabolic pathways relevant for energy production, regulating calcium homeostasis, or controlling free radical generation and cell death. Because augmented reactive oxygen species (ROS) accompanied by mitochondrial dysfunction are relevant early HD mechanisms, targeting these cellular mechanisms may constitute relevant therapeutic approaches. Recent Advances: Previous findings point toward a close relationship between mitochondrial dysfunction and redox changes in HD. Mutant huntingtin (mHTT) can directly interact with mitochondrial proteins, as translocase of the inner membrane 23 (TIM23), disrupting mitochondrial proteostasis and favoring ROS production and HD progression. Furthermore, abnormal brain and muscle redox signaling contributes to altered proteostasis and motor impairment in HD, which can be improved with the mitochondria-targeted antioxidant mitoquinone or resveratrol, an SIRT1 activator that ameliorates mitochondrial biogenesis and function. Critical Issues: Various antioxidants and metabolic enhancers have been studied in HD; however, the real outcome of these molecules is still debatable. New compounds have proven to ameliorate mitochondrial and redox-based signaling pathways in early stages of HD, potentially precluding selective neurodegeneration. Future Directions: Unraveling the molecular etiology of deregulated mitochondrial function and dynamics, and oxidative stress opens new prospects for HD therapeutics. In this review, we explore the role of redox unbalance and mitochondrial dysfunction in HD progression, and further describe advances on clinical trials in HD based on mitochondrial and redox-based therapeutic strategies.
Collapse
Affiliation(s)
- Lígia Fão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
30
|
|
31
|
Alam S, Abdullah CS, Aishwarya R, Morshed M, Nitu SS, Miriyala S, Panchatcharam M, Kevil CG, Orr AW, Bhuiyan MS. Dysfunctional Mitochondrial Dynamic and Oxidative Phosphorylation Precedes Cardiac Dysfunction in R120G-αB-Crystallin-Induced Desmin-Related Cardiomyopathy. J Am Heart Assoc 2020; 9:e017195. [PMID: 33208022 PMCID: PMC7763772 DOI: 10.1161/jaha.120.017195] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Background The mutated α-B-Crystallin (CryABR120G) mouse model of desmin-related myopathy (DRM) shows an age-dependent onset of pathologic cardiac remodeling and progression of heart failure. CryABR120G expression in cardiomyocytes affects the mitochondrial spatial organization within the myofibrils, but the molecular perturbation within the mitochondria in the relation of the overall course of the proteotoxic disease remains unclear. Methods and Results CryABR120G mice show an accumulation of electron-dense aggregates and myofibrillar degeneration associated with the development of cardiac dysfunction. Though extensive studies demonstrated that these altered ultrastructural changes cause cardiac contractility impairment, the molecular mechanism of cardiomyocyte death remains elusive. Here, we explore early pathological processes within the mitochondria contributing to the contractile dysfunction and determine the pathogenic basis for the heart failure observed in the CryABR120G mice. In the present study, we report that the CryABR120G mice transgenic hearts undergo altered mitochondrial dynamics associated with increased level of dynamin-related protein 1 and decreased level of optic atrophy type 1 as well as mitofusin 1 over the disease process. In association with these changes, an altered level of the components of mitochondrial oxidative phosphorylation and pyruvate dehydrogenase complex regulatory proteins occurs before the manifestation of pathologic adverse remodeling in the CryABR120G hearts. Mitochondria isolated from CryABR120G transgenic hearts without visible pathology show decreased electron transport chain complex activities and mitochondrial respiration. Taken together, we demonstrated the involvement of mitochondria in the pathologic remodeling and progression of DRM-associated cellular dysfunction. Conclusions Mitochondrial dysfunction in the form of altered mitochondrial dynamics, oxidative phosphorylation and pyruvate dehydrogenase complex proteins level, abnormal electron transport chain complex activities, and mitochondrial respiration are evident on the CryABR120G hearts before the onset of detectable pathologies and development of cardiac contractile dysfunction.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Chowdhury S. Abdullah
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Richa Aishwarya
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Mahboob Morshed
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Sadia S. Nitu
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Sumitra Miriyala
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Christopher G. Kevil
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - A. Wayne Orr
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| |
Collapse
|
32
|
Shen Y, Wu Q, Shi J, Zhou S. Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson's disease. Biomed Pharmacother 2020; 132:110928. [PMID: 33128944 DOI: 10.1016/j.biopha.2020.110928] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Sirtuin-3 (SIRT3) is a NAD+-dependent protein deacetylase that is located in mitochondria, regulating mitochondrial proteins and maintaining cellular antioxidant status. Increasing evidence demonstrates that SIRT3 plays a role in degenerative disorders including Parkinson's disease (PD), which is a devastating nervous system disease currently with no effective treatments available. Although the etiology of PD is still largely ambiguous, substantial evidence indicates that mitochondrial dysfunction and oxidative stress play major roles in the pathogenesis of PD. The imbalance of reactive oxygen species (ROS) production and detoxification leads to oxidative stress that can accelerate the progression of PD. By causing conformational changes in the deacetylated proteins SIRT3 modulates the activities and biological functions of a variety of proteins involved in mitochondrial antioxidant defense and various mitochondrial functions. Increasingly more studies have suggested that upregulation of SIRT3 confers beneficial effect on neuroprotection in various PD models. This review discusses the mechanism by which SIRT3 regulates intracellular oxidative status and mitochondrial function with an emphasis in discussing in detail the regulation of SIRT3 on each component of the five complexes of the mitochondrial respiratory chain and mitochondrial antioxidant defense, as well as the pharmacological regulation of SIRT3 in light of therapeutic strategies for PD.
Collapse
Affiliation(s)
- Yanhua Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China.
| |
Collapse
|
33
|
Neueder A, Orth M. Mitochondrial biology and the identification of biomarkers of Huntington's disease. Neurodegener Dis Manag 2020; 10:243-255. [PMID: 32746707 DOI: 10.2217/nmt-2019-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apart from finding novel compounds for treating Huntington's disease (HD) an important challenge at present consists in finding reliable read-outs or biomarkers that reflect key biological processes involved in HD pathogenesis. The core elements of HD biology, for example, HTT RNA levels or protein species can serve as biomarker, as could measures from biological systems or pathways in which Huntingtin plays an important role. Here we review the evidence for the involvement of mitochondrial biology in HD. The most consistent findings pertain to mitochondrial quality control, for example, fission/fusion. However, a convincing mitochondrial signature with biomarker potential is yet to emerge. This requires more research including in peripheral sources of human material, such as blood, or skeletal muscle.
Collapse
Affiliation(s)
| | - Michael Orth
- Department of Neurology, Ulm University, Ulm, Germany.,SwissHuntington's Disease Centre, Neurozentrum Siloah, Worbstr. 312, 3073 Gümligenbei Bern, Switzerland
| |
Collapse
|
34
|
Sameni S, Zhang R, Digman MA. The Phasor FLIM Method Reveals a Link Between a Change in Energy Metabolism and mHtt protein spread in Healthy Mammalian Cells when Co-cultured with Huntington Diseased Cells. Methods Appl Fluoresc 2020; 9. [PMID: 32235053 DOI: 10.1088/2050-6120/ab854d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/31/2020] [Indexed: 11/12/2022]
Abstract
Huntington Disease (HD) is a late-onset autosomal neurodegenerative disease characterized by the aggregations of mutant Huntingtin proteins (mHTT). A glutamine stretch (PolyQ) at the N-terminal of the Huntingtin protein is generated by the abnormal expansion of CAG trinucleotide repeats in exon 1 of the HTT gene. While the resulting polyQ aggregates are the predominate feature of HD , the intercellular spread of the expanded protein and the effect upon this transfer inside healthy cells have not yet fully understood. Here, we have employed the phasor Fluorescence Lifetime Imaging Microscopy (FLIM) method to measure NADH fluorescence lifetime change after the internalization of the PolyQ protein. Based on our analysis, we have found a significant decrease in the fraction of bound NADH in both cytoplasmic and nucleus regions when cells are co-cultured or when healthy cells uptake the supernatant containing polyQ proteins and aggregates. Overall, our FLIM study combined with confocal fluorescence imaging visualizes the absorption of the mutant Htt protein aggregates which results in a distinct NADH fluorescence lifetime between control cells and acceptor cells. These studies show, for the first time, the influence of how neighboring cells expressing the expanded Htt protein can regulate energy metabolism in healthy cells.
Collapse
Affiliation(s)
- Sara Sameni
- CNL, Salk Institute, La Jolla, California, UNITED STATES
| | - Run Zhang
- Surgery, University of California San Francisco, San Francisco, California, UNITED STATES
| | - Michelle A Digman
- Biomedical Engineering, University of California Irvine, University of California, Irvine, CA, United States, Irvine, California, UNITED STATES
| |
Collapse
|
35
|
Gatrell L, Wilkins W, Rana P, Farris M. Glucose effects on polyglutamine-induced proteotoxic stress in Caenorhabditis elegans. Biochem Biophys Res Commun 2020; 522:709-715. [DOI: 10.1016/j.bbrc.2019.11.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 01/11/2023]
|
36
|
Aral C, Demirkesen S, Bircan R, Yasar Sirin D. Melatonin reverses the oxidative stress and mitochondrial dysfunction caused by LETM1 silencing. Cell Biol Int 2019; 44:795-807. [PMID: 31777134 DOI: 10.1002/cbin.11274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022]
Abstract
LETM1 is a mitochondrial inner-membrane protein, which is encoded by a gene present in a locus of 4p, which, in turn, is deleted in the Wolf-Hirschhorn Syndrome, and is assumed to be related to its pathogenesis. The cellular damage caused by the deletion is presumably related to oxidative stress. Melatonin has many beneficial roles in protecting mitochondria by scavenging reactive oxygen species, maintaining membrane potential, and improving functions. The aim of this study was to investigate the effects of melatonin administration to LETM1-silenced mouse embryonic fibroblast cells as a cellular model for LETM1 deficiency. We transfected mouse embryonic fibroblast cells with a pair of siRNA against LETM1 and monitored the oxidative stress and mitochondrial functions with or without melatonin addition. MnSOD expression and aconitase activity decreased and oxidized protein levels increased in LETM1-silenced cells. LETM1 suppression did not alter the expression of OXPHOS complexes, but the oxygen consumption rates decreased significantly; however, this change was not related to complex I but instead involved complex IV and complex II. Melatonin supplementation effectively normalized the parameters studied, including the oxygen consumption rate. Our findings identified a novel effect of LETM1 deficiency on cellular respiration via complex II as well as a potential beneficial role of melatonin treatment. On the other hand, these effects may be specific to the cell line used and need to be verified in other cell lines.
Collapse
Affiliation(s)
- Cenk Aral
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Namık Kemal University, 59030, Tekirdağ, Turkey
| | - Seyma Demirkesen
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Namık Kemal University, 59030, Tekirdağ, Turkey
| | - Rıfat Bircan
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Namık Kemal University, 59030, Tekirdağ, Turkey
| | - Duygu Yasar Sirin
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Namık Kemal University, 59030, Tekirdağ, Turkey
| |
Collapse
|
37
|
Skotte NH, Andersen JV, Santos A, Aldana BI, Willert CW, Nørremølle A, Waagepetersen HS, Nielsen ML. Integrative Characterization of the R6/2 Mouse Model of Huntington's Disease Reveals Dysfunctional Astrocyte Metabolism. Cell Rep 2019; 23:2211-2224. [PMID: 29768217 DOI: 10.1016/j.celrep.2018.04.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/23/2018] [Accepted: 04/12/2018] [Indexed: 01/05/2023] Open
Abstract
Huntington's disease is a fatal neurodegenerative disease, where dysfunction and loss of striatal and cortical neurons are central to the pathogenesis of the disease. Here, we integrated quantitative studies to investigate the underlying mechanisms behind HD pathology in a systems-wide manner. To this end, we used state-of-the-art mass spectrometry to establish a spatial brain proteome from late-stage R6/2 mice and compared this with wild-type littermates. We observed altered expression of proteins in pathways related to energy metabolism, synapse function, and neurotransmitter homeostasis. To support these findings, metabolic 13C labeling studies confirmed a compromised astrocytic metabolism and regulation of glutamate-GABA-glutamine cycling, resulting in impaired release of glutamine and GABA synthesis. In recent years, increasing attention has been focused on the role of astrocytes in HD, and our data support that therapeutic strategies to improve astrocytic glutamine homeostasis may help ameliorate symptoms in HD.
Collapse
Affiliation(s)
- Niels H Skotte
- Proteomics Program, The Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Santos
- Proteomics Program, The Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie W Willert
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Program, The Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
38
|
Rodinova M, Krizova J, Stufkova H, Bohuslavova B, Askeland G, Dosoudilova Z, Juhas S, Juhasova J, Ellederova Z, Zeman J, Eide L, Motlik J, Hansikova H. Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington's disease. Dis Model Mech 2019; 12:dmm.038737. [PMID: 31278192 PMCID: PMC6679385 DOI: 10.1242/dmm.038737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle wasting and atrophy is one of the more severe clinical impairments resulting from the progression of Huntington's disease (HD). Mitochondrial dysfunction may play a significant role in the etiology of HD, but the specific condition of mitochondria in muscle has not been widely studied during the development of HD. To determine the role of mitochondria in skeletal muscle during the early stages of HD, we analyzed quadriceps femoris muscle from 24-, 36-, 48- and 66-month-old transgenic minipigs that expressed the N-terminal portion of mutated human huntingtin protein (TgHD) and age-matched wild-type (WT) siblings. We found altered ultrastructure of TgHD muscle tissue and mitochondria. There was also significant reduction of activity of citrate synthase and respiratory chain complexes (RCCs) I, II and IV, decreased quantity of oligomycin-sensitivity conferring protein (OSCP) and the E2 subunit of pyruvate dehydrogenase (PDHE2), and differential expression of optic atrophy 1 protein (OPA1) and dynamin-related protein 1 (DRP1) in the skeletal muscle of TgHD minipigs. Statistical analysis identified several parameters that were dependent only on HD status and could therefore be used as potential biomarkers of disease progression. In particular, the reduction of biomarker RCCII subunit SDH30 quantity suggests that similar pathogenic mechanisms underlie disease progression in TgHD minipigs and HD patients. The perturbed biochemical phenotype was detectable in TgHD minipigs prior to the development of ultrastructural changes and locomotor impairment, which become evident at the age of 48 months. Mitochondrial disturbances may contribute to energetic depression in skeletal muscle in HD, which is in concordance with the mobility problems observed in this model.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marie Rodinova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Jana Krizova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Hana Stufkova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Bozena Bohuslavova
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Georgina Askeland
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Zaneta Dosoudilova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Stefan Juhas
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Jana Juhasova
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Zdenka Ellederova
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Jiri Zeman
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Lars Eide
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Jan Motlik
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Hana Hansikova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| |
Collapse
|
39
|
Sbodio JI, Snyder SH, Paul BD. Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:1450-1499. [PMID: 29634350 PMCID: PMC6393771 DOI: 10.1089/ars.2017.7321] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Once considered to be mere by-products of metabolism, reactive oxygen, nitrogen and sulfur species are now recognized to play important roles in diverse cellular processes such as response to pathogens and regulation of cellular differentiation. It is becoming increasingly evident that redox imbalance can impact several signaling pathways. For instance, disturbances of redox regulation in the brain mediate neurodegeneration and alter normal cytoprotective responses to stress. Very often small disturbances in redox signaling processes, which are reversible, precede damage in neurodegeneration. Recent Advances: The identification of redox-regulated processes, such as regulation of biochemical pathways involved in the maintenance of redox homeostasis in the brain has provided deeper insights into mechanisms of neuroprotection and neurodegeneration. Recent studies have also identified several post-translational modifications involving reactive cysteine residues, such as nitrosylation and sulfhydration, which fine-tune redox regulation. Thus, the study of mechanisms via which cell death occurs in several neurodegenerative disorders, reveal several similarities and dissimilarities. Here, we review redox regulated events that are disrupted in neurodegenerative disorders and whose modulation affords therapeutic opportunities. CRITICAL ISSUES Although accumulating evidence suggests that redox imbalance plays a significant role in progression of several neurodegenerative diseases, precise understanding of redox regulated events is lacking. Probes and methodologies that can precisely detect and quantify in vivo levels of reactive oxygen, nitrogen and sulfur species are not available. FUTURE DIRECTIONS Due to the importance of redox control in physiologic processes, organisms have evolved multiple pathways to counteract redox imbalance and maintain homeostasis. Cells and tissues address stress by harnessing an array of both endogenous and exogenous redox active substances. Targeting these pathways can help mitigate symptoms associated with neurodegeneration and may provide avenues for novel therapeutics. Antioxid. Redox Signal. 30, 1450-1499.
Collapse
Affiliation(s)
- Juan I. Sbodio
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
The Role of the Antioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Antioxidant Defense, Autophagy, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6392763. [PMID: 31057691 PMCID: PMC6476015 DOI: 10.1155/2019/6392763] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
The mitochondrion is an essential organelle important for the generation of ATP for cellular function. This is especially critical for cells with high energy demands, such as neurons for signal transmission and cardiomyocytes for the continuous mechanical work of the heart. However, deleterious reactive oxygen species are generated as a result of mitochondrial electron transport, requiring a rigorous activation of antioxidative defense in order to maintain homeostatic mitochondrial function. Indeed, recent studies have demonstrated that the dysregulation of antioxidant response leads to mitochondrial dysfunction in human degenerative diseases affecting the nervous system and the heart. In this review, we outline and discuss the mitochondrial and oxidative stress factors causing degenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and Friedreich's ataxia. In particular, the pathological involvement of mitochondrial dysfunction in relation to oxidative stress, energy metabolism, mitochondrial dynamics, and cell death will be explored. Understanding the pathology and the development of these diseases has highlighted novel regulators in the homeostatic maintenance of mitochondria. Importantly, this offers potential therapeutic targets in the development of future treatments for these degenerative diseases.
Collapse
|
41
|
Princz A, Kounakis K, Tavernarakis N. Mitochondrial contributions to neuronal development and function. Biol Chem 2019; 399:723-739. [PMID: 29476663 DOI: 10.1515/hsz-2017-0333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria are critical to tissues and organs characterized by high-energy demands, such as the nervous system. They provide essential energy and metabolites, and maintain Ca2+ balance, which is imperative for proper neuronal function and development. Emerging findings further underline the role of mitochondria in neurons. Technical advances in the last decades made it possible to investigate key mechanisms in neuronal development and the contribution of mitochondria therein. In this article, we discuss the latest findings relevant to the involvement of mitochondria in neuronal development, placing emphasis on mitochondrial metabolism and dynamics. In addition, we survey the role of mitochondrial energy metabolism and Ca2+ homeostasis in proper neuronal function, and the involvement of mitochondria in axon myelination.
Collapse
Affiliation(s)
- Andrea Princz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| |
Collapse
|
42
|
Gardiner SL, Milanese C, Boogaard MW, Buijsen RAM, Hogenboom M, Roos RAC, Mastroberardino PG, van Roon-Mom WMC, Aziz NA. Bioenergetics in fibroblasts of patients with Huntington disease are associated with age at onset. NEUROLOGY-GENETICS 2018; 4:e275. [PMID: 30338295 PMCID: PMC6186024 DOI: 10.1212/nxg.0000000000000275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/08/2018] [Indexed: 12/27/2022]
Abstract
Objective We aimed to assess whether differences in energy metabolism in fibroblast cell lines derived from patients with Huntington disease were associated with age at onset independent of the cytosine-adenine-guanine (CAG) repeat number in the mutant allele. Methods For this study, we selected 9 pairs of patients with Huntington disease matched for mutant CAG repeat size and sex, but with a difference of at least 10 years in age at onset, using the Leiden Huntington disease database. From skin biopsies, we isolated fibroblasts in which we (1) quantified the ATP concentration before and after a hydrogen-peroxide challenge and (2) measured mitochondrial respiration and glycolysis in real time, using the Seahorse XF Extracellular Flux Analyzer XF24. Results The ATP concentration in fibroblasts was significantly lower in patients with Huntington disease with an earlier age at onset, independent of calendar age and disease duration. Maximal respiration, spare capacity, and respiration dependent on complex II activity, and indices of mitochondrial respiration were significantly lower in patients with Huntington disease with an earlier age at onset, again independent of calendar age and disease duration. Conclusions A less efficient bioenergetics profile was found in fibroblast cells from patients with Huntington disease with an earlier age at onset independent of mutant CAG repeat size. Thus, differences in bioenergetics could explain part of the residual variation in age at onset in Huntington disease.
Collapse
Affiliation(s)
- Sarah L Gardiner
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Chiara Milanese
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Merel W Boogaard
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Ronald A M Buijsen
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Marye Hogenboom
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Raymund A C Roos
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Pier G Mastroberardino
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Willeke M C van Roon-Mom
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - N Ahmad Aziz
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| |
Collapse
|
43
|
Abstract
This review systematically examines the evidence for shifts in flux through energy generating biochemical pathways in Huntington’s disease (HD) brains from humans and model systems. Compromise of the electron transport chain (ETC) appears not to be the primary or earliest metabolic change in HD pathogenesis. Rather, compromise of glucose uptake facilitates glucose flux through glycolysis and may possibly decrease flux through the pentose phosphate pathway (PPP), limiting subsequent NADPH and GSH production needed for antioxidant protection. As a result, oxidative damage to key glycolytic and tricarboxylic acid (TCA) cycle enzymes further restricts energy production so that while basal needs may be met through oxidative phosphorylation, those of excessive stimulation cannot. Energy production may also be compromised by deficits in mitochondrial biogenesis, dynamics or trafficking. Restrictions on energy production may be compensated for by glutamate oxidation and/or stimulation of fatty acid oxidation. Transcriptional dysregulation generated by mutant huntingtin also contributes to energetic disruption at specific enzymatic steps. Many of the alterations in metabolic substrates and enzymes may derive from normal regulatory feedback mechanisms and appear oscillatory. Fine temporal sequencing of the shifts in metabolic flux and transcriptional and expression changes associated with mutant huntingtin expression remain largely unexplored and may be model dependent. Differences in disease progression among HD model systems at the time of experimentation and their varying states of metabolic compensation may explain conflicting reports in the literature. Progressive shifts in metabolic flux represent homeostatic compensatory mechanisms that maintain the model organism through presymptomatic and symptomatic stages.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
44
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
45
|
Blum D, Chern Y, Domenici MR, Buée L, Lin CY, Rea W, Ferré S, Popoli P. The Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease. J Caffeine Adenosine Res 2018; 8:43-58. [PMID: 30023989 PMCID: PMC6049521 DOI: 10.1089/caff.2018.0006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a mutation in the IT15 gene that encodes for the huntingtin protein. Mutated hungtingtin, although widely expressed in the brain, predominantly affects striato-pallidal neurons, particularly enriched with adenosine A2A receptors (A2AR), suggesting a possible involvement of adenosine and A2AR is the pathogenesis of HD. In fact, polymorphic variation in the ADORA2A gene influences the age at onset in HD, and A2AR dynamics is altered by mutated huntingtin. Basal levels of adenosine and adenosine receptors are involved in many processes critical for neuronal function and homeostasis, including modulation of synaptic activity and excitotoxicity, the control of neurotrophin levels and functions, and the regulation of protein degradation mechanisms. In the present review, we critically analyze the current literature involving the effect of altered adenosine tone and adenosine receptors in HD and discuss why therapeutics that modulate the adenosine system may represent a novel approach for the treatment of HD.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Maria Rosaria Domenici
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Chien-Yu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Patrizia Popoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
46
|
Franco-Iborra S, Vila M, Perier C. Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson's Disease and Huntington's Disease. Front Neurosci 2018; 12:342. [PMID: 29875626 PMCID: PMC5974257 DOI: 10.3389/fnins.2018.00342] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
In recent years, several important advances have been made in our understanding of the pathways that lead to cell dysfunction and death in Parkinson's disease (PD) and Huntington's disease (HD). Despite distinct clinical and pathological features, these two neurodegenerative diseases share critical processes, such as the presence of misfolded and/or aggregated proteins, oxidative stress, and mitochondrial anomalies. Even though the mitochondria are commonly regarded as the "powerhouses" of the cell, they are involved in a multitude of cellular events such as heme metabolism, calcium homeostasis, and apoptosis. Disruption of mitochondrial homeostasis and subsequent mitochondrial dysfunction play a key role in the pathophysiology of neurodegenerative diseases, further highlighting the importance of these organelles, especially in neurons. The maintenance of mitochondrial integrity through different surveillance mechanisms is thus critical for neuron survival. Mitochondria display a wide range of quality control mechanisms, from the molecular to the organellar level. Interestingly, many of these lines of defense have been found to be altered in neurodegenerative diseases such as PD and HD. Current knowledge and further elucidation of the novel pathways that protect the cell through mitochondrial quality control may offer unique opportunities for disease therapy in situations where ongoing mitochondrial damage occurs. In this review, we discuss the involvement of mitochondrial dysfunction in neurodegeneration with a special focus on the recent findings regarding mitochondrial quality control pathways, beyond the classical effects of increased production of reactive oxygen species (ROS) and bioenergetic alterations. We also discuss how disturbances in these processes underlie the pathophysiology of neurodegenerative disorders such as PD and HD.
Collapse
Affiliation(s)
- Sandra Franco-Iborra
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Miquel Vila
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Celine Perier
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| |
Collapse
|
47
|
Marcellino BK, Ekasumara N, Mobbs CV. Dietary Restriction and Glycolytic Inhibition Reduce Proteotoxicity and Extend Lifespan via NHR-49. CURRENT NEUROBIOLOGY 2018; 9:1-7. [PMID: 30820135 PMCID: PMC6390974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mechanisms mediating protective effects of dietary restriction during aging are of great interest since activating such mechanisms protect against a wide range of age-related diseases. In mammals key metabolic responses to nutritional deprivation are mediated by the transcription factor PPAR-alpha, which is activated by free fatty acids and promotes lipid metabolism while inhibiting glucose metabolism. The C. elegans gene nhr-49 appears to function similarly in C. elegans. Here we report that protective effects of dietary restriction and inhibition of glucose metabolism to increase lifespan wild-type C. elegans and reduce toxicity in a polyQ model of Huntington's disease in C. elegans are dependent on NHR-49 and its co-activator CREB-Binding Protein (CBP). We have previously demonstrated that inhibition of cbp blocks protective effects of dietary restriction and blocks the molecular switch from glucose metabolism to alternative substrates. Conversely, increased glucose concentration and inhibition of cbp reduce lifespan and increase proteotoxicity. Lactate and inhibition of ETC complex II mimicked toxic effects of glucose on proteotoxicity whereas pyruvate and inhibition of ETC complex I protected against glucose-enhanced proteotoxicity. These results support that PPAR-alpha-like activity mediates protective effects of dietary restriction by reducing glucose metabolism via reducing production of NADH, and corroborate and extend recent studies demonstrating that PPPAR-alpha agonists increase lifespan in C. elegans dependent on NHR-49.
Collapse
Affiliation(s)
| | - Nydia Ekasumara
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Charles V Mobbs
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
48
|
Carmo C, Naia L, Lopes C, Rego AC. Mitochondrial Dysfunction in Huntington’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:59-83. [DOI: 10.1007/978-3-319-71779-1_3] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Bortolatto CF, Reis AS, Pinz MP, Voss GT, Oliveira RL, Vogt AG, Roman S, Jesse CR, Luchese C, Wilhelm EA. Selective A 2A receptor antagonist SCH 58261 modulates striatal oxidative stress and alleviates toxicity induced by 3-Nitropropionic acid in male Wistar rats. Metab Brain Dis 2017; 32:1919-1927. [PMID: 28795281 DOI: 10.1007/s11011-017-0086-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
The aim of the present study was to investigate the effects of SCH58261, a selective adenosine A2A receptor antagonist, on striatal toxicity induced by 3-nitropropionic acid (3-NP) in rats. The experimental protocol consisted of 10 administrations (once a day) of SCH58261 (0.01 or 0.05 mg/kg/day, intraperitoneal, i.p.). From 7th to 10th day, 3-NP (20 mg/kg/day, i.p.) was injected 1 h after SCH58261 administration. Twenty-four hours after the last 3-NP injection, the body weight gain, locomotor activity (open-field test), motor coordination (rotarod test), striatal succinate dehydrogenase (SDH) activity and parameters linked to striatal oxidative status were evaluated in rats. The marked body weight loss resulting from 3-NP injections in rats was partially protected by SCH 58261 at both doses. SCH 58261 at the highest dose was effective against impairments on motor coordination and locomotor activity induced by 3-NP. SCH 58261 was unable to restore the inhibition of SDH activity caused by 3-NP. In addition, the increase in striatal reactive species (RS) levels, depletion of reduced glutathione (GSH) content and stimulation of glutathione reductase (GR) activity provoked by 3-NP injections were alleviated by both doses of SCH 58261. The highest dose of SCH 58261 was also effective in attenuating the increase of protein carbonyl levels as well as the inhibition of glutathione peroxidase (GPx) activity in rats exposed to 3-NP. Our results revealed that reduction of oxidative stress in rat striatum by adenosine A2A receptor antagonism contributes for alleviating 3-NP-induced toxicity.
Collapse
Affiliation(s)
- Cristiani F Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| | - Angélica S Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Mikaela P Pinz
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Guilherme T Voss
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Renata L Oliveira
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Ane G Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Silvane Roman
- Universidade Regional Integrada, Campus Erechim, Erechim, RS, CEP 99700-000, Brazil
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
50
|
Shah SZA, Zhao D, Hussain T, Yang L. Role of the AMPK pathway in promoting autophagic flux via modulating mitochondrial dynamics in neurodegenerative diseases: Insight into prion diseases. Ageing Res Rev 2017; 40:51-63. [PMID: 28903070 DOI: 10.1016/j.arr.2017.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
Abstract
Neurons are highly energy demanding cells dependent on the mitochondrial oxidative phosphorylation system. Mitochondria generate energy via respiratory complexes that constitute the electron transport chain. Adenosine triphosphate depletion or glucose starvation act as a trigger for the activation of adenosine monophosphate-activated protein kinase (AMPK). AMPK is an evolutionarily conserved protein that plays an important role in cell survival and organismal longevity through modulation of energy homeostasis and autophagy. Several studies suggest that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. Mild mitochondrial dysfunction leads to activated AMPK signaling, but severe endoplasmic reticulum stress and mitochondrial dysfunction may lead to a shift from autophagy towards apoptosis and perturbed AMPK signaling. Hence, controlling mitochondrial dynamics and autophagic flux via AMPK activation might be a useful therapeutic strategy in neurodegenerative diseases to reinstate energy homeostasis and degrade misfolded proteins. In this review article, we discuss briefly the role of AMPK signaling in energy homeostasis, the structure of AMPK, activation mechanisms of AMPK, regulation of AMPK, the role of AMPK in autophagy, the role of AMPK in neurodegenerative diseases, and finally the role of autophagic flux in prion diseases.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|