1
|
Jakubowski H, Witucki Ł. Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease. Int J Mol Sci 2025; 26:746. [PMID: 39859460 PMCID: PMC11765536 DOI: 10.3390/ijms26020746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation. Together with increased plasma levels of low-density lipoprotein (LDL), diabetes, hypertension, cigarette smoking, infectious microorganisms, and genetic factors, epidemiological studies established that dysregulated metabolism of homocysteine (Hcy) causing hyperhomocysteinemia (HHcy) is associated with CVD. Patients with severe HHcy exhibit severe CVD and die prematurely due to vascular complications. Biochemically, HHcy is characterized by elevated levels of Hcy and related metabolites such as Hcy-thiolactone and N-Hcy-protein, seen in genetic and nutritional deficiencies in Hcy metabolism in humans and animals. The only known source of Hcy in humans is methionine released in the gut from dietary protein. Hcy is generated from S-adenosylhomocysteine (AdoHcy) and metabolized to cystathionine by cystathionine β-synthase (CBS) and to Hcy-thiolactone by methionyl-tRNA synthetase. Hcy-thiolactone, a chemically reactive thioester, modifies protein lysine residues, generating N-homocysteinylated (N-Hcy)-protein. N-Hcy-proteins lose their normal native function and become cytotoxic, autoimmunogenic, proinflammatory, prothrombotic, and proatherogenic. Accumulating evidence, discussed in this review, shows that these Hcy metabolites can promote endothelial dysfunction, CVD, and stroke in humans by inducing pro-atherogenic changes in gene expression, upregulating mTOR signaling, and inhibiting autophagy through epigenetic mechanisms involving specific microRNAs, histone demethylase PHF8, and methylated histone H4K20me1. Clinical studies, also discussed in this review, show that cystathionine and Hcy-thiolactone are associated with myocardial infarction and ischemic stroke by influencing blood clotting. These findings contribute to our understanding of the complex mechanisms underlying endothelial dysfunction, atherosclerosis, CVD, and stroke and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland;
| | - Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland;
| |
Collapse
|
2
|
Peng M, Fu Y, Qin C, Shi L, Zhang M, Zhou S. A stratified study of human blood metabolites and coronary artery diseases-A Mendelian randomization study. Nutr Metab Cardiovasc Dis 2025; 35:103754. [PMID: 39448312 DOI: 10.1016/j.numecd.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysregulation is closely associated with coronary artery diseases (CAD). Exploring the relationship between metabolites and CAD is helpful in identifying changes in energy metabolism during disease progression. METHODS AND RESULTS We use Mendelian Randomization (MR) analysis to assess the relationships between 275 serum metabolites and CAD such as angina pectoris, post-myocardial infarction complications, coronary atherosclerosis, myocardial infarction (MI), and unstable angina pectoris (UA). The inverse variance-weighted method (IVW) served as the primary approach for causal analysis, with MR-Egger and weighted median (WM) as supplementary methods. Sensitivity analyses were conducted to assess heterogeneity and multiple effects. We also analyzed potentially related metabolic pathways.We identified causal relationships between 42 known metabolites and CAD. Among them, the genetic susceptibility to elevated levels of amino acid Isobutyrylcarnitine is associated with an increased risk of coronary artery atherosclerosis; but it provides protection against the development of MI. Genetic susceptibility to elevated levels of fatty acids Stearate, Caprylate is associated with higher risk of angina pectoris, while Threonate has a protective effect in the development of angina; Stearate is associated with an increased risk of UA, whereas higher levels of the lipids Choline, 1-arachidonoylglycerophosphoinositol∗, Hexadecanedioate, Tetradecanedioate play a protective role in UA.Metabolic pathway analysis identified 6 pathways that may be associated with CAD. CONCLUSION We identified causal relationships between 42 serum metabolites and CAD. Specifically, changes in metabolites such as Isobutyrylcarnitine, Caprylate, and Stearate were associated with risks of CAD. These findings provide new insights into the metabolic mechanisms of CAD.
Collapse
Affiliation(s)
- Mengling Peng
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, China
| | - Yu Fu
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, China
| | - Cong Qin
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, China
| | - Lei Shi
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, China
| | - Meiwei Zhang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, China
| | - Shanshan Zhou
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
3
|
Wusiman M, Huang SY, Liu ZY, He TT, Fang AP, Li MC, Yang MT, Wang C, Zhang YJ, Zhu HL. Serum S-adenosylhomocysteine, rather than homocysteine, is associated with hepatocellular carcinoma survival: a prospective cohort study. Am J Clin Nutr 2024; 120:481-490. [PMID: 39025328 DOI: 10.1016/j.ajcnut.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Emerging evidence suggested that S-adenosylhomocysteine (SAH) may be a better serum biomarker for cardiovascular disease than homocysteine (Hcy). However, the role of SAH in hepatocellular carcinoma (HCC) prognosis remains unclear. OBJECTIVES We aimed to prospectively explore the relationships between serum SAH and related metabolites [Hcy, S-adenosylmethionine (SAM)] with HCC survival, and to evaluate the effect modifications by gene polymorphisms in one-carbon metabolism key enzymes. METHODS We included 1080 newly diagnosed patients with HCC from the Guangdong Liver Cancer Cohort. Serum SAH, Hcy, and SAM were measured utilizing high-performance liquid chromatography-tandem mass spectrometry. Gene polymorphisms in one-carbon metabolism key enzymes were identified using kompetitive allele-specific polymerase chain reaction. Primary outcomes were liver cancer-specific survival (LCSS) and overall survival (OS). Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using multivariate Cox proportional hazards models. RESULTS After a median follow-up of 3.6 y, 601 deaths occurred, with 552 (92%) attributed to HCC. Multivariable analysis revealed that patients in the highest quartile of serum SAH concentrations were significantly associated with worse survival compared with those in the lowest quartile, with HRs of 1.58 (95% CI: 1.19, 2.10; P-trend = 0.002) for LCSS and 1.54 (95% CI: 1.18, 2.02; P-trend = 0.001) for OS. There were no significant interactions between serum SAH concentrations and genetic variants of one-carbon metabolism key enzymes. No significant associations were found between serum Hcy, SAM concentrations, and SAM/SAH ratio with LCSS or OS. CONCLUSIONS Higher serum SAH concentrations, rather than Hcy, were independently associated with worse survival in patients with HCC, regardless of the genetic variants of one-carbon metabolism key enzymes. These findings suggest that SAH may be a novel metabolism-related prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Maierhaba Wusiman
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Si-Yu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tong-Tong He
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ai-Ping Fang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Meng-Chu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Meng-Tao Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chen Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yao-Jun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangzhou, China.
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Tehlivets O, Almer G, Brunner MS, Lechleitner M, Sommer G, Kolb D, Leitinger G, Diwoky C, Wolinski H, Habisch H, Opriessnig P, Bogoni F, Pernitsch D, Kavertseva M, Bourgeois B, Kukilo J, Tehlivets YG, Schwarz AN, Züllig T, Bubalo V, Schauer S, Groselj-Strele A, Hoefler G, Rechberger GN, Herrmann M, Eller K, Rosenkranz AR, Madl T, Frank S, Holzapfel GA, Kratky D, Mangge H, Hörl G. Homocysteine contributes to atherogenic transformation of the aorta in rabbits in the absence of hypercholesterolemia. Biomed Pharmacother 2024; 178:117244. [PMID: 39116783 DOI: 10.1016/j.biopha.2024.117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Atherosclerosis, the leading cause of cardiovascular disease, cannot be sufficiently explained by established risk factors, including cholesterol. Elevated plasma homocysteine (Hcy) is an independent risk factor for atherosclerosis and is closely linked to cardiovascular mortality. However, its role in atherosclerosis has not been fully clarified yet. We have previously shown that rabbits fed a diet deficient in B vitamins and choline (VCDD), which are required for Hcy degradation, exhibit an accumulation of macrophages and lipids in the aorta, aortic stiffening and disorganization of aortic collagen in the absence of hypercholesterolemia, and an aggravation of atherosclerosis in its presence. In the current study, plasma Hcy levels were increased by intravenous injections of Hcy into balloon-injured rabbits fed VCDD (VCDD+Hcy) in the absence of hypercholesterolemia. While this treatment did not lead to thickening of aortic wall, intravenous injections of Hcy into rabbits fed VCDD led to massive accumulation of VLDL-triglycerides as well as significant impairment of vascular reactivity of the aorta compared to VCDD alone. In the aorta intravenous Hcy injections into VCDD-fed rabbits led to fragmentation of aortic elastin, accumulation of elastin-specific electron-dense inclusions, collagen disorganization, lipid degradation, and autophagolysosome formation. Furthermore, rabbits from the VCDD+Hcy group exhibited a massive decrease of total protein methylated arginine in blood cells and decreased creatine in blood cells, serum and liver compared to rabbits from the VCDD group. Altogether, we conclude that Hcy contributes to atherogenic transformation of the aorta not only in the presence but also in the absence of hypercholesterolemia.
Collapse
Affiliation(s)
- Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria.
| | - Gunter Almer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus S Brunner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Dagmar Kolb
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria; Center for Medical Research, Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Clemens Diwoky
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Peter Opriessnig
- Division of General Neurology, Department of Neurology, Medical University of Graz, Graz, Austria; Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Francesca Bogoni
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Dominique Pernitsch
- Center for Medical Research, Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Maria Kavertseva
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Benjamin Bourgeois
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Jelena Kukilo
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Yuriy G Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas N Schwarz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Vladimir Bubalo
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Groselj-Strele
- Center for Medical Research, Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Markus Herrmann
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | | | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gerd Hörl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Wang Q, An J, Zhou W, Zhang Y, Huang J, Liao G, Wang M, Xia L, Le A, Zhu J. S-adenosyl-L-methionine supplementation alleviates aortic dissection by decreasing inflammatory infiltration. Nutr Metab (Lond) 2024; 21:67. [PMID: 39160585 PMCID: PMC11331618 DOI: 10.1186/s12986-024-00837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/28/2024] [Indexed: 08/21/2024] Open
Abstract
Methionine, an indispensable amino acid crucial for dietary balance, intricately governs metabolic pathways. Disruption in its equilibrium has the potential to heighten homocysteine levels in both plasma and tissues, posing a conceivable risk of inducing inflammation and detriment to the integrity of vascular endothelial cells. The intricate interplay between methionine metabolism, with a specific focus on S-adenosyl-L-methionine (SAM), and the onset of thoracic aortic dissection (TAD) remains enigmatic despite acknowledging the pivotal role of inflammation in this vascular condition. In an established murine model induced by β-aminopropionitrile monofumarate (BAPN), we delved into the repercussions of supplementing with S-adenosyl-L-methionine (SAM) on the progression of TAD. Our observations uncovered a noteworthy improvement in aortic dissection and rupture rates, accompanied by a marked reduction in mortality upon SAM supplementation. Notably, SAM supplementation exhibited a considerable protective effect against BAPN-induced degradation of elastin and the extracellular matrix. Furthermore, SAM supplementation demonstrated a robust inhibitory influence on the infiltration of immune cells, particularly neutrophils and macrophages. It also manifested a notable reduction in the inflammatory polarization of macrophages, evident through diminished accumulation of MHC-IIhigh macrophages and reduced expression of inflammatory cytokines such as IL1β and TNFα in macrophages. Simultaneously, SAM supplementation exerted a suppressive effect on the activation of CD4 + and CD8 + T cells within the aorta. This was evidenced by an elevated proportion of CD44- CD62L + naïve T cells and a concurrent decrease in CD44 + CD62L- effector T cells. In summary, our findings strongly suggest that the supplementation of SAM exhibits remarkable efficacy in alleviating BAPN-induced aortic inflammation, consequently impeding the progression of thoracic aortic dissection.
Collapse
Affiliation(s)
- Qian Wang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun An
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Wei Zhou
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Yujing Zhang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Jiang Huang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Geping Liao
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Mingzhe Wang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Lingbo Xia
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Aiping Le
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Jianbing Zhu
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Jiangxi Hypertension Research Institute, Nanchang, China.
| |
Collapse
|
6
|
Caracausi M, Ramacieri G, Catapano F, Cicilloni M, Lajin B, Pelleri MC, Piovesan A, Vitale L, Locatelli C, Pirazzoli GL, Strippoli P, Antonaros F, Vione B. The functional roles of S-adenosyl-methionine and S-adenosyl-homocysteine and their involvement in trisomy 21. Biofactors 2024; 50:709-724. [PMID: 38353465 DOI: 10.1002/biof.2044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 08/09/2024]
Abstract
The one-carbon metabolism pathway is involved in critical human cellular functions such as cell proliferation, mitochondrial respiration, and epigenetic regulation. In the homocysteine-methionine cycle S-adenosyl-methionine (SAM) and S-adenosyl-homocysteine (SAH) are synthetized, and their levels are finely regulated to ensure proper functioning of key enzymes which control cellular growth and differentiation. Here we review the main biological mechanisms involving SAM and SAH and the known related human diseases. It was recently demonstrated that SAM and SAH levels are altered in plasma of subjects with trisomy 21 (T21) but how this metabolic dysregulation influences the clinical manifestation of T21 phenotype has not been previously described. This review aims at providing an overview of the biological mechanisms which are altered in response to changes in the levels of SAM and SAH observed in DS.
Collapse
Affiliation(s)
- Maria Caracausi
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Speciality School of Child Neuropsychiatry-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesca Catapano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Michela Cicilloni
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Bassam Lajin
- Institute of Chemistry, ChromICP, University of Graz, Graz, Austria
| | - Maria Chiara Pelleri
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | | | - Pierluigi Strippoli
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Beatrice Vione
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Zhou Z, Zhang N, Wu Z, Song Y, Xu X, Zhang Y, Huo Y, Li J. Serum S-adenosylhomocysteine levels are associated with first stroke in Chinese adults with hypertension. Clin Chim Acta 2024; 560:119730. [PMID: 38810671 DOI: 10.1016/j.cca.2024.119730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The association between S-adenosylhomocysteine (SAH) and stroke has not been confirmed due to the specialized equipment and time requirements necessary for S-adenosylhomocysteine testing. We aimed to explore the association between SAH and stroke. METHODS A nested, case-control study drawn from the China Stroke Primary Prevention Trial of rural adults with hypertension, including 557 first stroke cases and 557 matched controls was conducted. Serum SAH was measured by stable-isotope dilution liquid chromatography-tandem mass spectrometry using 4500MD. Multiple conditional logistic regression models were used to evaluate the association between SAH and first stroke. RESULTS In females, SAH levels were significantly higher in the stroke population than in the control group (16.0 ng/mL vs. 14.6 ng/mL). When SAH was assessed as quartiles, the odds of stroke were 1.78 (95 % CI: 1.02-3.09) in Quartile 2, 1.31 (95 % CI: 0.73-2.33) in Quartile 3, and 1.93 (95 % CI: 1.03-3.62) in Quartile 4, compared to Quartile 1. When Quartiles 2-4 were combined, the adjusted odds ratio of first stroke was 1.64 (95 % CI: 1.03-2.62) compared with Quartile 1. In subgroup analysis, a significant SAH-stroke association was observed in the lower vitamin D3 group (OR = 3.35, 95 % CI:1.72-6.53; P interaction, 0.035). In males, higher levels of SAH were associated with an increased risk of stroke in those under age 60. Compared with the reference group, the adjusted odds ratio of total stroke was 2.40 (95 % CI: 1.02-5.91) in the combined group (Quartile 2-4). In contrast, no significant association between SAH and stroke was found in males aged 60 or older. CONCLUSIONS This study reveals that SAH is associated with a higher risk of stroke independently of homocysteine, especially in females. SAH may be a second predictor of stroke in the metabolic pathway of methionine, after homocysteine.
Collapse
Affiliation(s)
- Ziyi Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Zhongyun Wu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Phamaceutical University, Nanjing, China
| | - Yun Song
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Xiping Xu
- Guangdong Key Laboratory of H-type Hypertension and Stroke Precision Prevention Research and Development Enterprise, Shenzhen, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
8
|
Guo X, Chen K, Ji L, Wang S, Ye X, Xu L, Feng L. Ultrasound-targeted microbubble technology facilitates SAHH gene delivery to treat diabetic cardiomyopathy by activating AMPK pathway. iScience 2024; 27:108852. [PMID: 38303706 PMCID: PMC10831940 DOI: 10.1016/j.isci.2024.108852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a cardiovascular complication with no known cure. In this study, we evaluated the combination of ultrasound-targeted microbubble destruction (UTMD) and cationic microbubbles (CMBs) for cardiac S-adenosyl homocysteine hydrolase (SAHH) gene transfection as potential DCM therapy. Models of high glucose/fat (HG/HF)-induced H9C2 cells and streptozotocin-induced DCM rats were established. Ultrasound-mediated SAHH delivery using CMBs was a safe and noninvasive approach for spatially localized drug administration both in vitro and in vivo. Notably, SAHH overexpression increased cell viability and antioxidative stress and inhibited apoptosis of HG/HF-induced H9C2 cells. Likewise, UTMD-mediated SAHH delivery attenuated apoptosis, oxidative stress, cardiac fibrosis, and myocardial dysfunction in DCM rats. Activation of the AMPK/FOXO3/SIRT3 signaling pathway may be a key mechanism mediating the role of SAHH in regulating myocardial injury. Thus, UTMD-mediated SAHH transfection may be an important advancement in cardiac gene therapy for restoring ventricular function after DCM.
Collapse
Affiliation(s)
- Xiaohui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, Harbin 150081, P.R. China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, P.R. China
| | - Kegong Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
| | - Lin Ji
- Department of Orthopedics, The First Hospital of Harbin, Harbin 150010, P.R. China
| | - Shanjie Wang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, P.R. China
| | - Xiangmei Ye
- Department of Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, Harbin 150081, P.R. China
| | - Liang Xu
- Department of Cardiology, The Second Hospital of Harbin, Harbin 150056, P.R. China
| | - Leiguang Feng
- Department of Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, Harbin 150081, P.R. China
| |
Collapse
|
9
|
Khan SA, Halawani SH, Zughaibi TA, Khan SA. Potential inflammatory targets in the integrative health care of patients with sickle cell disease. Exp Ther Med 2023; 26:485. [PMID: 37745045 PMCID: PMC10515103 DOI: 10.3892/etm.2023.12184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 09/26/2023] Open
Abstract
Inflammation plays an integral role in the complications of sickle cell disease (SCD), which can lead to vaso-occlusive crisis and extreme pain. SCD is accompanied by numerous complications, including cardiovascular disease, cognitive decline and endothelial dysfunction, contributing to mortality. As disease severity increases with age, the present study aimed to assess if age is also correlated with a definite pattern of progression of the two inflammatory markers, high-sensitivity C-reactive protein (hsCRP) and total homocysteine (tHCY). The findings of the present study could lead to an improved understanding of the threshold levels of these inflammatory markers and timely interventions to delay complications. In an observational study, levels of hsCRP and tHCY were analyzed in 70 patients (35 male and 35 female patients) with SCD aged between 5 and 16 years. hsCRP levels were in the high-risk range in 64.29% (n=45) of all male and female patients. A sex-wise distribution showed that, of the 35 male patients, 74.28% (n=26) were in the high-risk range, and of the 35 female patients, 54.28% (n=19) were in the high-risk range. An age-wise distribution showed that of the 41 patients in the 5-10-years age group, 70.73% (n=29), were in the high-risk range. In comparison, of the 29 patients in the 11-16-years age group, 55.17% (n=16) were in the high-risk range. tHCY levels were observed to be in the normal range in 98.57% (n=69) of all children, as compared with 1.43% (n=1) in the high-risk range. Furthermore, a sex-wise distribution showed that female patients in the high-risk group of hsCRP had higher concentrations of tHCY as compared with the male patients in that risk group. An age-wise distribution of hsCRP concentration also showed that the risk of CVD in patients in the 11-16-years age group was higher with increased concentrations of tHCY. A weak negative correlation was observed between age and hsCRP concentrations (r-value=-0.280; P=0.026) and a weak positive correlation was detected between tHCY and age (r-value=0.259; P=0.036). In conclusion, the results of the present study indicated that higher levels of hsCRP could be a useful marker in children with SCD, and levels of tHCY may be an adjunct marker as the disease progresses with age.
Collapse
Affiliation(s)
- Shahida A Khan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Saeed H Halawani
- Department of Hematology and Immunology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Torki Al Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Sarah A Khan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Omar M, Alexiou M, Rekhi UR, Lehmann K, Bhardwaj A, Delyea C, Elahi S, Febbraio M. DNA methylation changes underlie the long-term association between periodontitis and atherosclerotic cardiovascular disease. Front Cardiovasc Med 2023; 10:1164499. [PMID: 37153468 PMCID: PMC10160482 DOI: 10.3389/fcvm.2023.1164499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/22/2023] [Indexed: 05/09/2023] Open
Abstract
Periodontitis, the leading cause of adult tooth loss, has been identified as an independent risk factor for cardiovascular disease (CVD). Studies suggest that periodontitis, like other CVD risk factors, shows the persistence of increased CVD risk even after mitigation. We hypothesized that periodontitis induces epigenetic changes in hematopoietic stem cells in the bone marrow (BM), and such changes persist after the clinical elimination of the disease and underlie the increased CVD risk. We used a BM transplant approach to simulate the clinical elimination of periodontitis and the persistence of the hypothesized epigenetic reprogramming. Using the low-density lipoprotein receptor knockout (LDLRo ) atherosclerosis mouse model, BM donor mice were fed a high-fat diet to induce atherosclerosis and orally inoculated with Porphyromonas gingivalis (Pg), a keystone periodontal pathogen; the second group was sham-inoculated. Naïve LDLR o mice were irradiated and transplanted with BM from one of the two donor groups. Recipients of BM from Pg-inoculated donors developed significantly more atherosclerosis, accompanied by cytokine/chemokines that suggested BM progenitor cell mobilization and were associated with atherosclerosis and/or PD. Using whole-genome bisulfite sequencing, 375 differentially methylated regions (DMRs) and global hypomethylation in recipients of BM from Pg-inoculated donors were observed. Some DMRs pointed to the involvement of enzymes with major roles in DNA methylation and demethylation. In validation assays, we found a significant increase in the activity of ten-eleven translocase-2 and a decrease in the activity of DNA methyltransferases. Plasma S-adenosylhomocysteine levels were significantly higher, and the S-adenosylmethionine to S-adenosylhomocysteine ratio was decreased, both of which have been associated with CVD. These changes may be related to increased oxidative stress as a result of Pg infection. These data suggest a novel and paradigm-shifting mechanism in the long-term association between periodontitis and atherosclerotic CVD.
Collapse
|
11
|
Zhang RS, Tang L, Zhang Y, Shi XL, Shu J, Wang L, Zhang X, Xu YP, Zou JF, Wang R, Chen H, Tang GF. Effect of folic acid supplementation on the change of plasma S-adenosylhomocysteine level in Chinese hypertensive patients: a randomized, double-blind, controlled clinical trial. J Clin Biochem Nutr 2022; 71:238-244. [PMID: 36447492 PMCID: PMC9701592 DOI: 10.3164/jcbn.22-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/10/2022] [Indexed: 09/29/2023] Open
Abstract
The relationship between folic acid and S-adenosylhomocysteine (SAH) is controversial. This study aims to explore the effect of different doses of folic acid supplementation on SAH levels in hypertensive patients and the modification of methylene-tetrahydrofolate reductase (MTHFR) C677T gene polymorphism. A randomized, double-blind, controlled clinical trial was conducted. Hypertensive patients aged 45-75 years without a history of stroke and cardiovascular disease were selected, who were randomly assigned to one of 8 dose groups. This trial has been registered with Trial Number: ChiCTR1800016135. In the total population, folic acid supplementation of 0.4-2.0 mg/day had no effect on SAH level (β = 0.47, 95% CI: -0.86-1.79, p = 0.491), while folic acid supplementation of 2.4 mg/day significantly increased SAH level (β = 1.93, 95% CI: 0.22-3.64, p = 0.027). Stratified analysis found that MTHFR C677T genotype CC supplemented with 2.4 mg/day folic acid had no effect on SAH level (β = 0.30, 95% CI: -2.74-3.34, p = 0.847), while CT and TT genotype supplemented with 2.4 mg/day folic acid showed a significant increase in SAH level (CT: β = 2.98, 95% CI: 0.34-5.62, p = 0.027; TT: β = 3.00, 95% CI: -0.51-6.51, p = 0.095; CT combined with TT: β = 2.99, 95% CI: 0.90-5.09, p = 0.005). In conclusion, supplementation of 2.4 mg/day folic acid can lead to increased SAH levels, especially in MTHFR C677T genotype CT and TT.
Collapse
Affiliation(s)
- Ru-Shan Zhang
- School of Health Service Management, Anhui Medical University, Hefei 230032, China
| | - Lei Tang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, China
| | - Yan Zhang
- School of Health Service Management, Anhui Medical University, Hefei 230032, China
| | - Xiu-Li Shi
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ji Shu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Li Wang
- School of Health Service Management, Anhui Medical University, Hefei 230032, China
| | - Xu Zhang
- School of Health Service Management, Anhui Medical University, Hefei 230032, China
| | - Ya-Ping Xu
- School of Health Service Management, Anhui Medical University, Hefei 230032, China
| | - Jian-Fei Zou
- School of Health Service Management, Anhui Medical University, Hefei 230032, China
| | - Rui Wang
- School of Health Service Management, Anhui Medical University, Hefei 230032, China
| | - Hao Chen
- School of Health Service Management, Anhui Medical University, Hefei 230032, China
| | - Gen-Fu Tang
- School of Health Service Management, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
12
|
Xiao J, You Y, Chen X, Tang Y, Chen Y, Liu Q, Liu Z, Ling W. Higher S-adenosylhomocysteine and lower ratio of S-adenosylmethionine to S-adenosylhomocysteine were more closely associated with increased risk of subclinical atherosclerosis than homocysteine. Front Nutr 2022; 9:918698. [PMID: 36034911 PMCID: PMC9399787 DOI: 10.3389/fnut.2022.918698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022] Open
Abstract
Aim To examine the relationship of C1 metabolites of the methionine cycle with the risk of subclinical atherosclerosis (SA) in the Chinese population. Methods A total of 2,991 participants aged 45–75 years old were included for data analyses based on the baseline data of the Guangzhou Nutrition and Health Cohort. Three core serum methionine metabolites including serum S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and homocysteine (Hcy) were measured by UPLC-MS/MS. SA was determined by B-mode ultrasound measured carotid intima-media thickness (CIMT) at the common artery and bifurcation segments. Multivariable logistic and linear regression models were performed to estimate the associations of C1 metabolites of the methionine cycle with SA risk or CIMT. Results After controlling for potential cofounders and other C1 metabolites, in comparison with the lowest quartile, participants in the highest quartile had lower risk of SA by 27.6% (OR = 0.724; 95% CI:0.563–0.93, Ptrend = 0.007) for SAM and 32.2% (OR = 0.678; 95% CI:0.538–0.855, Ptrend < 0.001) for SAM/SAH, while increased SA risk by 27.9% (OR = 1.279; 95% CI: 1.065–1.535, Ptrend < 0.001) for SAH. No significant association was observed for Hcy with SA after further adjustment of SAH and SAM. The results of multivariable linear regression showed similar findings. The highest two standardized coefficients were observed for SAH (β = 0.104 for CCA and 0.121 for BIF, P< 0.001) and SAM/SAH (β = −0.071 for CCA and −0.084 for BIF, P< 0.001). Subgroup analyses suggested more evident associations of SAH with SA were observed in participants of higher cardiovascular risk profiles. Conclusion Our cross-sectional data showed higher serum SAH, but lower SAM/SAH were independently associated with increased risk of SA among the Chinese middle-aged and elderly population.
Collapse
Affiliation(s)
- Jinghe Xiao
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yiran You
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yi Tang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yuming Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, China
| | - Qiannan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhaomin Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, China
| |
Collapse
|
13
|
Sun L, Hui L, Li Y, Chen X, Liu R, Ma J. Pathogenesis and research progress in leukoaraiosis. Front Hum Neurosci 2022; 16:902731. [PMID: 36061509 PMCID: PMC9437627 DOI: 10.3389/fnhum.2022.902731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Leukoaraiosis is a common imaging marker of cerebral small vessel disease. In recent years, with the continuous advances in brain imaging technology, the detection rate of leukoaraiosis is higher and its clinical subtypes are gradually gaining attention. Although leukoaraiosis has long been considered an incidental finding with no therapeutic necessity, there is now growing evidence linking it to, among other things, cognitive impairment and a high risk of death after stroke. Due to different research methods, some of the findings are inconsistent and even contradictory. Therefore, a comprehensive and in-depth study of risk factors for leukoaraiosis is of great clinical significance. In this review, we summarize the literature on leukoaraiosis in recent years with the aim of elucidating the disease in terms of various aspects (including pathogenesis, imaging features, and clinical features, etc.).
Collapse
Affiliation(s)
- Lingqi Sun
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurology, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu, China
| | - Lin Hui
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Li
- Department of Ultrasound Medicine, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu, China
| | - Xian Chen
- Department of Neurology, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu, China
| | - Rong Liu
- Department of Neurology, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu, China
| | - Ji Ma
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
You Y, Sun X, Xiao J, Chen Y, Chen X, Pang J, Mi J, Tang Y, Liu Q, Ling W. Inhibition of S-adenosylhomocysteine hydrolase induces endothelial senescence via hTERT downregulation. Atherosclerosis 2022; 353:1-10. [PMID: 35753115 DOI: 10.1016/j.atherosclerosis.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 05/21/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND AIMS It has been established that endothelial senescence plays a critical role in the development of atherosclerosis. Elevated S-adenosylhomocysteine (SAH) level induced by inhibition of S-adenosylhomocysteine hydrolase (SAHH) is one of the risk factors of atherosclerosis; however, the interplay between endothelial senescence and inhibition of SAHH is largely unknown. METHODS Human umbilical vein endothelial cells (HUVECs) after serial passage were used. SAHH-specific inhibitor adenosine dialdehyde (ADA) and SAHH siRNA treated HUVECs and SAHH+/-mice were used to investigate the effect of SAHH inhibition on endothelial senescence. RESULTS HUVECs exhibited distinct senescence morphology as HUVECs were passaged, together with a decrease in intracellular SAHH expression and an increase in intracellular SAH levels. SAHH inhibition by ADA or SAHH siRNA elevated SA β-gal activity, arrested proliferation, and increased the expression of p16, p21 and p53 in HUVECs and the aortas of mice. In addition, decreased expression of hTERT and reduced occupancy of H3K4me3 over the hTERT promoter region were observed following SAHH inhibition treatment. To further verify the role of hTERT in the endothelial senescence induced by SAHH inhibition, hTERT was overexpressed with a plasmid vector under CMV promoter. hTERT overexpression rescued the senescence phenotypes in endothelial cells induced by SAHH inhibition. CONCLUSIONS SAHH inhibition induces endothelial senescence via downregulation of hTERT expression, which is associated with attenuated histone methylation over the hTERT promoter region.
Collapse
Affiliation(s)
- Yiran You
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoyuan Sun
- Department of Clinical Nutrition, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, People's Republic of China
| | - Jinghe Xiao
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yu Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jiaxin Mi
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yi Tang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qiannan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Cuevas RA, St Hilaire C. Lnc'ing Metabolic Regulation of Epigenetic Modifications to Atherosclerotic Calcification. Circ Res 2022; 130:1583-1585. [PMID: 35549370 PMCID: PMC9179662 DOI: 10.1161/circresaha.122.321142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rolando A Cuevas
- Departments of Medicine and Bioengineering, Division of Cardiology, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA
| | - Cynthia St Hilaire
- Departments of Medicine and Bioengineering, Division of Cardiology, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|
16
|
Ekhzaimy AA, Masood A, Benabdelkamel H, Elhassan T, Musambil M, Alfadda AA. Plasma proteomics reveals an improved cardio-metabolic profile in patients with type 2 diabetes post-liraglutide treatment. Diab Vasc Dis Res 2022; 19:14791641221094322. [PMID: 35616478 PMCID: PMC9152203 DOI: 10.1177/14791641221094322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Diabetes mellitus is a chronic multisystem disease with a high global prevalence, including in Saudi Arabia. The Glucagon-like Peptide (GLP-1) receptor agonist liraglutide is known to lower glucose levels, reduce weight and improve cardiovascular outcome. However, mechanisms underlying the benefits of liraglutide treatment in patients with type 2 diabetes mellitus (T2DM) remain unclear. METHODS In the present study, a 2D-DIGE MALDI-TOF mass spectrometric approach combined with bioinformatics and network pathway analysis explore the plasma proteomic profile. The study involved 20 patients with T2DM with mean age of 54.4 ± 9.5 years and Hemoglobin A1c (HbA1c) between 8% and 11% (inclusive). RESULTS A statistically significant change (p < .006) was observed in HbA1c with no significant changes in body weight, renal function, or markers of dyslipidemia post-treatment with liraglutide. 2 D-DIGE gel analysis identified significant changes (⩾1.5-fold change, Analysis of variance (ANOVA), p ⩽ 0.05) in 72 proteins, (62 down and 10 up) in liraglutide pre-treatment compared to the post-treatment state. Proteins identified in our study were found to regulate metabolic processes including acute phase response proteins, enzymes, apolipoproteins with involvement of the inflammatory signaling pathways, NF-κB, AKT, and p38 MAPK. CONCLUSION Liraglutide treatment decreased levels of acute phase response that to reduce the systemic chronic inflammatory state and oxidative stress, and eventually improve the cardio-metabolic profile in these patients.
Collapse
Affiliation(s)
- Aishah A Ekhzaimy
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tasnem Elhassan
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Assim A Alfadda
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh, Saudi Arabia
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Assim A Alfadda, Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
17
|
Dai X, Liu S, Cheng L, Huang T, Guo H, Wang D, Xia M, Ling W, Xiao Y. Epigenetic Upregulation of H19 and AMPK Inhibition Concurrently Contribute to S-Adenosylhomocysteine Hydrolase Deficiency-Promoted Atherosclerotic Calcification. Circ Res 2022; 130:1565-1582. [PMID: 35410483 DOI: 10.1161/circresaha.121.320251] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND S-adenosylhomocysteine (SAH) is a risk factor of cardiovascular disease; inhibition of SAH hydrolase (SAHH) results in SAH accumulation and induces endothelial dysfunction and atherosclerosis. However, the effect and mechanism of SAHH in atherosclerotic calcification is still unclear. We aimed to explore the role and mechanism of SAHH in atherosclerotic calcification. METHODS The relationship between SAHH and atherosclerotic calcification was investigated in patients with coronary atherosclerotic calcification. Different in vivo genetic models were used to examine the effect of SAHH deficiency on atherosclerotic calcification. Human aortic and murine vascular smooth muscle cells (VSMCs) were cultured to explore the underlying mechanism of SAHH on osteoblastic differentiation of VSMCs. RESULTS The expression and activity of SAHH were decreased in calcified human coronary arteries and inversely associated with coronary atherosclerotic calcification severity, whereas plasma SAH and total homocysteine levels were positively associated with coronary atherosclerotic calcification severity. Heterozygote knockout of SAHH promoted atherosclerotic calcification. Specifically, VSMC-deficient but not endothelial cell-deficient or macrophage-deficient SAHH promoted atherosclerotic calcification. Mechanistically, SAHH deficiency accumulated SAH levels and induced H19-mediated Runx2 (runt-related transcription factor 2)-dependent osteoblastic differentiation of VSMCs by inhibiting DNMT3b (DNA methyltransferase 3 beta) and leading to hypomethylation of the H19 promoter. On the other hand, SAHH deficiency resulted in lower intracellular levels of adenosine and reduced AMPK (AMP-activated protein kinase) activation. Adenosine supplementation activated AMPK and abolished SAHH deficiency-induced expression of H19 and Runx2 and osteoblastic differentiation of VSMCs. Finally, AMPK activation by adenosine inhibited H19 expression by inducing Sirt1-mediated histone H3 hypoacetylation and DNMT3b-mediated hypermethylation of the H19 promoter in SAHH deficiency VSMCs. CONCLUSIONS We have confirmed a novel correlation between SAHH deficiency and atherosclerotic calcification and clarified a new mechanism that epigenetic upregulation of H19 and AMPK inhibition concurrently contribute to SAHH deficiency-promoted Runx2-dependent atherosclerotic calcification.
Collapse
Affiliation(s)
- Xin Dai
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Si Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Lokyu Cheng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Ting Huang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, China (H.G.)
| | - Dongliang Wang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (D.W., M.X., W.L.)
| | - Min Xia
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (D.W., M.X., W.L.)
| | - Wenhua Ling
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (D.W., M.X., W.L.)
| | - Yunjun Xiao
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| |
Collapse
|
18
|
Dai X, Liu S, Cheng L, Huang T, Guo H, Wang D, Xia M, Ling W, Xiao Y. Betaine Supplementation Attenuates S-Adenosylhomocysteine Hydrolase-Deficiency-Accelerated Atherosclerosis in Apolipoprotein E-Deficient Mice. Nutrients 2022; 14:nu14030718. [PMID: 35277077 PMCID: PMC8840105 DOI: 10.3390/nu14030718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 02/06/2022] [Indexed: 12/25/2022] Open
Abstract
S-adenosylhomocysteine (SAH) is a risk factor of cardiovascular diseases and atherosclerosis. However, the causal association between SAH and atherosclerosis is still uncertain. In the present study, heterozygous SAH hydrolase (SAHH+/−) knockout mice were bred with apolipoprotein E-deficient mice to produce ApoE−/−/SAHH+/− mice. At 8 weeks of age, these mice were fed on AIN-93G diets added with or without betaine (4 g betaine/100 g diet) for 8 weeks. Compared with ApoE−/−/SAHHWT mice, SAHH deficiency caused an accumulation of plasma SAH concentration and a decrease in S-adenosylmethionine (SAM)/SAH ratio as well as plasma homocysteine levels. Betaine supplementation lowered SAH levels and increased SAM/SAH ratio and homocysteine levels in ApoE−/−/SAHH+/− mice. Furthermore, SAHH deficiency promoted the development of atherosclerosis, which was reduced by betaine supplementation. The atheroprotective effects of betaine on SAHH-deficiency-promoted atherosclerosis were associated with inhibition of NFκB inflammation signaling pathway and inhibition of proliferation and migration of smooth muscle cells. In conclusion, our results suggest that betaine supplementation lowered plasma SAH levels and protected against SAHH-deficiency-promoted atherosclerosis through repressing inflammation and proliferation and migration of smooth muscle cells.
Collapse
Affiliation(s)
- Xin Dai
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (X.D.); (S.L.); (L.C.); (T.H.)
| | - Si Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (X.D.); (S.L.); (L.C.); (T.H.)
| | - Lokyu Cheng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (X.D.); (S.L.); (L.C.); (T.H.)
| | - Ting Huang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (X.D.); (S.L.); (L.C.); (T.H.)
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China;
| | - Dongliang Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.W.); (M.X.); (W.L.)
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.W.); (M.X.); (W.L.)
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.W.); (M.X.); (W.L.)
| | - Yunjun Xiao
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (X.D.); (S.L.); (L.C.); (T.H.)
- Correspondence: ; Tel.: +86-138-0989-0750
| |
Collapse
|
19
|
Liu S, Liao R, Dai X, Guo H, Wang D, Xia M, Ling W, Xiao Y. Association between plasma S-adenosylmethionine and risk of mortality in patients with coronary artery disease: A cohort study. Am J Clin Nutr 2021; 114:1360-1370. [PMID: 34192296 DOI: 10.1093/ajcn/nqab210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND S-adenosylmethionine (SAM) as methyl donors participates in methylation and is converted into S-adenosylhomocysteine (SAH), which is a precursor of homocysteine. Increased plasma SAH and homocysteine are associated with increased risk of cardiovascular disease. However, the relation of plasma SAM with cardiovascular risk is still unclear. OBJECTIVES To determine the relation between plasma SAM and risk of mortality among patients with coronary artery disease (CAD). METHODS Baseline plasma SAM concentrations were measured in 1553 patients with CAD from the Guangdong Coronary Artery Disease Cohort between October 2008 and December 2011. Proportional hazards Cox analyses were performed to ascertain associations between SAM and risk of all-cause and cardiovascular mortality. RESULTS After a median follow-up of 9.2 (IQR: 8.5-10.2) y, of 1553 participants, 321 had died, including 227 deaths from cardiovascular diseases. Patients in the lowest quartile of SAM concentrations had a higher risk of all-cause death (HR, 1.59; 95% CI: 1.14, 2.21) and cardiovascular death (HR, 2.14; 95% CI: 1.41, 3.27) than those in the highest quartile in multivariable adjusted analysis. Each 1-SD decrease in the SAM concentration remained associated with a 42% greater risk of total death (HR, 1.42; 95% CI: 1.23, 1.64) and a 66% higher risk of cardiovascular death (HR, 1.66; 95% CI: 1.37, 2.01) after fully adjusting for other cardiovascular risk factors. Furthermore, each 1-SD decrease in plasma SAM/SAH ratio, as the methylation index, was also inversely associated with the risk of all-cause (HR, 1.80; 95% CI: 1.42, 2.29) and cardiovascular mortality (HR, 1.68; 95% CI: 1.29, 2.19) in fully adjusted analyses. CONCLUSIONS Our data show a significant inverse relation between plasma SAM and risk of mortality in patients with CAD after adjustment for homocysteine, SAH, and other cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Si Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ruyi Liao
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xin Dai
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Dongliang Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yunjun Xiao
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
20
|
Guo X, Qi Y, Li J, Fan H, Yang L, Wu X, Ni J, Wang H, Wang X. A comprehensive study of the genotoxic and anti-genotoxic effects of homocysteine in HUVECs and mouse bone marrow cells. Food Chem Toxicol 2021; 156:112518. [PMID: 34418477 DOI: 10.1016/j.fct.2021.112518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/24/2023]
Abstract
Elevated Homocysteine (Hcy) is associated with increased risk of vascular disease, but whether it induces genotoxicity to vascular endothelial cells remains unknown. Here, we conducted a comprehensive study of the genotoxicity, and unexpected anti-genotoxicity, of Hcy by cytokinesis-blocked micronucleus assay in HUVECs and erythrocyte micronucleus test in mouse bone marrow cells. Our experiments led to several important findings. First, while supraphysiological Hcy (SP-Hcy) exhibited remarkable genotoxicity, physiologically-relevant Hcy (PR-Hcy) reduced the basal genotoxicity. Second, among the metabolites of Hcy, cysteine phenocopied the anti-genotoxicity of PR-Hcy and, methionine, S-adenosylhomocysteine and H2S phenocopied the genotoxicity of SP-Hcy. Third, the genotoxicity of SP-Hcy was mitigated by vitamin B6, Fe2+ and Cu2+, but was exacerbated by N-acetylcysteine. Fourth, under pre-, co- or post-treatment protocol, both SP-Hcy and PR-Hcy attenuated the genotoxicity of cisplatin, mitomycin-C, nocodazole or deoxycholate. Finally, 100 and 250 mg/kg Hcy ameliorated cisplatin-induced genotoxicity in bone marrow cells of CF-1 and Kunming mice. Our results suggest that genotoxicity may be one mechanism through which Hcy confers an increased risk for vascular disease, but more importantly, they challenge the long-standing paradigm that Hcy is always harmful to human health. Our study calls for a more systematic effort in understanding the molecular mechanisms underlying the anti-genotoxicity of Hcy.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China.
| | - Yanmei Qi
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Jianfei Li
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Houhong Fan
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Limei Yang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Xue Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China
| | - Han Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China.
| |
Collapse
|
21
|
Epigenetic regulation of TXNIP-mediated oxidative stress and NLRP3 inflammasome activation contributes to SAHH inhibition-aggravated diabetic nephropathy. Redox Biol 2021; 45:102033. [PMID: 34119876 PMCID: PMC8209273 DOI: 10.1016/j.redox.2021.102033] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
S-adenosylhomocysteine (SAH) is hydrolyzed by SAH hydrolase (SAHH) to homocysteine and adenosine. Increased plasma SAH levels were associated with disturbed renal function in patients with diabetes. However, the role and mechanism of SAHH in diabetic nephropathy is still unknown. In the present study, we found that inhibition of SAHH by using its inhibitor adenosine dialdehyde (ADA) accumulates intracellular or plasma SAH levels and increases high glucose-induced podocyte injury and aggravates STZ-induced diabetic nephropathy, which is associated with Nod-like receptor protein 3 (NLRP3) inflammasome activation. Inhibition or knockout of NLRP3 attenuates SAHH inhibition-aggravated podocyte injury and diabetic nephropathy. Additionally, SAHH inhibition increases thioredoxin-interacting protein (TXNIP)-mediated oxidative stress and NLRP3 inflammasome activation, but these effects were not observed in TXNIP knockout mice. Mechanistically, SAHH inhibition increased TXNIP by inhibiting histone methyltransferase enhancer of zeste homolog 2 (EZH2) and reduced trimethylation of histone H3 lysine 27 and its enrichment at promoter of early growth response 1 (EGR1). Moreover, EGR1 is activated and enriched at promoters of TXNIP by SAHH inhibition and is essential for SAHH inhibition-induced TXNIP expression. Inhibition of EGR1 protected against SAHH inhibition-induced NLRP3 inflammasome activation and oxidative stress and diabetic nephropathy. Finally, the harmful effects of SAHH inhibition on inflammation and oxidative stress and diabetic nephropathy were also observed in heterozygote SAHH knockout mice. These findings suggest that EZH2/EGR1/TXNIP/NLRP3 signaling cascade contributes to SAHH inhibition-aggravated diabetic nephropathy. Our study firstly provides a novel insight into the role and mechanism of SAHH inhibition in diabetic nephropathy. SAHH inhibition accumulates SAH levels and aggravates podocyte injury and diabetic nephropathy. SAHH inhibition induces TXNIP-mediated oxidative stress and NLRP3 inflammasome activation. SAHH inhibition increases TXNIP by inhibiting EZH2 and reducing H3K27me3 and its enrichment at promoter of EGR1. EGR1 is required for SAHH inhibition-induced TXNIP and NLRP3 inflammasome activation and diabetic nephropathy.
Collapse
|
22
|
Joseph J, Giczewska A, Alhanti B, Cheema AK, Handy DE, Mann DL, Loscalzo J, Givertz MM. Associations of methyl donor and methylation inhibitor levels during anti-oxidant therapy in heart failure. J Physiol Biochem 2021; 77:295-304. [PMID: 33595776 DOI: 10.1007/s13105-021-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Redox balance and methylation are crucial to homeostasis and are linked by the methionine-homocysteine cycle. We examined whether differences in methylation potential, measured as plasma levels of S-adenosyl methionine (SAM) and S-adenosyl homocysteine (SAH), occur at baseline and during anti-oxidant therapy with the xanthine oxidase inhibitor allopurinol in patients with heart failure with reduced ejection fraction. We analyzed plasma samples collected at baseline and 24 weeks in the Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) study, which randomized patients with heart failure with reduced ejection fraction to allopurinol or placebo. Associations between plasma levels of SAM, SAH, SAM/SAH ratio, and outcomes, including laboratory markers and clinical events, were assessed. Despite randomization, median SAM levels were significantly lower at baseline in the allopurinol group. SAH levels at 24 weeks, and change in SAM from baseline to week 24, were significantly higher in the group of patients randomized to allopurinol compared to the placebo group. A significant correlation was observed between change in SAH levels and change in plasma uric acid (baseline to 24-week changes) in the allopurinol group. There were no significant associations between levels of SAM, SAH, and SAM/SAH ratio and clinical outcomes. Our results demonstrate significant biological variability in SAM and SAH levels at baseline and during treatment with an anti-oxidant and suggest a potential mechanism for the lack of efficacy observed in trials of anti-oxidant therapy. These data also highlight the need to explore personalized therapy for heart failure.
Collapse
Affiliation(s)
- Jacob Joseph
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Medicine, VA Boston Healthcare System, Boston, MA, USA.
| | | | | | - Amrita K Cheema
- Department of Oncology, Georgetown University School of Medicine, Washington, DC, USA
| | - Diane E Handy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas L Mann
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael M Givertz
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Stojan G, Li J, Liu T, Kane MA, Petri MA. Intracellular homocysteine metabolites in SLE: plasma S-adenosylhomocysteine correlates with coronary plaque burden. Lupus Sci Med 2021; 8:8/1/e000453. [PMID: 33479047 PMCID: PMC7825256 DOI: 10.1136/lupus-2020-000453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/09/2020] [Accepted: 01/10/2021] [Indexed: 11/17/2022]
Abstract
Background and aims We hypothesised that intracellular homocysteine and homocysteine metabolite levels in patients with SLE are disproportionately elevated compared with the levels seen in healthy subjects and that they are independently associated with coronary plaque in SLE. Methods A liquid chromatography–tandem mass spectrometry absolute quantification assay was used for the determination of six analytes in both plasma and peripheral blood mononuclear cells (PBMCs): homocysteine (Hcy), S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), cystathionine (Cysta) and 5-methyltetrahydrofolate (5m-THF). We then compared intracellular (PBMC) and extracellular (plasma) Hcy and Hcy metabolite (SAM, SAH, Met, Cysta and 5m-THF) concentrations in 10 patients with SLE and in 10 age, sex and ethnicity matched controls. Subjects with a history of diabetes mellitus, cardiovascular disease, hypertension, alcohol consumption in excess of 3 units per day, anaemia, renal insufficiency (serum creatinine >1.5 mg/dL) and pregnancy were excluded. All patients with SLE had two coronary CT angiography studies as screening for occult coronary atherosclerotic disease. Results Plasma from patients with SLE had higher levels of Hcy (p<0.0001), SAH (p<0.05), SAM (p<0.001) and lower levels of Met (p<0.05) and Cysta (p<0.001) compared with controls. PBMC intracellular concentrations from patients with SLE had higher levels of Cysta (p<0.05), SAH (p<0.05), SAM (p<0.001) and lower levels of 5m-THF (p<0.001). Plasma SAH showed a positive correlation with total coronary plaque, calcified plaque and non-calcified plaque (p<0.05). Conclusion Intracellular concentrations of Hcy metabolites were significantly different between patients with SLE and controls, despite similar intracellular Hcy levels. Plasma SAH was positively correlated with total coronary plaque, calcified plaque and non-calcified plaque.
Collapse
Affiliation(s)
- George Stojan
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica Li
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tian Liu
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Maureen A Kane
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Michelle A Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Lu J, Weil JT, Cerrate S, Coon CN. Ontogeny of hepatic methionine catabolic enzyme activities (Transmethylation and Transsulphuration) and associated physiological amino acids in E10-21 chick embryos and D1-49 broilers. J Anim Physiol Anim Nutr (Berl) 2020; 105:507-519. [PMID: 33159699 DOI: 10.1111/jpn.13463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/29/2020] [Accepted: 09/09/2020] [Indexed: 01/25/2023]
Abstract
Developmental changes in hepatic methionine adenosyltransferase, cystathionine β-synthase, cystathionase, and glycine N-methyltransferase were determined in broiler chick embryos and hatched chicks by using radiometric and spectrometric methods. Hepatic free methionine, S-adenosylmethionine, S-adenosylhomocysteine, homocysteine, cystathionine, and cysteine levels were also investigated. Results showed an increase in hepatic MAT activity from E10 to E21 during embryogenesis, suggesting greater transmethylation rates throughout the rapid embryonic growth and development period. A strong positive correlation between embryo BW and MAT activity also supports this idea. The MAT specific activity continued to increase after hatching, but there was a negative correlation between chick BW and MAT activities from D1 to D49. This may indicate different MAT isozymes exist for chick embryo hepatic tissue compared to hepatic tissue of hatched chick and growing broilers. The developmental pattern of MAT isozymes could be critical for methionine metabolism to cope with the demand imposed on the embryo, chicks, and growing broilers. Additionally, the specific activity of hepatic CBS in chick embryos was determined to be lower compared to that observed in older broilers (35 and 49 days). Since liver CBS specific activity is at the lowest point from D1-7 in young chicks, the ability to convert adequate homocysteine to cysteine through transsulphuration may be limiting for cysteine synthesis at this time. Steady-state hepatic homocysteine levels in chick embryos and chicks may be a function of the rates of homocysteine formation, remethylation, and catabolism via the transsulphuration pathway. The present study indicates young chicks from D1 to D7 may have a limited ability for adequate transsulphuration; therefore, dietary cystine may be needed for optimum performance.
Collapse
Affiliation(s)
| | - Jordan Taylor Weil
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | | | - Craig Nelson Coon
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
25
|
Greene E, Cauble R, Dhamad AE, Kidd MT, Kong B, Howard SM, Castro HF, Campagna SR, Bedford M, Dridi S. Muscle Metabolome Profiles in Woody Breast-(un)Affected Broilers: Effects of Quantum Blue Phytase-Enriched Diet. Front Vet Sci 2020; 7:458. [PMID: 32851035 PMCID: PMC7417653 DOI: 10.3389/fvets.2020.00458] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Woody breast (WB) myopathy is significantly impacting modern broilers and is imposing a huge economic burden on the poultry industry worldwide. Yet, its etiology is not fully defined. In a previous study, we have shown that hypoxia and the activation of its upstream mediators (AKT/PI3K/mTOR) played a key role in WB myopathy, and supplementation of quantum blue (QB) can help to reduce WB severity via modulation of hypoxia-related pathways. To gain further insights, we undertook here a metabolomics approach to identify key metabolite signatures and outline their most enriched biological functions. Ultra performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS) identified a total of 108 known metabolites. Of these, mean intensity differences at P < 0.05 were found in 60 metabolites with 42 higher and 18 lower in WB-affected compared to unaffected muscles. Multivariate analysis and Partial Least Squares Discriminant analysis (PLS-DA) scores plot displayed different clusters when comparing metabolites profile from affected and unaffected tissues and from moderate (MOD) and severe (SEV) WB muscles indicating that unique metabolite profiles are present for the WB-affected and unaffected muscles. To gain biologically related molecule networks, a stringent pathway analyses was conducted using IPA knowledge-base. The top 10 canonical pathways generated, using a fold-change -1.5 and 1.5 cutoff, with the 50 differentially abundant-metabolites were purine nucleotide degradation and de novo biosynthesis, sirtuin signaling pathway, citrulline-nitric oxide cycle, salvage pathways of pyrimidine DNA, IL-1 signaling, iNOS, Angiogenesis, PI3K/AKT signaling, and oxidative phosphorylation. The top altered bio-functions in term of molecular and cellular functions in WB-affected tissues included cellular development, cellular growth and proliferation, cellular death and survival, small molecular biochemistry, inflammatory response, free radical scavenging, cell signaling and cell-to-cell interaction, cell cycles, and lipid, carbohydrate, amino acid, and nucleic acid metabolisms. The top disorder functions identified were organismal injury and abnormalities, cancer, skeletal and muscular disorders, connective tissue disorders, and inflammatory diseases. Breast tissues from birds fed with high dose (2,000 FTU) of QB phytase exhibited 22 metabolites with significantly different levels compared to the control group with a clear cluster using PLS-DA analysis. Of these 22 metabolites, 9 were differentially abundant between WB-affected and unaffected muscles. Taken together, this study determined many metabolic signatures and disordered pathways, which could be regarded as new routes for discovering potential mechanisms of WB myopathy.
Collapse
Affiliation(s)
- Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reagan Cauble
- Department of Animal Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Ahmed E Dhamad
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael T Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Byungwhi Kong
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara M Howard
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Hector F Castro
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shawn R Campagna
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
26
|
Vitamin B12 deficiency and altered one-carbon metabolites in early pregnancy is associated with maternal obesity and dyslipidaemia. Sci Rep 2020; 10:11066. [PMID: 32632125 PMCID: PMC7338455 DOI: 10.1038/s41598-020-68344-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin B12 (B12) is a micronutrient essential for one-carbon (1C) metabolism. B12 deficiency disturbs the 1C cycle and alters DNA methylation which is vital for most metabolic processes. Studies show that B12 deficiency may be associated with obesity, insulin resistance and gestational diabetes; and with obesity in child-bearing women. We therefore hypothesised that the associations between B12 deficiency, BMI and the metabolic risk could be mediated through altered 1C metabolites in early pregnancy. We explored these associations in two different early pregnancy cohorts in the UK (cohort 1; n = 244 and cohort 2; n = 60) with anthropometric data at 10-12 weeks and plasma/serum sampling at 16-18 weeks. B12, folate, total homocysteine (tHcy), methionine, MMA, metabolites of 1C metabolism (SAM, SAH) and anthropometry were measured. B12 deficiency (< 150 pmol/l) in early pregnancy was 23% in cohort 1 and 18% in cohort 2. Regression analysis after adjusting for likely confounders showed that B12 was independently and negatively associated with BMI (Cohort 1: β = - 0.260, 95% CI (- 0.440, - 0.079), p = 0.005, Cohort 2: (β = - 0.220, 95% CI (- 0.424, - 0.016), p = 0.036) and positively with HDL cholesterol (HDL-C) (β = 0.442, 95% CI (0.011,0.873), p = 0.045). We found that methionine (β = - 0.656, 95% CI (- 0.900, - 0.412), p < 0.0001) and SAH (β = 0.371, 95% CI (0.071, 0.672), p = 0.017) were independently associated with triglycerides. Low B12 status and alteration in metabolites in 1C metabolism are common in UK women in early pregnancy and are independently associated with maternal obesity and dyslipidaemia. Therefore, we suggest B12 monitoring in women during peri-conceptional period and future studies on the pathophysiological relationship between changes in 1C metabolites and its association with maternal and fetal outcomes on larger cohorts. This in turn may offer potential to reduce the metabolic risk in pregnant women and their offspring.
Collapse
|
27
|
McCauley SR, Clark SD, Quest BW, Streeter RM, Oxford EM. Review of canine dilated cardiomyopathy in the wake of diet-associated concerns. J Anim Sci 2020; 98:skaa155. [PMID: 32542359 PMCID: PMC7447921 DOI: 10.1093/jas/skaa155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Dilated cardiomyopathy (DCM) has been in the literature and news because of the recent opinion-based journal articles and public releases by regulatory agencies. DCM is commonly associated with a genetic predisposition in certain dog breeds and can also occur secondary to other diseases and nutritional deficiencies. Recent communications in veterinary journals have discussed a potential relationship between grain-free and/or novel protein diets to DCM, citing a subjective increase in DCM in dog breeds that are not known to have a genetic predisposition for the disease. This literature review describes clinical presentations of DCM, common sequelae, treatment and preventative measures, histopathologic features, and a discussion of the varied etiological origins of the disease. In addition, current literature limitations are addressed, in order to ascertain multiple variables leading to the development of DCM. Future studies are needed to evaluate one variable at a time and to minimize confounding variables and speculation. Furthermore, to prevent sampling bias with the current FDA reports, the veterinary community should be asked to provide information for all cases of DCM in dogs. This should include cases during the same time period, regardless of the practitioner's proposed etiology, due to no definitive association between diets with specific characteristics, such as, but not limited to, grain-free diets and those containing legumes, novel protein diets, and those produced by small manufacturers to DCM in dogs. In summary, in order to determine if certain ingredients, categories of diets, or manufacturing processes are related to an increased risk of DCM, further studies investigating these variables are necessary.
Collapse
|
28
|
Xiao Y, Xia J, Cheng J, Huang H, Zhou Y, Yang X, Su X, Ke Y, Ling W. Inhibition of S-Adenosylhomocysteine Hydrolase Induces Endothelial Dysfunction via Epigenetic Regulation of p66shc-Mediated Oxidative Stress Pathway. Circulation 2020; 139:2260-2277. [PMID: 30773021 DOI: 10.1161/circulationaha.118.036336] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Elevated levels of S-adenosylhomocysteine (SAH), the precursor of homocysteine, are positively associated with the risk of cardiovascular disease and with the development and progression of atherosclerosis. However, the role of SAH in endothelial dysfunction is unclear. METHODS Apolipoprotein E-deficient ( apoE-/-) mice received dietary supplementation with the SAH hydrolase (SAHH) inhibitor adenosine dialdehyde or were intravenously injected with a retrovirus expressing SAHH shRNA. These 2 approaches, along with the heterozygous SAHH gene knockout ( SAHH+/-) mouse model, were used to elevate plasma SAH levels and to examine the role of SAH in aortic endothelial dysfunction. The relationship between plasma SAH levels and endothelial dysfunction was also investigated in human patients with coronary artery disease and healthy control subjects. RESULTS Plasma SAH levels were increased in SAHH+/- mice and in apoE-/- mice after dietary administration of adenosine dialdehyde or intravenous injection with SAHH shRNA. SAHH+/- mice or apoE-/- mice with SAHH inhibition showed impaired endothelium-dependent vascular relaxation and decreased nitric oxide bioavailability after treatment with acetylcholine; this was completely abolished by the administration of the endothelial nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester. Furthermore, SAHH inhibition induced production of reactive oxygen species and p66shc expression in the mouse aorta and human aortic endothelial cells. Antioxidants and p66shc siRNA prevented SAHH inhibition-induced generation of reactive oxygen species and attenuated the impaired endothelial vasomotor responses in high-SAH mice. Moreover, inhibition of SAHH induced hypomethylation in the p66shc gene promoter and inhibited expression of DNA methyltransferase 1. Overexpression of DNA methyltransferase 1, induced by transduction of an adenovirus, was sufficient to abrogate SAHH inhibition-induced upregulation of p66shc expression. Finally, plasma SAH levels were inversely associated with flow-mediated dilation and hypomethylation of the p66shc gene promoter and positively associated with oxidative stress levels in patients with coronary artery disease and healthy control subjects. CONCLUSIONS Our findings indicate that inhibition of SAHH results in elevated plasma SAH levels and induces endothelial dysfunction via epigenetic upregulation of the p66shc-mediated oxidative stress pathway. Our study provides novel molecular insight into mechanisms of SAH-associated endothelial injury that may contribute to the development of atherosclerosis. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov . Unique identifier: NCT03345927.
Collapse
Affiliation(s)
- Yunjun Xiao
- Shenzhen Key Laboratory of Molecular Epidemiology (Y.X., J.X., J.C., Y.Z., YK.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Junjie Xia
- Shenzhen Key Laboratory of Molecular Epidemiology (Y.X., J.X., J.C., Y.Z., YK.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Jinquan Cheng
- Shenzhen Key Laboratory of Molecular Epidemiology (Y.X., J.X., J.C., Y.Z., YK.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Haiyan Huang
- Key Laboratory of Modern Toxicology of Shenzhen (H.H., X.Y.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Yani Zhou
- Shenzhen Key Laboratory of Molecular Epidemiology (Y.X., J.X., J.C., Y.Z., YK.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen (H.H., X.Y.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Xuefen Su
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, China (X.S.)
| | - Yuebin Ke
- Shenzhen Key Laboratory of Molecular Epidemiology (Y.X., J.X., J.C., Y.Z., YK.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China (W.L.)
| |
Collapse
|
29
|
Heresi GA, Mey JT, Bartholomew JR, Haddadin IS, Tonelli AR, Dweik RA, Kirwan JP, Kalhan SC. Plasma metabolomic profile in chronic thromboembolic pulmonary hypertension. Pulm Circ 2020. [PMID: 32110382 PMCID: PMC7000865 DOI: 10.1177/2045894019890553] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We aimed to characterize the plasma metabolome of chronic thromboembolic pulmonary hypertension patients using a high-throughput unbiased omics approach. We collected fasting plasma from a peripheral vein in 33 operable chronic thromboembolic pulmonary hypertension patients, 31 healthy controls, and 21 idiopathic pulmonary arterial hypertension patients matched for age, gender, and body mass index. Metabolomic analysis was performed using an untargeted approach (Metabolon Inc. Durham, NC). Of the total of 862 metabolites identified, 362 were different in chronic thromboembolic pulmonary hypertension compared to controls: 178 were higher and 184 were lower. Compared to idiopathic pulmonary arterial hypertension, 147 metabolites were different in chronic thromboembolic pulmonary hypertension: 45 were higher and 102 were lower. The plasma metabolome allowed us to distinguish subjects with chronic thromboembolic pulmonary hypertension and healthy controls with a predictive accuracy of 89%, and chronic thromboembolic pulmonary hypertension versus idiopathic pulmonary arterial hypertension with 80% accuracy. Compared to idiopathic pulmonary arterial hypertension and healthy controls, chronic thromboembolic pulmonary hypertension patients had higher fatty acids and glycerol; while acyl cholines and lysophospholipids were lower. Compared to healthy controls, both idiopathic pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension patients had increased acyl carnitines, beta-hydroxybutyrate, amino sugars and modified amino acids and nucleosides. The plasma global metabolomic profile of chronic thromboembolic pulmonary hypertension suggests aberrant lipid metabolism characterized by increased lipolysis, fatty acid oxidation, and ketogenesis, concomitant with reduced acyl choline and phospholipid moieties. Future research should investigate the pathogenetic and therapeutic potential of modulating lipid metabolism in chronic thromboembolic pulmonary hypertension.
Collapse
Affiliation(s)
- Gustavo A. Heresi
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland, OH, USA
| | - Jacob T. Mey
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John R. Bartholomew
- Section of Vascular Medicine, Heart and Vascular Institute, Cleveland, OH, USA
| | - Ihab S. Haddadin
- Department of Diagnostic Radiology, Imaging Institute, Cleveland, OH, USA
| | - Adriano R. Tonelli
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland, OH, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Raed A. Dweik
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland, OH, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - John P. Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Satish C. Kalhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
30
|
Sarkar P, Stefi RV, Pasupuleti M, Paray BA, Al-Sadoon MK, Arockiaraj J. Antioxidant molecular mechanism of adenosyl homocysteinase from cyanobacteria and its wound healing process in fibroblast cells. Mol Biol Rep 2020; 47:1821-1834. [PMID: 31989428 PMCID: PMC7223595 DOI: 10.1007/s11033-020-05276-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022]
Abstract
An antioxidant molecule namely, adenosyl homocysteinase (AHc) was identified from the earlier constructed transcriptome database of Spirulina, where it was cultured in a sulphur deprived condition. From the AHc protein, a small peptide NL13 was identified using bioinformatics tools and was predicted to have antioxidant property. Further, the peptide was synthesised and its antioxidant mechanism was addressed at molecular level. NL13 was subjected to various antioxidant assays including DPPH assay, HARS assay, SARS Assay, NO assay and ABTS assay, where NL13 exhibited significant (P < 0.05) potential antioxidant activity compared to its antioxidant control, Trolox. Cytotoxicity was performed on Human whole blood and the cell viability was performed on VERO fibroblast cells. In both assays, it was found that NL13 did not exhibit any cytotoxic effect towards the cells. Further, the intracellular ROS was performed on Multimode reader followed by imaging on fluorescence microscope which showed scavenging activity even at lower concentration of NL13 (31.2 µM). An effective wound healing property of NL13 on VERO cells was confirmed by analysing the cell migration rate at two different time intervals (24 and 48 h). Overall, the study shows that NL13 peptide scavenges the intracellular oxidative stress.
Collapse
Affiliation(s)
- Purabi Sarkar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Raju V Stefi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Bilal Ahmad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad K Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
31
|
Kruglova MP, Grachev SV, Bulgakova PO, Ivanov AV, Virus ED, Nikiforova KA, Fedoseev AN, Savina GD, Kubatiev AA. Low S-adenosylmethionine/ S-adenosylhomocysteine Ratio in Urine is Associated with Chronic Kidney Disease. Lab Med 2019; 51:80-85. [DOI: 10.1093/labmed/lmz035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Objective
To evaluate the association of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in urine with chronic kidney disease (CKD).
Methods
Case-control study including 50 patients with CKD and 20 healthy volunteers.
Results
SAM level and SAM/SAH ratio in urine were significantly lower in patients than in control individuals (P <.001 and P = .01, respectively). The estimated glomerular filtration rate was associated with the SAM level (P = .04) and the SAM/SAH ratio in urine (P = .01).
Conclusion
CKD is associated not only with the decline in the SAM level but also with the decrease in the SAM/SAH ratio in urine. Thus, use of the urinary SAM/SAH ratio as a noninvasive diagnostic indicator of renal function seems promising.
Collapse
Affiliation(s)
- Maria Petrovna Kruglova
- Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergej Vital’evich Grachev
- Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Polina Olegovna Bulgakova
- Department of Molecular and Cell Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | | | - Edward Danielevich Virus
- Department of Molecular and Cell Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | | | | | | | - Aslan Amirkhanovich Kubatiev
- Department of Molecular and Cell Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
32
|
Sun N, Wu Y, Zhao L, He H, Mei D, Zhang S, Zhang X, Zhang M, Wang X. A rapid and sensitive HPLC-MS/MS method for determination of endogenous creatine biosynthesis precursors in plasma of children with viral myocarditis. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:148-156. [PMID: 31039544 DOI: 10.1016/j.jchromb.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/20/2019] [Accepted: 04/04/2019] [Indexed: 01/17/2023]
Abstract
A simple, rapid and sensitive HPLC-MS/MS method for simultaneous determination of 4 of amino acids, guanidinoacetic acid, S-adenosylmethionine and S-adenosylhomocysteine in human plasma was developed and validated. The method requires no tedious sample preparation, derivatization reagents or ion-pairing reagents. Samples were prepared by combining plasma with a chilled mixture of acetonitrile (ACN) and water, followed by centrifugation and diluting the supernatant with 2 volumes of water. Analytes were detected with multiple reaction monitoring using a positive scan mode with electrospray ionization (ESI). In the assay, all the analytes showed good linearity over the investigated concentration range (r > 0.99). The accuracy expressed in relative error (RE) was between -5.0% and 13.2%, and the precision expressed in coefficient of variation (CV) ranged from 0.6% to 14.7%. In the two spiked levels (low and high), the averaged recoveries of analytes were between 45.0% and 110.9% and the recovery of internal standard was 92.0%. This method was successfully applied to studying the concentration changes of endogenous creatine (Cr) synthesis precursors in the plasma of children with viral myocarditis after intravenous administration of phosphocreatine (PCr).
Collapse
Affiliation(s)
- Ning Sun
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Yunjiao Wu
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Libo Zhao
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Huan He
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Dong Mei
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Shuyv Zhang
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xiaoyan Zhang
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Meng Zhang
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xiaoling Wang
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| |
Collapse
|
33
|
Esse R, Barroso M, Tavares de Almeida I, Castro R. The Contribution of Homocysteine Metabolism Disruption to Endothelial Dysfunction: State-of-the-Art. Int J Mol Sci 2019; 20:E867. [PMID: 30781581 PMCID: PMC6412520 DOI: 10.3390/ijms20040867] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid formed during the metabolism of the essential amino acid methionine. Hcy is considered a risk factor for atherosclerosis and cardiovascular disease (CVD), but the molecular basis of these associations remains elusive. The impairment of endothelial function, a key initial event in the setting of atherosclerosis and CVD, is recurrently observed in hyperhomocysteinemia (HHcy). Various observations may explain the vascular toxicity associated with HHcy. For instance, Hcy interferes with the production of nitric oxide (NO), a gaseous master regulator of endothelial homeostasis. Moreover, Hcy deregulates the signaling pathways associated with another essential endothelial gasotransmitter: hydrogen sulfide. Hcy also mediates the loss of critical endothelial antioxidant systems and increases the intracellular concentration of reactive oxygen species (ROS) yielding oxidative stress. ROS disturb lipoprotein metabolism, contributing to the growth of atherosclerotic vascular lesions. Moreover, excess Hcy maybe be indirectly incorporated into proteins, a process referred to as protein N-homocysteinylation, inducing vascular damage. Lastly, cellular hypomethylation caused by build-up of S-adenosylhomocysteine (AdoHcy) also contributes to the molecular basis of Hcy-induced vascular toxicity, a mechanism that has merited our attention in particular. AdoHcy is the metabolic precursor of Hcy, which accumulates in the setting of HHcy and is a negative regulator of most cell methyltransferases. In this review, we examine the biosynthesis and catabolism of Hcy and critically revise recent findings linking disruption of this metabolism and endothelial dysfunction, emphasizing the impact of HHcy on endothelial cell methylation status.
Collapse
Affiliation(s)
- Ruben Esse
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Madalena Barroso
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabel Tavares de Almeida
- Laboratory of Metabolism and Genetics, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal.
| | - Rita Castro
- Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal.
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
34
|
Visram M, Radulovic M, Steiner S, Malanovic N, Eichmann TO, Wolinski H, Rechberger GN, Tehlivets O. Homocysteine regulates fatty acid and lipid metabolism in yeast. J Biol Chem 2018; 293:5544-5555. [PMID: 29414770 PMCID: PMC5900771 DOI: 10.1074/jbc.m117.809236] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/05/2018] [Indexed: 01/03/2023] Open
Abstract
S-Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S-adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition.
Collapse
Affiliation(s)
- Myriam Visram
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Maja Radulovic
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Sabine Steiner
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Nermina Malanovic
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Thomas O. Eichmann
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Heimo Wolinski
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Gerald N. Rechberger
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and ,the Omics Center Graz, BioTechMed-Graz, 8010 Graz, Austria
| | - Oksana Tehlivets
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| |
Collapse
|
35
|
Huang X, Lv X, Song H, Yang Q, Sun Y, Zhang W, Yu X, Dong S, Yao W, Li Y, Wang Q, Wang B, Ma L, Huang G, Gao Y. The relationship between S-adenosylhomocysteine and coronary artery lesions: A case control study. Clin Chim Acta 2017; 471:314-320. [PMID: 28684218 DOI: 10.1016/j.cca.2017.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022]
Abstract
The role of homocysteine (Hcy) in the pathogenesis of coronary artery disease (CAD) is controversial, as decreased Hcy levels have not demonstrated consistent clinical benefits. Recent studies propose that S-adenosylhomocysteine (SAH), and not Hcy, plays a role in cardiovascular disease (CVD). We aimed to assess the relationship between plasma SAH and coronary artery lesions. Participants (n=160; aged 40-80years) with chest pain and suspected CAD underwent coronary angiography (CAG) for assessment of coronary artery stenosis, and were assigned to either the atherosclerosis (AS) or CAD group. Plasma SAH and S-adenosylmethionine (SAM) concentrations were measured and the association between coronary artery lesions and SAH was assessed. SAH levels were significantly higher in the CAD group (23.09±2.4nmol/L) than in the AS group (19.2±1.5nmol/L). While the AS group had higher values for SAM/SAH (5.1±0.7 vs. 4.1±1.1), levels of SAM, Hcy, folate, and vitamin B12 were similar in the two groups. Coronary artery lesions were associated with SAH (β=11.8 [95% CI: 5.88, 17.7, P<0.05]. Plasma SAH concentrations are independently associated with coronary artery lesions among patients undergoing coronary angiography. Plasma SAH might be a novel biomarker for the early clinical identification of CVD.
Collapse
Affiliation(s)
- Xinrui Huang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hui Song
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Yang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuemin Sun
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenjuan Zhang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangdong Yu
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaozhuang Dong
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Yao
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongle Li
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Wang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bei Wang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Liya Ma
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuxia Gao
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
36
|
Cencioni C, Atlante S, Savoia M, Martelli F, Farsetti A, Capogrossi MC, Zeiher AM, Gaetano C, Spallotta F. The double life of cardiac mesenchymal cells: Epimetabolic sensors and therapeutic assets for heart regeneration. Pharmacol Ther 2016; 171:43-55. [PMID: 27742569 DOI: 10.1016/j.pharmthera.2016.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organ-specific mesenchymal cells naturally reside in the stroma, where they are exposed to some environmental variables affecting their biology and functions. Risk factors such as diabetes or aging influence their adaptive response. In these cases, permanent epigenetic modifications may be introduced in the cells with important consequences on their local homeostatic activity and therapeutic potential. Numerous results suggest that mesenchymal cells, virtually present in every organ, may contribute to tissue regeneration mostly by paracrine mechanisms. Intriguingly, the heart is emerging as a source of different cells, including pericytes, cardiac progenitors, and cardiac fibroblasts. According to phenotypic, functional, and molecular criteria, these should be classified as mesenchymal cells. Not surprisingly, in recent years, the attention on these cells as therapeutic tools has grown exponentially, although only very preliminary data have been obtained in clinical trials to date. In this review, we summarized the state of the art about the phenotypic features, functions, regenerative properties, and clinical applicability of mesenchymal cells, with a particular focus on those of cardiac origin.
Collapse
Affiliation(s)
- Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Sandra Atlante
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Matteo Savoia
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Universitá Cattolica, Institute of Medical Pathology, 00138 Rome, Italy; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan 20097, Italy.
| | - Antonella Farsetti
- Consiglio Nazionale delle Ricerche, Istituto di Biologia Cellulare e Neurobiologia, Roma, Italy; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Maurizio C Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Roma, Italy.
| | - Andreas M Zeiher
- Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| |
Collapse
|
37
|
Capillary electrophoresis and phenylboronic acid solid phase extraction for the determination ofS-adenosylmethionine/S-adenosylhomocysteine ratio in human urine. Electrophoresis 2016; 37:2663-2669. [DOI: 10.1002/elps.201600242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/07/2016] [Accepted: 07/10/2016] [Indexed: 11/07/2022]
|
38
|
Wexler O, Gough MS, Morgan MAM, Mack CM, Apostolakos MJ, Doolin KP, Mooney RA, Arning E, Bottiglieri T, Pietropaoli AP. Methionine Metabolites in Patients With Sepsis. J Intensive Care Med 2016; 33:37-47. [PMID: 27591199 DOI: 10.1177/0885066616666002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Sepsis is characterized by microvascular dysfunction and thrombophilia. Several methionine metabolites may be relevant to this sepsis pathophysiology. S-adenosylmethionine (SAM) serves as the methyl donor for trans-methylation reactions. S-adenosylhomocysteine (SAH) is the by-product of these reactions and serves as the precursor to homocysteine. Relationships between plasma total homocysteine concentrations (tHcy) and vascular disease and thrombosis are firmly established. We hypothesized that SAM, SAH, and tHcy levels are elevated in patients with sepsis and associated with mortality. METHODS This was a combined case-control and prospective cohort study consisting of 109 patients with sepsis and 50 control participants without acute illness. The study was conducted in the medical and surgical intensive care units of the University of Rochester Medical Center. Methionine, SAM, SAH, and tHcy concentrations were compared in patients with sepsis versus control participants and in sepsis survivors versus nonsurvivors. RESULTS Patients with sepsis had significantly higher plasma SAM and SAH concentrations than control participants (SAM: 164 [107-227] vs73 [59-87 nM], P < .001; SAH: 99 [60-165] vs 35 [28-45] nM, P < .001). In contrast, plasma tHcy concentrations were lower in sepsis patients compared to healthy control participants (4 [2-6]) vs 7 [5-9] μM; P = .04). In multivariable analysis, quartiles of SAM, SAH, and tHcy were independently associated with sepsis ( P = .006, P = .05, and P < .001, respectively). Sepsis nonsurvivors had significantly higher plasma SAM and SAH concentrations than survivors (SAM: 223 [125-260] vs 136 [96-187] nM; P = .01; SAH: 139 [81-197] vs 86 [55-130] nM, P = .006). Plasma tHcy levels were similar in survivors vs nonsurvivors. The associations between SAM or SAH and hospital mortality were no longer significant after adjusting for renal dysfunction. CONCLUSIONS Methionine metabolite concentrations are abnormal in sepsis and linked with clinical outcomes. Further study is required to determine whether these abnormalities have pathophysiologic significance.
Collapse
Affiliation(s)
- Orren Wexler
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael S Gough
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Mary Anne M Morgan
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Cynthia M Mack
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael J Apostolakos
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kathleen P Doolin
- 2 Department of Nursing, University of Rochester Medical Center, Rochester, NY, USA
| | - Robert A Mooney
- 3 Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Erland Arning
- 4 Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- 4 Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, USA
| | - Anthony P Pietropaoli
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
39
|
Bharatkumar VP, Rudreshkumar KJ, Nagaraja D, Christopher R. Plasma S-adenosylhomocysteine: A potential risk marker for cerebral venous thrombosis. Clin Chim Acta 2016; 458:44-8. [PMID: 27109902 DOI: 10.1016/j.cca.2016.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/07/2016] [Accepted: 04/20/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Despite a plethora of studies suggesting that hyperhomocysteinemia is associated with an increased risk for arterial and venous thrombosis, there is paucity of data on the role of the S-adenosylhomocysteine (SAH), the metabolic precursor of homocysteine (Hcy) as a risk predictor for cerebral venous thrombosis (CVT). METHOD We estimated fasting plasma concentrations of total homocysteine (tHcy), SAH and S-adenosylmethionine (SAM), in 185 CVT patients and 248 healthy controls, by reverse-phase high performance liquid chromatography coupled with coulometric electrochemical detection. RESULTS Fasting tHcy, SAH and SAM were significantly higher in patients compared with controls. Increased tHcy and SAH concentrations were associated with 4.54-fold (95% CI, 2.74-7.53) and 35.77-fold (95% CI, 19.45-65.79) increase in risk for CVT, respectively. Receiver operating characteristic (ROC) curve analysis showed that the area under curve, sensitivity and specificity was higher for SAH compared to tHcy. Further, discriminant analysis to distinguish between tHcy and SAH showed that SAH had a significantly higher percentage classification, with lower Wilk's lambda and higher χ(2), compared to tHcy. CONCLUSION Increased plasma SAH may be a more sensitive risk marker for CVT than plasma tHcy.
Collapse
Affiliation(s)
- Venkata Pinnelli Bharatkumar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore 560029, India
| | | | - Dindagur Nagaraja
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore 560029, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore 560029, India.
| |
Collapse
|
40
|
Elshorbagy AK, Jernerén F, Samocha-Bonet D, Refsum H, Heilbronn LK. Serum S-adenosylmethionine, but not methionine, increases in response to overfeeding in humans. Nutr Diabetes 2016; 6:e192. [PMID: 26807510 PMCID: PMC4742722 DOI: 10.1038/nutd.2015.44] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/19/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Plasma concentration of the methyl donor S-adenosylmethionine (SAM) is linearly associated with body mass index (BMI) and fat mass. As SAM is a high-energy compound and a sensor of cellular nutrient status, we hypothesized that SAM would increase with overfeeding. METHODS Forty normal to overweight men and women were overfed by 1250 kcal per day for 28 days. RESULTS Serum SAM increased from 106 to 130 nmol/l (P=0.006). In stratified analysis, only those with weight gain above the median (high-weight gainers; average weight gain 3.9±0.3 kg) had increased SAM (+42%, P=0.001), whereas low-weight gainers (weight gain 1.5±0.2 kg) did not (Pinteraction=0.018). Overfeeding did not alter serum concentrations of the SAM precursor, methionine or the products, S-adenosyl-homocysteine and homocysteine. The SAM/SAH (S-adenosylhomocysteine) ratio was unchanged in the total population, but increased in high-weight gainers (+52%, P=0.006, Pinteraction =0.005). Change in SAM correlated positively with change in weight (r=0.33, P=0.041) and fat mass (r=0.44, P=0.009), but not with change in protein intake or plasma methionine, glucose, insulin or low-density lipoprotein (LDL)-cholesterol. CONCLUSION Overfeeding raised serum SAM in proportion to the fat mass gained. The increase in SAM may help stabilize methionine levels, and denotes a responsiveness of SAM to nutrient state in humans. The role of SAM in human energy metabolism deserves further attention.
Collapse
Affiliation(s)
- A K Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - F Jernerén
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - D Samocha-Bonet
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Division of Diabetes and Metabolism, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - H Refsum
- Department of Pharmacology, University of Oxford, Oxford, UK.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - L K Heilbronn
- Division of Diabetes and Metabolism, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
41
|
Luzyanin BP, Ivanov AV, Viryus ED, Kubatiev AA. S-Adenosylhomocysteine Assay in the Urine by Capillary Electrophoresis. Bull Exp Biol Med 2015; 159:524-7. [DOI: 10.1007/s10517-015-3008-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 10/23/2022]
|
42
|
Xiao Y, Su X, Huang W, Zhang J, Peng C, Huang H, Wu X, Huang H, Xia M, Ling W. Role of S-adenosylhomocysteine in cardiovascular disease and its potential epigenetic mechanism. Int J Biochem Cell Biol 2015; 67:158-66. [PMID: 26117455 DOI: 10.1016/j.biocel.2015.06.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
Transmethylation reactions utilize S-adenosylmethionine (SAM) as a methyl donor and are central to the regulation of many biological processes: more than fifty SAM-dependent methyltransferases methylate a broad spectrum of cellular compounds including DNA, histones, phospholipids and other small molecules. Common to all SAM-dependent transmethylation reactions is the release of the potent inhibitor S-adenosylhomocysteine (SAH) as a by-product. SAH is reversibly hydrolyzed to adenosine and homocysteine by SAH hydrolase. Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. However, a major unanswered question is if homocysteine is causally involved in disease pathogenesis or simply a passive and indirect indicator of a more complex mechanism. A chronic elevation in homocysteine levels results in a parallel increase in intracellular or plasma SAH, which is a more sensitive biomarker of cardiovascular disease than homocysteine and suggests that SAH is a critical pathological factor in homocysteine-associated disorders. Previous reports indicate that supplementation with folate and B vitamins efficiently lowers homocysteine levels but not plasma SAH levels, which possibly explains the failure of homocysteine-lowering vitamins to reduce vascular events in several recent clinical intervention studies. Furthermore, more studies are focusing on the role and mechanisms of SAH in different chronic diseases related to hyperhomocysteinemia, such as cardiovascular disease, kidney disease, diabetes, and obesity. This review summarizes the current role of SAH in cardiovascular disease and its effect on several related risk factors. It also explores possible the mechanisms, such as epigenetics and oxidative stress, of SAH. This article is part of a Directed Issue entitled: Epigenetic dynamics in development and disease.
Collapse
Affiliation(s)
- Yunjun Xiao
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Xuefen Su
- The Jockey Club School of Public Health and Primary Care, School of Public Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Huang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinzhou Zhang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Chaoqiong Peng
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haixiong Huang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaomin Wu
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haiyan Huang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
43
|
Xiao Y, Huang W, Zhang J, Peng C, Xia M, Ling W. Increased Plasma S-Adenosylhomocysteine–Accelerated Atherosclerosis Is Associated With Epigenetic Regulation of Endoplasmic Reticulum Stress in apoE
−/−
Mice. Arterioscler Thromb Vasc Biol 2015; 35:60-70. [DOI: 10.1161/atvbaha.114.303817] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yunjun Xiao
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Wei Huang
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Jinzhou Zhang
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Chaoqiong Peng
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Min Xia
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Wenhua Ling
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| |
Collapse
|
44
|
Klawitter J, Reed-Gitomer BY, McFann K, Pennington A, Klawitter J, Abebe KZ, Klepacki J, Cadnapaphornchai MA, Brosnahan G, Chonchol M, Christians U, Schrier RW. Endothelial dysfunction and oxidative stress in polycystic kidney disease. Am J Physiol Renal Physiol 2014; 307:F1198-206. [PMID: 25234311 DOI: 10.1152/ajprenal.00327.2014] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of premature mortality in ADPKD patients. The aim was to identify potential serum biomarkers associated with the severity of ADPKD. Serum samples from a homogenous group of 61 HALT study A ADPKD patients [early disease group with estimated glomerular filtration rate (eGFR) >60 ml·min(-1)·1.73 m(-2)] were compared with samples from 49 patients from the HALT study B group with moderately advanced disease (eGFR 25-60 ml·min(-1)·1.73 m(-2)). Targeted tandem-mass spectrometry analysis of markers of endothelial dysfunction and oxidative stress was performed and correlated with eGFR and total kidney volume normalized to the body surface area (TKV/BSA). ADPKD patients with eGFR >60 ml·min(-1)·1.73 m(-2) showed higher levels of CVD risk markers asymmetric and symmetric dimethylarginine (ADMA and SDMA), homocysteine, and S-adenosylhomocysteine (SAH) compared with the healthy controls. Upon adjustments for age, sex, systolic blood pressure, and creatinine, SDMA, homocysteine, and SAH remained negatively correlated with eGFR. Resulting cellular methylation power [S-adenosylmethionine (SAM)/SAH ratio] correlated with the reduction of renal function and increase in TKV. Concentrations of prostaglandins (PGs), including oxidative stress marker 8-isoprostane, as well as PGF2α, PGD₂, and PGE₂, were markedly elevated in patients with ADPKD compared with healthy controls. Upon adjustments for age, sex, systolic blood pressure, and creatinine, increased PGD₂ and PGF₂α were associated with reduced eGFR, whereas 8-isoprostane and again PGF₂α were associated with an increase in TKV/BSA. Endothelial dysfunction and oxidative stress are evident early in ADPKD patients, even in those with preserved kidney function. The identified pathways may provide potential therapeutic targets for slowing down the disease progression.
Collapse
Affiliation(s)
- Jelena Klawitter
- Department of Anesthesiology, University of Colorado, Aurora, Colorado; Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado; and
| | | | - Kim McFann
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado; and
| | | | - Jost Klawitter
- Department of Anesthesiology, University of Colorado, Aurora, Colorado
| | - Kaleab Z Abebe
- Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jacek Klepacki
- Department of Anesthesiology, University of Colorado, Aurora, Colorado
| | | | - Godela Brosnahan
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado; and
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado; and
| | - Uwe Christians
- Department of Anesthesiology, University of Colorado, Aurora, Colorado
| | - Robert W Schrier
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado; and
| |
Collapse
|
45
|
Aissa AF, Tryndyak V, de Conti A, Melnyk S, Gomes TDUH, Bianchi MLP, James SJ, Beland FA, Antunes LMG, Pogribny IP. Effect of methionine-deficient and methionine-supplemented diets on the hepatic one-carbon and lipid metabolism in mice. Mol Nutr Food Res 2014; 58:1502-12. [PMID: 24827819 DOI: 10.1002/mnfr.201300726] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 12/21/2022]
Abstract
SCOPE A compromised nutritional status in methyl-group donors may provoke several molecular alterations triggering the development of nonalcoholic fatty liver disease (NAFLD) in humans and experimental animals. In this study, we investigated a role and the underlying molecular mechanisms of methionine metabolic pathway malfunctions in the pathogenesis of NAFLD. METHODS AND RESULTS We fed female Swiss albino mice a control (methionine-adequate) diet and two experimental (methionine-deficient or methionine-supplemented) diets for 10 weeks, and the levels of one-carbon metabolites, expression of one-carbon and lipid metabolism genes in the livers were evaluated. We demonstrate that both experimental diets increased hepatic levels of S-adenosyl-l-homocysteine and homocysteine, altered expression of one-carbon and lipid metabolism genes, and caused lipid accumulation, especially in mice fed the methionine-deficient diet. Markers of oxidative and ER stress response were also elevated in the livers of mice fed either diet. CONCLUSION Our findings indicate that both dietary methionine deficiency and methionine supplementation can induce molecular abnormalities in the liver associated with the development of NAFLD, including deregulation in lipid and one-carbon metabolic pathways, and induction of oxidative and ER stress. These pathophysiological events may ultimately lead to lipid accumulation in the livers, triggering the development of NAFLD.
Collapse
Affiliation(s)
- Alexandre Ferro Aissa
- Department of Genetic, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zawada AM, Rogacev KS, Hummel B, Berg JT, Friedrich A, Roth HJ, Obeid R, Geisel J, Fliser D, Heine GH. S-adenosylhomocysteine is associated with subclinical atherosclerosis and renal function in a cardiovascular low-risk population. Atherosclerosis 2014; 234:17-22. [DOI: 10.1016/j.atherosclerosis.2014.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/22/2014] [Accepted: 02/05/2014] [Indexed: 12/29/2022]
|
47
|
Ahmed AA, Balogun KA, Bykova NV, Cheema SK. Novel regulatory roles of omega-3 fatty acids in metabolic pathways: a proteomics approach. Nutr Metab (Lond) 2014; 11:6. [PMID: 24438320 PMCID: PMC3898484 DOI: 10.1186/1743-7075-11-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/15/2014] [Indexed: 12/28/2022] Open
Abstract
Background Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been shown to alleviate the symptoms of metabolic disorders, such as heart disease, diabetes, obesity and insulin resistance. Several putative mechanisms by which n-3 PUFA elicit beneficial health effects have been proposed; however, there is still a shortage of knowledge on the proteins and pathways that are regulated by n-3 PUFA. Methods Using two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we investigated the effects of diets high or low in n-3 PUFA on hepatic proteomic profile of C57BL/6 mice. Results The findings show for the first time that high dietary n-3 PUFA reduced the expression of regucalcin, adenosine kinase and aldehyde dehydrogenase. On the other hand, diets high in n-3 PUFA increased the expression of apolipoprotein A-I, S-adenosylmethionine synthase, fructose-1, 6-bisphosphatase, ketohexokinase, malate dehydrogenase, GTP-specific succinyl CoA synthase, ornithine aminotransferase and protein disulfide isomerase-A3. Conclusions Our findings revealed for the first time that n-3 PUFA causes alterations in several novel functional proteins involved in regulating lipid, carbohydrate, one-carbon, citric acid cycle and protein metabolism, suggesting integrated regulation of metabolic pathways. These novel proteins are potential targets to develop therapeutic strategies against metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Sukhinder K Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St, John's, NL, A1B 3X9, Canada.
| |
Collapse
|
48
|
Xiao Y, Zhang Y, Wang M, Li X, Su D, Qiu J, Li D, Yang Y, Xia M, Ling W. Plasma S-adenosylhomocysteine is associated with the risk of cardiovascular events in patients undergoing coronary angiography: a cohort study. Am J Clin Nutr 2013; 98:1162-9. [PMID: 24004894 DOI: 10.3945/ajcn.113.058727] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although cross-sectional studies have shown that plasma S-adenosylhomocysteine (SAH), the metabolic precursor of homocysteine, is associated with cardiovascular disease, the prospective relation between plasma SAH and cardiovascular disease risk is unknown. OBJECTIVE The aim of this study was to prospectively evaluate the association between plasma SAH and cardiovascular disease risk in coronary angiography patients. DESIGN Baseline plasma SAH and homocysteine concentrations were measured in 1003 patients aged between 21 and 87 y who underwent coronary angiography. Cox proportional hazards models were used to analyze the association between SAH and homocysteine and the risk of cardiovascular events, including fatal cardiovascular diseases, nonfatal myocardial infarction, and stroke. RESULTS During the median follow-up period of 3.0 y, 93 participants developed cardiovascular events (32.7/1000 person-years). The age- and sex-adjusted hazard ratio of cardiovascular events was 3.38 (95% CI: 2.12, 5.39) for each 1-SD increase in the natural log-transformed SAH concentration. The age- and sex-adjusted hazard ratios of cardiovascular events across quartiles of SAH concentrations were 1.0, 2.25, 2.72, and 3.40 (P-trend = 0.007). Further adjustment for other cardiovascular disease risk factors and plasma homocysteine affected the results only slightly. This positive association between SAH and cardiovascular disease risk did not change when participants were stratified by age group, sex, and other baseline covariates. The results among a subset of participants with significant coronary stenosis were similar. CONCLUSION Higher concentrations of plasma SAH are independently associated with an increased risk of cardiovascular events among patients undergoing coronary angiography. This trial was registered at www.chictr.org as ChiCTR-RNRC-08000270.
Collapse
Affiliation(s)
- Yunjun Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China (YX, MW, XL, DS, DL, YY, MX, and WL); the Department of Nutrition and Food Hygiene, Shenzhen Centre for Disease Control and Prevention, Shenzhen, Guangdong, China (YX); and the Department of Cardiology, Guangzhou Military General Hospital, Guangzhou, China (YZ and JQ)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen L, Chen YM, Wang LJ, Wei J, Tan YZ, Zhou JY, Yang Y, Chen YM, Ling WH, Zhu HL. Higher homocysteine and lower betaine increase the risk of microangiopathy in patients with diabetes mellitus carrying the GG genotype of PEMT G774C. Diabetes Metab Res Rev 2013; 29:607-17. [PMID: 23794489 DOI: 10.1002/dmrr.2432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/04/2013] [Accepted: 06/17/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Diabetes represents one of the greatest medical and socioeconomic threats worldwide. The pathogenesis involved is complicated. The effect of methyl donors and genetic polymorphisms in metabolic enzymes on the risk of microangiopathy in patients with diabetes is not well understood. This study investigates the association of homocysteine, choline and betaine levels and phosphatidylethanolamine N-methyltransferase (PEMT) G774C (rs12325817) genotypes with the risk of diabetes and its related microangiopathic complications. METHODS Between January 2009 and June 2010, 184 diabetic patients and 188 non-diabetic control subjects were enrolled in the hospital-based case-control study. Serum concentrations of betaine and choline were determined by high-performance liquid chromatography (HPLC)-mass spectrometry. Serum concentrations of homocysteine were assayed using HPLC. PEMT gene mutations were detected by polymerase chain reaction and restriction fragment length polymorphism. RESULTS After adjustment for potential confounders, serum total homocysteine had a significant dose-dependent positive association, and serum choline had an inverse association with the risks of diabetes and its microangiopathic complications (both p < 0.001). Although serum betaine was not associated with the risk of diabetes, it had a significant inverse association with diabetic microangiopathy. Compared with GG genotype, the CC genotype of PEMT G774C was associated with a decreased risk of diabetes (OR 0.559, 95% CI 0.338, 0.926) and its microangiopathy (OR 0.452, 95% CI 0.218, 0.937). CONCLUSION The GG genotype of the PEMT G774C polymorphism, higher levels of serum homocysteine and lower levels of serum betaine are associated with an increased risk of microangiopathy in patients with diabetes.
Collapse
Affiliation(s)
- Li Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Imbard A, Smulders YM, Barto R, Smith DEC, Kok RM, Jakobs C, Blom HJ. Plasma choline and betaine correlate with serum folate, plasma S-adenosyl-methionine and S-adenosyl-homocysteine in healthy volunteers. Clin Chem Lab Med 2013; 51:683-92. [PMID: 23095202 DOI: 10.1515/cclm-2012-0302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 08/18/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND Choline is essential for mammalian cell function. It plays a critical role in cell membrane integrity, neurotransmission, cell signaling and lipid metabolism. Moreover, choline is involved in methylation in two ways: a) its synthesis requires methyl groups donated by S-adenosyl-methionine (AdoMet); and b) choline oxidation product betaine methylates homocysteine (Hcy) to methionine (Met) and produces dimethylglycine. This later donates one carbon units to tetrahydrofolate (THF). METHODS To evaluate the correlations of choline and betaine with folate, AdoMet, S-anenosyl-homocysteine (AdoHcy), total homocysteine (tHcy), and DNA methylation, choline, betaine and dimethylglycine were measured by LC-MS/MS in plasma of 109 healthy volunteers, in whom folate, AdoMet, AdoHcy, tHcy, and DNA methylation have previously been reported. RESULTS Using a bivariate model, choline and betaine showed strong positive correlations with folate (r = 0.346 and r = 0.226), AdoHcy (r = 0.468 and r = 0.296), and correlated negatively with AdoMet/AdoHcy ratio (r = – 0.246 and r = – 0.379). Only choline was positively correlated with AdoMet (r = 0.453). Using a multivariate linear regression model, choline correlated strongly with folate ( β = 17.416), AdoMet ( β = 61.272), and AdoHcy ( β = 9.215). Betaine correlated positively with folate ( β = 0.133) and negatively with tHcy ( β = – 0.194) ratio. Choline is an integral part of folate and methylation pathways. CONCLUSIONS Our data highlight the importance of integrating choline in studies concerning addressing pathological conditions related to folate, homocysteine and methylation metabolism.
Collapse
Affiliation(s)
- Apolline Imbard
- Biochemistry-Hormonology Laboratory, Robert Debré Hospital, 48 Boulevard Serurier, 75019 Paris, France.
| | | | | | | | | | | | | |
Collapse
|