1
|
Chen Y, Wang C, Tian S, Yao L, Zhu N, Yang X, Bai Z, Liu L, Zhang Y, Sun H, Li C, Zhang K. Abscisic Acid and Ethylene Antagonistically Regulate Root Endodermal Suberization to Mitigate Nonuniform Salt Stress in Cotton. PLANT, CELL & ENVIRONMENT 2025; 48:3199-3216. [PMID: 39718122 DOI: 10.1111/pce.15334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024]
Abstract
The heterogeneity of soil salinity is a critical attribute of saline agricultural environments, particularly for the physiological adaptability of cotton (Gossypium hirsutum L.) plants. However, the mechanisms by which cotton plants acclimate to heterogenous salinity remain poorly understood. To investigate the responses of cotton seedlings to nonuniform salinity, a split-root system using germination paper was employed to replicate spatially variable salinity conditions within the root zone. The root endodermal barriers, consisting of the suberin lamellae and Casparian strip, were found to be enhanced in the roots on the saline side of this system relative to the nonsaline side, playing a crucial role in maintaining ion balance for cotton seedlings under heterogeneous salt environment. Ethylene levels were higher in roots on the nonsaline side, but significantly lower in roots on the saline side. Notably, abscisic acid (ABA) levels increased in roots on both sides. The delicate balance between ABA and ethylene can modify the root endodermal suberization, thereby regulating the adaptability of cotton seedlings to diverse salt environments.
Collapse
Affiliation(s)
- Yixin Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Cong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Shijun Tian
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Liying Yao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Ningxin Zhu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiubo Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
2
|
Cantó-Pastor A, Manzano C, Brady SM. A Way to Interact with the World: Complex and Diverse Spatiotemporal Cell Wall Thickenings in Plant Roots. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:433-466. [PMID: 39745939 DOI: 10.1146/annurev-arplant-102820-112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Plant cells are defined by their walls, which, in addition to providing structural support and shape, are an integral component of the nonliving extracellular space called the apoplast. Cell wall thickenings are present in many different root cell types. They come in a variety of simple and more complex structures with varying composition of lignin and suberin and can change in response to environmental stressors. The majority of these root cell wall thickenings and cell types that contain them are absent in the model plant Arabidopsis thaliana despite being present in most plant species. As a result, we know very little regarding their developmental control and function. Increasing evidence suggests that these structures are critical for responding to and facilitating adaptation to a wide array of stresses that a plant root experiences. These structures function in blocking apoplastic transport, oxygen, and water loss and enhancing root penetrative strength. In this review, we describe the most common types of cell wall thickenings in the outer cell types of plant roots-the velamen, exodermal thickenings, the sclerenchyma, and phi thickenings. Their cell type dependency, morphology, composition, environmental responsiveness, and genetic control in vascular plants are discussed, as well as their potential to generate more stress-resilient roots in the face of a changing climate.
Collapse
Affiliation(s)
- Alex Cantó-Pastor
- Current affiliation: Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Plant Biology and Genome Center, University of California, Davis, California, USA;
| | - Concepcion Manzano
- Department of Plant Biology and Genome Center, University of California, Davis, California, USA;
| | - Siobhán M Brady
- Howard Hughes Medical Institute, University of California, Davis, California, USA
- Department of Plant Biology and Genome Center, University of California, Davis, California, USA;
| |
Collapse
|
3
|
Nichol JB, Yeung LS, Bernards MA, Samuel MA. Establishing a suberin tool kit for determining suberization within classical and 'orphan' tissues. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00069-X. [PMID: 40287366 DOI: 10.1016/j.tplants.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Suberin is a complex biopolymer found in land plants that serves as a natural barrier, regulating water and nutrient uptake while also providing defense against invading pathogens. Structurally, suberin is composed of a poly(phenolic) domain and a poly(aliphatic) domain. The deposition of suberin can be categorized into two types: (i) developmentally controlled deposition, and (ii) induced deposition. Here, we review the history and nature of suberin research and offer researchers a comprehensive toolkit for identifying suberized tissues through chemical, histochemical, and gene analysis. We further discuss developmental (e.g., bundle and mestome sheath cells, seed coat) and induced (e.g., root plasticity, wound-induced) suberization, with an emphasis on lesser-known or 'orphan' tissues.
Collapse
Affiliation(s)
- Justin B Nichol
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Lorena S Yeung
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Mark A Bernards
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada.
| | - Marcus A Samuel
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
4
|
Huang S, Yamaji N, Konishi N, Mitani-Ueno N, Ma JF. Symplastic and apoplastic pathways for local distribution of silicon in rice leaves. THE NEW PHYTOLOGIST 2025. [PMID: 40165717 DOI: 10.1111/nph.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Silicon (Si) is highly accumulated in both the leaf blade and sheath of rice, but the transporter mediating the local distribution of Si between these two tissues remains unidentified. We investigated the role of an aquaporin, OsLsi6, in the local distribution of Si in rice leaves. We also examined the interrelations between vascular structure and OsLsi6 function in xylem unloading of Si for its local distribution. OsLsi6 is polarly localized at the xylem parenchyma cells of both the large and small vascular bundles of the leaf blade and sheath. OsLsi6 was downregulated by Si supply at the leaf sheath but not in the leaf blade. The knockout of OsLsi6 increased the distribution of Si and germanium (Ge) to the leaf blade while reducing their distribution to the leaf sheath. The mestome sheath surrounding the vascular bundle was suberized in leaf sheaths and in large vascular bundles of leaf blades, but not in small vascular bundles of leaf blades. Our results indicate that there are two pathways for xylem unloading of Si for its local distribution: the OsLsi6-dependent symplastic pathway in the leaf sheath and large vascular bundles of the leaf blade, and the apoplastic pathway in the small vascular bundle of the leaf blade.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
5
|
Skiada V, Papadopoulou KK. Closed Systems to Study Plant-Filamentous Fungi Associations: Emphasis on Microscopic Analyses. Bio Protoc 2025; 15:e5186. [PMID: 40028014 PMCID: PMC11865825 DOI: 10.21769/bioprotoc.5186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 03/05/2025] Open
Abstract
In nature, filamentous fungi interact with plants. These fungi are characterized by rapid growth in numerous substrates and under minimal nutrient requirements. Investigating the interaction of these fungi with their plant hosts under controlled conditions is of importance for many researchers aiming to proceed with molecular or microscopical investigations of their favorite plant-fungus interaction system. The speed of growth of these fungi complicates transferring plant-fungal interaction systems in laboratory conditions. The issue is more complicated when monoxenic conditions are desired, to ensure that only two members (a fungus and a plant) are present in the system under study. Here, two simple closed systems for investigating plant-filamentous fungi associations under laboratory, monoxenic conditions are described, along with their limitations. The plant and fungal growth conditions, methods for sampling, staining, sectioning, and subsequent microscopical imaging of colonized plant tissues with affordable, common laboratory tools are described. Key features • Setting up closed systems for microscopical observations of plant-filamentous fungi (emphasis on model legumes-Fusaria) associations and temporal in vivo observations of the association(s). • Preparing root samples for microscopical observations: staining, sectioning, and mounting on microscopical slides. • Using low-cost equipment for performing microscopical observations and imaging. • Using fluorescence microscopy: provision of common fluorophores to highlight specific plant and fungal tissues, compartments, and structures.
Collapse
Affiliation(s)
- Vasiliki Skiada
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, Greece
| | - Kalliope K. Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, Greece
| |
Collapse
|
6
|
Cai X, Yue Y, Wang Y, Zhang L, Jiang M, Yu X, Sun L, Huang Z, Guo B, Zhang D, Li X. Mowing facilitated Pb accumulation in bermudagrass by mediating root radial transport. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109443. [PMID: 39731980 DOI: 10.1016/j.plaphy.2024.109443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Moderate mowing of the shoot is an effective strategy for improving Pb-contaminated soil remediation using bermudagrass. However, the mechanisms by which mowing facilitates Pb uptake and accumulation remain insufficiently understood. Root radial transport is critical in efficient heavy metal uptake and translocation in plants and is influenced by root physiological-biochemical characteristics. Herein, radial transport in roots and its effect on root-shoot Pb transport in bermudagrass under mowing were explored. Results revealed that mowing decreased Pb in apoplasts and increased Pb in symplasts, altering Pb radial transport pathways in roots. In the apoplastic pathway, mowing pretreatment intensified the inhibitory effects of a transpiration inhibitor on Pb uptake, resulting in a reduced contribution of the apoplastic pathway. Mowing induced lateral root endodermis thickening, early suberin lamellar development and increased suberin deposition, effectively preventing Pb from entering the stele through the apoplastic pathway. Conversely, in the symplastic pathway, mowing pretreatment alleviated the inhibitory effects of a metabolic inhibitor and ion channel inhibitor on Pb uptake and significantly increased net Pb2+influx in lateral root tips, thereby promoting the symplastic pathway. Furthermore, mowing upregulated the relative expression of CdNramp5 and CdHMA2 in roots, increasing Pb translocation to the shoot via the symplastic pathway. Overall, our study provided novel evidence mowing primarily improved Pb uptake and root-to-shoot transport by increasing the efficiency of the symplastic pathway. These findings provide a theoretical foundation for the use of mowing to improve the efficacy of bermudagrass in the remediation of Pb-contaminated soils.
Collapse
Affiliation(s)
- Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yongjun Yue
- Department of Horticulture, The University of Georgia, Athens, GA, 30602, USA.
| | - Yike Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Liyin Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Baimeng Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Donglin Zhang
- Department of Horticulture, The University of Georgia, Athens, GA, 30602, USA.
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
7
|
Hussain K, Fox JP, Ma X, Rossi L. Impact of polystyrene nanoplastics on physiology, nutrient uptake, and root system architecture of aeroponically grown citrus plants. NANOIMPACT 2025; 37:100536. [PMID: 39617345 DOI: 10.1016/j.impact.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 03/23/2025]
Abstract
The widespread presence of plastic pollution has become a challenge for both aquatic and terrestrial plants. Notably, nanoplastics (NPs) have been found to enter the root tissues and translocate to different organs of plants; however, most previous studies were performed using crop or vegetable seedlings, and the extent NPs accumulation in fruit tree plants, particularly citrus, and their impacts remains unclear. This study was designed to fill this gap by determining the uptake and accumulation of green, fluorescent polystyrene nanoplastics (PS-NPs) of two different sizes (20 nm and 50 nm in diameter) in citrus rootstock ('US-942') in an aeroponic system and their impact on plant growth and physiological functions, nutrient uptake, and root system architectural and anatomical traits. The 20 nm PS-NPs negatively impacted the root system architecture (total root length, root surface area, number of root forks) and nutrient contents (N, P, K, Mg, S, B, Fe, Cu, Mn) at both 15 and 30 days after treatment; however, no significant differences were recorded for growth and physiological parameters. Microscopic analysis of roots revealed that under both the PS-NPs treatments, root apoplastic barriers were fully developed near the root tips. Furthermore, PS-NPs are predominantly adhered to the root surface, and no signs of uptake and translocation were recorded in root sections. However, alterations to the external root cell layers were observed. This research sheds light on the impact of PS-NPs on plant roots and their physiology and contributes to a better understanding of these emerging pollutants on tree crop horticulture.
Collapse
Affiliation(s)
- Khalid Hussain
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA; Institute of Horticultural Sciences, University of Agriculture Faisalabad, 38000, Pakistan
| | - John-Paul Fox
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, TAMU 3127, College Station, TX 77843-3127, USA
| | - Lorenzo Rossi
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA.
| |
Collapse
|
8
|
Yun J, Lee I, Lee JH, Kim S, Jung SH, Oh SA, Lee J, Park SK, Soh MS, Lee Y, Kwak JM. The single RRM domain-containing protein SARP1 is required for establishment of the separation zone in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:558-570. [PMID: 39061105 DOI: 10.1111/nph.19997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Abscission is the shedding of plant organs in response to developmental and environmental cues. Abscission involves cell separation between two neighboring cell types, residuum cells (RECs) and secession cells (SECs) in the floral abscission zone (AZ) in Arabidopsis thaliana. However, the regulatory mechanisms behind the spatial determination that governs cell separation are largely unknown. The class I KNOTTED-like homeobox (KNOX) transcription factor BREVIPEDICELLUS (BP) negatively regulates AZ cell size and number in Arabidopsis. To identify new players participating in abscission, we performed a genetic screen by activation tagging a weak complementation line of bp-3. We identified the mutant ebp1 (enhancer of BP1) displaying delayed floral organ abscission. The ebp1 mutant showed a concaved surface in SECs and abnormally stacked cells on the top of RECs, in contrast to the precisely separated surface in the wild-type. Molecular and histological analyses revealed that the transcriptional programming during cell differentiation in the AZ is compromised in ebp1. The SECs of ebp1 have acquired REC-like properties, including cuticle formation and superoxide production. We show that SEPARATION AFFECTING RNA-BINDING PROTEIN1 (SARP1) is upregulated in ebp1 and plays a role in the establishment of the cell separation layer during floral organ abscission in Arabidopsis.
Collapse
Affiliation(s)
- Ju Yun
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Inhye Lee
- Division of Integrative Bioscience and Bioengineering, Sejong University, Seoul, 05006, Korea
| | - Jae Ho Lee
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea
| | - Seonghwan Kim
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Su Hyun Jung
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Jiyoun Lee
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Moon-Soo Soh
- Division of Integrative Bioscience and Bioengineering, Sejong University, Seoul, 05006, Korea
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - June M Kwak
- Department of New Biology, DGIST, Daegu, 42988, Korea
- Center for Cell Fate Control and Reprogramming, DGIST, Daegu, 42988, Korea
| |
Collapse
|
9
|
Fox JP, Quinones JE, Hussain K, Ma X, Rossi L. Influences of cerium oxide nanoparticles and salinity on common bean (Phaseolus vulgaris) growth, physiology, and root system architectural and anatomical traits. NANOIMPACT 2024; 36:100535. [PMID: 39561934 DOI: 10.1016/j.impact.2024.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/25/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Engineered nanoparticles (ENPs) have emerged as global pollutants due to their extensive use across various industries, raising particular concerns in agricultural settings. This study addresses the understudied interactions between ENPs, specifically cerium oxide nanoparticles (CeO₂NPs), and sodium chloride (NaCl) in agricultural crops, within the context of widespread soil salinization. 'Pinto' common bean seedlings were cultivated in sand-filled pots under greenhouse conditions, following a completely randomized experimental design for one month. Four treatments were administered: (1) control with no NaCl and no CeO₂NPs, (2) 50 mM NaCl without CeO₂NPs, (3) 200 mg kg-1 CeO₂NPs without NaCl, and (4) a combination of 50 mM NaCl and 200 mg kg-1 CeO₂NPs. Weekly measurements were conducted, and a random cohort of 20 plants, including 5 from each treatment, was destructively sampled. At the experiment's conclusion, the final cohort was dissected into above- and below-ground organs to determine the concentrations of Ce and Na, and root scans were performed to analyze root system architectural traits. The results revealed significant differences in growth including root system architecture (including length, surface area, and volume), anatomical traits, biomass (fresh and dry), and vine length. Similarly, significant differences were observed in fluorescence; Ce and Na concentrations; electrolyte leakage, with the CeO2NPs + NaCl treatment having 3.3-fold more leakage than the control; and chlorophyll contents, with the CeO2NPs treatment having 3.3-fold more chlorophyll a than the NaCl treatment. Additionally, notable interactions between NaCl and CeO₂NPs were observed in root apoplastic barrier formation, vine length, Ce uptake, and chlorophyll content and fluorescence.
Collapse
Affiliation(s)
- John-Paul Fox
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Science, Indian River Research and Education Center, Fort Pierce, FL 34945, USA
| | - Julio E Quinones
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Science, Indian River Research and Education Center, Fort Pierce, FL 34945, USA
| | - Khalid Hussain
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Science, Indian River Research and Education Center, Fort Pierce, FL 34945, USA
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, TAMU 3127, College Station, TX 77843-3127, USA
| | - Lorenzo Rossi
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Science, Indian River Research and Education Center, Fort Pierce, FL 34945, USA.
| |
Collapse
|
10
|
Wang C, Ding W, Chen F, Zhang K, Hou Y, Wang G, Xu W, Wang Y, Qu S. Mapping and transcriptomic profiling reveal that the KNAT6 gene is involved in the dark green peel colour of mature pumpkin fruit (Cucurbita maxima L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:225. [PMID: 39287784 DOI: 10.1007/s00122-024-04741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
KEY MESSAGE We identified a 580 bp deletion of CmaKNAT6 coding region influences peel colour of mature Cucurbita maxima fruit. Peel colour is an important agronomic characteristic affecting commodity quality in Cucurbit plants. Genetic mapping of fruit peel colour promotes molecular breeding and provides an important basis for understanding the regulatory mechanism in Cucurbit plants. In the present study, the Cucurbita maxima inbred line '9-6' which has a grey peel colour and 'U3-3-44' which has a dark green peel colour in the mature fruit stage, were used as plant materials. At 5-40 days after pollination (DAP), the contents of chlorophyll a, chlorophyll b, total chlorophyll and carotenoids in the 'U3-3-44' peels were significantly greater than those in the '9-6' peels. In the epicarp of the '9-6' mature fruit, the presence of nonpigmented cell layers and few chloroplasts in each cell in the pigmented layers were observed. Six generations derived by crossing '9-6' and 'U3-3-44' were constructed, and the dark green peel was found to be controlled by a single dominant locus, which was named CmaMg (mature green peel). Through bulked-segregant analysis sequencing (BSA-seq) and insertion-deletion (InDel) markers, CmaMg was mapped to a region of approximately 449.51 kb on chromosome 11 using 177 F2 individuals. Additionally, 1703 F2 plants were used for fine mapping to compress the candidate interval to a region of 32.34 kb. Five coding genes were in this region, and CmaCh11G000900 was identified as a promising candidate gene according to the reported function, sequence alignment, and expression analyses. CmaCh11G000900 (CmaKNAT6) encodes the homeobox protein knotted-1-like 6 and contains 4 conserved domains. CmaKNAT6 of '9-6' had a 580 bp deletion, leading to premature transcriptional termination. The expression of CmaKNAT6 tended to increase sharply during the early fruit development stage but decrease gradually during the late period of fruit development. Allelic diversity analysis of pumpkin germplasm resources indicated that the 580 bp deletion in the of CmaKNAT6 coding region was associated with peel colour. Subcellular localization analysis indicated that CmaKNAT6 is a nuclear protein. Transcriptomic analysis of the inbred lines '9-6' and 'U3-3-44' indicated that genes involved in chlorophyll biosynthesis were more enriched in 'U3-3-44' than in '9-6'. Additionally, the expression of transcription factor genes that positively regulate chlorophyll synthesis and light signal transduction pathways was upregulated in 'U3-3-44'. These results lay a foundation for further studies on the genetic mechanism underlying peel colour and for optimizing peel colour-based breeding strategies for C. maxima.
Collapse
Affiliation(s)
- ChaoJie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenqi Ding
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fangyuan Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Ke Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuetong Hou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Guichao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Piccinini L, Nirina Ramamonjy F, Ursache R. Imaging plant cell walls using fluorescent stains: The beauty is in the details. J Microsc 2024; 295:102-120. [PMID: 38477035 DOI: 10.1111/jmi.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Plants continuously face various environmental stressors throughout their lifetime. To be able to grow and adapt in different environments, they developed specialized tissues that allowed them to maintain a protected yet interconnected body. These tissues undergo specific primary and secondary cell wall modifications that are essential to ensure normal plant growth, adaptation and successful land colonization. The composition of cell walls can vary among different plant species, organs and tissues. The ability to remodel their cell walls is fundamental for plants to be able to cope with multiple biotic and abiotic stressors. A better understanding of the changes taking place in plant cell walls may help identify and develop new strategies as well as tools to enhance plants' survival under environmental stresses or prevent pathogen attack. Since the invention of microscopy, numerous imaging techniques have been developed to determine the composition and dynamics of plant cell walls during normal growth and in response to environmental stimuli. In this review, we discuss the main advances in imaging plant cell walls, with a particular focus on fluorescent stains for different cell wall components and their compatibility with tissue clearing techniques. Lay Description: Plants are continuously subjected to various environmental stresses during their lifespan. They evolved specialized tissues that thrive in different environments, enabling them to maintain a protected yet interconnected body. Such tissues undergo distinct primary and secondary cell wall alterations essential to normal plant growth, their adaptability and successful land colonization. Cell wall composition may differ among various plant species, organs and even tissues. To deal with various biotic and abiotic stresses, plants must have the capacity to remodel their cell walls. Gaining insight into changes that take place in plant cell walls will help identify and create novel tools and strategies to improve plants' ability to withstand environmental challenges. Multiple imaging techniques have been developed since the introduction of microscopy to analyse the composition and dynamics of plant cell walls during growth and in response to environmental changes. Advancements in plant tissue cleaning procedures and their compatibility with cell wall stains have significantly enhanced our ability to perform high-resolution cell wall imaging. At the same time, several factors influence the effectiveness of cleaning and staining plant specimens, as well as the time necessary for the process, including the specimen's size, thickness, tissue complexity and the presence of autofluorescence. In this review, we will discuss the major advances in imaging plant cell walls, with a particular emphasis on fluorescent stains for diverse cell wall components and their compatibility with tissue clearing techniques. We hope that this review will assist readers in selecting the most appropriate stain or combination of stains to highlight specific cell wall components of interest.
Collapse
Affiliation(s)
- Luca Piccinini
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| | - Fabien Nirina Ramamonjy
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| | - Robertas Ursache
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| |
Collapse
|
12
|
Ding W, Luo Y, Li W, Chen F, Wang C, Xu W, Wang Y, Qu S. Fine mapping and transcriptome profiling reveal CpAPRR2 to modulate immature fruit rind color formation in zucchini (Cucurbita pepo). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:167. [PMID: 38909110 DOI: 10.1007/s00122-024-04676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
KEY MESSAGE A large fragment deletion of CpAPRR2, encoding a two-component response regulator-like protein, which influences immature white rind color formation in zucchini (Cucurbita pepo). Fruit rind color is an important agronomic trait that affects commodity quality and consumer choice in zucchini (Cucurbita pepo). However, the molecular mechanism controlling rind color is unclear. We characterized two zucchini inbred lines: '19' (dark green rind) and '113' (white rind). Genetic analysis revealed white immature fruit rind color to be controlled by a dominant locus (CpW). Combining bulked segregant analysis sequencing (BSA-seq) and Kompetitive Allele-Specific PCR (KASP) markers, we mapped the CpW locus to a 100.4 kb region on chromosome 5 and then narrow down the candidate region to 37.5 kb using linkage analysis of 532 BC1 and 1613 F2 individuals, including 6 coding genes. Among them, Cp4.1LG05g02070 (CpAPRR2), encoding a two-component response regulator-like protein, was regarded to be a promising candidate gene. The expression level of CpAPRR2 in dark green rind was significantly higher than that in white rind and was induced by light. A deletion of 2227 bp at the 5' end of CpAPRR2 in '113' might explain the white phenotype. Further analysis of allelic diversity in zucchini germplasm resources revealed rind color to be associated with the deletion of CpAPRR2. Subcellular localization analysis indicated that CpAPRR2 was a nuclear protein. Transcriptome analysis using near-isogenic lines with dark green (DG) and white (W) rind indicated that genes involved in photosynthesis and porphyrin metabolism pathways were enriched in DG compared with W. Additionally, chlorophyll synthesis-related genes were upregulated in DG. These results identify mechanisms of zucchini rind color and provide genetic resources for breeding.
Collapse
Affiliation(s)
- Wenqi Ding
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yusong Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenling Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fangyuan Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
13
|
Huang X, Li Y, Chang Z, Yan W, Xu C, Zhang B, He Z, Wang C, Zheng M, Li Z, Xia J, Li G, Tang X, Wu J. Regulation by distinct MYB transcription factors defines the roles of OsCYP86A9 in anther development and root suberin deposition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1972-1990. [PMID: 38506334 DOI: 10.1111/tpj.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Cytochrome P450 proteins (CYPs) play critical roles in plant development and adaptation to fluctuating environments. Previous reports have shown that CYP86A proteins are involved in the biosynthesis of suberin and cutin in Arabidopsis. However, the functions of these proteins in rice remain obscure. In this study, a rice mutant with incomplete male sterility was identified. Cytological analyses revealed that this mutant was defective in anther development. Cloning of the mutant gene indicated that the responsible mutation was on OsCYP86A9. OsMYB80 is a core transcription factor in the regulation of rice anther development. The expression of OsCYP86A9 was abolished in the anther of osmyb80 mutant. In vivo and in vitro experiments showed that OsMYB80 binds to the MYB-binding motifs in OsCYP86A9 promoter region and regulates its expression. Furthermore, the oscyp86a9 mutant exhibited an impaired suberin deposition in the root, and was more susceptible to drought stress. Interestingly, genetic and biochemical analyses revealed that OsCYP86A9 expression was regulated in the root by certain MYB transcription factors other than OsMYB80. Moreover, mutations in the MYB genes that regulate OsCYP86A9 expression in the root did not impair the male fertility of the plant. Taken together, these findings revealed the critical roles of OsCYP86A9 in plant development and proposed that OsCYP86A9 functions in anther development and root suberin formation via two distinct tissue-specific regulatory pathways.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Baolei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhaohuan He
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Minting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhiai Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Guoliang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
14
|
Xue B, Duan W, Gong L, Zhu D, Li X, Li X, Liang YK. The OsDIR55 gene increases salt tolerance by altering the root diffusion barrier. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1550-1568. [PMID: 38412303 DOI: 10.1111/tpj.16696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
The increased soil salinity is becoming a major challenge to produce more crops and feed the growing population of the world. In this study, we demonstrated that overexpression of OsDIR55 gene enhances rice salt tolerance by altering the root diffusion barrier. OsDIR55 is broadly expressed in all examined tissues and organs with the maximum expression levels at lignified regions in rice roots. Salt stress upregulates the expression of OsDIR55 gene in an abscisic acid (ABA)-dependent manner. Loss-function and overexpression of OsDIR55 compromised and improved the development of CS and root diffusion barrier, manifested with the decreased and increased width of CS, respectively, and ultimately affected the permeability of the apoplastic diffusion barrier in roots. OsDIR55 deficiency resulted in Na+ accumulation, ionic imbalance, and growth arrest, whereas overexpression of OsDIR55 enhances salinity tolerance and provides an overall benefit to plant growth and yield potential. Collectively, we propose that OsDIR55 is crucial for ions balance control and salt stress tolerance through regulating lignification-mediated root barrier modifications in rice.
Collapse
Affiliation(s)
- Baoping Xue
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wen Duan
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Luping Gong
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Dongmei Zhu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xueying Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemei Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
15
|
Shiono K, Matsuura H. Exogenous abscisic acid induces the formation of a suberized barrier to radial oxygen loss in adventitious roots of barley (Hordeum vulgare). ANNALS OF BOTANY 2024; 133:931-940. [PMID: 38448365 PMCID: PMC11089260 DOI: 10.1093/aob/mcae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/18/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND AIMS Internal root aeration is essential for root growth in waterlogged conditions. Aerenchyma provides a path for oxygen to diffuse to the roots. In most wetland species, including rice, a barrier to radial oxygen loss (ROL) allows more of the oxygen to diffuse to the root tip, enabling root growth into anoxic soil. Most dryland crops, including barley, do not form a root ROL barrier. We previously found that abscisic acid (ABA) signalling is involved in the induction of ROL barrier formation in rice during waterlogging. Although rice typically does not form a tight ROL barrier in roots in aerated conditions, an ROL barrier with suberized exodermis was induced by application of exogenous ABA. Therefore, we hypothesized that ABA application could also trigger root ROL barrier formation with hypodermal suberization in barley. METHODS Formation of an ROL barrier was examined in roots in different exogenous ABA concentrations and at different time points using cylindrical electrodes and Methylene Blue staining. Additionally, we evaluated root porosity and observed suberin and lignin modification. Suberin, lignin and Casparian strips in the cell walls were observed by histochemical staining. We also evaluated the permeability of the apoplast to a tracer. KEY RESULTS Application of ABA induced suberization and ROL barrier formation in the adventitious roots of barley. The hypodermis also formed lignin-containing Casparian strips and a barrier to the infiltration of an apoplastic tracer (periodic acid). However, ABA application did not affect root porosity. CONCLUSIONS Our results show that in artificial conditions, barley can induce the formation of ROL and apoplastic barriers in the outer part of roots if ABA is applied exogenously. The difference in ROL barrier inducibility between barley (an upland species) and rice (a wetland species) might be attributable to differences in ABA signalling in roots in response to waterlogging conditions.
Collapse
Affiliation(s)
- Katsuhiro Shiono
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195, Japan
| | - Haruka Matsuura
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195, Japan
| |
Collapse
|
16
|
Gong G, Jia H, Tang Y, Pei H, Zhai L, Huang J. Genetic analysis and QTL mapping for pericarp thickness in maize (Zea mays L.). BMC PLANT BIOLOGY 2024; 24:338. [PMID: 38664642 PMCID: PMC11044598 DOI: 10.1186/s12870-024-05052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Proper pericarp thickness protects the maize kernel against pests and diseases, moreover, thinner pericarp improves the eating quality in fresh corn. In this study, we aimed to investigate the dynamic changes in maize pericarp during kernel development and identified the major quantitative trait loci (QTLs) for maize pericarp thickness. It was observed that maize pericarp thickness first increased and then decreased. During the growth and formation stages, the pericarp thickness gradually increased and reached the maximum, after which it gradually decreased and reached the minimum during maturity. To identify the QTLs for pericarp thickness, a BC4F4 population was constructed using maize inbred lines B73 (recurrent parent with thick pericarp) and Baimaya (donor parent with thin pericarp). In addition, a high-density genetic map was constructed using maize 10 K SNP microarray. A total of 17 QTLs related to pericarp thickness were identified in combination with the phenotypic data. The results revealed that the heritability of the thickness of upper germinal side of pericarp (UG) was 0.63. The major QTL controlling UG was qPT1-1, which was located on chromosome 1 (212,215,145-212,948,882). The heritability of the thickness of upper abgerminal side of pericarp (UA) was 0.70. The major QTL controlling UA was qPT2-1, which was located on chromosome 2 (2,550,197-14,732,993). In addition, a combination of functional annotation, DNA sequencing analysis and quantitative real-time PCR (qPCR) screened two candidate genes, Zm00001d001964 and Zm00001d002283, that could potentially control maize pericarp thickness. This study provides valuable insights into the improvement of maize pericarp thickness during breeding.
Collapse
Affiliation(s)
- Guantong Gong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Haitao Jia
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yunqi Tang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hu Pei
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Lihong Zhai
- Basic School of Medicine, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Villarino G, Dahlberg-Wright S, Zhang L, Schaedel M, Wang L, Miller K, Bartlett J, Vu AMD, Busch W. PAT (Periderm Assessment Toolkit): A Quantitative and Large-Scale Screening Method for Periderm Measurements. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0156. [PMID: 38560381 PMCID: PMC10981931 DOI: 10.34133/plantphenomics.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/10/2024] [Indexed: 04/04/2024]
Abstract
The periderm is a vital protective tissue found in the roots, stems, and woody elements of diverse plant species. It plays an important function in these plants by assuming the role of the epidermis as the outermost layer. Despite its critical role for protecting plants from environmental stresses and pathogens, research on root periderm development has been limited due to its late formation during root development, its presence only in mature root regions, and its impermeability. One of the most straightforward measurements for comparing periderm formation between different genotypes and treatments is periderm (phellem) length. We have developed PAT (Periderm Assessment Toolkit), a high-throughput user-friendly pipeline that integrates an efficient staining protocol, automated imaging, and a deep-learning-based image analysis approach to accurately detect and measure periderm length in the roots of Arabidopsis thaliana. The reliability and reproducibility of our method was evaluated using a diverse set of 20 Arabidopsis natural accessions. Our automated measurements exhibited a strong correlation with human-expert-generated measurements, achieving a 94% efficiency in periderm length quantification. This robust PAT pipeline streamlines large-scale periderm measurements, thereby being able to facilitate comprehensive genetic studies and screens. Although PAT proves highly effective with automated digital microscopes in Arabidopsis roots, its application may pose challenges with nonautomated microscopy. Although the workflow and principles could be adapted for other plant species, additional optimization would be necessary. While we show that periderm length can be used to distinguish a mutant impaired in periderm development from wild type, we also find it is a plastic trait. Therefore, care must be taken to include sufficient repeats and controls, to minimize variation, and to ensure comparability of periderm length measurements between different genotypes and growth conditions.
Collapse
Affiliation(s)
- Gonzalo Villarino
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Signe Dahlberg-Wright
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marianne Schaedel
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lin Wang
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Karyssa Miller
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jack Bartlett
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Albert Martin Dang Vu
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
18
|
Chang J, Li X, Shen J, Hu J, Wu L, Zhang X, Li J. Defects in the cell wall and its deposition caused by loss-of-function of three RLKs alter root hydrotropism in Arabidopsis thaliana. Nat Commun 2024; 15:2648. [PMID: 38531848 DOI: 10.1038/s41467-024-46889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Root tips can sense moisture gradients and grow into environments with higher water potential. This process is called root hydrotropism. Here, we report three closely related receptor-like kinases (RLKs) that play critical roles in root hydrotropism: ALTERED ROOT HYDROTROPIC RESPONSE 1 (ARH1), FEI1, and FEI2. Overexpression of these RLKs strongly reduce root hydrotropism, but corresponding loss-of-function mutants exhibit an increased hydrotropic response in their roots. All these RLKs show polar localization at the plasma membrane regions in root tips. The biosynthesis of the cell wall, cutin, and wax (CCW) is significantly impaired in root tips of arh1-2 fei1-C fei2-C. A series of known CCW mutants also exhibit increased root hydrotropism and reduced osmotic tolerance, similar to the characteristics of the triple mutant. Our results demonstrat that the integrity of the cell wall, cutin, and root cap wax mediate a trade-off between root hydrotropism and osmotic tolerance.
Collapse
Affiliation(s)
- Jinke Chang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaopeng Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Juan Shen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jun Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Liangfan Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xueyao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
- Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Zhang X, Gao H, Liu Y, Zhao H, Lü S. Function identification of Arabidopsis GPAT4 and GPAT8 in the biosynthesis of suberin and cuticular wax. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111933. [PMID: 38036221 DOI: 10.1016/j.plantsci.2023.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Surface lipids in plants include cutin, cuticular wax and suberin. sn-Glycerol-3-phosphate acyltransferases (GPATs) facilitate the acylation of sn-glycerol-3-phosphate (G3P) utilizing a fatty acyl group from acyl-coenzyme A (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) as substrates for the biosynthesis of plant extracellular lipids such as suberin and cutin. Here we found that Arabidopsis GPAT4 and GPAT8 are specifically expressed in endodermis cells of roots where suberin was accumulated. GPAT4 mutation significantly decreased the amounts of the C16 and C18 ω-oxidized suberin monomers, whereas the mutation of GPAT8 had little effect on the suberin production, and the functions of both were not redundant. Root suberin phenotype analysis of gpat4-1 and gpat6-1 single or double mutant revealed that GPAT4 and GPAT6 play redundant functions. Interestingly, the gpat4-1 gpat8-1 double mutant displayed a glossy stem phenotype since fewer wax crystals were accumulated. This phenotype was not shown in either parent. Further study showed that the amounts of most wax components were significantly decreased. Taken together, our findings revealed that GPAT4 has an additive effect with GPAT6 in the root suberin biosynthesis, and plays a redundant role in wax production with GPAT8.
Collapse
Affiliation(s)
- Xuanhao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Huani Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
20
|
Su Y, Feng T, Liu CB, Huang H, Wang YL, Fu X, Han ML, Zhang X, Huang X, Wu JC, Song T, Shen H, Yang X, Xu L, Lü S, Chao DY. The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. NATURE PLANTS 2023; 9:1968-1977. [PMID: 37932483 DOI: 10.1038/s41477-023-01555-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Seed plants overtook ferns to become the dominant plant group during the late Carboniferous, a period in which the climate became colder and dryer1,2. However, the specific innovations driving the success of seed plants are not clear. Here we report that the appearance of suberin lamellae (SL) contributed to the rise of seed plants. We show that the Casparian strip and SL vascular barriers evolved at different times, with the former originating in the most recent common ancestor (MRCA) of vascular plants and the latter in the MRCA of seed plants. Our results further suggest that most of the genes required for suberin formation arose through gene duplication in the MRCA of seed plants. We show that the appearance of the SL in the MRCA of seed plants enhanced drought tolerance through preventing water loss from the stele. We hypothesize that SL provide a decisive selective advantage over ferns in arid environments, resulting in the decline of ferns and the rise of gymnosperms. This study provides insights into the evolutionary success of seed plants and has implications for engineering drought-tolerant crops or fern varieties.
Collapse
Affiliation(s)
- Yu Su
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Biosystematics Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Chu-Bin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ya-Ling Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojuan Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Mei-Ling Han
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuanhao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Chen Wu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shen
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, China
| | - Xianpeng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
21
|
Gal A, Dalal A, Anfang M, Sharma D, Binenbaum J, Muchaki P, Kumar R, Egbaria A, Duarte KE, Kelly G, de Souza WR, Sade N. Plasma membrane aquaporins regulate root hydraulic conductivity in the model plant Setaria viridis. PLANT PHYSIOLOGY 2023; 193:2640-2660. [PMID: 37607257 DOI: 10.1093/plphys/kiad469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
The high rate of productivity observed in panicoid crops is in part due to their extensive root system. Recently, green foxtail (Setaria viridis) has emerged as a genetic model system for panicoid grasses. Natural accessions of S. viridis originating from different parts of the world, with differential leaf physiological behavior, have been identified. This work focused on understanding the physiological and molecular mechanisms controlling root hydraulic conductivity and root-to-shoot gas exchange signaling in S. viridis. We identified 2 accessions, SHA and ZHA, with contrasting behavior at the leaf, root, and whole-plant levels. Our results indicated a role for root aquaporin (AQP) plasma membrane (PM) intrinsic proteins in the differential behavior of SHA and ZHA. Moreover, a different root hydraulic response to low levels of abscisic acid between SHA and ZHA was observed, which was associated with root AQPs. Using cell imaging, biochemical, and reverse genetic approaches, we identified PM intrinsic protein 1;6 (PIP1;6) as a possible PIP1 candidate that regulates radial root hydraulics and root-to-shoot signaling of gas exchange in S. viridis. In heterologous systems, PIP1;6 localized in the endoplasmic reticulum, and upon interaction with PIP2s, relocalization to the PM was observed. PIP1;6 was predominantly expressed at the root endodermis. Generation of knockout PIP1;6 plants (KO-PIP1;6) in S. viridis showed altered root hydraulic conductivity, altered gas exchange, and alteration of root transcriptional patterns. Our results indicate that PIPs are essential in regulating whole-plant water homeostasis in S. viridis. We conclude that root hydraulic conductivity and gas exchange are positively associated and are regulated by AQPs.
Collapse
Affiliation(s)
- Atara Gal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ahan Dalal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Davinder Sharma
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jenia Binenbaum
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Purity Muchaki
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rakesh Kumar
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aiman Egbaria
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karoline Estefani Duarte
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André 09210170, Brazil
| | - Gilor Kelly
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization, Rishon Le-Zion 7505101, Israel
| | - Wagner Rodrigo de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André 09210170, Brazil
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
22
|
Yang H, Yu H, Wang S, Bayouli IT, Huang H, Ye D, Zhang X, Liu T, Wang Y, Zheng Z, Meers E, Li T. Root radial apoplastic transport contributes to shoot cadmium accumulation in a high cadmium-accumulating rice line. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132276. [PMID: 37625294 DOI: 10.1016/j.jhazmat.2023.132276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Radial transport of cadmium (Cd) in roots governs the amount of Cd loaded into xylem vessels, where Cd ions are translocated upward into shoots, while the mechanism of differential Cd radial transport between the high Cd-accumulating rice line Lu527-8 and the normal rice line Lu527-4 remains ambiguous. A higher Cd distribution in cross sections and root apoplast and higher bypass flow of Cd were found in Lu527-8, explaining a greater Cd translocation through the apoplastic pathway. The lower relative area of the epidermis and the constant relative area of the cortex in Lu527-8 opened-up root radial transport for Cd. Deposition of apoplastic barriers (Casparian strips and suberin lamellae) was stimulated by Cd, which effectively prevented Cd from entering the stele through the apoplastic pathway. In Lu527-8, apoplastic barriers were further from the root apex with lower expression of genes responsible for biosynthesis of Casparian strips and suberin lamellae, enhancing radial transport of Cd. Our data revealed that the higher radial apoplastic transport of Cd played an integral role in Cd translocation, contributed to a better understanding of the mechanism involved in high Cd accumulation in Lu527-8 and helped achieve the practical application of phytoextraction.
Collapse
Affiliation(s)
- Huan Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shengwang Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ines Terwayet Bayouli
- Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tao Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Erik Meers
- Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
23
|
Verbon EH, Liberman LM, Zhou J, Yin J, Pieterse CMJ, Benfey PN, Stringlis IA, de Jonge R. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. MOLECULAR PLANT 2023; 16:1160-1177. [PMID: 37282370 PMCID: PMC10527033 DOI: 10.1016/j.molp.2023.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Growth- and health-promoting bacteria can boost crop productivity in a sustainable way. Pseudomonas simiae WCS417 is such a bacterium that efficiently colonizes roots, modifies the architecture of the root system to increase its size, and induces systemic resistance to make plants more resistant to pests and pathogens. Our previous work suggested that WCS417-induced phenotypes are controlled by root cell-type-specific mechanisms. However, it remains unclear how WCS417 affects these mechanisms. In this study, we transcriptionally profiled five Arabidopsis thaliana root cell types following WCS417 colonization. We found that the cortex and endodermis have the most differentially expressed genes, even though they are not in direct contact with this epiphytic bacterium. Many of these genes are associated with reduced cell wall biogenesis, and mutant analysis suggests that this downregulation facilitates WCS417-driven root architectural changes. Furthermore, we observed elevated expression of suberin biosynthesis genes and increased deposition of suberin in the endodermis of WCS417-colonized roots. Using an endodermal barrier mutant, we showed the importance of endodermal barrier integrity for optimal plant-beneficial bacterium association. Comparison of the transcriptome profiles in the two epidermal cell types that are in direct contact with WCS417-trichoblasts that form root hairs and atrichoblasts that do not-implies a difference in potential for defense gene activation. While both cell types respond to WCS417, trichoblasts displayed both higher basal and WCS417-dependent activation of defense-related genes compared with atrichoblasts. This suggests that root hairs may activate root immunity, a hypothesis that is supported by differential immune responses in root hair mutants. Taken together, these results highlight the strength of cell-type-specific transcriptional profiling to uncover "masked" biological mechanisms underlying beneficial plant-microbe associations.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Louisa M Liberman
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jiayu Zhou
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Jie Yin
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Philip N Benfey
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands; Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece.
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands.
| |
Collapse
|
24
|
Chen A, Liu T, Deng Y, Xiao R, Zhang T, Wang Y, Yang Y, Lakshmanan P, Shi X, Zhang F, Chen X. Nitrate _dependent suberization regulates cadmium uptake and accumulation in maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162848. [PMID: 36931522 DOI: 10.1016/j.scitotenv.2023.162848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 05/13/2023]
Abstract
In this study, effect of nitrate-dependent suberization in maize root on cadmium (Cd) uptake and accumulation was investigated. Suberization in maize roots was significantly lower in plants grown with a high nitrate supply compared with low nitrate. This decrease was seen in the total amount of suberin, in which the aliphatic suberin amount was significantly decreased, whereas no difference in aromatic suberin content between different N-treatments. RNA-sequencing showed that suberin biosynthesis genes were upregulated in low nitrate treatment, which correlated well with the increased suberin content. Bioimaging and xylem sap analysis showed that reduced exodermal and endodermal suberization in roots of plants grown under high nitrate promoted radial Cd transport along the crown root. The enhanced suberization in crown roots of plants grown in low nitrate restricted the radial transport of Cd from epidermis to cortex via decreased accessibility to Cd related transporters at the plasmalemma. Also, under low nitrate supply, the Cd transport gene ZmNramp5 was upregulated in the crown root, which may enhance Cd uptake by root tip where exodermis and endodermis were not fully suberized. These results suggest that high nitrate supply enhances Cd uptake and radial transport in maize roots by reducing exodermal and endodermal suberization.
Collapse
Affiliation(s)
- Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Tong Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Yan Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yuan Wang
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Yuheng Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4067, QLD, Australia
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Fusuo Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
25
|
Yu Y, Wang Q, Wan Y, Huang Q, Li H. Transcriptome analysis reveals different mechanisms of selenite and selenate regulation of cadmium translocation in Brassica rapa. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131218. [PMID: 36934626 DOI: 10.1016/j.jhazmat.2023.131218] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) inhibits cadmium (Cd) root-to-shoot translocation and accumulation in the shoots of pak choi; however, the mechanism by which Se regulates Cd retention in roots is still poorly understood. A time-dependent hydroponic experiment was conducted to compare the effects of selenite and selenate on Cd translocation and retention in the roots. The underlying mechanisms were investigated regarding Se biotransformation and metal transportation in roots using HPLC and transcriptome analyses. Selenite showed reducing effects on Cd translocation and accumulation in shoots earlier than selenate. Selenite is mainly biotransformed into selenomethionine (80% of total Se in roots) at 72 h, while SeO42- was the dominant species in the selenate treatments (68% in shoots). Selenite up-regulated genes involved in the biosynthesis of lignin, suberin, and phytochelatins and those involved in stress signaling, thereby helping to retain Cd in the roots, whereas essentially, selenate had opposite effects and impaired the symplastic and apoplastic retention of Cd. These results suggest that cell-wall reinforcement and Cd retention in roots may be the key processes by which Se regulates Cd accumulation, and faster biotransformation into organic seleno-compounds could lead to earlier effects.
Collapse
Affiliation(s)
- Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, the People's Republic of China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, the People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, the People's Republic of China
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, the People's Republic of China
| | - Qingqing Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, the People's Republic of China.
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, the People's Republic of China.
| |
Collapse
|
26
|
Binenbaum J, Wulff N, Camut L, Kiradjiev K, Anfang M, Tal I, Vasuki H, Zhang Y, Sakvarelidze-Achard L, Davière JM, Ripper D, Carrera E, Manasherova E, Ben Yaakov S, Lazary S, Hua C, Novak V, Crocoll C, Weinstain R, Cohen H, Ragni L, Aharoni A, Band LR, Achard P, Nour-Eldin HH, Shani E. Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. NATURE PLANTS 2023; 9:785-802. [PMID: 37024660 PMCID: PMC7615257 DOI: 10.1038/s41477-023-01391-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA12 translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone.
Collapse
Affiliation(s)
- Jenia Binenbaum
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Nikolai Wulff
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lucie Camut
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Kristian Kiradjiev
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Iris Tal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Himabindu Vasuki
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Lali Sakvarelidze-Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Dagmar Ripper
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Shir Ben Yaakov
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Shani Lazary
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Chengyao Hua
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Vlastimil Novak
- Plant Nutrients and Food Quality Research Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Laura Ragni
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Leah R Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| | - Hussam Hassan Nour-Eldin
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Ayub MA, Zia Ur Rehman M, Ahmad HR, Fox JP, Clubb P, Wright AL, Anwar-Ul-Haq M, Nadeem M, Rico CM, Rossi L. Influence of ionic cerium and cerium oxide nanoparticles on Zea mays seedlings grown with and without cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121137. [PMID: 36720342 DOI: 10.1016/j.envpol.2023.121137] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Cerium (Ce4+) and cerium oxide nanoparticles (CeO2-NPs) have diversified reported effects on plants. Once dispersed in the environment their fate is not well understood, especially in co-existence with other pollutants like cadmium (Cd). The effect of co-application of Ce and Cd are reported in various studies, but the role of Ce source (ionic or bulk) and nanoparticle size is still unknown in cereal plants like maize (Zea mays). To better understand the synergistic effects of Ce and Cd, 500 mg kg-1 Ce coming from ionic (Ce4+ as CeSO4) and CeO2 nano sources (10 nm, 50 nm, and 100 nm) alone and in combination with 0.5 mg Cd kg-1 sand were applied to maize seedlings. Growth, physiology, root structure, anatomy, and ionic homeostasis in maize were measured. The results revealed that Ce4+ resulted in overall decrease in seedling growth, biomass and resulted in higher heavy metal (in control sets) and Cd (in Cd spiked sets) uptake in maize seedlings' root and shoot. The effects of CeO2-NPs were found to be dependent on particle size; in fact, under Cd-0 (non-Cd spiked sets) CeO2-100 nm showed beneficial effects compared to the control. While under co-application with Cd, CeO2-50 nm showed net beneficial effects on maize seedling growth parameters. The Ce alone, and in combination with Cd, altered the root suberin barrier formation. Both ionic and nano Ce sources alone and in co-existence with Cd behaved differently for tissue elemental concentrations (Ce, Cd, micronutrients like B, Mn, Ni, Cu, Zn, Mo, Fe and elements Co, Si) suggesting a strong influence of Cd-Ce coexistence on the element's uptake and translocation in maize.
Collapse
Affiliation(s)
- Muhammad Ashar Ayub
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Faisalabad, Punjab, Pakistan; Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida, 34945, USA; Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Faisalabad, Punjab, Pakistan
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Faisalabad, Punjab, Pakistan
| | - John-Paul Fox
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida, 34945, USA
| | - Preston Clubb
- Department of Chemistry and Biochemistry, Missouri State University, 901 S National Ave, Springfield, MO, 65897, USA
| | - Alan L Wright
- Indian River Research and Education Center, Soil, Water, and Ecosystem Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida, 34945, USA
| | - Muhammad Anwar-Ul-Haq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Faisalabad, Punjab, Pakistan
| | - Muhammad Nadeem
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Faisalabad, Punjab, Pakistan; Indian River Research and Education Center, Soil, Water, and Ecosystem Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida, 34945, USA; Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Cyren M Rico
- Department of Chemistry and Biochemistry, Missouri State University, 901 S National Ave, Springfield, MO, 65897, USA
| | - Lorenzo Rossi
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida, 34945, USA.
| |
Collapse
|
28
|
Das P, Chettri V, Ghosh S, Ghosh C. Micromorphological studies of the leaf and stem of Camellia sinensis (L.) Kuntze with reference to their taxonomic significance. Microsc Res Tech 2023; 86:465-472. [PMID: 36582166 DOI: 10.1002/jemt.24287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/22/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
The micro-morphological examinations of the leaf lamina, petiole and stem for Camellia sinensis (L.) Kuntze (Theaceae) was carried out using a variety of microscopic techniques widely implemented in the area of medicine. The objective of this study was the micromorphological characterization of stem, petiole, lamina, stomata, leaf trichomes and other internal characters. The anatomical studies included the cross section of stem and leaf of Camellia sinensis thereby exhibiting a typical pattern of arrangement of tissues similar to woody plants. Some idioblastic sclereids like astrosclereids, osteosclereids were found in the medullary parenchyma of tea stem and leaf. Large numbers of sclereids were found mainly in the parenchymatous tissue of leaf petiole. Other micro-morphological features like trichomes, stomata, and different tissue layer were also recorded. The leaf trichomes were unicellular, long and densely present in the lower surface of immature leaf but a decrease in amount of trichomes was seen in the mature leaf making it a prime taxonomic feature of the tea leaf. The microscopic morphological analysis of the stem, petiole, lamina, stomata, leaf trichomes of Camellia sinensis can be used for its identification. In addition, these techniques can be further implemented for the taxonomic characterization thereby establishing a genetic relationship and solving taxonomic disputes in the field of plant systematics.
Collapse
Affiliation(s)
- Priyanka Das
- Department of Tea Science, University of North Bengal, Siliguri, India
| | - Vivek Chettri
- Department of Tea Science, University of North Bengal, Siliguri, India
| | - Sandipan Ghosh
- Department of Botany, University of North Bengal, Siliguri, India
| | - Chandra Ghosh
- Department of Tea Science, University of North Bengal, Siliguri, India
| |
Collapse
|
29
|
Derba-Maceluch M, Mitra M, Hedenström M, Liu X, Gandla ML, Barbut FR, Abreu IN, Donev EN, Urbancsok J, Moritz T, Jönsson LJ, Tsang A, Powlowski J, Master ER, Mellerowicz EJ. Xylan glucuronic acid side chains fix suberin-like aliphatic compounds to wood cell walls. THE NEW PHYTOLOGIST 2023; 238:297-312. [PMID: 36600379 DOI: 10.1111/nph.18712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Wood is the most important repository of assimilated carbon in the biosphere, in the form of large polymers (cellulose, hemicelluloses including glucuronoxylan, and lignin) that interactively form a composite, together with soluble extractives including phenolic and aliphatic compounds. Molecular interactions among these compounds are not fully understood. We have targeted the expression of a fungal α-glucuronidase to the wood cell wall of aspen (Populus tremula L. × tremuloides Michx.) and Arabidopsis (Arabidopsis thaliana (L.) Heynh), to decrease contents of the 4-O-methyl glucuronopyranose acid (mGlcA) substituent of xylan, to elucidate mGlcA's functions. The enzyme affected the content of aliphatic insoluble cell wall components having composition similar to suberin, which required mGlcA for binding to cell walls. Such suberin-like compounds have been previously identified in decayed wood, but here, we show their presence in healthy wood of both hardwood and softwood species. By contrast, γ-ester bonds between mGlcA and lignin were insensitive to cell wall-localized α-glucuronidase, supporting the intracellular formation of these bonds. These findings challenge the current view of the wood cell wall composition and reveal a novel function of mGlcA substituent of xylan in fastening of suberin-like compounds to cell wall. They also suggest an intracellular initiation of lignin-carbohydrate complex assembly.
Collapse
Affiliation(s)
- Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Madhusree Mitra
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | | | - Xiaokun Liu
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | | | - Félix R Barbut
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Ilka N Abreu
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Evgeniy N Donev
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - János Urbancsok
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Justin Powlowski
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| |
Collapse
|
30
|
Ayub MA, Rehman MZU, Ahmad HR, Rico CM, Abbasi GH, Umar W, Wright AL, Nadeem M, Fox JP, Rossi L. Divergent effects of cerium oxide nanoparticles alone and in combination with cadmium on nutrient acquisition and the growth of maize ( Zea mays). FRONTIERS IN PLANT SCIENCE 2023; 14:1151786. [PMID: 37063213 PMCID: PMC10098090 DOI: 10.3389/fpls.2023.1151786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION The increasing use of cerium nanoparticles (CeO2-NPs) has made their influx in agroecosystems imminent through air and soil deposition or untreated wastewater irrigation. Another major pollutant associated with anthropogenic activities is Cd, which has adverse effects on plants, animals, and humans. The major source of the influx of Cd and Ce metals in the human food chain is contaminated food, making it an alarming issue; thus, there is a need to understand the factors that can reduce the potential damage of these heavy metals. METHODS The present investigation was conducted to evaluate the effect of CeO2-10-nm-NPs and Cd (alone and in combination) on Zea mays growth. A pot experiment (in sand) was conducted to check the effect of 0, 200, 400, 600, 1,000, and 2,000 mg of CeO2-10 nm-NPs/kg-1 dry sand alone and in combination with 0 and 0.5 mg Cd/kg-1 dry sand on maize seedlings grown in a partially controlled greenhouse environment, making a total of 12 treatments applied in four replicates under a factorial design. Maize seedling biomass, shoot and root growth, nutrient content, and root anatomy were measured. RESULTS AND DISCUSSION The NPs were toxic to plant biomass (shoot and root dry weight), and growth at 2,000 ppm was the most toxic in Cd-0 sets. For Cd-0.5 sets, NPs applied at 1,000 ppm somewhat reverted Cd toxicity compared with the contaminated control (CC). Additionally, CeO2-NPs affected Cd translocation, and variable Ce uptake was observed in the presence of Cd compared with non-Cd applied sets. Furthermore, CeO2-NPs partially controlled the elemental content of roots and shoots (micronutrients such as B, Mn, Ni, Cu, Zn, Mo, and Fe and the elements Co and Si) and affected root anatomy.
Collapse
Affiliation(s)
- Muhammad Ashar Ayub
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Punjab, Pakistan
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Punjab, Pakistan
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL, United States
| | - Muhammad Zia ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Cyren M. Rico
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, MO, United States
| | - Ghulam Hassan Abbasi
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| | - Alan L. Wright
- Soil, Water and Ecosystem Sciences Department, University of Florida, Institute of Food and Agriculture Sciences, Indian River Research and Education Centre, Fort Pierce, FL, United States
| | - Muhammad Nadeem
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - John-Paul Fox
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL, United States
| | - Lorenzo Rossi
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL, United States
| |
Collapse
|
31
|
Cui H, Tang S, Huang S, Lei L, Jiang Z, Li L, Wei S. Simultaneous mitigation of arsenic and cadmium accumulation in rice grains by foliar inhibitor with ZIF-8@Ge-132. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160307. [PMID: 36403824 DOI: 10.1016/j.scitotenv.2022.160307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Simultaneous mitigation of Arsenic (As) and Cadmium (Cd) in rice grains is hardly achieved with conventional soil treatments due to their opposite chemical behaviors in paddy soils. This study evaluates the effectiveness of a novel foliar inhibitor with germanium (Ge) -modified zeolitic imidazolate framework (ZIF-8@Ge-132) in cooperative mitigation of As and Cd in rice grains in a As and Cd co-contaminated paddy field, and the effecting mechanisms are elucidated by a series of advanced techniques. The results showed that the grains inorganic As and Cd was remarkably decreased by 45 % and 66 % by the foliar spay of ZIF-8@Ge-132, respectively. ZIF-8@Ge-132 also reduced the As and Cd contents in rice tissues, except for Cd in leaves, where Cd content increased by 148 %. The image-based measurement of plant phenotypic traits and the elements of image analysis using Laser Ablation-ICP-MS (LA-ICP-MS) and Laser Scanning Confocal Microscopy (LSCM) revealed that the possible mechanisms for the reduction of As and Cd in rice grains were as follows: (i) the thickening of the xylem in roots significantly retarded As and Cd absorption by rice plants. (ii) co-accumulation of Ge and Cd in the leaf vascular system likely contributed to the high Cd retention in rice leaves. (iii) antagonistic effects of Zn suppressed the uptake and transport of As in roots/leaves, resulting a lower As accumulation in rice grains.
Collapse
Affiliation(s)
- Hao Cui
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China; Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Shuting Tang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Shiqi Huang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Lidan Lei
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, PR China
| | - Zhenmao Jiang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Lei Li
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Shiqiang Wei
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
32
|
Yang X, Xie H, Weng Q, Liang K, Zheng X, Guo Y, Sun X. Rice OsCASP1 orchestrates Casparian strip formation and suberin deposition in small lateral roots to maintain nutrient homeostasis. FRONTIERS IN PLANT SCIENCE 2022; 13:1007300. [PMID: 36600916 PMCID: PMC9807177 DOI: 10.3389/fpls.2022.1007300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis Casparian strip membrane domain proteins (CASPs) form a transmembrane scaffold to recruit lignin biosynthetic enzymes for Casparian strip (CS) formation. Rice is a semi-aquatic plant with a more complex root structure than Arabidopsis to adapt its growing conditions, where the different deposition of lignin and suberin is crucial for adaptive responses. Here, we observed the structure of rice primary and small lateral roots (SLRs), particularly the deposition patterns of lignin and suberin in wild type and Oscasp1 mutants. We found that the appearance time and structure of CS in the roots of rice are different from those of Arabidopsis and observed suberin deposition in the sclerenchyma in wild type roots. Rice CASP1 is highly similar to AtCASPs, but its expression is concentrated in SLR tips and can be induced by salt stress especially in the steles. The loss of OsCASP1 function alters the expression of the genes involved in suberin biosynthesis and the deposition of suberin in the endodermis and sclerenchyma and leads to delayed CS formation and uneven lignin deposition in SLRs. These different depositions may alter nutrient uptake, resulting in ion imbalance in plant, withered leaves, fewer tillers, and reduced tolerance to salt stress. Our findings suggest that OsCASP1 could play an important role in nutrient homeostasis and adaptation to the growth environment.
Collapse
|
33
|
Transcriptomic Analysis of Distal Parts of Roots Reveals Potentially Important Mechanisms Contributing to Limited Flooding Tolerance of Canola ( Brassica napus) Plants. Int J Mol Sci 2022; 23:ijms232415469. [PMID: 36555110 PMCID: PMC9779561 DOI: 10.3390/ijms232415469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Since most of the root metabolic activities as well as root elongation and the uptake of water and mineral nutrients take place in the distal parts of roots, we aimed to gain insight into the physiological and transcriptional changes induced by root hypoxia in the distal parts of roots in canola (Brassica napus) plants, which are relatively sensitive to flooding conditions. Plants were subject to three days of root hypoxia via lowering oxygen content in hydroponic medium, and various physiological and anatomical features were examined to characterize plant responses. Untargeted transcriptomic profiling approaches were also applied to investigate changes in gene expression that took place in the distal root tissues in response to hypoxia. Plants responded to three days of root hypoxia by reducing growth and gas exchange rates. These changes were accompanied by decreases in leaf water potential (Ψleaf) and root hydraulic conductivity (Lpr). Increased deposition of lignin and suberin was also observed in the root tissues of hypoxic plants. The transcriptomic data demonstrated that the effect of hypoxia on plant water relations involved downregulation of most BnPIPs in the root tissues with the exception of BnPIP1;3 and BnPIP2;7, which were upregulated. Since some members of the PIP1 subfamily of aquaporins are known to transport oxygen, the increase in BnPIP1;3 may represent an important hypoxia tolerance strategy in plants. The results also demonstrated substantial rearrangements of different signaling pathways and transcription factors (TFs), which resulted in alterations of genes involved in the regulation of Lpr, TCA (tricarboxylic acid) cycle-related enzymes, antioxidant enzymes, and cell wall modifications. An integration of these data enabled us to draft a comprehensive model of the molecular pathways involved in the responses of distal parts of roots in B. napus. The model highlights systematic transcriptomic reprogramming aimed at explaining the relative sensitivity of Brassica napus to root hypoxia.
Collapse
|
34
|
El-Okkiah SAF, El-Tahan AM, Ibrahim OM, Taha MA, Korany SM, Alsherif EA, AbdElgawad H, Abo Sen EZF, Sharaf-Eldin MA. Under cadmium stress, silicon has a defensive effect on the morphology, physiology, and anatomy of pea ( Pisum sativum L.) plants. FRONTIERS IN PLANT SCIENCE 2022; 13:997475. [PMID: 36325574 PMCID: PMC9621089 DOI: 10.3389/fpls.2022.997475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/31/2022] [Indexed: 05/27/2023]
Abstract
Soil pollution with cadmium (Cd) is a serious threat to plant growth and development. On the other hand, silicon (Si) can support plants to cope with Cd stress. However, the Cd stress mitigating impact of Si reduction in pea (Pisum sativum L.) is not known. The objective of this study is to see if and how Si can reduce Cd toxicity. To the end, a greenhouse pot experiment was performed twice during the 2018/2019 and 2019/2020 seasons to investigate the effect of Si on the growth, anatomy, and biochemistry of Cd stressed peas plants. Cd exposure increased the contents of Cd ions in the root and shoot of pea plants. Consequentially, Cd accumulation in pea tissue significantly reduced plant growth i.e., plant height, leaf area, and shoot and root dry weights. The effect of Cd was concentration-dependent, where at low concentration (50 mg/kg soil), the plant height was 94.33 and 97.33cm and at high concentration (100 mg/kg soil), it was 89.0 and 91.0 cm in the two seasons, respectively. This growth reduction can be explained by the decrease in plants' photosynthesis, whereas plants exposed to Cd toxicity had lower chlorophyll levels. At the anatomy level, high Cd concentrations resulted in anatomical abnormalities such as an unusual vascular system, abnormal lignification in the pith parenchyma, and enlarged cortical cells. Moreover, all Cd concentrations resulted in a highly significant decrease in stomatal area and stomatal density (the number of stomata per mm2). In addition to growth inhibition, Cd-induced oxidative damage to pea plants as indicated by increased hydrogen peroxide (H2O2) and Malondialdehyde (MDA) levels. To reduce stress toxicity, plants treated with Cd at 50 and 100 (mg/kg) showed a significant increase in antioxidant capacity. Peroxidase (POD) enzyme activity was significantly increased by 41.26%, 28.64%, 77.05%, and 60.77% in both seasons, respectively. Si at 300 ppm under Cd (100 mg/kg) stress conductions considerably reduced (MDA) contents by 29.02% and 29.12%, in the two seasons, respectively. The findings pointed out that Si's ability to protect pea against the oxidative stress caused by Cd toxicity.
Collapse
Affiliation(s)
- Samira A. F. El-Okkiah
- Deparment of Agriculture Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications (SRTA)-City, Alexandria, Egypt
| | - Omar M. Ibrahim
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications (SRTA)-City, Alexandria, Egypt
| | - Mohamed A. Taha
- Department of Horticulture, Faculty of Agriculture, Minufiya University, Minufiya, Egypt
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | | | - Mohamed A. Sharaf-Eldin
- Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt
| |
Collapse
|
35
|
Xu H, Liu P, Wang C, Wu S, Dong C, Lin Q, Sun W, Huang B, Xu M, Tauqeer A, Wu S. Transcriptional networks regulating suberin and lignin in endodermis link development and ABA response. PLANT PHYSIOLOGY 2022; 190:1165-1181. [PMID: 35781829 PMCID: PMC9516719 DOI: 10.1093/plphys/kiac298] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/14/2022] [Indexed: 05/05/2023]
Abstract
Vascular tissues are surrounded by an apoplastic barrier formed by endodermis that is vital for selective absorption of water and nutrients. Lignification and suberization of endodermal cell walls are fundamental processes in establishing the apoplastic barrier. Endodermal suberization in Arabidopsis (Arabidopsis thaliana) roots is presumed to be the integration of developmental regulation and stress responses. In root endodermis, the suberization level is enhanced when the Casparian strip, the lignified structure, is defective. However, it is not entirely clear how lignification and suberization interplay and how they interact with stress signaling. Here, in Arabidopsis, we constructed a hierarchical network mediated by SHORT-ROOT (SHR), a master regulator of endodermal development, and identified 13 key MYB transcription factors (TFs) that form multiple sub-networks. Combined with functional analyses, we further uncovered MYB TFs that mediate feedback or feed-forward loops, thus balancing lignification and suberization in Arabidopsis roots. In addition, sub-networks comprising nine MYB TFs were identified that interact with abscisic acid signaling to integrate stress response and root development. Our data provide insights into the mechanisms that enhance plant adaptation to changing environments.
Collapse
Affiliation(s)
| | | | | | - Shasha Wu
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaoqun Dong
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qingyun Lin
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenru Sun
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Benben Huang
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meizhi Xu
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Arfa Tauqeer
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | |
Collapse
|
36
|
Liu X, Wang P, An Y, Wang CM, Hao Y, Zhou Y, Zhou Q, Wang P. Endodermal apoplastic barriers are linked to osmotic tolerance in meso-xerophytic grass Elymus sibiricus. FRONTIERS IN PLANT SCIENCE 2022; 13:1007494. [PMID: 36212320 PMCID: PMC9539332 DOI: 10.3389/fpls.2022.1007494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Drought is the most serious adversity faced by agriculture and animal husbandry industries. One strategy that plants use to adapt to water deficits is modifying the root growth and architecture. Root endodermis has cell walls reinforced with apoplastic barriers formed by the Casparian strip (CS) and suberin lamellae (SL) deposits, regulates radial nutrient transport and protects the vascular cylinder from abiotic threats. Elymus sibiricus is an economically important meso-xerophytic forage grass, characterized by high nutritional quality and strong environmental adaptability. The purpose of this study was to evaluate the drought tolerance of E. sibiricus genotypes and investigate the root structural adaptation mechanism of drought-tolerant genotypes' responding to drought. Specifically, a drought tolerant (DT) and drought sensitive (DS) genotype were screened out from 52 E. sibiricus genotypes. DT showed less apoplastic bypass flow of water and solutes than DS under control conditions, as determined with a hydraulic conductivity measurement system and an apoplastic fluorescent tracer, specifically PTS trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). In addition, DT accumulated less Na, Mg, Mn, and Zn and more Ni, Cu, and Al than DS, regardless of osmotic stress. Further study showed more suberin deposition in DT than in DS, which could be induced by osmotic stress in both. Accordingly, the CS and SL were deposited closer to the root tip in DT than in DS. However, osmotic stress induced their deposition closer to the root tips in DS, while likely increasing the thickness of the CS and SL in DT. The stronger and earlier formation of endodermal barriers may determine the radial transport pathways of water and solutes, and contribute to balance growth and drought response in E. sibiricus. These results could help us better understand how altered endodermal apoplastic barriers in roots regulate water and mineral nutrient transport in plants that have adapted to drought environments. Moreover, the current findings will aid in improving future breeding programs to develop drought-tolerant grass or crop cultivars.
Collapse
Affiliation(s)
- Xin Liu
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yongping An
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanbo Hao
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yue Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Pei Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| |
Collapse
|
37
|
Jayabalan S, Rajakani R, Kumari K, Pulipati S, Hariharan RVG, Venkatesan SD, Jaganathan D, Kancharla PK, Raju K, Venkataraman G. Morpho-physiological, biochemical and molecular characterization of coastal rice landraces to identify novel genetic sources of salinity tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 187:50-66. [PMID: 35952550 DOI: 10.1016/j.plaphy.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/01/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity is a leading cause for yield losses in rice, affecting nearly 6% of global rice cultivable area. India is host to a rich diversity of coastal rice landraces that are naturally tolerant to salinity and an untapped source to identify novel determinants of salinity tolerance. In the present study, we have assessed the relative salinity tolerance of 43 previously genotyped rice landraces at seedling stage, using thirteen morpho-physiological and biochemical parameters using a hydroponics system. Among 43 rice varieties, 25 were tolerant, 15 were moderately tolerant, 1 was moderately susceptible and 2 sensitive checks were found to be highly susceptible based on standard salinity scoring methods. In addition to previously known saline tolerant genotypes (Pokkali, FL478 and Nona Bokra), the present study has novel genotypes such as Katrangi, Orkyma, Aduisen 1, Orumundakan 1, Hoogla, and Talmugur 2 as potential sources of salinity tolerance through measurement of morpho-physiological and biochemical parameters including Na+, K+ estimations and Na+/K+ ratios. Further, Pallipuram Pokkali may be an important source of the tissue tolerance trait under salinity. Four marker trait associations (RM455-root Na+; RM161-shoot and root Na+/K+ ratios; RM237-salinity tolerance index) accounted for phenotypic variations in the range of 20.97-39.82%. A significant increase in root endodermal and exodermal suberization was observed in selected rice landraces under salinity. For the first time, variation in the number of suberized sclerenchymatous layers as well as passage cells is reported, in addition to expression level changes in suberin biosynthetic genes (CYP86A2, CYP81B1, CYP86A8 and PERL).
Collapse
Affiliation(s)
- Shilpha Jayabalan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India; Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Raja Rajakani
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India
| | - Raj V Ganesh Hariharan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, 603203, Tamil Nadu, India
| | - Sowmiya Devi Venkatesan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, 603203, Tamil Nadu, India
| | - Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India; Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Pavan Kumar Kancharla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Kalaimani Raju
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
38
|
Serra O, Geldner N. The making of suberin. THE NEW PHYTOLOGIST 2022; 235:848-866. [PMID: 35510799 PMCID: PMC9994434 DOI: 10.1111/nph.18202] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 05/27/2023]
Abstract
Outer protective barriers of animals use a variety of bio-polymers, based on either proteins (e.g. collagens), or modified sugars (e.g. chitin). Plants, however, have come up with a particular solution, based on the polymerisation of lipid-like precursors, giving rise to cutin and suberin. Suberin is a structural lipophilic polyester of fatty acids, glycerol and some aromatics found in cell walls of phellem, endodermis, exodermis, wound tissues, abscission zones, bundle sheath and other tissues. It deposits as a hydrophobic layer between the (ligno)cellulosic primary cell wall and plasma membrane. Suberin is highly protective against biotic and abiotic stresses, shows great developmental plasticity and its chemically recalcitrant nature might assist the sequestration of atmospheric carbon by plants. The aim of this review is to integrate the rapidly accelerating genetic and cell biological discoveries of recent years with the important chemical and structural contributions obtained from very diverse organisms and tissue layers. We critically discuss the order and localisation of the enzymatic machinery synthesising the presumed substrates for export and apoplastic polymerisation. We attempt to explain observed suberin linkages by diverse enzyme activities and discuss the spatiotemporal relationship of suberin with lignin and ferulates, necessary to produce a functional suberised cell wall.
Collapse
Affiliation(s)
- Olga Serra
- Laboratori del SuroDepartment of BiologyUniversity of GironaCampus MontiliviGirona17003Spain
| | - Niko Geldner
- Department of Plant Molecular BiologyUniversity of LausanneUNIL‐Sorge, Biophore BuildingLausanne1015Switzerland
| |
Collapse
|
39
|
Wang Z, Zhang B, Chen Z, Wu M, Chao D, Wei Q, Xin Y, Li L, Ming Z, Xia J. Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis. THE PLANT CELL 2022; 34:2948-2968. [PMID: 35543496 PMCID: PMC9338812 DOI: 10.1093/plcell/koac140] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/16/2022] [Indexed: 05/14/2023]
Abstract
Plants have evolved a lignin-based Casparian strip (CS) in roots that restricts passive diffusion of mineral elements from the soil to the stele. However, the molecular mechanisms underlying CS formation in rice (Oryza sativa), which contains a CS at both the exodermis and endodermis, are poorly understood. Here, we demonstrate that CS formation at the rice endodermis is redundantly regulated by three MYELOBLASTOSIS (MYB) transcription factors, OsMYB36a, OsMYB36b, and OsMYB36c, that are highly expressed in root tips. Knockout of all three genes resulted in a complete absence of CS at the endodermis and retarded plant growth in hydroponic conditions and in soil. Compared with the wild-type, the triple mutants showed higher calcium (Ca) levels and lower Mn, Fe, Zn, Cu, and Cd levels in shoots. High Ca supply further inhibited mutant growth and increased Ca levels in shoots. Transcriptome analysis identified 1,093 downstream genes regulated by OsMYB36a/b/c, including the key CS formation gene OsCASP1 and other genes that function in CS formation at the endodermis. Three OsMYB36s regulate OsCASP1 and OsESB1 expression by directly binding to MYB-binding motifs in their promoters. Our findings thus provide important insights into the mechanism of CS formation at the endodermis and the selective uptake of mineral elements in roots.
Collapse
Affiliation(s)
| | | | - Zhiwei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Mingjuan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dong Chao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Qiuxing Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yafeng Xin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Longying Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | | |
Collapse
|
40
|
Sabella E, Aprile A, Tenuzzo BA, Carata E, Panzarini E, Luvisi A, De Bellis L, Vergine M. Effects of Cadmium on Root Morpho-Physiology of Durum Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:936020. [PMID: 35812940 PMCID: PMC9260267 DOI: 10.3389/fpls.2022.936020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.] can accumulate a high level of Cd in grains with a significant variability depending on cultivars. Understanding how this toxic element is distributed in cereal tissues and grains is essential to improve the nutritional quality of cereal-based products. The main objective of this work was to investigate roots of durum wheat plants (cv. Iride) exposed to different Cd concentrations (0.5 and 5.0 μM) to identify the mechanisms involved in Cd management. Results showed that the root morphology was altered by Cd treatment both at macroscopic (increased number of tips and primary root length) and ultrastructural levels (cell membrane system damaged, cell walls thickened and enriched in suberin). On the other side, Cd was localized in vesicles and in cell walls, and the metal colocalized with the phytosiderophore nicotianamine (NA). Overall, data suggest that Cd is chelated by NA and then compartmentalized, through vesicular trafficking, in the root thickened walls reducing Cd translocation to the aerial organs of the plant.
Collapse
|
41
|
Leal AR, Sapeta H, Beeckman T, Barros PM, Oliveira MM. Spatiotemporal development of suberized barriers in cork oak taproots. TREE PHYSIOLOGY 2022; 42:1269-1285. [PMID: 34970982 DOI: 10.1093/treephys/tpab176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The longevity and high activity of the cork cambium (or phellogen) from Quercus suber L. (cork oak) are the cornerstones for the sustainable exploitation of a unique raw material. Cork oak is a symbolic model to study cork development and cell wall suberization, yet most genetic and molecular studies on these topics have targeted other model plants. In this study, we explored the potential of taproots as a model system to study phellem development and suberization in cork oak, thereby avoiding the time constraints imposed when studying whole plants. In roots, suberin deposition is found in mature endodermis cells during primary development and in phellem cells during secondary development. By investigating the spatiotemporal characteristics of both endodermis and phellem suberization in young seedling taproots, we demonstrated that secondary growth and phellogen activity are initiated very early in cork oak taproots (approx. 8 days after sowing). We further compared the transcriptomic profile of root segments undergoing primary (PD) and secondary development (SD) and identified multiple candidate genes with predicted roles in cell wall modifications, mainly lignification and suberization, in addition to several regulatory genes, particularly transcription factor- and hormone-related genes. Our results indicate that the molecular regulation of suberization and secondary development in cork oak roots is relatively conserved with other species. The provided morphological characterization creates new opportunities to allow a faster assessment of phellogen activity (as compared with studies using stem tissues) and to tackle fundamental questions regarding its regulation.
Collapse
Affiliation(s)
- Ana Rita Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent B-9052, Belgium
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent B-9052, Belgium
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
42
|
A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat Commun 2022; 13:2222. [PMID: 35468878 PMCID: PMC9038930 DOI: 10.1038/s41467-022-29809-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2022] [Indexed: 01/01/2023] Open
Abstract
Plant salt-stress response involves complex physiological processes. Previous studies have shown that some factors promote salt tolerance only under high transpiring condition, thus mediating transpiration-dependent salt tolerance (TDST). However, the mechanism underlying crop TDST remains largely unknown. Here, we report that ZmSTL1 (Salt-Tolerant Locus 1) confers natural variation of TDST in maize. ZmSTL1 encodes a dirigent protein (termed ZmESBL) localized to the Casparian strip (CS) domain. Mutants lacking ZmESBL display impaired lignin deposition at endodermal CS domain which leads to a defective CS barrier. Under salt condition, mutation of ZmESBL increases the apoplastic transport of Na+ across the endodermis, and then increases the root-to-shoot delivery of Na+ via transpiration flow, thereby leading to a transpiration-dependent salt hypersensitivity. Moreover, we show that the ortholog of ZmESBL also mediates CS development and TDST in Arabidopsis. Our study suggests that modification of CS barrier may provide an approach for developing salt-tolerant crops. Most crops are farmed under high transpiring environments, but our understanding of transpiration-dependent salt tolerance (TDST) remains limited. Here, the authors report a dirigent family protein is responsible for TDST by affecting lignin deposition at Casparian strip barrier and transportation of Na+ across the endodermis.
Collapse
|
43
|
Yang X, Gu X, Ding J, Yao L, Gao X, Zhang M, Meng Q, Wei S, Fu J. Gene expression analysis of resistant and susceptible rice cultivars to sheath blight after inoculation with Rhizoctonia solani. BMC Genomics 2022; 23:278. [PMID: 35392815 PMCID: PMC8991730 DOI: 10.1186/s12864-022-08524-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rice sheath blight, caused by Rhizoctonia solani Kühn (teleomorph: Thanatephorus cucumeris), is one of the most severe diseases in rice (Oryza sativa L.) worldwide. Studies on resistance genes and resistance mechanisms of rice sheath blight have mainly focused on indica rice. Rice sheath blight is a growing threat to rice production with the increasing planting area of japonica rice in Northeast China, and it is therefore essential to explore the mechanism of sheath blight resistance in this rice subspecies. RESULTS In this study, RNA-seq technology was used to analyse the gene expression changes of leaf sheath at 12, 24, 36, 48, and 72 h after inoculation of the resistant cultivar 'Shennong 9819' and susceptible cultivar 'Koshihikari' with R. solani. In the early stage of R. solani infection of rice leaf sheaths, the number of differentially expressed genes (DEGs) in the inoculated leaf sheaths of resistant and susceptible cultivars showed different regularity. After inoculation, the number of DEGs in the resistant cultivar fluctuated, while the number of DEGs in the susceptible cultivar increased first and then decreased. In addition, the number of DEGs in the susceptible cultivar was always higher than that in the resistant cultivar. After inoculation with R. solani, the overall transcriptome changes corresponding to multiple biological processes, molecular functions, and cell components were observed in both resistant and susceptible cultivars. These included metabolic process, stimulus response, biological regulation, catalytic activity, binding and membrane, and they were differentially regulated. The phenylalanine metabolic pathway; tropane, piperidine, and pyridine alkaloid biosynthesis pathways; and plant hormone signal transduction were significantly enriched in the early stage of inoculation of the resistant cultivar Shennong 9819, but not in the susceptible cultivar Koshihikari. This indicates that the response of the resistant cultivar Shennong 9819 to pathogen stress was faster than that of the susceptible cultivar. The expression of plant defense response marker PR1b gene, transcription factor OsWRKY30 and OsPAL1 and OsPAL6 genes that induce plant resistance were upregulated in the resistant cultivar. These data suggest that in the early stage of rice infection by R. solani, there is a pathogen-induced defence system in resistant rice cultivars, involving the expression of PR genes, key transcription factors, PAL genes, and the enrichment of defence-related pathways. CONCLUSION The transcriptome data revealed the molecular and biochemical differences between resistant and susceptible cultivars of rice after inoculation with R. solani, indicating that resistant cultivars have an immune response mechanism in the early stage of pathogen infection. Disease resistance is related to the overexpression of PR genes, key transcriptome factors, and PAL genes, which are potential targets for crop improvement.
Collapse
Affiliation(s)
- Xiaohe Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, Liaoning, China.,Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Xin Gu
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Junjie Ding
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Liangliang Yao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Xuedong Gao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Maoming Zhang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Qingying Meng
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Songhong Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, Liaoning, China.
| | - Junfan Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, Liaoning, China.
| |
Collapse
|
44
|
Accelerated remodeling of the mesophyll-bundle sheath interface in the maize C4 cycle mutant leaves. Sci Rep 2022; 12:5057. [PMID: 35322159 PMCID: PMC8943126 DOI: 10.1038/s41598-022-09135-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
C4 photosynthesis in the maize leaf involves the exchange of organic acids between mesophyll (M) and the bundle sheath (BS) cells. The transport is mediated by plasmodesmata embedded in the suberized cell wall. We examined the maize Kranz anatomy with a focus on the plasmodesmata and cell wall suberization with microscopy methods. In the young leaf zone where M and BS cells had indistinguishable proplastids, plasmodesmata were simple and no suberin was detected. In leaf zones where dimorphic chloroplasts were evident, the plasmodesma acquired sphincter and cytoplasmic sleeves, and suberin was discerned. These modifications were accompanied by a drop in symplastic dye mobility at the M-BS boundary. We compared the kinetics of chloroplast differentiation and the modifications in M-BS connectivity in ppdk and dct2 mutants where C4 cycle is affected. The rate of chloroplast diversification did not alter, but plasmodesma remodeling, symplastic transport inhibition, and cell wall suberization were observed from younger leaf zone in the mutants than in wild type. Our results indicate that inactivation of the C4 genes accelerated the changes in the M-BS interface, and the reduced permeability suggests that symplastic transport between M and BS could be regulated for normal operation of C4 cycle.
Collapse
|
45
|
Xiao Z, Ye M, Gao Z, Jiang Y, Zhang X, Nikolic N, Liang Y. Silicon Reduces Aluminum-Induced Suberization by Inhibiting the Uptake and Transport of Aluminum in Rice Roots and Consequently Promotes Root Growth. PLANT & CELL PHYSIOLOGY 2022; 63:340-352. [PMID: 34981810 DOI: 10.1093/pcp/pcac001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Silicon (Si) can alleviate aluminum (Al) toxicity in rice (Oryza sativa L.), but the mechanisms underlying this beneficial effect have not been elucidated, especially under long-term Al stress. Here, the effects of Al and Si on the suberization and development of rice roots were investigated. The results show that, as the Al exposure time increased, the roots accumulated more Al, and Al enhanced the deposition of suberin in roots, both of which ultimately inhibited root growth and nutrient absorption. However, Si restricted the apoplastic and symplastic pathways of Al in roots by inhibiting the uptake and transport of Al, thereby reducing the accumulation of Al in roots. Meanwhile, the Si-induced drop in Al concentration reduced the suberization of roots caused by Al through down-regulating the expression of genes related to suberin synthesis and then promoted the development of roots (such as longer and more adventitious roots and lateral roots). Moreover, Si also increased nutrient uptake by Al-stressed roots and thence promoted the growth of rice. Overall, these results indicate that Si reduced Al-induced suberization of roots by inhibiting the uptake and transport of Al in roots, thereby amending root growth and ultimately alleviating Al stress in rice. Our study further clarified the toxicity mechanism of Al in rice and the role of Si in reducing Al content and restoring root development under Al stress.
Collapse
Affiliation(s)
- Zhuoxi Xiao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, China
| | - Mujun Ye
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, China
| | - Zixiang Gao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, China
| | - Yishun Jiang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, China
| | - Xinyuan Zhang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, China
| | - Nina Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, 1 Studentski trg, Belgrade 11000, Serbia
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
46
|
Lo SF, Chatterjee J, Biswal AK, Liu IL, Chang YP, Chen PJ, Wanchana S, Elmido-Mabilangan A, Nepomuceno RA, Bandyopadhyay A, Hsing YI, Quick WP. Closer vein spacing by ectopic expression of nucleotide-binding and leucine-rich repeat proteins in rice leaves. PLANT CELL REPORTS 2022; 41:319-335. [PMID: 34837515 PMCID: PMC8850240 DOI: 10.1007/s00299-021-02810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Elevated expression of nucleotide-binding and leucine-rich repeat proteins led to closer vein spacing and higher vein density in rice leaves. To feed the growing global population and mitigate the negative effects of climate change, there is a need to improve the photosynthetic capacity and efficiency of major crops such as rice to enhance grain yield potential. Alterations in internal leaf morphology and cellular architecture are needed to underpin some of these improvements. One of the targets is to generate a "Kranz-like" anatomy in leaves that includes decreased interveinal spacing close to that in C4 plant species. As C4 photosynthesis has evolved from C3 photosynthesis independently in multiple lineages, the genes required to facilitate C4 may already be present in the rice genome. The Taiwan Rice Insertional Mutants (TRIM) population offers the advantage of gain-of-function phenotype trapping, which accelerates the identification of rice gene function. In the present study, we screened the TRIM population to determine the extent to which genetic plasticity can alter vein density (VD) in rice. Close vein spacing mutant 1 (CVS1), identified from a VD screening of approximately 17,000 TRIM lines, conferred heritable high leaf VD. Increased vein number in CVS1 was confirmed to be associated with activated expression of two nucleotide-binding and leucine-rich repeat (NB-LRR) proteins. Overexpression of the two NB-LRR genes individually in rice recapitulates the high VD phenotype, due mainly to reduced interveinal mesophyll cell (M cell) number, length, bulliform cell size and thus interveinal distance. Our studies demonstrate that the trait of high VD in rice can be achieved by elevated expression of NB-LRR proteins limited to no yield penalty.
Collapse
Affiliation(s)
- Shuen-Fang Lo
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC.
| | - Jolly Chatterjee
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Akshaya K Biswal
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz km. 45, El Batán, Texcoco, CP 56237, México
| | - I-Lun Liu
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Yu-Pei Chang
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Pei-Jing Chen
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Samart Wanchana
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | | | - Robert A Nepomuceno
- National Institute of Molecular Biology and Biotechnology, University of the Philippines (BIOTECH-UPLB), Los Baños, 4031, Philippines
| | | | - Yue-Ie Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - William Paul Quick
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines.
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
47
|
Rajakani R, Sellamuthu G, Ishikawa T, Ahmed HAI, Bharathan S, Kumari K, Shabala L, Zhou M, Chen ZH, Shabala S, Venkataraman G. Reduced apoplastic barriers in tissues of shoot-proximal rhizomes of Oryza coarctata are associated with Na+ sequestration. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:998-1015. [PMID: 34606587 DOI: 10.1093/jxb/erab440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Oryza coarctata is the only wild rice species with significant salinity tolerance. The present work examines the role of the substantial rhizomatous tissues of O. coarctata in conferring salinity tolerance. Transition to an erect phenotype (shoot emergence) from prostrate growth of rhizome tissues is characterized by marked lignification and suberization of supporting sclerenchymatous tissue, epidermis, and bundle sheath cells in aerial shoot-proximal nodes and internodes in O. coarctata. With salinity, however, aerial shoot-proximal internodal tissues show reductions in lignification and suberization, most probably related to re-direction of carbon flux towards synthesis of the osmporotectant proline. Concurrent with hypolignification and reduced suberization, the aerial rhizomatous biomass of O. coarctata appears to have evolved mechanisms to store Na+ in these specific tissues under salinity. This was confirmed by histochemical staining, quantitative real-time reverse transcription-PCR expression patterns of genes involved in lignification/suberization, Na+ and K+ contents of internodal tissues, as well as non-invasive microelectrode ion flux measurements of NaCl-induced net Na+, K+, and H+ flux profiles of aerial nodes were determined. In O. coarctata, aerial proximal internodes appear to act as 'traffic controllers', sending required amounts of Na+ and K+ into developing leaves for osmotic adjustment and turgor-driven growth, while more deeply positioned internodes assume a Na+ buffering/storage role.
Collapse
Affiliation(s)
- Raja Rajakani
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
- Forest Molecular Entomology Laboratory, Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague-16500, Czech Republic
| | - Tetsuya Ishikawa
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Hassan Ahmed Ibraheem Ahmed
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
- Department of Botany, Faculty of Science, Port Said University, Port Said 42522, Egypt
| | - Subhashree Bharathan
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thirumalaisamudram, Thanjavur-613401, Tamil Nadu, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
| |
Collapse
|
48
|
Variations in Arbuscular Mycorrhizal Colonization Associated with Root Diameter and Hypodermis Passages Cells across Temperate and Tropical Woody Species. FORESTS 2022. [DOI: 10.3390/f13020140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Root hypodermis passage cells (PCs) lack suberin and lignin deposition, responsible for nutrient absorption and arbuscular mycorrhizal colonization, which are crucial for root resource acquisition. Nevertheless, their quantitative variability across diverse woody species and their relationships with root morphology and anatomy, as well as arbuscular mycorrhizal colonization, are still not well understood. Herein, the number and proportion of PCs in the root cross-section, root morphology, anatomy, and arbuscular mycorrhizal colonization rate were quantified across 10 temperate and 12 tropical woody species. The objectives of this study were to determine how PCs vary across contrasting environmental conditions and to explore their relationships with arbuscular mycorrhizal colonization rate and other root functional traits. The results showed that tropical species possessed 56% more PCs than temperate species; by contrast, they had similar proportions of PCs. In both biomes, the number of PCs had a tightly positive correlation with arbuscular mycorrhizal colonization rate (R2 = 0.35–0.87), root diameter (R2 = 0.84–0.93), and cortex thickness (R2 = 0.87–0.89), but the proportion of PCs was mostly independent of root morphological and anatomical traits. Our results suggest that variation in passage cells could well explain the tight linkage between arbuscular mycorrhizal colonization and root diameter across species and biomes, which provides insight into the collaboration gradient between plant roots and mycorrhizal fungi that dominates the root economics space.
Collapse
|
49
|
Shiono K, Yoshikawa M, Kreszies T, Yamada S, Hojo Y, Matsuura T, Mori IC, Schreiber L, Yoshioka T. Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (Oryza sativa). THE NEW PHYTOLOGIST 2022; 233:655-669. [PMID: 34725822 DOI: 10.1111/nph.17751] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
To acclimate to waterlogged conditions, wetland plants form a barrier to radial oxygen loss (ROL) that can enhance oxygen transport to the root apex. We hypothesized that one or more hormones are involved in the induction of the barrier and searched for such hormones in rice. We previously identified 98 genes that were tissue-specifically upregulated during ROL barrier formation in rice. The RiceXPro database showed that most of these genes were highly enhanced by exogenous abscisic acid (ABA). We then examined the effect of ABA on ROL barrier formation by using an ABA biosynthesis inhibitor (fluridone, FLU), by applying exogenous ABA and by examining a mutant with a defective ABA biosynthesis gene (osaba1). FLU suppressed barrier formation in a stagnant solution that mimics waterlogged soil. Under aerobic conditions, rice does not naturally form a barrier, but 24 h of ABA treatment induced barrier formation. osaba1 did not form a barrier under stagnant conditions, but the application of ABA rescued the barrier. In parallel with ROL barrier formation, suberin lamellae formed in the exodermis. These findings strongly suggest that ABA is an inducer of suberin lamellae formation in the exodermis, resulting in an ROL barrier formation in rice.
Collapse
Affiliation(s)
- Katsuhiro Shiono
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui, 910-1195, Japan
| | - Marina Yoshikawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui, 910-1195, Japan
| | - Tino Kreszies
- Plant Nutrition and Crop Physiology, Department of Crop Science, University of Göttingen, Carl-Sprengel-Weg 1, Göttingen, 37075, Germany
| | - Sumiyo Yamada
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui, 910-1195, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular Botany, University of Bonn, Kirschallee 1, 53115, Germany
| | - Toshihito Yoshioka
- Faculty of Agro-Food Science, Niigata Agro-Food University, 2416 Hiranedai, Tainai, Niigata, 959-2702, Japan
| |
Collapse
|
50
|
Sexauer M, Shen D, Schön M, Andersen TG, Markmann K. Visualizing polymeric components that define distinct root barriers across plant lineages. Development 2021; 148:273645. [PMID: 34878124 PMCID: PMC8714062 DOI: 10.1242/dev.199820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/11/2021] [Indexed: 02/01/2023]
Abstract
Hydrophobic cell wall depositions in roots play a key role in plant development and interaction with the soil environment, as they generate barriers that regulate bidirectional nutrient flux. Techniques to label the respective polymers are emerging, but are efficient only in thin roots or sections. Moreover, simultaneous imaging of the barrier constituents lignin and suberin remains problematic owing to their similar chemical compositions. Here, we describe a staining method compatible with single- and multiphoton confocal microscopy that allows for concurrent visualization of primary cell walls and distinct secondary depositions in one workflow. This protocol permits efficient separation of suberin- and lignin-specific signals with high resolution, enabling precise dissection of barrier constituents. Our approach is compatible with imaging of fluorescent proteins, and can thus complement genetic markers or aid the dissection of barriers in biotic root interactions. We further demonstrate applicability in deep root tissues of plant models and crops across phylogenetic lineages. Our optimized toolset will significantly advance our understanding of root barrier dynamics and function, and of their role in plant interactions with the rhizospheric environment.
Collapse
Affiliation(s)
- Moritz Sexauer
- Department of Plant Physiology, Zentrum für Molekularbiologie der Pflanzen, Tübingen University, 72076 Tübingen, Germany
| | - Defeng Shen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Maria Schön
- Department of Plant Physiology, Zentrum für Molekularbiologie der Pflanzen, Tübingen University, 72076 Tübingen, Germany
| | - Tonni Grube Andersen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Katharina Markmann
- Department of Plant Physiology, Zentrum für Molekularbiologie der Pflanzen, Tübingen University, 72076 Tübingen, Germany
| |
Collapse
|