1
|
Chen Z, Li W, Zhang H, Huang X, Tao Y, Lang K, Zeng Q, Chen W, Wang D. Serum metabolome perturbation in relation to noise exposure: Exploring the potential role of serum metabolites in noise-induced arterial stiffness. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123945. [PMID: 38604306 DOI: 10.1016/j.envpol.2024.123945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Noise pollution has grown to be a major public health issue worldwide. We sought to profile serum metabolite expression changes related to occupational noise exposure by untargeted metabolomics, as well as to evaluate the potential roles of serum metabolites in occupational noise-associated arterial stiffness (AS). Our study involved 30 noise-exposed industrial personnel (Lipo group) and 30 noise-free controls (Blank group). The untargeted metabolomic analysis was performed by employing a UPLC-HRMS. The associations of occupational noise and significant differential metabolites (between Blank/Lipo groups) with AS were evaluated using multivariable-adjusted generalized linear models. We performed the least absolute shrinkage and selection operator regression analysis to further screen for AS's risk metabolites. We explored 177 metabolites across 21 categories significantly differentially expressed between Blank/Lipo groups, and these metabolites were enriched in 20 metabolic pathways. Moreover, 15 metabolites in 4 classes (including food, glycerophosphocholine, sphingomyelin [SM] and triacylglycerols [TAG]) were adversely associated with AS (all P < 0.05). Meanwhile, five metabolites (homostachydrine, phosphatidylcholine (PC) (32:1e), PC (38:6p), SM (d41:2) and TAG (45:1) have been proven to be useful predictors of AS prevalence. However, none of these 15 metabolites were found to have a mediating influence on occupational noise-induced AS. Our study reveals specific metabolic changes caused by occupational noise exposure, and several metabolites may have protective effects on AS. However, the roles of serum metabolites in noise-AS association remain to be validated in future studies.
Collapse
Affiliation(s)
- Zhaomin Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wenzhen Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Haozhe Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xuezan Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yueqing Tao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Kaiji Lang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qiang Zeng
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300000, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
2
|
Ottosson F, Engström G, Orho‐Melander M, Melander O, Nilsson PM, Johansson M. Plasma Metabolome Predicts Aortic Stiffness and Future Risk of Coronary Artery Disease and Mortality After 23 Years of Follow-Up in the General Population. J Am Heart Assoc 2024; 13:e033442. [PMID: 38639368 PMCID: PMC11179945 DOI: 10.1161/jaha.123.033442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Increased aortic stiffness (arteriosclerosis) is associated with early vascular aging independent of age and sex. The underlying mechanisms of early vascular aging remain largely unexplored in the general population. We aimed to investigate the plasma metabolomic profile in aortic stiffness (vascular aging) and associated risk of incident cardiovascular disease and mortality. METHODS AND RESULTS We included 6865 individuals from 2 Swedish population-based cohorts. Untargeted plasma metabolomics was performed by liquid-chromatography mass spectrometry. Aortic stiffness was assessed directly by carotid-femoral pulse wave velocity (PWV) and indirectly by augmentation index (AIx@75). A least absolute shrinkage and selection operator (LASSO) regression model was created on plasma metabolites in order to predict aortic stiffness. Associations between metabolite-predicted aortic stiffness and risk of new-onset cardiovascular disease, cardiovascular mortality, and all-cause mortality were calculated. Metabolite-predicted aortic stiffness (PWV and AIx@75) was positively associated particularly with acylcarnitines, dimethylguanidino valeric acid, glutamate, and cystine. The plasma metabolome predicted aortic stiffness (PWV and AIx@75) with good accuracy (R2=0.27 and R2=0.39, respectively). Metabolite-predicted aortic stiffness (PWV and AIx@75) was significantly correlated with age, sex, systolic blood pressure, body mass index, and low-density lipoprotein. After 23 years of follow-up, metabolite-predicted aortic stiffness (PWV and AIx@75) was significantly associated with increased risk of new-onset coronary artery disease, cardiovascular mortality, and all-cause mortality. CONCLUSIONS Aortic stiffness is associated particularly with altered metabolism of acylcarnitines, cystine, and dimethylguanidino valeric acid. These metabolic disturbances predict increased risk of new-onset coronary artery disease, cardiovascular mortality, and all-cause mortality after more than 23 years of follow-up in the general population.
Collapse
Affiliation(s)
- Filip Ottosson
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
- Section for Clinical Mass SpectrometryStatens Serum InstitutCopenhagenDenmark
| | - Gunnar Engström
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
| | | | - Olle Melander
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
- Department of Internal MedicineSkåne University HospitalMalmöSweden
| | - Peter M. Nilsson
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
- Department of Internal MedicineSkåne University HospitalMalmöSweden
| | - Madeleine Johansson
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
- Department of CardiologySkåne University HospitalMalmöSweden
| |
Collapse
|
3
|
Ye P, Bai S, Tang W, Feng H, Qiao X, Tu S, He H. Joint modeling approaches for censored predictors due to detection limits with applications to metabolites data. Stat Med 2024; 43:674-688. [PMID: 38043523 DOI: 10.1002/sim.9978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/05/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Measures of substance concentration in urine, serum or other biological matrices often have an assay limit of detection. When concentration levels fall below the limit, exact measures cannot be obtained, and thus are left censored. The problem becomes more challenging when the censored data come from heterogeneous populations consisting of exposed and non-exposed subjects. If the censored data come from non-exposed subjects, their measures are always zero and hence censored, forming a latent class governed by a distinct censoring mechanism compared with the exposed subjects. The exposed group's censored measurements are always greater than zero, but less than the detection limit. It is very often that the exposed and non-exposed subjects may have different disease traits or different relationships with outcomes of interest, so we need to disentangle the two different populations for valid inference. In this article, we aim to fill the methodological gaps in the literature by developing a novel joint modeling approach to not only address the censoring issue in predictors, but also untangle different relationships of exposed and non-exposed subjects with the outcome. Simulation studies are performed to assess the numerical performance of our proposed approach when the sample size is small to moderate. The joint modeling approach is also applied to examine associations between plasma metabolites and blood pressure in Bogalusa Heart Study, and identify new metabolites that are highly associated with blood pressure.
Collapse
Affiliation(s)
- Peng Ye
- School of Statistics, University of International Business and Economics, Beijing, China
| | - Shuo Bai
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Wan Tang
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Han Feng
- Tulane Research and Innovation for Arrhythmia Discovery- TRIAD Center, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Xinhua Qiao
- School of Statistics, University of International Business and Economics, Beijing, China
| | - Shengjia Tu
- Division of Biostatistics and Bioinformatics Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, California, USA
| | - Hua He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Siddiqui SH, Rossi NF. Acute Intake of Fructose Increases Arterial Pressure in Humans: A Meta-Analysis and Systematic Review. Nutrients 2024; 16:219. [PMID: 38257112 PMCID: PMC10818414 DOI: 10.3390/nu16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Hypertension is a major cardiac risk factor. Higher blood pressures are becoming more prevalent due to changing dietary habits. Here, we evaluated the impact on blood pressure in human subjects after acutely ingesting fructose using meta-analysis. A total of 89 studies were collected from four different electronic databases from 1 January 2008 to 1 August 2023. Of these studies, 10 were selected that fulfilled all the criteria for this meta-analysis. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MAP), and blood glucose level were analyzed using the Cohen's d analysis or standardized mean difference at a confidence interval (CI) of 95%. The SBP, DBP, and MAP showed medium effect size; HR and glucose level displayed small effect size. The standardized mean difference of normal diet groups and fructose diet groups showed a significant increase in SBP (p = 0.04, REM = 2.30), and DBP (p = 0.03, REM = 1.48) with heterogeneity of 57% and 62%, respectively. Acute fructose ingestion contributes to an increase in arterial pressure in humans. The different parameters of arterial pressure in humans correlated with each other. These findings support further rigorous investigation, retrospective of necessity, into the effect of chronic dietary of fructose in humans in order to better understand the impact on long term arterial pressure.
Collapse
Affiliation(s)
| | - Noreen F. Rossi
- Department of Physiology, Wayne State University, 540 E. Canfield Ave. Scott 5473, Detroit, MI 48201, USA;
| |
Collapse
|
5
|
Bernard L, Chen J, Kim H, Huang Z, Bazzano L, Qi L, He J, Rao VS, Potts KS, Kelly TN, Wong KE, Steffen LM, Yu B, Rhee EP, Rebholz CM. Serum Metabolomic Markers of Dairy Consumption: Results from the Atherosclerosis Risk in Communities Study and the Bogalusa Heart Study. J Nutr 2023; 153:2994-3002. [PMID: 37541543 PMCID: PMC10613758 DOI: 10.1016/j.tjnut.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Dairy consumption is related to chronic disease risk; however, the measurement of dairy consumption has largely relied upon self-report. Untargeted metabolomics allows for the identification of objective markers of dietary intake. OBJECTIVES We aimed to identify associations between dietary dairy intake (total dairy, low-fat dairy, and high-fat dairy) and serum metabolites in 2 independent study populations of United States adults. METHODS Dietary intake was assessed with food frequency questionnaires. Multivariable linear regression models were used to estimate cross-sectional associations between dietary intake of dairy and 360 serum metabolites analyzed in 2 subgroups of the Atherosclerosis Risk in Communities study (ARIC; n = 3776). Results from the 2 subgroups were meta-analyzed using fixed effects meta-analysis. Significant meta-analyzed associations in the ARIC study were then tested in the Bogalusa Heart Study (BHS; n = 785). RESULTS In the ARIC study and BHS, the mean age was 54 and 48 years, 61% and 29% were Black, and the mean dairy intake was 1.7 and 1.3 servings/day, respectively. Twenty-nine significant associations between dietary intake of dairy and serum metabolites were identified in the ARIC study (total dairy, n = 14; low-fat dairy, n = 10; high-fat dairy, n = 5). Three associations were also significant in BHS: myristate (14:0) was associated with high-fat dairy, and pantothenate was associated with total dairy and low-fat dairy, but 23 of the 27 associations significant in the ARIC study and tested in BHS were not associated with dairy in BHS. CONCLUSIONS We identified metabolomic associations with dietary intake of dairy, including 3 associations found in 2 independent cohort studies. These results suggest that myristate (14:0) and pantothenate (vitamin B5) are candidate biomarkers of dairy consumption.
Collapse
Affiliation(s)
- Lauren Bernard
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Hyunju Kim
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Varun S Rao
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Kaitlin S Potts
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, United States
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States; Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Kari E Wong
- Metabolon, Research Triangle Park, Morrisville, NC, United States
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, United States
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, United States
| | - Eugene P Rhee
- Division of Nephrology and Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
6
|
Ya'ar Bar S, Pintel N, Abd Alghne H, Khattib H, Avni D. The therapeutic potential of sphingolipids for cardiovascular diseases. Front Cardiovasc Med 2023; 10:1224743. [PMID: 37608809 PMCID: PMC10440740 DOI: 10.3389/fcvm.2023.1224743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide and Inflammation plays a critical role in the development of CVD. Despite considerable progress in understanding the underlying mechanisms and various treatment options available, significant gaps in therapy necessitate the identification of novel therapeutic targets. Sphingolipids are a family of lipids that have gained attention in recent years as important players in CVDs and the inflammatory processes that underlie their development. As preclinical studies have shown that targeting sphingolipids can modulate inflammation and ameliorate CVDs, targeting sphingolipids has emerged as a promising therapeutic strategy. This review discusses the current understanding of sphingolipids' involvement in inflammation and cardiovascular diseases, the existing therapeutic approaches and gaps in therapy, and explores the potential of sphingolipids-based drugs as a future avenue for CVD treatment.
Collapse
Affiliation(s)
- Sapir Ya'ar Bar
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
| | - Noam Pintel
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
| | - Hesen Abd Alghne
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
- Tel-Hai College Department of Biotechnology, Kiryat Shmona, Israel
| | - Hamdan Khattib
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
- Department of Gastroenterology and Hepatology, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Dorit Avni
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
- Tel-Hai College Department of Biotechnology, Kiryat Shmona, Israel
| |
Collapse
|
7
|
du Toit WL, Kruger R, Gafane-Matemane LF, Schutte AE, Louw R, Mels CMC. Markers of arterial stiffness and urinary metabolomics in young adults with early cardiovascular risk: the African-PREDICT study. Metabolomics 2023; 19:28. [PMID: 36988718 PMCID: PMC10060307 DOI: 10.1007/s11306-023-01987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/04/2023] [Indexed: 03/30/2023]
Abstract
INTRODUCTION Increased exposure to risk factors in the young and healthy contributes to arterial changes, which may be accompanied by an altered metabolism. OBJECTIVES To increase our understanding of early metabolic alterations and how they associate with markers of arterial stiffness, we profiled urinary metabolites in young adults with cardiovascular disease (CVD) risk factor(s) and in a control group without CVD risk factors. METHODS We included healthy black and white women and men (N = 1202), aged 20-30 years with a detailed CVD risk factor profile, reflecting obesity, physical inactivity, smoking, excessive alcohol intake, masked hypertension, hyperglycemia, dyslipidemia and low socio-economic status, forming the CVD risk group (N = 1036) and the control group (N = 166). Markers of arterial stiffness, central systolic blood pressure (BP) and pulse wave velocity were measured. A targeted metabolomics approach was followed by measuring amino acids and acylcarnitines using a liquid chromatography-tandem mass spectrometry method. RESULTS In the CVD risk group, central systolic BP (adjusted for age, sex, ethnicity) was negatively associated with histidine, arginine, asparagine, serine, glutamine, dimethylglycine, threonine, GABA, proline, methionine, pyroglutamic acid, aspartic acid, glutamic acid, branched chain amino acids (BCAAs) and butyrylcarnitine (all P ≤ 0.048). In the same group, pulse wave velocity (adjusted for age, sex, ethnicity, mean arterial pressure) was negatively associated with histidine, lysine, threonine, 2-aminoadipic acid, BCAAs and aromatic amino acids (AAAs) (all P ≤ 0.044). In the control group, central systolic BP was negatively associated with pyroglutamic acid, glutamic acid and dodecanoylcarnitine (all P ≤ 0.033). CONCLUSION In a group with increased CVD risk, markers of arterial stiffness were negatively associated with metabolites related to AAA and BCAA as well as energy metabolism and oxidative stress. Our findings may suggest that metabolic adaptations may be at play in response to increased CVD risk to maintain cardiovascular integrity.
Collapse
Affiliation(s)
- Wessel L du Toit
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
- School of Population Health, University of New South Wales, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
8
|
Sakanaka A, Katakami N, Furuno M, Nishizawa H, Omori K, Taya N, Ishikawa A, Mayumi S, Inoue M, Tanaka Isomura E, Amano A, Shimomura I, Fukusaki E, Kuboniwa M. Salivary metabolic signatures of carotid atherosclerosis in patients with type 2 diabetes hospitalized for treatment. Front Mol Biosci 2022; 9:1074285. [PMID: 36619162 PMCID: PMC9815705 DOI: 10.3389/fmolb.2022.1074285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a life-threatening disease associated with morbidity and mortality in patients with type 2 diabetes (T2D). This study aimed to characterize a salivary signature of atherosclerosis based on evaluation of carotid intima-media thickness (IMT) to develop a non-invasive predictive tool for diagnosis and disease follow-up. Metabolites in saliva and plasma samples collected at admission and after treatment from 25 T2D patients hospitalized for 2 weeks to undergo medical treatment for diabetes were comprehensively profiled using metabolomic profiling with gas chromatography-mass spectrometry. Orthogonal partial least squares analysis, used to explore the relationships of IMT with clinical markers and plasma and salivary metabolites, showed that the top predictors for IMT included salivary allantoin and 1,5-anhydroglucitol (1,5-AG) at both the baseline examination at admission and after treatment. Furthermore, though treatment induced alterations in salivary levels of allantoin and 1,5-AG, it did not modify the association between IMT and these metabolites (p interaction > 0.05), and models with these metabolites combined yielded satisfactory diagnostic accuracy for the high IMT group even after treatment (area under curve = 0.819). Collectively, this salivary metabolite combination may be useful for non-invasive identification of T2D patients with a higher atherosclerotic burden in clinical settings.
Collapse
Affiliation(s)
- Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiro Furuno
- Department of Biotechnology, Osaka University Graduate School of Engineering, Suita, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuo Omori
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naohiro Taya
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Asuka Ishikawa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shota Mayumi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Moe Inoue
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Emiko Tanaka Isomura
- First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Osaka University Graduate School of Engineering, Suita, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan,*Correspondence: Masae Kuboniwa,
| |
Collapse
|
9
|
Diagnosing Arterial Stiffness in Pregnancy and Its Implications in the Cardio-Renal-Metabolic Chain. Diagnostics (Basel) 2022; 12:diagnostics12092221. [PMID: 36140621 PMCID: PMC9497660 DOI: 10.3390/diagnostics12092221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cardio-renal and metabolic modifications during gestation are crucial determinants of foetal and maternal health in the short and long term. The cardio-renal metabolic syndrome is a vicious circle that starts in the presence of risk factors such as obesity, hypertension, diabetes, kidney disease and ageing, all predisposing to a status dominated by increased arterial stiffness and alteration of the vascular wall, which eventually damages the target organs, such as the heart and kidneys. The literature is scarce regarding cardio-renal metabolic syndrome in pregnancy cohorts. The present paper exposes the current state of the art and emphasises the most important findings of this entity, particularly in pregnant women. The early assessment of arterial function can lead to proper and individualised measures for women predisposed to hypertension, pre-eclampsia, eclampsia, and diabetes mellitus. This review focuses on available information regarding the assessment of arterial function during gestation, possible cut-off values, the possible predictive role for future events and modalities to reverse or control its dysfunction, a fact of crucial importance with excellent outcomes at meagre costs.
Collapse
|
10
|
Paapstel K, Kals J. Metabolomics of Arterial Stiffness. Metabolites 2022; 12:370. [PMID: 35629874 PMCID: PMC9146333 DOI: 10.3390/metabo12050370] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
Arterial stiffness (AS) is one of the earliest detectable signs of structural and functional alterations of the vessel wall and an independent predictor of cardiovascular events and death. The emerging field of metabolomics can be utilized to detect a wide spectrum of intermediates and products of metabolism in body fluids that can be involved in the pathogenesis of AS. Research over the past decade has reinforced this idea by linking AS to circulating acylcarnitines, glycerophospholipids, sphingolipids, and amino acids, among other metabolite species. Some of these metabolites influence AS through traditional cardiovascular risk factors (e.g., high blood pressure, high blood cholesterol, diabetes, smoking), while others seem to act independently through both known and unknown pathophysiological mechanisms. We propose the term 'arteriometabolomics' to indicate the research that applies metabolomics methods to study AS. The 'arteriometabolomics' approach has the potential to allow more personalized cardiovascular risk stratification, disease monitoring, and treatment selection. One of its major goals is to uncover the causal metabolic pathways of AS. Such pathways could represent valuable treatment targets in vascular ageing.
Collapse
Affiliation(s)
- Kaido Paapstel
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Heart Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
| | - Jaak Kals
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Surgery Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| |
Collapse
|
11
|
Zhang R, Sun X, Huang Z, Pan Y, Westbrook A, Li S, Bazzano L, Chen W, He J, Kelly T, Li C. Examination of serum metabolome altered by cigarette smoking identifies novel metabolites mediating smoking-BMI association. Obesity (Silver Spring) 2022; 30:943-952. [PMID: 35258150 PMCID: PMC8957487 DOI: 10.1002/oby.23386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/25/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The authors hypothesize that an untargeted metabolomics study will identify novel mechanisms underlying smoking-associated weight loss. METHODS This study performed cross-sectional analyses among 1,252 participants in the Bogalusa Heart Study and assessed 1,202 plasma metabolites for mediation effects on smoking-BMI associations. Significant metabolites were tested for associations with smoking genetic risk scores among a subset of participants (n = 654) with available genomic data, followed by direction dependence analysis to investigate causal relationships between the metabolites and smoking and BMI. All analyses controlled for age, sex, race, education, alcohol drinking, and physical activity. RESULTS Compared with never smokers, current and former smokers had a 3.31-kg/m2 and 1.77-kg/m2 lower BMI after adjusting for all covariables, respectively. A total of 22 xenobiotics and 94 endogenous metabolites were significantly associated with current smoking. Eight xenobiotics were also associated with former smoking. Forty metabolites mediated the smoking-BMI associations, and five showed causal relationships with both smoking and BMI. These metabolites, including 1-oleoyl-GPE (18:1), 1-linoleoyl-GPE (18:2), 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4), α-ketobutyrate, and 1-palmitoyl-GPE (16:0), mediated 26.0% of the association between current smoking and BMI. CONCLUSIONS This study cataloged plasma metabolites altered by cigarette smoking and identified five metabolites that partially mediated the association between current smoking and BMI.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Yang Pan
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Adrianna Westbrook
- Pediatric Biostatistics Core, Department of Pediatrics, Emory University
| | - Shengxu Li
- Children’s Minnesota Research Institute, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN, US
| | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Tanika Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| |
Collapse
|
12
|
Du S, Kim H, Rebholz CM. Higher Ultra-Processed Food Consumption Is Associated with Increased Risk of Incident Coronary Artery Disease in the Atherosclerosis Risk in Communities Study. J Nutr 2021; 151:3746-3754. [PMID: 34494108 PMCID: PMC8643602 DOI: 10.1093/jn/nxab285] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Higher ultra-processed food intake has been linked with several cardiometabolic and cardiovascular diseases. However, prospective evidence from US populations remains scarce. OBJECTIVES To test the hypothesis that higher intake of ultra-processed foods is associated with higher risk of coronary artery disease. METHODS A total of 13,548 adults aged 45-65 y from the Atherosclerosis Risk in Communities study were included in the analytic sample. Dietary intake data were collected through a 66-item FFQ. Ultra-processed foods were defined using the NOVA classification, and the level of intake (servings/d) was calculated for each participant and divided into quartiles. We used Cox proportional hazards models and restricted cubic splines to assess the association between quartiles of ultra-processed food intake and incident coronary artery disease. RESULTS There were 2006 incident coronary artery disease cases documented over a median follow-up of 27 y. Incidence rates were higher in the highest quartile of ultra-processed food intake (70.8 per 10,000 person-y; 95% CI: 65.1, 77.1) compared with the lowest quartile (59.3 per 10,000 person-y; 95% CI: 54.1, 65.0). Participants in the highest compared with lowest quartile of ultra-processed food intake had a 19% higher risk of coronary artery disease (HR: 1.19; 95% CI: 1.05, 1.35) after adjusting for sociodemographic factors and health behaviors. An approximately linear relation was observed between ultra-processed food intake and risk of coronary artery disease. CONCLUSIONS Higher ultra-processed food intake was associated with a higher risk of coronary artery disease among middle-aged US adults. Further prospective studies are needed to confirm these findings and to investigate the mechanisms by which ultra-processed foods may affect health.
Collapse
Affiliation(s)
- Shutong Du
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Hyunju Kim
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | |
Collapse
|
13
|
Kauko A, Palmu J, Jousilahti P, Havulinna A, Salomaa V, Niiranen T. Associations between circulating metabolites and arterial stiffness. J Hum Hypertens 2020; 35:809-811. [PMID: 33093615 DOI: 10.1038/s41371-020-00434-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Anni Kauko
- Department of Internal Medicine, University of Turku, Turku, Finland.
| | - Joonatan Palmu
- Department of Internal Medicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare, Turku and Helsinki, Finland
| | - Pekka Jousilahti
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Turku and Helsinki, Finland
| | - Aki Havulinna
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Turku and Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Turku and Helsinki, Finland
| | - Teemu Niiranen
- Department of Internal Medicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare, Turku and Helsinki, Finland
| |
Collapse
|
14
|
Jiang Y, Zhang K, Zhu Z, Cui M, An Y, Wang Y, Suo C, Fan M, Jin L, Tian W, Chen X. Associations between serum metabolites and subclinical atherosclerosis in a Chinese population: the Taizhou Imaging Study. Aging (Albany NY) 2020; 12:15302-15313. [PMID: 32645693 PMCID: PMC7467377 DOI: 10.18632/aging.103456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Metabolomics provides a promising tool for understanding the pathophysiology and identifying biomarkers of atherosclerosis. We aimed to estimate the associations between circulating metabolites and subclinical atherosclerosis in a Chinese cohort. The baseline serum levels of 38 metabolites of 489 individuals were measured using nuclear magnetic resonance. Associations between metabolites and brachial-ankle pulse wave velocity (baPWV) and carotid intima-media thickness (IMT) were determined using a linear regression. A multivariate logistic regression was used to evaluate the associations of metabolites and subclinical atherosclerosis defined as high baPWV (>median) and increased IMT (>median). After adjusting for covariates and multiple testing corrections (false discovery rate; FDR), two branched-chain amino acids (BCAAs; leucine and isoleucine), one ketone (acetoacetate), and two lipids were positively associated with baPWV. Lactate was inversely associated with IMT. Elevated acetoacetate levels (odds ratio: 1.53, 95% confidence interval: 1.20-1.97; FDR <0.001) and four other lipid features were associated with an increased risk of high baPWV. Alterations in circulating lipids and BCAAs were associated with the risk of arterial stiffness in the middle-aged Chinese population. Our findings provide clues to understanding the potential mechanisms of subclinical atherosclerosis; however, further validation in a broader population context and the exploration of potential clinical applications are warranted.
Collapse
Affiliation(s)
- Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Kexun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Zhen Zhu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanpeng An
- Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Yingzhe Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Min Fan
- Taixing Disease Control and Prevention Center, Taizhou, Jiangsu, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Weizhong Tian
- Department of Medical Imaging, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| |
Collapse
|
15
|
Katakami N, Omori K, Taya N, Arakawa S, Takahara M, Matsuoka TA, Tsugawa H, Furuno M, Bamba T, Fukusaki E, Shimomura I. Plasma metabolites associated with arterial stiffness in patients with type 2 diabetes. Cardiovasc Diabetol 2020; 19:75. [PMID: 32527273 PMCID: PMC7291560 DOI: 10.1186/s12933-020-01057-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although an increased arterial stiffness has been associated with traditional coronary risk factors, the risk factors and pathology of arterial stiffness remain unclear. In this study, we aimed to identify the plasma metabolites associated with arterial stiffness in patients with type 2 diabetes mellitus. METHODS We used the metabolomic data of 209 patients with type 2 diabetes as the first dataset for screening. To form the second dataset for validation, we enlisted an additional 31 individuals with type 2 diabetes. The non-targeted metabolome analysis of fasting plasma samples using gas chromatography coupled with mass spectrometry and the measurement of brachial-ankle pulse wave velocity (baPWV) were performed. RESULTS A total of 65 annotated metabolites were detected. In the screening dataset, there were statistically significant associations between the baPWV and plasma levels of indoxyl sulfate (r = 0.226, p = 0.001), mannitol (r = 0.178, p = 0.010), mesoerythritol (r = 0.234, p = 0.001), and pyroglutamic acid (r = 0.182, p = 0.008). Multivariate regression analyses revealed that the plasma levels of mesoerythritol were significantly (β = 0.163, p = 0.025) and that of indoxyl sulfate were marginally (β = 0.124, p = 0.076) associated with baPWV, even after adjusting for traditional coronary risk factors. In the independent validation dataset, there was a statistically significant association between the baPWV and plasma levels of indoxyl sulfate (r = 0.430, p = 0.016). However, significant associations between the baPWV and plasma levels of the other three metabolites were not confirmed. CONCLUSIONS/INTERPRETATION The plasma levels of indoxyl sulfate were associated with arterial stiffness in Japanese patients with type 2 diabetes. Although the plasma levels of mannitol, mesoerythritol, and pyroglutamic acid were also associated with arterial stiffness, further investigation is needed to verify the results.
Collapse
Affiliation(s)
- Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Metabolism and Atherosclerosis, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Kazuo Omori
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naohiro Taya
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shoya Arakawa
- Laboratory of Bioresource Engineering, Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Mitsuyoshi Takahara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taka-Aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Masahiro Furuno
- Laboratory of Bioresource Engineering, Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Eiichiro Fukusaki
- Laboratory of Bioresource Engineering, Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
16
|
Razavi AC, Bazzano LA, He J, Li S, Fernandez C, Whelton SP, Krousel-Wood M, Nierenberg JL, Shi M, Li C, Mi X, Kinchen J, Kelly TN. Pseudouridine and N-formylmethionine associate with left ventricular mass index: Metabolome-wide association analysis of cardiac remodeling. J Mol Cell Cardiol 2020; 140:22-29. [PMID: 32057737 DOI: 10.1016/j.yjmcc.2020.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Heart failure (HF) is the fastest growing form of cardiovascular disease both nationally and globally, underlining a need to phenotype subclinical HF intermediaries to improve primary prevention. OBJECTIVES We aimed to identify novel metabolite associations with left ventricular (LV) remodeling, one upstream HF intermediary, among a community-based cohort of individuals. METHODS We examined 1052 Bogalusa Heart Study participants (34.98% African American, 57.41% female, aged 33.6-57.5 years). Measures of LV mass and relative wall thickness (RWT) were obtained using two-dimensional-guided echocardiographic measurements via validated eqs. LV mass was indexed to height2.7 to calculate left ventricular mass index (LVMI). Untargeted metabolomic analysis of fasting serum samples was conducted. In combined and ethnicity-stratified analyses, multivariable linear and multinomial logistic regression models tested the associations of metabolites with the continuous LVMI and RWT and categorical LV geometry phenotypes, respectively, after adjusting for demographic and traditional cardiovascular disease risk factors. RESULTS Pseudouridine (B = 1.38; p = 3.20 × 10-5) and N-formylmethionine (B = 1.65; 3.30 × 10-6) were significantly associated with LVMI in the overall sample as well significant in Caucasians, with consistent effect direction and nominal significance (p < .05) in African Americans. Upon exclusion of individuals with self-report myocardial infarction or congestive HF, we similarly observed a 1.33 g/m2.7 and 1.52 g/m2.7 higher LVMI for each standard deviation increase in pseudouridine and N-formylmethionine, respectively. No significant associations were observed for metabolites with RWT or categorical LV remodeling outcomes. CONCLUSIONS The current analysis identified novel associations of pseudouridine and N-formylmethionine with LVMI, suggesting that mitochondrial-derived metabolites may serve as early biomarkers for LV remodeling and subclinical HF.
Collapse
Affiliation(s)
- Alexander C Razavi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Shengxu Li
- Children's Minnesota Research Institute, Children's Hospitals & Clinics of Minnesota, Minneapolis, MN, United States of America
| | - Camilo Fernandez
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Seamus P Whelton
- The Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Marie Krousel-Wood
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Jovia L Nierenberg
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America
| | - Mengyao Shi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America
| | - Changwei Li
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA, United States of America
| | - Xuenan Mi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America
| | - Jason Kinchen
- Metabolon, Inc., Durham, NC, United States of America
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America.
| |
Collapse
|
17
|
Razavi AC, Bazzano LA, He J, Fernandez C, Whelton SP, Krousel-Wood M, Li S, Nierenberg JL, Shi M, Li C, Mi X, Kinchen J, Kelly TN. Novel Findings From a Metabolomics Study of Left Ventricular Diastolic Function: The Bogalusa Heart Study. J Am Heart Assoc 2020; 9:e015118. [PMID: 31992159 PMCID: PMC7033875 DOI: 10.1161/jaha.119.015118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Diastolic dysfunction is one important causal factor for heart failure with preserved ejection fraction, yet the metabolic signature associated with this subclinical phenotype remains unknown. Methods and Results Ultra‐high‐performance liquid chromatography–tandem mass spectroscopy was used to conduct untargeted metabolomic analysis of fasting serum samples in 1050 white and black participants of the BHS (Bogalusa Heart Study). After quality control, 1202 metabolites were individually tested for association with 5 echocardiographic measures of left ventricular diastolic function using multivariable‐adjusted linear regression. Measures of left ventricular diastolic function included the ratio of peak early filling velocity to peak late filling velocity, ratio of peak early filling velocity to mitral annular velocity, deceleration time, isovolumic relaxation time, and left atrial maximum volume index (LAVI). Analyses adjusted for multiple cardiovascular disease risk factors and used Bonferroni‐corrected alpha thresholds. Eight metabolites robustly associated with left ventricular diastolic function in the overall population and demonstrated consistent associations in white and black study participants. N‐formylmethionine (B=0.05; P=1.50×10−7); 1‐methylhistidine (B=0.05; P=1.60×10−7); formiminoglutamate (B=0.07; P=5.60×10−7); N2, N5‐diacetylornithine (B=0.05; P=1.30×10−7); N‐trimethyl 5‐aminovalerate (B=0.04; P=5.10×10−6); 5‐methylthioadenosine (B=0.04; P=1.40×10−5); and methionine sulfoxide (B=0.04; P=3.80×10−6) were significantly associated with the natural log of the ratio of peak early filling velocity to mitral annular velocity. Butyrylcarnitine (B=3.18; P=2.10×10−6) was significantly associated with isovolumic relaxation time. Conclusions The current study identified novel findings of metabolite associations with left ventricular diastolic function, suggesting that the serum metabolome, and its underlying biological pathways, may be implicated in heart failure with preserved ejection fraction pathogenesis.
Collapse
Affiliation(s)
- Alexander C Razavi
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA.,Department of Medicine Tulane University School of Medicine New Orleans LA
| | - Lydia A Bazzano
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA.,Department of Medicine Tulane University School of Medicine New Orleans LA
| | - Jiang He
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA.,Department of Medicine Tulane University School of Medicine New Orleans LA
| | - Camilo Fernandez
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA.,Department of Medicine Tulane University School of Medicine New Orleans LA
| | - Seamus P Whelton
- The Ciccarone Center for the Prevention of Heart Disease Johns Hopkins University School of Medicine Baltimore MD
| | - Marie Krousel-Wood
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA.,Department of Medicine Tulane University School of Medicine New Orleans LA
| | - Shengxu Li
- Children's Minnesota Research Institute Children's Hospitals & Clinics of Minnesota Minneapolis MN
| | - Jovia L Nierenberg
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA
| | - Mengyao Shi
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA
| | - Changwei Li
- Department of Epidemiology and Biostatistics University of Georgia College of Public Health Athens GA
| | - Xuenan Mi
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA
| | | | - Tanika N Kelly
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA
| |
Collapse
|
18
|
Cicero AF, Fogacci F, Desideri G, Grandi E, Rizzoli E, D’Addato S, Borghi C. Arterial Stiffness, Sugar-Sweetened Beverages and Fruits Intake in a Rural Population Sample: Data from the Brisighella Heart Study. Nutrients 2019; 11:nu11112674. [PMID: 31694231 PMCID: PMC6893603 DOI: 10.3390/nu11112674] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction: There is conflicting information linking fruit and fructose intake with cardiometabolic disorders. The main objective of our study was to evaluate the association between intake of fruits and sugar-sweetened beverages, and carotid-femoral pulse wave velocity (cfPWV), a non-invasive marker of arterial aging, in a large population sample. Methods: For this study, we selected four age and sex-matched subgroups from the last Brisighella Heart Study population survey, after exclusion of those in secondary prevention for cardiovascular diseases, affected by gout and moderate-to-severe chronic kidney disease (defined as eGFR < 60 mL/min), and/or actively treated with direct vasodilating drugs (calcium-antagonists, alpha-blockers, nitrates). The remaining subjects were classified into four groups: (1) low fruit and low sugar-sweetened beverage intake (LFLB), (2) high fruit and low sugar-sweetened beverage intake (HFLB), (3) low fruit and high sugar-sweetened beverage intake (LFHB), (4) high fruit and high sugar-sweetened beverage intake (HFHB). Results: CfPWV was significantly elevated in subjects consuming a higher fructose load, particularly when it was derived from industrially sweetened beverages (pooled LFHB & HFHB: 9.6 ± 2.3 m/s; pooled LFLB & HFLB: 8.6 ± 2.3 m/s, p < 0.001). Moreover, the main predictors of cfPWV values were serum uric acid (B = 0.391, 95%CI 0.321–0.486, p = 0.001), fructose load from both fruits and sugar-sweetened beverages (B = 0.310, 95%CI 0.099–0.522, p = 0.004), triglycerides (B = 0.228, 95%CI 0.117–0.389, p = 0.018), fasting plasma glucose (B = 0.015, 95%CI 0.008–0.022, p < 0.001) and estimated Glomerular Filtration Rate (B = −0.043, 95%CI −0.052–−0.035, p < 0.001). Conclusion: our data suggest that increased intake of fructose derived from industrial sweetened beverages, though not from fruits, is associated with higher pulse wave velocity.
Collapse
Affiliation(s)
- Arrigo F.G. Cicero
- Hypertension and Atherosclerosis Research Group, Medical and Surgical Sciences Department; Sant’Orsola-Malpighi University Hospital, Building 2–IV Floor, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (E.G.); (E.R.); (S.D.); (C.B.)
- Correspondence: ; Tel.: +39-512142224; Fax: +39-51390646
| | - Federica Fogacci
- Hypertension and Atherosclerosis Research Group, Medical and Surgical Sciences Department; Sant’Orsola-Malpighi University Hospital, Building 2–IV Floor, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (E.G.); (E.R.); (S.D.); (C.B.)
| | - Giovambattista Desideri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Coppito, 67100 L’Aquila, Italy;
| | - Elisa Grandi
- Hypertension and Atherosclerosis Research Group, Medical and Surgical Sciences Department; Sant’Orsola-Malpighi University Hospital, Building 2–IV Floor, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (E.G.); (E.R.); (S.D.); (C.B.)
| | - Elisabetta Rizzoli
- Hypertension and Atherosclerosis Research Group, Medical and Surgical Sciences Department; Sant’Orsola-Malpighi University Hospital, Building 2–IV Floor, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (E.G.); (E.R.); (S.D.); (C.B.)
| | - Sergio D’Addato
- Hypertension and Atherosclerosis Research Group, Medical and Surgical Sciences Department; Sant’Orsola-Malpighi University Hospital, Building 2–IV Floor, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (E.G.); (E.R.); (S.D.); (C.B.)
| | - Claudio Borghi
- Hypertension and Atherosclerosis Research Group, Medical and Surgical Sciences Department; Sant’Orsola-Malpighi University Hospital, Building 2–IV Floor, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (E.G.); (E.R.); (S.D.); (C.B.)
| |
Collapse
|
19
|
Zhou X, Li Z, Wang X, Jiang G, Shan C, Liu S. Metabolomics reveals the effect of valproic acid on MCF-7 and MDA-MB-231 cells. Xenobiotica 2019; 50:252-260. [PMID: 31092106 DOI: 10.1080/00498254.2019.1618510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1. Breast cancer is one of the most common malignancies in women worldwide. Metabolomics has been shown to be a promising strategy to elucidate the underlying pathogenesis of cancer and identify new targets for cancer diagnosis and therapy. Valproic acid (VPA), a histone deacetylase inhibitor, is a potential new drug in tumor therapy. This work used metabolomics to examine the effect of VPA on metabolism in breast cancer cells.2. Based on UPLC-MS/MS, we identified 3137 differential metabolites in human breast cancer MCF-7 cells and 2472 differential metabolites in human breast cancer MDA-MB-231 cells after VPA treatment.3. We selected 63 differential metabolites from MCF-7 samples and 61 differential metabolites from MDA-MB-231 cells with the more conspicuous changing trend. Furfural was up-regulated after VPA treatment in both cell lines. In both samples, VPA exerted an effect on the beta-alanine metabolism pathway and the taurine and hypotaurine metabolism pathway.4. This study identified the effect of VPA on metabolites and metabolic pathways in breast cancer cells, and these findings may contribute to the identification of new targets for breast cancer treatment.
Collapse
Affiliation(s)
- Xingzhi Zhou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, PR China.,Department of Biology, Life Science and Technology College, Dalian University, Dalian, PR China
| | - Zhen Li
- The Fist Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, PR China
| | - Xuanyu Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, PR China
| | - Ge Jiang
- Department of Biology, Life Science and Technology College, Dalian University, Dalian, PR China
| | - Changliang Shan
- The Fist Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, PR China.,State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, PR China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, PR China.,Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Dalian University, Dalian, PR China
| |
Collapse
|