1
|
Yadav V, Jena MK, Parashar G, Parashar NC, Joshi H, Ramniwas S, Tuli HS. Emerging role of microRNAs as regulators of protein kinase C substrate MARCKS and MARCKSL1 in cancer. Exp Cell Res 2024; 434:113891. [PMID: 38104645 DOI: 10.1016/j.yexcr.2023.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
MicroRNAs (miRNAs) have emerged as pivotal regulators of gene expression, playing essential roles in diverse cellular processes, including the development and progression of cancer. Among the numerous proteins influenced by miRNAs, the MARCKS/MARCKSL1 protein, a key regulator of cellular cytoskeletal dynamics and membrane-cytosol communication, has garnered significant attention due to its multifaceted involvement in various cancer-related processes, including cell migration, invasion, metastasis, and drug resistance. Motivated by the encouraging early clinical success of peptides targeting MARCKS in several pathological conditions, this review article delves into the intricate interplay between miRNAs and the MARCKS protein in cancer. Herein, we have highlighted the latest findings on specific miRNAs that modulate MARCKS/MARCKSL1 expression, providing a comprehensive overview of their roles in different cancer types. We have underscored the need for in-depth investigations into the therapeutic feasibility of targeting the miRNA-MARCKS axis in cancer, taking cues from the successes witnessed in related fields. Unlocking the full potential of miRNA-mediated MARCKS regulation could pave the way for innovative and effective therapeutic interventions against various cancer types.
Collapse
Affiliation(s)
- Vikas Yadav
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, 4000, Liège, Belgium; Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE 20213, Malmö, Sweden.
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Parashar
- Division of Biomedical & Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Nidarshana Chaturvedi Parashar
- Department of Biosciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Hardeep Singh Tuli
- Department of Biosciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| |
Collapse
|
2
|
Iqbal S, Walsh TR, Rodger A, Packer NH. Interaction between Polysialic Acid and the MARCKS-ED Peptide at the Molecular Level. ACS Chem Neurosci 2020; 11:1944-1954. [PMID: 32412743 DOI: 10.1021/acschemneuro.0c00139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Polysialic acid (polySia) is a highly negatively charged linear homopolymer comprising α-2,8-linked sialic acids. It is abundant in the embryonic brain and modulates various functions such as differentiation and synaptic plasticity in the adult central nervous system by direct binding to its protein partners. One such example is the binding of polySia to myristoylated-alanine rich C-kinase substrate (MARCKS) to modulate neuritogenesis. To understand their interaction mechanism at the molecular level, we performed a binding assay which showed a direct binding of the MARCKS-ED peptide (KKKKKRFSFKKSFKLSGFSFKKNKK) with polySia in a concentration-dependent manner. Molecular dynamics simulations revealed that this binding is not exclusively dominated by electrostatics but can in part be attributed to the presence of near-regularly spaced Phe residues, that confer a compact 3D conformation based on pseudoglycine loop structures supported by Phe-Phe interactions. Our simulations, which are confirmed by circular dichroism measurements, also indicate that the peptide-polySia binding induces large-scale conformational rearrangement of polySia into coils at the binding site, whereas the peptide conformation is relatively unperturbed. As a consequence, we predict that each peptide can bind to a domain extending ∼14 polySia repeat units. Using the fluorescently tagged MARCKS-ED peptide on rat brainstem tissue sections, we demonstrate the ability of the peptide to detect polySia, similarly to polySia-specific antibody mAb735, especially in the spinal trigeminal nucleus and the dorsal vagal complex. This study provides information about the interaction between polySia and its CNS protein binding partner, MARCKS, and provides a fundamental platform for further studies to explore the prospect of the MARCKS-ED as an effective polySia-binding peptide for bioimaging and drug delivery applications.
Collapse
Affiliation(s)
- Sameera Iqbal
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Tiffany R. Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Alison Rodger
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nicolle H. Packer
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, New South Wales 2109, Australia
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
3
|
Zhang L, Rastgoo N, Wu J, Zhang M, Pourabdollah M, Zacksenhaus E, Chen Y, Chang H. MARCKS inhibition cooperates with autophagy antagonists to potentiate the effect of standard therapy against drug-resistant multiple myeloma. Cancer Lett 2020; 480:29-38. [PMID: 32220540 DOI: 10.1016/j.canlet.2020.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/28/2022]
Abstract
Overexpression of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) is implicated in drug resistance and progression of multiple myeloma (MM). The basis for MARCKS induction and impact on MM are not known. Here we show that microRNA-34a (miR-34a), regulates MARCKS translation and is under-expressed in drug-resistant MM cells, leading to increased MARCKS protein level. Over-expression of miR-34a reduces MARCKS expression and sensitizes resistant cells to anti-myeloma drugs. A MARCKS peptide inhibitor (MPS) exerts a dose dependent cytotoxic effect on drug-resistant MM cells with minimal cytotoxicity to normal hematopoietic cells. MPS synergizes with the proteasomal-inhibitor bortezomib to effectively kill drug-resistant MM cells both in vitro and in a xenograft model of MM. While MARCKS inhibition killed MM cells, it also enhanced a pro-survival autophagic pathway that sustained growth following MARCKS inhibition. In accordance, combined treatment with MARCKS antagonists, bortezomib and the autophagy inhibitor, chloroquine, significantly diminished tumor growth in drug-resistant MM cell lines as well as primary MM cells. This study uncovers a mechanism of drug resistance involving miR-34a-MARCKS autoregulatory loop and provides a framework for a potentially new therapeutic strategy to overcome drug resistance in multiple myeloma.
Collapse
Affiliation(s)
- Lun Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Nasrin Rastgoo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Jian Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Min Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Maryam Pourabdollah
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Yan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Senzhen, China.
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| |
Collapse
|
4
|
Mohapatra P, Yadav V, Toftdahl M, Andersson T. WNT5A-Induced Activation of the Protein Kinase C Substrate MARCKS Is Required for Melanoma Cell Invasion. Cancers (Basel) 2020; 12:cancers12020346. [PMID: 32033033 PMCID: PMC7072258 DOI: 10.3390/cancers12020346] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
WNT5A is a well-known mediator of melanoma cell invasion and metastasis via its ability to activate protein kinase C (PKC), which is monitored by phosphorylation of the endogenous PKC substrate myristoylated alanine-rich c-kinase substrate (MARCKS). However, a possible direct contribution of MARCKS in WNT5A-mediated melanoma cell invasion has not been investigated. Analyses of melanoma patient databases suggested that similar to WNT5A expression, MARCKS expression appears to be associated with increased metastasis. A relationship between the two is suggested by the findings that recombinant WNT5A (rWNT5A) induces both increased expression and phosphorylation of MARCKS, whereas WNT5A silencing does the opposite. Moreover, WNT5A-induced invasion of melanoma cells was blocked by siRNA targeting MARCKS, indicating a crucial role of MARCKS expression and/or its phosphorylation. Next, we employed a peptide inhibitor of MARCKS phosphorylation that did not affect MARCKS expression and found that it abolished WNT5A-induced melanoma cell invasion. Similarly, rWNT5A induced the accumulation of phosphorylated MARCKS in membrane protrusions at the leading edge of melanoma cells. Our results demonstrate that WNT5A-induced phosphorylation of MARCKS is not only an indicator of PKC activity but also a crucial regulator of the metastatic behavior of melanoma and therefore an attractive future antimetastatic target in melanoma patients.
Collapse
Affiliation(s)
| | | | | | - Tommy Andersson
- Correspondence: (P.M.); (T.A.); Tel.: +46-40-391167 (P.M. & T.A.)
| |
Collapse
|
5
|
Brudvig JJ, Cain JT, Schmidt-Grimminger GG, Stumpo DJ, Roux KJ, Blackshear PJ, Weimer JM. MARCKS Is Necessary for Netrin-DCC Signaling and Corpus Callosum Formation. Mol Neurobiol 2018; 55:8388-8402. [PMID: 29546593 PMCID: PMC6139093 DOI: 10.1007/s12035-018-0990-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/06/2018] [Indexed: 11/24/2022]
Abstract
Axons of the corpus callosum (CC), the white matter tract that connects the left and right hemispheres of the brain, receive instruction from a number of chemoattractant and chemorepulsant cues during their initial navigation towards and across the midline. While it has long been known that the CC is malformed in the absence of Myristoylated alanine-rich C-kinase substrate (MARCKS), evidence for a direct role of MARCKS in axon navigation has been lacking. Here, we show that MARCKS is necessary for Netrin-1 (NTN1) signaling through the DCC receptor, which is critical for axon guidance decisions. Marcks null (Marcks-/-) neurons fail to respond to exogenous NTN1 and are deficient in markers of DCC activation. Without MARCKS, the subcellular distributions of two critical mediators of NTN1-DCC signaling, the tyrosine kinases PTK2 and SRC, are disrupted. Together, this work establishes a novel role for MARCKS in axon dynamics and highlights the necessity of MARCKS as an organizer of DCC signaling at the membrane.
Collapse
Affiliation(s)
- J J Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
- Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, 57069, USA
| | - J T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | | | - D J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC, 27709, USA
| | - K J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, 57104, USA
- Department of Pediatrics, University of South Dakota, Sioux Falls, SD, 57105, USA
| | - P J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC, 27709, USA
| | - J M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, University of South Dakota, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
6
|
MARCKS regulates neuritogenesis and interacts with a CDC42 signaling network. Sci Rep 2018; 8:13278. [PMID: 30185885 PMCID: PMC6125478 DOI: 10.1038/s41598-018-31578-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/21/2018] [Indexed: 01/24/2023] Open
Abstract
Through the process of neuronal differentiation, newly born neurons change from simple, spherical cells to complex, sprawling cells with many highly branched processes. One of the first stages in this process is neurite initiation, wherein cytoskeletal modifications facilitate membrane protrusion and extension from the cell body. Hundreds of actin modulators and microtubule-binding proteins are known to be involved in this process, but relatively little is known about how upstream regulators bring these complex networks together at discrete locations to produce neurites. Here, we show that Myristoylated alanine-rich C kinase substrate (MARCKS) participates in this process. Marcks−/− cortical neurons extend fewer neurites and have less complex neurite arborization patterns. We use an in vitro proteomics screen to identify MARCKS interactors in developing neurites and characterize an interaction between MARCKS and a CDC42-centered network. While the presence of MARCKS does not affect whole brain levels of activated or total CDC42, we propose that MARCKS is uniquely positioned to regulate CDC42 localization and interactions within specialized cellular compartments, such as nascent neurites.
Collapse
|
7
|
El Amri M, Fitzgerald U, Schlosser G. MARCKS and MARCKS-like proteins in development and regeneration. J Biomed Sci 2018; 25:43. [PMID: 29788979 PMCID: PMC5964646 DOI: 10.1186/s12929-018-0445-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Myristoylated Alanine-Rich C-kinase Substrate (MARCKS) and MARCKS-like protein 1 (MARCKSL1) have a wide range of functions, ranging from roles in embryonic development to adult brain plasticity and the inflammatory response. Recently, both proteins have also been identified as important players in regeneration. Upon phosphorylation by protein kinase C (PKC) or calcium-dependent calmodulin-binding, MARCKS and MARCKSL1 translocate from the membrane into the cytosol, modulating cytoskeletal actin dynamics and vesicular trafficking and activating various signal transduction pathways. As a consequence, the two proteins are involved in the regulation of cell migration, secretion, proliferation and differentiation in many different tissues. MAIN BODY Throughout vertebrate development, MARCKS and MARCKSL1 are widely expressed in tissues derived from all germ layers, with particularly strong expression in the nervous system. They have been implicated in the regulation of gastrulation, myogenesis, brain development, and other developmental processes. Mice carrying loss of function mutations in either Marcks or Marcksl1 genes die shortly after birth due to multiple deficiencies including detrimental neural tube closure defects. In adult vertebrates, MARCKS and MARCKL1 continue to be important for multiple regenerative processes including peripheral nerve, appendage, and tail regeneration, making them promising targets for regenerative medicine. CONCLUSION This review briefly summarizes the molecular interactions and cellular functions of MARCKS and MARCKSL1 proteins and outlines their vital roles in development and regeneration.
Collapse
Affiliation(s)
- Mohamed El Amri
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland
| | - Una Fitzgerald
- Galway Neuroscience Centre, School of Natural Sciences, Biomedical Sciences Building, National University of Ireland, Newcastle Road, Galway, Ireland
| | - Gerhard Schlosser
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland. .,School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland.
| |
Collapse
|
8
|
Dao CV, Shiraishi M, Miyamoto A. The MARCKS protein amount is differently regulated by calpain during toxic effects of methylmercury between SH-SY5Y and EA.hy926 cells. J Vet Med Sci 2017; 79:1931-1938. [PMID: 29046508 PMCID: PMC5745167 DOI: 10.1292/jvms.17-0473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Methylmercury (MeHg) is an environmental pollutant that shows severe toxicity to humans and animals. However, the molecular mechanisms mediating MeHg toxicity are not completely understood. We have previously reported that the MARCKS protein is involved in the MeHg toxicity to SH-SY5Y neuroblastoma and EA.hy926 vascular endothelial cell lines. In addition, calpain, a Ca2+-dependent protease, is suggested to be associated with the MeHg toxicity. Because MARCKS is known as a substrate of calpain, we studied the relation between calpain activation and cleavage of MARCKS and its role in MeHg toxicity. In SH-SY5Y cells, MeHg decreased cell viability along with increased calcium mobilization, calpain activation and a decrease in MARCKS amounts. However, pretreatment with calpain inhibitors attenuated the decrease in cell viability and MARCKS amount induced only by 1 µM but not by 3 µM MeHg. In cells with a MARCKS knockdown, calpain inhibitors failed to attenuate the decrease in cell viability caused by MeHg. In EA.hy926 cells, although MeHg caused calcium mobilization and a decrease in MARCKS levels, calpain activation was not observed. These results indicate that the participation of calpain in the regulation of MARCKS amounts is dependent on the cell type and concentration of MeHg. In SH-SY5Y cells, calpain-mediated proteolysis of MARCKS is involved in cytotoxicity induced by a low concentration of MeHg.
Collapse
Affiliation(s)
- Cuong Van Dao
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.,Department of Veterinary Pharmacology, Faculty of Animal Husbandry and Veterinary Medicine, Thai Nguyen University of Agriculture and Forestry, Group 10, Quyet Thang Commune, Thai Nguyen City, Thai Nguyen, Vietnam
| | - Mitsuya Shiraishi
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Atsushi Miyamoto
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
9
|
Shen X, Jia Z, D'Alonzo D, Wang X, Bruder E, Emch FH, De Geyter C, Zhang H. HECTD1 controls the protein level of IQGAP1 to regulate the dynamics of adhesive structures. Cell Commun Signal 2017; 15:2. [PMID: 28073378 PMCID: PMC5225595 DOI: 10.1186/s12964-016-0156-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Background Cell migration including collective cell movement and individual cell migration are crucial factors in embryogenesis. During the spreading/migration of cells, several types of adhesive structures physically interacting with the extracellular matrix (ECM) or with another cell have been described and the formation and maturation of adhesion structures are coordinated, however the molecular pathways involved are still not fully understood. Results We generated a mouse embryonic fibroblast line (MEF) from homozygous mutant (Hectd1R/R, Hectd1Gt(RRC200)) mouse of the E3 ubiquitin ligase for inhibin B receptor (Hectd1). Detailed examination of cell motion on MEF cells demonstrated that loss of Hectd1 resulted in accelerated cell spreading and migration but impaired directionality of migration. In Hectd1R/R cells paxillin and zyxin were largely mis-localized, whereas their expression levels were unchanged. In addition the formation of focal adhesions (FAs) was impaired and the focal complexes (FXs) were increased. We further identified HECTD1 as a key regulator of IQGAP1. IQGAP1 co-localized together with HECTD1 in the leading edge of cells. HECTD1 interacted with IQGAP1 and regulated its degradation through ubiquitination. Over-expression of IQGAP1 in control MEF phenocopied the spreading and migration defects of Hectd1R/R cells. In contrast, siRNA-mediated knockdown of IQGAP1 rescued the defects in cellular movement of Hectd1R/R cells. Conclusions The E3 ligase activity of Hectd1 regulates the protein level of IQGAP1 through ubiquitination and therefore mediates the dynamics of FXs including the recruitment of paxillin and actinin. IQGAP1 is one of the effectors of HECTD1. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0156-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoli Shen
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Present Address: Chongqing Reproductive and Genetics Institute, 64 Jing Tang ST, Yu Zhong District, Chongqing, 400013, China
| | - Zanhui Jia
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Present Address: 2nd hospital of Jilin University, Changchun, China
| | - Donato D'Alonzo
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Xinggang Wang
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Elisabeth Bruder
- Pathologie, Universitätsspital Basel, Schönbeinstrasse 40, CH-4031, Basel, Switzerland
| | - Fabienne Hélène Emch
- Clinic of Gynecological Endocrinology and Reproductive Medicine, University Hospital, University of Basel, Basel, Switzerland
| | - Christian De Geyter
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Clinic of Gynecological Endocrinology and Reproductive Medicine, University Hospital, University of Basel, Basel, Switzerland
| | - Hong Zhang
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Hebelstra. 20, CH-4031, Basel, Switzerland.
| |
Collapse
|
10
|
Sosa LJ, Malter JS, Hu J, Bustos Plonka F, Oksdath M, Nieto Guil AF, Quiroga S, Pfenninger KH. Protein interacting with NIMA (never in mitosis A)-1 regulates axonal growth cone adhesion and spreading through myristoylated alanine-rich C kinase substrate isomerization. J Neurochem 2016; 137:744-55. [DOI: 10.1111/jnc.13612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/20/2016] [Accepted: 03/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Lucas J. Sosa
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center; University of Colorado School of Medicine; Aurora Colorado USA
| | - James S. Malter
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Jie Hu
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Florentyna Bustos Plonka
- Departamento de Química Biológica-CIQUIBIC; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba-CONICET; Córdoba Argentina
| | - Mariana Oksdath
- Departamento de Química Biológica-CIQUIBIC; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba-CONICET; Córdoba Argentina
| | - Alvaro F. Nieto Guil
- Departamento de Química Biológica-CIQUIBIC; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba-CONICET; Córdoba Argentina
| | - Santiago Quiroga
- Departamento de Química Biológica-CIQUIBIC; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba-CONICET; Córdoba Argentina
| | - Karl H. Pfenninger
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center; University of Colorado School of Medicine; Aurora Colorado USA
| |
Collapse
|
11
|
Brudvig JJ, Weimer JM. X MARCKS the spot: myristoylated alanine-rich C kinase substrate in neuronal function and disease. Front Cell Neurosci 2015; 9:407. [PMID: 26528135 PMCID: PMC4602126 DOI: 10.3389/fncel.2015.00407] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/25/2015] [Indexed: 11/18/2022] Open
Abstract
Intracellular protein-protein interactions are dynamic events requiring tightly regulated spatial and temporal checkpoints. But how are these spatial and temporal cues integrated to produce highly specific molecular response patterns? A helpful analogy to this process is that of a cellular map, one based on the fleeting localization and activity of various coordinating proteins that direct a wide array of interactions between key molecules. One such protein, myristoylated alanine-rich C-kinase substrate (MARCKS) has recently emerged as an important component of this cellular map, governing a wide variety of protein interactions in every cell type within the brain. In addition to its well-documented interactions with the actin cytoskeleton, MARCKS has been found to interact with a number of other proteins involved in processes ranging from intracellular signaling to process outgrowth. Here, we will explore these diverse interactions and their role in an array of brain-specific functions that have important implications for many neurological conditions.
Collapse
Affiliation(s)
- Jon J Brudvig
- Children's Health Research Center, Sanford Research Sioux Falls, SD, USA ; Basic Biomedical Sciences, University of South Dakota Vermillion, SD, USA
| | - Jill M Weimer
- Children's Health Research Center, Sanford Research Sioux Falls, SD, USA ; Department of Pediatrics, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| |
Collapse
|
12
|
Ren B, Li X, Zhang J, Fan J, Duan J, Chen Y. PDLIM5 mediates PKCε translocation in PMA-induced growth cone collapse. Cell Signal 2014; 27:424-35. [PMID: 25524223 DOI: 10.1016/j.cellsig.2014.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/28/2014] [Accepted: 12/10/2014] [Indexed: 11/16/2022]
Abstract
Growth cone collapse is a critical repulsive response to various guidance cues for axon guidance. Protein kinase C epsilon (PKCε) plays important regulation roles in such responses. Translocation of PKCε from cytoplasm to membrane is crucial to archive its regulatory roles in this process. We previously reported that PDLIM5 could selectively recruit PKCε to its specific substrate in neurons. However, the molecular mechanism of PKCε translocation in the neuronal growth cone collapse remains elusive. Here, we demonstrated that PDLIM5 and PKCε co-existed in the nerve growth cones. By interacting with α-actinin, but not β-actin or β-tubulin, PDLIM5 might contribute to regulation of remodeling of the microfilaments in neurons. Meanwhile, PDLIM5 could also bind to PKCε to form PDLIM5-PKCε complexes in growth cones. In the primary cultured neurons, activation of PKCε by PMA resulted in translocation of both PKCε and PDLIM5 from cytoplasm to the membrane. Knockdown of either PDLIM5 or PKCε rescued the neuron from PMA-induced growth cone collapse. Furthermore, in neurons, application of PDLIM5 shRNA or over-expression of PDLIM5 LIM1-3 mutants reduced the amount of PKCε in the membrane. Together, these results suggest that PDLIM5 acts as a scaffold protein by mediated PKCε translocated to the membrane in PMA-induced growth cone collapse.
Collapse
Affiliation(s)
- Bingyu Ren
- Neurobiology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiubo Li
- Neurobiology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jifeng Zhang
- Neurobiology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jingjing Duan
- Neurobiology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Chen
- Neurobiology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
13
|
Targeting phospho-MARCKS overcomes drug-resistance and induces antitumor activity in preclinical models of multiple myeloma. Leukemia 2014; 29:715-26. [PMID: 25179733 DOI: 10.1038/leu.2014.255] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is incurable in virtually all patients due to the presence of innate and emergent drug-resistance. To identify potential drug resistance mechanisms in MM we used iTRAQ (isobaric tags for relative and absolute quantitation) mass spectrometry to compare protein expression profiles of drug-resistant (RPMI 8226-R5) and sensitive (RPMI 8226-S) isogenic cell lines. We identified selective overexpression of myristoylated alanine-rich C-kinase substrate (MARCKS) in drug-resistant R5 cells. MARCKS overexpression was also observed in several drug-resistant human myeloma cell lines (HMCLs) and in drug-resistant primary MM samples. Functionally, inhibition of MARCKS phosphorylation by enzastaurin or knockdown of the gene by RNAi significantly enhanced the sensitivity of resistant HMCLs and primary MM samples to bortezomib and to other anti-myeloma drugs, providing evidence that MARCKS can modulate drug response. Mechanistically, pMARCKS (phosphorylated form of MARCKS) was found to function as an E2F-1 cofactor to regulate SKP2 transcription. pMARCKS promoted cell-cycle progression by facilitating SKP2 expression, suppressing p27(Kip1) and potentially counteracting drug-induced cell-cycle arrest by promoting Cyclin E/CDK2 activity. Importantly, MARCKS knockdown in combination with bortezomib treatment overcame bortezomib resistance, significantly inhibited tumor growth and prolonged host survival in a MM xenograft model. These data provide a rationale for therapeutic targeting of pMARCKS to improve the outcome of patients with refractory/relapsed MM.
Collapse
|
14
|
Igarashi M. Proteomic identification of the molecular basis of mammalian CNS growth cones. Neurosci Res 2014; 88:1-15. [PMID: 25066522 DOI: 10.1016/j.neures.2014.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/13/2014] [Accepted: 07/02/2014] [Indexed: 11/28/2022]
Abstract
The growth cone, which is a unique structure with high motility that forms at the tips of extending axons and dendrites, is crucial to neuronal network formation. Axonal growth of the mammalian CNS is most likely achieved by the complicated coordination of cytoskeletal rearrangement and vesicular trafficking via many proteins. Before recent advances, no methods to identify numerous proteins existed; however, proteomics revolutionarily resolved such problems. In this review, I summarize the profiles of the mammalian growth cone proteins revealed by proteomics as the molecular basis of the growth cone functions, with molecular mapping. These results should be used as a basis for understanding the mechanisms of the complex mammalian CNS developmental process.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Trans-disciplinary Program, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| |
Collapse
|
15
|
Shiraishi M, Hangai M, Yamamoto M, Sasaki M, Tanabe A, Sasaki Y, Miyamoto A. Alteration in MARCKS phosphorylation and expression by methylmercury in SH-SY5Y cells and rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1256-1263. [PMID: 24835554 DOI: 10.1016/j.etap.2014.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 03/27/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
The molecular mechanisms mediating methylmercury (MeHg)-induced neurotoxicity are not completely understood. Because myristoylated alanine-rich C kinase substrate (MARCKS) plays an essential role in the differentiation and development of neuronal cells, we studied the alteration of MARCKS expression and phosphorylation in MeHg-induced neurotoxicity of neuroblastoma SH-SY5Y cells and in the rat brain. Exposure to MeHg induced a decrease in cell viability of SH-SY5Y cells, which was accompanied by a significant increase in phosphorylation and a reduction in MARCKS expression. Pretreatment of cells with a protein kinase C inhibitor or an extracellular Ca(2+) chelator suppressed MeHg-induced MARCKS phosphorylation. In MARCKS knock-down cells, MeHg-induced cell death was significantly augmented in comparison to control siRNA. In brain tissue from MeHg-treated rats, MARCKS phosphorylation was enhanced in the olfactory bulb in comparison to control rats. The present study may indicate that alteration in MARCKS expression or phosphorylation has consequences for MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Mitsuya Shiraishi
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Makoto Hangai
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Megumi Yamamoto
- Department of Basic Medical Sciences, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan
| | - Masanori Sasaki
- Department of Basic Medical Sciences, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan
| | - Atsuhiro Tanabe
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Yasuharu Sasaki
- Laboratory of Pharmacology, School of Pharmaceutical Science, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Atsushi Miyamoto
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
16
|
Neuronal process structure and growth proteins are targets of heavy PTM regulation during brain development. J Proteomics 2014; 101:77-87. [DOI: 10.1016/j.jprot.2014.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 11/30/2022]
|
17
|
MARCKS regulates membrane targeting of Rab10 vesicles to promote axon development. Cell Res 2014; 24:576-94. [PMID: 24662485 DOI: 10.1038/cr.2014.33] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/31/2013] [Accepted: 02/25/2014] [Indexed: 01/19/2023] Open
Abstract
Axon development requires membrane addition from the intracellular supply, which has been shown to be mediated by Rab10-positive plasmalemmal precursor vesicles (PPVs). However, the molecular mechanisms underlying the membrane trafficking processes of PPVs remain unclear. Here, we show that myristoylated alanine-rich C-kinase substrate (MARCKS) mediates membrane targeting of Rab10-positive PPVs, and this regulation is critical for axon development. We found that the GTP-locked active form of Rab10 binds to membrane-associated MARCKS, whose affinity depends on the phosphorylation status of the MARCKS effector domain. Either genetic silencing of MARCKS or disruption of its interaction with Rab10 inhibited axon growth of cortical neurons, impaired docking and fusion of Rab10 vesicles with the plasma membrane, and consequently caused a loss of membrane insertion of axonal receptors responsive to extracellular axon growth factors. Thus, this study has identified a novel function of MARCKS in mediating membrane targeting of PPVs during axon development.
Collapse
|
18
|
Contreras-Vallejos E, Utreras E, Bórquez DA, Prochazkova M, Terse A, Jaffe H, Toledo A, Arruti C, Pant HC, Kulkarni AB, González-Billault C. Searching for novel Cdk5 substrates in brain by comparative phosphoproteomics of wild type and Cdk5-/- mice. PLoS One 2014; 9:e90363. [PMID: 24658276 PMCID: PMC3962345 DOI: 10.1371/journal.pone.0090363] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/28/2014] [Indexed: 01/07/2023] Open
Abstract
Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5−/− embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5−/− brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate.
Collapse
Affiliation(s)
- Erick Contreras-Vallejos
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Elías Utreras
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Daniel A. Bórquez
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda MD, USA
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda MD, USA
| | - Howard Jaffe
- Protein and Peptide Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, USA
| | - Andrea Toledo
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cristina Arruti
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Harish C. Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, USA
| | - Ashok B. Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda MD, USA
- * E-mail: (CGB); (ABK)
| | - Christian González-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- * E-mail: (CGB); (ABK)
| |
Collapse
|
19
|
Akiyama H, Kamiguchi H. Second messenger networks for accurate growth cone guidance. Dev Neurobiol 2013; 75:411-22. [PMID: 24285606 DOI: 10.1002/dneu.22157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 02/02/2023]
Abstract
Growth cones are able to navigate over long distances to find their appropriate target by following guidance cues that are often presented to them in the form of an extracellular gradient. These external cues are converted into gradients of specific signaling molecules inside growth cones, while at the same time these internal signals are amplified. The amplified instruction is then used to generate asymmetric changes in the growth cone turning machinery so that one side of the growth cone migrates at a rate faster than the other side, and thus the growth cone turns toward or away from the external cue. This review examines how signal specification and amplification can be achieved inside the growth cone by multiple second messenger signaling pathways activated downstream of guidance cues. These include the calcium ion, cyclic nucleotide, and phosphatidylinositol signaling pathways.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
20
|
Orecchia A, Mettouchi A, Uva P, Simon GC, Arcelli D, Avitabile S, Ragone G, Meneguzzi G, Pfenninger KH, Zambruno G, Failla CM. Endothelial cell adhesion to soluble vascular endothelial growth factor receptor‐1 triggers a cell dynamic and angiogenic phenotype. FASEB J 2013; 28:692-704. [DOI: 10.1096/fj.12-225771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Angela Orecchia
- Molecular and Cell Biology LaboratoryIstituto Dermopatico dell'Immacolata (IDI)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
| | - Amel Mettouchi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U634NiceFrance
| | - Paolo Uva
- Center for Advanced Studies, Research, and Development in Sardinia (CRS4)Bioinformatics LaboratoryCagliariItaly
| | - Glenn C. Simon
- Department of PediatricsUniversity of ColoradoAuroraColoradoUSA
| | - Diego Arcelli
- Molecular Oncology LaboratoryIstituto Dermopatico dell'Immacolata (IDI)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
| | - Simona Avitabile
- Molecular and Cell Biology LaboratoryIstituto Dermopatico dell'Immacolata (IDI)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
| | - Gianluca Ragone
- Molecular Oncology LaboratoryIstituto Dermopatico dell'Immacolata (IDI)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
| | - Guerrino Meneguzzi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U634NiceFrance
| | | | - Giovanna Zambruno
- Molecular and Cell Biology LaboratoryIstituto Dermopatico dell'Immacolata (IDI)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
| | - Cristina Maria Failla
- Molecular and Cell Biology LaboratoryIstituto Dermopatico dell'Immacolata (IDI)–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
| |
Collapse
|
21
|
PKC-epsilon activation is required for recognition memory in the rat. Behav Brain Res 2013; 253:280-9. [PMID: 23911427 DOI: 10.1016/j.bbr.2013.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/20/2022]
Abstract
Activation of PKCɛ, an abundant and developmentally regulated PKC isoform in the brain, has been implicated in memory throughout life and across species. Yet, direct evidence for a mechanistic role for PKCɛ in memory is still lacking. Hence, we sought to evaluate this in rats, using short-term treatments with two PKCɛ-selective peptides, the inhibitory ɛV1-2 and the activating ψɛRACK, and the novel object recognition task (NORT). Our results show that the PKCɛ-selective activator ψɛRACK, did not have a significant effect on recognition memory. In the short time frames used, however, inhibition of PKCɛ activation with the peptide inhibitor ɛV1-2 significantly impaired recognition memory. Moreover, when we addressed at the molecular level the immediate proximal signalling events of PKCɛ activation in acutely dissected rat hippocampi, we found that ψɛRACK increased in a time-dependent manner phosphorylation of MARCKS and activation of Src, Raf, and finally ERK1/2, whereas ɛV1-2 inhibited all basal activity of this pathway. Taken together, these findings present the first direct evidence that PKCɛ activation is an essential molecular component of recognition memory and point toward the use of systemically administered PKCɛ-regulating peptides as memory study tools and putative therapeutic agents.
Collapse
|
22
|
Sosa LJ, Bergman J, Estrada-Bernal A, Glorioso TJ, Kittelson JM, Pfenninger KH. Amyloid precursor protein is an autonomous growth cone adhesion molecule engaged in contact guidance. PLoS One 2013; 8:e64521. [PMID: 23691241 PMCID: PMC3653867 DOI: 10.1371/journal.pone.0064521] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/15/2013] [Indexed: 12/22/2022] Open
Abstract
Amyloid precursor protein (APP), a transmembrane glycoprotein, is well known for its involvement in the pathogenesis of Alzheimer disease of the aging brain, but its normal function is unclear. APP is a prominent component of the adult as well as the developing brain. It is enriched in axonal growth cones (GCs) and has been implicated in cell adhesion and motility. We tested the hypothesis that APP is an extracellular matrix adhesion molecule in experiments that isolated the function of APP from that of well-established adhesion molecules. To this end we plated wild-type, APP-, or β1-integrin (Itgb1)- misexpressing mouse hippocampal neurons on matrices of either laminin, recombinant L1, or synthetic peptides binding specifically to Itgb1 s or APP. We measured GC adhesion, initial axonal outgrowth, and substrate preference on alternating matrix stripes and made the following observations: Substrates of APP-binding peptide alone sustain neurite outgrowth; APP dosage controls GC adhesion to laminin and APP-binding peptide as well as axonal outgrowth in Itgb1- independent manner; and APP directs GCs in contact guidance assays. It follows that APP is an independently operating cell adhesion molecule that affects the GC's phenotype on APP-binding matrices including laminin, and that it is likely to affect axon pathfinding in vivo.
Collapse
Affiliation(s)
- Lucas J. Sosa
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jared Bergman
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Adriana Estrada-Bernal
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Thomas J. Glorioso
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
| | - John M. Kittelson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
| | - Karl H. Pfenninger
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
23
|
Theis T, Mishra B, von der Ohe M, Loers G, Prondzynski M, Pless O, Blackshear PJ, Schachner M, Kleene R. Functional role of the interaction between polysialic acid and myristoylated alanine-rich C kinase substrate at the plasma membrane. J Biol Chem 2013; 288:6726-42. [PMID: 23329829 PMCID: PMC3585110 DOI: 10.1074/jbc.m112.444034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Indexed: 12/14/2022] Open
Abstract
Polysialic acid (PSA) is a homopolymeric glycan that plays crucial roles in the developing and adult nervous system. So far only a few PSA-binding proteins have been identified. Here, we identify myristoylated alanine-rich C kinase substrate (MARCKS) as novel PSA binding partner. Binding assays showed a direct interaction between PSA and a peptide comprising the effector domain of MARCKS (MARCKS-ED). Co-immunoprecipitation of PSA-carrying neural cell adhesion molecule (PSA-NCAM) with MARCKS and co-immunostaining of MARCKS and PSA at the cell membrane of hippocampal neurons confirm the interaction between PSA and MARCKS. Co-localization and an intimate interaction of PSA and MARCKS at the cell surface was seen by confocal microscopy and fluorescence resonance energy transfer (FRET) analysis after the addition of fluorescently labeled PSA or PSA-NCAM to live CHO cells or hippocampal neurons expressing MARCKS as a fusion protein with green fluorescent protein (GFP). Cross-linking experiments showed that extracellularly applied PSA or PSA-NCAM and intracellularly expressed MARCKS-GFP are in close contact, suggesting that PSA and MARCKS interact with each other at the plasma membrane from opposite sides. Insertion of PSA and MARCKS-ED peptide into lipid bilayers from opposite sides alters the electric properties of the bilayer confirming the notion that PSA and the effector domain of MARCKS interact at and/or within the plane of the membrane. The MARCKS-ED peptide abolished PSA-induced enhancement of neurite outgrowth from cultured hippocampal neurons indicating an important functional role for the interaction between MARCKS and PSA in the developing and adult nervous system.
Collapse
Affiliation(s)
- Thomas Theis
- From the Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bibhudatta Mishra
- From the Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maren von der Ohe
- From the Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Gabriele Loers
- From the Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Ole Pless
- European Screening Port GmbH, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Perry J. Blackshear
- the Departments of Medicine and Biochemistry, Duke University, Durham, North Carolina 27709
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and
| | - Melitta Schachner
- From the Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou 515041, China
| | - Ralf Kleene
- From the Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
24
|
Zuzek A, Fan JD, Spaeth CS, Bittner GD. Sealing of transected neurites of rat B104 cells requires a diacylglycerol PKC-dependent pathway and a PKA-dependent pathway. Cell Mol Neurobiol 2013; 33:31-46. [PMID: 22865002 DOI: 10.1007/s10571-012-9868-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
To survive, neurons and other eukaryotic cells must rapidly repair (seal) plasmalemmal damage. Such repair occurs by an accumulation of intracellular vesicles at or near the plasmalemmal disruption. Diacylglycerol (DAG)-dependent and cAMP-dependent proteins are involved in many vesicle trafficking pathways. Although recent studies have implicated the signaling molecule cAMP in sealing, no study has investigated how DAG and DAG-dependent proteins affect sealing. By means of dye exclusion to assess Ca(2+)-dependent vesicle-mediated sealing of transected neurites of individually identifiable rat hippocampal B104 cells, we now report that, compared to non-treated controls, sealing probabilities and rates are increased by DAG and cAMP analogs that activate PKC and Munc13-1 and PKA. Sealing is decreased by inhibiting DAG-activated novel protein kinase C isozymes η (nPKCη) and θ (nPKCθ) and Munc13-1, the PKC effector myristoylated alanine rich PKC substrate (MARCKS) or phospholipase C (PLC). DAG-increased sealing is prevented by inhibiting MARCKS or protein kinase A (PKA). Sealing probability is further decreased by simultaneously inhibiting nPKCη, nPKCθ, and PKA. Extracellular Ca(2+), DAG, or cAMP analogs do not affect this decrease in sealing. These and other data suggest that DAG increases sealing through MARCKS and that nPKCη, nPKCθ, and PKA are all required to seal plasmalemmal damage in B104 and likely all eukaryotic cells.
Collapse
Affiliation(s)
- Aleksej Zuzek
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| | | | | | | |
Collapse
|
25
|
MARCKS protein mediates hydrogen peroxide regulation of endothelial permeability. Proc Natl Acad Sci U S A 2012; 109:14864-9. [PMID: 22927426 DOI: 10.1073/pnas.1204974109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Impairment of endothelial barrier function is implicated in many vascular and inflammatory disorders. One prevalent mechanism of endothelial dysfunction is an increase in reactive oxygen species under oxidative stress. Previous reports have demonstrated that hydrogen peroxide (H(2)O(2)), a highly stable reactive oxygen species that modulates physiological signaling pathways, also enhances endothelial permeability, but the mechanism of this effect is unknown. Here, we identify the actin-binding protein myristoylated alanine-rich C-kinase substrate (MARCKS) as a key mediator of the H(2)O(2)-induced permeability change in bovine aortic endothelial cells. MARCKS knockdown and H(2)O(2) treatment alter the architecture of the actin cytoskeleton in endothelial cells, and H(2)O(2) induces the phosphorylation and translocation of MARCKS from the cell membrane to the cytosol. Using pharmacological inhibitors and small interference RNA constructs directed against specific proteins, we uncover a signaling cascade from Rac1 to Abl1, phospholipase Cγ1, and PKCδ that is triggered by H(2)O(2) and leads to MARCKS phosphorylation. Our findings establish a distinct role for MARCKS in the regulation of H(2)O(2)-induced permeability change in endothelial cells, and suggest potential new therapeutic targets for the treatment of disorders involving oxidative stress and altered endothelial permeability.
Collapse
|
26
|
Jarboe JS, Anderson JC, Duarte CW, Mehta T, Nowsheen S, Hicks PH, Whitley AC, Rohrbach TD, McCubrey RO, Chiu S, Burleson TM, Bonner JA, Gillespie GY, Yang ES, Willey CD. MARCKS regulates growth and radiation sensitivity and is a novel prognostic factor for glioma. Clin Cancer Res 2012; 18:3030-41. [PMID: 22619307 DOI: 10.1158/1078-0432.ccr-11-3091] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE This study assessed whether myristoylated alanine-rich C-kinase substrate (MARCKS) can regulate glioblastoma multiforme (GBM) growth, radiation sensitivity, and clinical outcome. EXPERIMENTAL DESIGN MARCKS protein levels were analyzed in five GBM explant cell lines and eight patient-derived xenograft tumors by immunoblot, and these levels were correlated to proliferation rates and intracranial growth rates, respectively. Manipulation of MARCKS protein levels was assessed by lentiviral-mediated short hairpin RNA knockdown in the U251 cell line and MARCKS overexpression in the U87 cell line. The effect of manipulation of MARCKS on proliferation, radiation sensitivity, and senescence was assessed. MARCKS gene expression was correlated with survival outcomes in the Repository of Molecular Brain Neoplasia Data (REMBRANDT) Database and The Cancer Genome Atlas (TCGA). RESULTS MARCKS protein expression was inversely correlated with GBM proliferation and intracranial xenograft growth rates. Genetic silencing of MARCKS promoted GBM proliferation and radiation resistance, whereas MARCKS overexpression greatly reduced GBM growth potential and induced senescence. We found MARCKS gene expression to be directly correlated with survival in both the REMBRANDT and TCGA databases. Specifically, patients with high MARCKS expressing tumors of the proneural molecular subtype had significantly increased survival rates. This effect was most pronounced in tumors with unmethylated O(6)-methylguanine DNA methyltransferase (MGMT) promoters, a traditionally poor prognostic factor. CONCLUSIONS MARCKS levels impact GBM growth and radiation sensitivity. High MARCKS expressing GBM tumors are associated with improved survival, particularly with unmethylated MGMT promoters. These findings suggest the use of MARCKS as a novel target and biomarker for prognosis in the proneural subtype of GBM.
Collapse
Affiliation(s)
- John S Jarboe
- The Departments of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mosevitsky MI, Snigirevskaya ES, Komissarchik YY. Immunoelectron microscopic study of BASP1 and MARCKS location in the early and late rat spermatids. Acta Histochem 2012; 114:237-43. [PMID: 21764106 DOI: 10.1016/j.acthis.2011.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 12/30/2022]
Abstract
Immunoelectron microscopy was used to locate the proteins BASP1 and MARCKS in the post-meiotic spermatids of male rat testis. It was shown that in early spermatids, BASP1 and MARCKS accumulate in chromatoid bodies, which are characteristic organelles for these cells. During spermatogenesis, while the spermatid nucleus is still active, the chromatoid body periodically moves to the cell nucleus and absorbs the precursors of definite mRNAs and small RNAs. mRNAs are preserved in the chromatoid body until the corresponding proteins are needed, but their "fresh" mRNA cannot be formed due to the nucleus inactivation. The chromatoid body (0.5-1.5μm in diameter) has a cloud-like fibrous appearance with many fairly round cavities. In the chromatoid body, BASP1 and MARCKS are distributed mainly around the cavities and at periphery. Based on the known functions of BASP1 and MARCKS in neurons, it is conceivable that these proteins participate in non-random movements of the chromatoid body to the nucleus and in Ca(2+)-calmodulin enrichment. In late spermatids, BASP1 and MARCKS are located in the outer dense fiber layer belonging to a metabolically active spermatozoon region, the tail mid-piece. In spermatozoa, as in chromatoid body, BASP1 and MARCKS may bind Ca(2+)-calmodulin and therefore contribute to the activation of calcium-dependent biochemical processes.
Collapse
|
28
|
Sanford SD, Yun BG, Leslie CC, Murphy RC, Pfenninger KH. Group IVA phospholipase A₂ is necessary for growth cone repulsion and collapse. J Neurochem 2012; 120:974-84. [PMID: 22220903 DOI: 10.1111/j.1471-4159.2012.07651.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The repellent semaphorin 3A (Sema3A) causes growth cone turning or collapse by triggering cytoskeletal rearrangements and detachment of adhesion sites. Growth cone detachment is dependent on eicosanoid activation of protein kinase C epsilon (PKCε), but the characterization of the phospholipase A(2) (PLA(2) ) that releases arachidonic acid (AA) for eicosanoid synthesis has remained elusive. Here, we show, in rat dorsal root ganglion (DRG) neurons, that Sema3A stimulates PLA(2) activity, that Sema3A-induced growth cone turning and collapse are dependent on the release of AA, and that the primary PLA(2) involved is the group IV α isoform (GIVA). Silencing GIVA expression renders growth cones resistant to Sema3A-induced collapse, and GIVA inhibition reverses Sema3A-induced repulsion into attraction. These studies identify a novel, early step in Sema3A-signaling and a PLA(2) necessary for growth cone repulsion and collapse.
Collapse
Affiliation(s)
- Staci D Sanford
- Department of Pediatrics, Neuroscience Program, and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | | | |
Collapse
|
29
|
Spaeth CS, Robison T, Fan JD, Bittner GD. Cellular mechanisms of plasmalemmal sealing and axonal repair by polyethylene glycol and methylene blue. J Neurosci Res 2012; 90:955-66. [PMID: 22302626 DOI: 10.1002/jnr.23022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/04/2011] [Accepted: 12/15/2011] [Indexed: 11/09/2022]
Abstract
Mammalian neurons and all other eukaryotic cells endogenously repair traumatic injury within minutes by a Ca²⁺-induced accumulation of vesicles that interact and fuse with each other and the plasmalemma to seal any openings. We have used uptake or exclusion of extracellular fluorescent dye to measure the ability of rat hippocampal B104 cells or rat sciatic nerves to repair (seal) transected neurites in vitro or transected axons ex vivo. We report that endogenous sealing in both preparations is enhanced by Ca²⁺-containing solutions and is decreased by Ca²⁺-free solutions containing antioxidants such as dithiothreitol (DTT), melatonin (MEL), methylene blue (MB), and various toxins that decrease vesicular interactions. In contrast, the fusogen polyethylene glycol (PEG) at 10-50 mM artificially seals the cut ends of B104 cells and rat sciatic axons within seconds and is not affected by Ca²⁺ or any of the substances that affect endogenous sealing. At higher concentrations, PEG decreases sealing of transected axons and disrupts the plasmalemma of intact cells. These PEG-sealing data are consistent with the hypothesis that lower concentrations of PEG directly seal a damaged plasmalemma. We have considered these and other data to devise a protocol using a well-specified series of solutions that vary in tonicity, Ca²⁺, MB, and PEG content. These protocols rapidly and consistently repair (PEG-fuse) rat sciatic axons in completely cut sciatic nerves in vivo rapidly and dramatically to restore long-lasting morphological continuity, action potential conduction, and behavioral functions.
Collapse
Affiliation(s)
- C S Spaeth
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | | | | | | |
Collapse
|
30
|
Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth. BMC Biol 2011; 9:82. [PMID: 22126462 PMCID: PMC3283487 DOI: 10.1186/1741-7007-9-82] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/30/2011] [Indexed: 12/13/2022] Open
Abstract
Background Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG) triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions. Results We report that brain-derived neurotropic factor (BDNF) positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of Xenopus spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF. Conclusions Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block the negative remodeling and growth inhibitory effects of MAG. Such bidirectional remodeling may allow the growth cone to rapidly adjust adhesiveness to the extracellular matrix as a general mechanism for governing axon extension. Techniques for manipulating integrin internalization and activation state may be important for overcoming local inhibitory factors after traumatic injury or neurodegenerative disease to enhance regenerative nerve growth.
Collapse
|
31
|
Abstract
Many biochemical processes in the growth cone finally target its biomechanical properties, such as stiffness and force generation, and thus permit and control growth cone movement. Despite the immense progress in our understanding of biochemical processes regulating neuronal growth, growth cone biomechanics remains poorly understood. Here, we combine different experimental approaches to measure the structural and mechanical properties of a growth cone and to simultaneously determine its actin dynamics and traction force generation. Using fundamental physical relations, we exploited these measurements to determine the internal forces generated by the actin cytoskeleton in the lamellipodium. We found that, at timescales longer than the viscoelastic relaxation time of τ = 8.5 ± 0.5 sec, growth cones show liquid-like characteristics, whereas at shorter time scales they behaved elastically with a surprisingly low elastic modulus of E = 106 ± 21 Pa. Considering the growth cone's mechanical properties and retrograde actin flow, we determined the internal stress to be on the order of 30 pN per μm(2). Traction force measurements confirmed these values. Hence, our results indicate that growth cones are particularly soft and weak structures that may be very sensitive to the mechanical properties of their environment.
Collapse
|
32
|
Hung RJ, Terman JR. Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly. Cytoskeleton (Hoboken) 2011; 68:415-33. [PMID: 21800438 PMCID: PMC3612987 DOI: 10.1002/cm.20527] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023]
Abstract
Multiple extracellular signals have been identified that regulate actin dynamics within motile cells, but how these instructive cues present on the cell surface exert their precise effects on the internal actin cytoskeleton is still poorly understood. One particularly interesting class of these cues is a group of extracellular proteins that negatively alter the movement of cells and their processes. Over the years, these types of events have been described using a variety of terms and herein we provide an overview of inhibitory/repulsive cellular phenomena and highlight the largest known protein family of repulsive extracellular cues, the Semaphorins. Specifically, the Semaphorins (Semas) utilize Plexin cell-surface receptors to dramatically collapse the actin cytoskeleton and we summarize what is known of the direct molecular and biochemical mechanisms of Sema-triggered actin filament (F-actin) disassembly. We also discuss new observations from our lab that reveal that the multidomain oxidoreductase (Redox) enzyme Molecule Interacting with CasL (MICAL), an important mediator of Sema/Plexin repulsion, is a novel F-actin disassembly factor. Our results indicate that MICAL triggers Sema/Plexin-mediated reorganization of the F-actin cytoskeleton and suggest a role for specific Redox signaling events in regulating actin dynamics.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Departments of Neuroscience and Pharmacology, and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Itofusa R, Kamiguchi H. Polarizing membrane dynamics and adhesion for growth cone navigation. Mol Cell Neurosci 2011; 48:332-8. [PMID: 21459144 DOI: 10.1016/j.mcn.2011.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022] Open
Abstract
Neuronal network formation relies on the motile behavior of growth cones at the tip of navigating axons. Accumulating evidence indicates that growth cone motility requires spatially controlled endocytosis and exocytosis that can redistribute bulk membrane and functional cargos such as cell adhesion molecules. For axon elongation, the growth cone recycles cell adhesion molecules from its rear to its leading front through endosomes, thereby polarizing growth cone adhesiveness along the axis of migration direction. In response to extracellular guidance cues, the growth cone turns by retrieving membrane components from the retractive side or by supplying them to the side facing the new direction. We propose that polarized membrane trafficking creates adhesion gradients along and across the front-to-rear axis of growth cones that are essential for axon elongation and turning, respectively. This review will examine how growth cone adhesiveness can be patterned by spatially coordinated endocytosis and exocytosis of cell adhesion molecules. This article is part of a Special Issue entitled 'Neuronal Function'.
Collapse
Affiliation(s)
- Rurika Itofusa
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | |
Collapse
|
34
|
Second messengers and membrane trafficking direct and organize growth cone steering. Nat Rev Neurosci 2011; 12:191-203. [PMID: 21386859 DOI: 10.1038/nrn2996] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graded distributions of extracellular cues guide developing axons toward their targets. A network of second messengers - Ca(2+) and cyclic nucleotides - shapes cue-derived information into either attractive or repulsive signals that steer growth cones bidirectionally. Emerging evidence suggests that such guidance signals create a localized imbalance between exocytosis and endocytosis, which in turn redirects membrane, adhesion and cytoskeletal components asymmetrically across the growth cone to bias the direction of axon extension. These recent advances allow us to propose a unifying model of how the growth cone translates shallow gradients of environmental information into polarized activity of the steering machinery for axon guidance.
Collapse
|
35
|
Demarco RS, Lundquist EA. “RACK”-ing up the effectors. Small GTPases 2011; 2:47-50. [DOI: 10.4161/sgtp.2.1.15062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 11/19/2022] Open
|
36
|
Mosevitsky M, Silicheva I. Subcellular and regional location of "brain" proteins BASP1 and MARCKS in kidney and testis. Acta Histochem 2011; 113:13-8. [PMID: 19683798 DOI: 10.1016/j.acthis.2009.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/12/2009] [Accepted: 07/13/2009] [Indexed: 01/04/2023]
Abstract
Proteins BASP1 and MARCKS are abundant in axonal endings of neurons. Similarly to brain-specific protein GAP-43, BASP1 and MARCKS are reversibly bound to the plasma membrane. These proteins control both actin polymerization and actin cytoskeleton binding to the membrane. Performing these functions, BASP1 and MARCKS take part in growth cone guidance during development and in neurotransmitter secretion in adults. These activities predetermine the pivotal role of BASP1 and MARCKS in learning and memory. BASP1 and MARCKS were also found in non-nerve tissues, in particular, in the kidney and testis. Evidently, the physiological roles of these proteins differ in different tissues. Correspondingly, their intracellular location and activities may not be similar to those in neurons. In this paper, we analyze subcellular fractions (cytoplasm and nuclei) of rat kidney and testis with the purpose of determining the intracellular location of BASP1 and MARCKS. Western blots demonstrated that in these tissues, as in the brain, both proteins are present in the cytoplasm of the cell. According to our immunohistochemical study, BASP1 and MARCKS are specifically distributed in the tissues studied. In kidney, both proteins are present in cells located in glomeruli. In the testicular tubules, BASP1 is mainly expressed at the late stage of spermatogenesis (in spermatids) and is preserved in mature spermatozoa, while MARCKS appears equally during all stages of spermatogenesis. MARCKS is not found in mature spermatozoa. The results indicate that study of functions of BASP1 and MARCKS in the kidney and in the reproduction system holds much promise.
Collapse
Affiliation(s)
- Mark Mosevitsky
- Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, Leningrad District, Russian Federation.
| | | |
Collapse
|
37
|
Abstract
Plasmalemmal repair is necessary for survival of damaged eukaryotic cells. Ca(2+) influx through plasmalemmal disruptions activates calpain, vesicle accumulation at lesion sites, and membrane fusion proteins; Ca(2+) influx also initiates competing apoptotic pathways. Using the formation of a dye barrier (seal) to assess plasmalemmal repair, we now report that B104 hippocampal cells with neurites transected nearer (<50 μm) to the soma seal at a lower frequency and slower rate compared to cells with neurites transected farther (>50 μm) from the soma. Analogs of cAMP, including protein kinase A (PKA)-specific and Epac-specific cAMP, each increase the frequency and rate of sealing and can even initiate sealing in the absence of Ca(2+) influx at both transection distances. Furthermore, Epac activates a cAMP-dependent, PKA-independent, pathway involved in plasmalemmal sealing. The frequency and rate of plasmalemmal sealing are decreased by a small molecule inhibitor of PKA targeted to its catalytic subunit (KT5720), a peptide inhibitor targeted to its regulatory subunits (PKI), an inhibitor of a novel PKC (an nPKCη pseudosubstrate fragment), and an antioxidant (melatonin). Given these and other data, we propose a model for redundant parallel pathways of Ca(2+)-dependent plasmalemmal sealing of injured neurons mediated in part by nPKCs, cytosolic oxidation, and cAMP activation of PKA and Epac. We also propose that the evolutionary origin of these pathways and substances was to repair plasmalemmal damage in eukaryotic cells. Greater understanding of vesicle interactions, proteins, and pathways involved in plasmalemmal sealing should suggest novel neuroprotective treatments for traumatic nerve injuries and neurodegenerative disorders.
Collapse
|
38
|
Asimaki O, Mangoura D. Cannabinoid receptor 1 induces a biphasic ERK activation via multiprotein signaling complex formation of proximal kinases PKCε, Src, and Fyn in primary neurons. Neurochem Int 2010; 58:135-44. [PMID: 21074588 DOI: 10.1016/j.neuint.2010.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 11/17/2022]
Abstract
Cannabinoid receptors 1 (CB1Rs) play important roles in the regulation of dendritic branching, synapse density, and synaptic transmission through multiple G-protein-coupled signaling systems, including the activation of the extracellular signal-regulated kinases ERK1/2. The proximal signaling interactions leading to ERK1/2 activation by CB1R in CNS remain, however, unclear. Here, we present evidence that the CB1R agonist methanandamide induced a biphasic and sustained activation of ERK1/2 in primary neurons derived from E7 telencephalon. We show that E7 neurons natively express high levels of CB1R message and protein, the majority of which associates with PKCɛ at basal conditions. We now demonstrate that the first peak of ERK activation by CB1R was mediated by the sequential activation of G(q), PLC, and PKCɛ, selectively, and that the CB1R-activated PKCɛ acutely formed transient signaling modules containing activated Src and Fyn. A second pool of CB1Rs, coupled to PTX-sensitive activation of G(i/o), utilized as effectors additional Src and Fyn molecules to generate a second, additional wave of ERK activation at 15 min. Concurrently to these intermolecular signaling interactions, cytoskeleton-associated proteins MARCKS and p120catenin were drastically modified by phosphorylation of PKC and Src, respectively. These receptor-proximal signaling events correlated well with induction of neuritic outgrowth in the long term. Our data provide evidence for multiprotein signaling complex formation in the coupling of CB1R to activation of ERK in CNS neurons, and may elucidate several of the less understood acute effects of cannabinoid drugs.
Collapse
Affiliation(s)
- Olga Asimaki
- Developmental Neurobiology and Neurochemistry Group, Basic Neurosciences, Center for Preventive Medicine, Neurosciences and Social Psychiatry, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Street, 11527 Athens, Greece
| | | |
Collapse
|
39
|
Bühligen J, Himmel M, Gebhardt C, Simon JC, Ziegler W, Averbeck M. Lysophosphatidylcholine-mediated functional inactivation of syndecan-4 results in decreased adhesion and motility of dendritic cells. J Cell Physiol 2010; 225:905-14. [PMID: 20607801 DOI: 10.1002/jcp.22301] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Following antigen contact, maturation and migration of DCs into lymphatic tissues are crucial to the developing immune response or maintenance of tolerance. Lysophosphatidylcholine (LysoPC) is generated during apoptosis of cells and acts as a "find-and-eat-me" signal thought to prevent autoimmunity. Moreover, LysoPC can activate PKCδ and initiates a signaling cascade that leads to phosphorylation and inactivation of syndecan-4 (SDC4), a heparansulfate proteoglycan integrin co-receptor. In human monocyte-derived DCs, we recently demonstrated that SDC4 is upregulated during maturation thereby stimulating DC motility. Here, we investigate the effects of LysoPC on DC motility as well as on the involvement of PKCδ phosphorylation-dependent regulation of DC motility by SDC4 and PKCα. Employing a static adhesion assay and videomicroscopy, we show that LysoPC inhibits adhesion of DCs to fibronectin and motility of DCs by decreasing podosome formation. Moreover, DC podosome formation and motility, which both are regulated by SDC4 and subject to control by PKCδ-dependent phosphorylation of SDC4, were inhibited in LysoPC-matured DCs. Thus, these DC are defective in adhesion and migration. Based on our results, we hypothesize that LysoPC released during apoptosis might delay DC migration to lymphoid organs and thus prevent autoimmunity.
Collapse
Affiliation(s)
- Johannes Bühligen
- Department of Dermatology, Venerology and Allergology, Universitätsklinikum Leipzig, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Jang SY, Shin YK, Jung J, Lee SH, Seo SY, Suh DJ, Park HT. Injury-induced CRMP4 expression in adult sensory neurons; a possible target gene for ciliary neurotrophic factor. Neurosci Lett 2010; 485:37-42. [PMID: 20800647 DOI: 10.1016/j.neulet.2010.08.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 08/19/2010] [Indexed: 01/31/2023]
Abstract
Neurotrophic cytokines, such as ciliary neurotrophic factor (CNTF) play an important role in the development and regeneration of the nervous system. In the present study, we screened gene expression induced by CNTF in adult dorsal root ganglion (DRG) neurons using the Illumina microarray. We found that the expression of both short and long forms of collapsin response-mediator protein 4 (CRMP4) was increased in cultured primary sensory neurons by CNTF. In addition, sciatic nerve injury induced the expression of CRMP4 mRNA and protein in DRG neurons. Finally, the increased CRMP4 protein was transported into peripheral axons following nerve injury. These findings indicate that CRMP4 may be a target gene for CNTF in the regenerative axon growth of DRG neurons after injury.
Collapse
Affiliation(s)
- So Young Jang
- Department of Physiology, Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, South Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Eckert RE, Neuder LE, Park J, Adler KB, Jones SL. Myristoylated alanine-rich C-kinase substrate (MARCKS) protein regulation of human neutrophil migration. Am J Respir Cell Mol Biol 2010; 42:586-94. [PMID: 19574534 PMCID: PMC2874444 DOI: 10.1165/rcmb.2008-0394oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 05/29/2009] [Indexed: 01/01/2023] Open
Abstract
Neutrophil migration into infected tissues is essential for host defense, but products of activated neutrophils can be quite damaging to host cells. Neutrophil influx into the lung and airways and resultant inflammation characterizes diseases such as chronic obstructive pulmonary disease, bronchiectasis, and cystic fibrosis. To migrate, neutrophils must reorganize the actin cytoskeleton to establish a leading edge pseudopod and a trailing edge uropod. The actin-binding protein myristoylated alanine-rich C-kinase substrate (MARCKS) has been shown to bind and cross-link actin in a variety of cell types and to co-localize with F-actin in the leading edge lamellipodium of migrating fibroblasts. The hypothesis that MARCKS has a role in the regulation of neutrophil migration was tested using a cell-permeant peptide derived from the MARCKS myristoylated aminoterminus (MANS peptide). Treatment of isolated human neutrophils with MANS significantly inhibited both their migration and beta2 integrin-dependent adhesion in response to N-formyl-methionyl-leucyl-phenylalanine (fMLF), IL-8, or leukotriene (LT)B(4). The IC(50) for fMLF-induced migration and adhesion was 17.1 microM and 12.5 microM, respectively. MANS significantly reduced the F-actin content in neutrophils 30 seconds after fMLF stimulation, although the peptide did not alter the ability of cells to polarize or spread. MANS did not alter fMLF-induced increases in surface beta2 integrin expression. These results suggest that MARCKS, via its myristoylated aminoterminus, is a key regulator of neutrophil migration and adhesion.
Collapse
Affiliation(s)
- Rachael E. Eckert
- Department of Clinical Sciences, Department of Molecular Biomedical Sciences, and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina
| | - Laura E. Neuder
- Department of Clinical Sciences, Department of Molecular Biomedical Sciences, and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina
| | - Joungjoa Park
- Department of Clinical Sciences, Department of Molecular Biomedical Sciences, and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina
| | - Kenneth B. Adler
- Department of Clinical Sciences, Department of Molecular Biomedical Sciences, and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina
| | - Samuel L. Jones
- Department of Clinical Sciences, Department of Molecular Biomedical Sciences, and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina
| |
Collapse
|
42
|
Techasen A, Loilome W, Namwat N, Takahashi E, Sugihara E, Puapairoj A, Miwa M, Saya H, Yongvanit P. Myristoylated alanine-rich C kinase substrate phosphorylation promotes cholangiocarcinoma cell migration and metastasis via the protein kinase C-dependent pathway. Cancer Sci 2010; 101:658-65. [PMID: 20047593 PMCID: PMC11158558 DOI: 10.1111/j.1349-7006.2009.01427.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS), a substrate of protein kinase C (PKC) has been suggested to be implicated in cell adhesion, secretion, and motility through the regulation of the actin cytoskeletal structure. The quantitative real-time-polymerase chain reaction analysis revealed that MARCKS is significantly overexpressed in Opisthorchis viverrini-associated cholangiocarcinoma (CCA) (P = 0.001) in a hamster model, which correlated with the results of mRNA in situ hybridization. An immunohistochemical analysis of 60 CCA patients revealed a significant increase of MARCKS expression. Moreover, the log-rank analysis indicated that CCA patients with a high MARCKS expression have significantly shorter survival times than those with a low MARCKS expression (P = 0.02). This study investigated whether MARCKS overexpression is associated with CCA metastasis. Using a confocal microscopic analysis of CCA cell lines that had been stimulated with the PKC activator, 12-0-tetradecanoyl phorbol-13-acetate (TPA), MARCKS was found to be translocated from the plasma membrane to the perinuclear area. In addition, phosphorylated MARCKS (pMARCKS) became highly concentrated in the perinuclear area. Moreover, an adhesion assay demonstrated that the exogenous overexpression of MARCKS remarkably promoted cell attachment. Interestingly, after TPA stimulation, the CCA cell line-depleted MARCKS showed a decrease in migration and invasion activity. It can be concluded that in non-stimulation, MARCKS promotes cell attachment to the extracellular matrix. After TPA stimulation, PKC phosphorylates MARCKS leading to cell migration or invasion. Taken together, the results of this study reveal a prominent role for MARCKS as one of the key players in the migration of CCA cells and suggest that cycling between MARCKS and pMARCKS can regulate the metastasis of biliary cancer cells.
Collapse
Affiliation(s)
- Anchalee Techasen
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yamaguchi H, Shiraishi M, Fukami K, Tanabe A, Ikeda-Matsuo Y, Naito Y, Sasaki Y. MARCKS regulates lamellipodia formation induced by IGF-I via association with PIP2 and beta-actin at membrane microdomains. J Cell Physiol 2009; 220:748-55. [PMID: 19475567 DOI: 10.1002/jcp.21822] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS) is considered to participate in formation of F-actin-based lamellipodia, which represents the first stage of neurite formation. However, the mechanism of how MARCKS is involved in lamellipodia formation is not precisely unknown. Using SH-SY5Y cells, we demonstrated here that MARCKS was translocated from cytosol to detergent-resistant membrane microdomains, known as lipid rafts, within 30 min after insulin-like growth factor-I (IGF-I) stimulation, which was accompanied by MARCKS dephosphorylation, beta-actin accumulation in lipid rafts, and lamellipodia formation. The protein kinase C inhibitor, Ro-31-8220, and Rho-kinase inhibitors, HA1077 and Y27632, themselves decreased basal phosphorylation levels of MARCKS and coincidently elicited translocation of MARCKS to lipid rafts. On the other hand, the phosphoinositide 3-kinase inhibitor, LY294002, abolished IGF-I-induced dephosphorylation, translocation of MARCKS to lipid rafts, and lamellipodia formation. Treatment of cells with neomycin, a PIP2-masking reagent, attenuated the translocation of MARCKS to lipid rafts and the lamellipodia formation induced by IGF-I, although dephosphorylation of MARCKS was not affected. Immunocytochemical and immunoprecipitation analysis indicated that IGF-I stimulation induced the translocation of MARCKS to lipid rafts in the edge of lamellipodia and formation of the complex with PIP2. Moreover, we demonstrated that knockdown of endogenous MARCKS resulted in significant attenuation of IGF-I-induced beta-actin accumulation in the lipid rafts and lamellipodia formation. These results suggest a novel role for MARCKS in lamellipodia formation induced by IGF-I via the translocation of MARCKS, association with PIP2, and accumulation of beta-actin in the membrane microdomains.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Laboratory of Pharmacology, School of Pharmaceutical Science, Kitasato University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Estrada-Bernal A, Gatlin JC, Sunpaweravong S, Pfenninger KH. Dynamic adhesions and MARCKS in melanoma cells. J Cell Sci 2009; 122:2300-10. [PMID: 19509053 DOI: 10.1242/jcs.047860] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell motility necessitates the rapid formation and disassembly of cell adhesions. We have studied adhesions in a highly motile melanoma cell line using various biochemical approaches and microscopic techniques to image close adhesions. We report that WM-1617 melanoma cells contain at least two types of close adhesion: classic focal adhesions and more extensive, irregularly shaped adhesions that tend to occur along lamellipodial edges. In contrast to focal adhesions, these latter adhesions are highly dynamic and can be disassembled rapidly via protein kinase C (PKC) activation (e.g. by eicosanoid) and MARCKS phosphorylation. MARCKS overexpression, however, greatly increases the area of close adhesions and renders them largely refractory to PKC stimulation. This indicates that nonphosphorylated MARCKS is an adhesion stabilizer. Unlike focal adhesions, the dynamic adhesions contain alpha3 integrin and MARCKS, but they do not contain the focal adhesion marker vinculin. Overall, these results begin to define the molecular and functional properties of dynamic close adhesions involved in cell motility.
Collapse
Affiliation(s)
- Adriana Estrada-Bernal
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Cancer Center, and Colorado Intellectual and Developmental Disabilities Research Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
45
|
Xu X, Harder J, Flynn DC, Lanier LM. AFAP120 regulates actin organization during neuronal differentiation. Differentiation 2009; 77:38-47. [PMID: 19281763 PMCID: PMC2664250 DOI: 10.1016/j.diff.2008.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 01/10/2023]
Abstract
During development, dynamic changes in the actin cytoskeleton determine both cell motility and morphological differentiation. In most mature tissues, cells are generally minimally motile and have morphologies specialized to their functions. In metastatic cancer, cells generally lose their specialized morphology and become motile. Therefore, proteins that regulate the transition between the motile and morphologically differentiated states can play important roles in determining cancer outcomes. AFAP120 is a neuronal-specific protein that binds Src kinase and protein kinase C (PKC) and cross-links actin filaments. Here we report that expression and tyrosine phosphorylation of AFAP120 are developmentally regulated in the cerebellum. In cerebellar cultures, PKC activation induces Src kinase-dependent phosphorylation of AFAP120, indicating that AFAP120 may be a downstream effector of Src. In neuroblastoma cells induced to differentiate by treatment with a PKC activator, tyrosine phosphorylation of AFAP120 appears to regulate the formation of the lamellar actin structures and subsequent neurite initiation. Together, these results indicate that AFAP120 plays a role in organizing dynamic actin structures during neuronal differentiation and suggest that AFAP120 may help regulate the transition from motile precursor to morphologically differentiated neurons.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Jennifer Harder
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Daniel C. Flynn
- Department of Microbiology & Immunology, West Virginia University, Morgantown, WV 26506
| | - Lorene M. Lanier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
46
|
Sanford SD, Gatlin JC, Hkfelt T, Pfenninger KH. Growth cone responses to growth and chemotropic factors. Eur J Neurosci 2008; 28:268-78. [DOI: 10.1111/j.1460-9568.2008.06327.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Verbeek DS, Goedhart J, Bruinsma L, Sinke RJ, Reits EA. PKC gamma mutations in spinocerebellar ataxia type 14 affect C1 domain accessibility and kinase activity leading to aberrant MAPK signaling. J Cell Sci 2008; 121:2339-49. [PMID: 18577575 DOI: 10.1242/jcs.027698] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinocerebellar ataxia type 14 (SCA14) is a neurodegenerative disorder caused by mutations in the neuronal-specific protein kinase C gamma (PKCgamma) gene. Since most mutations causing SCA14 are located in the PKCgamma C1B regulatory subdomain, we investigated the impact of three C1B mutations on the intracellular kinetics, protein conformation and kinase activity of PKCgamma in living cells. SCA14 mutant PKCgamma proteins showed enhanced phorbol-ester-induced kinetics when compared with wild-type PKCgamma. The mutations led to a decrease in intramolecular FRET of PKCgamma, suggesting that they ;open' PKCgamma protein conformation leading to unmasking of the phorbol ester binding site in the C1 domain. Surprisingly, SCA14 mutant PKCgamma showed reduced kinase activity as measured by phosphorylation of PKC reporter MyrPalm-CKAR, as well as downstream components of the MAPK signaling pathway. Together, these results show that SCA14 mutations located in the C1B subdomain ;open' PKCgamma protein conformation leading to increased C1 domain accessibility, but inefficient activation of downstream signaling pathways.
Collapse
Affiliation(s)
- Dineke S Verbeek
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Marín-Vicente C, Nicolás FE, Gómez-Fernández JC, Corbalán-García S. The PtdIns(4,5)P2 ligand itself influences the localization of PKCalpha in the plasma membrane of intact living cells. J Mol Biol 2007; 377:1038-52. [PMID: 18304574 DOI: 10.1016/j.jmb.2007.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 11/28/2022]
Abstract
Rapamycin-triggered heterodimerization strategy is becoming an excellent tool for rapidly modifying phosphatidylinositol(4,5)-bisphosphate [PtdIns(4,5)P2] levels at the plasma membrane and for studying their influence in different processes. In this work, we studied the effect of modulation of the PtdIns(4,5)P2 concentration on protein kinase C (PKC) alpha membrane localization in intact living cells. We showed that an increase in the PtdIns(4,5)P2 concentration enlarges the permanence of PKCalpha in the plasma membrane when PC12 cells are stimulated with ATP, independently of the diacylglycerol generated. The depletion of this phosphoinositide decreases both the percentage of protein able to translocate to the plasma membrane and its permanence there. Our results demonstrate that the polybasic cluster located in the C2 domain of PKCalpha is responsible for this phosphoinositide-protein interaction. Furthermore, the C2 domain acts as a dominant interfering module in the neural differentiation process of PC12 cells, a fact that was also supported by the inhibitory effect obtained by knocking down PKCalpha with small interfering RNA duplexes. Taken together, these data demonstrate that PtdIns(4,5)P2 itself targets PKCalpha to the plasma membrane through the polybasic cluster located in the C2 domain, with this interaction being critical in the signaling network involved in neural differentiation.
Collapse
Affiliation(s)
- Consuelo Marín-Vicente
- Dpto. de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30100 Murcia, Spain
| | | | | | | |
Collapse
|
49
|
Maggio B, Borioli GA, Del Boca M, De Tullio L, Fanani ML, Oliveira RG, Rosetti CM, Wilke N. Composition-driven surface domain structuring mediated by sphingolipids and membrane-active proteins. Above the nano- but under the micro-scale: mesoscopic biochemical/structural cross-talk in biomembranes. Cell Biochem Biophys 2007; 50:79-109. [PMID: 17968678 DOI: 10.1007/s12013-007-9004-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
Biomembranes contain a wide variety of lipids and proteins within an essentially two-dimensional structure. The coexistence of such a large number of molecular species causes local tensions that frequently relax into a phase or compositional immiscibility along the lateral and transverse planes of the interface. As a consequence, a substantial microheterogeneity of the surface topography develops and that depends not only on the lipid-protein composition, but also on the lateral and transverse tensions generated as a consequence of molecular interactions. The presence of proteins, and immiscibility among lipids, constitute major perturbing factors for the membrane sculpturing both in terms of its surface topography and dynamics. In this work, we will summarize some recent evidences for the involvement of membrane-associated, both extrinsic and amphitropic, proteins as well as membrane-active phosphohydrolytic enzymes and sphingolipids in driving lateral segregation of phase domains thus determining long-range surface topography.
Collapse
Affiliation(s)
- Bruno Maggio
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, Universidad Nacional de Córdoba - CONICET, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Neural recognition molecules were discovered and characterized initially for their functional roles in cell adhesion as regulators of affinity between cells and the extracellular matrix in vitro. They were then recognized as mediators or co-receptors which trigger signal transduction mechanisms affecting cell adhesion and de-adhesion. Their involvement in contact attraction and repulsion relies on cell-intrinsic properties that are modulated by the spatial contexts of their expression at particular stages of ontogenetic development, in synaptic plasticity and during regeneration after injury. The functional roles of recognition molecules in cell proliferation and migration, determination of developmental fate, growth cone guidance, and synapse formation, stabilization and modulation have been well documented not only by in vitro, but also by in vivo studies that have been greatly aided by generation of genetically altered mice. More recently, the functions of recognition molecules have been investigated under conditions of neural repair and manipulated using a broad range of genetic and pharmacological approaches to achieve a beneficial outcome. The principal aim of most therapeutically oriented approaches has been to neutralize inhibitory factors. However, less attention has been paid to enhancing repair by stimulating the stimulatory factors. When considering potential therapeutic strategies, it is worth considering that a single recognition molecule can possess domains that are conducive or repellent and that the spatial distribution of recognition molecules can determine the overall function: Recognition molecules may be repellent for neurite outgrowth when presented as barriers or steep-concentration gradients and conducive when presented as uniform substrates. The focus of this review will be on the more recent attempts to study the conducive mechanisms with the expectation that they may be able to tip the balance from a regeneration inhospitable to a hospitable environment. It is likely that a combination of the two principles, as multifactorial as each principle may be in itself, will be of therapeutic value in humans.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | | |
Collapse
|