1
|
Duarte-Silva E, Maes M, Alves Peixoto C. Iron metabolism dysfunction in neuropsychiatric disorders: Implications for therapeutic intervention. Behav Brain Res 2025; 479:115343. [PMID: 39557130 DOI: 10.1016/j.bbr.2024.115343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Iron is a trace metal that takes part in the maintenance of body homeostasis by, for instance, aiding in energy production and immunity. A body of evidence now demonstrates that dysfunction in iron metabolism can have detrimental effects and is intricately associated with the development of neuropsychiatric disorders, including Major Depressive Disorder (MDD), anxiety, and schizophrenia. For instance, changes in serum and central nervous system (CNS) levels of iron and in proteins mediating iron metabolism have been documented in patients grappling with the aforementioned diseases. By contrast, targeting iron metabolism by using iron chelators, for instance, has proven to be effective in alleviating disease burden. Therefore, here we review the state-of-the-art regarding the role of iron metabolism and its dysfunction in the context of neuropsychiatric disorders. Furthermore, we discuss how targeting iron metabolism can be an effective therapeutic option to tackle this class of diseases. Finally, we discuss the mechanisms linking this dysfunction to behavioral changes in these disorders. Harnessing the knowledge of iron metabolism is not only key to the characterization of novel molecular targets and disease biomarkers but also crucial to drug repurposing and drug design.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Department of Pharmacology, University of São Paulo, São Paulo, Brazil; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Ribeirão Preto, SP, Brazil.
| | - Michael Maes
- Mental Health Center, University of Electronic Science and Technology of China, Chengdu 611731, China; Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia; Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria; Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4002, Bulgaria; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Ji L, Duffy M, Chen B, Majbri A, Trentacosta CJ, Thomason M. Whole Brain MRI Assessment of Age and Sex-Related R2* Changes in the Human Fetal Brain. Hum Brain Mapp 2025; 46:e70073. [PMID: 39844450 PMCID: PMC11754245 DOI: 10.1002/hbm.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 01/24/2025] Open
Abstract
Iron in the brain is essential to neurodevelopmental processes, as it supports neural functions, including processes of oxygen delivery, electron transport, and enzymatic activity. However, the development of brain iron before birth is scarcely understood. By estimating R2* (1/T2*) relaxometry from a sizable sample of fetal multiecho echo-planar imaging (EPI) scans, which is the standard sequence for functional magnetic resonance imaging (fMRI), across gestation, this study investigates age and sex-related changes in iron, across regions and tissue segments. Our findings reveal that brain R2* levels significantly increase throughout gestation spanning many different regions, except the frontal lobe. Furthermore, females exhibit a faster rate of R2* increase compared to males, in both gray matter and white matter. This sex effect is particularly notable within the left insula. This work represents the first MRI examination of iron accumulation and sex differences in developing fetal brains. This is also the first study to establish R2* estimation methodology in fetal multiecho functional MRI.
Collapse
Affiliation(s)
- Lanxin Ji
- Department of Child and Adolescent PsychiatryNew York University School of MedicineNew YorkNew YorkUSA
| | - Mark Duffy
- Department of Child and Adolescent PsychiatryNew York University School of MedicineNew YorkNew YorkUSA
| | - Bosi Chen
- Department of Child and Adolescent PsychiatryNew York University School of MedicineNew YorkNew YorkUSA
| | - Amyn Majbri
- Department of Child and Adolescent PsychiatryNew York University School of MedicineNew YorkNew YorkUSA
| | | | - Moriah Thomason
- Department of Child and Adolescent PsychiatryNew York University School of MedicineNew YorkNew YorkUSA
- Department of Population HealthNew York University School of MedicineNew YorkNew YorkUSA
- Neuroscience InstituteNew York University School of MedicineNew YorkNew YorkUSA
| |
Collapse
|
3
|
Uldbjerg CS, Leader J, Minguez-Alarcon L, Chagnon O, Dadd R, Ford J, Fleury E, Williams P, Juul A, Bellinger DC, Calafat AM, Hauser R, Braun JM. Associations of maternal and paternal preconception and maternal pregnancy urinary phthalate biomarker and bisphenol A concentrations with offspring autistic behaviors: The PEACE study. ENVIRONMENTAL RESEARCH 2024; 263:120253. [PMID: 39486680 DOI: 10.1016/j.envres.2024.120253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Environmental chemical exposures in utero may play a role in autism development. While preconception risk factors for autism are increasingly being investigated, little is known about the influence of chemical exposures during the preconception period, particularly for paternal exposures. METHODS In 195 children from the Preconception Environmental exposures And Childhood health Effects (PEACE) cohort born to parents recruited from a fertility clinic in Boston, Massachusetts between 2004 and 2017, we quantified concentrations of 11 phthalate metabolites and bisphenol A (BPA) in urine samples collected from mothers and fathers before conception and mothers throughout pregnancy. When children were 6-15 years old, parents completed the Social Responsiveness Scale (SRS) questionnaire assessing autistic behaviors. We used linear mixed effect models to estimate covariate-adjusted associations of phthalate biomarker and BPA concentrations, separately for maternal preconception (n = 179), paternal preconception (n = 121), and maternal pregnancy (n = 177), with SRS T-scores, based on age and gender, in offspring. We used quantile g-computation models for mixture analyses and evaluated modification by selected dietary factors. RESULTS The mean SRS T-score was 47.7 (±7.4), lower than the normative mean of 50. In adjusted models for individual biomarkers or mixtures, few associations were observed and estimates were generally negative (e.g., lower SRS T-scores) and imprecise. We observed associations of higher mono-isobutyl phthalate (MiBP) concentrations measured in maternal preconception and paternal preconception periods with lower SRS T-scores (βmaternal_precon = -1.6, 95% CI -2.7; -0.4; βpaternal_precon = -2.9, 95% CI -4.6; -1.2) for each loge increase. In a subset of participants with maternal preconception nutrition information, we generally observed stronger inverse associations with higher folate and iron intake, particularly for folate intake and MiBP concentrations. CONCLUSIONS Urinary phthalate biomarker and BPA concentrations during preconception (maternal and paternal) and pregnancy (maternal) were not associated with adverse autistic behaviors in these children. Larger studies are needed to elucidate the observed associations, while considering interactions between maternal nutrition and chemical exposures.
Collapse
Affiliation(s)
- Cecilie Skaarup Uldbjerg
- Department of Growth and Reproduction, Copenhagen University Hospitalet - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMARC), Copenhagen University Hospitalet - Rigshospitalet, Copenhagen, Denmark
| | - Jordana Leader
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lidia Minguez-Alarcon
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, Boston, MA, USA
| | - Olivia Chagnon
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ramace Dadd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elvira Fleury
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Paige Williams
- Departments of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospitalet - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMARC), Copenhagen University Hospitalet - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David C Bellinger
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Cardiac Neurodevelopment Program, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Psychology, Harvard Medical School, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Saferin N, Haseeb I, Taha AM, Beecroft SE, Pillai S, Neifer AE, Lakkuru R, Kistler BP, Nawor CN, Malik I, Hasan D, Carlson JA, Zade KK, Dressel SP, Carney EM, Shah R, Gautam S, Vergis J, Neifer KL, Johnson ZV, Gustison ML, Hall FS, Burkett JP. Folate prevents the autism-related phenotype caused by developmental pyrethroid exposure in prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625285. [PMID: 39651146 PMCID: PMC11623627 DOI: 10.1101/2024.11.25.625285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Neurodevelopmental disorders (NDDs) have dramatically increased in prevalence to an alarming one in six children, and yet both causes and preventions remain elusive. Recent human epidemiology and animal studies have implicated developmental exposure to pyrethroid pesticides, one of the most common classes of pesticides in the US, as an environmental risk factor for autism and neurodevelopmental disorders. Our previous research has shown that low-dose chronic developmental pyrethroid exposure (DPE) changes folate metabolites in the adult mouse brain. We hypothesize that DPE acts directly on molecular targets in the folate metabolism pathway, and that high-dose maternal folate supplementation can prevent or reduce the biobehavioral effects of DPE. We exposed pregnant prairie vole dams chronically to vehicle or low-dose deltamethrin (3 mg/kg/3 days) with or without high-dose folate supplementation (methylfolate, 5 mg/kg/3 days). The resulting DPE offspring showed broad deficits in five behavioral domains relevant to neurodevelopmental disorders (including the social domain); increased plasma folate concentrations; and increased neural expression of SHMT1, a folate cycle enzyme. Maternal folate supplementation prevented most of the behavioral phenotypes (except for repetitive behaviors) and caused potentially compensatory changes in neural expression of FOLR1 and MTHFR, two folate-related proteins. We conclude that DPE causes neurodevelopmental disorder-relevant behavioral deficits; DPE directly alters aspects of folate metabolism; and preventative interventions targeting folate metabolism are effective in reducing, but not eliminating, the behavioral effects of DPE.
Collapse
Affiliation(s)
- Nilanjana Saferin
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ibrahim Haseeb
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Adam M. Taha
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Sarah E. Beecroft
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Sangeetha Pillai
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Asha E. Neifer
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Rudhasri Lakkuru
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Brian P. Kistler
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Charlotte N. Nawor
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Isa Malik
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Dena Hasan
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jonathan A. Carlson
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Kareem K. Zade
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sydnee P. Dressel
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Eileen M. Carney
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Radha Shah
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Shudhant Gautam
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - John Vergis
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Kari L. Neifer
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Zachary V. Johnson
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Morgan L. Gustison
- Department of Psychology, The University of Western Ontario, London, ON, Canada (current); Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - F. Scott Hall
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - James P. Burkett
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
5
|
Schmidt RJ, Goodrich AJ, Granillo L, Huang Y, Krakowiak P, Widaman A, Dienes JE, Bennett DH, Walker CK, Tancredi DJ. Reliability of a short diet and vitamin supplement questionnaire for retrospective collection of maternal nutrient intake. GLOBAL EPIDEMIOLOGY 2024; 8:100150. [PMID: 38983951 PMCID: PMC11231718 DOI: 10.1016/j.gloepi.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Background Gestational nutrition can protect against adverse neurodevelopmental outcomes. Objectives We developed a short tool for collecting maternal nutritional intake during pregnancy to facilitate research in this area and compared its retrospective use to prospectively-collected food frequency questionnaires (FFQ). Methods Maternal nutritional intake was retrospectively assessed using three versions (full interview, full self-administered online, and shortened interview) of the Early Life Exposure Assessment Tool (ELEAT) among participants of the MARBLES pregnancy cohort study of younger siblings of autistic children. Retrospective responses were compared with responses to supplement questions and the validated 2005 Block FFQ prospectively collected in MARBLES during pregnancies 2-7 years prior. ELEAT nutrient values were calculated using reported food intake frequencies and nutrient values from the USDA nutrient database. Correlations between retrospectively- and prospectively-reported intake were evaluated using Kappa coefficients, Youden's J, and Spearman Rank Correlation Coefficients (rs). Results MARBLES FFQ dietary intakes were compared among 54 women who completed the ELEAT full form including 12 online, and among 23 who completed the ELEAT short form. Correlations across most foods were fair to moderate. Most ELEAT quantified nutrient values were moderately correlated (rs = 0.3-0.6) with those on the Block FFQ. Supplement questions in both MARBLES and the ELEAT were completed by 114 women. Kappas were moderate for whether or not supplements were taken, but modest for timing. Correlations varied by version and child diagnosis or concerns, and were higher when mothers completed the ELEAT when their child was 4 years old or younger. Conclusions With recall up to several years, ELEAT dietary and supplement module responses were modestly to moderately reliable and produced nutrient values moderately correlated with prospectively-collected measures. The ELEAT dietary and vitamin supplements modules can be used to rank participants in terms of intake of several nutrients relevant for neurodevelopment.
Collapse
Affiliation(s)
- Rebecca J Schmidt
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, CA, United States of America
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States of America
| | - Amanda J Goodrich
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Lauren Granillo
- Graduate Group in Epidemiology, University of California Davis, Davis, CA, United States of America
| | - Yunru Huang
- Graduate Group in Epidemiology, University of California Davis, Davis, CA, United States of America
| | - Paula Krakowiak
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Adrianne Widaman
- Graduate Group in Nutritional Biology, University of California Davis, Davis, CA, United States of America
| | - J Erin Dienes
- Department of Statistics, University of California Davis, Davis, CA, United States of America
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Cheryl K Walker
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States of America
- Department of Obstetrics and Gynecology, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Daniel J Tancredi
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States of America
| |
Collapse
|
6
|
Hosseini SM, Panahi-Azar A, Sheybani-Arani M, Morovatshoar R, Mirzadeh M, Salimi Asl A, Naghdipour Mirsadeghi M, Khajavi-Mayvan F. Vitamins, minerals and their maternal levels' role in brain development: An updated literature-review. Clin Nutr ESPEN 2024; 63:31-45. [PMID: 38907995 DOI: 10.1016/j.clnesp.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/26/2024] [Accepted: 05/16/2024] [Indexed: 06/24/2024]
Abstract
One's neurobehavioural and mental health are built during the exact and complex process of brain development. It is thought that fetal development is where neuropsychiatric disorders first emerged. Behavioural patterns can change as a result of neuropsychiatric illnesses. The incidence is rising quickly; nevertheless, providing exceptional care remains a significant challenge for families and healthcare systems. It has been demonstrated that one of the main factors causing the transmission of these diseases is maternal exposure. Through physiologic pathways, maternal health and intrauterine exposures can affect brain development. Our attention has been focused on epigenetic factors, particularly in the gestational environment, which may be responsible for human neurodegenerative diseases since our main mental development occurs during the nine months of intrauterine life. After thoroughly searching numerous databases, this study examined the effect of fat-soluble vitamins, water-soluble vitamins, and minerals and their maternal-level effect on brain development.
Collapse
Affiliation(s)
| | - Ava Panahi-Azar
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | | | - Reza Morovatshoar
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mahdieh Mirzadeh
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Ali Salimi Asl
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Misa Naghdipour Mirsadeghi
- Department of Gynecology, School of Medicine, Reproductive Health Research Center, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | | |
Collapse
|
7
|
Reid BM. Early life stress and iron metabolism in developmental psychoneuroimmunology. Brain Behav Immun Health 2024; 40:100824. [PMID: 39161875 PMCID: PMC11331713 DOI: 10.1016/j.bbih.2024.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
An estimated 250 million children face adverse health outcomes from early life exposure to severe or chronic social, economic, and nutritional adversity, highlighting/emphasizing the pressing concern about the link between ELS and long-term implications on mental and physical health. There is significant overlap between populations experiencing high levels of chronic stress and those experiencing iron deficiency, spotlighting the potential role of iron as a key mediator in this association. Iron, an essential micronutrient for brain development and immune function, is often depleted in stress conditions. Iron deficiency among the most common nutrient deficiencies in the world. Fetal and infant iron status may thus serve as a crucial intermediary between early chronic psychological stress and subsequent immune system changes to impact neurodevelopment. The review presents a hypothesized pathway between early life stress (ELS), iron deficiency, and neurodevelopment through the hypothalamic-pituitary-adrenocortical (HPA) axis and the IL-6-hepcidin axis. This hypothesis is derived from (1) evidence that stress impacts iron status (2) long-term neurodevelopmental outcomes that are shared by ELS and iron deficiency exposure, and (3) possible mechanisms for how iron may mediate the relation between ELS and iron deficiency through alterations in the developing immune system. The article concludes by proposing future research directions, emphasizing the need for rigorous studies to elucidate how stress and iron metabolism interact to modify the developing immune system. Understanding these mechanisms could open new avenues for improving human health and neurodevelopment for women and children globally, making it a timely and vital area of study in psychoneuroimmunology research.
Collapse
Affiliation(s)
- Brie M. Reid
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, USA
- Center for Behavioral and Preventive Medicine, The Miriam Hospital, USA
- Department of Psychology, Department of Health Sciences, Northeastern University, USA
| |
Collapse
|
8
|
Hao X, Guo Y, Lu J, Zhu L, Yan S, Tao F, Huang K. Sex-specific association between maternal mild anemia and children's behavioral development: a birth cohort study. Eur Child Adolesc Psychiatry 2024; 33:3583-3592. [PMID: 38517534 DOI: 10.1007/s00787-024-02411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
There has been limited research on maternal anemia affecting children's behavioral development, with a lack of studies focusing on sex differences in this association. Based on the Ma'anshan Birth Cohort, 2132 mother-child pairs were included. Maternal anemia was evaluated based on the hemoglobin concentration and children's behavioral development was assessed by Achenbach Child Behavior Checklist 1.5-5. Binary logistic regression models indicated that compared with children born of mothers without anemia throughout pregnancy, maternal mild anemia during pregnancy or only anemia in the 3rd trimester was associated with increased risks of aggressive behaviors in boys. Maternal mild anemia only in the 2nd trimester was associated with increased risks of attention problems in boys. In girls, maternal mild anemia during pregnancy was associated with increased risks of withdrawn, internalizing problems and total problems. Girls born of mothers with mild anemia only in the 2nd trimester had higher risks of total problems. Maternal mild anemia in both 2nd and 3rd trimesters was associated with increased risks of internalizing problems in girls. Our study identified sex-specific effects of maternal mild anemia during pregnancy on children's behavioral development problems.
Collapse
Affiliation(s)
- Xuemei Hao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yufan Guo
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jingru Lu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Linlin Zhu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Center, Ma'anshan, China
| | - Fangbiao Tao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
9
|
Parenti M, Slupsky CM. Disrupted Prenatal Metabolism May Explain the Etiology of Suboptimal Neurodevelopment: A Focus on Phthalates and Micronutrients and their Relationship to Autism Spectrum Disorder. Adv Nutr 2024; 15:100279. [PMID: 39059765 PMCID: PMC11375317 DOI: 10.1016/j.advnut.2024.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Pregnancy is a time of high metabolic coordination, as maternal metabolism adapts to support the growing fetus. Many of these changes are coordinated by the placenta, a critical fetal endocrine organ and the site of maternal-fetal crosstalk. Dysregulation in maternal and placental metabolism during pregnancy has been linked to adverse outcomes, including altered neurodevelopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder linked to metabolic alterations in both children and their mothers. Prenatal environmental exposures have been linked to risk of ASD through dysregulated maternal, placental, and fetal metabolism. In this review, we focus on recent studies investigating the associations between prenatal metabolism in the maternal-placental-fetal unit and the impact of prenatal environmental exposures to phthalates and micronutrients on ASD risk. By identifying the mechanisms through which phthalates and other ubiquitous endocrine disrupting chemicals influence development, and how nutritional interventions can impact those mechanisms, we can identify promising ways to prevent suboptimal neurodevelopment.
Collapse
Affiliation(s)
- Mariana Parenti
- Department of Nutrition, University of California, Davis, CA, United States
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, United States; Department of Food Science and Technology, University of California, Davis, CA, United States.
| |
Collapse
|
10
|
Mlinarič M, Jekovec Vrhovšek M, Neubauer D, France Štiglic A, Osredkar J. Association between Autism Spectrum Disorder, Trace Elements, and Intracranial Fluid Spaces. Int J Mol Sci 2024; 25:8050. [PMID: 39125639 PMCID: PMC11311321 DOI: 10.3390/ijms25158050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
(1) Autism spectrum disorder (ASD) belongs to the group of complex developmental disorders. Novel studies have suggested that genetic and environmental factors equally affect the risk of ASD. Identification of environmental factors involved in the development of ASD is therefore crucial for a better understanding of its etiology. Whether there is a causal link between trace elements, brain magnetic resonance imaging (MRI), and ASD remains a matter of debate and requires further studies. (2) In the prospective part of the study, we included 194 children, including an age-matched control group; in the retrospective study, 28 children with available MRI imaging were included. All children had urine analysis of trace elements performed. In those with available brain MRI, linear indexes for the ventricular volumes were measured and calculated. (3) We found the highest vanadium, rubidium, thallium, and silver levels in children with ASD. These elements also correlated with the estimated ventricular volume based on MRI indexes in children with ASD in the subanalysis. However, the severity of the deficits did not correlate with brain MRI indexes of our elements, except negatively with magnesium. (4) Trace elements have an impact on children with ASD, but further multi-centric studies are needed to explain the pathophysiological mechanisms.
Collapse
Affiliation(s)
- Matej Mlinarič
- Department of Endocrinology, Diabetes and Metabolic Diseases, Division of Paediatrics University Medical Centre Ljubljana, Zaloška c. 2, 1000 Ljubljana, Slovenia
| | - Maja Jekovec Vrhovšek
- Department of Child, Adolescent and Developmental Neurology, Division of Paediatrics University Medical Centre Ljubljana, Zaloška c. 2, 1000 Ljubljana, Slovenia
| | - David Neubauer
- Department of Child, Adolescent and Developmental Neurology, University Medical Centre Ljubljana, Bohoričeva 20, 1000 Ljubljana, Slovenia
| | - Alenka France Štiglic
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Joško Osredkar
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
King C, Plakke B. Maternal choline supplementation in neurodevelopmental disorders: mechanistic insights from animal models and future directions. Nutr Neurosci 2024:1-20. [PMID: 39046330 DOI: 10.1080/1028415x.2024.2377084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVES To synthesize evidence from animal models of neurodevelopmental disorders (NDD) using maternal choline supplementation, to characterize current knowledge on the mechanisms of choline's protective effects against NDD, and to identify gaps in knowledge for future study. METHODS A literature review was conducted in PubMed to identify studies using prenatal choline supplementation interventions in rodent models of neurodevelopmental disorders. 24 studies were identified, and behavioral and biological findings were extracted from each. Studies examining both genetic and environmental risk factors were included. RESULTS Maternal choline supplementation during gestation is protective against both genetic and environmental NDD risk factors. Maternal choline supplementation improves both cognitive and affective outcomes throughout the lifespan in NDD models. Prenatal choline improved these outcomes through its participation in processes like neurogenesis, epigenetic regulation, and anti-inflammatory signaling. DISCUSSION Maternal choline supplementation improves behavioral and neurobiological outcomes in animal models of NDD, paralleling findings in humans. Animal models provide a unique opportunity to study the mechanisms by which gestational choline improves neurodevelopmental outcomes. This is especially important since nearly 90% of pregnant people in the United States are deficient in choline intake. However, much is still unknown about the mechanisms through which choline and its derivatives act. Further research into this topic, especially mechanistic studies in animal models, is critical to modernize maternal choline intake guidelines and to develop interventions to increase maternal choline intake in vulnerable populations.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
12
|
Friel C, Leyland AH, Anderson JJ, Havdahl A, Brantsæter AL, Dundas R. Healthy Prenatal Dietary Pattern and Offspring Autism. JAMA Netw Open 2024; 7:e2422815. [PMID: 39023891 PMCID: PMC11258593 DOI: 10.1001/jamanetworkopen.2024.22815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/14/2024] [Indexed: 07/20/2024] Open
Abstract
Importance Prenatal diet may be causally related to autism; however, findings are inconsistent, with a limited body of research based on small sample sizes and retrospective study designs. Objective To investigate the associations of prenatal dietary patterns with autism diagnosis and autism-associated traits in 2 large prospective cohorts, the Norwegian Mother, Father, and Child Cohort Study (MoBa), and the Avon Longitudinal Study of Parents and Children (ALSPAC). Design, Setting, and Participants This cohort study used data from MoBa and ALSPAC birth cohort studies conducted across Norway and in the Southwest of England, respectively. Participants were people with singleton pregnancies with self-reported food frequency questionnaire responses. MoBa recruited between 2002 and 2008, and ALSPAC recruited between 1990 and 1992, and children were followed-up until age 8 years or older. Recruitment rates were 41% (95 200 of 277 702 eligible pregnancies) in MoBa and 72% (14 541 of 20 248 eligible pregnancies) in ALSPAC. Data analysis occurred February 1, 2022, to August 1, 2023. Exposure A healthy prenatal dietary pattern was derived using factor analysis and modeled as low, medium, and high adherence. Main Outcomes and Measures In MoBa, the offspring outcomes were autism diagnosis and elevated social communication questionnaire score at ages 3 years and 8 years, with further analysis of the social communication difficulties and restrictive and repetitive behaviors subdomains. In ALSPAC, offspring outcomes were elevated social communication difficulties checklist score at age 8 years. Odds ratios (ORs) were estimated using generalized nonlinear models. Results MoBa included 84 548 pregnancies (mean [SD] age, 30.2 [4.6] years; 43 277 [51.2%] male offspring) and ALSPAC had 11 760 pregnancies (mean [SD] age, 27.9 [4.7] years; 6034 [51.3%] male offspring). In the final adjusted models, high adherence to a healthy dietary pattern, compared with low adherence, was associated with reduced odds of autism diagnosis (OR, 0.78; 95% CI, 0.66-0.92) and social communication difficulties at age 3 years in MoBa (OR 0.76, 95% CI, 0.70-0.82) and age 8 years in ALSPAC (OR, 0.74; 95% CI, 0.55-0.98). There was no consistent evidence of association with the other outcomes. Conclusions and Relevance In this cohort study of mother-child dyads, adherence to a healthy prenatal dietary pattern was associated with a lower odds of autism diagnosis and social communication difficulties but not restrictive and repetitive behaviors.
Collapse
Affiliation(s)
- Catherine Friel
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, Scotland
| | - Alastair H. Leyland
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, Scotland
| | - Jana J. Anderson
- Public Health Research Group, School of Health & Wellbeing, University of Glasgow, Glasgow, Scotland
| | - Alexandra Havdahl
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Psychology, Promenta Research Center, University of Oslo, Oslo, Norway
| | | | - Ruth Dundas
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
13
|
Schmidt RJ, Goodrich AJ, Delwiche L, Hansen RL, Simpson CL, Tancredi D, Volk HE. Newborn Dried Blood Spot Folate in Relation to Maternal Self-reported Folic Acid Intake, Autism Spectrum Disorder, and Developmental Delay. Epidemiology 2024; 35:527-541. [PMID: 38912713 DOI: 10.1097/ede.0000000000001750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
BACKGROUND Maternal folic acid intake has been associated with decreased risk for neurodevelopmental disorders including autism spectrum disorder (ASD). Genetic differences in folate metabolism could explain some inconsistencies. To our knowledge, newborn folate concentrations remain unexamined. METHODS We measured folate in archived newborn dried blood spots of children from the CHARGE (Childhood Autism Risks from Genetics and the Environment) case-control study who were clinically confirmed at 24-60 months to have ASD (n = 380), developmental delay (n = 128), or typical development (n = 247). We quantified monthly folic acid intake from maternally-reported supplements and cereals consumed during pregnancy and 3 months prior. We assessed associations of newborn folate with maternal folic acid intake and with ASD or developmental delay using regression. We stratified estimates across maternal and child MTHFR genotypes. RESULTS Among typically developing children, maternal folic acid intake in prepregnancy and each pregnancy month and prepregnancy prenatal vitamin intake were positively associated with newborn folate. Among children with ASD, prenatal vitamin intake in pregnancy months 2-9 was positively associated with newborn folate. Among children with developmental delay, maternal folic acid and prenatal vitamins during the first pregnancy month were positively associated with neonatal folate. Associations differed by MTHFR genotype. Overall, neonatal folate was not associated with ASD or developmental delay, though we observed associations with ASD in children with the MTHFR 677 TT genotype (odds ratio: 1.76, 95% CI = 1.19, 2.62; P for interaction = 0.08). CONCLUSION Maternal prenatal folic acid intake was associated with neonatal folate at different times across neurodevelopmental groups. Neonatal folate was not associated with reduced ASD risk. MTHFR genotypes modulated these relationships.
Collapse
Affiliation(s)
- Rebecca J Schmidt
- From the Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA
| | - Amanda J Goodrich
- From the Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA
| | - Lora Delwiche
- From the Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA
| | - Robin L Hansen
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA
| | - Claire L Simpson
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN
| | - Daniel Tancredi
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA
| | - Heather E Volk
- Departments of Mental Health and Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
14
|
O'Toole FE, Hokey E, McAuliffe FM, Walsh JM. The Experience of Anaemia and Ingesting Oral Iron Supplementation in Pregnancy: A Qualitative Study. Eur J Obstet Gynecol Reprod Biol 2024; 297:111-119. [PMID: 38608353 DOI: 10.1016/j.ejogrb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/03/2024] [Indexed: 04/14/2024]
Abstract
INTRODUCTION The objective of this study was to understand the experience of iron deficiency anaemia requiring oral iron in pregnancy and the factors affecting compliance with oral iron supplementation. Participants' understanding regarding the possible consequences of anaemia in pregnancy was also explored. Feedback on a proposed randomised controlled trial of daily versus alternate day oral iron in pregnancy was sought. MATERIALS & METHODS Following ethical approval, fourteen semi-structured one-to-one interviews were carried out using an interview tool with open-ended questions. Recruitment was carried out through social media and from an antenatal out-patient setting. Interviews were audio-recorded, transcribed and analysed thematically. RESULTS Fatigue emerged as a predominant and troubling symptom. Awareness was often highlighted through friends/family and from healthcare professionals, particularly in first pregnancies. Knowledge surrounding the potential short-term and long-term adverse consequences of untreated anaemia however was limited. Gastro-intestinal side-effects, a previous experience of poor tolerance and forgetfulness all negatively impacted compliance with oral iron supplementation in pregnancy. Routine, a perceived improvement in fatigue with supplementation and reduced dose frequency recurred as themes which positively affected compliance. Pregnancy as a motivating factor recurred as a theme in analysis. The role of diet was felt to be important. Knowledge of iron-rich foods and absorption aids and inhibitors was good, but practice on optimal ingestion of oral iron supplementation varied. Feedback on trial acceptability was positive with the benefit of extra supportive care noted. Incorporating study visits with routine care was advised in view of time constraints. This area of research was perceived as important. CONCLUSION In order to successfully reduce the rates of iron deficiency anaemia in pregnancy, it is crucial that all factors affecting compliance with oral iron are considered. Providing women with the important information on the possible consequences of sub optimally treated anaemia may help to improve this public health issue.
Collapse
Affiliation(s)
- F E O'Toole
- UCD Perinatal Research Centre, University College Dublin, National Maternity Hospital, Dublin, Ireland; National Maternity Hospital, Dublin, Ireland.
| | - E Hokey
- UCD Perinatal Research Centre, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - F M McAuliffe
- UCD Perinatal Research Centre, University College Dublin, National Maternity Hospital, Dublin, Ireland; National Maternity Hospital, Dublin, Ireland
| | - J M Walsh
- UCD Perinatal Research Centre, University College Dublin, National Maternity Hospital, Dublin, Ireland; National Maternity Hospital, Dublin, Ireland
| |
Collapse
|
15
|
Liu SX, Ramakrishnan A, Shen L, Gewirtz JC, Georgieff MK, Tran PV. Chromatin accessibility and H3K9me3 landscapes reveal long-term epigenetic effects of fetal-neonatal iron deficiency in rat hippocampus. BMC Genomics 2024; 25:301. [PMID: 38515015 PMCID: PMC10956188 DOI: 10.1186/s12864-024-10230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.
Collapse
Affiliation(s)
- Shirelle X Liu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Li Shen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
16
|
Gillespie B, Houghton MJ, Ganio K, McDevitt CA, Bennett D, Dunn A, Raju S, Schroeder A, Hill RA, Cardoso BR. Maternal selenium dietary supplementation alters sociability and reinforcement learning deficits induced by in utero exposure to maternal immune activation in mice. Brain Behav Immun 2024; 116:349-361. [PMID: 38142918 DOI: 10.1016/j.bbi.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Maternal immune activation (MIA) during pregnancy increases the risk for the unborn foetus to develop neurodevelopmental conditions such as autism spectrum disorder and schizophrenia later in life. MIA mouse models recapitulate behavioural and biological phenotypes relevant to both conditions, and are valuable models to test novel treatment approaches. Selenium (Se) has potent anti-inflammatory properties suggesting it may be an effective prophylactic treatment against MIA. The aim of this study was to determine if Se supplementation during pregnancy can prevent adverse effects of MIA on offspring brain and behaviour in a mouse model. Selenium was administered via drinking water (1.5 ppm) to pregnant dams from gestational day (GD) 9 to birth, and MIA was induced at GD17 using polyinosinic:polycytidylic acid (poly-I:C, 20 mg/kg via intraperitoneal injection). Foetal placenta and brain cytokine levels were assessed using a Luminex assay and brain elemental nutrients assessed using inductively coupled plasma- mass spectrometry. Adult offspring were behaviourally assessed using a reinforcement learning paradigm, the three-chamber sociability test and the open field test. MIA elevated placental IL-1β and IL-17, and Se supplementation successfully prevented this elevation. MIA caused an increase in foetal brain calcium, which was prevented by Se supplement. MIA caused in offspring a female-specific reduction in sociability, which was recovered by Se, and a male-specific reduction in social memory, which was not recovered by Se. Exposure to poly-I:C or selenium, but not both, reduced performance in the reinforcement learning task. Computational modelling indicated that this was predominantly due to increased exploratory behaviour, rather than reduced rate of learning the location of the food reward. This study demonstrates that while Se may be beneficial in ameliorating sociability deficits caused by MIA, it may have negative effects in other behavioural domains. Caution in the use of Se supplementation during pregnancy is therefore warranted.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Clayton, VIC 3168, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Daniel Bennett
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Ariel Dunn
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Sharvada Raju
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Anna Schroeder
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia.
| | - Rachel A Hill
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia.
| | - Barbara R Cardoso
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
17
|
Huang W, Liu Z, Li Z, Meng S, Huang Y, Gao M, Zhong N, Zeng S, Wang L, Zhao W. Identification of Immune Infiltration and Iron Metabolism-Related Subgroups in Autism Spectrum Disorder. J Mol Neurosci 2024; 74:12. [PMID: 38236354 DOI: 10.1007/s12031-023-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/01/2023] [Indexed: 01/19/2024]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with a broad spectrum of symptoms and prognoses. Effective therapy requires understanding this variability. ASD children's cognitive and immunological development may depend on iron homoeostasis. This study employs a machine learning model that focuses on iron metabolism hub genes to identify ASD subgroups and describe immune infiltration patterns. A total of 97 control and 148 ASD samples were obtained from the GEO database. Differentially expressed genes (DEGs) and an iron metabolism gene collection achieved the intersection of 25 genes. Unsupervised cluster analysis determined molecular subgroups in individuals with ASD based on 25 genes related to iron metabolism. We assessed gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, gene set variation analysis (GSVA), and immune infiltration analysis to compare iron metabolism subtype effects. We employed machine learning to identify subtype-predicting hub genes and utilized both training and validation sets to assess gene subtype prediction accuracy. ASD can be classified into two iron-metabolizing molecular clusters. Metabolic enrichment pathways differed between clusters. Immune infiltration showed that clusters differed immunologically. Cluster 2 had better immunological scores and more immune cells, indicating a stronger immune response. Machine learning screening identified SELENBP1 and CAND1 as important genes in ASD's iron metabolism signaling pathway. These genes express in the brain and have AUC values over 0.8, implying significant predictive power. The present study introduces iron metabolism signaling pathway indicators to predict ASD subtypes. ASD is linked to immune cell infiltration and iron metabolism disorders.
Collapse
Affiliation(s)
- Wenyan Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510080, Guangdong, China
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Zhenni Liu
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Ziling Li
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Si Meng
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Yuhang Huang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Min Gao
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Ning Zhong
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Sujuan Zeng
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Lijing Wang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
18
|
Mohan K, Omar BJ, Chacham S, Bharti A. Perinatal Exposure to Trace Elements: The Dubious Culprit of Autistic Spectrum Disorder in Children. Curr Pediatr Rev 2024; 21:18-28. [PMID: 37937576 DOI: 10.2174/0115733963251295231031102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023]
Abstract
There is evidence that few trace elements in the environment work as hazardous materials in terms of their exposure in the perinatal period, causing autistic spectrum disorder (ASD) in children, and avoiding these exposures in the environment can reduce the number of new cases. This perspective study provides preliminary evidence to consider a few trace elements as culprits for ASD. More studies with larger cohorts are needed, but meanwhile, as per available evidence, exposure to these hazardous materials must be warranted during pregnancy and early stages of life.
Collapse
Affiliation(s)
- Kriti Mohan
- Department of Pediatrics, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Swathi Chacham
- Department of Pediatrics, All India Institute of Medical Sciences, Bibinagar, India
| | - Ajay Bharti
- Department of Orthopedics, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
19
|
Rai S, Keservani RK, Kumar P, Nikam VK, Kachave RN, Kumar Y, Kesharwani RK. Importance of functional foods in the management of autism. NUTRACEUTICAL FRUITS AND FOODS FOR NEURODEGENERATIVE DISORDERS 2024:151-171. [DOI: 10.1016/b978-0-443-18951-7.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Iglesias‐Vázquez L, Canals J, Hernández‐Martínez C, Voltas N, Arija V. Prenatal iron supplementation adjusted to maternal iron stores reduces behavioural problems in 4-year-old children. MATERNAL & CHILD NUTRITION 2024; 20:e13595. [PMID: 38041537 PMCID: PMC10750013 DOI: 10.1111/mcn.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Prenatal iron supplementation improves children's health and cognitive performance, but few studies explore behavioural development. This study assessed the effects of adjusting prenatal iron supplementation to maternal iron stores during early pregnancy on children's behavioural problems. Randomized controlled trial conducted in Tarragona (Spain) involving 230 nonanaemic pregnant women and their children after a 4-year follow-up. Based on haemoglobin (Hb) levels before gestational week (GW) 12, women receive different iron doses: those with Hb = 110-130 g/L were randomized to receive 80 or 40 mg/day and those with Hb > 130 g/L were randomized to receive 20 or 40 mg/day. Maternal iron stores at GW12 were classified using serum ferritin (SF) as low (SF < 15 µg/L), normal (SF = 15-65 µg/L), and normal-high (SF > 65 µg/L). Children's behaviour was assessed by parents using the Child Behaviour Checklist for ages 1.5-5 years and the Behaviour Rating Inventory of Executive Function-Preschool Version, and by teachers using the Teacher's Report Form for ages 1.5-5 years. Multivariable regression models were performed. Taking 80 mg/day of iron improved child behaviour when women had low iron stores but worsened it when mothers had normal-high iron stores, except for depressive and attention/hyperactivity problems. Taking 20 mg/day of iron improved behaviour only in those children whose mothers had SF > 65 µg/L in early pregnancy. Additionally, executive functioning improved at high doses of prenatal iron when maternal baseline SF < 15 µg/L. Adjusting prenatal iron supplementation to both maternal baseline Hb levels and iron stores reduces behavioural problems in 4-year-old children.
Collapse
Affiliation(s)
- Lucía Iglesias‐Vázquez
- Department of Basic Medical Sciences, Nutrition and Mental Health (NUTRISAM) Research GroupUniversitat Rovira I VirgiliReusSpain
- Institut d'Investigació Sanitaria Pere Virgili (IISPV)ReusSpain
| | - Josefa Canals
- Department of Basic Medical Sciences, Nutrition and Mental Health (NUTRISAM) Research GroupUniversitat Rovira I VirgiliReusSpain
- Department of Psychology, Research Centre for Behavioral Assessment (CRAMC), Faculty of Education Sciences and PsychologyUniversitat Rovira I VirgiliTarragonaSpain
| | - Carmen Hernández‐Martínez
- Department of Basic Medical Sciences, Nutrition and Mental Health (NUTRISAM) Research GroupUniversitat Rovira I VirgiliReusSpain
- Department of Psychology, Research Centre for Behavioral Assessment (CRAMC), Faculty of Education Sciences and PsychologyUniversitat Rovira I VirgiliTarragonaSpain
| | - Núria Voltas
- Department of Basic Medical Sciences, Nutrition and Mental Health (NUTRISAM) Research GroupUniversitat Rovira I VirgiliReusSpain
- Department of Psychology, Research Centre for Behavioral Assessment (CRAMC), Faculty of Education Sciences and PsychologyUniversitat Rovira I VirgiliTarragonaSpain
- Department of Psychology, Faculty of Education Sciences and Psychology, Serra Húnter FellowUniversitat Rovira I VirgiliTarragonaSpain
| | - Victoria Arija
- Department of Basic Medical Sciences, Nutrition and Mental Health (NUTRISAM) Research GroupUniversitat Rovira I VirgiliReusSpain
- Institut d'Investigació Sanitaria Pere Virgili (IISPV)ReusSpain
- Collaborative Research Group on Lifestyles, Nutrition, and Smoking (CENIT), Tarragona‐Reus Research Support UnitIDIAP Jordi GolTarragonaSpain
| |
Collapse
|
21
|
de Souza Lima B, Sanches APV, Ferreira MS, de Oliveira JL, Cleal JK, Ignacio-Souza L. Maternal-placental axis and its impact on fetal outcomes, metabolism, and development. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166855. [PMID: 37633470 DOI: 10.1016/j.bbadis.2023.166855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/23/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Maternal obesity could impact offspring's health. During "critical period" such as pregnancy insults have a significant role in developing chronic diseases later in life. Literature has shown that diet can play a major role in essential metabolic and development processes on fetal outcomes. Moreover, the placenta, an essential organ developed in pregnancy, seems to have its functions impaired based on pre-gestational and gestational nutritional status. Specifically, a high-fat diet has been shown as a potential nutritional insult that also affects the maternal-placental axis, which is involved in offspring development and outcome. Moreover, some classes of nutrients are associated with pregnancy complications such as reduced intake of micronutrients and diabetes, preeclampsia, and preterm delivery. Thus, we will summarize the current literature on maternal environment factors that impacts the placental development and consequently the fetal an offspring health, or the maternal-placental axis, and this on fetal outcomes, metabolism, and development.
Collapse
Affiliation(s)
- Bruna de Souza Lima
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil.
| | - Ana Paula Varela Sanches
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil
| | - Maíra Schuchter Ferreira
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil
| | - Josilene Lopes de Oliveira
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil
| | - Jane K Cleal
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Letícia Ignacio-Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil.
| |
Collapse
|
22
|
Mallick R, Duttaroy AK. Epigenetic modification impacting brain functions: Effects of physical activity, micronutrients, caffeine, toxins, and addictive substances. Neurochem Int 2023; 171:105627. [PMID: 37827244 DOI: 10.1016/j.neuint.2023.105627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Changes in gene expression are involved in many brain functions. Epigenetic processes modulate gene expression by histone modification and DNA methylation or RNA-mediated processes, which is important for brain function. Consequently, epigenetic changes are also a part of brain diseases such as mental illness and addiction. Understanding the role of different factors on the brain epigenome may help us understand the function of the brain. This review discussed the effects of caffeine, lipids, addictive substances, physical activity, and pollutants on the epigenetic changes in the brain and their modulatory effects on brain function.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
23
|
Gundacker A, Glat M, Wais J, Stoehrmann P, Pollak A, Pollak DD. Early-life iron deficiency persistently disrupts affective behaviour in mice. Ann Med 2023; 55:1265-1277. [PMID: 37096819 PMCID: PMC10132221 DOI: 10.1080/07853890.2023.2191003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND/OBJECTIVE Iron deficiency (ID) is the most common nutrient deficiency, affecting two billion people worldwide, including about 30% of pregnant women. During gestation, the brain is particularly vulnerable to environmental insults, which can irrevocably impair critical developmental processes. Consequently, detrimental consequences of early-life ID for offspring brain structure and function have been described. Although early life ID has been associated with an increased long-term risk for several neuropsychiatric disorders, the effect on depressive disorders has remained unresolved. MATERIALS AND METHODS A mouse model of moderate foetal and neonatal ID was established by keeping pregnant dams on an iron-deficient diet throughout gestation until postnatal day 10. The ensuing significant decrease of iron content in the offspring brain, as well as the impact on maternal behaviour and offspring vocalization was determined in the first postnatal week. The consequences of early-life ID for depression- and anxiety-like behaviour in adulthood were revealed employing dedicated behavioural assays. miRNA sequencing of hippocampal tissue of offspring revealed specific miRNAs signatures accompanying the behavioural deficits of foetal and neonatal ID in the adult brain. RESULTS Mothers receiving iron-deficient food during pregnancy and lactation exhibited significantly less licking and grooming behaviour, while active pup retrieval and pup ultrasonic vocalizations were unaltered. Adult offspring with a history of foetal and neonatal ID showed an increase in depression- and anxiety-like behaviour, paralleled by a deranged miRNA expression profile in the hippocampus, specifically levels of miR200a and miR200b. CONCLUSION ID during the foetal and neonatal periods has life-long consequences for affective behaviour in mice and leaves a specific and persistent mark on the expression of miRNAs in the brain. Foetal and neonatal ID needs to be further considered as risk factor for the development of depression and anxiety disorders later in life.Key MessagesMarginal reduction of gestational alimentary iron intake decreases brain iron content of the juvenile offspring.Early-life ID is associated with increased depression- and anxiety-like behaviour in adulthood.Reduction of maternal alimentary iron intake during pregnancy is reflected in an alteration of miRNA signatures in the adult offspring brain.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Micaela Glat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jonathan Wais
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Wu Q, Ren Q, Meng J, Gao WJ, Chang YZ. Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel) 2023; 12:1997. [PMID: 38001850 PMCID: PMC10669508 DOI: 10.3390/antiox12111997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Qiuyang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Jingsi Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| |
Collapse
|
25
|
Georgieff MK. Maternal gestational iron status and infant haematological and neurodevelopmental outcomes. BJOG 2023; 130 Suppl 3:92-98. [PMID: 37530464 DOI: 10.1111/1471-0528.17612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023]
Abstract
Prevention of iron deficiency (ID), the most common micronutrient deficiency in infants and children, begins prenatally by ensuring adequate fetal loading. Adequate intrauterine iron status is crucial for normal fetal brain development, postnatal brain performance and prevention of early postnatal iron deficiency, particularly in infants fed exclusively human milk. Adequate fetal loading may be achieved in some cases through adequate maternal iron levels prior to pregnancy and oral iron supplementation during pregnancy. However, because so many women are iron-deficient leading up to pregnancy, coupled with the negative iron balance induced by pregnancy, a large number of women remain iron-deficient during pregnancy. More consistent iron-specific early screening and more effective iron delivery approaches are needed to solve this global problem.
Collapse
Affiliation(s)
- Michael K Georgieff
- Division of Neonatology, Departments of Pediatrics, Developmental Psychology and Obstetrics/Gynecology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
26
|
Rudy MJ, Salois G, Cubello J, Newell R, Mayer-Proschel M. Gestational iron deficiency affects the ratio between interneuron subtypes in the postnatal cerebral cortex in mice. Development 2023; 150:dev201068. [PMID: 36805633 PMCID: PMC10110419 DOI: 10.1242/dev.201068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Gestational iron deficiency (gID) is highly prevalent and associated with an increased risk of intellectual and developmental disabilities in affected individuals that are often defined by a disrupted balance of excitation and inhibition (E/I) in the brain. Using a nutritional mouse model of gID, we previously demonstrated a shift in the E/I balance towards increased inhibition in the brains of gID offspring that was refractory to postnatal iron supplementation. We thus tested whether gID affects embryonic progenitor cells that are fated towards inhibitory interneurons. We quantified relevant cell populations during embryonic inhibitory neuron specification and found an increase in the proliferation of Nkx2.1+ interneuron progenitors in the embryonic medial ganglionic eminence at E14 that was associated with increased Shh signaling in gID animals at E12. When we quantified the number of mature inhibitory interneurons that are known to originate from the MGE, we found a persistent disruption of differentiated interneuron subtypes in early adulthood. Our data identify a cellular target that links gID with a disruption of cortical interneurons which play a major role in the establishment of the E/I balance.
Collapse
Affiliation(s)
- Michael J. Rudy
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Colorado Denver – Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045, USA
| | - Garrick Salois
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Janine Cubello
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Robert Newell
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Margot Mayer-Proschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
27
|
Reid BM, Georgieff MK. The Interaction between Psychological Stress and Iron Status on Early-Life Neurodevelopmental Outcomes. Nutrients 2023; 15:3798. [PMID: 37686831 PMCID: PMC10490173 DOI: 10.3390/nu15173798] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
This review presents evidence from animal and human studies demonstrating the possible connection and significant impact of poor iron status and psychological distress on neurocognitive development during pregnancy and the neonatal period, with implications for long-term cognition. Stress and iron deficiency are independently prevalent and thus are frequently comorbid. While iron deficiency and early-life stress independently contribute to long-term neurodevelopmental alterations, their combined effects remain underexplored. Psychological stress responses may engage similar pathways as infectious stress, which alters fundamental iron metabolism processes and cause functional tissue-level iron deficiency. Psychological stress, analogous to but to a lesser degree than infectious stress, activates the hypothalamic-pituitary-adrenocortical (HPA) axis and increases proinflammatory cytokines. Chronic or severe stress is associated with dysregulated HPA axis functioning and a proinflammatory state. This dysregulation may disrupt iron absorption and utilization, likely mediated by the IL-6 activation of hepcidin, a molecule that impedes iron absorption and redistributes total body iron. This narrative review highlights suggestive studies investigating the relationship between psychological stress and iron status and outlines hypothesized mechanistic pathways connecting psychological stress exposure and iron metabolism. We examine findings regarding the overlapping impacts of early stress exposure to iron deficiency and children's neurocognitive development. We propose that studying the influence of psychological stress on iron metabolism is crucial for comprehending neurocognitive development in children exposed to prenatal and early postnatal stressors and for children at risk of early iron insufficiency. We recommend future directions for dual-exposure studies exploring iron as a potential mediating pathway between early stress and offspring neurodevelopment, offering opportunities for targeted interventions.
Collapse
Affiliation(s)
- Brie M. Reid
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Center for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, RI 02906, USA
| | - Michael K. Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| |
Collapse
|
28
|
Lyall K, Rando J, Wang S, Hamra GB, Chavarro J, Weisskopf MG, Croen LA, Fallin MD, Hertz-Picciotto I, Volk HE, Schmidt RJ, Newschaffer CJ. Examining Prenatal Dietary Factors in Association with Child Autism-Related Traits Using a Bayesian Mixture Approach: Results from 2 United States Cohorts. Curr Dev Nutr 2023; 7:101978. [PMID: 37600935 PMCID: PMC10432916 DOI: 10.1016/j.cdnut.2023.101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Background Prior work has suggested relationships between prenatal intake of certain nutrients and autism. Objectives We examined a broad set of prenatal nutrients and foods using a Bayesian modeling approach. Methods Participants were drawn from the Early Autism Risks Longitudinal Investigation (n = 127), a cohort following women with a child with autism through a subsequent pregnancy. Participants were also drawn from the Nurses' Health Study II (NHSII, n = 713), a cohort of United States female nurses, for comparison analyses. In both studies, information on prospectively reported prenatal diet was drawn from food frequency questionnaires, and child autism-related traits were measured by the Social Responsiveness Scale (SRS). Bayesian kernel machine regression was used to examine the combined effects of several nutrients with neurodevelopmental relevance, including polyunsaturated fatty acids (PUFAs), iron, zinc, vitamin D, folate, and other methyl donors, and separately, key food sources of these, in association with child SRS scores in crude and adjusted models. Results In adjusted analyses, the overall mixture effects of nutrients in Early Autism Risks Longitudinal Investigation and foods in both cohorts on SRS scores were not observed, though there was some suggestion of decreasing SRS scores with increasing overall nutrient mixture in NHSII. No associations were observed with folate within the context of this mixture, but holding other nutrients fixed, n-6 PUFAs were associated with lower SRS scores in NHSII. In both cohorts, lower SRS scores were observed with higher intake of some groupings of vegetables, though for differing types of vegetables across cohorts, and some vegetable groups were associated with higher SRS scores in NHSII. Conclusions Our work extends prior research and suggests the need to further consider prenatal dietary factors from a combined effects perspective. In addition, findings here point to potential differences in nutrient associations based on a family history of autism, which suggests the need to consider gene interactions in future work.
Collapse
Affiliation(s)
- Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Juliette Rando
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Siwen Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jorge Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - M Daniele Fallin
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Craig J. Newschaffer
- College of Health and Human Development, Penn State University, State College, PA, United States
| |
Collapse
|
29
|
Georgieff MK. The importance of iron deficiency in pregnancy on fetal, neonatal, and infant neurodevelopmental outcomes. Int J Gynaecol Obstet 2023; 162 Suppl 2:83-88. [PMID: 37538010 PMCID: PMC10421617 DOI: 10.1002/ijgo.14951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The role of iron in neurodevelopment has long been recognized, and the adverse effects of early-life iron deficiency on brain development and subsequent function across the lifespan continue to be a subject of research. A greater appreciation of the contribution of maternal preconceptional iron status and fetal iron accretion to offspring, postnatal iron status, and brain health across the lifespan has occurred over the past decade. This paradigm shift in thinking links two previously relatively siloed literatures: neonatal iron deficiency and postnatal iron deficiency. The understanding that iron accretion during the fetal period strongly influences postnatal iron balance has led to an appreciation of the importance and value of ensuring proper fetal iron loading. This article reviews the dynamics of fetal iron metabolism, the role of iron in the developing fetal brain, the short- and long-term neurobehavioral consequences of fetal iron underloading, and the potential mechanisms that account for the long-term effects of fetal/neonatal iron deficiency.
Collapse
|
30
|
Senguttuvel P, G P, C J, D SR, CN N, V J, P B, R G, J AK, SV SP, LV SR, AS H, K S, D S, RM S, Govindaraj M. Rice biofortification: breeding and genomic approaches for genetic enhancement of grain zinc and iron contents. FRONTIERS IN PLANT SCIENCE 2023; 14:1138408. [PMID: 37332714 PMCID: PMC10272457 DOI: 10.3389/fpls.2023.1138408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/25/2023] [Indexed: 06/20/2023]
Abstract
Rice is a highly consumed staple cereal cultivated predominantly in Asian countries, which share 90% of global rice production. Rice is a primary calorie provider for more than 3.5 billion people across the world. Preference and consumption of polished rice have increased manifold, which resulted in the loss of inherent nutrition. The prevalence of micronutrient deficiencies (Zn and Fe) are major human health challenges in the 21st century. Biofortification of staples is a sustainable approach to alleviating malnutrition. Globally, significant progress has been made in rice for enhancing grain Zn, Fe, and protein. To date, 37 biofortified Fe, Zn, Protein and Provitamin A rich rice varieties are available for commercial cultivation (16 from India and 21 from the rest of the world; Fe > 10 mg/kg, Zn > 24 mg/kg, protein > 10% in polished rice as India target while Zn > 28 mg/kg in polished rice as international target). However, understanding the micronutrient genetics, mechanisms of uptake, translocation, and bioavailability are the prime areas that need to be strengthened. The successful development of these lines through integrated-genomic technologies can accelerate deployment and scaling in future breeding programs to address the key challenges of malnutrition and hidden hunger.
Collapse
Affiliation(s)
- P. Senguttuvel
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Padmavathi G
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Jasmine C
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
- Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - Sanjeeva Rao D
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Neeraja CN
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Jaldhani V
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Beulah P
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Gobinath R
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Aravind Kumar J
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Sai Prasad SV
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Subba Rao LV
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Hariprasad AS
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Sruthi K
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Shivani D
- Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - Sundaram RM
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Mahalingam Govindaraj
- HarvestPlus, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
31
|
Curtis MA, Dhamsania RK, Branco RC, Guo JD, Creeden J, Neifer KL, Black CA, Winokur EJ, Andari E, Dias BG, Liu RC, Gourley SL, Miller GW, Burkett JP. Developmental pyrethroid exposure causes a neurodevelopmental disorder phenotype in mice. PNAS NEXUS 2023; 2:pgad085. [PMID: 37113978 PMCID: PMC10129348 DOI: 10.1093/pnasnexus/pgad085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/06/2023] [Indexed: 04/29/2023]
Abstract
Neurodevelopmental disorders (NDDs) are a widespread and growing public health challenge, affecting as many as 17% of children in the United States. Recent epidemiological studies have implicated ambient exposure to pyrethroid pesticides during pregnancy in the risk for NDDs in the unborn child. Using a litter-based, independent discovery-replication cohort design, we exposed mouse dams orally during pregnancy and lactation to the Environmental Protection Agency's reference pyrethroid, deltamethrin, at 3 mg/kg, a concentration well below the benchmark dose used for regulatory guidance. The resulting offspring were tested using behavioral and molecular methods targeting behavioral phenotypes relevant to autism and NDD, as well as changes to the striatal dopamine system. Low-dose developmental exposure to the pyrethroid deltamethrin (DPE) decreased pup vocalizations, increased repetitive behaviors, and impaired both fear conditioning and operant conditioning. Compared with control mice, DPE mice had greater total striatal dopamine, dopamine metabolites, and stimulated dopamine release, but no difference in vesicular dopamine capacity or protein markers of dopamine vesicles. Dopamine transporter protein levels were increased in DPE mice, but not temporal dopamine reuptake. Striatal medium spiny neurons showed changes in electrophysiological properties consistent with a compensatory decrease in neuronal excitability. Combined with previous findings, these results implicate DPE as a direct cause of an NDD-relevant behavioral phenotype and striatal dopamine dysfunction in mice and implicate the cytosolic compartment as the location of excess striatal dopamine.
Collapse
Affiliation(s)
- Melissa A Curtis
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, USA
| | - Rohan K Dhamsania
- College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Rachel C Branco
- Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ji-Dong Guo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Justin Creeden
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Kari L Neifer
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, USA
| | - Carlie A Black
- Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Schiemer School of Psychology and Biblical Counseling, Truett McConnell University, Cleveland, GA 30528, USA
| | - Emily J Winokur
- College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Elissar Andari
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Brian G Dias
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
- Division of Endocrinology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA 90027, USA
| | - Robert C Liu
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA
| | - Shannon L Gourley
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Gary W Miller
- Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA 30322, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
32
|
Anna S, Magdalena J. Editorial: Epigenomic contributions to autism spectrum disorders. Front Neurosci 2023; 17:1177378. [PMID: 37144095 PMCID: PMC10151758 DOI: 10.3389/fnins.2023.1177378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Affiliation(s)
- Starnawska Anna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
- *Correspondence: Starnawska Anna
| | - Janecka Magdalena
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
33
|
Chen L, Guo X, Hou C, Tang P, Zhang X, Chong L, Li R. The causal association between iron status and the risk of autism: A Mendelian randomization study. Front Nutr 2022; 9:957600. [PMID: 36407516 PMCID: PMC9669792 DOI: 10.3389/fnut.2022.957600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2023] Open
Abstract
Emerging evidence indicates a connection between serum iron levels and autism, but the underlying causal association is yet unclear. Thus, we performed two-sample Mendelian randomization (MR) analysis to evaluate the causal link between iron status on autism, using genetic instruments (p < 5E-08) strongly associated with iron status (N = 48,972), including serum iron, ferritin, transferrin levels, and transferrin saturation. Summary statistics of autism was obtained from two independent studies conducted by Psychiatric Genomics Consortium (PGC, Ncases = 5,305, Ncontrols = 5,305) and FinnGen Consortium (FC, Round six, Ncases = 344, Ncontrols = 258,095), respectively. Using the inverse-variance weighted (IVW) method, the combined results of PGC and FC demonstrated that genetically determined serum transferrin level was significantly associated with an increased risk of autism [odds ratio (OR) = 1.16, 95% CI: 1.03-1.30, p = 0.013]. There was no significant causal effect of serum iron (OR = 0.99, 95% CI: 0.72-1.37, p = 0.951), ferritin (OR = 0.88, 95% CI: 0.47-1.64, p = 0.676), and transferrin saturation (OR = 0.89, 95% CI: 0.72-1.09, p = 0.252) on autism. No obvious pleiotropy was found in this MR study. Taken together, our findings highlight that elevation of serum transferrin level might be associated with a high risk of autism, suggesting a potential role of iron deficiency in autism development. Future studies are warranted to clarify the underlying mechanism, which will pave a new path for the prevention and treatment of autism.
Collapse
Affiliation(s)
- Li Chen
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, Shaanxi, China
| | - Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chen Hou
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, Shaanxi, China
| | - Peng Tang
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, Shaanxi, China
| | - Xin Zhang
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, Shaanxi, China
| | - Li Chong
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, Shaanxi, China
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
34
|
Early life nutrition and brain development: breakthroughs, challenges and new horizons. Proc Nutr Soc 2022:1-9. [PMID: 36321424 DOI: 10.1017/s0029665122002774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The role of early life nutrition's impact on relevant health outcomes across the lifespan laid the foundation for the field titled the developmental origins of health and disease. Studies in this area initially concentrated on nutrition and the risk of adverse cardio-metabolic and cancer outcomes. More recently the role of nutrition in early brain development and the subsequent influence of later mental health has become more evident. Scientific breakthroughs have elucidated two mechanisms behind long-term nutrient effects on the brain, including the existence of critical periods for certain nutrients during brain development and nutrient-driven epigenetic modifications of chromatin. While multiple nutrients and nutritional conditions have the potential to modify brain development, iron can serve as a paradigm to understand both mechanisms. New horizons in nutritional medicine include leveraging the mechanistic knowledge of nutrient-brain interactions to propose novel nutritional approaches that protect the developing brain through better timing of nutrient delivery and potential reversal of negative epigenetic marks. The main challenge in the field is detecting whether a change in nutritional status truly affects the brain's development and performance in human subjects. To that end, a strong case can be made to develop and utilise bioindicators of a nutrient's effect on the developing brain instead of relying exclusively on biomarkers of the nutrient's status.
Collapse
|
35
|
Banerjee N, Adak P. Birth related parameters are important contributors in autism spectrum disorders. Sci Rep 2022; 12:14277. [PMID: 35996009 PMCID: PMC9395415 DOI: 10.1038/s41598-022-18628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Autism spectrum disorders is a group of childhood onset neurodevelopmental disorders affecting millions of children across the globe. Characterised by age inappropriate lack of reciprocal social interaction, repetitive behaviours and deficits in communication skills, it has been found to have genetic, epigenetic and environmental contributions. In this work, we wanted to identify the effects of birth related parameters on the disease pathogenesis in an exposed population of West Bengal, India. We have considered age of both parents at birth, difference in parental age, familial history of mental illness, delay in developmental-milestones, birth-weight, birth-order, birth-term, mode of delivery and gestational complications as contributors. We found the parental age and their age difference to be the most important contributors towards ASD in this population. Birth order, sex of the probands, complications during gestation, birth weight, family history of mental illness and birth history also contributed to the condition, although to a lesser extent. Since such types of data are lacking in Indian population, this report adds useful information to the relevant field.
Collapse
Affiliation(s)
- Nilanjana Banerjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra Rehabilitation and Research Institute for the Handicapped, 482 Madudah, Plot I-24, Sector J, E.M. Bypass, Kolkata, West Bengal, 700107, India.
| | - Pallabi Adak
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra Rehabilitation and Research Institute for the Handicapped, 482 Madudah, Plot I-24, Sector J, E.M. Bypass, Kolkata, West Bengal, 700107, India
| |
Collapse
|
36
|
Taeubert MJ, de Prado-Bert P, Geurtsen ML, Mancano G, Vermeulen MJ, Reiss IKM, Caramaschi D, Sunyer J, Sharp GC, Julvez J, Muckenthaler MU, Felix JF. Maternal iron status in early pregnancy and DNA methylation in offspring: an epigenome-wide meta-analysis. Clin Epigenetics 2022; 14:59. [PMID: 35505416 PMCID: PMC9066980 DOI: 10.1186/s13148-022-01276-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unbalanced iron homeostasis in pregnancy is associated with an increased risk of adverse birth and childhood health outcomes. DNA methylation has been suggested as a potential underlying mechanism linking environmental exposures such as micronutrient status during pregnancy with offspring health. We performed a meta-analysis on the association of maternal early-pregnancy serum ferritin concentrations, as a marker of body iron stores, and cord blood DNA methylation. We included 1286 mother-newborn pairs from two population-based prospective cohorts. Serum ferritin concentrations were measured in early pregnancy. DNA methylation was measured with the Infinium HumanMethylation450 BeadChip (Illumina). We examined epigenome-wide associations of maternal early-pregnancy serum ferritin and cord blood DNA methylation using robust linear regression analyses, with adjustment for confounders and performed fixed-effects meta-analyses. We additionally examined whether associations of any CpGs identified in cord blood persisted in the peripheral blood of older children and explored associations with other markers of maternal iron status. We also examined whether similar findings were present in the association of cord blood serum ferritin concentrations with cord blood DNA methylation. RESULTS Maternal early-pregnancy serum ferritin concentrations were inversely associated with DNA methylation at two CpGs (cg02806645 and cg06322988) in PRR23A and one CpG (cg04468817) in PRSS22. Associations at two of these CpG sites persisted at each of the follow-up time points in childhood. Cord blood serum ferritin concentrations were not associated with cord blood DNA methylation levels at the three identified CpGs. CONCLUSION Maternal early-pregnancy serum ferritin concentrations were associated with lower cord blood DNA methylation levels at three CpGs and these associations partly persisted in older children. Further studies are needed to uncover the role of these CpGs in the underlying mechanisms of the associations of maternal iron status and offspring health outcomes.
Collapse
Affiliation(s)
- M J Taeubert
- The Generation R Study Group, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatric Oncology, Hematology and Immunology, University Medical Center Heidelberg, Heidelberg, Germany
| | - P de Prado-Bert
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - M L Geurtsen
- The Generation R Study Group, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Sophia's Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - G Mancano
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School Population Health Sciences, University of Bristol, Bristol, UK
| | - M J Vermeulen
- Department of Pediatrics, Sophia's Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - I K M Reiss
- Department of Pediatrics, Sophia's Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - D Caramaschi
- College of Life and Environmental Sciences, Psychology, University of Exeter, Exeter, UK
| | - J Sunyer
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - G C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School Population Health Sciences, University of Bristol, Bristol, UK
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - J Julvez
- ISGlobal, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - M U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University Medical Center Heidelberg, Heidelberg, Germany
| | - J F Felix
- The Generation R Study Group, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Pediatrics, Sophia's Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
37
|
Brynge M, Gardner R, Sjöqvist H, Karlsson H, Dalman C. Maternal levels of acute phase proteins in early pregnancy and risk of autism spectrum disorders in offspring. Transl Psychiatry 2022; 12:148. [PMID: 35393396 PMCID: PMC8989993 DOI: 10.1038/s41398-022-01907-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
Previous research supports a contribution of early-life immune disturbances in the etiology of autism spectrum disorders (ASD). Biomarker studies of the maternal innate (non-adaptive) immune status related to ASD risk have focused on one of the acute phase proteins (APP), C-reactive protein (CRP), with conflicting results. We evaluated levels of eight different APP in first-trimester maternal serum samples, from 318 mothers to ASD cases and 429 mothers to ASD-unaffected controls, nested within the register-based Stockholm Youth Cohort. While no overall associations between high levels of APP and ASD were observed, associations varied across diagnostic sub-groups based on co-occurring conditions. Maternal levels of CRP in the lowest compared to the middle tertile were associated with increased risk of ASD without ID or ADHD in offspring (OR = 1.92, 95% CI 1.08-3.42). Further, levels of maternal ferritin in the lowest (OR = 1.78, 95% CI 1.18-2.69) and highest (OR = 1.64, 95% CI 1.11-2.43) tertiles were associated with increased risk of any ASD diagnosis in offspring, with stronger associations still between the lowest (OR = 3.81, 95% CI 1.91-7.58) and highest (OR = 3.36, 95% CI 1.73-6.53) tertiles of ferritin and risk of ASD with ID. The biological interpretation of lower CRP levels among mothers to ASD cases is not clear but might be related to the function of the maternal innate immune system. The finding of aberrant levels of ferritin conferring risk of ASD-phenotypes indicates a plausibly important role of iron during neurodevelopment.
Collapse
Affiliation(s)
- Martin Brynge
- Department of Global Public Health, Karolinska Institutet, Stockholm, 17177, Sweden.
| | - Renee Gardner
- Department of Global Public Health, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Hugo Sjöqvist
- Department of Global Public Health, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Christina Dalman
- Department of Global Public Health, Karolinska Institutet, Stockholm, 17177, Sweden
- Centre for Epidemiology and Community Medicine, Region Stockholm, Stockholm, 17129, Sweden
| |
Collapse
|
38
|
Bragg M, Chavarro JE, Hamra GB, Hart JE, Tabb LP, Weisskopf MG, Volk HE, Lyall K. Prenatal Diet as a Modifier of Environmental Risk Factors for Autism and Related Neurodevelopmental Outcomes. Curr Environ Health Rep 2022; 9:324-338. [PMID: 35305256 DOI: 10.1007/s40572-022-00347-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Environmental chemicals and toxins have been associated with increased risk of impaired neurodevelopment and specific conditions like autism spectrum disorder (ASD). Prenatal diet is an individually modifiable factor that may alter associations with such environmental factors. The purpose of this review is to summarize studies examining prenatal dietary factors as potential modifiers of the relationship between environmental exposures and ASD or related neurodevelopmental outcomes. RECENT FINDINGS Twelve studies were identified; five examined ASD diagnosis or ASD-related traits as the outcome (age at assessment range: 2-5 years) while the remainder addressed associations with neurodevelopmental scores (age at assessment range: 6 months to 6 years). Most studies focused on folic acid, prenatal vitamins, or omega-3 fatty acids as potentially beneficial effect modifiers. Environmental risk factors examined included air pollutants, endocrine disrupting chemicals, pesticides, and heavy metals. Most studies took place in North America. In 10/12 studies, the prenatal dietary factor under study was identified as a significant modifier, generally attenuating the association between the environmental exposure and ASD or neurodevelopment. Prenatal diet may be a promising target to mitigate adverse effects of environmental exposures on neurodevelopmental outcomes. Further research focused on joint effects is needed that encompasses a broader variety of dietary factors, guided by our understanding of mechanisms linking environmental exposures with neurodevelopment. Future studies should also aim to include diverse populations, utilize advanced methods to optimize detection of novel joint effects, incorporate consideration of timing, and consider both synergistic and antagonistic potential of diet.
Collapse
Affiliation(s)
- Megan Bragg
- AJ Drexel Autism Institute, Drexel University, 3020 Market St., Philadelphia, PA, 19104, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Ghassan B Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Loni Philip Tabb
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, 3020 Market St., Philadelphia, PA, 19104, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Heather E Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, 3020 Market St., Philadelphia, PA, 19104, USA. .,Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, 3020 Market St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
Dong HY, Feng JY, Li HH, Yue XJ, Jia FY. Non-parental caregivers, low maternal education, gastrointestinal problems and high blood lead level: predictors related to the severity of autism spectrum disorder in Northeast China. BMC Pediatr 2022; 22:11. [PMID: 34980074 PMCID: PMC8722278 DOI: 10.1186/s12887-021-03086-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background The prevalence of autism spectrum disorder (ASD) has increased rapidly in recent years. Environmental factors may play an important role in the pathogenesis of ASD. These factors may include socioeconomic factors, nutritional factors, heavy metal exposure, air pollution, etc. Our aim is to analyze possible environmental factors associated with the severity of ASD. Methods All participating children were divided into two groups (mild and moderate/severe) according to the severity of their symptoms, as determined by their Childhood Autism Rating Scale (CARS) scores. The socioeconomic, demographic factors and the nutritional factors that may affect the severity of ASD were included in the logistic regression to analyze whether they were predictors that affected the severity of ASD. Results Logistic regression showed that caregivers(P = 0.042), maternal education (P = 0.030), gastrointestinal problems (P = 0.041) and a high serum concentration of lead (P = 0.003) were statistically significantly associated with ASD severity. Conclusion Many environmental factors affect the severity of ASD. We concluded that non-parental caregivers, low maternal education, gastrointestinal problems and high blood lead level maybe predictors that affected the severity of ASD in northeast China.
Collapse
Affiliation(s)
- Han-Yu Dong
- Department of Developmental and Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Jun-Yan Feng
- Department of Developmental and Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Hong-Hua Li
- Department of Developmental and Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiao-Jing Yue
- Department of Developmental and Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Fei-Yong Jia
- Department of Developmental and Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
40
|
Abstract
All nutrients are essential for brain development, but pre-clinical and clinical studies have revealed sensitive periods of brain development during which key nutrients are critical. An understanding of these nutrient-specific sensitive periods and the accompanying brain regions or processes that are developing can guide effective nutrition interventions as well as the choice of meaningful circuit-specific neurobehavioral tests to best determine outcome. For several nutrients including protein, iron, iodine, and choline, pre-clinical and clinical studies align to identify the same sensitive periods, while for other nutrients, such as long-chain polyunsaturated fatty acids, zinc, and vitamin D, pre-clinical models demonstrate benefit which is not consistently shown in clinical studies. This discordance of pre-clinical and clinical results is potentially due to key differences in the timing, dose, and/or duration of the nutritional intervention as well as the pre-existing nutritional status of the target population. In general, however, the optimal window of success for nutritional intervention to best support brain development is in late fetal and early postnatal life. Lack of essential nutrients during these times can lead to long-lasting dysfunction and significant loss of developmental potential.
Collapse
Affiliation(s)
- Sarah E Cusick
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| | - Amanda Barks
- University of Minnesota Medical School, Minneapolis, MN, USA
| | | |
Collapse
|
41
|
RamanaRao G. Dr DS Raju oration award-andhra pradesh psychiatry conference 2021-2022. ARCHIVES OF MENTAL HEALTH 2022. [DOI: 10.4103/amh.amh_61_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Barks A, Beeson MM, Hallstrom TC, Georgieff MK, Tran PV. Developmental Iron Deficiency Dysregulates TET Activity and DNA Hydroxymethylation in the Rat Hippocampus and Cerebellum. Dev Neurosci 2022; 44:80-90. [PMID: 35016180 PMCID: PMC8983444 DOI: 10.1159/000521704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Iron deficiency (ID) during neurodevelopment is associated with lasting cognitive and socioemotional deficits and increased risk for neuropsychiatric disease throughout the lifespan. These neurophenotypical changes are underlain by gene dysregulation in the brain that outlasts the period of ID; however, the mechanisms by which ID establishes and maintains gene expression changes are incompletely understood. The epigenetic modification of 5-hydroxymethylcytosine (5hmC), or DNA hydroxymethylation, is one candidate mechanism because of its dependence on iron-containing TET enzymes. The aim of the present study was to determine the effect of fetal-neonatal ID on regional brain TET activity, Tet expression, and 5hmC in the developing rat hippocampus and cerebellum and to determine whether changes are reversible with dietary iron treatment. Timed pregnant Sprague Dawley rats were fed iron-deficient diet (ID; 4 mg/kg Fe) from gestational day 2 to generate iron-deficient anemic (IDA) offspring. Control dams were fed iron-sufficient diet (IS; 200 mg/kg Fe). At postnatal day (P)7, a subset of ID-fed litters was randomized to IS diet, generating treated IDA (TIDA) offspring. At P15, the hippocampus and cerebellum were isolated for subsequent analysis. TET activity was quantified by ELISA from nuclear proteins. Expression of Tet1, Tet2, and Tet3 was quantified by qPCR from total RNA. Global %5hmC was quantified by ELISA from genomic DNA. ID increased DNA hydroxymethylation (p = 0.0105), with a corresponding increase in TET activity (p < 0.0001) and Tet3 expression (p < 0.0001) in the P15 hippocampus. In contrast, ID reduced TET activity (p = 0.0016) in the P15 cerebellum, with minimal effect on DNA hydroxymethylation. Neonatal dietary iron treatment resulted in partial normalization of these changes in both brain regions. These results demonstrate that the TET/DNA hydroxymethylation system is disrupted by developmental ID in a brain region-specific manner. Differential regional disruption of this epigenetic system may contribute to the lasting neural circuit dysfunction and neurobehavioral dysfunction associated with developmental ID.
Collapse
Affiliation(s)
- Amanda Barks
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Montana M. Beeson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Timothy C. Hallstrom
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Michael K. Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Phu V. Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,Corresponding author: Phu V. Tran, Division of Neonatology, Department of Pediatrics, University of Minnesota, AO-401, 2450 Riverside Ave, Minneapolis, MN, 55454, United States, Tel: (612) 626-0644,
| |
Collapse
|
43
|
Prenatal Iron Deficiency and Choline Supplementation Interact to Epigenetically Regulate Jarid1b and Bdnf in the Rat Hippocampus into Adulthood. Nutrients 2021; 13:nu13124527. [PMID: 34960080 PMCID: PMC8706459 DOI: 10.3390/nu13124527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Early-life iron deficiency (ID) causes long-term neurocognitive impairments and gene dysregulation that can be partially mitigated by prenatal choline supplementation. The long-term gene dysregulation is hypothesized to underlie cognitive dysfunction. However, mechanisms by which iron and choline mediate long-term gene dysregulation remain unknown. In the present study, using a well-established rat model of fetal-neonatal ID, we demonstrated that ID downregulated hippocampal expression of the gene encoding JmjC-ARID domain-containing protein 1B (JARID1B), an iron-dependent histone H3K4 demethylase, associated with a higher histone deacetylase 1 (HDAC1) enrichment and a lower enrichment of acetylated histone H3K9 (H3K9ac) and phosphorylated cAMP response element-binding protein (pCREB). Likewise, ID reduced transcriptional capacity of the gene encoding brain-derived neurotrophic factor (BDNF), a target of JARID1B, associated with repressive histone modifications such as lower H3K9ac and pCREB enrichments at the Bdnf promoters in the adult rat hippocampus. Prenatal choline supplementation did not prevent the ID-induced chromatin modifications at these loci but induced long-lasting repressive chromatin modifications in the iron-sufficient adult rats. Collectively, these findings demonstrated that the iron-dependent epigenetic mechanism mediated by JARID1B accounted for long-term Bdnf dysregulation by early-life ID. Choline supplementation utilized a separate mechanism to rescue the effect of ID on neural gene regulation. The negative epigenetic effects of choline supplementation in the iron-sufficient rat hippocampus necessitate additional investigations prior to its use as an adjunctive therapeutic agent.
Collapse
|
44
|
Early-Life Iron Deficiency Anemia Programs the Hippocampal Epigenomic Landscape. Nutrients 2021; 13:nu13113857. [PMID: 34836113 PMCID: PMC8623089 DOI: 10.3390/nu13113857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
Iron deficiency (ID) anemia is the foremost micronutrient deficiency worldwide, affecting around 40% of pregnant women and young children. ID during the prenatal and early postnatal periods has a pronounced effect on neurodevelopment, resulting in long-term effects such as cognitive impairment and increased risk for neuropsychiatric disorders. Treatment of ID has been complicated as it does not always resolve the long-lasting neurodevelopmental deficits. In animal models, developmental ID results in abnormal hippocampal structure and function associated with dysregulation of genes involved in neurotransmission and synaptic plasticity. Dysregulation of these genes is a likely proximate cause of the life-long deficits that follow developmental ID. However, a direct functional link between iron and gene dysregulation has yet to be elucidated. Iron-dependent epigenetic modifications are one mechanism by which ID could alter gene expression across the lifespan. The jumonji and AT-rich interaction domain-containing (JARID) protein and the Ten-Eleven Translocation (TET) proteins are two families of iron-dependent epigenetic modifiers that play critical roles during neural development by establishing proper gene regulation during critical periods of brain development. Therefore, JARIDs and TETs can contribute to the iron-mediated epigenetic mechanisms by which early-life ID directly causes stable changes in gene regulation across the life span.
Collapse
|
45
|
Tasew S, Mekonnen H, Goshu AT. Knowledge of childhood autism among nurses working in governmental hospitals of Addis Ababa, Ethiopia. SAGE Open Med 2021; 9:20503121211049121. [PMID: 34691470 PMCID: PMC8532247 DOI: 10.1177/20503121211049121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Autism is a neurodevelopmental disorder that occurs in the early childhood period and is characterized by altered social interaction, communication problems, repetitive, and stereotyped behavior. Genetic, environmental, or physical risk factors are associated with prenatal, natal, or postnatal complications, leading to the development of autism spectrum disorders. Prompt diagnosis and management should be an integral component of the care provision in countries like Ethiopia. OBJECTIVE This study aimed to assess knowledge of childhood autism among nurses working in governmental hospitals in Addis Ababa, Ethiopia. METHODS Institutional based cross-sectional study design was used. The sample size was calculated using the single population proportion formula, and the final sample size was 360. Final study subjects were selected by using the simple random sampling method. Data were collected using structured self-administered questionnaires and were then coded and entered into Epi-data version 3.1 and exported to SPSS version 21 for analysis. Descriptive statistics were utilized to show frequencies and percentages, and analysis of variance was carried out to compute the association between the dependent and independent variables. Independent t-test was also done to see the association between dependent variables and independent variables with two means. A p-value of less than 0.05 was considered statistically significant. RESULTS The mean score for knowledge-related items was 8.79 ± 0.4. In this study, out of 331 nurses, 180 (54.35%) had good knowledge. Significant mean score difference was observed among age distribution (F-Ratio = 2.8, p-value = 0.04), level of education (F-ratio = 13.97, p < 0.001) and work experience (F-Ratio = 3.07 p-value = 0.017). CONCLUSION A significant gap was observed in the overall knowledge of childhood autism among nurses employed in the governmental hospitals of Addis Ababa. The respondents' knowledge level was significantly different among age group distributions, education levels, and work experience.
Collapse
Affiliation(s)
- Salem Tasew
- Department of Nursing, College of Health and Medical Sciences, Dilla University, Dilla, Ethiopia
| | - Hussen Mekonnen
- School of Nursing and Midwifery, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abel Tibebu Goshu
- School of Nursing and Midwifery, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| |
Collapse
|
46
|
Baj J, Flieger W, Flieger M, Forma A, Sitarz E, Skórzyńska-Dziduszko K, Grochowski C, Maciejewski R, Karakuła-Juchnowicz H. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms. Neurosci Biobehav Rev 2021; 129:117-132. [PMID: 34339708 DOI: 10.1016/j.neubiorev.2021.07.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
The identification of biomarkers as diagnostic tools and predictors of response to treatment of neurological developmental disorders (NDD) such as schizophrenia (SZ), attention deficit hyperactivity disorder (ADHD), or autism spectrum disorder (ASD), still remains an important challenge for clinical medicine. Metallomic profiles of ASD patients cover, besides essential elements such as cobalt, chromium, copper, iron, manganese, molybdenum, zinc, selenium, also toxic metals burden of: aluminum, arsenic, mercury, lead, beryllium, nickel, cadmium. Performed studies indicate that children with ASD present a reduced ability of eliminating toxic metals, which leads to these metals' accumulation and aggravation of autistic symptoms. Extensive metallomic studies allow a better understanding of the importance of trace elements as environmental factors in the pathogenesis of ASD. Even though a mineral imbalance is a fact in ASD, we are still expecting relevant tests and the elaboration of reference levels of trace elements as potential biomarkers useful in diagnosis, prevention, and treatment of ASD.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland.
| | - Wojciech Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Michał Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego Street 8b, 20-090, Lublin, Poland
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland
| | - Katarzyna Skórzyńska-Dziduszko
- Chair and Department of Human Physiology, Medical University of Lublin, Radziwillowska Street 11, Lublin, 20-080, Poland
| | - Cezary Grochowski
- Laboratory of Virtual Man, Chair of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland
| | - Ryszard Maciejewski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland
| | - Hanna Karakuła-Juchnowicz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland; Department of Clinical Neuropsychiatry, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland
| |
Collapse
|
47
|
Vitale SG, Fiore M, La Rosa VL, Rapisarda AMC, Mazza G, Paratore M, Commodari E, Caruso S. Liposomal ferric pyrophosphate and ascorbic acid supplementation in pregnant women with iron deficiency anaemia: haematochemical, obstetric, neonatal and psychological outcomes in a prospective observational study. Int J Food Sci Nutr 2021; 73:221-229. [PMID: 34238093 DOI: 10.1080/09637486.2021.1950129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study aimed to determine the effects of liposomal iron pyrophosphate/ascorbic acid on clinical and psychological outcomes in pregnant women. Women at the 11th-13th weeks of gestation with iron deficiency anaemia assuming Sideremil™ from April 2018 to May 2019 were recruited. Haematochemical, obstetric, neonatal and psychological outcomes were investigated at the enrolment, 21-23 weeks of gestation, 30-32 weeks of gestation and after 6 weeks from childbirth. Results showed significant positive effects on haemoglobin, ferritin, sideremia and transferrin levels, compared to baseline data. A significant improvement of anxiety and depression levels was also observed. Regarding the quality of life, all the domains significantly improved, especially the Physical Role domain. Our results indicate that Sideremil™ may be a valid treatment for iron deficiency anaemia in pregnant women, since it significantly improves haematological and mental health outcomes. However, further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Salvatore Giovanni Vitale
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Maria Fiore
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | | | - Agnese Maria Chiara Rapisarda
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Gabriele Mazza
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Marco Paratore
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Elena Commodari
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Salvatore Caruso
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
48
|
Evidence-Based Recommendations for an Optimal Prenatal Supplement for Women in the U.S., Part Two: Minerals. Nutrients 2021; 13:nu13061849. [PMID: 34071548 PMCID: PMC8229801 DOI: 10.3390/nu13061849] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 02/08/2023] Open
Abstract
The levels of many essential minerals decrease during pregnancy if un-supplemented, including calcium, iron, magnesium, selenium, zinc, and possibly chromium and iodine. Sub-optimal intake of minerals from preconception through pregnancy increases the risk of many pregnancy complications and infant health problems. In the U.S., dietary intake of minerals is often below the Recommended Dietary Allowance (RDA), especially for iodine and magnesium, and 28% of women develop iron deficiency anemia during their third trimester. The goal of this paper is to propose evidence-based recommendations for the optimal level of prenatal supplementation for each mineral for most women in the United States. Overall, the evidence suggests that optimal mineral supplementation can significantly reduce a wide range of pregnancy complications (including anemia, gestational hypertension, gestational diabetes, hyperthyroidism, miscarriage, and pre-eclampsia) and infant health problems (including anemia, asthma/wheeze, autism, cerebral palsy, hypothyroidism, intellectual disability, low birth weight, neural tube defects, preterm birth, rickets, and wheeze). An evaluation of 180 commercial prenatal supplements found that they varied widely in mineral content, often contained only a subset of essential minerals, and the levels were often below our recommendations. Therefore, there is a need to establish recommendations on the optimal level of mineral supplementation during pregnancy.
Collapse
|
49
|
Iron, iodine and vitamin D deficiencies during pregnancy: epidemiology, risk factors and developmental impacts. Proc Nutr Soc 2021; 80:290-302. [PMID: 33988109 DOI: 10.1017/s0029665121001944] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Micronutrient deficiency persists throughout the world, and although the burden is higher in low-resource settings, it is also prevalent in wealthy countries, a phenomenon termed 'hidden hunger'. Due to their high requirements for vitamins and minerals relative to their energy intake, young women and children are particularly vulnerable to hidden hunger. As they share several risk factors and impact on overlapping outcomes, we consider how deficiency of iron, iodine and vitamin D can have profound impacts on perinatal health and infant development. We review the epidemiology of these micronutrient deficiencies during pregnancy, including social, environmental and dietary risk factors. We identify the main challenges in defining nutritional status of these nutrients using validated diagnostic criteria linked with meaningful clinical outcomes. Public health strategies are urgently required to improve the overall health and nutritional status of women of reproductive age. Obesity prevention and early detection of malnutrition with standardised screening methods would detect pregnant women at increased risk of iron deficiency. Development of sensitive, individual biomarkers of iodine status is required to protect maternal health and fetal/infant brain development. Risk assessments of vitamin D requirements during pregnancy need to be revisited from the perspective of fetal and neonatal requirements. International consensus on standardised approaches to micronutrient assessment, analysis and reporting as well as sensitive, clinically validated infant and child neuro-behavioural outcomes will enable progression of useful observational and intervention studies.
Collapse
|
50
|
Higazi AM, Kamel HM, Abdel-Naeem EA, Abdullah NM, Mahrous DM, Osman AM. Expression analysis of selected genes involved in tryptophan metabolic pathways in Egyptian children with Autism Spectrum Disorder and learning disabilities. Sci Rep 2021; 11:6931. [PMID: 33767242 PMCID: PMC7994393 DOI: 10.1038/s41598-021-86162-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/07/2021] [Indexed: 01/31/2023] Open
Abstract
Autism Spectrum Disorder (ASD) and learning disabilities are neurodevelopmental disabilities characterized by dramatically increasing incidence rates, yet the exact etiology for these disabilities is not identified. Impairment in tryptophan metabolism has been suggested to participate in the pathogenesis of ASD, however, further validation of its involvement is required. Additionally, its role in learning disabilities is still uninvestigated. Our objective was to evaluate some aspects of tryptophan metabolism in ASD children (N = 45) compared to children with learning disabilities (N = 44) and healthy controls (N = 40) by measuring the expression levels of the MAOA, HAAO and AADAT genes using real-time RT-qPCR. We also aimed to correlate the expression patterns of these genes with parental ages at the time of childbirth, levels of serum iron, and vitamin D3 and zinc/copper ratio, as possible risk factors for ASD. Results demonstrated a significant decrease in the expression of the selected genes within ASD children (p < 0.001) relative to children with learning disabilities and healthy controls, which significantly associated with the levels of our targeted risk factors (p < 0.05) and negatively correlated to ASD scoring (p < 0.001). In conclusion, this study suggests that the expression of the MAOA, HAAO and AADAT genes may underpin the pathophysiology of ASD.
Collapse
Affiliation(s)
- Aliaa M. Higazi
- grid.411806.a0000 0000 8999 4945Clinical and Molecular Chemistry Unit, Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hanan M. Kamel
- grid.411806.a0000 0000 8999 4945Clinical and Molecular Chemistry Unit, Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Emad A. Abdel-Naeem
- grid.411806.a0000 0000 8999 4945Immunology Unit, Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Noha M. Abdullah
- grid.411806.a0000 0000 8999 4945Clinical and Molecular Chemistry Unit, Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Doaa M. Mahrous
- grid.411806.a0000 0000 8999 4945Department of Pediatrics, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ashraf M. Osman
- grid.411806.a0000 0000 8999 4945Clinical and Molecular Chemistry Unit, Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|