1
|
Dong L, Ji Z, Sun J, Hu J, Jiang Q, Wei W. Multi-omics investigation of Porphyromonas gingivalis exacerbating acute kidney injury through the gut-kidney axis. mSystems 2025:e0113624. [PMID: 39807890 DOI: 10.1128/msystems.01136-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Periodontitis is closely related to renal health, but the specific influence of Porphyromonas gingivalis (P. gingivalis), a key pathogen in periodontitis, on the development of acute kidney injury (AKI) in mice has not been fully elucidated. In our study, AKI was induced in mice through ischemia-reperfusion injury while administering oral infection with P. gingivalis. Comprehensive analyses were conducted, including 16S rRNA sequencing, liquid chromatography-mass spectrometry (LC-MS) metabolomics, and transcriptome sequencing. In vitro, the identified metabolite was used to stimulate mouse neutrophils. Subsequently, these modified neutrophils were co-cultured with mouse renal tubular epithelial cells. The results showed that oral infection with P. gingivalis significantly exacerbated AKI in mice. 16S rRNA sequencing revealed notable shifts in gut microbiota composition. LC-MS metabolomics analysis identified significant metabolic alterations, particularly the upregulation of 3-indoleacrylic acid in the serum. Transcriptome sequencing showed an increased expression of neutrophilic granule protein (Ngp), which was closely associated with 3-indoleacrylic acid, and the presence of Porphyromonas. Cellular experiments demonstrated that 3-indoleacrylic acid could activate neutrophils, leading to an elevation in NGP protein levels, a response that was associated with renal epithelial cell injury. Oral infection with P. gingivalis exacerbated AKI through the gut-kidney axis, involving gut microbiota dysbiosis, metabolic disturbances, and increased renal expression of Ngp. IMPORTANCE This study provides novel insights into the relationship between periodontal health and renal function. Porphyromonas gingivalis oral infection disrupted the balance of gut microbiota and was an important modifier determining the severity of acute kidney injury. Under the "gut-kidney axis," P. gingivalis might cause an increase in the level of the gut microbial metabolite 3-indoleacrylic acid, interfering with kidney immunity and disrupting the maintenance of kidney epithelium.
Collapse
Affiliation(s)
- Ling Dong
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhaoxin Ji
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jing Sun
- Department of Periodontology, Jinan Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Shandong Provincial Key Medical and Health Discipline of Oral Medicine, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Jiangqi Hu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qingsong Jiang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wei Wei
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Obolo Nwaga I, Nzana VB, Bughe RN, Dah I, Cho-Fon C, Mahamat M, Ndjong E, Nono A, Mballa JC, Acho FA, Moor VA, Mbacham WF, Kaze FF. Gut microbiota and kidney function in autosomal dominant polycystic kidney disease participants in Cameroon: a cross-sectional study. BMC Nephrol 2025; 26:20. [PMID: 39806306 PMCID: PMC11727510 DOI: 10.1186/s12882-025-03942-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND AND HYPOTHESIS Gut dysbiosis characterized by an imbalance in pathobionts (Enterobacter, Escherichia and Salmonella) and symbionts (Bifidobacterium, Lactobacillus and Prevotella) can occur during chronic kidney disease (CKD) progression. We evaluated the associations between representative symbionts (Bifidobacterium and Lactobacillus) and pathobionts (Enterobacteriaceae) with kidney function in persons with autosomal dominant polycystic kidney disease (ADPKD). METHODS In this cross-sectional study, 29 ADPKD patients were matched to 15 controls at a 2:1 ratio. Clinical data and biological samples were collected. The estimated glomerular filtration rate (eGFR) was calculated from the serum creatinine concentration using the 2009 Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Microbial DNA extracted from stool specimens and amplified by qPCR was used to quantify Enterobacteriaceae, Bifidobacterium and Lactobacillus abundance. Differences between ADPKD subgroups and controls were assessed using nonparametric tests. RESULTS The mean age (SD) of the 44 participants was 40.65 (± 11.9) years. Among the participants with ADPKD, 62.1% experienced flank pain, and 48.3% had hypertension. Their median eGFR [IQR] was 74.4 [51.2-94.6] ml/min/1.73m2. All stool samples had Enterobacteriaceae. Lactobacillus abundance was lower in ADPKD participants with more pronounced kidney function decline (CKD G3-5: 0.58 ng/μL) than in those with milder damage and controls (G1-2: 0.64 ng/μL, p = 0.047; controls: 0.71 ng/μL, p = 0.043), while Enterobacteriaceae abundance was greater in ADPKD patients with lower kidney function (CKD G3-5: 78.6 ng/μL) than in those in the other two groups (G1-2: 71.6 ng/μL, p = 0.048; controls: 70.5 ng/μL, p = 0.045). CONCLUSION Decreased kidney function was associated with decreased symbiont and increased pathobiont abundance in ADPKD patients, suggesting a potential role for the microbiota in disease progression and possible targets for further research.
Collapse
Affiliation(s)
- Inès Obolo Nwaga
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Victorine Bandolo Nzana
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Rhoda Nsen Bughe
- Laboratory for Public Health Research Biotechnology, University of Yaoundé 1, Yaoundé, Cameroon
- Higher Teacher Training College, University of Yaoundé 1, Yaoundé, Cameroon
| | - Isaac Dah
- National Veterinary Laboratory, Yaoundé, Cameroon
| | - Cheboh Cho-Fon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Maimouna Mahamat
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Yaoundé General Hospital, Yaoundé, Cameroon
| | - Emmanuelle Ndjong
- Dialysis Unit, Yaoundé University Teaching Hospital, Yaoundé, Cameroon
| | | | | | - Fon Abongwa Acho
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Vicky Ama Moor
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Biochemistry Laboratory, Yaoundé University Teaching Hospital, Yaoundé, Cameroon
| | - Wilfred Fon Mbacham
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- National Veterinary Laboratory, Yaoundé, Cameroon
| | - François Folefack Kaze
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Dialysis Unit, Yaoundé University Teaching Hospital, Yaoundé, Cameroon
| |
Collapse
|
3
|
Fu Q, Yang Y, Tian Q, Zhu Y, Xu H, Wang J, Huang Q. Exploring the mechanism of Paotianxiong polysaccharide in the treatment of chronic kidney disease combining metabolomics and microbiomics technologies. Int J Biol Macromol 2024; 289:138629. [PMID: 39667450 DOI: 10.1016/j.ijbiomac.2024.138629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
A close relationship between the pathogenesis of chronic kidney disease (CKD) and abnormalities in the gut-kidney axis. Paotianxiong polysaccharides (PTXP) that have demonstrated therapeutic effects on CKD. However, the specific mechanism by which PTXP ameliorates CKD through the gut-kidney axis remains to be explored. In this study, the microbiomes and metabolomics were combined to investigate the impact of PTXP on intestinal flora structure and metabolism, further unveiling the relationship through correlation analysis. The results showed that PTXP intervention significantly modulated renal function abnormalities in CKD rats and significantly modulates gut microbial disorders, evidenced by an increased abundance of Lactobacillus murinus, Bacteroides fragilis, and a decreased abundance of Bifidobacterium pseudolongum. Furthermore, PTXP reversed the changes in intestinal metabolites, such as linoleic acid and docosahexaenoic acid, induced by CKD and identified unsaturated fatty acid metabolism as a key metabolic pathway. Correlation analyses also revealed associations among gut microorganisms, metabolites, and renal function indexes, confirming that PTXP alleviated CKD through the gut-kidney axis. Moreover, the above conclusions were verified by fecal bacteria transplantation experiments. These findings provide insights into the mechanism of PTXP for the treatment of CKD and provide new targets for the treatment of CKD.
Collapse
Affiliation(s)
- Qinwen Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Yu Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Qingqing Tian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Ying Zhu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Huiyuan Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Jin Wang
- College of Ethnic Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Chen WJ, Chen YT, Ko JL, Chen JY, Zheng JY, Liao JW, Ou CC. Butyrate modulates gut microbiota and anti-inflammatory response in attenuating cisplatin-induced kidney injury. Biomed Pharmacother 2024; 181:117689. [PMID: 39581143 DOI: 10.1016/j.biopha.2024.117689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
In our previous research, we reported that administering probiotics Lactobacillus reuteri and Clostridium butyricum (LCs) before cisplatin treatment effectively modifies structures of the gut microbiota and restore ecological balance and significantly increases butyrate levels, a process closely associated with reducing cisplatin-induced nephrotoxicity. This study aims to investigate further whether the elevation of metabolite butyrate in the gut, promoted by probiotics LCs, can effectively mitigate the nephrotoxic effects of cisplatin and the progression of renal senescence in rats. Results show that butyrate administration significantly improved kidney function and decreased renal fibrosis in a dose-dependent manner compared to the cisplatin group. Its effects were associated with reductions in inflammatory responses, evidenced by decreased levels of key inflammatory markers, including KIM-1, MPO, NOX2, F4/80, and TGF-β1, alongside increased production of the anti-inflammatory cytokine IL-10. Furthermore, the butyrate intervention ameliorated cisplatin-induced gut microbiota dysbiosis, preserving the structure and diversity of healthy microbial communities. Specifically, we observed a decrease in the abundance of Escherichia_Shigella and Blautia, alongside an increase in the abundance of the butyrate-producing genus Roseburia. Notably, Escherichia_Shigella exhibited a positive correlation with the pro-inflammatory factor MPO, while displaying a negative correlation with the anti-inflammatory cytokine IL-10. Butyrate also attenuated the cisplatin-induced expression of senescence markers p21 and p16 in kidney tissue. It alleviated the cisplatin-increased senescence-associated beta-galactosidase activity and reactive oxygen species production in SV40 MES-13 cells. These results indicate that butyrate, derived from the gut microbiota, may exert a protective effect against cisplatin-induced kidney damage by regulating microbiota balance and anti-inflammatory effects.
Collapse
Affiliation(s)
- Wen-Jung Chen
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yng-Tay Chen
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan; Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jian-Yuan Chen
- Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Jun-Yao Zheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan.
| | - Chu-Chyn Ou
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Zheng G, Cao J, Wang XH, He W, Wang B. The gut microbiome, chronic kidney disease, and sarcopenia. Cell Commun Signal 2024; 22:558. [PMID: 39574190 PMCID: PMC11580515 DOI: 10.1186/s12964-024-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/01/2024] [Indexed: 11/25/2024] Open
Abstract
Sarcopenia is a prevalent condition in patients with chronic kidney disease (CKD), intricately linked to adverse prognoses, heightened cardiovascular risks, and increased mortality rates. Extensive studies have found a close and complex association between gut microbiota, kidney and muscle. On one front, patients with CKD manifest disturbances in gut microbiota and alterations in serum metabolites. These abnormal microbiota composition and metabolites in turn participate in the development of CKD. On another front, altered gut microbiota and its metabolites may lead to significant changes in metabolic homeostasis and inflammation, ultimately contributing to the onset of sarcopenia. The disturbance of gut microbial homeostasis, coupled with the accumulation of toxic metabolites, exerts deleterious effects on skeletal muscles in CKD patients with sarcopenia. This review meticulously describes the alterations observed in gut microbiota and its serum metabolites in CKD and sarcopenia patients, providing a comprehensive overview of pertinent studies. By delving into the intricate interplay of gut microbiota and serum metabolites in CKD-associated sarcopenia, we aim to unveil novel treatment strategies for ameliorating their symptoms and prognosis.
Collapse
Affiliation(s)
- Guohao Zheng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Jingyuan Cao
- Institute of Nephrology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Xiaonan H Wang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
| | - Wei He
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Li J, Shen Y, Yan K, Wang S, Jiao J, Chi H, Zhong JC, Dong Y, Wang P. The compositional and functional imbalance of the gut microbiota in CKD linked to disease patterns. J Transl Med 2024; 22:773. [PMID: 39152439 PMCID: PMC11328458 DOI: 10.1186/s12967-024-05578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND The prevalence of chronic kidney disease (CKD) is on the rise, posing a significant public health challenge. Although gut microbiome dysbiosis has been implicated in the impairment of kidney functions, the existence of pathological subtypes-linked differences remains largely unknown. We aimed to characterize the intestinal microbiota in patients with membranous nephropathy (MN), IgA nephropathy (IgAN), minimal change disease (MCD), and ischemic renal injury (IRI) in order to investigate the intricate relationship between intestinal microbiota and CKD across different subtypes. METHODS We conducted a cross-sectional study involving 94 patients with various pathological patterns of CKD and 54 healthy controls (HCs). The clinical parameters were collected, and stool samples were obtained from each participant. Gut microbial features were analyzed using 16S rRNA sequencing and taxon annotation to compare the HC, CKD, MN, IgAN, MCD, and IRI groups. RESULTS The CKD subjects exhibited significantly reduced alpha diversity, modified community structures, and disrupted microbial composition and potential functions compared to the control group. The opportunistic pathogen Klebsiella exhibited a significant enrichment in patients with CKD, whereas Akkermansia showed higher abundance in HCs. The study further revealed the presence of heterogeneity in intestinal microbial signatures across diverse CKD pathological types, including MN, IgAN, MCD, and IRI. The depression of the family Lachnospiraceae and the genus Bilophila was prominently observed exclusively in patients with MN, while suppressed Streptococcus was detected only in individuals with MCD, and a remarkable expansion of the genus Escherichia was uniquely found in cases of IRI. The study also encompassed the development of classifiers employing gut microbial diagnostic markers to accurately discriminate between distinct subtypes of CKD. CONCLUSIONS The dysregulation of gut microbiome was strongly correlated with CKD, exhibiting further specificity towards distinct pathological patterns. Our study emphasizes the significance of considering disease subtypes when assessing the impact of intestinal microbiota on the development, diagnosis, and treatment of CKD.
Collapse
Affiliation(s)
- Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yang Shen
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaixin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Siyuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongjie Chi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Pourafshar S, Sharma B, Allen J, Hoang M, Lee H, Dressman H, Tyson CC, Mallawaarachchi I, Kumar P, Ma JZ, Lin PH, Scialla JJ. Longitudinal Pilot Evaluation of the Gut Microbiota Comparing Patients With and Without Chronic Kidney Disease. J Ren Nutr 2024; 34:302-312. [PMID: 38286361 DOI: 10.1053/j.jrn.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVE The gut microbiota contributes to metabolic diseases, such as diabetes and hypertension, but is poorly characterized in chronic kidney disease (CKD). DESIGN AND METHODS We enrolled 24 adults within household pairs, in which at least one member had self-reported kidney disease, diabetes, or hypertension. CKD was classified based on estimated glomerular filtration rate < 60 mL/min/1.73 m2 or urine-albumin-to-creatinine ratio of ≥ 30 mg/g. Participants collected stool and dietary recalls seasonally over a year. Gut microbiota was characterized using 16s rRNA and metagenomic sequencing. RESULTS Ten participants had CKD (42%) with a median (interquartile range) estimated glomerular filtration rate of 49 (44, 54) mL/min/1.73 m2. By 16s rRNA sequencing, there was moderate to high intraclass correlation (ICC = 0.63) for seasonal alpha diversity (Shannon index) within individuals and modest differences by season (P < .01). ICC was lower with metagenomics, which has resolution at the species level (ICC = 0.26). There were no differences in alpha or beta diversity by CKD with either method. Among 79 genera, Frisingicoccus, Tuzzerella, Faecalitalea, and Lachnoclostridium had lower abundance in CKD, while Collinsella, Lachnospiraceae_ND3007, Veillonella, and Erysipelotrichaceae_UCG_003 were more abundant in CKD (each nominal P < .05) using 16s rRNA sequencing. Higher Collinsella and Veillonella and lower Lachnoclostridium in CKD were also identified by metagenomics. By metagenomics, Coprococcus catus and Bacteroides stercoris were more and less abundant in CKD, respectively, at false discovery rate corrected P = .02. CONCLUSIONS We identified candidate taxa in the gut microbiota associated with CKD. High ICC in individuals with modest seasonal impacts implies that follow-up studies may use less frequent sampling.
Collapse
Affiliation(s)
- Shirin Pourafshar
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Binu Sharma
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jenifer Allen
- Duke Clinical & Translational Science Institute, TransPop Group, Kannapolis, North Carolina
| | - Madeleine Hoang
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, Virginia
| | - Hannah Lee
- College of Arts and Sciences, University of Virginia, Charlottesville, Virginia
| | - Holly Dressman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Crystal C Tyson
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Indika Mallawaarachchi
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pankaj Kumar
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pao-Hwa Lin
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Julia J Scialla
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
8
|
Lazarevic V, Teta D, Pruijm M, Stoermann C, Marangon N, Mareschal J, Solano R, Wurzner-Ghajarzadeh A, Gaïa N, Cani PD, Dizdar OS, Herrmann FR, Schrenzel J, Genton L. Gut microbiota associations with chronic kidney disease: insights into nutritional and inflammatory parameters. Front Microbiol 2024; 15:1298432. [PMID: 38835485 PMCID: PMC11148242 DOI: 10.3389/fmicb.2024.1298432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction The gut barrier, comprising gut microbiota, plays a pivotal role in chronic kidney disease (CKD) progression and nutritional status. This study aimed to explore gut barrier alterations in hemodialyzed (HD) patients, non-HD (NHD) CKD patients, and healthy volunteers. Methods Our cross-sectional study enrolled 22 HD patients, 11 NHD patients, and 11 healthy volunteers. We evaluated fecal microbiota composition (assessed via bacterial 16S rRNA gene sequencing), fecal IgA levels, surrogate markers of gut permeability, serum cytokines, appetite mediators, nutritional status, physical activity, and quality of life. Results HD patients exhibited significant alterations in fecal microbiota composition compared to healthy volunteers, with observed shifts in taxa known to be associated with dietary patterns or producing metabolites acting on human host. In comparison to healthy volunteers, individuals with HD patients exhibited elevated levels of inflammatory markers (CRP, IL-6 and TNF-α), glucagon-like peptide-2, and potential anorexigenic markers (including leptin and peptide YY). NHD patients had increased levels of CRP and peptide YY. Overall fecal microbiota composition was associated with height, soft lean mass, resting energy expenditure, handgrip strength, bone mineral content and plasma albumin and TNF-α. Discussion Compared to healthy volunteers, HD patients have an altered fecal microbiota composition, a higher systemic inflammation, and a modification in plasma levels of appetite mediators. While some differences align with previous findings, heterogeneity exists likely due to various factors including lifestyle and comorbidities. Despite limitations such as sample size, our study underscores the multifaceted interplay between gut microbiota, physiological markers, and kidney function, warranting further investigation in larger cohorts.
Collapse
Affiliation(s)
- Vladimir Lazarevic
- Genomic Research Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniel Teta
- Nephrology, Hospital of Sion, Sion, Switzerland
| | - Menno Pruijm
- Nephrology, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Catherine Stoermann
- Nephrology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Nicola Marangon
- Department of Nephrology, Geneva University Hospitals and Clinique of Champel, Geneva, Switzerland
| | - Julie Mareschal
- Clinical Nutrition, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Nadia Gaïa
- Genomic Research Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Oğuzhan S Dizdar
- Clinical Nutrition, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Department of Internal Medicine and Clinical Nutrition Unit, Kayseri City Training and Research Hospital, University of Health Sciences, Kayseri, Türkiye
| | - François R Herrmann
- Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Infectious Diseases, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Laurence Genton
- Clinical Nutrition, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Cao Y, Deng F. Positive pathogens in stool could predict the clinical outcomes of sepsis-associated acute kidney injury in critical ill patient. Sci Rep 2024; 14:11227. [PMID: 38755214 PMCID: PMC11099037 DOI: 10.1038/s41598-024-62136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024] Open
Abstract
In this study, we sought to evaluate the influence of positive pathogens in stool (PPS) on clinical outcomes in critical ill patients with Sepsis-associated acute kidney injury (S-AKI) from intensive care unit. Our sample consisted of 7338 patients, of whom 752 (10.25%) had PPS. We found that the presence of Clostridium difficile (C. difficile) and protists in stool samples was correlated with survival during hospitalization, as well as 30-day and 90-day survival. Interestingly, there was no significant difference in overall survival and 30-day in-hospital survival between the PPS group and the negative pathogens in stool (NPS) control group. However, the cumulative incidence of 90-day infection-related mortality was significantly higher in the PPS group (53 vs. 48%, P = 0.022), particularly in patients with C. difficile in their stool specimens. After adjusting for propensity scores, the results also have statistical significance. These findings suggest that PPS may affect the 90-days survival outcomes of S-AKI, particularly in patients with C. difficile and protists in their stool samples. Further research is warranted to further explore these associations.
Collapse
Affiliation(s)
- Yaoyuan Cao
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No 172. Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Fuxing Deng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
10
|
Chen HZ, Zeng YY, Cai GX, Gu WD, Yang Y. Differential analysis of serum immunology and gut microbiota in patients with gastrointestinal diseases. Front Microbiol 2024; 15:1323842. [PMID: 38751718 PMCID: PMC11094713 DOI: 10.3389/fmicb.2024.1323842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Objective Gastric and intestinal diseases possess distinct characteristics although they are interconnected. The primary objective of this study was to investigate the pathogenesis of gastrointestinal diseases through different analyses of clinical characteristics, serum immunology, and gut microbiota in patients with gastrointestinal diseases. Methods We collected serum samples from 89 patients with gastrointestinal diseases and 9 healthy controls for immunological assessment, stool samples for DNA extraction, library construction, sequencing, as well as clinical data for subsequent analysis. Results Regarding clinical characteristics, there were significant differences between the disease group and the healthy control (HC) group, particularly in terms of age, cancer antigen 125 (CA125), cancer antigen 199 (CA199), alpha-fetoprotein (AFP), total bilirubin (TBIL) and indirect bilirubin (IBIL). The intestinal disease (ID) group exhibited the highest IL-6 level, which significantly differed from the stomach disease (SD) group (p < 0.05). In comparing the HC with the ID groups, significant differences in abundance were detected across 46 species. The HC group displayed a greater abundance of Clostridiales, Clostridia, Firmicutes, Bifidobacterium, Bifidobacteriaceae, Bifidobacteriales, Actinobacteria, Veillonellaceae, Longum, Copri, Megamonas and Callidus than other species. Similarly, when comparing the HC with the SD groups, significant differences in abundance were identified among 49 species, with only one species that the Lachnospiraceae in the HC group exhibited a higher abundance than others. Furthermore, certain clinical characteristics, such as CA125, CA199, glucose (Glu), creatine kinase-MB (CKMB) and interleukin-22 (IL-22), displayed positive correlations with enriched gut species in the ID and SD groups, while exhibiting a negative correlation with the HC group. Conclusion The disturbance in human gut microbiota is intimately associated with the development and progression of gastrointestinal diseases. Moreover, the gut microbiota in the HC group was found more diverse than that in the ID and SD groups, and there were significant differences in microbial species among the three groups at different classification levels. Notably, a correlation was identified between specific clinical characteristics (e.g., CA125, CA199, Glu, CKMB and IL-22) and gut microbiota among patients with gastrointestinal diseases.
Collapse
Affiliation(s)
- Huan Zhu Chen
- Biochemistry Teaching and Research Office of the Basic Department of the Medical College of Jiaying University, Meizhou, China
| | - Yu Yang Zeng
- Biochemistry Teaching and Research Office of the Basic Department of the Medical College of Jiaying University, Meizhou, China
| | - Guo Xiong Cai
- Laboratory Department of the Affiliated Hospital of the Medical College of Jiaying University, Meizhou, China
| | - Wei Dan Gu
- Laboratory Department of the Affiliated Hospital of the Medical College of Jiaying University, Meizhou, China
| | - YaLi Yang
- Biochemistry Teaching and Research Office of the Basic Department of the Medical College of Jiaying University, Meizhou, China
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou, China
| |
Collapse
|
11
|
Samaey A, Vázquez-Castellanos JF, Caenepeel C, Evenepoel P, Vermeire S, Raes J, Knops N. Effects of fecal microbiota transplantation for recurrent Clostridium difficile infection in children on kidney replacement therapy: a pilot study. Pediatr Nephrol 2024; 39:1201-1212. [PMID: 37775582 DOI: 10.1007/s00467-023-06168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Recurrent Clostridium difficile infection (rCDI) is a rising problem in children with chronic diseases. Fecal microbiota transplantation (FMT) is a recent alternative for rCDI patients who do not respond to conventional treatment. FMT could have an additional positive effect on the intestinal dysbiosis and accumulation of uremic retention molecules (URM) associated with chronic kidney disease (CKD). Our aim was to investigate the clinical efficacy of FMT for rCDI in children with CKD together with the effect on dysbiosis and URM levels. METHODS We analyzed stool and blood samples before and until 3 months after FMT in 3 children between 4 and 8 years old with CKD and rCDI. The microbiome was analyzed by 16 s rRNA sequencing. URM were analyzed with ultra-performance liquid chromatography-tandem mass spectrometry. CRP and fecal calprotectin were analyzed as parameters for systemic and gut inflammation, respectively. RESULTS CDI resolved after FMT in all three without adverse events; one patient needed a second FMT. No significant effect on CRP and calprotectin was observed. Stool samples demonstrated a reduced richness and bacterial diversity which did not improve after FMT. We did observe a trend in the decrease of specific URM up to 3 months after FMT. CONCLUSION FMT is an effective treatment for rCDI in patients with CKD. Analysis of the microbiome showed an important intestinal dysbiosis that, besides a significant reduction in Clostridium difficile, did not significantly change after FMT. A trend for reduction was seen in some of the measured URM after FMT.
Collapse
Affiliation(s)
- An Samaey
- Department of Pediatric Nephrology and Solid Organ Transplantation, UZ Leuven, Leuven, Belgium.
| | - Jorge Francisco Vázquez-Castellanos
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Louvain, Belgium
| | - Clara Caenepeel
- Translational Research Center for Gastrointestinal Disorders (TARGID), UZ Leuven, Leuven, Belgium
| | - Pieter Evenepoel
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Gastroenterology &, Hepatology University Hospitals Leuven, and Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Noël Knops
- Department of Pediatric Nephrology and Solid Organ Transplantation, UZ Leuven, Leuven, Belgium
- Department of Pediatrics, Groene Hart Ziekenhuis, Gouda, the Netherlands
| |
Collapse
|
12
|
Johnson-Martínez JP, Diener C, Levine AE, Wilmanski T, Suskind DL, Ralevski A, Hadlock J, Magis AT, Hood L, Rappaport N, Gibbons SM. Generally-healthy individuals with aberrant bowel movement frequencies show enrichment for microbially-derived blood metabolites associated with reduced kidney function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.04.531100. [PMID: 36945445 PMCID: PMC10028848 DOI: 10.1101/2023.03.04.531100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Bowel movement frequency (BMF) has been linked to changes in the composition of the human gut microbiome and to many chronic conditions, like metabolic disorders, neurodegenerative diseases, chronic kidney disease (CKD), and other intestinal pathologies like irritable bowel syndrome and inflammatory bowel disease. Lower BMF (constipation) can lead to compromised intestinal barrier integrity and a switch from saccharolytic to proteolytic fermentation within the microbiota, giving rise to microbially-derived toxins that may make their way into circulation and cause damage to organ systems. However, the connections between BMF, gut microbial metabolism, and the early-stage development and progression of chronic disease remain underexplored. Here, we examined the phenotypic impact of BMF variation in a cohort of generally-healthy, community dwelling adults with detailed clinical, lifestyle, and multi-omic data. We showed significant differences in microbially-derived blood plasma metabolites, gut bacterial genera, clinical chemistries, and lifestyle factors across BMF groups that have been linked to inflammation, cardiometabolic health, liver function, and CKD severity and progression. We found that the higher plasma levels of 3-indoxyl sulfate (3-IS), a microbially-derived metabolite associated with constipation, was in turn negatively associated with estimated glomerular filtration rate (eGFR), a measure of kidney function. Causal mediation analysis revealed that the effect of BMF on eGFR was significantly mediated by 3-IS. Finally, we identify self-reported diet, lifestyle, and psychological factors associated with BMF variation, which indicate several common-sense strategies for mitigating constipation and diarrhea. Overall, we suggest that aberrant BMF is an underappreciated risk factor in the development of chronic diseases, even in otherwise healthy populations.
Collapse
Affiliation(s)
- Johannes P. Johnson-Martínez
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Anne E. Levine
- Institute for Systems Biology, Seattle, WA 98109, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | | | | | | | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Phenome Health, Seattle, WA 98109
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Noa Rappaport
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Almeida PP, Da Cruz BO, Thomasi B, Menezes ÁC, Brito ML, Costa NDS, Ito RVA, Degani VAN, Daleprane JB, Magliano DC, Tavares-Gomes AL, Stockler-Pinto MB. Brazil Nut-Enriched Diet Modulates Enteric Glial Cells and Gut Microbiota in an Experimental Model of Chronic Kidney Disease. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:201-212. [PMID: 37611162 DOI: 10.1080/27697061.2023.2247057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Introduction: Chronic kidney disease (CKD) promotes gut dysbiosis, and enteric glial reactivity, a feature of intestinal inflammation. Brazil nut modulated enteric glial profile in healthy animals and could modulate these cells in 5/6 nephrectomized rats.Methods: A 5/6 nephrectomy-induced CKD and Sham-operated rats were divided as follows: CKD and Sham received a standard diet and CKD-BN and Sham-BN received a 5% Brazil nut enriched-diet. The protein content of glial fibrillary acid protein (GFAP), enteric glial marker, and GPx protein content and activity were assessed in the colon. The major phyla of gut microbiota were assessed.Results: CKD-BN group presented a decrease in GFAP content (p = 0.0001). The CKD-BN group modulated the abundance of Firmicutes, increasing its proportion compared to the CKD group. The CKD-BN group showed increased GPx activity in the colon (p = 0.0192), despite no significant difference in protein content.Conclusion: Brazil nut-enriched diet consumption decreased enteric glial reactivity and modulated gut microbiota in the CKD experimental model.
Collapse
Affiliation(s)
- Patricia Pereira Almeida
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Beatriz Oliveira Da Cruz
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Beatriz Thomasi
- Department of Physiology, Neuroscience Program, Michigan State University (MSU), East Lansing, Michigan, USA
| | - Ágatha Cristie Menezes
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Nathalia da Silva Costa
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Viviane Alexandre Nunes Degani
- Clinic and Animal Reproduction Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - D'Angelo Carlo Magliano
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Ana Lúcia Tavares-Gomes
- Neurosciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Milena Barcza Stockler-Pinto
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Nutrition Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Chen H, Xie X, Tang S. Association between intestinal microflora and renal function in patients with chronic renal failure: A case-control analysis. Pak J Med Sci 2024; 40:174-178. [PMID: 38196469 PMCID: PMC10772418 DOI: 10.12669/pjms.40.1.8194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/11/2024] Open
Abstract
Objective To identify the association between the changes in intestinal microflora and renal function in patients with chronic renal failure (CRF). Methods This retrospective case-control study included 50 patients with CRF (study group), admitted to the Clinical Laboratory Department of Shenzhen People's Hospital from March 2021 to May 2022, and 50 healthy individuals (control group). The association between the distribution of intestinal microflora and the glomerular filtration rate (GFR), levels of serum creatinine (SCr), blood urea nitrogen (BUN), and serum cystatin C (CysC) were analyzed. Results Intestinal microflora of CRF patients had significantly higher levels of Enterococci compared to the control group (p-Value <0.05), while the levels of Bifidobacterium spp. and Escherichia coli were lower in the study group (p-Value <0.05). GFR was lower, and the levels of BUN, SCr, and CysC were higher in the study group compared to the control group (all p-Value <0.05). GFR, BUN, SCr and CysC levels in the study group negatively correlated with the levels of Bifidobacterium spp. and Lactobacillus spp. (r<0, P<0.05), and positively correlated with the abundance of Enterococcus spp. and Escherichia coli (r>0, P<0.05) in the intestinal microflora. Conclusions Changes in intestinal microbiota are associated with a significant decrease in GFR and a marked increase in serum levels of renal function indicators, and alterations in the balance of intestinal microbiota may lead to further aggravation of the renal function damage in patients with CRF.
Collapse
Affiliation(s)
- Haixia Chen
- Haixia Chen, Department of Clinical Laboratory, Shenzhen People’s, Hospital the Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province 518020, China
| | - Xiaoxiao Xie
- Xiaoxiao Xie, Department of Clinical Laboratory, Shenzhen People’s, Hospital the Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province 518020, China
| | - Shuming Tang
- Shuming Tang, Department of Clinical Laboratory, Shenzhen People’s, Hospital the Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province 518020, China
| |
Collapse
|
15
|
Wei XY, Jia PP, Hu H, Liu L, Li TY, Li YZ, Pei DS. Multi-omics reveal mechanisms underlying chronic kidney disease of unknown etiology (CKDu) pathogenesis using zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122524. [PMID: 37683759 DOI: 10.1016/j.envpol.2023.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Chronic kidney disease of unknown etiology (CKDu) is an endemic disease in the dry zone of farming communities, Sri Lanka. The drinking water in a CKDu prevalent area contains a high concentration of F-, hardness and other environmental pollutants, including heavy metals and microcystin, which are considered possible etiology of CKDu in these areas. Here, multi-omics data with host transcriptome, metabolome and gut microbiomes were obtained using simulated local drinking water of Sri Lanka after their exposure to adult zebrafish. Based on an integrated multi-omics analysis in the context of host physiology in the kidney injury samples with different pathologic grades, two common pathways necroptosis and purine metabolism were identified as potentially important pathways that affect kidney injury. The key metabolite acetyl adenylate in the purine metabolism pathway was significantly positively correlated with Comamonas (rho = 0.72) and significantly negatively correlated with Plesiomonas (rho = -0.58). This crucial metabolite and two key gut bacteria genera may not only be potential markers but also potential therapeutic targets in the uric acid metabolic pathway, which is an important factor in the pathogenesis of acute kidney injury (AKI) in general, as well as of chronic kidney disease (CKD). Based on this, we revealed the urea metabolism pathway of kidney injury in zebrafish and provided a new avenue for the treatment of CKDu in Sri Lanka.
Collapse
Affiliation(s)
- Xing-Yi Wei
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Huan Hu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yong-Zhi Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
16
|
Lin Y, Li C, Waters D, Kwok CS. Gastrointestinal bleeding in chronic kidney disease patients: a systematic review and meta-analysis. Ren Fail 2023; 45:2276908. [PMID: 37955109 PMCID: PMC10796123 DOI: 10.1080/0886022x.2023.2276908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Gastrointestinal bleeding (GIB) is a major cause of mortality in patients with renal failure. We conducted a systematic review of the literature to evaluate the rates, predictors, and outcomes of GIB in patients with chronic kidney disease (CKD). A search of MEDLINE and EMBASE databases was performed, and data were extracted from relevant studies. Statistical pooling was performed to determine the rate of GIB in patients with CKD, and a random-effect meta-analysis was performed to determine the predictors of GIB and mortality in patients with GIB. Twenty-two studies were included in this review, with 7,810,273 patients with CKD included in the analysis. The pooled results of five studies suggested that the rate of GIB in patients with CKD was 2.2%, and among the studies in which patients with CKD underwent endoscopy, the pooled results for GIB were 35.8%. Receipt of dialysis (OR 14.48, 95%CI 4.96-42.32), older age (OR 1.03, 95%CI 1.02-1.05), diabetes mellitus (OR 1.30, 95%CI 1.22-1.39), history of ulcers (OR 1.53, 95%CI 1.03-2.26), and cirrhosis (OR 1.73, 95%CI 1.41-2.12) were significantly associated with GIB. The pooled results suggest a twofold increase in the odds of mortality with GIB, with significant heterogeneity (OR 2.12, 95%CI 1.45-3.10, I2 = 93%). GIB in patients with CKD affects 2% of patients but can be greater in the group of patients who underwent endoscopy. Receipt of dialysis is a strong predictor of GIB, and sustained GIB is associated with a twofold increase in the odds of mortality compared to patients without GIB.
Collapse
Affiliation(s)
- Yanshan Lin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Chunqun Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - David Waters
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Chun Shing Kwok
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
- Department of Cardiology, University Hospital of North Midlands NHS Trust, Stoke-on-Trent, UK
| |
Collapse
|
17
|
Mafra D, Kemp JA, Cardozo LFMF, Borges NA, Nerbass FB, Alvarenga L, Kalantar-Zadeh K. COVID-19 and Nutrition: Focus on Chronic Kidney Disease. J Ren Nutr 2023; 33:S118-S127. [PMID: 37632513 DOI: 10.1053/j.jrn.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 08/28/2023] Open
Abstract
Some chronic diseases, including chronic kidney disease (CKD), may be associated with poor outcomes, including a high rate of hospitalization and death after COVID-19 infection. In addition to the vaccination program, diet intervention is essential for boosting immunity and preventing complications. A healthy diet containing bioactive compounds may help mitigate inflammatory responses and oxidative stress caused by COVID-19. In this review, we discuss dietary interventions for mitigating COVID-19 complications, including in persons with CKD, which can worsen COVID-19 symptoms and its clinical outcomes, while diet may help patients with CKD to resist the ravages of COVID-19 by improving the immune system, modulating gut dysbiosis, mitigating COVID-19 complications, and reducing hospitalization and mortality. The concept of food as medicine, also known as culinary medicine, for patients with CKD can be extrapolated to COVID-19 infection because healthy foods and nutraceuticals have the potential to exert an important antiviral, anti-inflammatory, and antioxidant role.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro Rio de Janeiro, Brazil; Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.
| | - Julie A Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Natália A Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Fabiana B Nerbass
- Research Department, Fundação Pró-Rim, Joinville, Santa Catarina, Brazil
| | - Lívia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Kamyar Kalantar-Zadeh
- Divsion of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine, Orange, California
| |
Collapse
|
18
|
Wan M, King L, Baugh N, Arslan Z, Snauwaert E, Paglialonga F, Shroff R. Gutted: constipation in children with chronic kidney disease and on dialysis. Pediatr Nephrol 2023; 38:3581-3596. [PMID: 36622442 PMCID: PMC10514126 DOI: 10.1007/s00467-022-05849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 01/10/2023]
Abstract
Functional constipation is a common problem in otherwise healthy children. Children with chronic kidney disease (CKD) and on dialysis have additional disease-related risk factors including the uremic milieu, fluid and dietary restrictions, and decreased physical activity, as well as treatment-related risk factors such as dialysis therapy and polypharmacy that contribute to and compound the problem. Constipation causes significant distress for children and their caregivers. In children on peritoneal dialysis, severe constipation can impede catheter function and ultrafiltration. Accumulating evidence points to a possible bidirectional relationship between constipation and CKD, potentially mediated by gut dysbiosis with consequent increased generation of gut-derived uremic toxins and disruption of intestinal epithelium integrity leading to translocation of noxious luminal contents into the circulation inducing systemic inflammation. Effective management of constipation is required but there is little published data on the safety and effectiveness of treatments in adults or children with CKD. In this review, we discuss the diagnosis and epidemiology of functional constipation, provide an overview of its pathophysiology, summarize the therapeutic management, and reflect on the challenges in children with CKD.
Collapse
Affiliation(s)
- Mandy Wan
- Evelina Pharmacy Department, Evelina London Children's Hospital, NHS Foundation Trust, Guy's and St ThomasWestminster Bridge Road, London, SE1 7EH, UK.
- Institute of Pharmaceutical Science, King's College London, London, UK.
| | - Lillian King
- UCL Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| | - Natasha Baugh
- UCL Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| | - Zainab Arslan
- UCL Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| | | | - Fabio Paglialonga
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rukshana Shroff
- UCL Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| |
Collapse
|
19
|
Zhou X, Lian P, Liu H, Wang Y, Zhou M, Feng Z. Causal Associations between Gut Microbiota and Different Types of Dyslipidemia: A Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:4445. [PMID: 37892520 PMCID: PMC10609956 DOI: 10.3390/nu15204445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The determination of a causal association between gut microbiota and a range of dyslipidemia remains uncertain. To clarify these associations, we employed a two-sample Mendelian randomization (MR) analysis utilizing the inverse-variance weighted (IVW) method. This comprehensive analysis investigated the genetic variants that exhibited a significant association (p < 5 × 10-8) with 129 distinct gut microbiota genera and their potential link to different types of dyslipidemia. The results indicated a potential causal association between 22 gut microbiota genera and dyslipidemia in humans. Furthermore, these findings suggested that the impact of gut microbiota on dyslipidemia regulation is dependent on the specific phylum, family, and genus. Bacillota phylum demonstrated the greatest diversity, with 15 distinct genera distributed among eight families. Notably, gut microbiota-derived from the Lachnospiraceae and Lactobacillaceae families exhibit statistically significant associations with lipid levels that contribute to overall health (p < 0.05). The sensitivity analysis indicated that our findings possess robustness (p > 0.05). The findings of our investigation provide compelling evidence that substantiates a causal association between the gut microbiota and dyslipidemia in the human body. It is noteworthy to highlight the significant influence of the Bacillota phylum as a crucial regulator of lipid levels, and the families Lachnospiraceae and Lactobacillaceae should be recognized as probiotics that significantly contribute to this metabolic process.
Collapse
Affiliation(s)
| | | | | | | | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.Z.); (P.L.); (H.L.); (Y.W.)
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.Z.); (P.L.); (H.L.); (Y.W.)
| |
Collapse
|
20
|
Wang YJ, Du Y, Chen GQ, Cheng ZQ, Liu XM, Lian Y. Dose-response relationship between dietary inflammatory index and diabetic kidney disease in US adults. Public Health Nutr 2023; 26:611-619. [PMID: 35941082 PMCID: PMC9989711 DOI: 10.1017/s1368980022001653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The impact of the dietary potential inflammatory effect on diabetic kidney disease (DKD) has not been adequately investigated. The present study aimed to explore the association between dietary inflammatory index (DII) and DKD in US adults. DESIGN This is a cross-sectional study. SETTING Data from the National Health and Nutrition Examination Survey (2007-2016) were used. DII was calculated from 24-h dietary recall interviews. DKD was defined as diabetes with albuminuria, impaired glomerular filtration rate or both. Logistic regression and restricted cubic spline models were adopted to evaluate the associations. PARTICIPANTS Data from the National Health and Nutrition Examination Survey (2007-2016) were used, which can provide the information of participants. RESULTS Four thousand two-hundred and sixty-four participants were included in this study. The adjusted OR of DKD was 1·04 (95 % CI 0·81, 1·36) for quartile 2, 1·24 (95 % CI 0·97, 1·59) for quartile 3 and 1·64 (95 % CI 1·24, 2·17) for quartile 4, respectively, compared with the quartile 1 of DII. A linear dose-response pattern was observed between DII and DKD (Pnonlinearity = 0·73). In the stratified analyses, the OR for quartile 4 of DII were significant among adults with higher educational level (OR 1·83, 95 % CI 1·26, 2·66) and overweight or obese participants (OR 1·67, 95 % CI 1·23, 2·28), but not among the corresponding another subgroup. The interaction effects between DII and stratified factors on DKD were not statistically significant (all P values for interactions were >0·05). CONCLUSIONS Our findings suggest that a pro-inflammatory diet, shown by a higher DII score, is associated with increased odd of DKD.
Collapse
Affiliation(s)
- Yong-Jun Wang
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan250014, People’s Republic of China
- Department of Clinical Nutrition, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Yang Du
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan250014, People’s Republic of China
| | - Guo-Qiang Chen
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan250014, People’s Republic of China
- Department of Medical Record Management and Statistics, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Zhen-Qian Cheng
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan250014, People’s Republic of China
- Department of Clinical Nutrition, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Xue-Mei Liu
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan250014, People’s Republic of China
- Department of Clinical Nutrition, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Ying Lian
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan250014, People’s Republic of China
- Department of Medical Record Management and Statistics, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
21
|
Zang Y, Lai X, Li C, Ding D, Wang Y, Zhu Y. The Role of Gut Microbiota in Various Neurological and Psychiatric Disorders-An Evidence Mapping Based on Quantified Evidence. Mediators Inflamm 2023; 2023:5127157. [PMID: 36816743 PMCID: PMC9936509 DOI: 10.1155/2023/5127157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 02/10/2023] Open
Abstract
Methods We searched PubMed, Cochrane Library, and Epistemonikos to identify systematic reviews and meta-analysis (SRs). We searched for neurological diseases and psychiatric disorders, including Alzheimer's disease (AD), attention deficit hyperactivity disorder (ADHD), amyotrophic lateral sclerosis (ALS), autism spectrum disorder (ASD), anorexia nervosa (AN), bipolar disorder (BD), eating disorder (ED), generalized anxiety disorder (GAD), major depressive disorder (MDD), multiple sclerosis (MS), obsessive compulsive disorder (OCD), Parkinson's disease (PD), posttraumatic stress disorder (PTSD), spinal cord injury (SCI), schizophrenia, and stroke. We used A Measurement Tool to Assess Systematic Reviews (AMSTAR-2) to evaluate the quality of included SRs. We also created an evidence map showing the role of gut microbiota in neurological diseases and the certainty of the evidence. Results In total, 42 studies were included in this evidence mapping. Most findings were obtained from observational studies. According to the AMSTAR-2 assessment, 21 SRs scored "critically low" in terms of methodological quality, 16 SR scored "low," and 5 SR scored "moderate." A total of 15 diseases have been investigated for the potential association between gut microbiome alpha diversity and disease, with the Shannon index and Simpson index being the most widely studied. A total of 12 diseases were investigated for potential link between beta diversity and disease. At the phylum level, Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia were more researched. At the genus level, Prevotella, Coprococcus, Parabacteroides, Phascolarctobacterium, Escherichia Shigella, Alistipes, Sutteralla, Veillonella, Odoribacter, Faecalibacterium, Bacteroides, Bifidobacterium, Dialister, and Blautia were more researched. Some diseases have been found to have specific flora changes, and some diseases have been found to have common intestinal microbiological changes. Conclusion We found varied levels of evidence for the associations between gut microbiota and neurological diseases; some gut microbiota increased the risk of neurological diseases, whereas others showed evidence of benefit that gut microbiota might be promising therapeutic targets for such diseases.
Collapse
Affiliation(s)
- Yaning Zang
- Department of Rehabilitation Medicine, Chengdu Second People's Hospital, Sichuan, China
| | - Xigui Lai
- Department of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Conghui Li
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongfang Ding
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Wang
- The Ninth People's Hospital of Wuxi Affiliated to Soochow University, Wuxi, China
| | - Yi Zhu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Chao YT, Lin YK, Chen LK, Huang P, Hsu YC. Role of the gut microbiota and their metabolites in hemodialysis patients. Int J Med Sci 2023; 20:725-736. [PMID: 37213669 PMCID: PMC10198149 DOI: 10.7150/ijms.82667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/25/2023] [Indexed: 05/23/2023] Open
Abstract
High serum phosphate levels in chronic kidney disease (CKD) are linked to adverse health outcomes, including cardiovascular disease, kidney disease progression, and all-cause mortality. This study is aimed to find out which microorganisms or microbial functions have a significant impact on higher calcium-phosphorus product (Ca x P) after they undergo hemodialysis (HD) treatment. Feces samples from 30 healthy controls, 15 dialysis patients with controlled Ca xP (HD), and 16 dialysis patients with higher Ca xP (HDHCP) were collected to perform in 16S amplicon sequencing. We found gut microbial composition was significantly different between hemodialysis patients and healthy controls. Three phyla including Firmicutes, Actinobacteria, and Proteobacteria were significantly enriched in hemodialysis patients. Although only one genus, Lachnospiraceae_FCS020_group, was significantly increased in higher Ca xP group, there were four metabolic pathways predicted by PICRUSt significantly increased in higher Ca xP group and associated with causing VC, including the pentose phosphate pathway, steroid biosynthesis, terpenoid backbone biosynthesis, and fatty acid elongation pathway. Characterizing dysbiosis of gut microbiome played the important role in hemodialysis patients.
Collapse
Affiliation(s)
- Ying Ting Chao
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan, R.O.C
| | - Ying-Kuang Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan, R.O.C
- Division of Nephrology, Department of Medicine, Landseed International Hospital, Taoyuan City 324609, Taiwan, R.O.C
| | - Liang-Kun Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan, R.O.C
| | - Poyin Huang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan, R.O.C
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan R.O.C
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan R.O.C
- Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan R.O.C
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan, R.O.C
- ✉ Corresponding author: Yi-Chiung Hsu, PhD, Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan. E-mail address:
| |
Collapse
|
23
|
Liu W, Huang J, Liu T, Hu Y, Shi K, Zhou Y, Zhang N. Changes in gut microbial community upon chronic kidney disease. PLoS One 2023; 18:e0283389. [PMID: 36952529 PMCID: PMC10035866 DOI: 10.1371/journal.pone.0283389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
With the increasing incidence and mortality of chronic kidney disease (CKD), targeted therapies for CKD have been explored constantly. The important role of gut microbiota on CKD has been emphasized increasingly, it is necessary to analyze the metabolic mechanism of CKD patients from the perspective of gut microbiota. In this study, bioinformatics was used to analyze the changes of gut microbiota between CKD and healthy control (HC) groups using 315 samples from NCBI database. Diversity analysis showed significant changes in evenness compared to the HC group. PCoA analysis revealed significant differences between the two groups at phylum level. In addition, the F/B ratio was higher in CKD group than in HC group, suggesting the disorder of gut microbiota, imbalance of energy absorption and the occurrence of metabolic syndrome in CKD group. The study found that compared with HC group, the abundance of bacteria associated with impaired kidney was increased in CKD group, such as Ralstonia and Porphyromonas, which were negatively associated with eGFR. PICRUSt2 was used to predict related functions and found that different pathways between the two groups were mainly related to metabolism, involving the metabolism of exogenous and endogenous substances, as well as Glycerophospholipid metabolism, which provided evidence for exploring the relationship between gut microbiota and lipid metabolism. Therefore, in subsequent studies, special attention should be paid to these bacteria and metabolic pathway, and animal experiments and metabolomics studies should be conducted explore the association between bacterial community and CKD, as well as the therapeutic effects of these microbial populations on CKD.
Collapse
Affiliation(s)
- Wu Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaqi Huang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Tong Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Yutian Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Kaifeng Shi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhou
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate Student, Beijing University of Chinese Medicine, Beijing, China
| | - Ning Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Traditional Chinese Medicine: An Exogenous Regulator of Crosstalk between the Gut Microbial Ecosystem and CKD. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7940684. [DOI: 10.1155/2022/7940684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease (CKD) is often accompanied by an imbalance in the gut microbial ecosystem. Notably, the imbalanced gut microbiota and impaired intestinal barrier are the keys to the crosstalk between the gut microbial ecosystem and CKD, which was the central point of previous studies. Traditional Chinese medicine (TCM) has shown considerable efficacy in the treatment of CKD. However, the therapeutic mechanisms have not been fully elucidated. In this review, we explored therapeutic mechanisms by which TCM improved CKD via the gut microbial ecosystem. In particular, we focused on the restored gut microbiota (i.e., short-chain fatty acid- and uremic toxin-producing bacteria), improved gut-derived metabolites (i.e., short-chain fatty acid, indoxyl sulfate, p-Cresyl sulfate, and trimethylamine-N-oxide), and intestinal barrier (i.e., permeability and microbial translocation) as therapeutic mechanisms. The results found that the metabolic pattern of gut microbiota and the intestinal barrier were improved through TCM treatment. Moreover, the microbiota-transfer study confirmed that part of the protective effect of TCM was dependent on gut microbiota, especially SCFA-producing bacteria. In conclusion, TCM may be an important exogenous regulator of crosstalk between the gut microbial ecosystem and CKD, which was partly attributable to the mediation of microbiota-targeted intervention.
Collapse
|
25
|
Liu X, Zhang M, Wang X, Liu P, Wang L, Li Y, Wang X, Ren F. Fecal microbiota transplantation restores normal fecal composition and delays malignant development of mild chronic kidney disease in rats. Front Microbiol 2022; 13:1037257. [PMID: 36532422 PMCID: PMC9748282 DOI: 10.3389/fmicb.2022.1037257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/15/2022] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with gut microbiome dysbiosis, but the role of intestinal flora in CKD treatment remains to be elucidated. Fecal microbiota transplantation (FMT) can be utilized to re-establish healthy gut microbiota for a variety of diseases, which offers new insight for treating CKD. First, 5/6 nephrectomy rats (Donor CKD) and sham rats (Donor Sham) were used as donors for FMT, and fecal metagenome were analyzed to explore potential therapeutic targets. Then, to assess the effect of FMT on CKD, sterilized 1/2 nephrectomy rats were transplanted with fecal microbiota from Donor sham (CKD/Sham) or Donor CKD (CKD/CKD) rats, and 1/2 nephrectomy rats without FMT (CKD) or no nephrectomy (Sham) were used as model control or normal control. Results showed that Bacteroides uniformis and Anaerotruncus sp. 1XD22-93 were enriched in Donor CKD, while Lactobacillus johnsonii and Lactobacillus intestinalis were reduced. In addition, the increased abundance of microbial functions included tryptophan metabolism and lysine degradation contributing to the accumulation of protein-bound uremic toxins (PBUTs) in Donor CKD. Genome analysis indicated that FMT successfully differentiated groups of gut microbes and altered specific gut microbiota after 1 week of treatment, with Bacteroides uniformis and Anaerotruncus sp. 1XD22-93 increasing in CKD/CKD group as well as Lactobacillus johnsonii and Lactobacillus intestinalis being improved in CKD/Sham group. In comparison to CKD group, substantial PBUT buildup and renal damage were observed in CKD/CKD. Interestingly, compared to CKD or CKD/CKD group, tryptophan metabolism and lysine degradation were efficiently suppressed in CKD/Sham group, while lysine biosynthesis was promoted. Therefore, FMT considerably reduced PBUTs accumulation. After FMT, PBUTs and renal function in CKD/Sham rats remained the same as in Sham group throughout the experimental period. In summary, FMT could delay the malignant development of CKD by modifying microbial amino acid metabolism through altering the microenvironment of intestinal flora, thereby providing a novel potential approach for treating CKD.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xifan Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ping Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Longjiao Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Food Laboratory of Zhongyuan, Luohe, Henan, China
| |
Collapse
|
26
|
Homeostasis in the Gut Microbiota in Chronic Kidney Disease. Toxins (Basel) 2022; 14:toxins14100648. [PMID: 36287917 PMCID: PMC9610479 DOI: 10.3390/toxins14100648] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota consists of trillions of microorganisms, fulfilling important roles in metabolism, nutritional intake, physiology and maturation of the immune system, but also aiding and abetting the progression of chronic kidney disease (CKD). The human gut microbiome consists of bacterial species from five major bacterial phyla, namely Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia. Alterations in the members of these phyla alter the total gut microbiota, with a decline in the number of symbiotic flora and an increase in the pathogenic bacteria, causing or aggravating CKD. In addition, CKD-associated alteration of this intestinal microbiome results in metabolic changes and the accumulation of amines, indoles and phenols, among other uremic metabolites, which have a feedforward adverse effect on CKD patients, inhibiting renal functions and increasing comorbidities such as atherosclerosis and cardiovascular diseases (CVD). A classification of uremic toxins according to the degree of known toxicity based on the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence was selected to identify the representative uremic toxins from small water-soluble compounds, protein-bound compounds and middle molecules and their relation to the gut microbiota was summarized. Gut-derived uremic metabolites accumulating in CKD patients further exhibit cell-damaging properties, damage the intestinal epithelial cell wall, increase gut permeability and lead to the translocation of bacteria and endotoxins from the gut into the circulatory system. Elevated levels of endotoxins lead to endotoxemia and inflammation, further accelerating CKD progression. In recent years, the role of the gut microbiome in CKD pathophysiology has emerged as an important aspect of corrective treatment; however, the mechanisms by which the gut microbiota contributes to CKD progression are still not completely understood. Therefore, this review summarizes the current state of research regarding CKD and the gut microbiota, alterations in the microbiome, uremic toxin production, and gut epithelial barrier degradation.
Collapse
|
27
|
Liu T, Lu X, Gao W, Zhai Y, Li H, Li S, Yang L, Ma F, Zhan Y, Mao H. Cardioprotection effect of Yiqi-Huoxue-Jiangzhuo formula in a chronic kidney disease mouse model associated with gut microbiota modulation and NLRP3 inflammasome inhibition. Biomed Pharmacother 2022; 152:113159. [PMID: 35661533 DOI: 10.1016/j.biopha.2022.113159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The pathogenesis and treatment of cardiovascular disease mediated by chronic kidney disease (CKD) are key research questions. Specifically, the mechanisms underlying the cardiorenal protective effect of Yiqi-Huoxue-Jiangzhuo formula (YHJF), a traditional Chinese herbal medicine, have not yet been clarified. METHODS A classical CKD mouse model was constructed by 5/6 nephrectomy (Nx) to study the effects of YHJF intervention on 5/6 Nx mice cardiorenal function, gut microbial composition, gut-derived metabolites, and NLRP3 inflammasome pathways. RESULTS YHJF improved cardiac dysfunction and reversed left ventricular hypertrophy, myocardial hypertrophy, and interstitial fibrosis in 5/6 Nx mice. In addition, YHJF inhibited activation of the NLRP3 inflammasome and downregulated the expression of TNF-α and IL-1β both in the heart and serum; reconstitution of the intestinal flora imbalance was also found in 5/6 Nx mice treated with YHJF. Spearman's correlation and redundancy analyses showed that changes in the intestinal flora of 5/6 Nx mice were related to clinical phenotype and serum inflammatory levels. CONCLUSIONS Treatment with YHJF effectively protected the heart function of 5/6 Nx mice; this effect was attributed to inhibition of NLRP3 inflammasome activation and regulation of intestinal microbial composition and derived metabolites. YHJF has potential for improving intestinal flora imbalance and gut-derived toxin accumulation in patients with CKD, thereby preventing cardiovascular complications.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaoguang Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wenya Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Zhai
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing 100029, China
| | - Han Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shangheng Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
28
|
Combination of Oxalobacter Formigenes and Veillonella Parvula in Gastrointestinal Microbiota Related to Bile-Acid Metabolism as a Biomarker for Hypertensive Nephropathy. Int J Hypertens 2022; 2022:5999530. [PMID: 35620320 PMCID: PMC9129936 DOI: 10.1155/2022/5999530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
The human microbiome is a mixed group of microorganisms, which individually consists of 10–100 trillion symbiotic microbial cells. The relationship between gastrointestinal microbiota and blood pressure has been verified and the intestinal microbiota of chronic kidney disease (CKD) patients in the distribution of bacterial species is different from the flora of people with no CKD. The purpose of this research is to study the different intestinal microbiota of hypertensive patients with and without nephropathy and to find possible biomarkers of hypertensive nephropathy (H-CKD). The subjects of this research were divided into three groups, healthy control group, hypertension group, and hypertensive nephropathy group. Sequencing, bioinformatics, and statistical analysis were performed on the 16S rRNA gene of the subjects' stool samples. This research study showed the differences of intestinal flora as biomarkers in hypertension patients with and without nephropathy; it investigated the relationship of the differences in the intestinal microbiota with bile-acid metabolism; it also explored bile-acid metabolism mechanism of intestinal microbiota differences in hypertension with or without nephropathy. In summary, the difference in the combination of O. formigenes and V. parvula in the gastrointestinal microbiota is related to bile-acid metabolism in hypertensive patients and can be one of the factors causing CKD. It is the first time to report such a biomarker or pathogenic factor of H-CKD in the world.
Collapse
|
29
|
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7:135. [PMID: 35461318 PMCID: PMC9034083 DOI: 10.1038/s41392-022-00974-4] [Citation(s) in RCA: 923] [Impact Index Per Article: 307.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
The role of microbiota in health and diseases is being highlighted by numerous studies since its discovery. Depending on the localized regions, microbiota can be classified into gut, oral, respiratory, and skin microbiota. The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function. However, microbiota dysbiosis can lead to dysregulation of bodily functions and diseases including cardiovascular diseases (CVDs), cancers, respiratory diseases, etc. In this review, we discuss the current knowledge of how microbiota links to host health or pathogenesis. We first summarize the research of microbiota in healthy conditions, including the gut-brain axis, colonization resistance and immune modulation. Then, we highlight the pathogenesis of microbiota dysbiosis in disease development and progression, primarily associated with dysregulation of community composition, modulation of host immune response, and induction of chronic inflammation. Finally, we introduce the clinical approaches that utilize microbiota for disease treatment, such as microbiota modulation and fecal microbial transplantation.
Collapse
Affiliation(s)
- Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xuan-Yu Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Dongya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd, Guangzhou, 510535, China
| | - Chuanxing Xiao
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Jagadish B Koya
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jilin Li
- Department of Cardiovascular, The Second Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| |
Collapse
|
30
|
Lei J, Xie Y, Sheng J, Song J. Intestinal microbiota dysbiosis in acute kidney injury: novel insights into mechanisms and promising therapeutic strategies. Ren Fail 2022; 44:571-580. [PMID: 35350960 PMCID: PMC8967199 DOI: 10.1080/0886022x.2022.2056054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, the clinical impact of intestinal microbiota–kidney interaction has been emerging. Experimental evidence highlighted a bidirectional evolutionary correlation between intestinal microbiota and kidney diseases. Nonetheless, acute kidney injury (AKI) is still a global public health concern associated with high morbidity, mortality, healthcare costs, and limited efficient therapy. Several studies on the intestinal microbiome have improved the knowledge and treatment of AKI. Therefore, the present review outlines the concept of the gut–kidney axis and data about intestinal microbiota dysbiosis in AKI to improve the understanding of the mechanisms of the intestinal microbiome on the modification of kidney function and response to kidney injury. We also introduced the future directions and research areas, emphasizing the intervention approaches and recent research advances of intestinal microbiota dysbiosis during AKI, thereby providing a new perspective for future clinical trials.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
31
|
Rodrigues FG, Ormanji MS, Heilberg IP, Bakker SJL, de Borst MH. Interplay between gut microbiota, bone health and vascular calcification in chronic kidney disease. Eur J Clin Invest 2021; 51:e13588. [PMID: 33948936 PMCID: PMC8459296 DOI: 10.1111/eci.13588] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
Deregulations in gut microbiota may play a role in vascular and bone disease in chronic kidney disease (CKD). As glomerular filtration rate declines, the colon becomes more important as a site of excretion of urea and uric acid, and an increased bacterial proteolytic fermentation alters the gut microbial balance. A diet with limited amounts of fibre, as well as certain medications (eg phosphate binders, iron supplementation, antibiotics) further contribute to changes in gut microbiota composition among CKD patients. At the same time, both vascular calcification and bone disease are common in patients with advanced kidney disease. This narrative review describes emerging evidence on gut dysbiosis, vascular calcification, bone demineralization and their interrelationship termed the 'gut-bone-vascular axis' in progressive CKD. The role of diet, gut microbial metabolites (ie indoxyl sulphate, p-cresyl sulphate, trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFA)), vitamin K deficiency, inflammatory cytokines and their impact on both bone health and vascular calcification are discussed. This framework may open up novel preventive and therapeutic approaches targeting the microbiome in an attempt to improve cardiovascular and bone health in CKD.
Collapse
Affiliation(s)
- Fernanda G Rodrigues
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Nutrition Post-Graduation Program, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Milene S Ormanji
- Nephrology Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ita P Heilberg
- Nutrition Post-Graduation Program, Universidade Federal de São Paulo, São Paulo, Brazil.,Nephrology Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Stephan J L Bakker
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin H de Borst
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Zhao J, Ning X, Liu B, Dong R, Bai M, Sun S. Specific alterations in gut microbiota in patients with chronic kidney disease: an updated systematic review. Ren Fail 2021; 43:102-112. [PMID: 33406960 PMCID: PMC7808321 DOI: 10.1080/0886022x.2020.1864404] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates that gut dysbiosis is implicated in the pathogenesis of chronic kidney disease (CKD) with underlying mechanisms involving mucosal and/or systematic immunity or metabolic disorders. However, the profile of gut microbiota in patients with CKD has not been completely explored. METHODS Databases from their date of inception to 31 March 2020 were systematically searched for case-control or cross-sectional studies comparing the gut microbial profiles in adult patients with CKD or end-stage renal disease (ESRD) with those in healthy controls. Quantitative analysis of alterations in gut microbial profiles was conducted. RESULTS Twenty-five studies with a total of 1436 CKD patients and 918 healthy controls were included. The present study supports the increased abundance of, phylum Proteobacteria and Fusobacteria, genus Escherichia_Shigella, Desulfovibrio, and Streptococcus, while lower abundance of genus Roseburia, Faecalibacterium, Pyramidobacter, Prevotellaceae_UCG-001, and Prevotella_9 in patients with CKD; and increased abundance of phylum Proteobacteria, and genus Streptococcus and Fusobacterium, while lower abundance of Prevotella, Coprococcus, Megamonas, and Faecalibacterium in patients with ESRD. Moreover, higher concentrations of trimethylamine-N-oxide and p-cresyl sulfate and lower concentrations of short-chain fatty acids were observed. Gut permeability in patients with CKD was not determined due to the heterogeneity of selected parameters. CONCLUSIONS Specific alterations of gut microbial parameters in patients with CKD were identified. However, a full picture of the gut microbiota could not be drawn from the data due to the differences in methodology, and qualitative and incomplete reporting of different studies.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Baojian Liu
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ruijuan Dong
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ming Bai
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
33
|
Foresto-Neto O, Ghirotto B, Câmara NOS. Renal Sensing of Bacterial Metabolites in the Gut-kidney Axis. KIDNEY360 2021; 2:1501-1509. [PMID: 35373097 PMCID: PMC8786145 DOI: 10.34067/kid.0000292021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/28/2021] [Indexed: 02/04/2023]
Abstract
Seminal works have now revealed the gut microbiota is connected with several diseases, including renal disorders. The balance between optimal and dysregulated host-microbiota interactions has completely changed our understanding of immunity and inflammation. Kidney injury is associated with accumulation of uremic toxins in the intestine, augmented intestinal permeability, and systemic inflammation. Intestinal bacteria can signal through innate receptors and induce immune cell activation in the lamina propria and release of inflammatory mediators into the bloodstream. But the gut microbiota can also modulate immune functions through soluble products as short-chain fatty acids (SCFAs). The three most common SCFAs are propionate, butyrate, and acetate, which can signal through specific G-protein coupled receptors (GPCRs), such as GPR43, GPR41, and GPR109a, expressed on the surface of epithelial, myeloid, endothelial, and immune cells, among others. The triggered signaling can change cell metabolism, immune cell activation, and cell death. In this study, we reviewed the gut-kidney axis, how kidney cells can sense SCFAs, and its implication in kidney diseases.
Collapse
Affiliation(s)
- Orestes Foresto-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil,Nephrology Division, Department of Medicine, Federal University of São Paulo, Brazil
| | - Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil,Nephrology Division, Department of Medicine, Federal University of São Paulo, Brazil
| |
Collapse
|
34
|
Morelli MC, Rendina M, La Manna G, Alessandria C, Pasulo L, Lenci I, Bhoori S, Messa P, Biancone L, Gesualdo L, Russo FP, Petta S, Burra P. Position paper on liver and kidney diseases from the Italian Association for the Study of Liver (AISF), in collaboration with the Italian Society of Nephrology (SIN). Dig Liver Dis 2021; 53 Suppl 2:S49-S86. [PMID: 34074490 DOI: 10.1016/j.dld.2021.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Liver and kidney are strictly connected in a reciprocal manner, in both the physiological and pathological condition. The Italian Association for the Study of Liver, in collaboration with the Italian Society of Nephrology, with this position paper aims to provide an up-to-date overview on the principal relationships between these two important organs. A panel of well-recognized international expert hepatologists and nephrologists identified five relevant topics: 1) The diagnosis of kidney damage in patients with chronic liver disease; 2) Acute kidney injury in liver cirrhosis; 3) Association between chronic liver disease and chronic kidney disease; 4) Kidney damage according to different etiology of liver disease; 5) Polycystic kidney and liver disease. The discussion process started with a review of the literature relating to each of the five major topics and clinical questions and related statements were subsequently formulated. The quality of evidence and strength of recommendations were graded according to the GRADE system. The statements presented here highlight the importance of strong collaboration between hepatologists and nephrologists for the management of critically ill patients, such as those with combined liver and kidney impairment.
Collapse
Affiliation(s)
- Maria Cristina Morelli
- Internal Medicine Unit for the treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di S.Orsola, Bologna, Italy, Via Albertoni 15, 40138, Bologna, Italy
| | - Maria Rendina
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari, Policlinic Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St. Orsola Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Carlo Alessandria
- Division of Gastroenterology and Hepatology, Città della Salute e della Scienza Hospital, University of Torino, Corso Bramante 88, 10126, Torino, Italy
| | - Luisa Pasulo
- Gastroenterology and Transplant Hepatology, "Papa Giovanni XXIII" Hospital, Piazza OMS 1, 24127, Bergamo, Italy
| | - Ilaria Lenci
- Department of Internal Medicine, Hepatology Unit, Tor Vergata University, Rome Viale Oxford 81, 00133, Rome, Italy
| | - Sherrie Bhoori
- Hepatology and Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS, Istituto Nazionale Tumori, Via Giacomo Venezian, 1, 20133, Milan, Italy
| | - Piergiorgio Messa
- Unit of Nephrology, Università degli Studi di Milano, Via Commenda 15, 20122, Milano, Italy; Nephrology, Dialysis and Renal Transplant Unit-Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Via Commenda 15, 20122 Milano, Italy
| | - Luigi Biancone
- Division of Nephrology Dialysis and Transplantation, Department of Medical Sciences, Città Della Salute e della Scienza Hospital, University of Turin, Corso Bramante, 88-10126, Turin, Italy
| | - Loreto Gesualdo
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, Università degli Studi di Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Francesco Paolo Russo
- Multivisceral Transplant Unit, Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Piazza delle Cliniche, 2 90127, Palermo, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| | | |
Collapse
|
35
|
A metabolomics approach to investigate the proceedings of mitochondrial dysfunction in rats from prediabetes to diabetes. Saudi J Biol Sci 2021; 28:4762-4769. [PMID: 34354464 PMCID: PMC8324946 DOI: 10.1016/j.sjbs.2021.04.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
Diabetes mellitus (DM) is a leading cause of preventable cardiovascular disease, but the metabolic changes from prediabetes to diabetes have not been fully clarified. This study implemented a metabolomics profiling platform to investigate the variations of metabolites and to elucidate their global profiling from metabolic syndrome to DM. Methods: Male Sprague-Dawley rats (n = 44) were divided into four groups. Three groups were separately fed with a normal diet, a high-fructose diet (HF), or a high-fat (HL) diet while one group was treated with streptozotocin. The HF and HL diet were meant to induce insulin resistance, obesity, and dyslipidemia, which known to induce DM. Results: The most significant metabolic variations in the DM group’s urine samples were the reduced release of citric acid cycle intermediates, the increase in acylcarnitines, and the decrease in urea excretion, all of which indicated energy metabolism abnormalities and mitochondrial dysfunction. Overall, the metabolic analysis revealed tryptophan metabolic pathway variations in the prediabetic phase, even though the mitochondrial function remains unaffected. Conclusion: This study show that widespread methylations and impaired tryptophan metabolism occur in metabolic syndrome and are then followed by a decline in citric acid cycle intermediates, indicating mitochondrial dysfunction in diabetes.
Collapse
Key Words
- CAN, acetonitrile
- DM, diabetes mellitus
- Diabetes
- GOT, glutamate oxaloacetate transaminase
- GPT, glutamate pyruvate transaminase
- HF, high-fructose
- HL, high-fat
- HMDB, human metabolome database
- KEGG, kyoto encyclopedia of genes and genomes
- LC-MS, liquid chromatography–mass spectrometry
- Metabolic syndrome
- Metabolomics
- Methylation
- Mitochondrial dysfunction
- PCA, principal component analysis
- Prediabetes
- STZ, streptozotocin
- TC, total cholesterol
- TG, triacylglycerol
- Tryptophan
Collapse
|
36
|
Hu Q, Wu K, Pan W, Zeng Y, Hu K, Chen D, Huang X, Zhang Q. Intestinal flora alterations in patients with early chronic kidney disease: a case-control study among the Han population in southwestern China. J Int Med Res 2021; 48:300060520926033. [PMID: 32495708 PMCID: PMC7273791 DOI: 10.1177/0300060520926033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective In this case–control study, we retrospectively analyzed the intestinal flora compositions of patients with early-stage chronic kidney disease (CKD). Methods Forty-seven patients with early CKD who were treated at the Traditional Chinese Medicine Hospital between March and October 2018 were enrolled, and 150 healthy volunteers were enrolled in the healthy control group. Fresh stool samples were collected. The V3–V4 region of the bacterial 16S rRNA was amplified via PCR. Biterminal sequencing was performed using the Illumina MiSeq platform. The flora compositions were compared between the two groups. Results The Chao1 and Shannon indices showed significantly lower intestinal flora diversity and abundances in the CKD group than in the healthy controls. Beta diversity analysis revealed notable differences in the intestinal flora compositions between the groups. At the phylum level, Actinobacteria and Proteobacteria abundances were significantly higher in the CKD group. Thirty-one species differed significantly between both groups, among which, differences in Ruminococcus and Roseburia displayed the highest diagnostic values for distinguishing CKD patients from healthy controls. Conclusions Intestinal flora compositions are altered in early-stage CKD patients among the Han population in southwestern China.
Collapse
Affiliation(s)
- Qiongdan Hu
- Department of Nephrology, the Traditional Chinese Medicine Hospital Affiliated with Southwest Medical University, Luzhou, China
| | - Kaiyan Wu
- Department of Nephrology, the Traditional Chinese Medicine Hospital Affiliated with Southwest Medical University, Luzhou, China
| | - Wei Pan
- Department of Nephrology, the Traditional Chinese Medicine Hospital Affiliated with Southwest Medical University, Luzhou, China
| | - Yan Zeng
- Department of Nephrology, the Traditional Chinese Medicine Hospital Affiliated with Southwest Medical University, Luzhou, China
| | - Keqin Hu
- Department of Nephrology, the Traditional Chinese Medicine Hospital Affiliated with Southwest Medical University, Luzhou, China
| | - Dingguo Chen
- Department of Nephrology, the Traditional Chinese Medicine Hospital Affiliated with Southwest Medical University, Luzhou, China
| | - Xinchun Huang
- Department of Nephrology, the Traditional Chinese Medicine Hospital Affiliated with Southwest Medical University, Luzhou, China
| | - Qiong Zhang
- Department of Nephrology, the Traditional Chinese Medicine Hospital Affiliated with Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Yang G, Wei J, Liu P, Zhang Q, Tian Y, Hou G, Meng L, Xin Y, Jiang X. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism 2021; 117:154712. [PMID: 33497712 DOI: 10.1016/j.metabol.2021.154712] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/27/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes is the fastest-growing metabolic disease in the world. Many clinical studies have found that type 2 diabetes patients have metabolic disorders and chronic inflammatory states accompanied by disturbances in the gut microbiota. The gut microbiota plays an important role in body metabolism and immune regulation, and disturbances in the gut microbiota in conjunction with destruction of the intestinal barrier in type 2 diabetes patients causes damage to multiple organs. Therefore, the gut microbiota may be a new therapeutic target for treating type 2 diabetes and related diseases. In this review, we introduce the characteristics of the gut microbiota in type 2 diabetes and related diseases, as well as highlight the potential molecular mechanisms of their effects on intestinal barrier disruption, metabolic disorders, and chronic inflammation. Finally, we summarize an intestinal microecological therapeutic strategy, with a focus on shaping the intestinal bacteria, to improve the malignant progress of type 2 diabetes and related diseases. AUTHOR SUMMARY: Type 2 diabetes (T2D) is the fastest-growing metabolic disease in the world. Many clinical studies have found that T2D patients have metabolic disorders and chronic inflammatory states, accompanied by disturbances of the gut microbiota and increased intestinal permeability. The number of human gut microbiota is more than 10 times of human cells, and they play an important role in the body's metabolism and immune regulation. The abnormal intestinal metabolites and intestinal barrier disruption caused by the gut microbiota dysbiosis in the T2D facilitate intestinal bacteria and their harmful metabolites entering the circulatory system. The abnormal entering will cause the damage to multiple organs through disturbing insulin sensitivity, glucose metabolism, and immune homeostasis. Therefore, the gut microbiota may be a new therapeutic target for improving T2D and its related diseases. In this review, we introduce the compositional characteristics of the gut microbiota in T2D, and highlight some new molecular mechanisms of their effects on intestinal barrier disruption, metabolic disorders and chronic inflammation in T2D and its related diseases. Finally, we summarize an intestinal microecological therapeutic strategy, with a focus on shaping the intestinal bacteria, to improve the malignant progress of T2D and related diseases.
Collapse
Affiliation(s)
- Ge Yang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Pinyi Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Qihe Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Department of Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guowen Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
38
|
Dudzicz S, Wiecek A, Adamczak M. Clostridioides difficile Infection in Chronic Kidney Disease-An Overview for Clinicians. J Clin Med 2021; 10:E196. [PMID: 33430465 PMCID: PMC7827228 DOI: 10.3390/jcm10020196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Increased incidence of Clostridioides difficile infection (CDI), occurrence of severe and complicated CDI, and more frequent occurrence of drug-resistant, recurrent or non-hospital CDI has become a worldwide clinical problem. CDI is more common in patients with chronic kidney disease (CKD) than in the general population. CDI seems to be associated with frequent hospitalization, frequently used antibiotic therapy, dysbiosis, and abnormalities of the immune system observed in CKD patients. Dysbiosis is a common disorder found in CKD patients. It may be related to insufficient fiber content in the diet, reduced amount of consumed fluids and often reduced physical activity, constipation, impaired gastrointestinal motility, multidrug pharmacotherapy, and uremic milieu in CKD stage 5. In patients with CKD the clinical manifestations of CDI are similar to the general population; however, more frequent recurrence of CDI and higher prevalence of severe CDI are reported. Moreover, the increase in CDI related mortality is observed more in CKD patients than in the general population. The aim of this review paper is to summarize the current knowledge concerning the epidemiology, pathogenesis, clinical picture, and prevention and treatment in CKD patients.
Collapse
Affiliation(s)
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027 Katowice, Poland; (S.D.); (M.A.)
| | | |
Collapse
|
39
|
Lakshmanan AP, Al Za'abi M, Ali BH, Terranegra A. The influence of the prebiotic gum acacia on the intestinal microbiome composition in rats with experimental chronic kidney disease. Biomed Pharmacother 2021; 133:110992. [PMID: 33202283 DOI: 10.1016/j.biopha.2020.110992] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a globally common and important disease and there are evidence for a bidirectional relationship between microbiota and CKD. The aim of the study was to examine the influence of prebiotic - gum acacia (GA) on the intestinal microbiota in rats with adenine-induced CKD. Animals were randomly distributed into four equal groups (n = 6): control, adenine, GA and adenine + GA groups. CKD was induced by adenine (0.75% w/w) given in the diet daily for four weeks, and GA was administered in drinking water at a concentration of 15% w/v. The 16s rRNA analysis was performed on Illumina Miseq targeting V3-V4 region to characterize microbial composition. The abundance of Actinobacteria, Proteobacteria, Tenericutes and Verrucomicrobia bacteria was increased in adenine-induced CKD, and GA treatment successfully reversed those levels. Interestingly, alpha and beta diversity index were both reduced with GA treatment in rats with CKD. Short chain fatty acids (SCFAs) measurement and PICRUSt analysis have shown that GA treatment completely restored the depleted butyrate level and various perturbated functional pathways, respectively, in CKD rats. Taking together, our results suggest that GA supplementation has a beneficial role in treating CKD, through an increased production of butyrate, as well as its anti-inflammatory, antioxidant capacity and anti-nitrosative properties.
Collapse
Affiliation(s)
| | - Mohammed Al Za'abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
40
|
Zhang C, Shao H, Li D, Xiao N, Tan Z. Role of tryptophan-metabolizing microbiota in mice diarrhea caused by Folium sennae extracts. BMC Microbiol 2020; 20:185. [PMID: 32600333 PMCID: PMC7325056 DOI: 10.1186/s12866-020-01864-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although reports have provided evidence that diarrhea caused by Folium sennae can result in intestinal microbiota diversity disorder, the intestinal bacterial characteristic and specific mechanism are still unknown. The objective of our study was to investigate the mechanism of diarrhea caused by Folium sennae, which was associated with intestinal bacterial characteristic reshaping and metabolic abnormality. RESULTS For the intervention of Folium sennae extracts, Chao1 index and Shannon index were statistical decreased. The Beta diversity clusters of mice interfered by Folium sennae extracts were distinctly separated from control group. Combining PPI network analysis, cytochrome P450 enzymes metabolism was the main signaling pathway of diarrhea caused by Folium sennae. Moreover, 10 bacterial flora communities had statistical significant difference with Folium sennae intervention: the abundance of Paraprevotella, Streptococcus, Epulopiscium, Sutterella and Mycoplasma increased significantly; and the abundance of Adlercreutzia, Lactobacillus, Dehalobacterium, Dorea and Oscillospira reduced significantly. Seven of the 10 intestinal microbiota communities were related to the synthesis of tryptophan derivatives, which affected the transformation of aminotryptophan into L-tryptophan, leading to abnormal tryptophan metabolism in the host. CONCLUSIONS Folium sennae targeted cytochrome P450 3A4 to alter intestinal bacterial characteristic and intervene the tryptophan metabolism of intestinal microbiota, such as Streptococcus, Sutterella and Dorea, which could be the intestinal microecological mechanism of diarrhea caused by Folium sennae extracts.
Collapse
Affiliation(s)
- Chenyang Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Haoqing Shao
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Dandan Li
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Nenqun Xiao
- Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Zhoujin Tan
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan, China. .,Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
41
|
Lai S, Mazzaferro S, Muscaritoli M, Mastroluca D, Testorio M, Perrotta A, Esposito Y, Carta M, Campagna L, Di Grado M, Ramaccini C, De Leo S, Galani A, Amabile MI, Molfino A. Prebiotic Therapy with Inulin Associated with Low Protein Diet in Chronic Kidney Disease Patients: Evaluation of Nutritional, Cardiovascular and Psychocognitive Parameters. Toxins (Basel) 2020; 12:toxins12060381. [PMID: 32526852 PMCID: PMC7354587 DOI: 10.3390/toxins12060381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
A relationship between dysbiotic gut microbiome and chronic kidney disease (CKD) has been recently documented; it contributes to CKD-related complications, including cardiovascular disease. Aim: We tested how a low-protein diet (LPD)-with or without oral inulin supplementation as a prebiotic-modulates some inflammatory, atherosclerosis and endothelial dysfunction indices and nutritional markers, as well as psychocognitive functions in CKD patients. We conducted a prospective, case-control study on CKD patients on conservative therapy, divided in two groups: the intervention group treated with LPD (0.6 g/kg/day) plus inulin (19 g/day) and a control group treated with LPD without inulin, for six consecutive months. Clinical and hematochemical parameters as well as instrumental, and psychocognitive assessments (by SF-36 survey and MMSE, HAM-D, BDI-II) were recorded in all the participants at baseline (T0), at three months (T1) and at six months (T2). A total of 41 patients were enrolled: 18 in the intervention group and 23 in the control group. At T2, in both groups, we observed a significant reduction of serum nitrogen and phosphorus (p ≤ 0.01) and serum uric acid (p ≤ 0.03), and an improvement in metabolic acidosis (bicarbonates, p ≤ 0.01; base excess, p ≤ 0.02). Moreover, at T2 the intervention group showed a reduction in serum insulin (p = 0.008) and fasting glucose levels (p = 0.022), HOMA-IR (p = 0.004), as well as lower total serum cholesterol (p = 0.012), triglycerides (p = 0.016), C-reactive protein (p = 0.044) and homocysteine (p = 0.044) and higher HDL (p < 0.001) with respect to baseline. We also observed a significant amelioration of some quality of life and functional status indices (SF-36 survey) among the intervention group compared to controls, without a significant improvement in the cognitive state (MMSE). On the other hand, an amelioration in mood (by HAM-D and BDI-II) was found in the intervention group and in controls (only by BID-II). In conclusion, LPD in association with oral inulin supplementation improved glycemic and lipid metabolism and ameliorated the systemic inflammatory state, likely reducing cardiovascular risk in CKD patients and this may represent a promising therapeutic option, also improving quality of life and mood.
Collapse
Affiliation(s)
- Silvia Lai
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
- Correspondence: ; Tel.: +39-393-384094031; Fax: +390649972068
| | - Sandro Mazzaferro
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
| | - Daniela Mastroluca
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
| | - Massimo Testorio
- Department of Obstetrical-Gynecological Sciences and Urologic Sciences, Unit of Nephrology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Adolfo Perrotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
| | - Ylenia Esposito
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
| | - Maria Carta
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
| | - Linda Campagna
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
| | - Marta Di Grado
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
| | - Cesarina Ramaccini
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
| | - Sabrina De Leo
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
| | - Alessandro Galani
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Maria Ida Amabile
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
| | - Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (S.M.); (M.M.); (D.M.); (A.P.); (Y.E.); (M.C.); (L.C.); (M.D.G.); (C.R.); (S.D.L.); (M.I.A.); (A.M.)
| |
Collapse
|
42
|
Mantovani A, Zusi C, Dalbeni A, Grani G, Buzzetti E. Risk of Kidney Dysfunction IN Nafld. Curr Pharm Des 2020; 26:1045-1061. [DOI: 10.2174/1381612825666191026113119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Background:
The timely identification of traditional and non-traditional precursors and risk factors for
chronic kidney disease (CKD) (a common systemic disease defined as a decreased kidney function documented
by reduced glomerular filtration rate, or markers of kidney damage, or both) is relevant in clinical practice, as
CKD increases the risk of end-stage renal disease and other serious comorbidities. A possible relationship between
non-alcoholic fatty liver disease (NAFLD) (which is to date the most common chronic disease worldwide)
and CKD has recently gained significant attention of researchers.
Methods :
A systematic literature search using appropriate keywords was made in order to identify relevant articles
that have investigated the association between NAFLD and CKD.
Results:
Several observational studies and meta-analyses have reported the existence of an independent association
between NAFLD and risk of CKD in patients with and without diabetes. However, whilst the association
between NAFLD and risk of prevalent CKD is strong across various patient populations, whether NAFLD is
independently associated with the development and progression of CKD is still debatable. Moreover, emerging
evidence now suggests a potential association between patatin-like phospholipase domain-containing protein-3
(PNPLA3) rs738409 genotype (the most important genetic variant associated to NAFLD) and decreasing kidney
function, independent of NAFLD.
Conclusions :
Convincing evidence now indicates that CKD is increased among patients with NAFLD. For this
reason, patients with NAFLD should be regularly monitored for renal function and, on the other hand , NAFLD
should be considered in all patients with CKD, especially if they are obese or have type 2 diabetes.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Chiara Zusi
- Section of Endocrinology, Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Andrea Dalbeni
- Section of General Medicine, Hypertension and Liver Unit, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Giorgio Grani
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Buzzetti
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
43
|
Hu X, Ouyang S, Xie Y, Gong Z, Du J. Characterizing the gut microbiota in patients with chronic kidney disease. Postgrad Med 2020; 132:495-505. [PMID: 32241215 DOI: 10.1080/00325481.2020.1744335] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: Emerging evidence suggests that gut microbiota dysbiosis plays a critical role in chronic kidney disease (CKD). However, the relationship between altered gut microbiome profiles and disease severity remains unclear. In this study, we sought to characterize the gut microbiota in CKD patients compared to healthy controls, and to explore potential relationships between gut microbiota composition and disease severity. Methods: Fecal samples were collected from 95 patients at different stages of CKD (non-dialysis patients from stage 1 to 5) and 20 healthy controls. Bacterial DNA was extracted for 16S ribosomal DNA sequencing targeting the V3-V4 region. The diversity and relative abundance of gut microbiota were analyzed as outcome indicators. Results: Differences were observed in the microbial composition and diversity of fecal samples from CKD patients and healthy controls. Specifically, disease severity was found to alter gut microbiota composition. Compared to that in healthy controls, CKD patients showed an increased abundance of Proteobacteria and decreased Synergistetes, most notably in disease stage 5. Lower levels of butyrate-producing bacteria and higher levels of potential pathogens were also detected in CKD patients. Further, Pyramidobacter and Prevotellaceae_UCG-001 were significantly decreased in the CKD1 group compared with healthy controls. Notably, nine microbial genera, including Escherichia-Shigella, Parabacteroides, Roseburia, rectale_group, Ruminococcaceae_NK4A214_group, Prevotellaceae_UCG.001, Hungatella, Intestinimonas, and Pyramidobacter, identified using a random forest model, distinguished between patients with CKD and healthy controls with high accuracy. Functional analysis also revealed that fatty acid and inositol phosphate metabolism were enriched in the CKD group, while aminoacyl-tRNA biosynthesis, oxidative phosphorylation, phenylalanine, tyrosine, and tryptophan biosynthesis, thiamine metabolism, pantothenate, and CoA biosynthesis, as well as valine, leucine, and isoleucine biosynthesis were enriched in healthy controls. Conclusion: Gut microbiota composition and function are associated with CKD severity. And, specific gut microbes are potentially helpful for CKD early diagnosis and prognosis monitoring.
Collapse
Affiliation(s)
- Xiaofang Hu
- Department of Pharmacy, Xiangya Hospital, Central South University , Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital , Changsha, Hunan, China
| | - Shaxi Ouyang
- Department of Nephrology, Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University , Changsha, Hunan, China
| | - Yuhong Xie
- Department of Pharmacy, Xiangya Hospital, Central South University , Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital , Changsha, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University , Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital , Changsha, Hunan, China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University , Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital , Changsha, Hunan, China
| |
Collapse
|
44
|
Byrne CD, Targher G. NAFLD as a driver of chronic kidney disease. J Hepatol 2020; 72:785-801. [PMID: 32059982 DOI: 10.1016/j.jhep.2020.01.013] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/27/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and chronic kidney disease (CKD) are worldwide public health problems, affecting up to 25-30% (NAFLD), and up to 10-15% (CKD) of the general population. Recently, it has also been established that there is a strong association between NAFLD and CKD, regardless of the presence of potential confounding diseases such as obesity, hypertension and type 2 diabetes. Since NAFLD and CKD are both common diseases that often occur alongside other metabolic conditions, such as type 2 diabetes or metabolic syndrome, elucidating the relative impact of NAFLD on the risk of incident CKD presents a substantial challenge for investigators working in this research field. A growing body of epidemiological evidence suggests that NAFLD is an independent risk factor for CKD and recent evidence also suggests that associated factors such as metabolic syndrome, dysbiosis, unhealthy diets, platelet activation and processes associated with ageing could also contribute mechanisms linking NAFLD and CKD. This narrative review provides an overview of the literature on: a) the evidence for an association and causal link between NAFLD and CKD and b) the underlying mechanisms by which NAFLD (and factors strongly linked with NAFLD) may increase the risk of developing CKD.
Collapse
Affiliation(s)
- Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK; Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, UK.
| | - Giovanni Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy.
| |
Collapse
|
45
|
Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflugers Arch 2020; 472:303-320. [PMID: 32064574 DOI: 10.1007/s00424-020-02352-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) represents a growing public health problem associated with loss of kidney function and cardiovascular disease (CVD), the main leading cause of morbidity and mortality in CKD. It is well established that CKD is associated with gut dysbiosis. Over the past few years, there has been a growing interest in studying the composition of the gut microbiota in patients with CKD as well as the mechanisms by which gut dysbiosis contributes to CKD progression, in order to identify possible therapeutic targets to improve the morbidity and survival in CKD. The purpose of this review is to explore the clinical evidence and the mechanisms involved in the gut-kidney crosstalk as well as the possible interventions to restore a normal balance of the gut microbiota in CKD. It is well known that the influence of the gut microbiota on the gut-kidney axis acts in a reciprocal way: on the one hand, CKD significantly modifies the composition and functions of the gut microbiota. On the other hand, gut microbiota is able to manipulate the processes leading to CKD onset and progression through inflammatory, endocrine, and neurologic pathways. Understanding the complex interaction between these two organs (gut microbiota and kidney) may provide novel nephroprotective interventions to prevent the progression of CKD by targeting the gut microbiota. The review is divided into three main sections: evidences from clinical studies about the existence of a gut microbiota dysbiosis in CKD; the complex mechanisms that explain the bidirectional relationship between CKD and gut dysbiosis; and reports regarding the effects of prebiotic, probiotic, and synbiotic supplementation to restore gut microbiota balance in CKD.
Collapse
|
46
|
Pan L, Han P, Ma S, Peng R, Wang C, Kong W, Cong L, Fu J, Zhang Z, Yu H, Wang Y, Jiang J. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharm Sin B 2020; 10:249-261. [PMID: 32082971 PMCID: PMC7016297 DOI: 10.1016/j.apsb.2019.10.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
The progression of hyperuricemia disease is often accompanied by damage to renal function. However, there are few studies on hyperuricemia nephropathy, especially its association with intestinal flora. This study combines metabolomics and gut microbiota diversity analysis to explore metabolic changes using a rat model as well as the changes in intestinal flora composition. The results showed that amino acid metabolism was disturbed with serine, glutamate and glutamine being downregulated whilst glycine, hydroxyproline and alanine being upregulated. The combined glycine, serine and glutamate could predict hyperuricemia nephropathy with an area under the curve of 1.00. Imbalanced intestinal flora was also observed. Flavobacterium, Myroides, Corynebacterium, Alcaligenaceae, Oligella and other conditional pathogens increased significantly in the model group, while Blautia and Roseburia, the short-chain fatty acid producing bacteria, declined greatly. At phylum, family and genus levels, disordered nitrogen circulation in gut microbiota was detected. In the model group, the uric acid decomposition pathway was enhanced with reinforced urea liver-intestine circulation. The results implied that the intestinal flora play a vital role in the pathogenesis of hyperuricemia nephropathy. Hence, modulation of gut microbiota or targeting at metabolic enzymes, i.e., urease, could assist the treatment and prevention of this disease.
Collapse
Affiliation(s)
- Libin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shurong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Ran Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Can Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Weijia Kong
- Insitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Lin Cong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zhengwei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
- Corresponding authors. Tel.: +86 10 63165238, Fax: +86 10 63165238; Tel.: +86 10 83160005, Fax: +86 10 63017757.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
- Corresponding authors. Tel.: +86 10 63165238, Fax: +86 10 63165238; Tel.: +86 10 83160005, Fax: +86 10 63017757.
| |
Collapse
|