1
|
Punzalan JM, Hartono P, Fraser-Miller SJ, Leong SY, Sutton K, Moggre GJ, Gordon KC, Oey I. MicroNIR spectroscopy with chemometric analysis provides rapid protein content evaluation and prediction of semi-refined flaxseed protein extract produced via pulsed electric field (PEF)-assisted extraction. Food Chem 2025; 473:143062. [PMID: 39884237 DOI: 10.1016/j.foodchem.2025.143062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Near-infrared (NIR) spectroscopy with chemometrics was used to evaluate semi-refined flaxseed protein extract (SRFPE) and predict its protein content. The effect of extraction medium (water vs. alkaline) employed after pulsed electric field (PEF) treatment on protein yield was also studied. Spectral data were validated for nitrogen content against the Dumas and Kjeldahl methods. The root mean square error of prediction (RMSEP) and the ratio of performance deviation (RPD) for optimally preprocessed data were 0.09 % and 8.26 respectively. The spectral shifts suggested protein conformational changes influenced by extraction method, pH and the applied PEF energy input. These results showed the ability of NIR (908-1676 nm) for rapid, accurate and non-destructive protein quantification across diverse sample matrices while demonstrating its potential for streamlining analytical processes.
Collapse
Affiliation(s)
- Jervee M Punzalan
- Dodd-Walls Centre for Photonic and Quantum Technologies and Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; Department of Food Science, University of Otago, Dunedin 9016, New Zealand; Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand; Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines, Manila 1000, Philippines
| | - Peter Hartono
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand; Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
| | - Sara J Fraser-Miller
- College of Science and Engineering, Flinders University, Adelaide, 5042, Australia
| | - Sze Ying Leong
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand; Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Kevin Sutton
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
| | - Gert-Jan Moggre
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
| | - Keith C Gordon
- Dodd-Walls Centre for Photonic and Quantum Technologies and Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand; Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
2
|
Molina-Gilarranz I, Cebrián-Lloret V, Recio I, Martínez-Sanz M. Impact of structure and composition on the digestibility and nutritional quality of alternative protein-rich extracts from the green seaweed Ulva lacinulata. Food Res Int 2025; 201:115646. [PMID: 39849785 DOI: 10.1016/j.foodres.2024.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This study reports on the nutritional quality of protein-polysaccharide extracts obtained from the green seaweed Ulva lacinulata, through a previously optimized method, evaluating the impact of their distinct composition and structure. Protein solubility was strongly influenced by protein-polysaccharide interactions, being higher in extracts with lower polysaccharide content. This, in turn, had a significant impact on the in vitro protein digestibility. In particular, protein digestibility was found to be higher in those extracts with higher protein content, reaching approximately 62-75 %, hence largely improving the digestibility of the native seaweed (ca. 25 %). The protein nutritional quality in the native seaweed was relatively poor, as suggested by the low Digestible Indispensable Amino Acid Score (DIAAS) (ca. 18 for adults), with histidine being the limiting amino acid. On the other hand, the extracts showed significantly greater DIAAS values, especially in those with lower polysaccharide content (up to 31), with lysine being the limiting amino acid. These findings provide the basis for the design of seaweed-based protein-rich ingredients with enhanced protein digestibility and nutritional quality, for their implementation in the food industry.
Collapse
Affiliation(s)
- Irene Molina-Gilarranz
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain; Escuela de Doctorado, Universidad Autónoma de Madrid, C. Francisco Tomás y Valiente, 2, 28049 Madrid, Spain
| | - Vera Cebrián-Lloret
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Isidra Recio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Marta Martínez-Sanz
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain.
| |
Collapse
|
3
|
Maseko KH, Regnier T, Bartels P, Meiring B. Mushroom mycelia as sustainable alternative proteins for the production of hybrid cell-cultured meat: A review. J Food Sci 2025; 90:e70060. [PMID: 39921300 PMCID: PMC11806284 DOI: 10.1111/1750-3841.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
World agriculture endures an immense challenge in feeding the world's growing population in the face of several productivity and environmental threats. Yet, the demand for alternative protein sources is rapidly increasing as a result of population growth, including health and ethical concerns associated with meat consumption. Edible mushroom species contain a high composition of protein, fiber, vitamins, and a variety of minerals, and are regarded as sufficient sources of food products. Pleurotus genus is one of the most extensively studied edible fungi due to its exceptional physical, chemical, biological, and enzymatic properties. The assessment on the effects of the in vitro culture media composition, including carbon and nitrogen sources, pH, and temperature are all necessary for enhancing mushroom mycelial biomass growth and production. Mycoprotein as a fungal-derived protein source has been identified as a more sustainable and healthier meat substitute due to its fibrous structure, high nutritional value, and unique functional profile. Its distinctive production method results in a much lower carbon and water footprint than traditional farming methods. A systemic transition from traditional agriculture to more sustainable cellular agriculture using cell-cultivation methods to create animal products has been proposed and initiated. This review can provide an overview on the various processes involved in the production and usage of mycelium as an alternative protein source in hybrid cell-cultured meat production.
Collapse
Affiliation(s)
- Kayise Hypercia Maseko
- Department of Biotechnology and Food TechnologyTshwane University of TechnologyPretoriaRepublic of South Africa
| | - Thierry Regnier
- Department of Biotechnology and Food TechnologyTshwane University of TechnologyPretoriaRepublic of South Africa
| | | | - Belinda Meiring
- Department of Biotechnology and Food TechnologyTshwane University of TechnologyPretoriaRepublic of South Africa
| |
Collapse
|
4
|
Kryachko Y, Arasaratnam L, House JD, Ai Y, Nickerson MT, Korber DR, Tanaka T. Microbial protein production during fermentation of starch-rich legume flours using Aspergillus oryzae and Lactobacillus plantarum starter cultures. J Biosci Bioeng 2025:S1389-1723(24)00368-2. [PMID: 39863508 DOI: 10.1016/j.jbiosc.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
Starch-rich faba bean, yellow lentil, and yellow field pea flours were subjected to submerged fermentation using Aspergillus oryzae and Lactobacillus plantarum starter mono- or co-cultures, to increase protein contents of the flours. Fermentation mixes were supplemented with up to 35 g/L urea, ammonium sulfate and/or monoammonium phosphate as nitrogen sources. Protein contents of the flours increased 2-2.5-fold, i.e., total protein contents of up to 33 % were achieved following fermentation with A. oryzae monoculture or A. oryzae‒L. plantarum co-culture. Therefore, A. oryzae was capable of efficient legume starch utilization and protein production. Using A. oryzae‒L. plantarum co-culture led to the highest yields of at least six of microbially produced amino acids. After fermentation by L. plantarum monoculture, protein contents remained largely unchanged. However, in vitro protein digestibility of flours improved to a greater extent after fermentation with L. plantarum monoculture than with either A. oryzae monoculture or the co-culture. Hence, during fermentation with L. plantarum monoculture, microbially mediated hydrolysis of legume protein (generating smaller and easier digestible peptides), rather than microbial starch utilization, was the predominant process.
Collapse
Affiliation(s)
- Yuriy Kryachko
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Lashmitha Arasaratnam
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - James Duncan House
- Faculty of Agricultural and Food Sciences, University of Manitoba, 204 Richardson Centre for Food Technology and Research, 196 Innovation Drive, Winnipeg, MB, R3T 2N2, Canada
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Michael Todd Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Darren Raymond Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Takuji Tanaka
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
5
|
Chen Y, Oliveira WS, Dias FFG, Ismail BP. Impact of a Novel Two-Phase Natural Deep Eutectic Solvent-Assisted Extraction on the Structural, Functional, and Flavor Properties of Hemp Protein Isolates. PLANTS (BASEL, SWITZERLAND) 2025; 14:274. [PMID: 39861627 PMCID: PMC11768760 DOI: 10.3390/plants14020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Defatting dehulled hemp seeds is a crucial step prior to protein extraction. However, conventional methods rely on flammable solvents, posing significant health, safety, and environmental concerns. Additionally, hemp protein has poor extractability, challenging functionality, and flavor limitations, restricting its broader application in foods. Accordingly, a two-phase natural deep eutectic solvent (NADES)-assisted extraction was evaluated as a solvent-free alternative for co-extracting protein and oil from full-fat hemp flour. In comparison to the reference hemp protein isolate (R-HPI), produced from hexane-defatted flour following conventional alkaline extraction, NADES-extracted hemp protein isolate (N-HPI) had significantly higher protein extraction yield and purity. N-HPI exhibited enhanced surface charge, lower hydrophobicity, and thus higher solubility at an acidic pH compared to R-HPI. N-HPI had a higher abundance of edestin and lower levels of vicilin-like proteins, which contributed to superior gelation compared to R-HPI. N-HPI, compared to R-HPI, contained lower levels of lipid-derived off-flavor compounds, such as aldehydes, alcohols, and ketones. These findings highlighted, for the first time, the potential of a two-phase NADES-assisted extraction as a sustainable alternate and effective process for producing high-quality, functional hemp protein. The development of such a green process is an impetus for broadening the applications of hemp protein in food systems.
Collapse
Affiliation(s)
| | | | - Fernanda F. G. Dias
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.C.); (W.S.O.)
| | - Baraem P. Ismail
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.C.); (W.S.O.)
| |
Collapse
|
6
|
Costa JEG, Matos JDS, Azevedo PZ, Souza FDCDA, Rodrigues S, Fernandes FAN, da Silva VM, Bezerra JDA, Sanches EA, Lamarão CV, Vidigal MCTR, Stringheta PC, Martins E, Campelo PH. Techno-functionality of jack bean (Canavalia ensiformis) protein concentrate: a comparative study with soy and pea proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39815735 DOI: 10.1002/jsfa.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND With the growing human awareness of the environmental and animal stress caused by the meat industry, the consumption of plant-based products has expanded. Plant proteins have gained market prominence due to their sustainable origin, economic value and health benefits. Well-established plant proteins in the market, such as those of soy and pea, have various applications as ingredients in the food industry. However, given the wide variety of protein sources, it is necessary to conduct studies on the chemical and techno-functional characterization of other raw materials to further diversify their properties. In this context, the present study introduces jack bean protein concentrate (JBPC) as a potential alternative to proteins already established in the market. Techno-functional properties such as surface hydrophobicity, solubility, zeta potential, water- and oil-holding capacity, foam capacity and stability, emulsion stability and gel formation and rheology were analyzed. RESULTS The protein content obtained from the extraction of the JBPC was 73 g (100 g)-1 on a dry weight basis, with an extraction yield of approximately 10% (w/w). Least gelation concentration for JBPC was 20%. JBPC exhibited a predominantly hydrophobic nature, with good oil retention capacity and emulsion and foam stabilization properties. The structure of JBPC was more linear, stable and rigid, which primarily influenced gel stiffness. CONCLUSION Based on the study of techno-functional properties, JBPC proved to be an excellent alternative to soy protein isolate and pea protein concentrate in various applications, with potential for becoming an innovative ingredient in the food industry. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Paula Zambe Azevedo
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Sueli Rodrigues
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Vanelle Maria da Silva
- Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Florestal, Brazil
| | | | | | | | | | | | - Evandro Martins
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
7
|
Cao X, Liu H, Yang M, Mao K, Wang X, Chen Z, Ran M, Hao L. Evaluation of the nutritional quality of yeast protein in comparison to animal and plant proteins using growing rats and INFOGEST model. Food Chem 2025; 463:141178. [PMID: 39303477 DOI: 10.1016/j.foodchem.2024.141178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Yeast, identified as a microorganism, boasts a considerable protein content, positioning yeast protein as a highly promising alternative in the quest for sustainable protein sources. The primary aim of this study is to evaluate the protein quality of yeast protein and compare it with animal proteins (whey concentrate/isolate proteins) and plant proteins (soy, wheat, pea proteins). Notably, yeast protein exhibits the highest ratio of indispensable/dispensable amino acids (IAAs/DAAs, 0.91). However, in both in vivo and in vitro digestion experiments, yeast protein demonstrated lower true protein digestibility (TPD) and true ileal digestibility (TID) compared to other proteins. Despite this, the yeast protein's amino acid score (AAS, 1.37 for >3 years), protein digestibility-corrected amino acid score (PDCAAS, 100 % for >3 years), and digestibility-corrected amino acid score (DIAAS, 82.42 % for >3 years) of yeast protein surpassed those of plant proteins, yet remained lower than animal proteins primarily due to its lower digestibility.
Collapse
Affiliation(s)
- Xin Cao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Hongjuan Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Miao Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Kanmin Mao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Xinzheng Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Ziyu Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Mingqi Ran
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
| |
Collapse
|
8
|
Qiu C, Meng Y, Zhang Z, Li X, McClements DJ, Li G, Jiang L, Wen J, Jin Z, Ji H. Enhancement of soy protein functionality by conjugation or complexation with polysaccharides or polyphenols: A review. Compr Rev Food Sci Food Saf 2025; 24:e70095. [PMID: 39746860 DOI: 10.1111/1541-4337.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Soy proteins have good nutritional quality and exhibit a range of useful functional attributes, making them a viable option for replacing animal proteins in the development of more sustainable and eco-friendly plant-based food products. Nevertheless, soy proteins are prone to denaturation and/or aggregation under conditions they encounter in some food and beverage products (including certain pH, ionic, and thermal conditions), which adversely impact their functional performance. This problem can often be overcome by covalently (conjugation) or noncovalently (complexation) linking the soy proteins to polysaccharides or polyphenols, thereby expanding their application scope. Compared to soy proteins alone, these conjugates or complexes exhibit enhanced technofunctional performance, including improved solubility, emulsification, foaming, gelling, antimicrobial properties, and antioxidant capacities. Conjugates are typically more stable than complexes, which may be an advantage for some food applications. However, complexes do not require additional regulatory approval, which makes them more suitable for most food applications. This review aims to comprehensively examine the enhancement of soy protein functionality through conjugation or complexation with polysaccharides or polyphenols. The research focuses on how these modifications enhance solubility, emulsification potential, foaming, gelling, and antioxidant properties, reduce the allergenicity of soy proteins, and enable their potential applications in plant-based food development, 3D food printing, fat substitutes, functional food carriers, and hypoallergenic foods.
Collapse
Affiliation(s)
- Chao Qiu
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yaxu Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | | | - Guanghua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Qiao K, Huang Q, Sun T, Chen B, Huang W, Su Y, Lin H, Liu Z. Preparation and Efficacy Evaluation of Antihyperuricemic Peptides from Marine Sources. Nutrients 2024; 16:4301. [PMID: 39770922 PMCID: PMC11678060 DOI: 10.3390/nu16244301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Marine-derived foods, often called blue foods, are promising sustainable alternatives to conventional food sources owing to their abundant amino acids and high protein content. Current treatments for hyperuricemia, a chronic condition attributed to purine metabolism disorders, are associated with various side effects. Novel peptide xanthine oxidase inhibitors have been discovered in the hydrolyzed products of marine fish and invertebrate proteins, which have demonstrated promising therapeutic potential by reducing uric acid levels in vitro and in vivo. This review explores the potential therapeutic effects of xanthine oxidase inhibitors derived from marine fish and invertebrates, summarizes the methods for extracting bioactive peptides from marine organisms, and emphasizes the impact of different proteases on the structure-activity relationship of bioactive peptides. The hypouricemic effects of these bioactive peptides warrant further verification. There is consensus on the in vitro chemical methods used to verify the xanthine oxidase inhibitory effects of these peptides. Considering several cell and animal model development strategies, this review summarizes several highly recognized modeling methods, proposes strategies to improve the bioavailability of bioactive peptides, and advocates for a diversified evaluation system. Although the screening and evaluation methods for antihyperuricemic peptides have been shown to be feasible across numerous studies, they are not optimal. This review examines the deficiencies in bioavailability, synthesis efficiency, and evaluation mechanisms in terms of their future development and proposes potential solutions to address these issues. This review provides a novel perspective for the exploration and application of marine-derived hypouricemic bioactive peptides.
Collapse
Affiliation(s)
- Kun Qiao
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Qiongmei Huang
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Tongtong Sun
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Wenmei Huang
- Xiamen Daozhiyuan Biological Technology Co., Ltd., Xiamen 361024, China;
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Hetong Lin
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
| | - Zhiyu Liu
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| |
Collapse
|
10
|
Li J, Rao W, Sun Y, Zhou C, Xia Q, He J, Pan D, Du L. Structural and gel property changes in chicken myofibrillar protein induced by argon cold plasma-activated water: With a molecular docking perspective. Food Res Int 2024; 197:115271. [PMID: 39593348 DOI: 10.1016/j.foodres.2024.115271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
This study investigated the effects of plasma-activated water (PAW) generated with argon at discharge times of 0, 4, 8, 12, and 16 min on the gel properties and structures of chicken myofibrillar protein (MP). Under treatments of 8, 12, and 16 min, both the gel strength and water retention capacity of MP significantly improved, with the gel strength (0.53 N) peaking at 16 min and the lowest cooking loss(30.38 %). As the treatment time increased from 0 to 16 min, the storage modulus also gradually increased. Results from low-field nuclear magnetic resonance indicated a slowing of water proton mobility, with the proportion of bound water rising from 0.26 % (0 min) to 0.52 % at 16 min. Fourier transform infrared spectroscopy, endogenous fluorescence spectroscopy and scanning electron microscopy confirmed PAW's alteration of MP's secondary and tertiary structures and gel microstructure. Additionally, this study explored the influence of argon PAW's primary active species on MP from a molecular docking perspective·H2O2 could form hydrogen bonds with MP, while O3 and NO2‾could interact via both hydrogen bonds and electrostatic interactions. Thus, PAW can alter protein structure and enhance MP's functional properties, providing insights for applying cold plasma in processing chicken gel products.
Collapse
Affiliation(s)
- Junqi Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Wei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| |
Collapse
|
11
|
Sawant S, Alvarez VB, Heldman DR. Limited enzymatically hydrolyzed pea protein-inulin interactions in gel systems. J Food Sci 2024; 89:9243-9256. [PMID: 39617827 DOI: 10.1111/1750-3841.17581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024]
Abstract
Gelation of protein-polysaccharide mixtures can help create a variety of distinctive gel systems as compared to single polysaccharide or protein gels. The properties of these functional gels are heavily reliant upon the nature of protein-polysaccharides interactions, their gelling compatibility, and mechanism. Pea protein isolate dispersions (7.5%) were subjected to limited enzymatic hydrolysis using the enzyme Alcalase® at three hydrolysis times (0, 3, and 6 min). Inulin was added according to three ratios (0, 1:4, and 2:4) with pea protein. Viscoelastic properties of the gels formed were measured using amplitude sweep and frequency sweep. Storage modulus (G') measurements from the amplitude sweep indicated that samples hydrolyzed for 3 min with 1:4 ratio of inulin to pea protein had maximum gel strength, exhibiting G' values of ∼307 Pa. G' values for samples hydrolyzed for 0 and 6 min with different inulin ratios averaged ∼13 and ∼144 Pa, respectively. Confocal laser scanning microscopy showed that gels developed by samples hydrolyzed for 3 min showed a dense network as compared to an open network in gels formed by samples hydrolyzed for 6 min, whereas large random aggregates were observed in gels formed by samples hydrolyzed for 0 min. The study confirmed that inulin promotes noncovalent bond formation in samples hydrolyzed for 3 min with a 1:4 inulin ratio, shown by an ∼18% increased protein solubility in urea. Additionally, collaboration between noncovalent bonds and disulfide linkages stabilized the gel structure, as indicated by further increase in solubility in combination of urea and Dithiothreitol. PRACTICAL APPLICATION: Plant proteins are gaining attention as alternatives to animal proteins. However, they have inferior functionality, which affects their applicability in food products. This investigation aimed to evaluate enzymatic hydrolysis to enhance the structural and functional properties of pea proteins, thus increasing their applicability in the food industry. Inulin is an oligosaccharide and soluble fiber, which promotes gut health. Thus, gels combining hydrolyzed pea protein and inulin can serve as a model mixed food system of interest to both the industry and consumers.
Collapse
Affiliation(s)
- Sanjana Sawant
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Valente B Alvarez
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Department of Food Science and Technology, The Wilbur A. Gould Food Industries Center, The Ohio State University, Ohio, USA
| | - Dennis R Heldman
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Huang YP, Masarweh C, Paviani B, Mills DA, Barile D. Exploring bioactive compounds in chickpea and bean aquafaba: Insights from glycomics and peptidomics analyses. Food Chem 2024; 460:140635. [PMID: 39111140 DOI: 10.1016/j.foodchem.2024.140635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024]
Abstract
The objective of this study was to identify bioactive oligosaccharides and peptides in the cooking water of chickpeas and common beans, known as aquafaba. The oligosaccharides stachyose, raffinose and verbascose were quantified by high-performance anion-exchange chromatography; 78 and 67 additional oligosaccharides were identified in chickpea and common bean aquafaba, respectively, by LC-MS/MS. Chickpea aquafaba uniquely harbored ciceritol and other methyl-inositol-containing oligosaccharides. In prebiotic growth assays, chickpea aquafaba oligosaccharides were differentially utilized, promoting growth of Limosilactobacillus reuteri DSM 20016 and Bifidobacterium longum subsp. infantis ATCC 15697, but not Lacticaseibacillus rhamnosus GG. Dimethyl labeling, along with LC-MS/MS, effectively differentiated α- and γ-glutamyl peptides, revealing the presence of several γ-glutamyl peptides known to possess kokumi and anti-inflammatory activities, including γ-Glu-Phe and γ-Glu-Tyr in chickpeas aquafaba and γ-Glu-S-methyl-Cys and γ-Glu-Leu in beans aquafaba. This work uncovered unique bioactive peptides and oligosaccharides in aquafaba, helping promote its valorization, food system sustainability, and future health-promoting claims.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Chad Masarweh
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Bruna Paviani
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
13
|
Wang S, Cai M, Wang Y, Zhong L, Hu Y, Fu G. Dietary Clostridium butyricum metabolites mitigated the disturbances in growth, immune response and gut health status of Ctenopharyngodon idella subjected to high cottonseed and rapeseed meal diet. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109934. [PMID: 39357627 DOI: 10.1016/j.fsi.2024.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Cottonseed meal and rapeseed meal exhibit a potential for fishmeal substitute in grass carp feed, while their excessive use contribute to growth decline and weakening immunity of aquatic animals. Clostridium butyricum metabolites (CBM) was recognized as a functional additive due to its antioxidant properties and maintenance of intestinal microbiota balance. CBM was added to a high of cottonseed and rapeseed meal diet to determine its effects on growth, immunity, and intestinal microbiota alterations of grass carp (Ctenopharyngodon idella) over 56 days. Eight hundred grass carp (mean weight, around 50 g) were randomized to five treatments and fed with the basic diet (CON), CBM0 diet (28 % cottonseed and 27 % rapeseed meal), and CBM diets (CBM0.5, CBM1, and CBM2, namely CBM0 diet supplemented with 500, 1000, and 2000 mg kg-1 CBM). The results indicated that compared to CBM0, The ingestion of 1000 mg kg-1 CBM diet by grass carp significantly promoted growth as measured by intestinal lipase activity, villus height, and muscle thickness. Moreover, accompanied by a decrease in intestine MDA content, and enhance antioxidant capacity by activating Keap1/Nrf2 signaling pathway to increase enzyme activities (SOD, CAT and T-AOC) and corresponding gene expression (mnsod, cat, gsto and gpx1) in the intestine of grass crap fed CBM1 diet. The dietary CBM1 diet increased serum levels of C3 and IgM, increased ACP activity and expression of the corresponding anti-inflammatory factors (tgf-β1 and il-15), and suppressed the expression of pro-inflammatory factors (tnf-α and il-12β), resulting in enhanced immunity. The dietary CBM1 diet up-regulates gene expression of tight junction proteins (zo-1, occludin, occludin7a and occludin-c), coupled with the decreases in DAO and D-lactate contents, implying that the decreased mucosal permeability could be observed in the gut. The dietary CBM1 diet largely altered the intestinal microbial community, especially reducing the relative abundance of intestinal pathogenic bacteria (Streptococcus and Actinomyces). And it significantly increased the content of short-chain fatty acids (acetic acid, butyric acid, isobutyric acid, propionic acid and isovaleric acid). Taken above, dietary CBM supplementation improved growth in grass carp and attenuated the intestinal oxidative stress, inflammation and microflora dysbacteriosis caused by high proportions of cottonseed and rapeseed meal diets.
Collapse
Affiliation(s)
- Shao Wang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Minglang Cai
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yan Wang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Lei Zhong
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yi Hu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Guihong Fu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
14
|
Fu G, Zhao M, Wang X, Zheng Z, Shen S, Yan J, Li Q, Gao C, Dong X, Xiao J, Liu L. Effect of ultrasound-assisted pH-shifting treatment on the physicochemical properties of melon seed protein. ULTRASONICS SONOCHEMISTRY 2024; 110:107039. [PMID: 39197192 PMCID: PMC11396366 DOI: 10.1016/j.ultsonch.2024.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Melon seeds have received considerable attention in recent years because of their high protein content, but they have not yet been fully used. The modification of melon seed protein (MSP) using ultrasound-assisted pH-shifting treatment was investigated in this study by analyzing structural characteristics and functional properties. The particle size, free sulfhydryl content, surface hydrophobicity, solubility, secondary structure, water-holding capacity, oil-holding capacity, emulsification activity index, and emulsification stability index of MSP were determined. MSP treated with ultrasound-assisted, pH-shifting had a smaller particle size, lower free sulfhydryl content, higher surface hydrophobicity, and solubility increased from 43.67 % to 89.12 %. The secondary structure of MSP was affected by ultrasonic treatment, manifesting as an α-helix increase and β-helix, β-turn, and random coil content decrease, which may be the reason why the protein structure became more compact after treatment. The water and oil holding capacities of MSP increased from 2.74 g/g and 3.14 g/g in untreated samples to 3.19 g/g and 3.97 g/g for ultrasound-treated samples, and further increased to 3.97 g/g and 5.02 g/g for ultrasound-assisted, pH-shifting treatment at pH 9.0, respectively. The emulsification activity index of MSP was 21.11 m2/g before treatment and reached a maximum of 32.34 m2/g after ultrasound-assisted, pH-shifting treatment at pH 9.0. The emulsification stability of MSP was maximized by ultrasonic treatment at pH 7.0. Ultrasound-assisted, pH-shifting treatment can effectively improve the functional properties of MSP by modifying the protein structure, which improves the potential application of melon seed protein in the food industry.
Collapse
Affiliation(s)
- Guojun Fu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Man Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Xinmiao Wang
- Advanced Agri-Tech Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Zehao Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Shiyu Shen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jiawen Yan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qun Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Chao Gao
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xuyan Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
15
|
Brai A, Neri C, Tarchi F, Poggialini F, Vagaggini C, Frosinini R, Simoni S, Francardi V, Dreassi E. Upcycling Milk Industry Byproducts into Tenebrio molitor Larvae: Investigation on Fat, Protein, and Sugar Composition. Foods 2024; 13:3450. [PMID: 39517234 PMCID: PMC11545053 DOI: 10.3390/foods13213450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Edible insects represent a growing sector of the food industry and have a low carbon footprint. Noteworthy, insects can upcycle different leftovers and byproducts into high-quality nutrients. Herein, the larvae of the edible insect Tenebrio molitor (TML) were fed using local milk industry byproducts. Mozzarella whey and whey permeate obtained in cheese production were used to formulate three alternative diets. Both byproducts are rich in sugars, in particular the disaccharide lactose and the monosaccharides glucose and galactose. Two of the three diets did not interfere with biometric data and vitality, while the use of whey permeate alone significantly reduced development. At the end of the trial, the proximate composition of TML was strongly affected, with an increased protein content of up to +7% and a favorable fat composition. The analysis of secondary metabolites revealed the accumulation of different compounds, in particular monounsaturated fatty acids (MUFAs), amino acids, and the disaccharide trehalose, essential for the correct larval development and pupation. In conclusion, the present study demonstrates that milk industry byproducts can be upcycled as feed for TML, maintaining an optimal nutrient composition and favorably increasing the protein content.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro, 53100 Siena, Italy; (C.N.); (E.D.)
| | - Cassia Neri
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro, 53100 Siena, Italy; (C.N.); (E.D.)
| | - Franca Tarchi
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Federica Poggialini
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Chiara Vagaggini
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Riccardo Frosinini
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Sauro Simoni
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Valeria Francardi
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro, 53100 Siena, Italy; (C.N.); (E.D.)
| |
Collapse
|
16
|
Mercês ZDCD, Salvadori NM, Evangelista SM, Cochlar TB, Strasburg VJ, da Silva VL, de Oliveira VR. Effectiveness, Challenges, and Environmental Impacts of New Food Strategies with Plant and Animal Protein Products. Foods 2024; 13:3217. [PMID: 39456279 PMCID: PMC11507108 DOI: 10.3390/foods13203217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Sustainable food practices are intrinsically linked to human nutrition in the preservation of the ecosystem. This study, therefore, evaluates the effectiveness, challenges, environmental impacts, and new food strategies related to plant and animal products, with a view to promoting more sustainable and healthy eating practices. The search stages were conducted using the following databases: PubMed, Science Direct, and SciElo. The studies selected included those published from 2018 to 2024 and government documents, available in English, Portuguese, and Spanish. The 34 articles analyzed in this study showed the environmental impacts related to the production of plant and animal proteins, highlighting the urgency of implementing changes in this sector. However, factors such as land use, carbon footprint, and water footprint show remarkable differences depending on the type of crop cultivated, agricultural practices adopted, and stages involved in the supply chain. As final considerations, the analysis suggests that achieving sustainability in food systems requires an integrate approach that combines the optimization of plant protein production with a reduction in environmental impacts and the development of technologies that that support the efficiency and resilience of the industry. Meeting the nutritional needs of the population in a sustainable way will only be possible through regional actions and a deep understanding of the challenges and opportunities.
Collapse
Affiliation(s)
- Ziane da Conceição das Mercês
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
| | - Natalia Maldaner Salvadori
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
| | - Sabrina Melo Evangelista
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
| | - Tatiana Barbieri Cochlar
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
| | - Virgílio José Strasburg
- Department of Nutrition, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (V.J.S.); (V.L.d.S.)
| | - Vanuska Lima da Silva
- Department of Nutrition, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (V.J.S.); (V.L.d.S.)
| | - Viviani Ruffo de Oliveira
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
- Department of Nutrition, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (V.J.S.); (V.L.d.S.)
| |
Collapse
|
17
|
Schweiggert-Weisz U, Etzbach L, Gola S, Kulling SE, Diekmann C, Egert S, Daniel H. Opinion Piece: New Plant-Based Food Products Between Technology and Physiology. Mol Nutr Food Res 2024; 68:e2400376. [PMID: 39348094 DOI: 10.1002/mnfr.202400376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Indexed: 10/01/2024]
Abstract
The rapid growth of product sectors for plant-based meat and dairy alternatives has raised significant scientific interest in their nutritional and ecological benefits. Here, it outlines the fractionation of plant-based raw materials and describes the technologies applied in the production of meat and dairy substitutes. Moreover, the study describes the effects of these new products on human nutrient supply and metabolic responses. Examples of meat-like products produced by extrusion technology and dairy alternatives are provided, addressing production challenges and the effects of processing on nutrient digestibility and bioavailability. In contrast to animal-based products, plant-based protein ingredients can contain many compounds produced by plants for defense or symbiotic interactions, such as lectins, phytates, and a wide range of secondary metabolites. The intake of these compounds as part of a plant-based diet can influence the digestion, bioaccessibility, and bioavailability of essential nutrients such as minerals and trace elements but also of amino acids. This is a critical factor, especially in regions with limited plant species for human consumption and inadequate technologies to eliminate these compounds. To fully understand these impacts and ensure that plant-based diets meet human nutritional needs, well-controlled human studies are needed.
Collapse
Affiliation(s)
- Ute Schweiggert-Weisz
- School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Fraunhofer Institute for Process Engineering and Packaging, 85354, Freising, Germany
| | - Lara Etzbach
- School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Susanne Gola
- Fraunhofer Institute for Process Engineering and Packaging, 85354, Freising, Germany
| | - Sabine E Kulling
- Max Rubner-Institut (MRI), Department of Safety and Quality of Fruit and Vegetables, 76131, Karlsruhe, Germany
| | - Christina Diekmann
- Institute for Nutritional and Food Science, University of Bonn, 53115, Bonn, Germany
| | - Sarah Egert
- Institute for Nutritional and Food Science, University of Bonn, 53115, Bonn, Germany
| | - Hannelore Daniel
- School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| |
Collapse
|
18
|
Soleimani A, Alizadeh H. Unlocking the potential of Extensin Signal peptide and Elastin-like polypeptide tag fused to Shigella dysenteriae's IpaDSTxB to improve protein expression and purification in Nicotiana tabacum and Medicagosativa. Protein Expr Purif 2024; 222:106521. [PMID: 38852714 DOI: 10.1016/j.pep.2024.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Plants are often seen as a potent tool in the recombinant protein production industry. However, unlike bacterial expression, it is not a popular method due to the low yield and difficulty of protein extraction and purification. Therefore, developing a new high efficient and easy to purify platform is crucial. One of the best approaches to make extraction easier is to utilize the Extensin Signal peptide (EXT) to translocate the recombinant protein to the outside of the cell, along with incorporating an Elastin-like polypeptide tag (ELP) to enhance purification and accumulation rates. In this research, we transiently expressed Shigella dysenteriae's IpaDSTxB fused to both NtEXT and ELP in both Nicotiana tabacum and Medicago sativa. Our results demonstrated that N. tabacum, with an average yield of 6.39 ng/μg TSP, outperforms M. sativa, which had an average yield of 3.58 ng/μg TSP. On the other hand, analyzing NtEXT signal peptide indicated that merging EXT to the constructs facilitates translocation of IpaDSTxB to the apoplast by 78.4% and 65.9% in N. tabacum and M. sativa, respectively. Conversely, the mean level for constructs without EXT was below 25% for both plants. Furthermore, investigation into the orientation of ELP showed that merging it to the C-terminal of IpaDSTxB leads to a higher accumulation rate in both N. tabacum and M. sativa by 1.39 and 1.28 times, respectively. It also facilitates purification rate by over 70% in comparison to 20% of the 6His tag. The results show a highly efficient and easy to purify platform for the expression of heterologous proteins in plant.
Collapse
Affiliation(s)
- AmirMohammad Soleimani
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Houshang Alizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
19
|
Vijayan P, Song Z, Toy JYH, Yu LL, Huang D. Effect of transglutaminase on gelation and functional proteins of mung bean protein isolate. Food Chem 2024; 454:139590. [PMID: 38823202 DOI: 10.1016/j.foodchem.2024.139590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
This study aimed to improve mung bean protein's gelation qualities via microbial transglutaminase (mTGase) cross-linking. The mTGase treatment significantly improved gel hardness and storage modulus (G') at higher enzyme levels (2 IU/g), peaking hardness at 3 h. The scanning electron microscopy imaging demonstrated more cross-linked structures at 2 IU/g, evolving into a dense network by 3 h. The water-holding capacity for mTGase-treated samples (2 IU/g, 3 h, 55 °C) tripled to 3.77 ± 0.06 g/g versus control (1.24 ± 0.02 g/g), alongside a 15 % decrease in zeta potential (-30.84 ± 0.901 mV versus control's -26.63 ± 0.497 mV) and an increase in emulsifying activity index to 4.519 ± 0.004 m2/g from 3.79 ± 0.01 m2/g (control). The confocal images showed a more uniform lipid droplet distribution in mTGase-treated samples, suggesting enhanced emulsifying activity. Thus, mTGase treatment significantly improved gel strength and emulsifying properties, making it ideal for plant-based seafood products.
Collapse
Affiliation(s)
- Poornima Vijayan
- Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Zhixuan Song
- Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Joanne Yi Hui Toy
- Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Liangli Lucy Yu
- Department of Food Science and Nutrition, University of Maryland, College Park, MD 20742 USA
| | - Dejian Huang
- Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
20
|
Badjona A, Bradshaw R, Millman C, Howarth M, Dubey B. Response surface methodology guided approach for optimization of protein isolate from Faba bean. Part 1/2. ULTRASONICS SONOCHEMISTRY 2024; 109:107012. [PMID: 39098098 PMCID: PMC11345925 DOI: 10.1016/j.ultsonch.2024.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Ultrasound-assisted extraction (UAE) was evaluated as a green procedure to produce faba beans protein isolates from faba beans. Magnetic stirring was performed as conventional extraction. A three-level five-factor Box-Behnken Design (BBD) was applied to obtain the optimal UAE conditions to concurrently maximize extraction yield and protein content. The response surface methodology (RSM) showed a quadratic curvature for extraction yield and protein. The optimal extraction conditions were determined as: Power of 123 W, solute/solvent ratio of 0.06 (1:15 g/mL), sonication time of 41 min, and total volume of 623 mL with a desirability value of 0.82. Under these conditions, the extraction yield of 19. 75 ± 0.87 % (Protein yield of 67.84 %) and protein content of 92.87 ± 0.53 % were obtained for optimum ultrasound extraction. Control samples using magnetic stirring under similar conditions without ultrasound treatment showed an extraction yield of 16.41 ± 0.02 % (Protein yield of 54.65 %) and a protein content of 89. 88 ± 0.40 %. This shows that BBD can effectively be used to optimize the extraction of proteins from faba beans using optimal extraction conditions, resulting in a higher extraction yield and protein purity.
Collapse
Affiliation(s)
- Abraham Badjona
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Robert Bradshaw
- Bimolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Caroline Millman
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Martin Howarth
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Bipro Dubey
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK.
| |
Collapse
|
21
|
Zhao K, Hao Y, Guo X, Chang Y, Shen X. Development, characterization and underling mechanism of 3D printable quinoa protein emulsion gels by incorporating of different polysaccharides for curcumin delivery. Int J Biol Macromol 2024; 280:135648. [PMID: 39278444 DOI: 10.1016/j.ijbiomac.2024.135648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Emulsion gels stabilized by food-grade polymers such as proteins and polysaccharides are edible 3D food printing inks with various applications in food industry. In this study, 3D printable quinoa protein emulsion gels with four polysaccharides incorporated were fabricated to delivery curcumin. The effect of inulin (INU), fucoidan (FU), dextran sulfate (DS), and sodium alginate (SA) on the microstructure, rheological properties, and 3D printing performance of quinoa protein emulsion gels were all investigated. The results showed that the incorporation of four polysaccharides promoted formation of tightly packed oil droplets within gel networks, along with enhanced hardness, water holding capacity, freeze-thaw stability and decreased swelling ratio of the QP emulsion gel. All samples exhibited shear thinning behavior and polysaccharides increased viscoelasticity of QP emulsion gel. The hydrophobic interactions and disulfide bond are the main chemical molecular force of emulsion gels, INU significantly increased the hydrogen bonds interactions, and anionic polysaccharide (FU, DS, and SA) significantly increased the electrostatic interactions. QP-INU exerted best printing performance as identified by preferable self-supporting capability and high line printing accuracy. The addition of polysaccharides improved the encapsulation efficiency of curcumin in QP emulsion gel. In vitro release property showed that FU increased the bioavailability of curcumin, DS and SA decreased bioavailability of curcumin with delayed digestion rate. This study demonstrated the potential of utilizing polysaccharides to improve the flexibility of QP emulsion gel for 3D printing functional food.
Collapse
Affiliation(s)
- Kuo Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yilin Hao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xin Guo
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yanjiao Chang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
22
|
Szymanska I, Matys A, Rybak K, Karwacka M, Witrowa-Rajchert D, Nowacka M. Impact of Ultrasound Pre-Treatment on the Drying Kinetics and Quality of Chicken Breast-A Comparative Study of Convective and Freeze-Drying Methods. Foods 2024; 13:2850. [PMID: 39272615 PMCID: PMC11395696 DOI: 10.3390/foods13172850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Fresh meat has a limited shelf life and is prone to spoilage. Drying serves as a common method for food preservation. Non-thermal techniques such as ultrasound treatment (US) can positively affect the drying processes and alter the final product. The study aimed to evaluate the impact of US pre-treatment on the hot air (HA) and freeze-drying (FD) of chicken breast meat and the quality of the dried products. US pre-treatment had a varied impact depending on the drying method used. The contact US method extended the HA drying time (about 50%) but improved water removal during FD (about 30%) compared to the untreated samples. Both methods resulted in low water content (<8.3%) and low water activity (<0.44). While rehydration properties (RR) and hygroscopicity (H) were not significantly affected by US pre-treatment in HA drying (about 1.35% and about 1.1, respectively), FD noticed differences due to shrinkage and porosity variations (RR: 2.4-3.2%, H: 1.19-1.25). The HA-dried samples exhibited notably greater tissue shrinkage and a darker surface color than the FD meat. Ultrasonic processing holds substantial potential in creating dried meat products with tailored characteristics. Hence, meticulous consideration of processing methods and parameters is of utmost importance.
Collapse
Affiliation(s)
- Iwona Szymanska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Aleksandra Matys
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Magdalena Karwacka
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Malgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| |
Collapse
|
23
|
Wang K, Zhang R, Hu W, Dang Y, Huang M, Wang N, Du S, Gao X. Effect of exogenous selenium on physicochemical, structural, functional, thermal, and gel rheological properties of mung bean (Vigna radiate L.) protein. Food Res Int 2024; 191:114706. [PMID: 39059959 DOI: 10.1016/j.foodres.2024.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Selenium (Se) biofortification during the growth process of mung bean is an effective method to improve the Se content and quality. However, the effect of Se biofortification on the physicochemical properties of mung bean protein is unclear. The objective of this study was to clarify the changes in the composition, Se forms, particle structure, functional properties, thermal stability, and gel properties of mung bean protein at four Se application levels. The results showed that the Se content of mung bean protein increased in a dose-dependent manner, with 7.96-fold (P1) and 8.52-fold (P2) enhancement at the highest concentration. Exogenous Se application promotes the conversion of inorganic Se to organic Se. Among them, selenomethionine (SeMet) and methyl selenocysteine (MeSeCys) replaced Met and Cys through the S metabolic pathway and became the dominant organic Se forms in Se-enriched mung bean protein, accounting for more than 80 % of the total Se content. Exogenous Se at 30 g/hm2 significantly up-regulated protein content and promoted the synthesis of sulfur-containing protein components and hydrophobic amino acids in the presence of increased levels of SeMet and MeSeCys. Meanwhile, Cys and Met substitution altered the sulfhydryl groups (SH), β-sheets, and β-turns of protein. The particle size and microstructural characteristics depend on the protein itself and were not affected by exogenous Se. The Se-induced increase in the content of hydrophobic amino acids and β-sheets synergistically increases the thermal stability of the protein. Moderate Se application altered the functional properties of mung bean protein, which was mainly reflected in the significant increase in oil holding capacity (OHC) and foaming capacity (FC). In addition, the increase in SH and β-sheets induced by exogenous Se could alter the protein intermolecular network, contributing to the increase in storage modulus (G') and loss modulus (G″), which resulted in the formation of more highly elastic gels. This study further promotes the application of mung bean protein in the field of food processing and provides a theoretical basis for the extensive development of Se-enriched mung bean protein.
Collapse
Affiliation(s)
- Kexin Wang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China; Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China
| | - Ruipu Zhang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Wenxuan Hu
- Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China
| | - Yueyi Dang
- Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China
| | - Mengdi Huang
- Luoyang Academy of Agricultural and Forestry Science, Luoyang 471000, Henan Province, China
| | - Na Wang
- Weinan Institute of Agricultural Sciences, Weinan 714000, Shaanxi Province, China
| | - Shuangkui Du
- Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China.
| | - Xiaoli Gao
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
24
|
Tusé D, McNulty M, McDonald KA, Buchman LW. A review and outlook on expression of animal proteins in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1426239. [PMID: 39239203 PMCID: PMC11374769 DOI: 10.3389/fpls.2024.1426239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024]
Abstract
This review delves into the multifaceted technologies, benefits and considerations surrounding the expression of animal proteins in plants, emphasizing its potential role in advancing global nutrition, enhancing sustainability, while being mindful of the safety considerations. As the world's population continues to grow and is projected to reach 9 billion people by 2050, there is a growing need for alternative protein sources that can meet nutritional demands while minimizing environmental impact. Plant expression of animal proteins is a cutting-edge biotechnology approach that allows crops to produce proteins traditionally derived from animals, offering a sustainable and resource-efficient manner of producing these proteins that diversifies protein production and increases food security. In the United States, it will be important for there to be clear guidance in order for these technologies to reach consumers. As consumer demand for sustainable and alternative food sources rise, biotechnologies can offer economic opportunities, making this emerging technology a key player in the market landscape.
Collapse
Affiliation(s)
- Daniel Tusé
- DT/Consulting Group, Sacramento, CA, United States
| | - Matthew McNulty
- Center for Cellular Agriculture, Tufts University, Medford, MA, United States
| | - Karen A McDonald
- Department of Chemical Engineering and Global Healthshare Initiative, University of California, Davis, Davis, CA, United States
| | - Leah W Buchman
- Biotechniology Innovation Organization, Agriculture and Environment, Washington, DC, United States
| |
Collapse
|
25
|
Ng CKZ, Leng WQ, Lim CH, Du J. Physicochemical property characterization, amino acid profiling and sensory evaluation of plant-based ice cream incorporated with soy, pea and milk proteins. J Dairy Sci 2024:S0022-0302(24)01081-6. [PMID: 39154724 DOI: 10.3168/jds.2024-25008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024]
Abstract
This study examined the effects of incorporating milk protein concentrate (MPC), pea or soy proteins isolates (PPI and SPI) on the physicochemical, sensorial properties, and amino acid composition of ice creams containing 7% protein, in comparison to dairy ice cream as a reference. As protein ingredients, PPI exhibited higher water and oil holding capacity but lower surface hydrophobicity than SPI and MPC. Viscosity of the mixes were proportional to the firmness of ice cream, and both were highest with use of PPI. MPC ice cream had most similar physical and sensory properties to reference. PPI and SPI ice cream mixes showed higher extent of fat coalescence than MPC and reference. PPI and SPI conferred structural stability to ice cream with lower melting rate and better shape retention, and ability to delay ice recrystallization during temperature flocculation as compared with SMP and MPC. Confocal laser scanning microscope images indicated that higher extent of protein aggregation and more air cells were found in PPI ice cream. Sensory and amino acid profile results revealed that PPI and SPI ice creams were inferior in taste, texture, and essential amino acids like methionine. This study offers insights for the development of high protein frozen desserts.
Collapse
Affiliation(s)
- Cheryl Kwoek Zhen Ng
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore
| | - Wei Qi Leng
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore
| | - Churn Hian Lim
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore
| | - Juan Du
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore; Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, USA; Sengkang General Hospital, Singapore Health Services, 110 Sengkang E Wy, Singapore, 544886, Singapore.
| |
Collapse
|
26
|
Park CI, Namkung Y. Consumer Values, Attitudes, and Behavior towards Plant-Based Alternatives. Foods 2024; 13:2561. [PMID: 39200488 PMCID: PMC11353567 DOI: 10.3390/foods13162561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the impact of consumer values and attitudes to consuming plant-based alternatives (PBAs), using the value-attitude-behavior framework. The research model and hypotheses were tested using a two-step approach to structural equation modeling on 392 responses collected from PBA consumers through a research company in Korea in November 2023. The results indicated that environmental consciousness and health consciousness significantly affected attitudes toward PBAs. Also, positive attitudes toward PBAs were critical for the formation of repurchase intentions for PBAs and PBA restaurant visit behavior. Our study contributes to both academics and PBA practitioners by showing how consumer values are associated with attitudes, PBAs repurchase intentions, and PBAs restaurant visits.
Collapse
Affiliation(s)
- Cho-I Park
- Smart Tourism Education Platform, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Young Namkung
- College of Hotel & Tourism Management, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
27
|
Jang J, Lee DW. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. NPJ Sci Food 2024; 8:50. [PMID: 39112506 PMCID: PMC11306346 DOI: 10.1038/s41538-024-00292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The burgeoning demand for plant-based meat analogs (PBMAs) stems from environmental, health, and ethical concerns, yet replicating the sensory attributes of animal meat remains challenging. This comprehensive review explores recent innovations in PBMA ingredients and methodologies, emphasizing advancements in texture, flavor, and nutritional profiles. It chronicles the transition from soy-based first-generation products to more diversified second- and third-generation PBMAs, showcasing the utilization of various plant proteins and advanced processing techniques to enrich sensory experiences. The review underscores the crucial role of proteins, polysaccharides, and fats in mimicking meat's texture and flavor and emphasizes research on new plant-based sources to improve product quality. Addressing challenges like production costs, taste, texture, and nutritional adequacy is vital for enhancing consumer acceptance and fostering a more sustainable food system.
Collapse
Affiliation(s)
- Jiwon Jang
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Dong-Woo Lee
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea.
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
28
|
Caldeira RF, de Paiva Gouvêa L, de Lima Azevedo T, Conte C, de Sá DDGCF, Galdeano MC, Felberg I, Lima JR, Mellinger CG. Processing parameters, techno-functional properties and potential food application of lentil protein concentrate as an ingredient for the plant-based market. Food Res Int 2024; 189:114569. [PMID: 38876597 DOI: 10.1016/j.foodres.2024.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Lentil (Lens culinaris) is a protein-rich legume consumed worldwide and it also has the potential to become an alternative source of protein ingredient for human nutrition. The aim of this study was to determine the best processing parameters for the whole grain protein wet extraction, as well as to analyze the techno-functional properties, and physical characteristics of the protein concentrate and its flour. It was also evaluated the application of the concentrate into a fish-like croquette. The processing route was carried out by alkaline extraction and acid precipitation of the proteins where the pH, stirring time and solute:solvent ratio were evaluated. The final dried protein concentrate presented 85% protein on dry basis and a mass yield of 14%. The results were reproducible when tested on a first scaling up test. For the techno-functional properties, solubility, water and oil retention capacities, emulsification and foaming capacities and stability, and gelling capacity were tested. As for the food application into fish-like croquettes, the lentil protein showed similar scores for sensory acceptance, flavor and texture when compared to a commercial clean-taste concentrate. The results observed in this study were compatible to other alternative pulse-protein ingredients on the market, positioning lentil protein as a promising alternative protein source to produce ingredients for the plant-based market.
Collapse
Affiliation(s)
- Rodrigo Fernandes Caldeira
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro (RJ), Brazil
| | - Lucas de Paiva Gouvêa
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro (RJ), Brazil
| | | | - Carmine Conte
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro (RJ) 23020-470, Brazil
| | | | | | - Ilana Felberg
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro (RJ) 23020-470, Brazil
| | - Janice Ribeiro Lima
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro (RJ) 23020-470, Brazil
| | - Caroline Grassi Mellinger
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro (RJ), Brazil; Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro (RJ) 23020-470, Brazil.
| |
Collapse
|
29
|
Liu L, Shi LS, Hu CY, Gong T, Yang XY, Zhang CQ, Meng YH. Walnut protein isolate based emulsion as a promising delivery system enhanced lutein bioaccessibility. Int J Biol Macromol 2024; 275:133608. [PMID: 38960249 DOI: 10.1016/j.ijbiomac.2024.133608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Lutein, a natural pigment with multiple beneficial bioactivities, faces limitations in food processing due to its instability. In this study, we constructed four modified walnut protein isolate (WNPI) based emulsions as emulsion-based delivery systems (EBDS) for lutein fortification. The modification treatments enhanced the encapsulation efficiency of the WNPI-based EBDS on lutein. The modified WNPI-based EBDS exhibited improved storage and digestive stability, as well as increased lutein delivery capability in simulated gastrointestinal conditions. After in vitro digestion, the lutein retention in the modified WNPI-based EBDS was higher than in the untreated WNPI-based EBDS, with a maximum retention of 49.67 ± 1.10 % achieved after ultrasonic modification. Furthermore, the modified WNPI-based EBDS exhibited an elevated lutein bioaccessibility, reaching a maximum value of 40.49 ± 1.29 % after ultrasonic modification, nearly twice as high as the untreated WNPI-based EBDS. Molecular docking analysis indicated a robust affinity between WNPI and lutein, involving hydrogen bonds and hydrophobic interactions. Collectively, this study broadens WNPI's application and provides a foundation for fortifying other fat-soluble bioactive substances.
Collapse
Affiliation(s)
- Liang Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Lin Shan Shi
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Ching Yuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Xue Yan Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chao Qun Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Yong Hong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
30
|
Ravindran N, Kumar Singh S, Singha P. A comprehensive review on the recent trends in extractions, pretreatments and modifications of plant-based proteins. Food Res Int 2024; 190:114575. [PMID: 38945599 DOI: 10.1016/j.foodres.2024.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Plant-based proteins offer sustainable and nutritious alternatives to animal proteins with their techno-functional attributes influencing product quality and designer food development. Due to the inherent complexities of plant proteins, proper extraction and modifications are vital for their effective utilization. This review highlights the emerging sources of plant-based proteins, and the recent statistics of the techniques employed for pretreatment, extraction, and modifications. The pretreatment, extraction and modification approach to modify plant proteins have been classified, addressed, and the recent applications of such methodologies are duly indicated. Furthermore, this study furnishes novel perspectives regarding the potential impacts of emerging technologies on the intricate dynamics of plant proteins. A thorough review of 100 articles (2018-2024) shows the researchers' keen interest in investigating novel plant proteins and how they can be used; seeds being the main source for protein extraction, followed by legumes. Use of by-products as a protein source is increasing rapidly, which is noteworthy. Protein studies still lack knowledge on protein fraction, antinutrients, and pretreatments. The use of physical methods and their combination with other techniques are increasing for effective and environmentally friendly extraction and modification of plant proteins. Several studies explore the effect of protein changes on their function and nutrition, especially with a goal of replacing ingredients with plant proteins that have improved or enhanced qualities. However, the next step is to investigate the sophisticated modification methods for deeper insights into food safety and toxicity.
Collapse
Affiliation(s)
- Nevetha Ravindran
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| |
Collapse
|
31
|
Hofmann LC, Strauss S, Shpigel M, Guttman L, Stengel DB, Rebours C, Gjorgovska N, Turan G, Balina K, Zammit G, Adams JMM, Ahsan U, Bartolo AG, Bolton JJ, Domingues R, Dürrani Ö, Eroldogan OT, Freitas A, Golberg A, Kremer KI, Marques F, Milia M, Steinhagen S, Sucu E, Vargas-Murga L, Zemah-Shamir S, Zemah-Shamir Z, Meléndez-Martínez AJ. The green seaweed Ulva: tomorrow's "wheat of the sea" in foods, feeds, nutrition, and biomaterials. Crit Rev Food Sci Nutr 2024:1-36. [PMID: 38979936 DOI: 10.1080/10408398.2024.2370489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Ulva, a genus of green macroalgae commonly known as sea lettuce, has long been recognized for its nutritional benefits for food and feed. As the demand for sustainable food and feed sources continues to grow, so does the interest in alternative, plant-based protein sources. With its abundance along coastal waters and high protein content, Ulva spp. have emerged as promising candidates. While the use of Ulva in food and feed has its challenges, the utilization of Ulva in other industries, including in biomaterials, biostimulants, and biorefineries, has been growing. This review aims to provide a comprehensive overview of the current status, challenges and opportunities associated with using Ulva in food, feed, and beyond. Drawing on the expertise of leading researchers and industry professionals, it explores the latest knowledge on Ulva's nutritional value, processing methods, and potential benefits for human nutrition, aquaculture feeds, terrestrial feeds, biomaterials, biostimulants and biorefineries. In addition, it examines the economic feasibility of incorporating Ulva into aquafeed. Through its comprehensive and insightful analysis, including a critical review of the challenges and future research needs, this review will be a valuable resource for anyone interested in sustainable aquaculture and Ulva's role in food, feed, biomaterials, biostimulants and beyond.
Collapse
Affiliation(s)
- Laurie C Hofmann
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- Bremerhaven University of Applied Sciences, Bremerhaven, Germany
| | | | - Muki Shpigel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Lior Guttman
- The National Center for Mariculture, Israel Oceanographic & Limnological Research, Eilat, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, University of Galway, Galway, Ireland
| | | | - Natasha Gjorgovska
- Institute of Animal Science and Fishery, University Ss Ciril and Methodius in Skopje, Skopje, North Macedonia
| | - Gamze Turan
- Aquaculture Department, Fisheries Faculty, Ege University, Bornova, Izmir, Türkiye
| | - Karina Balina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
- Institute of Science and Innovative Technologies, Liepaja University, Liepaja, Latvia
| | - Gabrielle Zammit
- Department of Biology, Faculty of Science, University of Malta, Msida, Malta
| | - Jessica M M Adams
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| | - Umair Ahsan
- Department of Plant and Animal Production, Burdur Vocational School of Food, Agriculture and Livestock, Burdur Mehmet Akif Ersoy University, Burdur, Turkiye
- Center for Agriculture, Livestock and Food Research, Burdur Mehmet Akif Ersoy University, Burdur, Turkiye
| | | | - John J Bolton
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Rosário Domingues
- Department of Chemistry, Lipidomics Laboratory, Mass Spectrometry Centre, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Ömerhan Dürrani
- Department of Fisheries Technology Engineering, Faculty of Marine Science, Karadeniz Technical University, Trabzon, Türkiye
| | - Orhan Tufan Eroldogan
- Department of Aquaculture, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Türkiye
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, Vila do Conde, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Oporto, Portugal
| | - Alexander Golberg
- Department of Environmental Studies, Faculty of Exact Sciences, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kira I Kremer
- Marine Biology, University of Bremen, Bremen, Germany
| | - Francisca Marques
- Department of Chemistry, Lipidomics Laboratory, Mass Spectrometry Centre, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Massimo Milia
- Department of Life and Environmental Science, University of Cagliari, Cagliari, Italy
| | - Sophie Steinhagen
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Ekin Sucu
- Department of Animal Science, Agricultural Faculty, Bursa Uludag University, Bursa, Turkey
| | - Liliana Vargas-Murga
- Department of Chemical and Agricultural Engineering and Agrifood Technology, Polytechnic School, Universitat de Girona, Girona, Spain
| | - Shiri Zemah-Shamir
- School of Sustainability, Reichman University (IDC Herzliya), Herzliya, Israel
| | - Ziv Zemah-Shamir
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
32
|
Walser C, Spaccasassi A, Gradl K, Stark TD, Sterneder S, Wolter FP, Achatz F, Frank O, Somoza V, Hofmann T, Dawid C. Human Sensory, Taste Receptor, and Quantitation Studies on Kaempferol Glycosides Derived from Rapeseed/Canola Protein Isolates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14830-14843. [PMID: 38888424 PMCID: PMC11228994 DOI: 10.1021/acs.jafc.4c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Beyond the key bitter compound kaempferol 3-O-(2‴-O-sinapoyl-β-d-sophoroside) previously described in the literature (1), eight further bitter and astringent-tasting kaempferol glucosides (2-9) have been identified in rapeseed protein isolates (Brassica napus L.). The bitterness and astringency of these taste-active substances have been described with taste threshold concentrations ranging from 3.3 to 531.7 and 0.3 to 66.4 μmol/L, respectively, as determined by human sensory experiments. In this study, the impact of 1 and kaempferol 3-O-β-d-glucopyranoside (8) on TAS2R-linked proton secretion by HGT-1 cells was analyzed by quantification of the intracellular proton index. mRNA levels of bitter receptors TAS2R3, 4, 5, 13, 30, 31, 39, 40, 43, 45, 46, 50 and TAS2R8 were increased after treatment with compounds 1 and 8. Using quantitative UHPLC-MS/MSMRM measurements, the concentrations of 1-9 were determined in rapeseed/canola seeds and their corresponding protein isolates. Depending on the sample material, compounds 1, 3, and 5-9 exceeded dose over threshold (DoT) factors above one for both bitterness and astringency in selected protein isolates. In addition, an increase in the key bitter compound 1 during industrial protein production (apart from enrichment) was observed, allowing the identification of the potential precursor of 1 to be kaempferol 3-O-(2‴-O-sinapoyl-β-d-sophoroside)-7-O-β-d-glucopyranoside (3). These results may contribute to the production of less bitter and astringent rapeseed protein isolates through the optimization of breeding and postharvest downstream processing.
Collapse
Affiliation(s)
- Christoph Walser
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Andrea Spaccasassi
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Katrin Gradl
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- TUM School of Life Sciences, Technical University of Munich, Alte Akademie 8a, 85354 Freising, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Sonja Sterneder
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Vienna Doctoral School in Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | | | - Felicia Achatz
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Veronika Somoza
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
- Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
- Professorship for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
33
|
Khizar A, Fatima M, Khan N, Rashid MA. Xylooligosaccharide supplementation in rice protein concentrate based diets: A comprehensive analysis of performance and health of Labeo rohita. J Anim Physiol Anim Nutr (Berl) 2024; 108:1059-1071. [PMID: 38500315 DOI: 10.1111/jpn.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
The primary aim of this study was to examine the impact of xylooligosaccharide (XOS) in rice protein concentrate (RPC) based diets on the growth performance, body composition, digestive enzymes, intestinal morphology and blood biochemistry of Labeo rohita fingerlings. Four different XOS levels (0%, 0.5%, 1% and 2%) were used at each RPC (75% and 100%) level. Twenty-five fish per tank with an average initial weight of 25 ± 0.05 g were randomly assigned (Randomised complete block design) to each of the 8 groups in triplicate aquaria (36 × 16 × 12″) and then fed with respective diets @ 3% body weight for 90 days. The results showed significant improvements in growth performance, such as increased weight gain %, specific growth rate, and protein efficiency ratio and improved feed conversion ratio in 1% XOS supplemented diet at 75% RPC. A significant decrease in serum alkaline phosphatase activity (ALP) and plasma melanodialdehyde (MDA) were observed at 1% XOS level in 75% RPC based diets, respectively. Meanwhile, the lowest total cholesterol and highest lysozyme activity were observed in 1% XOS supplemented diet at 75% RPC levels. Moreover, the serum (alanine aminotransferase and aspartate transaminase) and plasma (superoxide dismutase, triglyceride, high density and low density lipoprotein) activities showed nonsignificant effects among the treatments. Furthermore, the digestive enzymes (protease & lipase) and intestinal morphology were significantly influenced at 1% XOS in the 75% RPC-based diet. Polynomial regression analysis showed that 1.25% XOS is the optimum requirement for the growth of rohu fingerlings when fed at 75% RPC based diets. Overall, it was concluded that the 75% RPC diet was efficiently replaced by fishmeal along with 1% XOS addition in L. rohita fingerlings without any negative effect on growth performance and intestinal health.
Collapse
Affiliation(s)
- Ayesha Khizar
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mahroze Fatima
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Noor Khan
- Institute of Zoology, University of Punjab, Lahore, Pakistan
| | - Muhammad Afzal Rashid
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
34
|
Santoso T, Ho TM, Vinothsankar G, Jouppila K, Chen T, Owens A, Lazarjani MP, Farouk MM, Colgrave ML, Otter D, Kam R, Le TT. Effects of Laccase and Transglutaminase on the Physicochemical and Functional Properties of Hybrid Lupin and Whey Protein Powder. Foods 2024; 13:2090. [PMID: 38998597 PMCID: PMC11241515 DOI: 10.3390/foods13132090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Plant-based protein is considered a sustainable protein source and has increased in demand recently. However, products containing plant-based proteins require further modification to achieve the desired functionalities akin to those present in animal protein products. This study aimed to investigate the effects of enzymes as cross-linking reagents on the physicochemical and functional properties of hybrid plant- and animal-based proteins in which lupin and whey proteins were chosen as representatives, respectively. They were hybridised through enzymatic cross-linking using two laccases (laccase R, derived from Rhus vernicifera and laccase T, derived from Trametes versicolor) and transglutaminase (TG). The cross-linking experiments were conducted by mixing aqueous solutions of lupin flour and whey protein concentrate powder in a ratio of 1:1 of protein content under the conditions of pH 7, 40 °C for 20 h and in the presence of laccase T, laccase R, or TG. The cross-linked mixtures were freeze-dried, and the powders obtained were assessed for their cross-linking pattern, colour, charge distribution (ζ-potential), particle size, thermal stability, morphology, solubility, foaming and emulsifying properties, and total amino acid content. The findings showed that cross-linking with laccase R significantly improved the protein solubility, emulsion stability and foaming ability of the mixture, whereas these functionalities were lower in the TG-treated mixture due to extensive cross-linking. Furthermore, the mixture treated with laccase T turned brownish in colour and showed a decrease in total amino acid content which could be due to the enzyme's oxidative cross-linking mechanism. Also, the occurrence of cross-linking in the lupin and whey mixture was indicated by changes in other investigated parameters such as particle size, ζ-potential, etc., as compared to the control samples. The obtained results suggested that enzymatic cross-linking, depending on the type of enzyme used, could impact the physicochemical and functional properties of hybrid plant- and animal-based proteins, potentially influencing their applications in food.
Collapse
Affiliation(s)
- Teguh Santoso
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Thao M. Ho
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Geerththana Vinothsankar
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Kirsi Jouppila
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Tony Chen
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Adrian Owens
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | | | - Mustafa M. Farouk
- Food Technology and Processing, Smart Foods & Bioproducts, AgResearch Ltd., Grasslands Research Centre, Palmerston North 4440, New Zealand
| | - Michelle L. Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd., St. Lucia, QLD 4067, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Don Otter
- DEO Dairy Consulting, Marton 4787, New Zealand
| | - Rothman Kam
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Thao T. Le
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
35
|
Behounek M, Cochran D, Motta-Romero HA, Yang Q, Ding W, Morton M, Majumder K, Powers R, Rose DJ. In Vitro Fermentation of Animal and Plant Protein Isolates by the Human Gut Microbiota Under High and Low Carbohydrate Conditions. Mol Nutr Food Res 2024; 68:e2300555. [PMID: 39059012 DOI: 10.1002/mnfr.202300555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/24/2024] [Indexed: 07/28/2024]
Abstract
SCOPE There is a lack of research comparing how different protein isolates influence the microbiome, especially when carbohydrate (CHO) availability is varied. The objective is to determine changes in gut microbiota composition and function during fermentation of digested protein isolates under high and low CHO conditions. METHODS AND RESULTS Protein isolates from beef, egg white, milk, pea, and soy are subjected to in vitro digestion and fermentation with human fecal microbiota. Under low CHO conditions, the microbiota is primarily proteolytic with decreased concentrations of peptides and increased variance among microbial taxa and production of ammonia and branched chain fatty acids by the microbiota. Milk protein not only results in the highest production of butyrate and p-hydroxyphenylacetate but also has high concentrations of deleterious fermentation metabolites. Amino acid composition of the protein isolates is significantly correlated with abundances of many microbial taxa and metabolites, but the correlations are stronger in the low CHO medium. CONCLUSION This study shows that low CHO conditions increase proteolytic fermentation and result in increased differences in microbiota response to protein isolates. It also showed that amino acid composition is highly associated with microbiota composition and function especially under low CHO conditions.
Collapse
Affiliation(s)
- Marissa Behounek
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Darcy Cochran
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Hollman A Motta-Romero
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Qinnan Yang
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Wensheng Ding
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Martha Morton
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Kaustav Majumder
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Devin J Rose
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
36
|
Huang X, Xia B, Liu Y, Wang C. Non-covalent interactions between rice protein and three polyphenols and potential application in emulsions. Food Chem X 2024; 22:101459. [PMID: 38803669 PMCID: PMC11129171 DOI: 10.1016/j.fochx.2024.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Rice protein (RP) and polyphenols are often used in functional foods. This study investigated the non-covalent interactions between RP and three polyphenols (curcumin, CUR; quercetin, QUE; resveratrol, RES) and used the complexes as emulsifiers to create emulsions. Three polyphenols interacted with RP to varying extents, with QUE showing the greatest binding affinity and inducing the greatest alterations in its secondary structure. Molecular docking analysis elucidated the driving forces between them including hydrophobic interactions, hydrogen bonding, and van der Waals forces. Combination with QUE or RES induced structural changes of RP, increasing particle size of complexes. The synergistic effect of polyphenols and protein also enhanced radical scavenging capacity of complexes. Compared to pure protein, all complexes successfully created emulsions with smaller particle size (378-395 nm vs. 470 nm), higher absolute potential (37.43-38.26 mV vs. 35.62 mV), and greater lipid oxidation stability by altering protein conformation.
Collapse
Affiliation(s)
- Xin Huang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Boxue Xia
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yaxuan Liu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
37
|
Yang S, Yang F, Dou W, Chi Y, Chi Y. Testing adulterated liquid-egg: developing rapid detection techniques based on colorimetry, electrochemistry, and interfacial fingerprinting. Food Chem 2024; 444:138674. [PMID: 38335687 DOI: 10.1016/j.foodchem.2024.138674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
To develop rapid detection techniques for liquid eggs' adulteration, three types of adulterations were considered: water dilution, manipulation of yolk ratio in whole egg, and blending different varieties of egg white or yolk. Objective: Establish detection techniques utilizing colorimetry, electrochemistry, and interfacial fingerprinting for these adulterations, respectively. Results: Colorimetry allows for detection (1 min·sample-1) of water dilution through linear (R2 ≥ 0.984) and exponential fitting (R2 ≥ 0.992); Electrochemistry enables detection (6 min·sample-1, R2 ≥ 0.979) of the adulteration of yolk ratio in whole egg; Interfacial fingerprinting technique effectively detects (detection duration: 10 min·sample-1, detection limit: 1.0-10.0 wt%) the adulteration of different varieties of egg white. Subsequently, through 3D-fluorescence microscopy (interface height variation: 22.49-573.45 μm), interfacial tension variation (65.54-35.48 mN·m-1), contact angle variation (89.7°-32.9°), particle size range (free water: 0.94-14.29 μm; protein aggregation: 6.57-10.76 μm), and etc., interfacial fingerprinting mechanism was elucidated. This research contributes novel insights into the detection of adulteration in liquid eggs.
Collapse
Affiliation(s)
- Shuo Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Fuming Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Wenhao Dou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
38
|
Cai M, Qiu X, Zhang H, Wang A, Xu W, Chen K, He Z, Hu Y. Effects of replacing fishmeal with soybean meal on the immune and antioxidant capacity, and intestinal metabolic functions of red swamp crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109600. [PMID: 38701991 DOI: 10.1016/j.fsi.2024.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Excess utilization of plant protein sources in animal feed has been found to adversely affect the antioxidant properties and immunity of animals. While the role of gut microbes in plant protein-induced inflammation has been identified in various models, the specific mechanisms regulating gut microbes in crustaceans remain unclear. Accordingly, this study was designed to investigate the effects of replacing fishmeal with soybean meal (SM) on the hepatopancreas antioxidant and immune capacities, and gut microbial functions of crayfish, as well as the potential microbial regulatory mechanisms. 750 crayfish (4.00 g) were randomly divided into five groups: SS0, SS25, SS50, SS75, and SS100, and fed diets with different levels of soybean meal substituted for fishmeal for six weeks. High SM supplementation proved detrimental to maintaining hepatopancreas health, as indicated by an increase in hemolymph MDA content, GPT, and GOT activities, the observed rupture of hepatopancreas cell basement membranes, along with the decreased number of hepatopancreatic F cells. Moreover, crayfish subjected to high SM diets experienced obvious inflammation in hepatopancreas, together with up-regulated mRNA expression levels of nfkb, alf, and tlr (p<0.05), whereas the lzm mRNA expression level exhibited the highest value in the SS25 group. Furthermore, hepatopancreas antioxidant properties highly attenuated by the level of dietary SM substitution levels, as evidenced by the observed increase in MDA content (p<0.05), decrease in GSH content (p<0.05), and inhabitation of SOD, CAT, GPx, and GST activities (p<0.05), along with down-regulated hepatopancreas cat, gpx, gst, and mmnsod mRNA expression levels via inhibiting nrf2/keap1 pathway. Functional genes contributing to metabolism identified that high SM diets feeding significantly activated lipopolysaccharide biosynthesis, revealing gut dysfunction acted as the cause of inflammation. The global microbial co-occurrence network further indicated that the microbes contributing more to serum indicators and immunity were in module eigengene 17 (ME17). A structural equation model revealed that the genes related to alf directly drove the serum enzyme activities through microbes in ME17, with OTU399 and OTU533 identified as major biomarkers and classified into Proteobacteria that secrete endotoxins. To conclude, SM could replace 25 % of fishmeal in crayfish diets without negatively affecting immunity, and antioxidant capacity. Excessive SM levels contributed to gut dysfunction and weakened the innate immune system of crayfish.
Collapse
Affiliation(s)
- Minglang Cai
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangyan Qiu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Huajun Zhang
- Guangdong Yuehai Feed Group Co., Ltd., Guangdong, Zhanjiang, 524000, China
| | - Aimin Wang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wencheng Xu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Kaijian Chen
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Zhigang He
- Hunan Fisheries Science Institute, Changsha, 410153, China
| | - Yi Hu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
39
|
Eckhardt L, Bu F, Franczyk A, Michaels T, Ismail BP. Hemp ( Cannabis sativa L.) protein: Impact of extraction method and cultivar on structure, function, and nutritional quality. Curr Res Food Sci 2024; 8:100746. [PMID: 38681526 PMCID: PMC11046069 DOI: 10.1016/j.crfs.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Hemp (Cannabis sativa L.) is increasingly gaining traction as a novel and sustainable source of plant protein. Accordingly, the aim of this study was to investigate the effectiveness of two protein extraction methods, alkaline extraction coupled with isoelectric precipitation (AE-IEP) and salt extraction coupled with ultrafiltration (SE-UF) in producing hemp protein isolates (pH-HPI and salt-HPI) with high purity and yield. Structural characterization as impacted by extraction method and cultivar was performed and related to functional performance and nutritional quality. Both extraction methods, with carefully selected parameters, resulted in HPI with high purity (86.6-88.1% protein) and protein extraction yields (81.6-87.3%). All HPI samples had poor solubility (∼9-20%) at neutral pH compared to commercial soy protein and pea protein isolates (cSPI, cPPI). A relatively high surface hydrophobicity and low surface charge contributed to such poor solubility of HPI. However, HPI demonstrated similar solubility at acidic pH (50-67%) and comparable gel strength (up to 24 N) to cSPI. Comparing experimental amino acid composition to the theoretical amino acid distribution in hemp protein provided insights to the functional performance of the protein isolates. While pH-HPI demonstrated better functionality than salt-HPI, minimal structural, functional, and nutritional differences were noted among the pH-HPI samples extracted from four different cultivars. Overall, results from this work could be used to guide future attempts to further develop successful protein extraction processes, and to provide valuable insights to propel breeding efforts that target enhanced hemp protein characteristics for food applications.
Collapse
Affiliation(s)
- Laura Eckhardt
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Fan Bu
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Adam Franczyk
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Tom Michaels
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Baraem P. Ismail
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
40
|
Barallat-Pérez C, Pedrotti M, Oliviero T, Martins S, Fogliano V, de Jong C. Drivers of the In-Mouth Interaction between Lupin Protein Isolate and Selected Aroma Compounds: A Proton Transfer Reaction-Mass Spectrometry and Dynamic Time Intensity Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8731-8741. [PMID: 38579129 PMCID: PMC11036385 DOI: 10.1021/acs.jafc.3c08819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Plant proteins often carry off-notes, necessitating customized aroma addition. In vitro studies revealed protein-aroma binding, limiting release during consumption. This study employs in vivo nose space proton transfer reaction-time-of-flight-mass spectrometry and dynamic sensory evaluation (time intensity) to explore in-mouth interactions. In a lupin protein-based aqueous system, a sensory evaluation of a trained "green" attribute was conducted simultaneously with aroma release of hexanal, nonanal, and 2-nonanone during consumption. Results demonstrated that enlarging aldehyde chains and relocating the keto group reduced maximum perceived intensity (Imax_R) by 71.92 and 72.25%. Protein addition decreased Imax_R by 30.91, 36.84, and 72.41%, indicating protein-aroma interactions. Sensory findings revealed a perceived intensity that was lower upon protein addition. Aroma lingering correlated with aroma compounds' volatility and hydrophobicity, with nonanal exhibiting the longest persistence. In vitro mucin addition increased aroma binding four to 12-fold. Combining PTR-ToF-MS and time intensity elucidated crucial food behavior, i.e., protein-aroma interactions, that are pivotal for food design.
Collapse
Affiliation(s)
- Cristina Barallat-Pérez
- Department
of Agrotechnology and Food Science, Wageningen
University & Research, Wageningen, WG 6708, The Netherlands
| | | | - Teresa Oliviero
- Department
of Agrotechnology and Food Science, Wageningen
University & Research, Wageningen, WG 6708, The Netherlands
| | - Sara Martins
- Department
of Agrotechnology and Food Science, Wageningen
University & Research, Wageningen, WG 6708, The Netherlands
- AFB
International EU, Oss, LZ 5342, The Netherlands
| | - Vincenzo Fogliano
- Department
of Agrotechnology and Food Science, Wageningen
University & Research, Wageningen, WG 6708, The Netherlands
| | - Catrienus de Jong
- Wageningen
Food and Biobased Research, Wageningen University
& Research, Wageningen, WG 6708, The Netherlands
| |
Collapse
|
41
|
Pinckaers PJM, Smeets JSJ, Kouw IWK, Goessens JPB, Gijsen APB, de Groot LCPGM, Verdijk LB, van Loon LJC, Snijders T. Post-prandial muscle protein synthesis rates following the ingestion of pea-derived protein do not differ from ingesting an equivalent amount of milk-derived protein in healthy, young males. Eur J Nutr 2024; 63:893-904. [PMID: 38228945 PMCID: PMC10948472 DOI: 10.1007/s00394-023-03295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Plant-derived proteins have received considerable attention as an alternative to animal-derived proteins. However, plant-derived proteins are considered to have less anabolic properties when compared with animal-derived proteins. The lower muscle protein synthesis rates following ingestion of plant- compared with animal-derived protein have been attributed to the lower essential amino acid content of plant-derived proteins and/or their specific amino acid deficiencies. This study aimed to compare post-prandial muscle protein synthesis rates following the ingestion of 30 g pea-derived protein with 30 g milk-derived protein in healthy, young males. METHODS In a randomized, double-blind, parallel-group design, 24 young males (24 ± 3 y) received a primed continuous L-[ring-13C6]-phenylalanine infusion after which they ingested 30 g pea (PEA) or 30 g milk-derived protein (MILK). Blood and muscle biopsies were collected frequently for 5 h to assess post-prandial plasma amino acid profiles and subsequent post-prandial muscle protein synthesis rates. RESULTS MILK increased plasma essential amino acid concentrations more than PEA over the 5 h post-prandial period (incremental area under curve 151 ± 31 vs 102 ± 15 mmol∙300 min∙L-1, respectively; P < 0.001). Ingestion of both MILK and PEA showed a robust muscle protein synthetic response with no significant differences between treatments (0.053 ± 0.013 and 0.053 ± 0.017%∙h-1, respectively; P = 0.96). CONCLUSION Post-prandial muscle protein synthesis rates following the ingestion of 30 g pea-derived protein do not differ from the response following ingestion of an equivalent amount of milk-derived protein. International Clinical Trials Registry Platform (NTR6548; 27-06-2017).
Collapse
Affiliation(s)
- Philippe J M Pinckaers
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Imre W K Kouw
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joy P B Goessens
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Annemarie P B Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lisette C P G M de Groot
- TiFN, Wageningen, The Netherlands
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Lex B Verdijk
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J C van Loon
- TiFN, Wageningen, The Netherlands.
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Tim Snijders
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
42
|
Sun X, Zhang Z, Li W, Tian H, Yuan L, Yang X. Stability of high internal-phase emulsions prepared from phycocyanin and small-molecule sugars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2917-2927. [PMID: 38036304 DOI: 10.1002/jsfa.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND The use of high internal-phase Pickering emulsions in the food industry is widespread due to their excellent stability and special rheological properties. Proteins are often used as food-grade Pickering stabilizers due to their safety and nutritious properties. Nowadays, the development and efficient utilization of novel proteins as Pickering stabilizers has become a new challenge. RESULTS Phycocyanin complexes with small-molecule sugars (SMS), formed as a result of non-thermal interactions, can serve as stabilizers for high internal-phase Pickering emulsions. The addition of SMS-enabled gel-like emulsions significantly reduced the amount of emulsifier used. When the SMS was sorbitol, the emulsion had excellent elastic properties and self-supporting ability and was stable during long-term storage, when subjected to centrifugation, and under different temperature conditions. The fluorescent property of phycocyanin was utilized to investigate the formation mechanism of the emulsion. Small-molecule sugars were able to form 'sugar-shell' structures on the surface of proteins to enhance the structural stability of proteins. Phycocyanin-SMS-stabilized emulsions provided superior protection for photosensitive and volatile substances. The retention rates of trans-resveratrol and n-hexane increased by 384.75% and 30.55%, respectively. CONCLUSION These findings will encourage the development of proteins that stabilize Pickering emulsions. They will also provide new ideas for protecting photosensitive and volatile substances. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaolin Sun
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hongye Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
43
|
Feng Q, Niu Z, Zhang S, Wang L, Qun S, Yan Z, Hou D, Zhou S. Mung bean protein as an emerging source of plant protein: a review on production methods, functional properties, modifications and its potential applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2561-2573. [PMID: 37935642 DOI: 10.1002/jsfa.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Plant protein is rapidly becoming more of a prime interest to consumers for its nutritional and functional properties, as well as the potential to replace animal protein. In the frame of alternative protein new sources, mung bean is becoming another legume crop that could provide high quality plant protein after soybean and pea. In particular, the 8S globulins in mung bean protein have high structural similarity and homology with soybean β-conglycinin (7S globulin), with 68% sequence identity. Currently, mung bean protein has gained popularity in food industry because of its high nutritional value and peculiar functional properties. In that regard, various modification technologies have been applied to further broaden its application. Here, we provide a review of the composition, nutritional value, production methods, functional properties and modification technologies of mung bean protein. Furthermore, its potential applications in the new plant-based products, meat products, noodles, edible packaging films and bioactive compound carriers are highlighted to facilitate its utilization as an alternative plant protein, thus meeting consumer demands for high quality plant protein resources. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiqian Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhitao Niu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Siqi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shen Qun
- College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, China
| | - Zheng Yan
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
44
|
Arslan B, Xiong YL, Soyer A. Antioxidant properties of bovine liver protein hydrolysates and their practical application in biphasic systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2980-2989. [PMID: 38087783 DOI: 10.1002/jsfa.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The influence of protein hydrolysate produced from bovine liver protein hydrolysate (LPH) by enzymatic hydrolysis, using Alcalase/Protamex (1:1), on lipid dispersions was investigated. LPH production was optimized to maximize the antioxidant activity (at 45, 50, and 55 °C for 12, 18, and 24 h). Different concentrations of LPHs (1, 3, and 5 mg/g) were added to emulsions and to liposomes. Lipid oxidation level and particle size of the lipid dispersions were monitored for 14 days of storage at 25 °C. RESULTS Radical scavenging activity and reducing power were the highest at 45 °C after 24 h of hydrolysis. Electrophoresis pattern showed that the antioxidant activity was arising from the peptides with molecular weight around 10 kDa. Lipid oxidation occurred more rapidly in samples without LPH during storage. In emulsions, lower thiobarbituric acid-reactive substance and conjugated diene values were measured with increasing concentrations of LPH at day 14. Accordingly, particle size of the samples containing 5 mg/g of LPH was smaller than those of other groups. Phase separation was observed only in lecithin emulsion without LPH at day 14. The use of LPH in liposome limited the lipid oxidation and maintained the size of the particles independently from the concentration. CONCLUSION This study highlights the potential applications of animal by-products as natural antioxidants in complex food systems. The results demonstrate that LPH, particularly when hydrolyzed at optimized conditions, can effectively inhibit lipid oxidation. The findings suggest that biphasic systems incorporating LPH have promising prospects for enhancing the stability and quality of food products. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Betul Arslan
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
- Department of Food Engineering, Faculty of Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Youling L Xiong
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA
| | - Ayla Soyer
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
45
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
46
|
Wu K, Gong W, Lin S, Huang S, Mu H, Wang M, Sheng J, Zhao C. Regulation of Sacha Inchi protein on fecal metabolism and intestinal microorganisms in mice. Front Nutr 2024; 11:1354486. [PMID: 38524850 PMCID: PMC10959099 DOI: 10.3389/fnut.2024.1354486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction With the increasing demand for protein utilization, exploring new protein resources has become a research hotspot. Sacha Inchi Protein (SIP) is a high-quality plant protein extracted from Sacha Inchi meal. This study aimed to investigate the impact of SIP on mouse metabolomics and gut microbiota diversity and explore the underlying pathways responsible for its health benefits. Methods In this study, the structural composition of SIP was investigated, and the effects of SIP on fecal metabolomics and intestinal microorganisms in mice were explored by LC-MS metabolomics technology analysis and 16S rRNA gene sequencing. Results The results showed that SIP was rich in amino acids, with the highest Manuscript Click here to view linked References content of arginine, which accounted for 22.98% of the total amino acid content; the potential fecal metabolites of mice in the SIP group involved lipid metabolism, sphingolipid metabolism, arginine biosynthesis, and amino acid metabolism; SIP altered the microbial composition of the cecum in mice, decreased the Firmicutes/Bacteroidetes value, and It decreased the abundance of the harmful intestinal bacteria Actinobacteriota and Desulfobacterota, and increased the abundance of the beneficial intestinal bacteria Faecalibaculum, Dubosiella. Discussion In conclusion, SIP is a high-quality plant protein with great potential for development in lipid-lowering, intestinal health, and mental illness, providing valuable clues for further research on its health-promoting mechanisms.
Collapse
Affiliation(s)
- Kuan Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | | | - Shiyang Lin
- Pu'er Agricultural Science Research Institute, Pu-er, China
| | - Si Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongyu Mu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mingming Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Kunming, Yunnan, China
- Yunnan Province Characteristic Resource Food Biological Manufacturing Engineering Research Center, Kunming, Yunnan, China
| | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Province Characteristic Resource Food Biological Manufacturing Engineering Research Center, Kunming, Yunnan, China
| |
Collapse
|
47
|
Toutirais L, Walrand S, Vaysse C. Are oilseeds a new alternative protein source for human nutrition? Food Funct 2024; 15:2366-2380. [PMID: 38372388 DOI: 10.1039/d3fo05370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
This review focuses on the potential use, nutritional value and beneficial health effects of oilseeds as a source of food protein. The process of extracting oil from oilseeds produces a by-product that is rich in proteins and other valuable nutritional and bioactive components. This product is primarily used for animal feed. However, as the demand for proteins continues to rise, plant-based proteins have a real success in food applications. Among the different plant protein sources, oilseeds could be used as an alternative protein source for human diet. The data we have so far show that oilseeds present a protein content of up to 40% and a relatively well-balanced profile of amino acids with sulphur-containing amino acids. Nevertheless, they tend to be deficient in lysine and rich in anti-nutritional factors (ANFs), which therefore means they have lower anabolic potential than animal proteins. To enhance their nutritional value, oilseed proteins can be combined with other protein sources and subjected to processes such as dehulling, heating, soaking, germination or fermentation to reduce their ANFs and improve protein digestibility. Furthermore, due to their bioactive peptides, oilseeds can also bring health benefits, particularly in the prevention and treatment of diabetes, obesity and cardiovascular diseases. However, additional nutritional data are needed before oilseeds can be endorsed as a protein source for humans.
Collapse
Affiliation(s)
- Lina Toutirais
- ITERG, Department of Nutritional Health and Lipid Biochemistry, Bordeaux, France
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Stephane Walrand
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| | - Carole Vaysse
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| |
Collapse
|
48
|
Martineau-Côté D, Achouri A, Pitre M, Karboune S, L'Hocine L. Improved in vitro gastrointestinal digestion protocol mimicking brush border digestion for the determination of the Digestible Indispensable Amino Acid Score (DIAAS) of different food matrices. Food Res Int 2024; 178:113932. [PMID: 38309864 DOI: 10.1016/j.foodres.2024.113932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
The Digestible Indispensable Amino Acid Score (DIAAS) is the new gold standard method for the assessment of protein nutritional quality. The DIAAS is evaluated with in vivo models, that are complex, constraining and costly. There is still no established method to assess it in vitro. In this study, we proposed to add a jejunal-ileal digestion phase to the standardized in vitro gastrointestinal digestion protocol developed by the International Network of Excellence on the Fate of Food in the Gastrointestinal Tract (INFOGEST protocol) to mimic brush border digestion and to enable DIAAS assessment in vitro in a more physiologically relevant manner. This jejunal-ileal digestion phase was performed with a porcine intestinal aminopeptidase as an alternative to brush border membrane extract, which is more difficult to obtain in a standardized way. This modified INFOGEST protocol was applied to various food matrices (faba bean, pea and soy flours, whey protein isolate and caseins) and the results were compared to published in vivo data to assess the model's physiological relevance. The addition of the jejunal-ileal digestion phase lead to a significant (p < 0.05) increase of 31 and 29 % in free and total amino acid digestibility, respectively, and of 83 % on average for the in vitro DIAAS values for all food matrices. Although the in vitro DIAAS remained underestimated compared to the in vivo ones, a strong correlation between them was observed (r = 0.879, p = 0.009), stating the relevance of this last digestion phase. This improved digestion protocol is proposed as a suitable alternative to evaluate the DIAAS in vitro when in vivo assays are not applicable.
Collapse
Affiliation(s)
- Delphine Martineau-Côté
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada; Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Allaoua Achouri
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Mélanie Pitre
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Lamia L'Hocine
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada.
| |
Collapse
|
49
|
Cebrián-Lloret V, Martínez-Abad A, Recio I, López-Rubio A, Martínez-Sanz M. In vitro digestibility of proteins from red seaweeds: Impact of cell wall structure and processing methods. Food Res Int 2024; 178:113990. [PMID: 38309924 DOI: 10.1016/j.foodres.2024.113990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
This study aimed to assess the nutritional quality and digestibility of proteins in two red seaweed species, Gelidium corneum and Gracilaropsis longissima, through the application of in vitro gastrointestinal digestions, and evaluate the impact of two consecutive processing steps, extrusion and compression moulding, to produce food snacks. The protein content in both seaweeds was approximately 16 %, being primarily located within the cell walls. Both species exhibited similar amino acid profiles, with aspartic and glutamic acid being most abundant. However, processing impacted their amino acid profiles, leading to a significant decrease in labile amino acids like lysine. Nevertheless, essential amino acids constituted 35-36 % of the total in the native seaweeds and their processed products. Although the protein digestibility in both seaweed species was relatively low (<60 %), processing, particularly extrusion, enhanced it by approximately 10 %. Interestingly, the effect of the different processing steps on the digestibility varied between the two species. This difference was mainly attributed to compositional and structural differences. G. corneum exhibited increased digestibility with each processing step, while G. longissima reached maximum digestibility after extrusion. Notably, changes in the amino acid profiles of the processed products affected adversely the protein nutritional quality, with lysine becoming the limiting amino acid. These findings provide the basis for developing strategies to enhance protein quality in these seaweed species, thereby facilitating high-quality food production with potential applications in the food industry.
Collapse
Affiliation(s)
- Vera Cebrián-Lloret
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Antonio Martínez-Abad
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Isidra Recio
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Marta Martínez-Sanz
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
50
|
Herdiana Y, Sofian FF, Shamsuddin S, Rusdiana T. Towards halal pharmaceutical: Exploring alternatives to animal-based ingredients. Heliyon 2024; 10:e23624. [PMID: 38187251 PMCID: PMC10770512 DOI: 10.1016/j.heliyon.2023.e23624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Halal is a crucial concept for Muslim consumers regarding consumed products, including pharmaceutical ingredients, which are essential in modern medicine. To address the issue of using porcine-sourced ingredients in pharmaceuticals, it is essential to search for halal alternatives derived from poultry, animal by-products from meat processing, marine sources, and plants. However, the complexity of this problem is further compounded by the rapid advances in innovation and technology, which can lead to adulteration of ingredients derived from pigs. Other challenges include the sustainability of alternative materials, management of waste or by-products practice, halal awareness, certification, government policies, religious adherence of consumers, food suppliers, marketers, and purchasing of products. The importance of halal and non-halal problems, specifically in the context of pharmaceutical materials, is still rarely discussed, including alternatives derived from poultry, animal by-products, marine sources, and plants. Due to the increasing global population, there is a growing need to increase awareness and concern among Muslim consumers for halal products, including pharmaceuticals. Therefore, this research aimed to investigate the importance of halal and non-halal issues in pharmaceutical ingredients, the potential impact on the Muslim community, as well as opportunities and challenges in the search for alternative ingredients.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Halal Food Pharmaceutical and Healthcare Society, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
| | - Ferry Ferdiansyah Sofian
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
- Halal Food Pharmaceutical and Healthcare Society, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), USM, 11800, Penang, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), 11800, USM, Penang, Malaysia
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|