1
|
Vosburgh DJH, Cauda E, O’Shaughnessy PT, Sheehan MJ, Park JH, Anderson K. Direct-reading instruments for aerosols: A review for occupational health and safety professionals part 1: Instruments and good practices. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:696-705. [PMID: 36197119 PMCID: PMC10679882 DOI: 10.1080/15459624.2022.2132255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With advances in technology, there are an increasing number of direct-reading instruments available to occupational health and safety professionals to evaluate occupational aerosol exposures. Despite the wide array of direct-reading instruments available to professionals, the adoption of direct-reading technology to monitor workplace exposures has been limited, partly due to a lack of knowledge on how the instruments operate, how to select an appropriate instrument, and challenges in data analysis techniques. This paper presents a review of direct-reading aerosol instruments available to occupational health and safety professionals, describes the principles of operation, guides instrument selection based on the workplace and exposure, and discusses data analysis techniques to overcome these barriers to adoption. This paper does not cover all direct-reading instruments for aerosols but only those that an occupational health and safety professional could use in a workplace to evaluate exposures. Therefore, this paper focuses on instruments that have the most potential for workplace use due to their robustness, past workplace use, and price with regard to return on investment. The instruments covered in this paper include those that measure aerosol number concentration, mass concentration, and aerosol size distributions.
Collapse
Affiliation(s)
- Donna J. H. Vosburgh
- Department of Occupational & Environmental Safety & Health, University of Wisconsin-Whitewater, Whitewater, Wisconsin
| | - Emanuele Cauda
- Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Pittsburgh, Pennsylvania
| | | | - Maura J. Sheehan
- Department of Health, West Chester University, West Chester, Pennsylvania
| | - Jae Hong Park
- School of Health Sciences, Purdue University, West Lafayette, Indiana
| | - Kimberly Anderson
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
2
|
Exposure to Ultrafine Particles in the Ferroalloy Industry Using a Logbook Method. NANOMATERIALS 2020; 10:nano10122546. [PMID: 33348887 PMCID: PMC7766956 DOI: 10.3390/nano10122546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
Background: It is difficult to assess workers’ exposure to ultrafine particles (UFP) due to the lack of personal sampling equipment available for this particle fraction. The logbook method has been proposed as a general method for exposure assessment. This method measures the time and concentration components of the time-weighted average concentration separately and could be suitable for investigation of UFP exposure. Objectives: In this study, we have assessed workers’ exposure to UFP in a ferrosilicon plant. The main tasks of the furnace workers were identified, and the logbook method was used in combination with stationary measurements of UFP taken as close to the identified task areas as possible. In order to verify the results, respirable particles were collected using stationary sampling in close proximity to the UFP measuring instrument, and personal full-shift sampling of respirable particles was performed simultaneously. Thus, exposure to respirable particles determined using the logbook method could be compared to the results of standard measurement. Methods: The particle number concentration of ultrafine particles was determined using a NanoScan SMPS. Respirable particle concentration and exposure were determined using a sampling train consisting of a pump, filter, filter cassettes, and SKC Cyclone for the respirable fraction. Attendance times for workers at each work location were registered via thorough observations made by the research team. Results: The logbook method for exposure estimation based on stationary sampling equipment made it possible to calculate UFP exposure for workers operating the furnaces at a ferrosilicon plant. The mid-size furnace and the large furnace were evaluated separately. The workers operating the largest furnace were exposed to 1.47 × 104 particles/cm3, while workers operating the mid-size furnace were exposed to 2.06 × 104 particles/cm3, with a mean of 1.74 × 104 particles/cm3. Substantial contributions from the casting area, ladle transport corridor, and both tapping areas were made. Exposure to respirable particles was 2.04 mg/m3 (logbook); 2.26 mg/m3 (personal sampling) for workers operating the large-sized furnace, 3.24 mg/m3 (logbook); 2.44 mg/m3 (personal sampling) for workers operating the medium-sized furnace, and 2.57 mg/m3 (logbook); 2.53 mg/m3(personal sampling) on average of all tappers. The average ratio of these two methods’ results was 1.02, which indicates that the logbook method could be used as a substitute for personal sampling when it is not possible to perform personal sampling, at least within this industry. Conclusions: The logbook method is a useful supplement for exposure assessment of UFP, able to identify the most polluted areas of the workplace and the contribution of different work tasks to the total exposure of workers, enabling companies to take action to reduce exposure.
Collapse
|
3
|
Boccuni F, Ferrante R, Tombolini F, Natale C, Gordiani A, Sabella S, Iavicoli S. Occupational exposure to graphene and silica nanoparticles. Part I: workplace measurements and samplings. Nanotoxicology 2020; 14:1280-1300. [DOI: 10.1080/17435390.2020.1834634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fabio Boccuni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| | - Riccardo Ferrante
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| | - Francesca Tombolini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| | - Claudio Natale
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| | - Andrea Gordiani
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| | - Stefania Sabella
- Department of Drug Discovery and Development, Italian Institute of Technology (IIT), Genova, Italy
| | - Sergio Iavicoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| |
Collapse
|
4
|
Bau S, Rousset D, Payet R, Keller FX. Characterizing particle emissions from a direct energy deposition additive manufacturing process and associated occupational exposure to airborne particles. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2020; 17:59-72. [PMID: 31829796 DOI: 10.1080/15459624.2019.1696969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study aims to characterize airborne particles emitted from a metal additive manufacturing machine and related levels of occupational exposure. To achieve this, a complete measurement methodology was deployed around a direct energy deposition machine. Different operating conditions were investigated, based on configurations of two materials and two injection nozzles. Two replicates were performed for each condition. Airborne particles emitted during repeated manufacturing cycles were measured simultaneously at the source, in the near field, in the far field and on the operator. Real-time instruments were used to characterize the machine emissions (10 nm-10 µm) associated with respirable and inhalable samplers and cascade impactors. Measurements were made during both the manufacturing process and transient operating phases. In parallel, personal exposure to hexavalent chromium was assessed. The number of particles measured for the different machining phases show that high levels of particles (> 5 × 105 # cm-3, 0.3-1.3 mg m-3 inhalable particles, 0.2-6 µg m-3 CrVI) were emitted in the machine enclosure. The size distributions indicate that more than 90% of the particles are smaller than 250 nm. Occupational exposure to CrVI was found to be below the LOQ of 0.098 µg m-3 for the two alloys investigated. During the machining process, near-field number and mass concentrations were ∼ 104 # cm-3, and below 0.04 mg m-3, respectively. Far-field number concentrations were also on the order of 104 # cm-3 throughout the whole monitoring period. The transient phase of door opening was found to result in high levels of exposure (> 105 # cm-3), which were also detected in the near-field, confirming the need to implement preventative actions. To address this issue, a collective protective measure, consisting of setting a time delay of about 8 min between the end of the manufacturing process and opening of the door, could be employed. This collective measure should also be accompanied by the wearing of personal protective equipment by the operator when an intervention in the machine enclosure is necessary.
Collapse
Affiliation(s)
- Sébastien Bau
- Department of Pollutant Metrology, Institut National de Recherche et de Sécurité, Vandoeuvre, France
| | - Davy Rousset
- Department of Pollutant Metrology, Institut National de Recherche et de Sécurité, Vandoeuvre, France
| | - Raphaël Payet
- Department of Pollutant Metrology, Institut National de Recherche et de Sécurité, Vandoeuvre, France
| | - François-Xavier Keller
- Department of Process Engineering, Institut National de Recherche et de Sécurité, Vandoeuvre, France
| |
Collapse
|
5
|
Comparison of four nanoparticle monitoring instruments relevant for occupational hygiene applications. J Occup Med Toxicol 2019; 14:28. [PMID: 31798666 PMCID: PMC6882232 DOI: 10.1186/s12995-019-0247-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/23/2019] [Indexed: 11/10/2022] Open
Abstract
Background The aim of this study is to make a comparison of a new small sized nanoparticle monitoring instrument, Nanoscan SMPS, with more traditional large size instruments, known to be precise and accurate [Scanning Mobility Particle Sampler (SMPS) and Fast Mobility Particle Sizer (FMPS)], and with an older small size instrument with bulk measurements of 10-1000 nm particles (CPC3007). The comparisons are made during simulated exposure scenarios relevant to occupational hygiene studies. Methods Four scenarios were investigated: metal inert gas (MIG) welding, polyvinyl chloride (PVC) welding, cooking, and candle-burning. Ratios between results are compaed and Pearsson correlations analysis was performed. Results The highest correlation between the results is found between Nanoscan and SMPS, with Pearsson correlation coefficients above 0.9 for all scenarios. However, Nanoscan tended to overestimate the results from the SMPS; the ratio between the UFP concentrations vary between 1.44 and 2.01, and ratios of total concentrations between 1.18 and 2.33. CPC 3007 did not show comparable results with the remaining instruments. Conclusion Based on the results of this study, the choice of measurement equipment may be crucial when evaluating measurement results against a reference value or a limit value for nanoparticle exposure. This stresses the need for method development, standardisation, and harmonisation of particle sampling protocols before reference values are introduced. Until this is established, the SMPS instruments are the most reliable for quantification of the concentrations of UFP, but in a more practical occupational hygiene context, the Nanoscan SMPS should be further tested.
Collapse
|
6
|
Keyter M, Van Der Merwe A, Franken A. Particle size and metal composition of gouging and lancing fumes. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:643-655. [PMID: 31361583 DOI: 10.1080/15459624.2019.1639719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal gouging and lancing liberate particles of an unknown size and composition. Fumes are formed when vaporized materials condense in air, creating fine and ultrafine particles which can agglomerate. Particle sizes may be <1 µm in diameter. Inhalation of this mixture of metal fumes can lead to adverse health effects. This study characterized fumes by particle size fractions and metal composition. As particles may be in the submicron range, the nano-size fraction was included. Randomized, side-by-side area samples of fumes liberated during gouging and lancing were collected. Samplers included the conductive plastic Institute of Occupational Medicine (IOM) samplers (inhalable fraction), GK2.69 stainless steel thoracic cyclones (thoracic fraction), aluminum respirable cyclones (respirable fraction), Nanoparticle Respiratory Deposition (NRD) samplers (nano-size fraction), and open-face filter cassettes (particle size distribution-PSD). Samplers were mounted at a height of between 1.3 m and 1.7 m, in the worst-case scenario area (down-wind). Forty-six samples were collected during gouging and 26 during lancing. Mass concentrations per fraction ranges (excluding nano-size) were found to be 1.27-17.27 mg/m3 (inhalable), 1.83-13.96 mg/m3 (thoracic) and 0.88-15.82 mg/m3 (respirable) for gouging; and 2.34-5.60 mg/m3 (inhalable), 2.82-4.01 mg/m3 (thoracic), and 1.89-3.24 mg/m3 (respirable) for lancing. PSD analysis confirmed the presence of nano-size particles with a mean size of 171.76 (±56.27) nm during gouging and 32.33 (±7.17) nm during lancing. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis of samples indicated the presence of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and tin (Sn) in the respective particle size fractions (including nano-size) of both processes. Negative health effects associated with metal inhalation are well known, while nanoparticles' unique properties enable them to cause further detrimental health effects. The nano-size fraction should be included in personal exposure assessments and control measures.
Collapse
Affiliation(s)
| | - Alicia Van Der Merwe
- Occupational Hygiene and Health Research Initiative (OHHRI), Faculty of Health Sciences, North-West University , Potchefstroom , South Africa
| | - Anja Franken
- Occupational Hygiene and Health Research Initiative (OHHRI), Faculty of Health Sciences, North-West University , Potchefstroom , South Africa
| |
Collapse
|
7
|
Dahm MM, Evans DE, Bertke S, Grinshpun SA. Evaluation of total and inhalable samplers for the collection of carbon nanotube and carbon nanofiber aerosols. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2019; 53:958-970. [PMID: 35392279 PMCID: PMC8985588 DOI: 10.1080/02786826.2019.1618437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 06/14/2023]
Abstract
A growing number of carbon nanotubes and nanofibers (CNT/F) exposure and epidemiologic studies have utilized 25-mm and 37-mm open-faced cassettes (OFC) to assess the inhalable aerosol fraction. It has been previously established that the 37-mm OFC under-samples particles greater than 20 μm in diameter, but the size-selective characteristics of the 25-mm OFC have not yet been fully evaluated. This article describes an experimental study conducted to determine if the 25- and 37-mm OFCs performed with relative equivalence to a reference inhalable aerosol sampler when challenged with CNT/F particles. Side-by-side paired samples were collected within a small Venturi chamber using a 25-mm styrene OFC, 37-mm styrene OFC, 25-mm aluminum OFC, and Button Inhalable Aerosol Sampler. Three types of CNT/F materials and an Arizona road dust were used as challenge aerosols for the various sampler configurations. Repeated experiments were conducted for each sampler configuration and material. The OFC samplers operated at flow rates of 2 and 5 liters per minute. Results showed that the 25-mm OFC performed comparably to the Button Sampler when challenged with CNT/F aerosols, which was demonstrated in five of the six experimental scenarios with an average error of 20%. Overall, the results of this study indicate that the sampling efficiency of the 25- and 37-mm OFCs adequately followed the ISO/ACGIH/CEN inhalable sampling convention when challenged with CNT/F aerosols. Past exposure and epidemiologic studies that used these OFC samplers can directly compare their results to studies that have used other validated inhalable aerosol samplers.
Collapse
Affiliation(s)
- Matthew M. Dahm
- Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA
| | - Douglas E. Evans
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, Cincinnati, OH 45226, USA
| | - Stephen Bertke
- Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA
| | - Sergey A. Grinshpun
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267, USA
| |
Collapse
|
8
|
Beard JD, Erdely A, Dahm MM, de Perio MA, Birch ME, Evans DE, Fernback JE, Eye T, Kodali V, Mercer RR, Bertke SJ, Schubauer-Berigan MK. Carbon nanotube and nanofiber exposure and sputum and blood biomarkers of early effect among U.S. workers. ENVIRONMENT INTERNATIONAL 2018; 116:214-228. [PMID: 29698898 PMCID: PMC5970999 DOI: 10.1016/j.envint.2018.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 04/01/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Carbon nanotubes and nanofibers (CNT/F) are increasingly used for diverse applications. Although animal studies suggest CNT/F exposure may cause deleterious health effects, human epidemiological studies have typically been small, confined to single workplaces, and limited in exposure assessment. OBJECTIVES We conducted an industrywide cross-sectional epidemiological study of 108 workers from 12 U.S. sites to evaluate associations between occupational CNT/F exposure and sputum and blood biomarkers of early effect. METHODS We assessed CNT/F exposure via personal breathing zone, filter-based air sampling to measure background-corrected elemental carbon (EC) (a CNT/F marker) mass and microscopy-based CNT/F structure count concentrations. We measured 36 sputum and 37 blood biomarkers. We used factor analyses with varimax rotation to derive factors among sputum and blood biomarkers separately. We used linear, Tobit, and unconditional logistic regression models to adjust for potential confounders and evaluate associations between CNT/F exposure and individual biomarkers and derived factors. RESULTS We derived three sputum and nine blood biomarker factors that explained 78% and 67%, respectively, of the variation. After adjusting for potential confounders, inhalable EC and total inhalable CNT/F structures were associated with the most sputum and blood biomarkers, respectively. Biomarkers associated with at least three CNT/F metrics were 72 kDa type IV collagenase/matrix metalloproteinase-2 (MMP-2), interleukin-18, glutathione peroxidase (GPx), myeloperoxidase, and superoxide dismutase (SOD) in sputum and MMP-2, matrix metalloproteinase-9, metalloproteinase inhibitor 1/tissue inhibitor of metalloproteinases 1, 8-hydroxy-2'-deoxyguanosine, GPx, SOD, endothelin-1, fibrinogen, intercellular adhesion molecule 1, vascular cell adhesion protein 1, and von Willebrand factor in blood, although directions of associations were not always as expected. CONCLUSIONS Inhalable rather than respirable CNT/F was more consistently associated with fibrosis, inflammation, oxidative stress, and cardiovascular biomarkers.
Collapse
Affiliation(s)
- John D Beard
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA; Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA.
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Matthew M Dahm
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Marie A de Perio
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - M Eileen Birch
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Douglas E Evans
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Joseph E Fernback
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Tracy Eye
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Robert R Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stephen J Bertke
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Mary K Schubauer-Berigan
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| |
Collapse
|
9
|
Schubauer-Berigan MK, Dahm MM, Erdely A, Beard JD, Eileen Birch M, Evans DE, Fernback JE, Mercer RR, Bertke SJ, Eye T, de Perio MA. Association of pulmonary, cardiovascular, and hematologic metrics with carbon nanotube and nanofiber exposure among U.S. workers: a cross-sectional study. Part Fibre Toxicol 2018; 15:22. [PMID: 29769147 PMCID: PMC5956815 DOI: 10.1186/s12989-018-0258-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/07/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Commercial use of carbon nanotubes and nanofibers (CNT/F) in composites and electronics is increasing; however, little is known about health effects among workers. We conducted a cross-sectional study among 108 workers at 12 U.S. CNT/F facilities. We evaluated chest symptoms or respiratory allergies since starting work with CNT/F, lung function, resting blood pressure (BP), resting heart rate (RHR), and complete blood count (CBC) components. METHODS We conducted multi-day, full-shift sampling to measure background-corrected elemental carbon (EC) and CNT/F structure count concentrations, and collected induced sputum to measure CNT/F in the respiratory tract. We measured (nonspecific) fine and ultrafine particulate matter mass and count concentrations. Concurrently, we conducted physical examinations, BP measurement, and spirometry, and collected whole blood. We evaluated associations between exposures and health measures, adjusting for confounders related to lifestyle and other occupational exposures. RESULTS CNT/F air concentrations were generally low, while 18% of participants had evidence of CNT/F in sputum. Respiratory allergy development was positively associated with inhalable EC (p=0.040) and number of years worked with CNT/F (p=0.008). No exposures were associated with spirometry-based metrics or pulmonary symptoms, nor were CNT/F-specific metrics related to BP or most CBC components. Systolic BP was positively associated with fine particulate matter (p-values: 0.015-0.054). RHR was positively associated with EC, at both the respirable (p=0.0074) and inhalable (p=0.0026) size fractions. Hematocrit was positively associated with the log of CNT/F structure counts (p=0.043). CONCLUSIONS Most health measures were not associated with CNT/F. The positive associations between CNT/F exposure and respiratory allergies, RHR, and hematocrit counts may not be causal and require examination in other studies.
Collapse
Affiliation(s)
- Mary K. Schubauer-Berigan
- National Institute for Occupational Safety and Health (NIOSH), Division of Surveillance, Hazard Evaluations, and Field Studies, 1090 Tusculum Ave MS-R15, Cincinnati, OH 45226 USA
| | - Matthew M. Dahm
- National Institute for Occupational Safety and Health (NIOSH), Division of Surveillance, Hazard Evaluations, and Field Studies, 1090 Tusculum Ave MS-R15, Cincinnati, OH 45226 USA
| | - Aaron Erdely
- NIOSH, Health Effects Laboratory Division, Morgantown, WV USA
| | - John D. Beard
- National Institute for Occupational Safety and Health (NIOSH), Division of Surveillance, Hazard Evaluations, and Field Studies, 1090 Tusculum Ave MS-R15, Cincinnati, OH 45226 USA
- Centers for Disease Control and Prevention, Epidemic Intelligence Service, Atlanta, GA USA
- Present address: Department of Public Health, College of Life Sciences, Brigham Young University, Provo, UT USA
| | - M. Eileen Birch
- NIOSH, Division of Applied Research and Technology, Cincinnati, OH USA
| | - Douglas E. Evans
- NIOSH, Division of Applied Research and Technology, Cincinnati, OH USA
| | | | | | - Stephen J. Bertke
- National Institute for Occupational Safety and Health (NIOSH), Division of Surveillance, Hazard Evaluations, and Field Studies, 1090 Tusculum Ave MS-R15, Cincinnati, OH 45226 USA
| | - Tracy Eye
- NIOSH, Health Effects Laboratory Division, Morgantown, WV USA
| | - Marie A. de Perio
- National Institute for Occupational Safety and Health (NIOSH), Division of Surveillance, Hazard Evaluations, and Field Studies, 1090 Tusculum Ave MS-R15, Cincinnati, OH 45226 USA
| |
Collapse
|
10
|
Fent KW, Evans DE, Babik K, Striley C, Bertke S, Kerber S, Smith D, Horn GP. Airborne contaminants during controlled residential fires. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2018; 15:399-412. [PMID: 29494297 DOI: 10.1080/15459624.2018.1445260] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this study, we characterize the area and personal air concentrations of combustion byproducts produced during controlled residential fires with furnishings common in 21st century single family structures. Area air measurements were collected from the structure during active fire and overhaul (post suppression) and on the fireground where personnel were operating without any respiratory protection. Personal air measurements were collected from firefighters assigned to fire attack, victim search, overhaul, outside ventilation, and command/pump operator positions. Two different fire attack tactics were conducted for the fires (6 interior and 6 transitional) and exposures were compared between the tactics. For each of the 12 fires, firefighters were paired up to conduct each job assignment, except for overhaul that was conducted by 4 firefighters. Sampled compounds included polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs, e.g., benzene), hydrogen cyanide (HCN), and particulate (area air sampling only). Median personal air concentrations for the attack and search firefighters were generally well above applicable short-term occupational exposure limits, with the exception of HCN measured from search firefighters. Area air concentrations of all measured compounds decreased after suppression. Personal air concentrations of total PAHs and benzene measured from some overhaul firefighters exceeded exposure limits. Median personal air concentrations of HCN (16,300 ppb) exceeded the exposure limit for outside vent firefighters, with maximum levels (72,900 ppb) higher than the immediately dangerous to life and health (IDLH) level. Median air concentrations on the fireground (including particle count) were above background levels and highest when collected downwind of the structure and when ground-level smoke was the heaviest. No statistically significant differences in personal air concentrations were found between the 2 attack tactics. The results underscore the importance of wearing self-contained breathing apparatus when conducting overhaul or outside ventilation activities. Firefighters should also try to establish command upwind of the structure fire, and if this cannot be done, respiratory protection should be considered.
Collapse
Affiliation(s)
- Kenneth W Fent
- a Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health (NIOSH) , Cincinnati , Ohio
| | - Douglas E Evans
- b Division of Applied Research and Technology, NIOSH , Cincinnati , Ohio
| | - Kelsey Babik
- a Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health (NIOSH) , Cincinnati , Ohio
| | - Cynthia Striley
- b Division of Applied Research and Technology, NIOSH , Cincinnati , Ohio
| | - Stephen Bertke
- a Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health (NIOSH) , Cincinnati , Ohio
| | - Steve Kerber
- c Firefighter Safety Research Institute, Underwriters Laboratories , Columbia , Maryland
| | - Denise Smith
- d Health and Exercise Sciences Department , Skidmore College , Saratoga Springs , New York
- e Illinois Fire Service Institute, University of Illinois at Urbana-Champaign , Urbana-Champaign , Illinois
| | - Gavin P Horn
- e Illinois Fire Service Institute, University of Illinois at Urbana-Champaign , Urbana-Champaign , Illinois
| |
Collapse
|
11
|
Jørgensen RB, Kero IT. Real-Time Measurements and Characterization of Airborne Particulate Matter from a Primary Silicon Carbide Production Plant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121611. [PMID: 29261158 PMCID: PMC5751027 DOI: 10.3390/ijerph14121611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 11/18/2022]
Abstract
Airborne particulate matter in the silicon carbide (SiC) industry is a known health hazard. The aims of this study were to elucidate whether the particulate matter generated inside the Acheson furnace during active operation is representative of the overall particulate matter in the furnace hall, and whether the Acheson furnaces are the main sources of ultrafine particles (UFP) in primary SiC production. The number concentration of ultrafine particles was evaluated using an Electrical Low Pressure Impactor (ELPITM, Dekati Ltd., Tampere, Finland), a Fast Mobility Particle Sizer (FMPSTM, TSI, Shoreview, MN, USA) and a Condensation Particle Counter (CPC, TSI, Shoreview, MN, USA). The results are discussed in terms of particle number concentration, particle size distribution and are also characterized by means of electron microscopy (TEM/SEM). Two locations were investigated; the industrial Acheson process furnace hall and a pilot furnace hall; both of which represent an active operating furnace. The geometric mean of the particle number concentration in the Acheson process furnace hall was 7.7 × 104 particles/cm3 for the UFP fraction and 1.0 × 105 particles/cm3 for the submicrometre fraction. Particulate matter collected at the two sites was analysed by electron microscopy. The PM from the Acheson process furnace hall is dominated by carbonaceous particles while the samples collected near the pilot furnace are primarily rich in silicon.
Collapse
Affiliation(s)
- Rikke Bramming Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Ida Teresia Kero
- Department of Industrial Process Technology, SINTEF Materials and Chemistry, P.O. Box. 4760, NO-7465 Trondheim, Norway.
| |
Collapse
|
12
|
Lo LM, Tsai CSJ, Heitbrink WA, Dunn KH, Topmiller J, Ellenbecker M. Particle Emissions from Laboratory Activities Involving Carbon Nanotubes. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2017; 18:293. [PMID: 29056867 PMCID: PMC5645031 DOI: 10.1007/s11051-017-3990-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20-30 nm diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high aspect ratio particles were identified as being released from some activities. The EC concentration at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating and cutting. Various sampling methods all indicated different levels of CNTs from the activities, however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.
Collapse
Affiliation(s)
- Li-Ming Lo
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Division of Applied Research and Technology (DART), Cincinnati, OH 45226
| | - Candace S.-J. Tsai
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, CO 80528
| | | | - Kevin H. Dunn
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Division of Applied Research and Technology (DART), Cincinnati, OH 45226
| | - Jennifer Topmiller
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Division of Applied Research and Technology (DART), Cincinnati, OH 45226
| | | |
Collapse
|
13
|
Boyes WK, Thornton BLM, Al-Abed SR, Andersen CP, Bouchard DC, Burgess RM, Hubal EAC, Ho KT, Hughes MF, Kitchin K, Reichman JR, Rogers KR, Ross JA, Rygiewicz PT, Scheckel KG, Thai SF, Zepp RG, Zucker RM. A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit Rev Toxicol 2017; 47:767-810. [DOI: 10.1080/10408444.2017.1328400] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- William K. Boyes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Brittany Lila M. Thornton
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Souhail R. Al-Abed
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Christian P. Andersen
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Dermont C. Bouchard
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Robert M. Burgess
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Elaine A. Cohen Hubal
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kay T. Ho
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Michael F. Hughes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kirk Kitchin
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jay R. Reichman
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Kim R. Rogers
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jeffrey A. Ross
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Paul T. Rygiewicz
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Kirk G. Scheckel
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Sheau-Fung Thai
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Richard G. Zepp
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Robert M. Zucker
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
14
|
Kuijpers E, Bekker C, Brouwer D, le Feber M, Fransman W. Understanding workers' exposure: Systematic review and data-analysis of emission potential for NOAA. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2017; 14:349-359. [PMID: 27801630 DOI: 10.1080/15459624.2016.1252843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exposure assessment for nano-objects, and their aggregates and agglomerates (NOAA), has evolved from explorative research toward more comprehensive exposure assessment, providing data to further develop currently used conservative control banding (CB) tools for risk assessment. This study aims to provide an overview of current knowledge on emission potential of NOAA across the occupational life cycle stages by a systematic review and subsequently use the results in a data analysis. Relevant parameters that influence emission were collected from peer-reviewed literature with a focus on the four source domains (SD) in the source-receptor conceptual framework for NOAA. To make the reviewed exposure data comparable, we applied an approach to normalize for workplace circumstances and measurement location, resulting in comparable "surrogate" emission levels. Finally, descriptive statistics were performed. During the synthesis of nanoparticles (SD1), mechanical reduction and gas phase synthesis resulted in the highest emission compared to wet chemistry and chemical vapor condensation. For the handling and transfer of bulk manufactured nanomaterial powders (SD2) the emission could be differentiated for five activity classes: (1) harvesting; (2) dumping; (3); mixing; (4) cleaning of a reactor; and (5) transferring. Additionally, SD2 was subdivided by the handled amount with cleaning further subdivided by energy level. Harvesting and dumping resulted in the highest emissions. Regarding processes with liquids (SD3b), it was possible to distinguish emissions for spraying (propellant gas, (high) pressure and pump), sonication and brushing/rolling. The highest emissions observed in SD3b were for propellant gas spraying and pressure spraying. The highest emissions for the handling of nano-articles (SD4) were found to nano-sized particles (including NOAA) for grinding. This study provides a valuable overview of emission assessments performed in the workplace during the occupational handling of NOAA. Analyses were made per source domain to derive emission levels which can be used for models to quantitatively predict the exposure.
Collapse
Affiliation(s)
| | - C Bekker
- a TNO , Zeist , The Netherlands
- b Institute for Risk Assessment Sciences (IRAS), Molecular Epidemiology and Risk Assessment Utrecht , Utrecht , The Netherlands
| | - D Brouwer
- a TNO , Zeist , The Netherlands
- c School of Public Health, Faculty of Health Sciences, University of the Witwatersrand Johannesburg, RSA , Johannesburg , South Africa
| | | | | |
Collapse
|
15
|
Kuempel ED, Jaurand MC, Møller P, Morimoto Y, Kobayashi N, Pinkerton KE, Sargent LM, Vermeulen RCH, Fubini B, Kane AB. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol 2017; 47:1-58. [PMID: 27537422 PMCID: PMC5555643 DOI: 10.1080/10408444.2016.1206061] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based on the animal data. In this paper, we provide an extended, in-depth examination of the in vivo and in vitro experimental studies according to current hypotheses on the carcinogenicity of inhaled particles and fibers. We cite additional studies of CNTs that were not available at the time of the IARC meeting in October 2014, and extend our evaluation to include carbon nanofibers (CNFs). Finally, we identify key data gaps and suggest research needs to reduce uncertainty. The focus of this review is on the cancer risk to workers exposed to airborne CNT or CNF during the production and use of these materials. The findings of this review, in general, affirm those of the original evaluation on the inadequate or limited evidence of carcinogenicity for most types of CNTs and CNFs at this time, and possible carcinogenicity of one type of CNT (MWCNT-7). The key evidence gaps to be filled by research include: investigation of possible associations between in vitro and early-stage in vivo events that may be predictive of lung cancer or mesothelioma, and systematic analysis of dose-response relationships across materials, including evaluation of the influence of physico-chemical properties and experimental factors on the observation of nonmalignant and malignant endpoints.
Collapse
Affiliation(s)
- Eileen D Kuempel
- a National Institute for Occupational Safety and Health , Cincinnati , OH , USA
| | - Marie-Claude Jaurand
- b Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche , UMR 1162 , Paris , France
- c Labex Immuno-Oncology, Sorbonne Paris Cité, University of Paris Descartes , Paris , France
- d University Institute of Hematology, Sorbonne Paris Cité, University of Paris Diderot , Paris , France
- e University of Paris 13, Sorbonne Paris Cité , Saint-Denis , France
| | - Peter Møller
- f Department of Public Health , University of Copenhagen , Copenhagen , Denmark
| | - Yasuo Morimoto
- g Department of Occupational Pneumology , University of Occupational and Environmental Health , Kitakyushu City , Japan
| | | | - Kent E Pinkerton
- i Center for Health and the Environment, University of California , Davis , California , USA
| | - Linda M Sargent
- j National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Roel C H Vermeulen
- k Institute for Risk Assessment Sciences, Utrecht University , Utrecht , The Netherlands
| | - Bice Fubini
- l Department of Chemistry and "G.Scansetti" Interdepartmental Center , Università degli Studi di Torino , Torino , Italy
| | - Agnes B Kane
- m Department of Pathology and Laboratory Medicine , Brown University , Providence , RI , USA
| |
Collapse
|
16
|
Muñoz C, Droppelmann A, Erazo M, Aceituno P, Orellana C, Parro J, Mesias S, Marchetti N, Navas-Acien A, Iglesias V. Occupational exposure to polycyclic aromatic hydrocarbons: A cross-sectional study in bars and restaurants in Santiago, Chile. Am J Ind Med 2016; 59:887-96. [PMID: 27345600 PMCID: PMC5026561 DOI: 10.1002/ajim.22616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate indoor polycyclic aromatic hydrocarbon (PAH) concentrations in bars and restaurants and identify the main determinants of airborne PAH concentrations. METHODS This study included 57 bars/restaurants in Santiago, Chile. PAH concentrations (ng/m(3) ) were measured using photoelectric aerosol sensor equipment (PAS 2000CE model). Nicotine concentrations (μg/m(3) ) were measured using active sampling pumps followed by gas-chromatography. Linear regression models were used to identify determinants of PAH concentrations. RESULTS PAH concentrations were higher in venues that allowed smoking compared to smoke-free venues. After adjusting, the air PAH concentrations were 1.40 (0.64-3.10) and 3.34 (1.43-7.83) ng/m(3) higher for tertiles 2 and 3 of air nicotine compared to the lowest tertile. CONCLUSIONS In hospitality venues where smoking is allowed, secondhand smoke exposure is a major source of PAHs in the environment. This research further supports the importance of implementing complete smoking bans to protect service industry workers from PAH exposure. Am. J. Ind. Med. 59:887-896, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Muñoz
- Doctorate Program in Public Health, Faculty of Medicine, School of Public Health, University of Chile, Santiago, Chile
- Department of Public Health, Faculty of Medicine, University of La Frontera, Temuco, Chile
| | - Andrea Droppelmann
- Occupational Health Laboratory, Institute of Public Health of Chile, Santiago, Chile
| | - Marcia Erazo
- Faculty of Medicine, School of Public Health, University of Chile, Santiago, Chile
| | - Paulina Aceituno
- Faculty of Medicine, School of Public Health, University of Chile, Santiago, Chile
| | - Cecilia Orellana
- Faculty of Medicine, School of Public Health, University of Chile, Santiago, Chile
| | - Javiera Parro
- Faculty of Medicine, School of Public Health, University of Chile, Santiago, Chile
| | - Sthepanie Mesias
- Faculty of Medicine, School of Public Health, University of Chile, Santiago, Chile
| | - Nella Marchetti
- Faculty of Medicine, School of Public Health, University of Chile, Santiago, Chile
| | - Ana Navas-Acien
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Verónica Iglesias
- Faculty of Medicine, School of Public Health, University of Chile, Santiago, Chile.
| |
Collapse
|
17
|
Qi C, Kulkarni P. Miniature Differential Mobility Analyzer for Compact Field-Portable Spectrometers. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2016; 50:1145-1154. [PMID: 27840546 PMCID: PMC5102281 DOI: 10.1080/02786826.2016.1230662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/19/2016] [Indexed: 05/27/2023]
Abstract
A low-flow miniature differential mobility analyzer (mDMA) has been developed for compact field-portable mobility spectrometers to classify the submicrometer aerosol. The mDMA was designed for an ultra-low aerosol flow rate of 0.05 L/min. At a sheath flow rate of 0.2 L/min, the mDMA's upper size limit was estimated to be about 921 nm. The mDMA has a classification zone of 2.54 cm long, an outer diameter of 2.54 cm, and an inner diameter of 1.778 cm. The design allows low-cost fabrication and easy assembly. Tandem DMA (TDMA) measurements were carried out to evaluate the performance of the mDMA. Its transfer function was described using Stolzenburg's model. The experimentally measured transfer function shows close agreement with the theory. The transmission efficiency was comparable to that of the Knutson-Whitby DMA for particles in the range of 10-1000 nm. The mobility resolution was comparable to that of the TSI 3085 nanoDMA at the same aerosol flow rate. The design features and performance of the mDMA make it suitable for compact field portable mobility size spectrometers for measurement of nanoparticles and submicrometer aerosol.
Collapse
Affiliation(s)
- Chaolong Qi
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, MS: R7, Cincinnati, OH, 45226
| | - Pramod Kulkarni
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, MS: R7, Cincinnati, OH, 45226
| |
Collapse
|
18
|
Kulkarni P, Qi C, Fukushima N. Development of Portable Aerosol Mobility Spectrometer for Personal and Mobile Aerosol Measurement. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2016; 50:1167-1179. [PMID: 28413241 PMCID: PMC5389461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We describe development of a Portable Aerosol Mobility Spectrometer (PAMS) for size distribution measurement of submicrometer aerosol. The spectrometer is designed for use in personal or mobile aerosol characterization studies and measures approximately 22.5 × 22.5 × 15 cm and weighs about 4.5 kg including the battery. PAMS uses electrical mobility technique to measure number-weighted particle size distribution of aerosol in the 10-855 nm range. Aerosol particles are electrically charged using a dual-corona bipolar corona charger, followed by classification in a cylindrical miniature differential mobility analyzer. A condensation particle counter is used to detect and count particles. The mobility classifier was operated at an aerosol flow rate of 0.05 L/min, and at two different user-selectable sheath flows of 0.2 L/min (for wider size range 15-855 nm) and 0.4 L/min (for higher size resolution over the size range of 10.6-436 nm). The instrument was operated in voltage stepping mode to retrieve the size distribution, which took approximately 1-2 minutes, depending on the configuration. Sizing accuracy and resolution were probed and found to be within the 25% limit of NIOSH criterion for direct-reading instruments (NIOSH 2012). Comparison of size distribution measurements from PAMS and other commercial mobility spectrometers showed good agreement. The instrument offers unique measurement capability for on-person or mobile size distribution measurements of ultrafine and nanoparticle aerosol.
Collapse
Affiliation(s)
- Pramod Kulkarni
- Corresponding Author: Pramod Kulkarni; Phone: (513) 841-4300, fax: (513) 841-4545,
| | - Chaolong Qi
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, 45226
| | | |
Collapse
|
19
|
Eastlake AC, Beaucham C, Martinez KF, Dahm MM, Sparks C, Hodson LL, Geraci CL. Refinement of the Nanoparticle Emission Assessment Technique into the Nanomaterial Exposure Assessment Technique (NEAT 2.0). JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2016; 13:708-17. [PMID: 27027845 PMCID: PMC4956539 DOI: 10.1080/15459624.2016.1167278] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Engineered nanomaterial emission and exposure characterization studies have been completed at more than 60 different facilities by the National Institute for Occupational Safety and Health (NIOSH). These experiences have provided NIOSH the opportunity to refine an earlier published technique, the Nanoparticle Emission Assessment Technique (NEAT 1.0), into a more comprehensive technique for assessing worker and workplace exposures to engineered nanomaterials. This change is reflected in the new name Nanomaterial Exposure Assessment Technique (NEAT 2.0) which distinguishes it from NEAT 1.0. NEAT 2.0 places a stronger emphasis on time-integrated, filter-based sampling (i.e., elemental mass analysis and particle morphology) in the worker's breathing zone (full shift and task specific) and area samples to develop job exposure matrices. NEAT 2.0 includes a comprehensive assessment of emissions at processes and job tasks, using direct-reading instruments (i.e., particle counters) in data-logging mode to better understand peak emission periods. Evaluation of worker practices, ventilation efficacy, and other engineering exposure control systems and risk management strategies serve to allow for a comprehensive exposure assessment.
Collapse
Affiliation(s)
- Adrienne C Eastlake
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1090 Tusculum Avenue, Cincinnati, Ohio, 45226, United States
- Corresponding author: Adrienne C Eastlake, MS, REHS/RS; ; Phone: 513-533-8524; Fax: 513-533-8588; National Institute for Occupational Safety and Health, 1090 Tusculum Avenue, Cincinnati, Ohio 45226, United States
| | - Catherine Beaucham
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1090 Tusculum Avenue, Cincinnati, Ohio, 45226, United States
| | - Kenneth F Martinez
- HWC, 1100 New York Ave NW #250W, Washington, DC 20005, United States. (Formerly of NIOSH)
| | - Matthew M Dahm
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1090 Tusculum Avenue, Cincinnati, Ohio, 45226, United States
| | - Christopher Sparks
- Bureau Veritas North America, Inc., 390 Benmar Drive, Suite 100, Houston, Texas, United States. (Formerly of NIOSH)
| | - Laura L Hodson
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1090 Tusculum Avenue, Cincinnati, Ohio, 45226, United States
| | - Charles L Geraci
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1090 Tusculum Avenue, Cincinnati, Ohio, 45226, United States
| |
Collapse
|
20
|
Debia M, Bakhiyi B, Ostiguy C, Verbeek JH, Brouwer DH, Murashov V. A Systematic Review of Reported Exposure to Engineered Nanomaterials. ANNALS OF OCCUPATIONAL HYGIENE 2016; 60:916-35. [DOI: 10.1093/annhyg/mew041] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
|
21
|
Jørgensen RB, Buhagen M, Føreland S. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation. Occup Environ Med 2016; 73:467-73. [DOI: 10.1136/oemed-2015-103411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/07/2016] [Indexed: 11/03/2022]
|
22
|
Fatkhutdinova LM, Khaliullin TO, Zalyalov RR, Tkachev AG, Birch ME, Shvedova AA. Assessment of Airborn Multiwalled Carbon Nanotubes in a Manufactoring Environment. ACTA ACUST UNITED AC 2016; 11:110-116. [PMID: 28603597 DOI: 10.1134/s1995078016010055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was carried out in a factory producing multiwalled carbon nanotubes (MWCNTs) by the catalytic chemical vapor deposition method in a pyrolysis reactor. Air samples of the personal breathing areas were collected simultaneously on mixed cellulose ester filters, for analysis by transmission electron microscopy (TEM), and on high-purity quartz filters for thermal-optical analysis of elemental carbon (EC). It is found that the production of MWCNTs is accompanied by the release of the MWCNT structures in the air of different working zones. The concentration of respirable aerosol in the personal breathing areas, averaged over an 8-hour period, ranges from 0.54 to 6.11 μg/m3 based on EC. Airborne MWCNTs were found in the form of agglomerates that range in size from about 1 to 10 μm. These data are consistent with measurements in different plants by two other international groups (from the United States and Sweden) using similar methodology (TEM in combination with EC analysis). In the absence of convincing data on the potential health risks of MWCNTs, and following the principle of reasonable precautions, preventive measures should be taken to minimize exposure to these materials.
Collapse
Affiliation(s)
- L M Fatkhutdinova
- Kazan State Medical University, ul Butlerova 49, Kazan, 420012 Russia
| | - T O Khaliullin
- Kazan State Medical University, ul Butlerova 49, Kazan, 420012 Russia
| | - R R Zalyalov
- Kazan State Medical University, ul Butlerova 49, Kazan, 420012 Russia
| | - A G Tkachev
- Tambov State Technical University, ul. Sovetskaya 106, Tambov, 392000 Russia
| | - M E Birch
- National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
| | - A A Shvedova
- National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| |
Collapse
|
23
|
Eastlake A, Zumwalde R, Geraci C. Can Control Banding be Useful for the Safe Handling of Nanomaterials? A Systematic Review. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2016; 18:169. [PMID: 27471426 PMCID: PMC4961048 DOI: 10.1007/s11051-016-3476-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
OBJECTIVES Control banding (CB) is a risk management strategy that has been used to identify and recommend exposure control measures to potentially hazardous substances for which toxicological information is limited. The application of CB and level of expertise required for implementation and management can differ depending on knowledge of the hazard potential, the likelihood of exposure, and the ability to verify the effectiveness of exposure control measures. A number of different strategies have been proposed for using CB in workplaces where exposure to engineered nanomaterials (ENMs) can occur. However, it is unclear if the use of CB can effectively reduce worker exposure to nanomaterials. A systematic review of studies was conducted to answer the question "can control banding be useful to ensure adequate controls for the safe handling of nanomaterials." METHODS A variety of databases were searched to identify relevant studies pertaining to CB. Database search terms included 'control', 'hazard', 'exposure' and 'risk' banding as well as the use of these terms in the context of nanotechnology or nanomaterials. Other potentially relevant studies were identified during the review of articles obtained in the systematic review process. Identification of studies and the extraction of data were independently conducted by the reviewers. Quality of the studies was assessed using the Methodological Index for Non-Randomized Studies (MINORS). The quality of the evidence was evaluated using Grading of Recommendations Assessment, Development and Evaluation (GRADE). RESULTS A total of 235 records were identified in the database search in which 70 records were determined to be eligible for full-text review. Only two studies were identified that met the inclusion criteria. These studies evaluated the application of the CB Nanotool in workplaces where ENMs were being handled. A total of 32 different nanomaterial handling activities were evaluated in these studies by comparing the recommended exposure controls using CB to existing exposure controls previously recommended by an industrial hygienist. It was determined that the selection of exposure controls using CB were consistent with those recommended by an industrial hygienist for 19 out of 32 (59.4%) job activities. A higher level of exposure control was recommended for nine out of 32 (28.1%) job activities using CB while four out of 32 (12.5%) job activities had in place exposure controls that were more stringent than those recommended using CB. After evaluation using GRADE, evidence indicated that the use of CB Nanotool can recommend exposure controls for many ENM job activities that would be consistent with those recommended by an experienced industrial hygienist. CONCLUSION The use of CB for reducing exposures to ENMs has the potential to be an effective risk management strategy when information is limited on the health risk to the nanomaterial and/or there is an absence of an occupational exposure limit (OEL). However, there remains a lack of evidence to conclude that the use of CB can provide adequate exposure control in all work environments. Additional validation work is needed to provide more data to support the use of CB for the safe handling of ENMs.
Collapse
Affiliation(s)
- Adrienne Eastlake
- Nanotechnology Research Center, National Institute for Occupational Safety and Health
| | | | - Charles Geraci
- Nanotechnology Research Center, National Institute for Occupational Safety and Health
| |
Collapse
|
24
|
Ku BK, Kulkarni P. Measurement of Transport Properties of Aerosolized Nanomaterials. JOURNAL OF AEROSOL SCIENCE 2015; 90:169-181. [PMID: 26688593 PMCID: PMC4681291 DOI: 10.1016/j.jaerosci.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Airborne engineered nanomaterials such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), functionalized MWCNT, graphene, fullerene, silver and gold nanorods were characterized using a tandem system of a differential mobility analyzer and an aerosol particle mass analyzer to obtain their airborne transport properties and understand their relationship to morphological characteristics. These nanomaterials were aerosolized using different generation methods such as electrospray, pneumatic atomization, and dry aerosolization techniques, and their airborne transport properties such as mobility and aerodynamic diameters, mass scaling exponent, dynamic shape factor, and effective density were obtained. Laboratory experiments were conducted to directly measure mobility diameter and mass of the airborne nanomaterials using tandem mobility-mass measurements. Mass scaling exponents, aerodynamic diameters, dynamic shape factors and effective densities of mobility-classified particles were obtained from particle mass and the mobility diameter. Microscopy analysis using Transmission Electron Microscopy (TEM) was performed to obtain morphological descriptors such as envelop diameter, open area, aspect ratio, and projected area diameter. The morphological information from the TEM was compared with measured aerodynamic and mobility diameters of the particles. The results showed that aerodynamic diameter is smaller than mobility diameter below 500 nm by a factor of 2 to 4 for all nanomaterials except silver and gold nanorods. Morphologies of MWCNTs generated by liquid-based method, such as pneumatic atomization, are more compact than those of dry dispersed MWCNTs, indicating that the morphology depends on particle generation method. TEM analysis showed that projected area diameter of MWCNTs appears to be in reasonable agreement with mobility diameter in the size range from 100 - 400 nm. Principal component analysis of the obtained airborne particle properties also showed that the mobility diameter-based effective density and aerodynamic diameter are eigenvectors and can be used to represent key transport properties of interest.
Collapse
Affiliation(s)
- Bon Ki Ku
- Author to whom correspondence should be addressed. Tel.: +1 513 841 4147; fax: +1 513 841 4545., (B.K. Ku)
| | | |
Collapse
|
25
|
Kim KH, Kim JB, Ji JH, Lee SB, Bae GN. Nanoparticle formation in a chemical storage room as a new incidental nanoaerosol source at a nanomaterial workplace. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:36-45. [PMID: 26001622 DOI: 10.1016/j.jhazmat.2015.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
Chemical storage rooms located near engineered nanomaterials (ENMs) workplaces can be a significant source of unintentional nanoaerosol generation. A new incidental nanoparticle source was identified and characterized in a chemical storage room located at an ENMs workplace. Stationary and mobile measurements using on-line instruments and chemical analysis of volatile organic compounds (VOCs) were carried out to identify the source. The number of nanoaerosols emitted from the chemical storage room was found to be several orders of magnitude higher than that existing in the ENMs workplace. VOC analysis showed that the accumulated precursors and oxygenated VOCs in the chemical storage room could be attributed to incidental particle formation via gas-to-particle conversion. We stress the importance of identification of the incidental nanoaerosols to allow characterization of the nanoaerosols at ENMs workplaces, and to estimate additional nanoaerosols exposure, which was previously unknown. Hazardous chemical substances in the workplace have been regulated in many countries; however, most of the regulations are focused on gas-phase or liquid-phase substances. The present study emphasizes the importance of secondary pollutants in particulate form that can be generated from the gas or liquid phase of hazardous chemical substances.
Collapse
Affiliation(s)
- K H Kim
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - J B Kim
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea; Green School (Graduate School of Energy and Environment), Korea University, Seoul 136-713, Republic of Korea
| | - J H Ji
- EcoPictures Co., Ltd., Seoul 137-865, Republic of Korea; Research & Business Foundation, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - S B Lee
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - G N Bae
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea; Green School (Graduate School of Energy and Environment), Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
26
|
Rasmussen PE, Avramescu ML, Jayawardene I, Gardner HD. Detection of Carbon Nanotubes in Indoor Workplaces Using Elemental Impurities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12888-12896. [PMID: 26451679 DOI: 10.1021/acs.est.5b02578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study investigated three area sampling approaches for using metal impurities in carbon nanotubes (CNTs) to identify CNT releases in workplace environments: air concentrations (μg/m3), surface loadings (μg/cm2), and passive deposition rates (μg/m2/h). Correlations between metal impurities and CNTs were evaluated by collecting simultaneous colocated area samples for thermal-optical analysis (for CNTs) and ICP-MS analysis (for metals) in a CNT manufacturing facility. CNTs correlated strongly with Co (residual catalyst) and Ni (impurity) in floor surface loadings, and with Co in passive deposition samples. Interpretation of elemental ratios (Co/Fe) assisted in distinguishing among CNT and non-CNT sources of contamination. Stable isotopes of Pb impurities were useful for identifying aerosolized CNTs in the workplace environment of a downstream user, as CNTs from different manufacturers each had distinctive Pb isotope signatures. Pb isotopes were not useful for identifying CNT releases within a CNT manufacturing environment, however, because the CNT signature reflected the indoor background signature. CNT manufacturing companies and downstream users of CNTs will benefit from the availability of alternative and complementary strategies for identifying the presence/absence of CNTs in the workplace and for monitoring the effectiveness of control measures.
Collapse
Affiliation(s)
- Pat E Rasmussen
- Environmental Health Science and Research Bureau, HECSB, Health Canada, 50 Colombine Driveway, Tunney's Pasture 0803C, Ottawa, Ontario, Canada , K1A 0K9
- University of Ottawa , Earth and Environmental Sciences Department, Ottawa, Ontario, Canada K1N 6N5
| | - Mary-Luyza Avramescu
- Environmental Health Science and Research Bureau, HECSB, Health Canada, 50 Colombine Driveway, Tunney's Pasture 0803C, Ottawa, Ontario, Canada , K1A 0K9
| | - Innocent Jayawardene
- Environmental Health Science and Research Bureau, HECSB, Health Canada, 50 Colombine Driveway, Tunney's Pasture 0803C, Ottawa, Ontario, Canada , K1A 0K9
| | - H David Gardner
- Environmental Health Science and Research Bureau, HECSB, Health Canada, 50 Colombine Driveway, Tunney's Pasture 0803C, Ottawa, Ontario, Canada , K1A 0K9
- University of Ottawa , Earth and Environmental Sciences Department, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
27
|
Evans DE, Fent KW. Ultrafine and respirable particle exposure during vehicle fire suppression. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:1749-59. [PMID: 26308547 PMCID: PMC4606867 DOI: 10.1039/c5em00233h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator's shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 10(7) particles per cm(3), 170 mg m(-3) respirable particle mass, 4700 μm(2) cm(-3) active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 10(4) particles per cm(3), 0.36 mg m(-3) respirable particle mass, 92 μm(2) cm(-3) active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 10(5) particles per cm(3), 2.7 mg m(-3) respirable particle mass, 320 μm(2) cm(-3) active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction and the relative position of the fire crew to the stationary burning vehicle played a primary role in fire crews' potential for exposure. We recommend that firefighters wear self-contained breathing apparatus during all phases of the vehicle fire response to significantly reduce their potential for particulate, vapor, and gaseous exposures.
Collapse
Affiliation(s)
- Douglas E Evans
- Chemical Exposure and Monitoring Branch, Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1090 Tusculum Avenue, MS R-7, Cincinnati, Ohio, USA.
| | | |
Collapse
|
28
|
Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System. BIOMED RESEARCH INTERNATIONAL 2015; 2015:524283. [PMID: 26125024 PMCID: PMC4466336 DOI: 10.1155/2015/524283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 11/23/2022]
Abstract
Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD).
Collapse
|
29
|
Dahm MM, Schubauer-Berigan MK, Evans DE, Birch ME, Fernback JE, Deddens JA. Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits. ANNALS OF OCCUPATIONAL HYGIENE 2015; 59:705-23. [PMID: 25851309 DOI: 10.1093/annhyg/mev020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/22/2015] [Indexed: 12/30/2022]
Abstract
Recent evidence has suggested the potential for wide-ranging health effects that could result from exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF). In response, the National Institute for Occupational Safety and Health (NIOSH) set a recommended exposure limit (REL) for CNT and CNF: 1 µg m(-3) as an 8-h time weighted average (TWA) of elemental carbon (EC) for the respirable size fraction. The purpose of this study was to conduct an industrywide exposure assessment among US CNT and CNF manufacturers and users. Fourteen total sites were visited to assess exposures to CNT (13 sites) and CNF (1 site). Personal breathing zone (PBZ) and area samples were collected for both the inhalable and respirable mass concentration of EC, using NIOSH Method 5040. Inhalable PBZ samples were collected at nine sites while at the remaining five sites both respirable and inhalable PBZ samples were collected side-by-side. Transmission electron microscopy (TEM) PBZ and area samples were also collected at the inhalable size fraction and analyzed to quantify and size CNT and CNF agglomerate and fibrous exposures. Respirable EC PBZ concentrations ranged from 0.02 to 2.94 µg m(-3) with a geometric mean (GM) of 0.34 µg m(-3) and an 8-h TWA of 0.16 µg m(-3). PBZ samples at the inhalable size fraction for EC ranged from 0.01 to 79.57 µg m(-3) with a GM of 1.21 µg m(-3). PBZ samples analyzed by TEM showed concentrations ranging from 0.0001 to 1.613 CNT or CNF-structures per cm(3) with a GM of 0.008 and an 8-h TWA concentration of 0.003. The most common CNT structure sizes were found to be larger agglomerates in the 2-5 µm range as well as agglomerates >5 µm. A statistically significant correlation was observed between the inhalable samples for the mass of EC and structure counts by TEM (Spearman ρ = 0.39, P < 0.0001). Overall, EC PBZ and area TWA samples were below the NIOSH REL (96% were <1 μg m(-3) at the respirable size fraction), while 30% of the inhalable PBZ EC samples were found to be >1 μg m(-3). Until more information is known about health effects associated with larger agglomerates, it seems prudent to assess worker exposure to airborne CNT and CNF materials by monitoring EC at both the respirable and inhalable size fractions. Concurrent TEM samples should be collected to confirm the presence of CNT and CNF.
Collapse
Affiliation(s)
- Matthew M Dahm
- 1.Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, MS-R14, Cincinnati, OH 45226, USA;
| | - Mary K Schubauer-Berigan
- 1.Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, MS-R14, Cincinnati, OH 45226, USA
| | - Douglas E Evans
- 2.Chemical Exposure and Monitoring Branch, Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, Cincinnati, OH 45226, USA
| | - M Eileen Birch
- 2.Chemical Exposure and Monitoring Branch, Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, Cincinnati, OH 45226, USA
| | - Joseph E Fernback
- 2.Chemical Exposure and Monitoring Branch, Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, Cincinnati, OH 45226, USA
| | - James A Deddens
- 1.Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, MS-R14, Cincinnati, OH 45226, USA
| |
Collapse
|
30
|
The Flows of Engineered Nanomaterials from Production, Use, and Disposal to the Environment. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2015. [DOI: 10.1007/698_2015_402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Oberdörster G, Castranova V, Asgharian B, Sayre P. Inhalation Exposure to Carbon Nanotubes (CNT) and Carbon Nanofibers (CNF): Methodology and Dosimetry. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:121-212. [PMID: 26361791 PMCID: PMC4706753 DOI: 10.1080/10937404.2015.1051611] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbon nanotubes (CNT) and nanofibers (CNF) are used increasingly in a broad array of commercial products. Given current understandings, the most significant life-cycle exposures to CNT/CNF occur from inhalation when they become airborne at different stages of their life cycle, including workplace, use, and disposal. Increasing awareness of the importance of physicochemical properties as determinants of toxicity of CNT/CNF and existing difficulties in interpreting results of mostly acute rodent inhalation studies to date necessitate a reexamination of standardized inhalation testing guidelines. The current literature on pulmonary exposure to CNT/CNF and associated effects is summarized; recommendations and conclusions are provided that address test guideline modifications for rodent inhalation studies that will improve dosimetric extrapolation modeling for hazard and risk characterization based on the analysis of exposure-dose-response relationships. Several physicochemical parameters for CNT/CNF, including shape, state of agglomeration/aggregation, surface properties, impurities, and density, influence toxicity. This requires an evaluation of the correlation between structure and pulmonary responses. Inhalation, using whole-body exposures of rodents, is recommended for acute to chronic pulmonary exposure studies. Dry powder generator methods for producing CNT/CNF aerosols are preferred, and specific instrumentation to measure mass, particle size and number distribution, and morphology in the exposure chambers are identified. Methods are discussed for establishing experimental exposure concentrations that correlate with realistic human exposures, such that unrealistically high experimental concentrations need to be identified that induce effects under mechanisms that are not relevant for workplace exposures. Recommendations for anchoring data to results seen for positive and negative benchmark materials are included, as well as periods for postexposure observation. A minimum data set of specific bronchoalveolar lavage parameters is recommended. Retained lung burden data need to be gathered such that exposure-dose-response correlations may be analyzed and potency comparisons between materials and mammalian species are obtained considering dose metric parameters for interpretation of results. Finally, a list of research needs is presented to fill data gaps for further improving design, analysis, and interpretation and extrapolation of results of rodent inhalation studies to refine meaningful risk assessments for humans.
Collapse
Affiliation(s)
- Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Vincent Castranova
- Formerly with the National Institute for Occupational Safety and Health, West Virginia University School of Pharmacy, Morgantown, West Virginia, USA
| | | | - Phil Sayre
- Formerly with the U.S. Environmental Protection Agency, Washington, DC, USA
| |
Collapse
|
32
|
Workplace Exposure to Process-Generated Ultrafine and Nanoparticles in Ceramic Processes Using Laser Technology. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2015. [DOI: 10.1007/698_2015_422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Fonseca AS, Viitanen AK, Koivisto AJ, Kangas A, Huhtiniemi M, Hussein T, Vanhala E, Viana M, Querol X, Hämeri K. Characterization of exposure to carbon nanotubes in an industrial setting. ACTA ACUST UNITED AC 2014; 59:586-99. [PMID: 25539647 DOI: 10.1093/annhyg/meu110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 10/26/2014] [Indexed: 11/13/2022]
Abstract
While production and use of carbon nanotubes (CNTs) is increasing, workers exposure to CNTs is expected to increase as well, with inhalation being potentially the main pathway for uptake. However, there have been few studies reporting results about workers' personal exposure to CNTs. In this study, worker exposure to single-walled CNTs (SWCNTs) during the production of conductive films in a modern up-scaling factory was assessed. Particulate matter concentrations (2.5-10 μm) and concentrations of CO and CO2 were monitored by using real-time instruments. Workers' exposure levels to SWCNTs were qualitatively estimated by analyzing particle samples by transmission electron microscopy (TEM). TEM samples identified high aspect ratio (length/width > 500) SWCNTs in workplace air. SWCNT concentrations estimated from micrographs varied during normal operation, reactor use without local exhaust ventilation (LEV), and cleaning between 1.7×10(-3), 5.6 and 6.0×10(-3) SWCNT cm(-3), respectively. However, during cleaning it was unclear whether the SWCNTs originated from the cleaning itself or from other reactor openings. We were unable to quantify the SWCNT emissions with online particle instrumentation due to the SWCNT low concentrations compared to background particle concentrations, which were on average 2.6±1.1×10(3)cm(-3). However, CO concentrations were verified as a good indicator of fugitive emissions of SWCNTs. During normal operation, exposure levels were well below proposed limit values (1.0×10(-2) fibers cm(-3) and 1 µg m(-3)) when LEV was used. Based on the results in this study, the analysis of TEM grids seems to be the only direct method to detect SWCNTs in workplace air.
Collapse
Affiliation(s)
- Ana Sofia Fonseca
- 1.Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain 2.Faculty of Chemistry, Department of Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - Anna-Kaisa Viitanen
- 3.Finnish Institute of Occupational Health, Nanosafety Research Centre, Topeliuksenkatu 41 a A, FI-00250 Helsinki, Finland
| | - Antti J Koivisto
- 3.Finnish Institute of Occupational Health, Nanosafety Research Centre, Topeliuksenkatu 41 a A, FI-00250 Helsinki, Finland 4.National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen DK-2100, Denmark
| | - Annelli Kangas
- 3.Finnish Institute of Occupational Health, Nanosafety Research Centre, Topeliuksenkatu 41 a A, FI-00250 Helsinki, Finland
| | - Marika Huhtiniemi
- 3.Finnish Institute of Occupational Health, Nanosafety Research Centre, Topeliuksenkatu 41 a A, FI-00250 Helsinki, Finland
| | - Tareq Hussein
- 5.Department of Physics, University of Helsinki, PO Box 64, FI-00014 Helsinki, Finland 6.Faculty of Science, Department of Physics, University of Jordan, Amman, JO-11942, Jordan
| | - Esa Vanhala
- 3.Finnish Institute of Occupational Health, Nanosafety Research Centre, Topeliuksenkatu 41 a A, FI-00250 Helsinki, Finland
| | - Mar Viana
- 1.Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| | - Xavier Querol
- 1.Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| | - Kaarle Hämeri
- 5.Department of Physics, University of Helsinki, PO Box 64, FI-00014 Helsinki, Finland
| |
Collapse
|
34
|
Vo E, Zhuang Z, Birch E, Zhao Q, Horvatin M, Liu Y. Measurement of mass-based carbon nanotube penetration through filtering facepiece respirator filtering media. THE ANNALS OF OCCUPATIONAL HYGIENE 2014; 58:646-56. [PMID: 24802251 PMCID: PMC4305111 DOI: 10.1093/annhyg/meu005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/13/2013] [Accepted: 12/22/2013] [Indexed: 11/14/2022]
Abstract
Recent studies suggest that a wide range of human health effects could result from exposure to carbon nanotubes (CNTs). A National Institute for Occupational Safety and Health survey of the carbonaceous nanomaterial industry found that 77% of the companies used respiratory protection, such as filtering facepiece respirators (FFRs). Despite CNT studies in some occupational settings being reported, the literature for mass-based penetration of CNTs through FFRs is lacking. The aim of this study was to conduct a quantitative study of single-walled CNT (SWCNT) and multiwalled CNT (MWCNT) penetration through FFRs. A CNT aerosol respirator testing system was used to generate charge-neutralized airborne SWCNTs and MWCNTs for this study. The size distribution was 20-10000 nm, with 99% of the particles between 25 and 2840 nm. Mass median diameters were 598 and 634 nm with geometric standard deviations of 1.34 and 1.48 for SWCNTs and MWCNTs, respectively. Upstream and downstream CNTs were collected simultaneously using closed-face 3.7-cm-diameter filter cassettes. These samples were subsequently analyzed for organic carbon and elemental carbon (EC), with EC as a measure of mass-based CNTs. The mass-based penetration of SWCNTs and MWCNTs through six FFR models at constant flow rates of 30 l min(-1) (LPM) was determined. Generally, the penetrations of SWCNTs and MWCNTs at 30 LPM had a similar trend and were highest for the N95 FFRs, followed by N99 and P100 FFRs. The mass-based penetration of MWCNTs through six FFR models at two constant flow rates of 30 and 85 LPM was also determined. The penetration of MWCNTs at 85 LPM was greater compared with the values of MWCNTs at 30 LPM.
Collapse
Affiliation(s)
- Evanly Vo
- 1.National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 18070, Pittsburgh, PA 15236, USA;
| | - Ziqing Zhuang
- 1.National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 18070, Pittsburgh, PA 15236, USA
| | - Eileen Birch
- 2.National Institute for Occupational Safety and Health, Division of Applied Research and Technology, 4676 Columbia Parkway, Cincinnati, OH 45226, USA
| | - Qi Zhao
- 2.National Institute for Occupational Safety and Health, Division of Applied Research and Technology, 4676 Columbia Parkway, Cincinnati, OH 45226, USA
| | - Matthew Horvatin
- 3.URS Corporation, 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA
| | - Yuewei Liu
- 1.National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 18070, Pittsburgh, PA 15236, USA
| |
Collapse
|
35
|
Vosburgh DJH, Ku BK, Peters TM. Evaluation of a diffusion charger for measuring aerosols in a workplace. THE ANNALS OF OCCUPATIONAL HYGIENE 2014; 58:424-36. [PMID: 24458322 PMCID: PMC4318931 DOI: 10.1093/annhyg/met082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/21/2013] [Accepted: 12/12/2013] [Indexed: 12/30/2022]
Abstract
The model DC2000CE diffusion charger from EcoChem Analytics (League City, TX, USA) has the potential to be of considerable use to measure airborne surface area concentrations of nanoparticles in the workplace. The detection efficiency of the DC2000CE to reference instruments was determined with monodispersed spherical particles from 54 to 565.7 nm. Surface area concentrations measured by a DC2000CE were then compared to measured and detection efficiency adjusted reference surface area concentrations for polydispersed aerosols (propylene torch exhaust, incense, diesel exhaust, and Arizona road dust) over a range of particle sizes that may be encountered in a workplace. The ratio of surface area concentrations measured by the DC2000CE to that measured with the reference instruments for unimodal and multimodal aerosols ranged from 0.02 to 0.52. The ratios for detection efficiency adjusted unimodal and multimodal surface area concentrations were closer to unity (0.93-1.19) for aerosols where the majority of the surface area was within the size range of particles used to create the correction. A detection efficiency that includes the entire size range of the DC2000CE is needed before a calibration correction for the DC2000CE can be created. For diesel exhaust, the DC2000CE retained a linear response compared to reference instruments up to 2500 mm(2) m(-3), which was greater than the maximum range stated by the manufacturer (1000 mm(2) m(-3)). Physical limitations with regard to DC2000CE orientation, movement, and vibration were identified. Vibrating the DC2000CE while measuring aerosol concentrations may cause an increase of ~35 mm(2) m(-3), whereas moving the DC2000CE may cause concentrations to be inflated by as much as 400 mm(2) m(-3). Depending on the concentration of the aerosol of interest being measured, moving or vibrating a DC2000CE while measuring the aerosol should be avoided.
Collapse
Affiliation(s)
- Donna J. H. Vosburgh
- 1.Department of Occupational and Environmental Safety and Health, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA
| | - Bon Ki Ku
- 2.Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 4676 Columbia Parkway, MS-R5, Cincinnati, OH 45226, USA
| | - Thomas M. Peters
- 3.Department of Occupational and Environmental Health, The University of Iowa, S331 CPHB, 105 River Street, Iowa City, IA 52242, USA
| |
Collapse
|
36
|
Direct-reading methods for analysis of volatile organic compounds and nanoparticles in workplace air. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
37
|
KIM B, KIM H, YU IJ. Assessment of nanoparticle exposure in nanosilica handling process: including characteristics of nanoparticles leaking from a vacuum cleaner. INDUSTRIAL HEALTH 2013; 52:152-62. [PMID: 24366536 PMCID: PMC4202753 DOI: 10.2486/indhealth.2013-0087] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 11/26/2013] [Indexed: 05/26/2023]
Abstract
Nanosilica is one of the most widely used nanomaterials across the world. However, their assessment data on the occupational exposure to nanoparticles is insufficient. The present study performed an exposure monitoring in workplace environments where synthetic powders are prepared using fumed nanosilica. Furthermore, after it was observed during exposure monitoring that nanoparticles were emitted through leakage in a vacuum cleaner (even with a HEPA-filter installed in it), the properties of the leaked nanoparticles were also investigated. Workers were exposed to high-concentration nanosilica emitted into the air while pouring it into a container or transferring the container. The use of a vacuum cleaner with a leak (caused by an inadequate sealing) was found to be the origin of nanosilica dispersion in the indoor air. While the particle size of the nanosilica that emitted into the air (during the handling of nanosilica by a worker) was mostly over 100 nm or several microns (µm) due to the coagulation of particles, the size of nanosilica that leaked out of vacuum cleaner was almost similar to the primary size (mode diameter 11.5 nm). Analysis of area samples resulted in 20% (60% in terms of peak concentration) less than the analysis of the personals sample.
Collapse
Affiliation(s)
- Boowook KIM
- Occupational Lung Disease Institute, Korea Workers’
Compensation and Welfare Service, Republic of Korea
| | - Hyunwook KIM
- Department of Preventive Medicine, Catholic University of
Korea, Republic of Korea
| | - Il Je YU
- Toxicological Research Center, Hoseo University, Republic of
Korea
| |
Collapse
|
38
|
Ji JH, Woo D, Lee SB, Kim T, Kim D, Kim JH, Bae GN. Detection and characterization of nanomaterials released in low concentrations during multi-walled carbon nanotube spraying process in a cleanroom. Inhal Toxicol 2013; 25:759-65. [DOI: 10.3109/08958378.2013.846951] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
An Occupational Exposure Assessment for Engineered Nanoparticles Used in Semiconductor Fabrication. THE ANNALS OF OCCUPATIONAL HYGIENE 2013; 58:251-65. [DOI: 10.1093/annhyg/met064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Erdely A, Dahm M, Chen BT, Zeidler-Erdely PC, Fernback JE, Birch ME, Evans DE, Kashon ML, Deddens JA, Hulderman T, Bilgesu SA, Battelli L, Schwegler-Berry D, Leonard HD, McKinney W, Frazer DG, Antonini JM, Porter DW, Castranova V, Schubauer-Berigan MK. Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Part Fibre Toxicol 2013; 10:53. [PMID: 24144386 PMCID: PMC4015290 DOI: 10.1186/1743-8977-10-53] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/20/2013] [Indexed: 12/27/2022] Open
Abstract
Background Dosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice. Results Upon analysis, an inhalable elemental carbon mass concentration arithmetic mean of 10.6 μg/m3 (geometric mean 4.21 μg/m3) was found among workers exposed to MWCNT. The concentration equates to a deposited dose of approximately 4.07 μg/d in a human, equivalent to 2 ng/d in the mouse. For MWCNT inhalation, mice were exposed for 19 d with daily depositions of 1970 ng (equivalent to 1000 d of a human exposure; cumulative 76 yr), 197 ng (100 d; 7.6 yr), and 19.7 ng (10 d; 0.76 yr) and harvested at 0, 3, 28, and 84 d post-exposure to assess pulmonary toxicity. The high dose showed cytotoxicity and inflammation that persisted through 84 d after exposure. The middle dose had no polymorphonuclear cell influx with transient cytotoxicity. The low dose was associated with a low grade inflammatory response measured by changes in mRNA expression. Increased inflammatory proteins were present in the lavage fluid at the high and middle dose through 28 d post-exposure. Pathology, including epithelial hyperplasia and peribronchiolar inflammation, was only noted at the high dose. Conclusion These findings showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities and estimates suggest considerable years of exposure are necessary for significant pathology to occur at that level.
Collapse
Affiliation(s)
- Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Birch ME, Ruda-Eberenz TA, Chai M, Andrews R, Hatfield RL. Properties that influence the specific surface areas of carbon nanotubes and nanofibers. ACTA ACUST UNITED AC 2013; 57:1148-66. [PMID: 24029925 DOI: 10.1093/annhyg/met042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer-Emmett-Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed.
Collapse
Affiliation(s)
- M Eileen Birch
- US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, MS-R7 4676 Columbia Parkway, Cincinnati, OH 45226, USA
| | | | | | | | | |
Collapse
|
42
|
Schulte PA, McKernan LT, Heidel DS, Okun AH, Dotson GS, Lentz TJ, Geraci CL, Heckel PE, Branche CM. Occupational safety and health, green chemistry, and sustainability: a review of areas of convergence. Environ Health 2013; 12:31. [PMID: 23587312 PMCID: PMC3639149 DOI: 10.1186/1476-069x-12-31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/02/2013] [Indexed: 05/04/2023]
Abstract
With increasing numbers and quantities of chemicals in commerce and use, scientific attention continues to focus on the environmental and public health consequences of chemical production processes and exposures. Concerns about environmental stewardship have been gaining broader traction through emphases on sustainability and "green chemistry" principles. Occupational safety and health has not been fully promoted as a component of environmental sustainability. However, there is a natural convergence of green chemistry/sustainability and occupational safety and health efforts. Addressing both together can have a synergistic effect. Failure to promote this convergence could lead to increasing worker hazards and lack of support for sustainability efforts. The National Institute for Occupational Safety and Health has made a concerted effort involving multiple stakeholders to anticipate and identify potential hazards associated with sustainable practices and green jobs for workers. Examples of potential hazards are presented in case studies with suggested solutions such as implementing the hierarchy of controls and prevention through design principles in green chemistry and green building practices. Practical considerations and strategies for green chemistry, and environmental stewardship could benefit from the incorporation of occupational safety and health concepts which in turn protect affected workers.
Collapse
Affiliation(s)
- Paul A Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Lauralynn T McKernan
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Donna S Heidel
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
- Bureau Veritas, Edison, NJ, USA
| | - Andrea H Okun
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Gary Scott Dotson
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Thomas J Lentz
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Charles L Geraci
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Pamela E Heckel
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Christine M Branche
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| |
Collapse
|
43
|
Clerc F, Njiki-Menga GH, Witschger O. Exploratory study on a statistical method to analyse time resolved data obtained during nanomaterial exposure measurements. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/429/1/012003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Endes C, Müller S, Schmid O, Vanhecke D, Foster EJ, Petri-Fink A, Rothen-Rutishauser B, Weder C, Clift MJD. Risk assessment of released cellulose nanocrystals – mimicking inhalatory exposure. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/429/1/012008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Evans DE, Turkevich LA, Roettgers CT, Deye GJ, Baron PA. Dustiness of fine and nanoscale powders. THE ANNALS OF OCCUPATIONAL HYGIENE 2013; 57:261-77. [PMID: 23065675 PMCID: PMC3750099 DOI: 10.1093/annhyg/mes060] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 06/15/2012] [Accepted: 07/20/2012] [Indexed: 11/19/2022]
Abstract
Dustiness may be defined as the propensity of a powder to form airborne dust by a prescribed mechanical stimulus; dustiness testing is typically intended to replicate mechanisms of dust generation encountered in workplaces. A novel dustiness testing device, developed for pharmaceutical application, was evaluated in the dustiness investigation of 27 fine and nanoscale powders. The device efficiently dispersed small (mg) quantities of a wide variety of fine and nanoscale powders, into a small sampling chamber. Measurements consisted of gravimetrically determined total and respirable dustiness. The following materials were studied: single and multiwalled carbon nanotubes, carbon nanofibers, and carbon blacks; fumed oxides of titanium, aluminum, silicon, and cerium; metallic nanoparticles (nickel, cobalt, manganese, and silver) silicon carbide, Arizona road dust; nanoclays; and lithium titanate. Both the total and respirable dustiness spanned two orders of magnitude (0.3-37.9% and 0.1-31.8% of the predispersed test powders, respectively). For many powders, a significant respirable dustiness was observed. For most powders studied, the respirable dustiness accounted for approximately one-third of the total dustiness. It is believed that this relationship holds for many fine and nanoscale test powders (i.e. those primarily selected for this study), but may not hold for coarse powders. Neither total nor respirable dustiness was found to be correlated with BET surface area, therefore dustiness is not determined by primary particle size. For a subset of test powders, aerodynamic particle size distributions by number were measured (with an electrical low-pressure impactor and an aerodynamic particle sizer). Particle size modes ranged from approximately 300 nm to several micrometers, but no modes below 100 nm, were observed. It is therefore unlikely that these materials would exhibit a substantial sub-100 nm particle contribution in a workplace.
Collapse
Affiliation(s)
- Douglas E Evans
- National Institute for Occupational Safety and Health, Chemical Exposure and Monitoring Branch, Division of Applied Research and Technology, 4676 Columbia Parkway, MS-R7, Cincinnati, OH 45226, USA.
| | | | | | | | | |
Collapse
|
46
|
Kim B, Lee JS, Choi BS, Park SY, Yoon JH, Kim H. Ultrafine particle characteristics in a rubber manufacturing factory. ACTA ACUST UNITED AC 2013; 57:728-39. [PMID: 23307862 DOI: 10.1093/annhyg/mes102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND According to epidemiological research, exposure to rubber fumes can cause various types of cancer and can lead to an increase in death rate because of cardiovascular diseases. OBJECTIVES In this study, we have assessed the characteristics of ultrafine particles emitted into the air during the manufacturing of rubber products using waste tires. METHODS To assess the aerosol distribution of rubber fumes in the workplace from a product during curing, we have performed particle number concentration mapping using a handheld condensation particle counter. The particle number concentration of each process, count median diameter (CMD), and nanoparticle ratio (<100nm) were determined using an electrical low-pressure impactor (ELPI), and the surface area concentration was determined using a surface area monitor. The shape and composition of the sampled rubber fumes were analyzed using an ELPI-transmission electron microscopy grid method. Further, the rubber fume mass concentration was determined according to the Methods for the Determination of Hazardous Substances 47/2. RESULTS The results of particle mapping show that the rubber fumes were distributed throughout the air of the workplace. The concentration was the highest during the final process of the work. The particle number concentration and the surface area concentration were 545 000cm(-3) and 640 µm(2) cm(-3), respectively, approximately 10- and 4-fold higher than those in the outdoor background. During the final process, the CMD and the nanoparticle ratio were 26nm and 94%, respectively. Most of the rubber fume particles had a compact shape because of the coagulation between particles. The main components of these fumes were silicon and sulfur, and heavy metals such as zinc were detected in certain particles. The filter concentration of the rubber fumes was 0.22mg m(-3), lower than the UK workplace exposure limit of 0.6mg m(-3). CONCLUSIONS Therefore, the rubber manufacturing process is a potentially dangerous process that produces a high concentration of specific nanoparticles.
Collapse
Affiliation(s)
- Boowook Kim
- Occupational Lung Diseases Institute, Korea Workers' Compensation and Welfare Service, Ansan, South Korea
| | | | | | | | | | | |
Collapse
|
47
|
O'Shaughnessy PT. Occupational health risk to nanoparticulate exposure. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:49-62. [PMID: 24592427 DOI: 10.1039/c2em30631j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The evolution of nanotechnology from laboratory research to full-scale production has led to the need to understand the health risk to workers in that industry from the dispersion of nanoparticles escaping from various aspects of the production process. Risk is a function of both the hazard imposed by a compound or material and the expected exposure level. Therefore, research to evaluate proper exposure assessment methods specific to nanoparticles in a workplace atmosphere, as well as research on the toxicological properties of nanoparticles, has been conducted to better understand methods for protecting the health of workers in this burgeoning industry. From an assessment standpoint, researchers are evaluating both the accuracy and validity of currently available instruments and the merits of each of the three metrics – mass, surface area, and count – as indicators of exposure that provide the most relevant indication of worker health risk. Likewise, toxicologists are employing both in vitro and in vivo methods to understand the potential hazard to workers who may inhale aerosolized nanoparticles. This review provides an overview of current research efforts in nanoparticle exposure assessment and toxicology with an emphasis on how information from both fields of study combine to provide guidance to minimize the health risk posed by nanoparticulate exposure in the workplace.
Collapse
|
48
|
Cauda EG, Ku BK, Miller AL, Barone TL. Toward Developing a New Occupational Exposure Metric Approach for Characterization of Diesel Aerosols. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2012; 46:1370-1381. [PMID: 26361400 PMCID: PMC4562385 DOI: 10.1080/02786826.2012.715781] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The extensive use of diesel-powered equipment in mines makes the exposure to diesel aerosols a serious occupational issue. The exposure metric currently used in U.S. underground noncoal mines is based on the measurement of total carbon (TC) and elemental carbon (EC) mass concentration in the air. Recent toxicological evidence suggests that the measurement of mass concentration is not sufficient to correlate ultrafine aerosol exposure with health effects. This urges the evaluation of alternative measurements. In this study, the current exposure metric and two additional metrics, the surface area and the total number concentration, were evaluated by conducting simultaneous measurements of diesel ultrafine aerosols in a laboratory setting. The results showed that the surface area and total number concentration of the particles per unit of mass varied substantially with the engine operating condition. The specific surface area (SSA) and specific number concentration (SNC) normalized with TC varied two and five times, respectively. This implies that miners, whose exposure is measured only as TC, might be exposed to an unknown variable number concentration of diesel particles and commensurate particle surface area. Taken separately, mass, surface area, and number concentration did not completely characterize the aerosols. A comprehensive assessment of diesel aerosol exposure should include all of these elements, but the use of laboratory instruments in underground mines is generally impracticable. The article proposes a new approach to solve this problem. Using SSA and SNC calculated from field-type measurements, the evaluation of additional physical properties can be obtained by using the proposed approach.
Collapse
Affiliation(s)
- Emanuele G. Cauda
- U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Office of Mining Safety and Health Research, Pittsburgh, Pennsylvania, USA
| | - Bon Ki Ku
- U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Cincinnati, Ohio, USA
| | - Arthur L. Miller
- U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Office of Mining Safety and Health Research, Pittsburgh, Pennsylvania, USA
| | - Teresa L. Barone
- Emissions and Catalysts Research Center, Oak Ridge National Laboratory, Knoxville, Tennessee, USA
| |
Collapse
|
49
|
Dahm MM, Evans DE, Schubauer-Berigan MK, Birch ME, Deddens JA. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: mobile direct-reading sampling. ACTA ACUST UNITED AC 2012; 57:328-44. [PMID: 23100605 DOI: 10.1093/annhyg/mes079] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED RESEARCH SIGNIFICANCE: Toxicological evidence suggests the potential for a wide range of health effects from exposure to carbon nanotubes (CNTs) and carbon nanofibers (CNFs). To date, there has been much focus on the use of direct-reading instruments (DRIs) to assess multiple airborne exposure metrics for potential exposures to CNTs and CNFs due to their ease of use and ability to provide instantaneous results. Still, uncertainty exists in the usefulness and interpretation of the data. To address this gap, air-monitoring was conducted at six sites identified as CNT and CNF manufacturers or users and results were compared with filter-based metrics. METHODS Particle number, respirable mass, and active surface area concentrations were monitored with a condensation particle counter, a photometer, and a diffusion charger, respectively. The instruments were placed on a mobile cart and used as area monitors in parallel with filter-based elemental carbon (EC) and electron microscopy samples. Repeat samples were collected on consecutive days, when possible, during the same processes. All instruments in this study are portable and routinely used for industrial hygiene sampling. RESULTS Differences were not observed among the various sampled processes compared with concurrent indoor or outdoor background samples while examining the different DRI exposure metrics. Such data were also inconsistent with results for filter-based samples collected concurrently at the same sites [Dahm MM, Evans DE, Schubauer-Berigan MK et al. (2012) Occupational exposure assessment in CNT and nanofiber primary and secondary manufacturers. Ann Occup Hyg; 56: 542-56]. Significant variability was seen between these processes as well as the indoor and outdoor backgrounds. However, no clear pattern emerged linking the DRI results to the EC or the microscopy data (CNT and CNF structure counts). CONCLUSIONS Overall, no consistent trends were seen among similar processes at the various sites. The DRI instruments employed were limited in their usefulness in assessing and quantifying potential exposures at the sampled sites but were helpful for hypothesis generation, control technology evaluations, and other air quality issues. The DRIs employed are nonspecific, aerosol monitors, and, therefore, subject to interferences. As such, it is necessary to collect samples for analysis by more selective, time-integrated, laboratory-based methods to confirm and quantify exposures.
Collapse
Affiliation(s)
- Matthew M Dahm
- Division of Surveillance, Hazard Evaluations, and Field Studies, Industrywide Studies Branch, National Institute for Occupational Safety and Health, 4676 Columbia Parkway, MS-R14, Cincinnati, OH 45226, USA.
| | | | | | | | | |
Collapse
|
50
|
Şahin ÜA, Kurutaş B. Assessment of fine particulate matter and gaseous pollutants in workplace atmosphere of metallic industry. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 89:898-904. [PMID: 22898885 DOI: 10.1007/s00128-012-0781-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/03/2012] [Indexed: 06/01/2023]
Abstract
In the present study, we measured the concentrations of fine particulate matter (PM(2.5)), carbon dioxide (CO(2)), carbon monoxide (CO) and volatile organic carbon (VOC) in the indoor air of the manufacturing department of a metal factory. The daily average PM(2.5) concentration ranged between 86.3 and 404.9 μg/m(3). The isolation of the manufacturing machines reduced. PM(2.5) concentration between 2.5 and 8.8 fold. At the seven measurement points, daily concentrations ranged from 576.7 to 623.4 ppm for CO(2), 0.8 to 15.8 ppm for CO, and 0 to 0.58 ppm for VOC, respectively.
Collapse
Affiliation(s)
- Ülkü Alver Şahin
- Environmental Engineering Department, Engineering Faculty, İstanbul University, 34320 Avcılar, Istanbul, Turkey.
| | | |
Collapse
|