1
|
Sun G, Fuller H, Fenton H, Race AD, Downing A, Rees CJ, Brown LC, Loadman PM, Williams EA, Hull MA. The relationship between dietary and supplemental n-3 HUFA intake, blood and tissue n-3 HUFA levels, and colorectal polyp recurrence: A secondary analysis of the seAFOod polyp prevention trial. J Nutr 2024:S0022-3166(24)01230-6. [PMID: 39675479 DOI: 10.1016/j.tjnut.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND The seAFOod randomised controlled trial tested colorectal polyp prevention by the omega-3 highly unsaturated fatty acid (HUFA) eicosapentaenoic acid (EPA) and aspirin. Variable dietary intake of omega-3 HUFAs (also including docosahexaenoic acid [DHA]) and differential EPA capsule compliance could confound analysis of trial outcomes. OBJECTIVE To investigate the relationship between total (diet and capsule) daily omega-3 HUFA intake, red blood cell (RBC) and rectal mucosa omega-3 HUFA levels, and colorectal polyp outcomes in a secondary analysis of the seAFOod trial. METHODS Individual-participant dietary omega-3 HUFA intake (mg/d) was derived from food frequency questionnaires using the EPIC-Norfolk fatty acid nutrient database. Capsule EPA intake (mg/d) was adjusted for compliance (capsule counting). Fatty acids were analysed by liquid chromatography-tandem mass spectrometry (as % of total fatty acids). HUFA oxidation was measured as the HUFA/saturated fatty acid (SAT) ratio. The colorectal polyp detection rate [PDR; % with one or more polyps] and polyp number per participant were analysed according to the change in RBC EPA level during the trial (ΔEPA), irrespective of treatment allocation. RESULTS There was a small degree of HUFA degradation over time in RBC samples stored at higher than minus 80oC at research sites (r=-0.36, P<0.001 for HUFA/SAT ratio over time), which did not affect analysis of omega-3 HUFA levels. Low baseline EPA level, as well as allocation to EPA and % compliance, were associated with a high ΔEPA. Individuals with a ΔEPA value >+0.5% points (ΔEPAhigh), irrespective of allocation to EPA or placebo, had a lower PDR than ΔEPAlow individuals (odds ratio 0.63 (95% confidence interval [CI] 0.40,1.01) and reduced colorectal polyp number (incidence rate ratio 0.74 [95%CI 0.54,1.02]). CONCLUSIONS Analysis of the seAFOod trial according to the change in EPA level, instead of treatment allocation, revealed a protective effect of EPA treatment on colorectal polyp recurrence (ISRCTN05926847).
Collapse
Affiliation(s)
- Ge Sun
- Leeds Institute of Medical Research, University of Leeds
| | | | - Hayley Fenton
- Leeds Institute of Medical Research, University of Leeds
| | - Amanda D Race
- Institute of Cancer Therapeutics, University of Bradford
| | - Amy Downing
- Leeds Institute of Medical Research, University of Leeds
| | - Colin J Rees
- Population Health Sciences Institute, Newcastle University
| | | | - Paul M Loadman
- Institute of Cancer Therapeutics, University of Bradford
| | | | - Mark A Hull
- Leeds Institute of Medical Research, University of Leeds.
| |
Collapse
|
2
|
O'Keefe EL, O'Keefe JH, Abuissa H, Metzinger M, Murray E, Franco G, Lavie CJ, Harris WS. Omega-3 and Risk of atrial fibrillation: Vagally-mediated double-edged sword. Prog Cardiovasc Dis 2024:S0033-0620(24)00168-3. [PMID: 39617283 DOI: 10.1016/j.pcad.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
OBJECTIVE Studies regarding effects of omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on risk of atrial fibrillation (AF) have reported discordant results. The aim of this review is to clarify effects of marine omega-3 intake on risk of AF. PATIENTS AND METHODS A PubMed search was performed using terms: atrial fibrillation, omega-3, EPA, DHA, vagal tone. We summarized findings from randomized clinical trials (RCTs), epidemiology studies, and meta-analyses evaluating effects/associations of DHA + EPA on risk of AF. Also, vagal tone was explored as a mediator between omega-3 and risk of AF. RESULTS Meta-analyses of 8 RCTs and 17 prospective cohort studies comprised of 83,112 and 54,799 individuals, respectively, investigated the link between omega-3 intake and incident AF. The RCTs reported that treatment with DHA and/or EPA was associated with a 24 % increased relative risk of AF (absolute risk 4.0 % vs 3.3 %; relative risk [RR] 1.24, 95 % confidence interval [CI] 1.11-1.38, p = 0.0002). This was dose-dependent; DHA + EPA doses of ∼1000 mg/d increased AF risk ∼12 %, whereas 1800 to 4000 mg/d increased AF risk by ∼50 %. In contrast, observational studies focused on DHA + EPA blood levels or dietary intake have generally reported that higher omega-3 levels/consumption are associated with lower AF risk. Maximal AF risk reduction. (12 %) occurred at ∼650 mg/d of dietary DHA + EPA. Other studies have indicated that omega-3 fatty acids can dose-dependently increase vagal tone, which could explain the biphasic relationship between DHA + EPA and AF risk. Experimental studies show that low-level vagal stimulation decreases risk of AF, whereas high-level vagal stimulation increases risk of AF. CONCLUSION Higher consumption of dietary omega-3 is associated with decreased AF risk. In contrast, pharmaceutical dosing of omega-3 increases AF in a dose-dependent manner, which may be mediated by vagal tone.
Collapse
Affiliation(s)
- Evan L O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, United States of America
| | - James H O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, United States of America.
| | - Hussam Abuissa
- Department of Clinical Cardiac Electrophysiology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Mark Metzinger
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, United States of America
| | - Ellen Murray
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, United States of America
| | - Grant Franco
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, United States of America
| | - Carl J Lavie
- Oschner Heart and Vascular Institute, New Orleans, LA, United States of America
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD, United States of America; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States of America
| |
Collapse
|
3
|
Mancin L, Rollo I, Golzato D, Segata N, Petri C, Pengue L, Vergani L, Cassone N, Corsini A, Mota JF, Sut S, Dall'Acqua S, Paoli A. Short-Term Cocoa Supplementation Influences Microbiota Composition and Serum Markers of Lipid Metabolism in Elite Male Soccer Players. Int J Sport Nutr Exerc Metab 2024; 34:349-361. [PMID: 39117304 DOI: 10.1123/ijsnem.2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES Dietary strategies to improve arachidonic acid:eicosapentaenoic acid (AA:EPA) ratios are of interest due to potential reductions in inflammation and oxidative stress following exercise. The aim of this study was to investigate the impact of a novel dietary intervention, that is, the ingestion of 30 g of dark chocolate, on blood lipid profiles and gut microbiota composition in elite male soccer players. METHODS Professional male soccer players were randomly assigned to the experimental group (DC) provided with 30 g of dark chocolate or to the control group (WC), provided with 30 g of white chocolate, for 30 days. Before and after intervention, blood, fecal sample, and anthropometry data were collected. For each outcome, two-way repeated-measure analysis of variance was used to identify differences between baseline and endpoint (Week 4), considering treatment (dark chocolate, white chocolate) as intersubjects' factors. Metagenomic analysis was performed following the general guidelines, which relies on the bioBakery computational environment. RESULTS DC group showed increased plasma polyphenols (from 154.7 ± 18.6 μg gallic acid equivalents/ml to 185.11 ± 57.6 μg gallic acid equivalents/ml, Δ pre vs. post = +30.41 ± 21.50) and significant improvements in lipid profiles: total cholesterol (Δ -32.47 ± 17.18 mg/dl DC vs. Δ -2.84 ± 6.25 mg/dl WC, Time × Treatment interaction p < .001), triglycerides (Δ -6.32 ± 4.96 mg/dl DC vs. Δ -0.42 ± 6.47 mg/dl WC, Time × Treatment interaction p < .001), low-density lipoprotein (Δ -18.42 ± 17.13 mg/dl vs. Δ -2.05 ± 5.19 mg/dl WC, Time × Treatment interaction p < .001), AA/EPA ratio (Δ -5.26 ± 2.35; -54.1% DC vs. Δ -0.47 ± 0.73, -6.41% WC, Time × Treatment interaction p < .001) compared with WC group. In addition, 4 weeks of intervention showed a significant increase in high-density lipoprotein concentration in DC group (Δ + 3.26 ± 4.49 mg/dl DC vs. Δ -0.79 ± 5.12 mg/dl WC). Microbial communities in the DC group maintained a slightly higher microbial stability over time (exhibiting lower within-subject community dissimilarity). CONCLUSION Ingesting 30 g of dark chocolate over 4 weeks positively improved AA:EPA ratio and maintained gut microbial stability. Dark chocolate ingestion represents an effective nutritional strategy to improve blood lipid profiles in professional soccer players. What Are the Findings? Ingesting 30 g of dark chocolate for 4 weeks positively influences blood lipid AA: EPA ratio while maintaining gut microbial stability. What This Study Adds? Dietary intake of specific foods such as dark chocolate represents an alternative strategy to support the health and recovery of elite soccer players. What Impact Might This Have on Clinical Practice in the Future? From a clinical and translational perspective, dark chocolate ingestion positively modulates favorable blood lipid profiles and polyunsaturated fatty acid metabolism while maintaining gut microbial stability. Dark chocolate ingestion may be considered as an effective nutritional strategy in elite sport environments during periods of high-intensity training and congested competitions. Further research is required to determine functional outcomes associated with the observed improvements in blood lipid profiles.
Collapse
Affiliation(s)
- Laura Mancin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, Leicestershire, United Kingdom
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Cristian Petri
- Department of Sport and Informatics, Section of Physical Education and Sport, Pablo de Olavide University, Sevilla, Spain
- A.C.F. Fiorentina S.r.l., Florence, Italy
| | | | | | | | | | - Joao Felipe Mota
- Faculty of Nutrition, Federal University of Goias, Setor Leste Universitário, Goiânia, GO, Brazil
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Heileson JL, Macartney MJ, Watson NL, Sergi TE, Jagim AR, Anthony R, Peoples GE. Nutritional Optimization for Brain Health in Contact Sports: A Systematic Review and Meta-Analysis on Long-Chain ω-3 Fatty Acids and Neurofilament Light. Curr Dev Nutr 2024; 8:104454. [PMID: 39429508 PMCID: PMC11489149 DOI: 10.1016/j.cdnut.2024.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/22/2024] Open
Abstract
Background Accumulating evidence has highlighted the acute and chronic impact of repetitive subconcussive head impacts (rSHIs) in contact sports. Neurofilament-light (Nf-L), a brain-derived biomarker of neuroaxonal injury, elevates in concert with rSHI. Recently, long-chain ω-3 polyunsaturated fatty acids (LC ω-3 PUFAs) supplementation has been suggested to mitigate brain injury from rSHI as reflected by attenuation of Nf-L concentrations within contact sport athletes. Objective Using a systematic review with a meta-analysis, we aimed to determine the effect of LC ω-3 PUFA supplementation on Nf-L concentrations in athletes routinely exposed to rSHI. Methods Electronic databases (PubMed and CINAHL) were searched from inception through January 2024. One-stage meta-analysis of individual participant-level data was used to detect changes in Nf-L concentrations between LC ω-3 PUFA and control/placebo (PL) groups from baseline to midseason (MS) and postseason (PS). Least square means (±SE) for Nf-L change from baseline were compared by treatment group for MS/PS using contrast t tests. Significance was set a priori at adjusted P ≤ 0.05. Results Of 460 records identified, 3 studies in collegiate American football players (n = 179; LC ω-3 PUFA = 105, PL = 71) were included in the meta-analysis. Compared with PL, the change in Nf-L concentrations was statistically similar at MS [mean difference (MD) = -1.66 ± 0.82 pg·mL-1, adjusted P = 0.09] and significantly lower at PS (MD = -2.23 ± 0.83 pg·mL-1, adjusted P = 0.02) in athletes following LC ω-3 PUFA supplementation. Conclusions Our findings demonstrate preliminary support for the prophylactic administration of LC ω-3 PUFA in contact sport athletes exposed to rSHI; however, further research is required to determine the effective dosage required.This trial was registered at OSF (DOI: https://doi.org/10.17605/OSF.IO/EY5QW).
Collapse
Affiliation(s)
- Jeffery L Heileson
- Walter Reed National Medical Center, Bethesda, MD, United States
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, United States
| | - Michael J Macartney
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Nora L Watson
- Walter Reed National Medical Center, Bethesda, MD, United States
| | - Tina E Sergi
- Walter Reed National Medical Center, Bethesda, MD, United States
| | - Andrew R Jagim
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI, United States
- Department of Sports Medicine, Mayo Clinic Health System, La Crosse, WI, United States
| | - Ryan Anthony
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Gregory E Peoples
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
5
|
Schuchardt JP, Beinhorn P, Hu XF, Chan HM, Roke K, Bernasconi A, Hahn A, Sala-Vila A, Stark KD, Harris WS. Omega-3 world map: 2024 update. Prog Lipid Res 2024; 95:101286. [PMID: 38879135 DOI: 10.1016/j.plipres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
In 2016, the first worldwide n3 PUFA status map was published using the Omega-3 Index (O3I) as standard biomarker. The O3I is defined as the percentage of EPA + DHA in red blood cell (RBC) membrane FAs. The purpose of the present study was to update the 2016 map with new data. In order to be included, studies had to report O3I and/or blood EPA + DHA levels in metrics convertible into an estimated O3I, in samples drawn after 1999. To convert the non-RBC-based EPA + DHA metrics into RBC we used newly developed equations. Baseline data from clinical trials and observational studies were acceptable. A literature search identified 328 studies meeting inclusion criteria encompassing 342,864 subjects from 48 countries/regions. Weighted mean country O3I levels were categorized into very low ≤4%, low >4-6%, moderate >6-8%, and desirable >8%. We found that the O3I in most countries was low to very low. Notable differences between the current and 2016 map were 1) USA, Canada, Italy, Turkey, UK, Ireland and Greece (moving from the very low to low category); 2) France, Spain and New Zealand (low to moderate); and 3) Finland and Iceland (moderate to desirable). Countries such as Iran, Egypt, and India exhibited particularly poor O3I levels.
Collapse
Affiliation(s)
- Jan Philipp Schuchardt
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany.
| | - Philine Beinhorn
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Xue Feng Hu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kaitlin Roke
- Global Organization for EPA and DHA Omega-3s (GOED), 222 South Main Street, Suite 500, Salt Lake City, UT 84101, United States
| | - Aldo Bernasconi
- Global Organization for EPA and DHA Omega-3s (GOED), 222 South Main Street, Suite 500, Salt Lake City, UT 84101, United States
| | - Andreas Hahn
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Aleix Sala-Vila
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Hospital del Mar Medical Research Institute, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - William S Harris
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, United States
| |
Collapse
|
6
|
Anthony R, Jaffrey N, Byron C, Peoples GE, Macartney MJ. Omega-3 Status Evaluation in Australian Female Rugby League Athletes: Ad Libitum Fish Oil Provision Results in a Varied Omega-3 Index. Int J Sport Nutr Exerc Metab 2024; 34:218-222. [PMID: 38648883 DOI: 10.1123/ijsnem.2023-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
Optimal omega-3 status, influenced by increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is vital for physiological health. This study investigated the impact of ad libitum fish oil supplementation on the omega-3 status of female athletes in a professional rugby league team during a competitive season. Twenty-four (n = 24) athletes participated, and their omega-3 status was assessed using the Omega-3 Index (O3I) and arachidonic acid (AA) to EPA ratio through finger-prick blood samples taken at the start and end of the season. They were given access to a fish oil supplement (PILLAR Performance, Australia) with a recommended daily dose of four capsules per day (2,160 mg EPA and 1,440 mg docosahexaenoic acid). At the beginning of the season, the group mean O3I was 4.77% (95% confidence interval [CI: 4.50, 5.04]) and the AA to EPA ratio was 14.89 (95% CI [13.22, 16.55]). None of the athletes had an O3I exceeding 8%. By the season's end, the O3I was a significantly increased to 7.28% (95% CI [6.64, 7.93], p < .0001) and AA to EPA ratio significantly decreased to a mean of 6.67 (95% CI [5.02, 8.31], p < .0001), driven primarily by the significant increase in EPA of +1.14% (95% CI [0.77, 1.51], p < .0001). However, these changes were varied between the athletes and most likely due to compliance. This study has demonstrated that using the objective O3I feedback scale is possible with elite female rugby athletes, but individual strategies will be required to achieve daily intake targets of EPA + DHA.
Collapse
Affiliation(s)
- Ryan Anthony
- Faculty of Science Medicine and Health, Graduate School of Medicine, University of Wollongong, NSW, Australia
| | - Nicola Jaffrey
- Sports Dietitian, St. George Illawarra Dragons, Wollongong, NSW, Australia
| | - Caitlin Byron
- Sports Dietitian, St. George Illawarra Dragons, Wollongong, NSW, Australia
| | - Gregory E Peoples
- Faculty of Science Medicine and Health, Graduate School of Medicine, University of Wollongong, NSW, Australia
| | - Michael J Macartney
- Faculty of Science Medicine and Health, Graduate School of Medicine, University of Wollongong, NSW, Australia
| |
Collapse
|
7
|
Shearer GC, Block RC, Huang S, Liu L, Herrington DM, Tsai MY, Tintle N, O’Connell TD. Eicosapentaenoic acid and Arachidonic acid Protection Against Left Ventricle Pathology: the Multi-Ethnic Study of Atherosclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.05.24308494. [PMID: 38883788 PMCID: PMC11177919 DOI: 10.1101/2024.06.05.24308494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background We have shown that ω3 polyunsaturated fatty acids (PUFAs) reduce risk for heart failure, regardless of ejection fraction status. Ventricular remodeling and reduced ventricular performance precede overt hear failure, however there is little insight into how PUFAs contribute to maladaptive signaling over time. PUFAs are agonists for regulatory activity at g-protein coupled receptors such as Ffar4, and downstream as substrates for monooxygenases (e.g lipoxygenase, cytochrome p450, or cyclooxygenase (COX)) which mediate intracellular adaptive signaling. Methods Plasma phospholipid PUFA abundance at Exam 1 as mass percent EPA, DHA, and arachidonic acid (AA) from the Multi-Ethnic Study of Atherosclerosis (MESA) were evaluated using pathway modeling to determine the association with time-dependent changes in left ventricular (LV) mass (LVM), end-diastolic LV volume (EDV), and end-systolic volume (ESV) measured by cardiac MRI at Exams 1 and 5. Ejection fraction (EF) and mass:volume (MV) were calculated posteriorly from the first three. Results 2,877 subjects had available MRI data. Participants with low AA and EPA had accelerated age-dependent declines in LVM. Males with low AA and EPA also had accelerated declines in EDV, but among females there was no PUFA association with EDV declines and exam 5 EDV status was positively associated with AA. Both sexes had nearly the same positive association of AA with changes in ESV. Conclusion Plasma phospholipid AA and EPA are prospectively associated with indices of heart remodeling, including ventricular remodeling and performance. Combined AA and EPA scarcity was associated with the most accelerated age-related changes and exam 5 status, while the greatest benefits were found among participants with both PUFAs. This suggests that both PUFAs are required for optimal slowing of age-related declines in ventricular function.
Collapse
Affiliation(s)
| | - Robert C. Block
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Cardiology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Shue Huang
- Department of Nutritional Sciences, Pennsylvania State University
| | - Linxi Liu
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Nathan Tintle
- Fatty Acid Research Institute, Sioux Falls, South Dakota
- Department of Statistics, Dordt College, Sioux Center, Iowa
| | | |
Collapse
|
8
|
Zielinsky P, Alves DR, Foresti JDÁ, Guimarães DB, Zucatti KP, Vian I. Maternal supplementation with docosahexaenoic acid does not cause constriction of fetal ductus arteriosus: randomized controlled trial. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:586-591. [PMID: 38214544 DOI: 10.1002/uog.27584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
OBJECTIVE Docosahexaenoic acid (DHA) is recommended routinely in pregnancy to promote fetal development. DHA has anti-inflammatory activity, but its effects on the fetal heart and circulation are unknown. This study aimed to investigate whether maternal DHA supplementation in the third trimester affects maternal prostaglandin levels and fetal ductus arteriosus flow dynamics. METHODS This was a double-blind randomized controlled trial with parallel groups conducted between 2018 and 2021. Pregnant women aged over 18 years with a normal fetus at 27-28 weeks' gestation showing no cardiac/extracardiac anomalies or ductal constriction were eligible for the trial. Women consuming substances with a known inhibitory effect on prostaglandin metabolism, such as non-steroidal anti-inflammatory drugs and polyphenol-rich foods, were excluded. The intervention group received oral supplementation of omega-3 with 450 mg/day of DHA for 8 weeks and the placebo group received capsules of soy lecithin for 8 weeks. Anthropometric measurements, assessment of polyphenol and omega-3 consumption, fetal morphological ultrasound examination, fetal Doppler echocardiographic examination and blood sample collection were performed at the start of the study and the latter two were repeated at follow-up. Prostaglandin E2 (PGE2) level and echocardiographic parameters were compared between the intervention and placebo groups and between baseline and follow-up. RESULTS A total of 24 participants were included in each group. After 8 weeks, there were no significant differences between the intervention and placebo groups in maternal serum PGE2 level or Doppler echocardiographic parameters of ductal flow. No case of ductus arteriosus constriction was observed. The expected intragroup changes in cardiac morphology, as a result of advancing gestation, were present. CONCLUSIONS Maternal DHA supplementation in the third trimester at a clinically recommended dose did not result in inhibition of PGE2 or constriction of the ductus arteriosus. These findings should be confirmed in postmarket surveillance studies with larger patient numbers in order to test the full safety profile of DHA and provide robust clinical reassurance. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- P Zielinsky
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Brazil
- Department of Pediatrics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - D R Alves
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Brazil
| | - J D Á Foresti
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Brazil
| | - D B Guimarães
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Brazil
| | - K P Zucatti
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Brazil
| | - I Vian
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Brazil
| |
Collapse
|
9
|
Cabrita ARJ, Maia MRG, Alves AP, Aires T, Rosa A, Almeida A, Martins R, Fonseca AJM. Protein hydrolysate and oil from fish waste reveal potential as dog food ingredients. Front Vet Sci 2024; 11:1372023. [PMID: 38711535 PMCID: PMC11071340 DOI: 10.3389/fvets.2024.1372023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
The increased fish consumption by the growing human population in the world translates into an increase in fish waste. The reintroduction of these fish by-products into food and feed chains presents economic benefits and contributes to counteracting their negative environmental impact. Under this context, the present study aimed to evaluate the effects of the dietary inclusion of fish hydrolysate and oil obtained from fish waste (experimental diet) in substitution of shrimp hydrolysate and salmon oil (control diet) mainly imported from third countries on palatability, apparent total tract digestibility, fecal characteristics and metabolites, blood fatty acid profile, flatulence, and coat quality of adult dogs. A two-bowl test was performed to evaluate palatability by the pairwise comparison between the two diets. A feeding trial was conducted according to a crossover design with two diets (control and experimental diets), six adult Beagle dogs per diet, and two periods of 6 weeks each. The replacement of shrimp hydrolysate and salmon oil with fish hydrolysate and oil did not affect the first diet approach and taste, as well as the intake ratio. Generally, the digestibility of dry matter, nutrients, and energy was not affected by diet, but the intake of digestible crude protein (CP) and ether extract was higher, respectively, with the control and the experimental diet. The higher intake of eicosapentaenoic acid and docosahexaenoic acid with the experimental diet was reflected in a higher content of these long-chain polyunsaturated fatty acids and the omega-3 index of red blood cells, but it did not affect coat quality. The significantly higher intake of digestible CP with the control diet might have contributed to the higher fecal ammonia-N and valerate concentrations. Daily fecal output and characteristics were similar between diets. Overall, results suggest that fish hydrolysate and oil from the agrifood industry might constitute sustainable functional ingredients for dog feeding while adding value for wild fisheries, aquaculture, and fish farming under a circular economy approach and reducing dependence on imports from third countries with a high carbon footprint.
Collapse
Affiliation(s)
- Ana R. J. Cabrita
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Margarida R. G. Maia
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ana P. Alves
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Tiago Aires
- SORGAL, Sociedade de Óleos e Rações, S.A., Lugar da Pardala, S. João Ovar, Portugal
| | - Ana Rosa
- SEBOL, Comércio e Indústria de Sebo, S.A., Santo Antão do Tojal, Portugal
| | - André Almeida
- Indústria Transformadora de Subprodutos, S.A., Herdade da Palmeira—Olheiros do Meio—São José da Lamarosa Agolada Coruche, Coruche, Portugal
| | - Rui Martins
- Indústria Transformadora de Subprodutos, S.A., Herdade da Palmeira—Olheiros do Meio—São José da Lamarosa Agolada Coruche, Coruche, Portugal
| | - António J. M. Fonseca
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Gründler L, Beinhorn P, Hahn A, Schuchardt JP. Blood EPA and DHA status among people living in the United States from 2000 to 2023. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102653. [PMID: 39447279 DOI: 10.1016/j.plefa.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs), specifically eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), are well-known for their various health benefits, including cardiovascular and cognitive health. In this study we explored the EPA+DHA blood status across different states within the United States. A widely used marker to assess the EPA+DHA status is the omega-3 index - defined as the % of EPA+DHA in red blood cells (RBC) in relation to total fatty acids. A systematic literature search was conducted for US-studies from 2000 until October 2023 reporting EPA+DHA blood values. Further inclusion criteria were: information in which US state the study was carried out, no pregnant women, at least 16 years of age. A total of 46 studies met all inclusion criteria. EPA+DHA levels from studies utilizing blood metrics other than RBC were converted to an estimated RBC EPA+DHA (eRBC EPA+DHA) status marker using established conversion equations. The mean eRBC EPA+DHA across the US was 5.28% and, is in line with previous investigations. Most US states showed an average eRBC EPA+DHA in the range 4.50% to 5.50%. Furthermore, we found that coastal states tend to have higher eRBC EPA+DHA (5.26%) than inland states (4.86%). This is consistent with the slightly higher fish consumption in coastal states compared to inland states. The data from the studies included in the evaluation show that the blood status of EPA+DHA is suboptimal. The supply of EPA and DHA should be improved, especially in inland states. Further research is needed to better monitor EPA+DHA status in the US. Since the EPA+DHA blood status is a modifiable risk factor for many diseases, public health officials should take steps to emphasize the significance of n-3 PUFAs in preserving the health of the US population.
Collapse
Affiliation(s)
- Lea Gründler
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Philine Beinhorn
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Andreas Hahn
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Jan Philipp Schuchardt
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany; The Fatty Acid Research Institute, 5009 W. 12th St. Ste 5. Sioux Falls. SD, 57106, United States.
| |
Collapse
|
11
|
O'Keefe EL, O'Keefe JH, Tintle NL, Westra J, Albuisson L, Harris WS. Circulating Docosahexaenoic Acid and Risk of All-Cause and Cause-Specific Mortality. Mayo Clin Proc 2024; 99:534-541. [PMID: 38506781 PMCID: PMC11432052 DOI: 10.1016/j.mayocp.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To assess the associations of docosahexaenoic acid (DHA), a marine omega-3 fatty acid, with long-term all-cause mortality, cardiovascular (CV) mortality, and cancer mortality. PATIENTS AND METHODS We analyzed data from UK Biobank, which included 117,702 subjects with baseline plasma DHA levels and 12.7 years of follow-up between April 2007 and December 2021. Associations with risk for mortality endpoints were analyzed categorically by quintile of DHA plasma levels. RESULTS Comparing the lowest to highest quintiles of circulating levels of DHA, there was 21% lower risk of all-cause mortality (HR, 0.79; 95% CI, 0.74 to 0.85; P<.0001). In a secondary analysis, we merged the UK Biobank findings with those from a recent FORCE (Fatty Acid and Outcome Research Consortium) meta-analysis that included 17 prospective cohort studies and 42,702 individuals examining DHA and mortality associations. The cumulative sample population included 160,404 individuals and 24,342 deaths during a median of 14 years of follow-up. After multivariable adjustment for relevant risk factors comparing the lowest to the highest quintiles of DHA, there was 17% lower risk of all-cause mortality (95% CI, 0.79 to 0.87; P<.0001), 21% lower risk for CV disease mortality (95% CI, 0.73 to 0.87; P<.001), 17% lower risk for cancer mortality (95% CI, 0.77 to 0.89; P<.0001), and 15% lower risk for all other mortality (95% CI, 0.79 to 0.91; P<.001). CONCLUSION Higher DHA levels were associated with significant risk reductions in all-cause mortality, as well as reduced risks for deaths due to CV disease, cancer, and all other causes. The findings strengthen the hypothesis that DHA, a marine-sourced omega-3, may support CV health and lifespan.
Collapse
Affiliation(s)
- Evan L O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, USA
| | - James H O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, USA.
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL, USA
| | - Jason Westra
- Fatty Acid Research Institute, Sioux Falls, SD, USA
| | | | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
12
|
Schuchardt JP, Kräter M, Schlögel M, Guck J, van Oirschot-Hermans BA, Bos J, van Wijk R, Tintle NL, Westra J, Kerlikowsky F, Hahn A, Harris WS. Omega-3 supplementation changes the physical properties of leukocytes but not erythrocytes in healthy individuals: An exploratory trial. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102636. [PMID: 39159530 DOI: 10.1016/j.plefa.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
n3-PUFA impact health in several ways, including cardiovascular protection and anti-inflammatory effects, but the underlying mechanisms are not fully understood. In this exploratory study involving 31 healthy subjects, we aimed to investigate the effects of 12 weeks of fish-oil supplementation (1500 mg EPA+DHA/day) on the physical properties of multiple blood cell types. We used deformability cytometry (DC) for all cell types and Laser-assisted Optical Rotational Red Cell Analysis (Lorrca) to assess red blood cell (RBC) deformability. We also investigated the correlation between changes in the physical properties of blood cells and changes in the Omega-3 Index (O3I), defined as the relative content of EPA+DHA in RBCs. Following supplementation, the mean±SD O3I increased from 5.3 %±1.5 % to 8.3 %±1.4 % (p < 0.001). No significant changes in RBC properties were found by both techniques. However, by DC we observed a consistent pattern of physical changes in lymphocytes, neutrophils and monocytes. Among these were significant increases in metrics correlated with the cells' deformability resulting in less stiff cells. The results suggest that leukocytes become softer and have an increased ability to deform under induced short-term physical stress such as hydrodynamic force in the circulation. These changes could impact immune function since softer leukocytes can potentially circulate more easily and could facilitate a more rapid response to systemic inflammation or infection. In conclusion, fish-oil supplementation modulates some physical properties of leukocyte-subfractions, potentially enhancing their biological function. Further studies are warranted to explore the impact of n3-PUFA on blood cell biology, particularly in disease states associated with leukocyte dysregulation.
Collapse
Affiliation(s)
- Jan Philipp Schuchardt
- Institute of Food and One Health, Leibniz University Hannover, Hannover, Germany; The Fatty Acid Research Institute, Sioux Falls, SD, USA.
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Maximilian Schlögel
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany; Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Brigitte A van Oirschot-Hermans
- Central Diagnostic Laboratory - Red Blood Cell Research Group, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jennifer Bos
- Central Diagnostic Laboratory - Red Blood Cell Research Group, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Richard van Wijk
- Central Diagnostic Laboratory - Red Blood Cell Research Group, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nathan L Tintle
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL, USA
| | - Jason Westra
- The Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Felix Kerlikowsky
- Institute of Food and One Health, Leibniz University Hannover, Hannover, Germany
| | - Andreas Hahn
- Institute of Food and One Health, Leibniz University Hannover, Hannover, Germany
| | - William S Harris
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
13
|
Tobin D, Midtbø LK, Mildenberger J, Svensen H, Stoknes I. The effect of fish oil rich in cetoleic acid on the omega-3 index and skin quality. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102616. [PMID: 38788345 DOI: 10.1016/j.plefa.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE The objective of the study was to provide preliminary data on the effect of a long chain monounsaturated oil rich in cetoleic acid on the omega-3 index, a validated measure of EPA and DHA in blood cells, as well as a potential effect of the oil on skin quality. DESIGN Two intervention studies were performed, each as double blinded, placebo controlled, randomised nutritional trials. The CetoIndex study (N = 55) measured omega-3 index using a blood spot collection kit (Omegaquant). The Optihud study (N = 28) measured skin quality parameters in healthy women using the VISIA system. The cetoleic-rich-oil (CRO) was an oil derived from North Atlantic fish with a predominance of long chain mono-unsaturated fatty acids including cetoleic acid (C22:1 n-11) and gondoic acid (C20:1 n-9). RESULTS In a placebo-controlled study, the omega-3 index in healthy volunteers was increased similar to that seen with an oil with higher levels of omega-3 fatty acids. In a separate placebo-controlled study, the CRO reduced erythema in skin, which is a marker of inflammation. CONCLUSIONS The results of this pilot study suggest that the use of a CRO increases the omega-3 index more than expected from the levels of EPA and DHA in the oil. The CRO may potentially have benefits on skin inflammation. SUMMARY Long chain polyunsaturated fatty acids (LCPUFA), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are commonly taken as dietary supplements for a range of health benefits. Other marine fatty acids may also provide health benefits and it is of interest to understand their activity. Long chain mono-unsaturated fatty acids (LCMUFA) have shown biological activity in studies of metabolic health in animal models. Here, we report two intervention studies using a fish oil with a high LCMUFA content where cetoleic acid is the predominant fatty acid (Cetoleic rich oil: CRO). In CetoIndex, a placebo-controlled study in 55 healthy volunteers, the omega-3 index increased similarly to that seen with an oil containing higher levels of omega-3 fatty acids. In Optihud, a placebo-controlled study in 28 female volunteers, the CRO reduced erythema in skin, which is a marker of inflammation. The results of this pilot study support the use of a CRO for increasing the omega-3 index with potential benefits on skin inflammation.
Collapse
Affiliation(s)
- D Tobin
- Epax Norway AS, Ålesund, Norway.
| | | | | | | | | |
Collapse
|
14
|
O’Keefe JH, Tintle NL, Harris WS, O’Keefe EL, Sala-Vila A, Attia J, Garg GM, Hure A, Bork CS, Schmidt EB, Venø SK, Chien KL, Chen YY(A, Egert S, Feldreich TR, Ärnlöv J, Lind L, Forouhi NG, Geleijnse JM, Pertiwi K, Imamura F, de Mello Laaksonen V, Uusitupa WM, Tuomilehto J, Laakso M, Lankinen MA, Laurin D, Carmichael PH, Lindsay J, Leander K, Laguzzi F, Swenson BR, Longstreth WT, Manson JE, Mora S, Cook NR, Marklund M, van Lent DM, Murphy R, Gudnason V, Ninomiya T, Hirakawa Y, Qian F, Sun Q, Hu F, Ardisson Korat AV, Risérus U, Lázaro I, Samieri C, Le Goff M, Helmer C, Steur M, Voortman T, Ikram MK, Tanaka T, Das JK, Ferrucci L, Bandinelli S, Tsai M, Guan W, Garg P, Verschuren WMM, Boer JMA, Biokstra A, Virtanen J, Wagner M, Westra J, Albuisson L, Yamagishi K, Siscovick DS, Lemaitre RN, Mozaffarian D. Omega-3 Blood Levels and Stroke Risk: A Pooled and Harmonized Analysis of 183 291 Participants From 29 Prospective Studies. Stroke 2024; 55:50-58. [PMID: 38134264 PMCID: PMC10840378 DOI: 10.1161/strokeaha.123.044281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The effect of marine omega-3 PUFAs on risk of stroke remains unclear. METHODS We investigated the associations between circulating and tissue omega-3 PUFA levels and incident stroke (total, ischemic, and hemorrhagic) in 29 international prospective cohorts. Each site conducted a de novo individual-level analysis using a prespecified analytical protocol with defined exposures, covariates, analytical methods, and outcomes; the harmonized data from the studies were then centrally pooled. Multivariable-adjusted HRs and 95% CIs across omega-3 PUFA quintiles were computed for each stroke outcome. RESULTS Among 183 291 study participants, there were 10 561 total strokes, 8220 ischemic strokes, and 1142 hemorrhagic strokes recorded over a median of 14.3 years follow-up. For eicosapentaenoic acid, comparing quintile 5 (Q5, highest) with quintile 1 (Q1, lowest), total stroke incidence was 17% lower (HR, 0.83 [CI, 0.76-0.91]; P<0.0001), and ischemic stroke was 18% lower (HR, 0.82 [CI, 0.74-0.91]; P<0.0001). For docosahexaenoic acid, comparing Q5 with Q1, there was a 12% lower incidence of total stroke (HR, 0.88 [CI, 0.81-0.96]; P=0.0001) and a 14% lower incidence of ischemic stroke (HR, 0.86 [CI, 0.78-0.95]; P=0.0001). Neither eicosapentaenoic acid nor docosahexaenoic acid was associated with a risk for hemorrhagic stroke. These associations were not modified by either baseline history of AF or prevalent CVD. CONCLUSIONS Higher omega-3 PUFA levels are associated with lower risks of total and ischemic stroke but have no association with hemorrhagic stroke.
Collapse
Affiliation(s)
- James H O’Keefe
- Saint Luke’s Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, MO
| | | | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD
- University of South Dakota, Sioux Falls, SD
| | - Evan L O’Keefe
- Saint Luke’s Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, MO
| | - Aleix Sala-Vila
- Fatty Acid Research Institute, Sioux Falls, SD
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - John Attia
- The University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, Australia
| | - G Manohar Garg
- The University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, Australia
| | - Alexis Hure
- The University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, Australia
| | | | - Erik Berg Schmidt
- Aalborg University Hospital, Department of Clinical Medicine, Aalborg, Denmark
| | - Stine Krogh Venø
- Aalborg University Hospital, Department of Clinical Biochemistry, Aalborg, Denmark
| | - Kuo-Liong Chien
- National Taiwan University, Institute of Epidemiology and Preventive Medicine, Taipei Taiwan
| | - Yun-Yu (Amelia) Chen
- Taichung Veterans General Hospital, Department of Medical Research, Taichung, Taiwan
| | - Sarah Egert
- University of Bonn, Institute of Nutrition and Food Sciences and Nutritional Physiology, Bonn, Germany
| | | | - Johan Ärnlöv
- Karolinska Institutet, Division of Family Medicine and Primary Care, Department of Neurobiology Care Sciences & Society, Solna, Sweden
| | - Lars Lind
- Uppsala University, Department of Medical Sciences Cardiovascular Epidemiology, Uppsala, Sweden
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Johanna M Geleijnse
- Wageningen University & Research, Division of Human Nutrition and Health, Wageningen, Netherlands
| | - Kamalita Pertiwi
- Wageningen University & Research, Division of Human Nutrition and Health, Wageningen, Netherlands
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vanessa de Mello Laaksonen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - W Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Tuomilehto
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- University of Eastern Finland, School of Medicine, Department of Internal Medicine, Kuopio, Finland
| | - Maria Anneli Lankinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Danielle Laurin
- CHU de Québec-Université Laval and VITAM Research Centers, Centre d’Excellence sur le Vieillissement de Québec, Québec, Canada
| | - Pierre-Hugues Carmichael
- CHU de Québec-Université Laval and VITAM Research Centers, Centre d’Excellence sur le Vieillissement de Québec, Québec, Canada
| | - Joan Lindsay
- University of Ottawa, School of Epidemiology and Public Health, Ottawa, Canada
| | - Karin Leander
- Karolinska Institutet, Institute of Environmental Medicine, Unit of Cardiovascular and Nutritional Epidemiology, Stockholm, Sweden
| | - Federica Laguzzi
- Karolinska Institutet, Institute of Environmental Medicine, Unit of Cardiovascular and Nutritional Epidemiology, Stockholm, Sweden
| | - Brenton R Swenson
- University of Washington, Cardiovascular Health Research Unit, Seattle, WA
| | - William T Longstreth
- University of Washington, Departments of Neurology and Epidemiology, Seattle, WA
| | - JoAnn E Manson
- Harvard Medical School, Department of Medicine, Brigham & Women’s Hospital, Boston, MA
| | - Samia Mora
- Harvard Medical School, Department of Medicine, Brigham & Women’s Hospital, Boston, MA
| | - Nancy R Cook
- Harvard Medical School, Department of Medicine, Brigham & Women’s Hospital, Boston, MA
| | - Matti Marklund
- The George Institute for Global Health, University of New South Wales, Newtown, NSW Australia; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland: and Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Debora Melo van Lent
- University of Texas, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
| | - Rachel Murphy
- University of British Columbia, Cancer Control Research, British Columbia Cancer, School of Population and Public Health, Vancouver, Canada
| | | | - Toshihara Ninomiya
- Kyushu University, Department of Epidemiology and Public Health and Center for Cohort Studies, Fukouka, Japan
| | - Yoichiro Hirakawa
- Kyushu University, Department of Epidemiology and Public Health and Center for Cohort Studies, Fukouka, Japan
| | - Frank Qian
- Harvard Medical School, T.H. Chan School of Public Health and Beth Deaconess Medical Center, Boston, MA
| | - Qi Sun
- Harvard Medical School, T.H. Chan School of Public Health and Channing Division of Network Medicine Brigham and Women’s Hospital, Boston, MA
| | - Frank Hu
- Harvard Medical School, T.H. Chan School of Public Health and Channing Division of Network Medicine Brigham and Women’s Hospital, Boston, MA
| | | | - Ulf Risérus
- Uppsala University, Department of Public Health and Caring Sciences Clinical Nutrition and Metabolism Unit, Uppsala, Sweden
| | - Iolanda Lázaro
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Cecilia Samieri
- University of Bordeaux, Bordeaux Population Health Research Centre, Bordeaux, France
| | - Mélanie Le Goff
- University of Bordeaux, Bordeaux Population Health Research Centre, Bordeaux, France
| | - Catherine Helmer
- University of Bordeaux, Bordeaux Population Health Research Centre, Bordeaux, France
| | - Marinka Steur
- University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, The Netherlands
| | - Trudy Voortman
- University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, The Netherlands
| | - M Kamran Ikram
- University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, The Netherlands
| | - Toshiko Tanaka
- National Institute of Health, National Institute on Aging, Longitudinal Studies Section, Baltimore, MD
| | | | - Luigi Ferrucci
- National Institute of Health, National Institute on Aging, Longitudinal Studies Section, Baltimore, MD
| | | | - Michael Tsai
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, MN
| | - Weihua Guan
- University of Minnesota, Division of Biostatistics, Minneapolis, MN
| | - Parveen Garg
- University of Southern California, Department of Medicine, Cardiology, Los Angeles, CA
| | - WM Monique Verschuren
- National Institute for Public Health and the Environment Bilthoven, The Netherlands, Julius Center for Health Sciences and Primary Care and Centre for Nutrition, Prevention and Health Services, Utrecht, The Netherlands
| | - Jolanda MA Boer
- National Institute for Public Health and the Environment Bilthoven, The Netherlands
| | - Anneke Biokstra
- National Institute for Public Health and the Environment Bilthoven, The Netherlands
| | - Jyrki Virtanen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Michael Wagner
- University Hospital, Depts of Neurodegenerative Diseases and Geriatric Psychiatry and German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | | | - Kazumasa Yamagishi
- University of Tsukubu, Department of Public Health Medicine, Tsukuba, Japan
| | - David S Siscovick
- New York Academy of Medicine, Department of Epidemiology, New York, New York
| | | | | |
Collapse
|
15
|
Ly R, MacIntyre BC, Philips SM, McGlory C, Mutch DM, Britz-McKibbin P. Lipidomic studies reveal two specific circulating phosphatidylcholines as surrogate biomarkers of the omega-3 index. J Lipid Res 2023; 64:100445. [PMID: 37730162 PMCID: PMC10622695 DOI: 10.1016/j.jlr.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Optimal dietary intake of omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFAs) is critical to human health across the lifespan. However, omega-3 index (O3I) determination is not routinely assessed due to complicated procedures for n3-LCPUFA analysis from the phospholipid (PL) fraction of erythrocytes. Herein, a high-throughput method for lipidomics based on multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry was applied to identify circulating PLs as surrogate biomarkers of O3I in two randomized placebo-controlled trials. An untargeted lipidomic data workflow using a subgroup analysis of serum extracts from sunflower oil versus high-dose fish oil (FO)-supplemented participants revealed that ingested n3-LCPUFAs were primarily distributed as their phosphatidylcholines (PCs) relative to other PL classes. In both high-dose FO (5.0 g/day) and EPA-only trials (3.0 g/day), PC (16:0_20:5) was the most responsive PL, whereas PC (16:0_22:6) was selective to DHA-only supplementation. We also demonstrated that the sum concentration of both these PCs in fasting serum or plasma samples was positively correlated to the O3I following FO (r = 0.708, P = 1.02 × 10-11, n = 69) and EPA- or DHA-only supplementation (r = 0.768, P = 1.01 × 10-33, n = 167). Overall, DHA was more effective in improving the O3I (ΔO3I = 4.90 ± 1.33%) compared to EPA (ΔO3I = 2.99 ± 1.19%) in young Canadian adults who had a poor nutritional status with an O3I (3.50 ± 0.68%) at baseline. Our method enables the rapid assessment of the O3I by directly measuring two circulating PC species in small volumes of blood, which may facilitate screening applications for population and precision health.
Collapse
Affiliation(s)
- Ritchie Ly
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Brittany C MacIntyre
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Stuart M Philips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada; School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
16
|
Ho E, Drake VJ, Michels AJ, Nkrumah-Elie YM, Brown LL, Scott JM, Newman JW, Shukitt-Hale B, Soumyanath A, Chilton FH, Lindemann SR, Shao A, Mitmesser SH. Perspective: Council for Responsible Nutrition Science in Session. Optimizing Health with Nutrition-Opportunities, Gaps, and the Future. Adv Nutr 2023; 14:948-958. [PMID: 37270030 PMCID: PMC10509435 DOI: 10.1016/j.advnut.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
Achieving optimal health is an aspirational goal for the population, yet the definition of health remains unclear. The role of nutrition in health has evolved beyond correcting malnutrition and specific deficiencies and has begun to focus more on achieving and maintaining 'optimal' health through nutrition. As such, the Council for Responsible Nutrition held its October 2022 Science in Session conference to advance this concept. Here, we summarize and discuss the findings of their Optimizing Health through Nutrition - Opportunities and Challenges workshop, including several gaps that need to be addressed to advance progress in the field. Defining and evaluating various indices of optimal health will require overcoming these key gaps. For example, there is a strong need to develop better biomarkers of nutrient status, including more accurate markers of food intake, as well as biomarkers of optimal health that account for maintaining resilience-the ability to recover from or respond to stressors without loss to physical and cognitive performance. In addition, there is a need to identify factors that drive individualized responses to nutrition, including genotype, metabotypes, and the gut microbiome, and to realize the opportunity of precision nutrition for optimal health. This review outlines hallmarks of resilience, provides current examples of nutritional factors to optimize cognitive and performance resilience, and gives an overview of various genetic, metabolic, and microbiome determinants of individualized responses.
Collapse
Affiliation(s)
- Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon; Nutrition Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon.
| | - Victoria J Drake
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | | | | | - LaVerne L Brown
- National Institutes of Health, Office of Dietary Supplements, Bethesda, Maryland
| | - Jonathan M Scott
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, California
| | - Barbara Shukitt-Hale
- United States Department of Agriculture, Agricultural Research Service, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Floyd H Chilton
- Center for Precision Nutrition and Wellness, University of Arizona, Tucson, Arizona; School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona
| | - Stephen R Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Andrew Shao
- ChromaDex External Research Program, Los Angeles, California
| | | |
Collapse
|
17
|
Rittenhouse MA, Barringer ND, Jaffe DA, Morogiello JM, Kegel JL, McNally BA, Deuster PA. Omega-3 Index improves after increased intake of foods with omega-3 polyunsaturated fatty acids among US service academy cadets. Nutr Res 2023; 117:30-37. [PMID: 37437467 DOI: 10.1016/j.nutres.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
The inclusion of omega-3 fatty acids in our dietary intake is important for performance and recovery and may reduce the risk of various health issues. Studies have shown the omega-3 fatty acid status of US service members is low. The purpose of this study was to evaluate whether offering fish and omega-3-enhanced foods would increase the Omega-3 Index (O3I). We hypothesize cadets will increase O3I with enhanced omega-3 options more than fish alone. Food service venues at 3 US service academies offered fish and other omega-3 foods to cadets for 12 weeks. Questionnaires were used to collect information on the dietary habits and omega-3 food intake of participants. The O3I of each participant was measured at baseline, mid- (6 weeks), and after data collection (12 weeks) time points. Following the 12 weeks, we found a significant increase in O3I. More specifically, the intake of other omega-3 foods, smoothies (3 per week) and toppings (3 per week), increased O3I in cadets. This study identified a strategy encouraging omega-3 food intake and improving O3I among cadets. These results help us understand how we can more effectively impact military service member nutrition for optimal health and performance.
Collapse
Affiliation(s)
- Melissa A Rittenhouse
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | | | | | | | - Jessica L Kegel
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Beth A McNally
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
18
|
Hooks MP, Madigan SM, Woodside JV, Nugent AP. Dietary Intake, Biological Status, and Barriers towards Omega-3 Intake in Elite Level (Tier 4), Female Athletes: Pilot Study. Nutrients 2023; 15:2821. [PMID: 37447148 DOI: 10.3390/nu15132821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA) have unique properties which benefit athlete populations. The literature investigating NCAA collegiate, rugby sevens and German endurance athletes indicates suboptimal n-3 PUFA dietary intake and biological status. The aims of this study were: (i) to explore the dietary intakes and FA profiles of elite level, team-based, female athletes and (ii) to understand perceived barriers towards achieving n-3 dietary guidelines. A total of 35 athletes (24.8 ± 4.5 years) completed both a questionnaire and a finger prick test. All the participants reported consuming fish and seafood over the previous six months however only nine athletes consumed ≥ 2 servings of fish per week. Four participants reported using an n-3 supplement. The mean omega-3 index (O3I; including supplementers) was below target levels of >8% (5.19 ± 0.86%). O3I was significantly higher (p < 0.001) in those consuming ≥ 2 servings of fish per week and/or supplements (5.91 ± 0.81%) compared with those who did not (4.82 ± 0.63%). The main barriers reported by those not consuming two servings of fish per week were sensory (n = 11; 42%), cooking skills (n = 10; 38%) and knowledge of n-3 benefits (n = 7; 27%). The current study shows that elite level female athletes present with suboptimal n-3 dietary intake and O3I due to their food preferences, cooking skills and n-3 knowledge.
Collapse
Affiliation(s)
- Matthew P Hooks
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, Northern Ireland, UK
| | - Sharon M Madigan
- Sport Ireland Institute of Sport, D15 Y52H Dublin, Ireland
- Sport and Human Performance Research Centre, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Physical Education and Sport Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jayne V Woodside
- Centre for Public Health, Institute for Global Food Security, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Anne P Nugent
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, Northern Ireland, UK
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
19
|
Fu JY, Wang CA, Liu G, Mead E, Phung J, Makrides M, Pennell CE. Development and internal validation of a non-invasive clinical tool to predict sufficient omega-3 levels in early pregnancy. BMC Pregnancy Childbirth 2023; 23:442. [PMID: 37316786 DOI: 10.1186/s12884-023-05687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/07/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Complications from preterm birth (PTB) are the leading cause of death and disability in those under five years. Whilst the role of omega-3 (n-3) supplementation in reducing PTB is well-established, growing evidence suggests supplementation use in those replete may increase the risk of early PTB. AIM To develop a non-invasive tool to identify individuals with total n-3 serum levels above 4.3% of total fatty acids in early pregnancy. METHODS We conducted a prospective observational study recruiting 331 participants from three clinical sites in Newcastle, Australia. Eligible participants (n = 307) had a singleton pregnancy between 8 and 20 weeks' gestation at recruitment. Data on factors associated with n-3 serum levels were collected using an electronic questionnaire; these included estimated intake of n-3 (including food type, portion size, frequency of consumption), n-3 supplementation, and sociodemographic factors. The optimal cut-point of estimated n-3 intake that predicted mothers with total serum n-3 levels likely above 4.3% was developed using multivariate logistic regression, adjusting for maternal age, body mass index, socioeconomic status, and n-3 supplementation use. Total serum n-3 levels above 4.3% was selected as previous research has demonstrated that mothers with these levels are at increased risk of early PTB if they take additional n-3 supplementation during pregnancy. Models were evaluated using various performance metrics including sensitivity, specificity, area under receiver operator characteristic (AUROC) curve, true positive rate (TPR) at 10% false positive rate (FPR), Youden Index, Closest to (0,1) Criteria, Concordance Probability, and Index of Union. Internal validation was performed using 1000-bootstraps to generate 95% confidence intervals for performance metrics generated. RESULTS Of 307 eligible participants included for analysis, 58.6% had total n-3 serum levels above 4.3%. The optimal model had a moderate discriminative ability (AUROC 0.744, 95% CI 0.742-0.746) with 84.7% sensitivity, 54.7% specificity and 37.6% TPR at 10% FPR. CONCLUSIONS Our non-invasive tool was a moderate predictor of pregnant women with total serum n-3 levels above 4.3%; however, its performance is not yet adequate for clinical use. TRIAL REGISTRATION This trial was approved by the Hunter New England Human Research Ethics Committee of the Hunter New England Local Health District (Reference 2020/ETH00498 on 07/05/2020 and 2020/ETH02881 on 08/12/2020).
Collapse
Affiliation(s)
- Joanna Yx Fu
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2300, Australia
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2300, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Ge Liu
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Elyse Mead
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2300, Australia
| | - Jason Phung
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2300, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Maria Makrides
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2300, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
- John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
20
|
Harlan TS, Gow RV, Kornstädt A, Alderson PW, Lustig RH. The Metabolic Matrix: Re-engineering ultraprocessed foods to feed the gut, protect the liver, and support the brain. Front Nutr 2023; 10:1098453. [PMID: 37063330 PMCID: PMC10097968 DOI: 10.3389/fnut.2023.1098453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Ultraprocessed food is established as a metabolic disruptor acting to increase adiposity, reduce mitochondrial efficiency, drive insulin resistance, alter growth, and contribute to human morbidity and mortality. Consumer packaged goods (CPG) companies are beginning to understand the detrimental impact of the food they market, and have employed substitution strategies to reduce salt, sugar, and fat. However, the harms of ultraprocessed foods are far more complex than any single component, and are not ameliorated by such simple substitutions. Over the past 2 years, the authors have worked with the Kuwaiti Danish Dairy Company (KDD) to conduct a comprehensive scientific evaluation of their entire commercial food and beverage portfolio. Assay of the macronutrients, micronutrients, additives, and toxins contained in each of their products was undertaken to determine the precise nature of each product's ingredients as well as the health impacts of processing. The authors formed a Scientific Advisory Team (SAT) and developed a tiered "Metabolic Matrix" founded in three science-based principles: (1) protect the liver, (2) feed the gut, and (3) support the brain. The Metabolic Matrix categorizes each product and provides the criteria, metrics, and recommendations for improvement or reformulation. Real-time consultation with the KDD Executive and Operations teams was vital to see these procedures through to fruition. This scientific exercise has enabled KDD to lay the groundwork for improving the health, well-being, and sustainability of their entire product line, while maintaining flavor, economic, and fiscal viability. This process is easily transferrable, and we are sharing this effort and its approaches as a proof-of-concept. The key aim of our work is to not only make ultraprocessed food healthier but to urge other food companies to implement similar analysis and reformulation of their product lines to improve the metabolic health and well-being of consumers worldwide.
Collapse
Affiliation(s)
- Timothy S. Harlan
- Division of General Internal Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Rachel V. Gow
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | | | - P. Wolfram Alderson
- Human & Environmental Health Department, Kuwaiti Danish Dairy Company, Kuwait City, Kuwait
| | - Robert H. Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
21
|
Dempsey M, Rockwell MS, Wentz LM. The influence of dietary and supplemental omega-3 fatty acids on the omega-3 index: A scoping review. Front Nutr 2023; 10:1072653. [PMID: 36742439 PMCID: PMC9892774 DOI: 10.3389/fnut.2023.1072653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction The majority of the population do not consume adequate omega-3 fatty acids (n-3 FA), leading to global deficiencies, as evidenced by poor omega-3 status. An indicator of overall n-3 FA status, omega3-index (O3i) ≥8% has been associated with reduced risk of chronic disease, most notably cardiovascular disease. Thus, a synthesis of current research summarizing the effects of n-3 FA intake on O3i is warranted to develop and refine clinical recommendations. The purpose of this scoping review was to evaluate the effect of n-3 FA interventions and estimate sufficient n-3 FA intake to improve O3i to meet recommendations. Methods Search criteria were human studies published in English from 2004 to 2022 that assessed O3i at baseline and following an n-3 FA intervention. Results Fifty-eight studies that met inclusion criteria were identified. Protocols included fish consumption, fortified foods, combined eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplements, supplements of single n-3 FA (alpha linolenic acid (ALA), EPA, DHA, etc.), and supplements providing multiple n-3 FA. Dietary supplements varied in chemical composition; the most common were triglycerides or ethyl esters. The lowest supplementation protocol was 100 mg/d, and the largest was 4,400 mg/d EPA and DHA. Supplementation time period ranged from 3 weeks to 1 year. At baseline, three study samples had mean O3i >8%, although many intervention protocols successfully increased O3i. Discussion Generally, the lowest doses shown to be effective in raising O3i to recommended levels were >1,000 mg/d of combination DHA plus EPA for 12 weeks or longer. Supplements composed of triglycerides were more bioavailable and thus more effective than other formulas. Based on the data evaluated, practical recommendations to improve O3i to ≥8% are consumption of 1,000-1,500 mg/d EPA plus DHA as triglycerides for at least 12 weeks.
Collapse
Affiliation(s)
- Meghan Dempsey
- Department of Nutrition and Healthcare Management, Appalachian State University, Boone, NC, United States
| | - Michelle S. Rockwell
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Laurel M. Wentz
- Department of Nutrition and Healthcare Management, Appalachian State University, Boone, NC, United States,*Correspondence: Laurel M. Wentz ✉
| |
Collapse
|
22
|
Rodriguez D, Lavie CJ, Elagizi A, Milani RV. Update on Omega-3 Polyunsaturated Fatty Acids on Cardiovascular Health. Nutrients 2022; 14:nu14235146. [PMID: 36501174 PMCID: PMC9739673 DOI: 10.3390/nu14235146] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Twenty percent of deaths in the United States are secondary to cardiovascular diseases (CVD). In patients with hyperlipidemia and hypertriglyceridemia, studies have shown high atherosclerotic CVD (ASCVD) event rates despite the use of statins. Given the association of high triglyceride (TG) levels with elevated cholesterol and low levels of high-density lipoprotein cholesterol, the American Heart Association (AHA)/American College of Cardiology (ACC) cholesterol guidelines recommend using elevated TGs as a "risk-enhancing factor" for ASCVD and using omega 3 fatty acids (Ω3FAs) for patients with persistently elevated severe hypertriglyceridemia. Ω3FA, or fish oils (FOs), have been shown to reduce very high TG levels, hospitalizations, and CVD mortality in randomized controlled trials (RCTs). We have published the largest meta-analysis to date demonstrating significant effects on several CVD outcomes, especially fatal myocardial infarctions (MIs) and total MIs. Despite the most intensive research on Ω3FAs on CVD, their benefits have been demonstrated to cluster across multiple systems and pathologies, including autoimmune diseases, infectious diseases, chronic kidney disease, central nervous system diseases, and, most recently, the COVID-19 pandemic. A review and summary of the controversies surrounding Ω3FAs, some of the latest evidence-based findings, and the current and most updated recommendations on Ω3FAs are presented in this paper.
Collapse
|
23
|
Potter TIT, Horgan GW, Wanders AJ, Zandstra EH, Zock PL, Fisk HL, Minihane AM, Calder PC, Mathers JC, de Roos B. Models predict change in plasma triglyceride concentrations and long-chain n-3 polyunsaturated fatty acid proportions in healthy participants after fish oil intervention. Front Nutr 2022; 9:989716. [PMID: 36386924 PMCID: PMC9641003 DOI: 10.3389/fnut.2022.989716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Substantial response heterogeneity is commonly seen in dietary intervention trials. In larger datasets, this variability can be exploited to identify predictors, for example genetic and/or phenotypic baseline characteristics, associated with response in an outcome of interest. Objective Using data from a placebo-controlled crossover study (the FINGEN study), supplementing with two doses of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), the primary goal of this analysis was to develop models to predict change in concentrations of plasma triglycerides (TG), and in the plasma phosphatidylcholine (PC) LC n-3 PUFAs eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA), after fish oil (FO) supplementation. A secondary goal was to establish if clustering of data prior to FO supplementation would lead to identification of groups of participants who responded differentially. Methods To generate models for the outcomes of interest, variable selection methods (forward and backward stepwise selection, LASSO and the Boruta algorithm) were applied to identify suitable predictors. The final model was chosen based on the lowest validation set root mean squared error (RMSE) after applying each method across multiple imputed datasets. Unsupervised clustering of data prior to FO supplementation was implemented using k-medoids and hierarchical clustering, with cluster membership compared with changes in plasma TG and plasma PC EPA + DHA. Results Models for predicting response showed a greater TG-lowering after 1.8 g/day EPA + DHA with lower pre-intervention levels of plasma insulin, LDL cholesterol, C20:3n-6 and saturated fat consumption, but higher pre-intervention levels of plasma TG, and serum IL-10 and VCAM-1. Models also showed greater increases in plasma PC EPA + DHA with age and female sex. There were no statistically significant differences in PC EPA + DHA and TG responses between baseline clusters. Conclusion Our models established new predictors of response in TG (plasma insulin, LDL cholesterol, C20:3n-6, saturated fat consumption, TG, IL-10 and VCAM-1) and in PC EPA + DHA (age and sex) upon intervention with fish oil. We demonstrate how application of statistical methods can provide new insights for precision nutrition, by predicting participants who are most likely to respond beneficially to nutritional interventions.
Collapse
Affiliation(s)
| | - Graham W. Horgan
- Biomathematics and Statistics Scotland, Aberdeen, United Kingdom
| | | | - Elizabeth H. Zandstra
- Unilever Foods Innovation Centre, Wageningen, Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Peter L. Zock
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Helena L. Fisk
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anne M. Minihane
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Philip C. Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, United Kingdom
| | - John C. Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Baukje de Roos
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
24
|
Aldhafiri FK. Investigating the Role of EPA and DHA on Cellular Oxidative Stress; Profiling Antidiabetic and Antihypertensive Potential. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2022; 14:178-185. [PMID: 37051424 PMCID: PMC10084997 DOI: 10.4103/jpbs.jpbs_383_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 02/17/2023] Open
Abstract
Background Polyunsaturated fatty acids (PUFAs) remain part of the diet and are essential for growth and development. Furthermore, omega - 3 fatty acids boost various cardiovascular disease risk factors as well as lower blood pressure and cholesterol levels. The effects of PUFAs on glycemia in type 2 diabetes patients are unclear. In the present study, the anti-diabetic and anti-hypertensive potential of eicosapentenoic acid (EPA) and docosahexaenoic acid (DHA)-two polyunsaturated fatty acids-were examined. Material and Methods Using 3T3-L1 pre-adipocyte cells fed with PUFAs, the antioxidant capacity of EPA and DHA was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay/test. The DPPH activity of EPA and DHA was 49.72 and 50.51%, respectively, indicating a reduction in oxidative stress. The number, size, and total lipid content of adipocytes in adipose tissue were used to study the anti-diabetic effect of EPA and DHA. Both PUFAs were revealed to have a much lower capacity for cell lysis of 3T3-L1 pre-adipocytes when compared to propylene glycol monomethyl ether acetate (PMA). In 3T3-L1 pre-adipocyte cells that had been treated with EPA and DHA, the gene expression profiles for ATP synthase 6 were examined. Results The results demonstrated a similar trend of reducing total lipid content in 3T3-L1 pre-adipocyte cells treated with EPA and DHA. The amount of cell lysis was then examined for 3T3-L1 pre-adipocyte cells exposed to DHA and EPA, and the results showed 38.45% and 41.26%, respectively. In the 3T3-L1 pre-adipocyte cells, treatment with PUFAs, EPA, and DHA dramatically lowered total lipid content after 48 hours. The study also revealed that exposing 3T3-L1 pre-adipocyte cells to EPA at 90 g/ml for 48 hours reduced the total lipid content by a significant amount. Conclusion According to the findings, EPA and DHA therapy reversed oxidative stress in mitochondria and upregulated the ATP synthase 6 gene. This discovery shows how EPA and DHA have anti-diabetic and hypertension properties.
Collapse
Affiliation(s)
- Fahad K. Aldhafiri
- Department of Public Health, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
| |
Collapse
|
25
|
Notarnicola M, De Nunzio V, Lippolis T, Tutino V, Cisternino AM, Iacovazzi PA, Milella RA, Gasparro M, Negro R, Polignano M, Caruso MG. Beneficial Effects of Table Grape Use on Serum Levels of Omega-3 Index and Liver Function: A Randomized Controlled Clinical Trial. Biomedicines 2022; 10:2310. [PMID: 36140410 PMCID: PMC9496466 DOI: 10.3390/biomedicines10092310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
This clinical trial was aimed to investigate the effects of fresh table grape intake on the serum levels of the Omega-3 index, defined as the sum of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) levels. Forty consecutive healthy subjects were randomly assigned to the control group, receiving only dietary recommendations, and the grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight, for 21 days. Compared with baseline, the grape treatment produced no significant difference in the serum levels of glucose, liver transaminase, and triglycerides, with the exception of cholesterol value, which was significantly reduced in both control and grape group (180.5 ± 20.32 vs. 196.1 ± 30.0 and 181.4 ± 21.9 vs. 194.3 ± 37.5, respectively). After 4 weeks from the end of grape treatment, the analysis of single fatty acids showed a significant increase in oleic acid content (14.15 ± 1.8 vs. 12.85 ± 1.6, p < 0.05) and a significant induction of the Omega-3 index (8.23 ± 1.9 vs. 6.09 ± 1.2, p < 0.05), associated with increased serum levels of adiponectin (24.09 ± 1.08 vs. 8.8 ± 0.7, p < 0.001). In contrast, the expression of fibroblast growth factor 21 (FGF21), a molecule associated with metabolic syndrome and liver disease, was significantly reduced (37.9 ± 6.8 vs. 107.8 ± 10.1, p < 0.001). The data suggest that the intake of fresh grape improves the Omega-3 index in the serum and exerts beneficial effects on liver function through the overexpression of adiponectin and the reduction in FGF21 levels.
Collapse
Affiliation(s)
- Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte Bari, Italy; (V.D.N.); (T.L.)
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte Bari, Italy; (V.D.N.); (T.L.)
| | - Tamara Lippolis
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte Bari, Italy; (V.D.N.); (T.L.)
| | - Valeria Tutino
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte Bari, Italy; (V.T.); (A.M.C.); (M.G.C.)
| | - Anna Maria Cisternino
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte Bari, Italy; (V.T.); (A.M.C.); (M.G.C.)
| | - Palma Aurelia Iacovazzi
- Laboratory of Clinical Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte Bari, Italy;
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, 70010 Bari, Italy; (R.A.M.); (M.G.)
| | - Marica Gasparro
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, 70010 Bari, Italy; (R.A.M.); (M.G.)
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Maurizio Polignano
- Clinical Research Unit, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte Bari, Italy; (V.T.); (A.M.C.); (M.G.C.)
| |
Collapse
|
26
|
Rittenhouse M, Sambuughin N, Deuster P. Optimization of Omega-3 Index Levels in Athletes at the US Naval Academy: Personalized Omega-3 Fatty Acid Dosage and Molecular Genetic Approaches. Nutrients 2022; 14:nu14142966. [PMID: 35889922 PMCID: PMC9321651 DOI: 10.3390/nu14142966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
The Dietary Guidelines for Americans recommend increasing the intake of omega-3 polyunsaturated fatty acids. The Omega-3 Index (O3I) is one marker used to assess omega-3 status. The O3I national average is 4.3%, which translates into a high risk for developing cardiovascular disease. Research has reported an association between variants in the two desaturase encoding genes, fatty acid desaturase 1 and fatty acid desaturase 2 (FADS1/2), and the concentration of O3I. The aim of this study was to assess whether a personalized dosage of omega-3 supplementation would lead to an O3I ≥ 8%. A secondary aim was to identify if changes in O3I levels would be associated with either of the two FADS1/2 variants. Methods: This interventional study had a pre- and post-intervention design to assess changes in O3I. Ninety participants completed demographic, biometrics, O3I, and genetic testing. Participants were provided a personalized dose of omega-3 supplements based on their baseline O3I. Results: The majority (63%) of participants were 20 year old white males with an average O3I at baseline of 4.6%; the post-supplementation average O3I was 5.6%. The most frequent genetic variants expressed in the full sample for FADS1/2 were GG (50%) and CA/AA (57%). Conclusions: O3I was significantly increased following omega-3 supplementation. However, it was not possible to conclude whether the two FADS1/2 variants led to differential increases in OI3 or if a personalized dosage of omega-3 supplementation led to an O3I ≥ 8%, due to our study limitations.
Collapse
Affiliation(s)
- Melissa Rittenhouse
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (N.S.); (P.D.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Correspondence:
| | - Nyamkhishig Sambuughin
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (N.S.); (P.D.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Patricia Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (N.S.); (P.D.)
| |
Collapse
|
27
|
Stonehouse W, Klingner B, Tso R, Teo PS, Terefe NS, Forde CG. Bioequivalence of long-chain omega-3 polyunsaturated fatty acids from foods enriched with a novel vegetable-based omega-3 delivery system compared to gel capsules: a randomized controlled cross-over acute trial. Eur J Nutr 2022; 61:2129-2141. [PMID: 35041046 PMCID: PMC9106597 DOI: 10.1007/s00394-021-02795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE To evaluate bioavailability of omega-3 long-chain polyunsaturated fatty acids (LCPUFA) from foods enriched with novel vegetable-based encapsulated algal oil across Australian and Singaporean populations. METHODS 27 men (n = 12 Australian European; n = 15 Singaporean Chinese), 21-50 yr; 18-27.5 kg/m2, with low habitual intake of omega-3 LCPUFA completed a multicentre randomised controlled acute 3-way cross-over single-blind trial. They consumed, in random order 1-week apart after an overnight fast, standard breakfast meals including 400 mg docosahexanoic acid (DHA) from either extruded rice snacks or soup both containing cauliflower-encapsulated HiDHA® algal oil or gel capsules containing HiDHA® algal oil. Blood samples for analysis of plasma DHA and eicosapentaenoic acid (EPA) were taken pre-meal and after 2, 4, 6, 8 and 24 h. Primary analyses comparing 24-h incremental area under the plasma DHA, EPA and DHA + EPA concentration (µg/ml) curves (iAUC0-24 h) between test foods were performed using linear mixed models by including ethnicity as an interaction term. RESULTS Plasma iAUC0-24 h did not differ significantly between test foods (adjusted mean [95% CI] plasma DHA + EPA: extruded rice snack, 8391 [5550, 11233] µg/mL*hour; soup, 8862 [6021, 11704] µg/mL*hour; capsules, 11,068 [8226, 13910] µg/mL*hour, P = 0.31) and did not differ significantly between Australian European and Singaporean Chinese (treatment*ethnicity interaction, P = 0.43). CONCLUSION The vegetable-based omega-3 LCPUFA delivery system did not affect bioavailability of omega-3 LCPUFA in healthy young Australian and Singaporean men as assessed after a single meal over 24 h, nor was bioavailability affected by ethnicity. This novel delivery system may be an effective way to fortify foods/beverages with omega-3 LCPUFA. TRIAL REGISTRATION The trial was registered with clinicaltrials.gov (NCT04610983), date of registration, 22 November 2020.
Collapse
Affiliation(s)
- Welma Stonehouse
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Health and Biosecurity, PO Box 10041, Adelaide, BC, SA, 5000, Australia.
| | - Bradley Klingner
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Health and Biosecurity, PO Box 10041, Adelaide, BC, SA, 5000, Australia
| | - Rachel Tso
- Clinical Nutrition Research Centre, A*STAR Singapore Institute of Food and Biotechnology Innovation, Singapore, Singapore
| | - Pey Sze Teo
- Clinical Nutrition Research Centre, A*STAR Singapore Institute of Food and Biotechnology Innovation, Singapore, Singapore
| | - Netsanet Shiferaw Terefe
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC, Australia
| | - Ciarán G Forde
- Clinical Nutrition Research Centre, A*STAR Singapore Institute of Food and Biotechnology Innovation, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Sensory Science and Eating Behaviour, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
28
|
Ramírez-Santana M, Zapata Barra R, Ñunque González M, Müller JM, Vásquez JE, Ravera F, Lago G, Cañón E, Castañeda D, Pradenas M. Inverse Association between Omega-3 Index and Severity of COVID-19: A Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6445. [PMID: 35682030 PMCID: PMC9180292 DOI: 10.3390/ijerph19116445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023]
Abstract
Background: Omega-3 fatty acids enhance immune response and modulate inflammation. This study aimed to determine the relationship between omega-3 fatty acid status and the severity of SARS-CoV-2 infection. Methods: Using a case−control design, we compared hospitalized patients with severe SARS-CoV-2 infection (cases, n = 73) with a group of ambulatory patients with mild SARS-CoV-2 infection (controls, n = 71). No patients were vaccinated against SARS-CoV-2. Results: The cases were older (p = 0.003), less educated (p = 0.001), had larger neck and smaller waist circumferences (p = 0.035 and p = 0.003, respectively), more frequently had diabetes (p < 0.001), consumed less fish (p < 0.001), consumed higher proportions of fried fish (p = 0.001), and had lower Omega-3 Index (O3I) values (p = 0.001) than controls. Cases had significantly lower rates of upper airway symptoms than controls. Lower O3I was associated with an increased likelihood of developing severe COVID-19 after adjusting for potential confounders (OR: 0.52; CI 0.32−0.86). Diabetes (OR: 4.41; CI 1.60−12.12), neck circumference (OR: 1.12; CI 1.03−1.21), and older age (OR: 1.03; CI 1.002−1.062) were also linked to COVID-19 severity. Fried fish consumption and low educational level were independent risk factors for severe COVID-19. Conclusions: This study suggests incorporating nutritional interventions to improve omega-3 status within nonpharmacological measures may help to reduce the severity of COVID-19.
Collapse
Affiliation(s)
- Muriel Ramírez-Santana
- Public Health Department, Faculty of Medicine, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Rodrigo Zapata Barra
- Faculty of Medical Science, Universidad de Santiago de Chile and Neurosurgery Service, Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (R.Z.B.); (J.M.M.); (J.E.V.); (F.R.)
| | - Marcela Ñunque González
- Clinical Department, Faculty of Medicine, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| | - José Miguel Müller
- Faculty of Medical Science, Universidad de Santiago de Chile and Neurosurgery Service, Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (R.Z.B.); (J.M.M.); (J.E.V.); (F.R.)
| | - Juan Enrique Vásquez
- Faculty of Medical Science, Universidad de Santiago de Chile and Neurosurgery Service, Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (R.Z.B.); (J.M.M.); (J.E.V.); (F.R.)
| | - Franco Ravera
- Faculty of Medical Science, Universidad de Santiago de Chile and Neurosurgery Service, Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (R.Z.B.); (J.M.M.); (J.E.V.); (F.R.)
| | - Gustavo Lago
- Hospital Clínico Fusat, Rancagua 2820000, Chile;
| | - Eduardo Cañón
- Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (E.C.); (D.C.); (M.P.)
| | - Daniella Castañeda
- Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (E.C.); (D.C.); (M.P.)
| | - Madelaine Pradenas
- Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (E.C.); (D.C.); (M.P.)
| |
Collapse
|
29
|
Mullins VA, Graham S, Cummings D, Wood A, Ovando V, Skulas-Ray AC, Polian D, Wang Y, Hernandez GD, Lopez CM, Raikes AC, Brinton RD, Chilton FH. Effects of Fish Oil on Biomarkers of Axonal Injury and Inflammation in American Football Players: A Placebo-Controlled Randomized Controlled Trial. Nutrients 2022; 14:2139. [PMID: 35631280 PMCID: PMC9146417 DOI: 10.3390/nu14102139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
There are limited studies on neuroprotection from repeated subconcussive head impacts (RSHI) following docosahexaenoic acid (DHA) + eicosapentaenoic acid (EPA) supplementation in contact sports athletes. We performed a randomized, placebo-controlled, double-blinded, parallel-group design trial to determine the impact of 26 weeks of DHA+EPA supplementation (n = 12) vs. placebo (high-oleic safflower oil) (n = 17) on serum concentrations of neurofilament light (NfL), a biomarker of axonal injury, and inflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a)) in National Collegiate Athletic Association Division I American football athletes. DHA+EPA supplementation increased (p < 0.01) plasma DHA and EPA concentrations throughout the treatment period. NfL concentrations increased from baseline to week 26 in both groups (treatment (<0.001); placebo (p < 0.05)), with starting players (vs. non-starters) showing significant higher circulating concentrations at week 26 (p < 0.01). Fish oil (DHA+EPA) supplementation did not mitigate the adverse effects of RSHI, as measured by NfL levels; however, participants with the highest plasma DHA+EPA concentrations tended to have lower NfL levels. DHA+EPA supplementation had no effects on inflammatory cytokine levels at any of the timepoints tested. These findings emphasize the need for effective strategies to protect American football participants from the effects of RSHI.
Collapse
Affiliation(s)
- Veronica A. Mullins
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Sarah Graham
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Danielle Cummings
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Alva Wood
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Vanessa Ovando
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Ann C. Skulas-Ray
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Dennis Polian
- Baylor Athletics, Baylor University, 1500 South University Parks Drive, Waco, TX 76706, USA;
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Gerson D. Hernandez
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Claudia M. Lopez
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Adam C. Raikes
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Roberta D. Brinton
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Floyd H. Chilton
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| |
Collapse
|
30
|
Nursyifa Fadiyah N, Megawati G, Erlangga Luftimas D. Potential of Omega 3 Supplementation for Coronavirus Disease 2019 (COVID-19): A Scoping Review. Int J Gen Med 2022; 15:3915-3922. [PMID: 35431568 PMCID: PMC9012318 DOI: 10.2147/ijgm.s357460] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/31/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 can cause fever, cough, headache, and shortness of breath but patients with comorbidities can experience worsening and death. An action is needed to treat this condition in COVID-19 patients. Omega 3 fatty acids may be one possibility associated with COVID-19 prevention, management, and treatment. Therefore, this review aimed to identify the existing studies on potency of omega 3 fatty acid supplementation on COVID-19. We searched studies from PubMed, Google Scholar, Springer Link, and Emerald Insight databases published on January 31, 2020, to September 1, 2021. The studies selected were the full-text, non-review ones which focused on the omega 3 fatty acid intervention in COVID-19 with COVID-19 patients and people affected by COVID-19 as their subjects and clinical manifestations or the results of supporting examinations as their outcomes. No quality assessment was performed in this review. Of the 211, there were 4 studies selected for this review. They showed that severe COVID-19 patients have low levels of omega 3 in their blood. Omega 3 was considered to reduce the risk of positive for SARS-CoV-infection and the duration of symptoms, overcome the renal and respiratory dysfunction, and increase survival rate in COVID-19 patients. Omega 3 fatty acid supplementations were thought to have a potential effect in preventing and treating COVID-19. This can be a reference for further research about omega 3 fatty acid supplementation and COVID-19.
Collapse
Affiliation(s)
| | - Ginna Megawati
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Dimas Erlangga Luftimas
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Nutrition Working Group (NWG), SKIP-NAKES Study Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
31
|
Is Omega-3 Index necessary for fish oil supplements for CVD risk prevention? CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Jackson KH, Van Guilder GP, Tintle N, Tate B, McFadden J, Perry CA. Plasma fatty acid responses to a calorie-restricted, DASH-style diet with lean beef. Prostaglandins Leukot Essent Fatty Acids 2022; 179:102413. [PMID: 35395436 DOI: 10.1016/j.plefa.2022.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Plasma fatty acid (FA) levels are used as biomarkers of health outcomes and nutritional intake. METHODS This was an exploratory analysis of the plasma FA profile from a parallel-designed, controlled-feeding study in older, obese adults (females, n = 17; males, n = 11) consuming a DASH-based diet with two levels of lean beef (3oz and 6oz per day). Plasma FA levels (as percent composition) were measured by gas chromatography from five timepoints over the 12-week intervention. The primary plasma FA change patterns modeled were sustained (initial change to 'new normal') or homeostatic (initial change, then return toward original baseline). RESULTS The study diet was low in fat (< 60 g/d), especially polyunsaturated FAs (PUFAs; < 5 g/d), compared to the average American diet of obese individuals as described by a nationally representative sample. Participants lost ∼6% of body mass and lowered plasma fasting triglyceride levels by ∼9% over the course of the study. With strong to very strong strength of evidence, the individual FAs displaying a sustained response were C16:1n7t, C18:1n9, C20:1n9, and C18:2n6, and homeostatic response, C18:0, 24:0, C24:1n9, C18:3n6, C20:4n6, and C22:6n3 (Ps < 0.0021, Bonferroni-adjusted). The data suggested that systematic changes in both the PUFA and de novo lipogenesis pathways occurred. CONCLUSIONS Diet can affect plasma FA changes both due to nutritional composition and by affecting metabolic processes.
Collapse
Affiliation(s)
- Kristina Harris Jackson
- OmegaQuant Analytics, LLC. Sioux Falls, SD 57106 USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105 USA
| | - Gary P Van Guilder
- Exercise & Sport Science, Western Colorado University, Gunnison, CO 81230 USA
| | - Nathan Tintle
- Fatty Acid Research Institute (FARI), Sioux Falls, SD 57106 USA
| | - Brianna Tate
- Department of Animal Science, Cornell University, Ithaca, NY 14853 USA
| | - Joseph McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853 USA
| | - Cydne A Perry
- Department of Applied Health Science, Indiana University School of Public Health, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
33
|
Improved Physiological Markers of Omega-3 Status and Compliance With Omega-3 Supplementation in Division I Track and Field and Cross-Country Athletes: A Randomized Controlled Crossover Trial. Int J Sport Nutr Exerc Metab 2022; 32:246-255. [PMID: 35313276 DOI: 10.1123/ijsnem.2021-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/10/2022] [Accepted: 02/06/2022] [Indexed: 11/18/2022]
Abstract
A sufficient omega-3 index may enhance cardiovascular function, enhance performance, and decrease inflammation. However, most collegiate athletes are deficient in omega-3s, requiring supplementation. A new type of omega-3 (N3) supplement, Enhanced Recovery™ (ER), claims to improve N3 index while addressing the current issues with traditional supplementation. The purpose of this study was to determine if ER improves N3 status and enhances compliance compared with the current standard in collegiate Division I Track and Field and cross-country athletes during a competitive season. Twenty-five (male = 15 and female = 10) athletes completed this longitudinal, randomized controlled crossover trial. Measurements of N3 status were collected at baseline prior to supplementation, and every 2 weeks for 6 weeks with a 33- to 36-day washout period before crossing over. Supplement compliance and dietary intake of N3 rich foods were collected throughout. Visual analog scales and an exit survey asked questions regarding each treatment. Results showed that N3 index increases within 6 weeks (p < .001) for ER (+37.5%) and control (CON; +55.1%), with small differences between treatments at Weeks 4 (ER = 7.3 ± 1.0; CON = 7.7 ± 1.1; p = .043) and 6 (ER = 7.4 ± 1.2; CON = 7.9 ± 1.2; p = .043). Dietary intake of N3-rich foods and supplement compliance were significant drivers of improvements in N3 status (p < .050). Compliance was not different between treatments but was affected by sex (males = 90.0 ± 17.0% and females = 76.5 ± 21.0%; p = .040), likability (p = .001; r = .77, p < .001), ease (p = .023; r = .53, p = .006), and supplement preference (p = .004), which appeared to favor ER. We conclude that consumption of N3-rich foods and consistent supplementation should be implemented for improvements in N3 status in collegiate athletes, but taste tests/trial periods with ER or CON may help determine preference and improve compliance.
Collapse
|
34
|
Richardson CE, Krishnan S, Gray IJ, Keim NL, Newman JW. The Omega-3 Index Response to an 8 Week Randomized Intervention Containing Three Fatty Fish Meals Per Week Is Influenced by Adiposity in Overweight to Obese Women. Front Nutr 2022; 9:810003. [PMID: 35187036 PMCID: PMC8855121 DOI: 10.3389/fnut.2022.810003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 01/13/2023] Open
Abstract
BackgroundThe Dietary Guidelines for Americans (DGA) recommends consuming ~225 g/wk of a variety of seafood providing >1.75 g/wk of long-chain omega-3 fatty acids to reduce cardiovascular disease risk, however individual responses to treatment vary.ObjectiveThis study had three main objectives. First, to determine if a DGA-conforming diet (DGAD), in comparison to a typical American diet (TAD), can increase the omega-3 index (OM3I), i.e., the red blood cell mol% of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA). Second, to identify factors explaining variability in the OM3I response to dietary treatment. Third to identify factors associated with the baseline OM3I.DesignThis is a secondary analysis of a randomized, double-blind 8 wk dietary intervention of overweight/obese women fed an 8d rotating TAD (n = 20) or DGAD (n = 22) registered at www.clinicaltrials.gov as NCT02298725. The DGAD-group consumed 240 g/wk of Atlantic farmed salmon and albacore tuna in three meals with an estimated EPA + DHA of 3.7 ± 0.6 g/wk. The TAD-group consumed ~160 g/wk of farmed white shrimp and a seafood salad containing imitation crab in three meal with an estimated EPA + DHA of 0.45 ± 0.05 g/wk. Habitual diet was determined at baseline, and body composition was determined at 0 and 8wks. Red blood cell fatty acids were measured at 0, 2 and 8 wk.ResultsAt 8 wk, the TAD-group OM3I was unchanged (5.90 ± 1.35–5.80 ± 0.76%), while the DGAD-group OM3I increased (5.63 ± 1.27–7.33 ± 1.36%; p < 0.001). In the DGAD-group 9 of 22 participants achieved an OM3I >8%. Together, body composition and the baseline OM3I explained 83% of the response to treatment variability. Baseline OM3I (5.8 ± 1.3%; n = 42) was negatively correlated to the android fat mass (p = 0.0007) and positively correlated to the FFQ estimated habitual (EPA+DHA) when expressed as a ratio to total dietary fat (p = 0.006).ConclusionsAn 8 wk TAD did not change the OM3I of ~6%, while a DGAD with 240 g/wk of salmon and albacore tuna increased the OM3I. Body fat distribution and basal omega-3 status are primary factors influencing the OM3I response to dietary intake in overweight/obese women.
Collapse
Affiliation(s)
| | - Sridevi Krishnan
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Ira J. Gray
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Western Human Nutrition Research Center, Davis, CA, United States
| | - Nancy L. Keim
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Western Human Nutrition Research Center, Davis, CA, United States
| | - John W. Newman
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Western Human Nutrition Research Center, Davis, CA, United States
- *Correspondence: John W. Newman
| |
Collapse
|
35
|
McBurney MI, Tintle NL, Harris WS. The omega-3 index is inversely associated with the neutrophil-lymphocyte ratio in adults'. Prostaglandins Leukot Essent Fatty Acids 2022; 177:102397. [PMID: 35033882 DOI: 10.1016/j.plefa.2022.102397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022]
Abstract
The neutrophil-lymphocyte ratio (NLR) is a biomarker of systemic inflammation and measures innate-adaptive immune system balance. The omega-3-index (O3I) measures the amount of EPA+DHA in blood. Both a low O3I and an elevated NLR are associated with increased risk for chronic disease and mortality, including cardiovascular diseases and cancer. Hypothesizing that low O3I may partly contribute to systemic chronic inflammation, we asked if a relationship existed between O3I and NLR in healthy adults (≥18 y, n = 28,871, 51% female) without inflammation [C-reactive protein (CRP) <3 mg/mL)] who underwent a routine clinical assessment. NLR was inversely associated with O3I before (p < 0.0001) and after adjusting for age, sex, BMI, and CRP (p < 0.0001). Pearson correlations of other variables with NLR were r = 0.06 (CRP), r = 0.14 (age), and r = 0.01(BMI). In this healthy population, an O3I < 6.6% was associated with increasing NLR whereas NLR remained relatively constant (low) when O3I > 6.6%, suggestive of a quiescent, balanced immune system.
Collapse
Affiliation(s)
- Michael I McBurney
- Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; Division of Biochemical and Molecular Biology, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, United States of America.
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL 60612, United States of America
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, United States of America
| |
Collapse
|
36
|
Jiang W, Li FR, Yang HH, Chen GC, Hua YF. Relationship Between Fish Oil Use and Incidence of Primary Liver Cancer: Findings From a Population-Based Prospective Cohort Study. Front Nutr 2022; 8:771984. [PMID: 35036409 PMCID: PMC8759152 DOI: 10.3389/fnut.2021.771984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background: N-3 long-chain polyunsaturated fatty acids (LCPUFAs) prevented non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) in studies of mouse models. We examined prospective relationships between fish oil use and risk of primary liver cancer and the major histological subtypes, such as HCC and intrahepatic cholangiocarcinoma (ICC). Methods: We included 434,584 middle-aged and older men and women who were free of cancer at recruitment of the UK Biobank (2006–2010). Information on fish oil use and other dietary habits was collected via questionnaires. Cox proportional hazards models were used to compute the hazard ratio (HR) and 95% CI of liver cancer associated with fish oil use, with adjustment for socio-demographic, lifestyle, dietary, and other clinical risk factors. Results: At baseline, 31.4% of participants reported regular use of fish oil supplements. During a median of 7.8 years of follow-up, 262 incident liver cancer cases were identified, among which 127 were HCC and 110 were ICC cases. As compared with non-users, fish oil users had a significantly 44% (95% CI: 25–59%) lower risk of total liver cancer, and 52% (95% CI: 24–70%) and 40% (95% CI: 7–61%) lower risk of HCC and ICC, respectively. Higher intake of oily fish also was associated with a lower risk of HCC (≥2 vs. <1 serving/week: HR = 0.46; 95% CI: 0.23–0.96; P-trend = 0.027) but not ICC (P-trend = 0.96). Conclusion: Habitual use of fish oil supplements was associated lower risk of primary liver cancer regardless of cancer histological subtypes, potentially supporting a beneficial role of dietary n-3 LCPUFAs in liver cancer prevention.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Fu-Rong Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.,Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huan-Huan Yang
- Wanke School of Public Health, Tsinghua University, Beijing, China
| | - Guo-Chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Yong-Fei Hua
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
37
|
McBurney MI, Tintle NL, Harris WS. Omega-3 index is directly associated with a healthy red blood cell distribution width. Prostaglandins Leukot Essent Fatty Acids 2022; 176:102376. [PMID: 34839221 DOI: 10.1016/j.plefa.2021.102376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
Abstract
Low red blood cell (RBC) membrane content of EPA and DHA, i.e., the omega-3 index (O3I), and elevated RBC distribution width (RDW) are risk factors for all-cause mortality. O3I and RDW are related with membrane fluidity and deformability. Our objective was to determine if there is a relationship between O3I and RDW in healthy adults. Subjects without inflammation or anemia, and with values for O3I, RDW, high-sensitivity C-reactive protein (CRP), body mass index (BMI), age and sex were identified (n = 25,485) from a clinical laboratory dataset of > 45,000 individuals. RDW was inversely associated with O3I in both sexes before and after (both p < 0.00001) adjusting models for sex, age, BMI and CRP. Stratification by sex revealed a sex-O3I interaction with the RDW-O3I slope (p < 0.00066) being especially steep in females with O3I ≤ 5.6%. In healthy adults of both sexes, the data suggested that an O3I of > 5.6% may help maintain normal RBC structural and functional integrity.
Collapse
Affiliation(s)
- Michael I McBurney
- Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; Division of Biochemical and Molecular Biology, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, United States of America.
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL 60612, United States of America
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, United States of America
| |
Collapse
|
38
|
Stiefvatter L, Lehnert K, Frick K, Montoya-Arroyo A, Frank J, Vetter W, Schmid-Staiger U, Bischoff SC. Oral Bioavailability of Omega-3 Fatty Acids and Carotenoids from the Microalgae Phaeodactylum tricornutum in Healthy Young Adults. Mar Drugs 2021; 19:700. [PMID: 34940699 PMCID: PMC8709223 DOI: 10.3390/md19120700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
The microalgae Phaeodactylum tricornutum (PT) contains valuable nutrients such as proteins, polyunsaturated omega-3 fatty acids (n-3 PUFA), particularly eicosapentaenoic acid (EPA) and some docosahexaenoic acid (DHA), carotenoids such as fucoxanthin (FX), and beta-glucans, which may confer health benefits. In a randomized intervention trial involving 22 healthy individuals, we administered for two weeks in a crossover manner the whole biomass of PT (5.3 g/day), or fish oil (FO) containing equal amounts of EPA and DHA (together 300 mg/day). In an additional experiment, sea fish at 185 g/week resulting in a similar EPA and DHA intake was administered in nine individuals. We determined the bioavailability of fatty acids and carotenoids and assessed safety parameters. The intake of PT resulted in a similar increase in the n-3 PUFA and EPA content and a decrease in the PUFA n-6:n-3 ratio in plasma. PT intake caused an uptake of FX that is metabolized to fucoxanthinol (FXOH) and amarouciaxanthin A (AxA). No relevant adverse effects occurred following PT consumption. The study shows that PT is a safe and effective source of EPA and FX-and likely other nutrients-and therefore should be considered as a future sustainable food item.
Collapse
Affiliation(s)
- Lena Stiefvatter
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany;
| | - Katja Lehnert
- Institute of Food Chemistry, University of Hohenheim, 70593 Stuttgart, Germany; (K.L.); (W.V.)
| | - Konstantin Frick
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, 70569 Stuttgart, Germany;
| | - Alexander Montoya-Arroyo
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70593 Stuttgart, Germany; (A.M.-A.); (J.F.)
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70593 Stuttgart, Germany; (A.M.-A.); (J.F.)
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, 70593 Stuttgart, Germany; (K.L.); (W.V.)
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Innovation Field Algae Biotechnology-Development, 70569 Stuttgart, Germany;
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany;
| |
Collapse
|
39
|
Bermingham KM, Brennan L, Segurado R, Gray IJ, Barron RE, Gibney ER, Ryan MF, Gibney MJ, Newman JW, O'Sullivan DAM. Genetic and environmental influences on serum oxylipins, endocannabinoids, bile acids and steroids. Prostaglandins Leukot Essent Fatty Acids 2021; 173:102338. [PMID: 34500309 DOI: 10.1016/j.plefa.2021.102338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Lipid bioactivity is a result of direct action and the action of lipid mediators including oxylipins, endocannabinoids, bile acids and steroids. Understanding the factors contributing to biological variation in lipid mediators may inform future approaches to understand and treat complex metabolic diseases. This research aims to determine the contribution of genetic and environmental influences on lipid mediators involved in the regulation of inflammation and energy metabolism. This study recruited 138 monozygotic (MZ) and dizygotic (DZ) twins aged 18-65 years and measured serum oxylipins, endocannabinoids, bile acids and steroids using liquid chromatography mass-spectrometry (LC-MS). In this classic twin design, the similarities and differences between MZ and DZ twins are modelled to estimate the contribution of genetic and environmental influences to variation in lipid mediators. Heritable lipid mediators included the 12-lipoxygenase products 12-hydroxyeicosatetraenoic acid [0.70 (95% CI: 0.12,0.82)], 12-hydroxyeicosatetraenoic acid [0.73 (95% CI: 0.30,0.83)] and 14‑hydroxy-docosahexaenoic acid [0.51 (95% CI: 0.07,0.71)], along with the endocannabinoid docosahexaenoy-lethanolamide [0.52 (95% CI: 0.15,0.72)]. For others such as 13-hydroxyoctadecatrienoic acid and lithocholic acid the contribution of environment to variation was stronger. With increased understanding of lipid mediator functions in health, it is important to understand the factors contributing to their variance. This study provides a comprehensive analysis of lipid mediators and extends pre-existing knowledge of the genetic and environmental influences on the human lipidome.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/blood
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/genetics
- Adolescent
- Adult
- Aged
- Bile Acids and Salts/blood
- Bile Acids and Salts/genetics
- Dehydroepiandrosterone/blood
- Dehydroepiandrosterone/genetics
- Docosahexaenoic Acids/blood
- Docosahexaenoic Acids/genetics
- Eicosapentaenoic Acid/analogs & derivatives
- Eicosapentaenoic Acid/blood
- Eicosapentaenoic Acid/genetics
- Endocannabinoids/blood
- Endocannabinoids/genetics
- Fatty Acids, Omega-3/blood
- Fatty Acids, Omega-3/genetics
- Female
- Gene-Environment Interaction
- Humans
- Lipid Metabolism/genetics
- Male
- Middle Aged
- Oxylipins/blood
- Steroids/blood
- Twins, Dizygotic/genetics
- Twins, Monozygotic/genetics
- Young Adult
Collapse
Affiliation(s)
- K M Bermingham
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - L Brennan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - R Segurado
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - I J Gray
- Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - R E Barron
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - E R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - M F Ryan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - M J Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - J W Newman
- Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA; Dept of Nutrition, University of California Davis, Davis, CA, USA
| | - Dr A M O'Sullivan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
40
|
Harris WS, Johnston DT. Virtual non-compliance with Omega-3 treatment results in null effects: The RANGER study. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102319. [PMID: 34271325 DOI: 10.1016/j.plefa.2021.102319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 02/04/2023]
Abstract
A recent paper reported that 14 weeks of treatment with 2100 mg of EPA+DHA from krill oil had no effect on cognitive function in US Army Ranger trainees. Although the authors stated that poor compliance "may have contributed to a failure to detect a response," no indication of exactly how poor the compliance was is given. We have therefore calculated, based on their reported blood EPA+DHA levels and published equations predicting how a given dose of EPA+DHA should affect erythrocyte EPA+DHA levels (i.e., the Omega-3 Index), that the effective compliance was actually <3%. This study underscores the importance of adhering to ISSFAL recommendations that baseline and end of study blood Omega-3 levels always be reported in intervention studies. In this case the observed changes in blood levels are critical for interpreting the findings: there was no effect because there was essentially no intervention.
Collapse
Affiliation(s)
- William S Harris
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota; and the Fatty Acid Research Institute, Sioux Falls, SD, USA.
| | - Daniel T Johnston
- Brainspan, LLC., Vienna, VA, USA; Department of the Army, Retired Director of the Comprehensive Soldier Fitness/Performance, Resilience and Enhancement Program. Department of the Army Washington, DC, USA
| |
Collapse
|
41
|
Zapata B. R, Müller JM, Vásquez JE, Ravera F, Lago G, Cañón E, Castañeda D, Pradenas M, Ramírez-Santana M. Omega-3 Index and Clinical Outcomes of Severe COVID-19: Preliminary Results of a Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7722. [PMID: 34360016 PMCID: PMC8345773 DOI: 10.3390/ijerph18157722] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022]
Abstract
The potentially detrimental effects of the worldwide deficiency of Omega-3 fatty acids on the COVID-19 pandemic have been underestimated. The Omega-3 Index (O3I), clinical variables, biometric indices, and nutritional information were directly determined for 74 patients with severe COVID-19 and 10 healthy quality-control subjects. The relationships between the OI3 and mechanical ventilation (MV) and death were analyzed. Results: Patients with COVID-19 exhibited low O3I (mean: 4.15%; range: 3.06-6.14%)-consistent with insufficient fish and Omega-3 supplement consumption, and markedly lower than the healthy control subjects (mean: 7.84%; range: 4.65-10.71%). Inverse associations were observed between O3I and MV (OR = 0.459; C.I.: 0.211-0.997) and death (OR = 0.28; C.I.: 0.08-0.985) in severe COVID-19, even after adjusting for sex, age, and well-known risk factors. Conclusion: We present preliminary evidence to support the hypothesis that the risk of severe COVID-19 can be stratified by the O3I quartile. Further investigations are needed to assess the value of the O3I as a blood marker for COVID-19.
Collapse
Affiliation(s)
- Rodrigo Zapata B.
- Faculty of Medical Science, Universidad de Santiago de Chile and Neurosurgery Service, Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (R.Z.B.); (J.M.M.); (J.E.V.); (F.R.)
| | - José Miguel Müller
- Faculty of Medical Science, Universidad de Santiago de Chile and Neurosurgery Service, Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (R.Z.B.); (J.M.M.); (J.E.V.); (F.R.)
| | - Juan Enrique Vásquez
- Faculty of Medical Science, Universidad de Santiago de Chile and Neurosurgery Service, Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (R.Z.B.); (J.M.M.); (J.E.V.); (F.R.)
| | - Franco Ravera
- Faculty of Medical Science, Universidad de Santiago de Chile and Neurosurgery Service, Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (R.Z.B.); (J.M.M.); (J.E.V.); (F.R.)
| | - Gustavo Lago
- Hospital Clínico Fusat, Rancagua 2820000, Chile;
| | - Eduardo Cañón
- Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (E.C.); (D.C.); (M.P.)
| | - Daniella Castañeda
- Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (E.C.); (D.C.); (M.P.)
| | - Madelaine Pradenas
- Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile; (E.C.); (D.C.); (M.P.)
| | - Muriel Ramírez-Santana
- Public Health Department, Faculty of Medicine, Universidad Católica del Norte, Coquimbo 1780000, Chile
| |
Collapse
|
42
|
Waehler R. Fatty acids: facts vs. fiction. INT J VITAM NUTR RES 2021:1-21. [PMID: 34041926 DOI: 10.1024/0300-9831/a000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the last 100 years official dietary guidelines have recommended an increased consumption of fats derived from seeds while decreasing the consumption of traditional fats, especially saturated fats. These recommendations are being challenged by recent studies. Furthermore, the increased use of refining processes in fat production had deleterious health effects. Today, the number of high-quality studies on fatty acids is large enough to make useful recommendations on clinical application and everyday practice. Saturated fats have many beneficial functions and palmitic acid appears to be problematic only when it is synthesized due to excess fructose consumption. Trans fatty acids were shown to be harmful when they are manmade but beneficial when of natural origin. Conjugated linoleic acid has many benefits but the isomer mix that is available in supplement form differs from its natural origin and may better be avoided. The ω3 fatty acid linolenic acid has rather limited use as an anti-inflammatory agent - a fact that is frequently overlooked. On the other hand, the targeted use of long chain ω3 fatty acids based on blood analysis has great potential to supplement or even be an alternative to various pharmacological therapies. At the same time ω6 fatty acids like linoleic acid and arachidonic acid have important physiological functions and should not be avoided but their consumption needs to be balanced with long chain ω3 fatty acids. The quality and quantity of these fats together with appropriate antioxidative protection are critical for their positive health effects.
Collapse
|
43
|
Belury MA, Cole RM, Andridge R, Keiter A, Raman SV, Lustberg MB, Kiecolt-Glaser JK. Erythrocyte Long-Chain ω-3 Fatty Acids Are Positively Associated with Lean Mass and Grip Strength in Women with Recent Diagnoses of Breast Cancer. J Nutr 2021; 151:2125-2133. [PMID: 34036350 PMCID: PMC8349126 DOI: 10.1093/jn/nxab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/04/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sarcopenia may hasten the risk of mortality in women with breast cancer. Long-chain omega-3 (n-3) polyunsaturated fatty acids (LCn-3PUFAs) may favor muscle mass which, in turn, could enhance resilience of cancer patients toward cancer treatment. OBJECTIVES The objective of this study was to measure the relation of erythrocyte LCn-3PUFA concentrations with lean mass, grip strength, and postprandial energy metabolism in women with newly diagnosed breast cancer. METHODS This cross-sectional analysis evaluated women (n = 150) ages 65 y and younger who were recently diagnosed with breast cancer (stages I-III). Erythrocyte LCn-3PUFA composition was measured using GC. Body composition was measured by DXA. Grip strength was assessed at the same visit. Postprandial energy metabolism was measured for 7.5 h after the consumption of a high-calorie, high-saturated-fat test meal using indirect calorimetry. Associations of fatty acids with outcomes were analyzed using multiple linear regression models and linear mixed-effects models. RESULTS The ω-3 index, a measurement of LCn-3PUFA status, was positively associated with appendicular lean mass (ALM)/BMI (β = 0.015, P = 0.01) and grip strength (β = 0.757, P = 0.04) after adjusting data for age and cancer stage. However, when cardiorespiratory fitness was also included in the analyses, these relations were no longer significant (P > 0.08). After a test meal, a higher ω-3 index was associated with a less steep rise in fat oxidation (P = 0.02) and a steeper decline in glucose (P = 0.01) when adjusting for age, BMI, cancer stage, and cardiorespiratory fitness. CONCLUSIONS The ω-3 index was positively associated with ALM/BMI and grip strength in women newly diagnosed with breast cancer and was associated with altered postprandial substrate metabolism. These findings warrant further studies to determine whether enriching the diet with LCn-3PUFAs during and after cancer treatments is causally linked with better muscle health and metabolic outcomes in breast cancer survivors.
Collapse
Affiliation(s)
| | - Rachel M Cole
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH, USA,The Ohio State University Nutrition Doctoral Program, The Ohio State University, Columbus, OH, USA
| | - Rebecca Andridge
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Ashleigh Keiter
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Subha V Raman
- Krannert Institute of Cardiology, Indiana University College of Medicine, Indianapolis, IN, USA
| | - Maryam B Lustberg
- Division of Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Janice K Kiecolt-Glaser
- Department of Psychiatry, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
44
|
Pestka JJ, Akbari P, Wierenga KA, Bates MA, Gilley KN, Wagner JG, Lewandowski RP, Rajasinghe LD, Chauhan PS, Lock AL, Li QZ, Harkema JR. Omega-3 Polyunsaturated Fatty Acid Intervention Against Established Autoimmunity in a Murine Model of Toxicant-Triggered Lupus. Front Immunol 2021; 12:653464. [PMID: 33897700 PMCID: PMC8058219 DOI: 10.3389/fimmu.2021.653464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/08/2021] [Indexed: 01/15/2023] Open
Abstract
Workplace exposure to respirable crystalline silica dust (cSiO2) has been etiologically linked to the development of lupus and other human autoimmune diseases. Lupus triggering can be recapitulated in female NZBWF1 mice by four weekly intranasal instillations with 1 mg cSiO2. This elicits inflammatory/autoimmune gene expression and ectopic lymphoid structure (ELS) development in the lung within 1 week, ultimately driving early onset of systemic autoimmunity and glomerulonephritis. Intriguingly, dietary supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA) found in fish oil, beginning 2 week prior to cSiO2 challenge, prevented inflammation and autoimmune flaring in this novel model. However, it is not yet known how ω-3 PUFA intervention influences established autoimmunity in this murine model of toxicant-triggered lupus. Here we tested the hypothesis that DHA intervention after cSiO2-initiated intrapulmonary autoimmunity will suppress lupus progression in the NZBWF1 mouse. Six-week old NZWBF1 female mice were fed purified isocaloric diet for 2 weeks and then intranasally instilled with 1 mg cSiO2 or saline vehicle weekly for 4 consecutive weeks. One week after the final instillation, which marks onset of ELS formation, mice were fed diets supplemented with 0, 4, or 10 g/kg DHA. One cohort of mice (n = 8/group) was terminated 13 weeks after the last cSiO2 instillation and assessed for autoimmune hallmarks. A second cohort of mice (n = 8/group) remained on experimental diets and was monitored for proteinuria and moribund criteria to ascertain progression of glomerulonephritis and survival, respectively. DHA consumption dose-dependently increased ω-3 PUFA content in the plasma, lung, and kidney at the expense of the ω-6 PUFA arachidonic acid. Dietary intervention with high but not low DHA after cSiO2 treatment suppressed or delayed: (i) recruitment of T cells and B cells to the lung, (ii) development of pulmonary ELS, (iii) elevation of a wide spectrum of plasma autoantibodies associated with lupus and other autoimmune diseases, (iv) initiation and progression of glomerulonephritis, and (v) onset of the moribund state. Taken together, these preclinical findings suggest that DHA supplementation at a human caloric equivalent of 5 g/d was an effective therapeutic regimen for slowing progression of established autoimmunity triggered by the environmental toxicant cSiO2.
Collapse
Affiliation(s)
- James J. Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Peyman Akbari
- Department of Food Science and Human Nutrition, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Melissa A. Bates
- Department of Food Science and Human Nutrition, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Kristen. N. Gilley
- Department of Food Science and Human Nutrition, East Lansing, MI, United States
| | - James G. Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Lichchavi D. Rajasinghe
- Department of Food Science and Human Nutrition, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Preeti S. Chauhan
- Department of Food Science and Human Nutrition, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Adam L. Lock
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
45
|
Demonty I, Langlois K, Greene-Finestone LS, Zoka R, Nguyen L. Proportions of long-chain ω-3 fatty acids in erythrocyte membranes of Canadian adults: Results from the Canadian Health Measures Survey 2012-2015. Am J Clin Nutr 2021; 113:993-1008. [PMID: 33675340 DOI: 10.1093/ajcn/nqaa401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Omega-3 Index (OI) is a proposed marker of coronary artery disease (CAD) risk. Another index, the EPA/arachidonic acid (AA) ratio has also been proposed as a possible risk marker for CAD. OBJECTIVE Our primary objective was to characterize the Canadian population subgroups that have an undesirable OI (<4%, associated with high CAD risk) and to identify the participants' characteristics most strongly associated with the OI. Our secondary objective was to identify the characteristics most strongly associated with the EPA/AA ratio. DESIGN Data from 4025 adult participants of cycles 3 and 4 (2012-2015) of the cross-sectional Canadian Health Measures Survey were pooled. Adjusted mean proportions of erythrocyte membrane ω-3 (n-3) fatty acids, total ω-6 fatty acids, and ratios were analyzed by sociodemographic, health, and lifestyle characteristics using covariate-adjusted models. RESULTS The mean OI was 4.5%. Almost 40% of Canadians had an undesirable (<4%) OI. ω-3 supplement use, fish intake, and race were the variables most strongly associated with OI scores. The prevalence of undesirable OI was significantly higher among participants consuming fish less than twice a week (43.8%; 95% CI: 39.0%, 48.6%) than among those consuming more fish (12.7%; 95% CI: 7.8%, 19.9%), among smokers (62.7%; 95% CI: 52.9%, 71.7%) than nonsmokers (33.4%; 95% CI: 29.4%, 37.7%), in whites (42.7%; 95% CI: 38.2%, 47.4%) than in Asians (23.0%; 95% CI: 15.4%, 33.0%), and in adults aged 20-39 y (49.6%; 95% CI: 42.3%, 56.9%) than in those aged 60-79 y (24.4%; 95% CI: 21.0%, 28.1%). ω-3 supplement intake and fish intake were the characteristics most strongly associated with EPA/AA. All P ≤ 0.05. CONCLUSIONS An important proportion of Canadian adults has an undesirable (<4%) OI, with higher prevalence in some subgroups. Further assessment is required to determine the value and feasibility of an increase in the population's OI to the currently proposed target of ≥8% as a potential public health objective.
Collapse
Affiliation(s)
- Isabelle Demonty
- Nutrition Research Division, Bureau of Nutritional Sciences, Health Canada, Ottawa, ON, Canada
| | - Kellie Langlois
- Health Analysis Division, Statistics Canada, Ottawa, ON, Canada
| | | | - Rana Zoka
- Nutrition Research Division, Bureau of Nutritional Sciences, Health Canada, Ottawa, ON, Canada
| | - Loan Nguyen
- Biostatistics and Modelling Division, Bureau of Food Surveillance and Science Integration, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
46
|
Jackson KH, Klatt KC, Caudill MA, McDougall MQ, West AA, Perry CA, Malysheva OV, Harris WS. Baseline red blood cell and breast milk DHA levels affect responses to standard dose of DHA in lactating women on a controlled feeding diet. Prostaglandins Leukot Essent Fatty Acids 2021; 166:102248. [PMID: 33516092 DOI: 10.1016/j.plefa.2021.102248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The importance of providing the newborn infant with docosahexaenoic acid (DHA) from breast milk is well established. However, women in the United States, on average, have breast milk DHA levels of 0.20%, which is below the worldwide average (and proposed target) of >0.32%. Additionally, the relationship between maternal red blood cell (RBC) and breast milk DHA levels may provide insight into the sufficiency of DHA recommendations during lactation. Whether the standard recommendation of at least 200 mg/day of supplemental DHA during lactation is sufficient for most women to achieve a desirable RBC and breast milk DHA status is unknown. METHODS Lactating women (n = 27) at about 5 weeks postpartum were enrolled in a 10-12 week controlled feeding study that included randomization to 480 or 930 mg choline/d (diet plus supplementation). As part of the intervention, all participants were required to consume a 200 mg/d of microalgal DHA. RBC and breast milk DHA levels were measured by capillary gas chromatography in an exploratory analysis. RESULTS Median RBC DHA was 5.0% (95% CI: 4.3, 5.5) at baseline and 5.1% (4.6, 5.4) after 10 weeks of supplementation (P = 0.6). DHA as a percent of breast milk fatty acids increased from 0.19% (0.18, 0.33) to 0.34% (0.27, 0.38) after supplementation (P<0.05). The proportion of women meeting the target RBC DHA level of >5% was unchanged (52% at baseline and week 10). The proportion of women achieving a breast milk DHA level of >0.32% approximately doubled from 30% to 56% (p = 0.06). Baseline RBC and breast milk DHA levels affected their responses to supplementation. Those with baseline RBC and breast milk DHA levels above the median (5% and 0.19%, respectively) experienced no change or a slight decrease in levels, while those below the median had a significant increase. Choline supplementation did not significantly influence final RBC or breast milk DHA levels. CONCLUSIONS On average, the standard prenatal DHA dose of 200 mg/d did not increase RBC DHA but did increase breastmilk DHA over 10 weeks in a cohort of lactating women in a controlled-feeding study. Baseline DHA levels in RBC and breast milk affected the response to DHA supplementation, with lower levels being associated with a greater increase and higher levels with no change or a slight decrease. Additional larger, dose-response DHA trials accounting for usual intakes and baseline DHA status are needed to determine how to best achieve target breast milk DHA levels and to identify additional modifiers of the variable breast milk DHA response to maternal DHA supplementation.
Collapse
Affiliation(s)
- Kristina Harris Jackson
- OmegaQuant Analytics, LLC. Sioux Falls, SD, 57105, USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, 57105, USA.
| | - Kevin C Klatt
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marie A Caudill
- Division of Nutritional Science, Cornell University, Ithaca, NY, 14853, USA
| | | | - Allyson A West
- Division of Nutritional Science, Cornell University, Ithaca, NY, 14853, USA
| | - Cydne A Perry
- Division of Nutritional Science, Cornell University, Ithaca, NY, 14853, USA
| | - Olga V Malysheva
- Division of Nutritional Science, Cornell University, Ithaca, NY, 14853, USA
| | - William S Harris
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, 57105, USA; Fatty Acid Research Institute, Sioux Falls, SD, 57105, USA
| |
Collapse
|
47
|
Asher A, Tintle NL, Myers M, Lockshon L, Bacareza H, Harris WS. Blood omega-3 fatty acids and death from COVID-19: A pilot study. Prostaglandins Leukot Essent Fatty Acids 2021; 166:102250. [PMID: 33516093 PMCID: PMC7816864 DOI: 10.1016/j.plefa.2021.102250] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/15/2022]
Abstract
Very-long chain omega-3 fatty acids (EPA and DHA) have anti-inflammatory properties that may help reduce morbidity and mortality from COVID-19 infection. We conducted a pilot study in 100 patients to test the hypothesis that RBC EPA+DHA levels (the Omega-3 Index, O3I) would be inversely associated with risk for death by analyzing the O3I in banked blood samples drawn at hospital admission. Fourteen patients died, one of 25 in quartile 4 (Q4) (O3I ≥5.7%) and 13 of 75 in Q1-3. After adjusting for age and sex, the odds ratio for death in patients with an O3I in Q4 vs Q1-3 was 0.25, p = 0.07. Although not meeting the classical criteria for statistical significance, this strong trend suggests that a relationship may indeed exist, but more well-powered studies are clearly needed.
Collapse
Affiliation(s)
- Arash Asher
- Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angeles, CA
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD; Department of Mathematics and Statistics, Dordt University, Sioux Center, IA
| | | | - Laura Lockshon
- Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angeles, CA
| | - Heribert Bacareza
- Department of Medical Affairs, Cedars-Sinai Medical Center, Los Angeles, CA
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD.
| |
Collapse
|
48
|
Jiménez DG, García CB, Martín JJD. Uses and Applications of Docosahexaenoic Acid (DHA) in Pediatric Gastroenterology: Current Evidence and New Perspective. Curr Pediatr Rev 2021; 17:329-335. [PMID: 33655869 DOI: 10.2174/1573396317666210303151947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/05/2020] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
In this paper, we will review the dietary allowances of these fatty acids in the paediatric population, and also the indications in different pathologies within the field of pediatric gastroenterology. Finally, we will try to explain the reasons that may justify the difficulty in translating good results in experimental studies to the usual clinical practice. This "good results" may be too little to be detected or there may be other causes but misinterpreted as effects of DHA.
Collapse
Affiliation(s)
| | - Carlos Bousoño García
- Pediatric Gastroenterology and Nutrition, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo,Spain
| | - Juan Jose Diaz Martín
- Pediatric Gastroenterology and Nutrition, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo,Spain
| |
Collapse
|
49
|
Healthy Eating Index and Nutrition Biomarkers among Army Soldiers and Civilian Control Group Indicate an Intervention Is Necessary to Raise Omega-3 Index and Vitamin D and Improve Diet Quality. Nutrients 2020; 13:nu13010122. [PMID: 33396252 PMCID: PMC7823425 DOI: 10.3390/nu13010122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Diet quality and nutrition status are important for optimal health and military performance. Few studies have simultaneously evaluated diet quality and biochemical markers of nutritional status of military service members. The Healthy Eating Index (HEI) can be used to assess dietary quality and adherence to federal nutrition guidelines. The aim of this study was to assess soldiers' diet quality and nutritional status and compare results to a civilian control group. METHODS A cross-sectional study was conducted with 531 soldiers. A food frequency questionnaire was used to calculate HEI scores. A blood sample was collected for analysis of select nutrition biochemical markers. Non-parametric analyses were conducted to compare the diet quality and nutritional status of soldiers and controls. Differences in non-normally distributed variables were determined by using the Wilcoxon signed-rank test. RESULTS Soldiers had an HEI score of 59.9 out of 100, marginally higher than the control group (55.4). Biochemical markers of interest were within normal reference values for soldiers, except for the omega-3 index and vitamin D. CONCLUSIONS This study identified dietary components that need improvement and deficits in biochemical markers among soldiers. Improving diet quality and nutritional status should lead to better health, performance, and readiness of the force.
Collapse
|
50
|
Farrell SW, DeFina LF, Tintle N, Barlow CE, Leonard D, Haskell WL, Berry JD, Willis BL, Pavlovic A, Harris WS. Higher omega-3 index is associated with more rapid heart rate recovery in healthy men and women. Prostaglandins Leukot Essent Fatty Acids 2020; 163:102206. [PMID: 33227647 DOI: 10.1016/j.plefa.2020.102206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/07/2020] [Accepted: 11/07/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Previous studies have suggested that omega-3 polyunsaturated fatty acids (n-3 PUFA) can favorably influence cardiac autonomic tone. However, data regarding n-3 PUFA status and heart rate recovery (HRR) in healthy adults are sparse. PURPOSE To examine the association between n-3 PUFA status and HRR. METHODS Participants included 13,912 patients who underwent a comprehensive examination at the Cooper Clinic, Dallas TX. Fitness was determined from a maximal exercise test. HRR was calculated by subtracting the heart rate at 1, 3, and 5 min of an active recovery period from the maximal heart rate. Participants were categorized as having a low (<4%), normal (4-8%) or optimal (>8%) Omega-3 Index (O3I) (i.e., erythrocyte levels of eicosapentaenoic and docosahexaenoic acids). Multiple linear regression was used to model the association between O3I and HRR adjusting for age, maximal METs, body mass index, and smoking by sex. RESULTS Higher categories of O3I were associated with greater HRR at 1 min (men: 23.7, 23.9, 24.6 beats/min; women: 23.9, 24.6, 25.9 and 3 min (men: 52.4, 52.9, 53.6 beats/min; women: 51.9, 53.4, 54.6), p trend <0.01 for all. Corresponding HRR at 5 min were (men: 60.0, 60.2, 60.7 beats/min, p trend=0.09; women: 59.4, 60.8, 61.6, p trend <0.001). The HRR gradients across O3I categories were steeper in women than men at 1, 3, and 5 min (p<0.03 for all sex x O3I category interactions with HRR). CONCLUSIONS A direct relationship between HRR and O3I values was observed in both men and women, with a steeper gradient in women. These findings suggest a potential cardioprotective mechanism for n-3 PUFA.
Collapse
Affiliation(s)
| | | | - Nathan Tintle
- Fatty Acid Research Institute, Sioux Falls, SD; and Department of Mathematics & Statistics; Dordt University; Sioux Center; IA
| | | | | | - William L Haskell
- Department of Medicine, Stanford University, Palo Alto, CA United States
| | - Jarett D Berry
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas TX United States
| | | | | | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD; and Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| |
Collapse
|