1
|
Saighani K, Kashiwagi M, Habibi S, Simpson CG, Yamada T, Kanekatsu M. Screening of NIAS World Rice Core Collection for Seeds with Long Longevity as Useful Potential Breeding Materials Focusing on the Stability of Embryonic RNAs. PLANTS (BASEL, SWITZERLAND) 2024; 13:1869. [PMID: 38999709 PMCID: PMC11244364 DOI: 10.3390/plants13131869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Seed longevity is a crucial trait for the seed industry and genetic resource preservation. To develop excellent cultivars with extended seed lifespans, it is important to understand the mechanism of keeping seed germinability long term and to find useful genetic resources as prospective breeding materials. This study was conducted to identify the best cultivars with a high and stable seed longevity trait in the germplasm of rice (Oryza sativa L.) and to analyze the correlation between seed longevity and embryonic RNA integrity. Seeds from 69 cultivars of the world rice core collection selected by the NIAS in Japan were harvested in different years and subjected to long-term storage or controlled deterioration treatment (CDT). The long-term storage (4 °C, RH under 35%, 10 years) was performed on seeds harvested in 2010 and 2013. The seeds harvested in 2016 and 2019 were used for CDT (36 °C, RH of 80%, 40 days). Seed longevity and embryonic RNA integrity were estimated by a decrease in the germination percentage and RNA integrity number (RIN) after long-term storage or CDT. The RIN value was obtained by the electrophoresis of the total RNA extracted from the seed embryos. Seeds of "Vandaran (indica)", "Tupa 729 (japonica)", and "Badari Dhan (indica)" consistently showed higher seed longevity and embryonic RNA integrity both under long-term storage and CDT conditions regardless of the harvest year. A strong correlation (R2 = 0.93) was observed between the germination percentages and RIN values of the seeds after the long-term storage or CDT among nine cultivars selected based on differences in their seed longevity. The study findings revealed the relationship between rice seed longevity and embryo RNA stability and suggested potential breeding materials including both japonica and indica cultivars for improving rice seed longevity.
Collapse
Affiliation(s)
- Kalimullah Saighani
- School of Biology, Biomedical Sciences Research Complex, University of St. Andrews, Fife KY16 9TS, UK
| | - Megumi Kashiwagi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (M.K.); (T.Y.); (M.K.)
| | - Safiullah Habibi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-Cho 3-5-8, Tokyo 183-8509, Japan;
| | - Craig G. Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK;
| | - Tetsuya Yamada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (M.K.); (T.Y.); (M.K.)
| | - Motoki Kanekatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (M.K.); (T.Y.); (M.K.)
| |
Collapse
|
2
|
Beveridge FC, Williams A, Cave R, Kalaipandian S, Haque MM, Adkins SW. Environmental Effects during Early Life-History Stages and Seed Development on Seed Functional Traits of an Australian Native Legume Species. BIOLOGY 2024; 13:148. [PMID: 38534418 DOI: 10.3390/biology13030148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Understanding how seed functional traits interact with environmental factors to determine seedling recruitment is critical to assess the impact of climate change on ecosystem restoration. This study focused on the effects of environmental factors on the mother plant during early plant life history stages and during seed development. Desmodium brachypodum A. Gray (large tick trefoil, Fabaceae) was used as a model species. Firstly, this study analyzed seed germination traits in response to temperature and moisture stress. Secondly, it investigated how seed burial depth interacts with temperature and soil moisture to influence seedling emergence traits. Finally, it determined if contrasting levels of post-anthesis soil moisture could result in changes in D. brachypodum reproductive biology and seed and seedling functional traits. The results showed that elevated temperature and moisture stress interacted to significantly reduce the seed germination and seedling emergence (each by >50%), while the seed burial improved the seedling emergence. Post-anthesis soil moisture stress negatively impacted the plant traits, reducing the duration of the reproductive phenology stage (by 9 days) and seed production (by almost 50%). Unexpectedly, soil moisture stress did not affect most seed or seedling traits. In conclusion, elevated temperatures combined with low soil moisture caused significant declines in seed germination and seedling emergence. On the other hand, the reproductive output of D. brachypodum had low seed variability under soil moisture stress, which might be useful when sourcing seeds from climates with high variability. Even so, a reduction in seed quantity under maternal moisture stress can impact the long-term survival of restored plant populations.
Collapse
Affiliation(s)
- Fernanda C Beveridge
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| | - Alwyn Williams
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| | - Robyn Cave
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| | - Sundaravelpandian Kalaipandian
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
- Department of Bioengineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602105, India
| | - Mirza M Haque
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| | - Steve W Adkins
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
3
|
Pirredda M, Fañanás-Pueyo I, Oñate-Sánchez L, Mira S. Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 13:41. [PMID: 38202349 PMCID: PMC10780731 DOI: 10.3390/plants13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Upon storage, seeds inevitably age and lose their viability over time, which determines their longevity. Longevity correlates with successful seed germination and enhancing this trait is of fundamental importance for long-term seed storage (germplasm conservation) and crop improvement. Seed longevity is governed by a complex interplay between genetic factors and environmental conditions experienced during seed development and after-ripening that will shape seed physiology. Several factors have been associated with seed ageing such as oxidative stress responses, DNA repair enzymes, and composition of seed layers. Phytohormones, mainly abscisic acid, auxins, and gibberellins, have also emerged as prominent endogenous regulators of seed longevity, and their study has provided new regulators of longevity. Gaining a thorough understanding of how hormonal signalling genes and pathways are integrated with downstream mechanisms related to seed longevity is essential for formulating strategies aimed at preserving seed quality and viability. A relevant aspect related to research in seed longevity is the existence of significant differences between results depending on the seed equilibrium relative humidity conditions used to study seed ageing. Hence, this review delves into the genetic, environmental and experimental factors affecting seed ageing and longevity, with a particular focus on their hormonal regulation. We also provide gene network models underlying hormone signalling aimed to help visualize their integration into seed longevity and ageing. We believe that the format used to present the information bolsters its value as a resource to support seed longevity research for seed conservation and crop improvement.
Collapse
Affiliation(s)
- Michela Pirredda
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Sara Mira
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| |
Collapse
|
4
|
Renard J, Bissoli G, Planes MD, Gadea J, Naranjo MÁ, Serrano R, Ingram G, Bueso E. Endosperm Persistence in Arabidopsis Results in Seed Coat Fractures and Loss of Seed Longevity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2726. [PMID: 37514340 PMCID: PMC10383618 DOI: 10.3390/plants12142726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Seeds are specialized plant organs that carry, nurture, and protect plant offspring. Developmental coordination between the three genetically distinct seed tissues (the embryo, endosperm, and seed coat) is crucial for seed viability. In this study, we explore the relationship between the TFs AtHB25 and ICE1. Previous results identified ICE1 as a target gene of AtHB25. In seeds, a lack of ICE1 (ice1-2) suppresses the enhanced seed longevity and impermeability of the overexpressing mutant athb25-1D, but surprisingly, seed coat lipid polyester deposition is not affected, as shown by the double-mutant athb25-1D ice1-2 seeds. zou-4, another mutant lacking the transcriptional program for proper endosperm maturation and for which the endosperm persists, also presents a high sensitivity to seed aging. Analysis of gso1, gso2, and tws1-4 mutants revealed that a loss of embryo cuticle integrity does not underlie the seed-aging sensitivity of ice1-2 and zou-4. However, scanning electron microscopy revealed the presence of multiple fractures in the seed coats of the ice1 and zou mutants. Thus, this study highlights the importance of both seed coat composition and integrity in ensuring longevity and demonstrates that these parameters depend on multiple factors.
Collapse
Affiliation(s)
- Joan Renard
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, F-69342 Lyon, France
| | - Gaetano Bissoli
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - María Dolores Planes
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - Miguel Ángel Naranjo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, F-69342 Lyon, France
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| |
Collapse
|
5
|
Rehmani MS, Xian B, Wei S, He J, Feng Z, Huang H, Shu K. Seedling establishment: The neglected trait in the seed longevity field. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107765. [PMID: 37209453 DOI: 10.1016/j.plaphy.2023.107765] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Seed longevity is a central actor in plant germplasm resource conservation, species reproduction, geographical distribution, crop yield and quality and food processing and safety. Seed longevity and vigor decrease gradually during storage, which directly influences seed germination and post-germination seedling establishment. It is noted that seedling establishment is a key shift from heterotropism to autotropism and is fueled by the energy reserved in the seeds per se. Numerous studies have demonstrated that expedited catabolism of triacylglycerols, fatty acid and sugars during seed storage is closely related to seed longevity. Storage of farm-saved seeds of elite cultivars for use in subsequent years is a common practice and it is recognized that aged seed (especially those stored under less-than-ideal conditions) can lead to poor seed germination, but the significance of poor seedling establishment as a separate factor capable of influencing crop yield has been overlooked. This review article summarizes the relationship between seed germination and seedling establishment and the effect of different seed reserves on seed longevity. Based on this, we emphasize the importance of simultaneous scoring of seedling establishment and germination percentage from aged seeds and discuss the reasons.
Collapse
Affiliation(s)
- Muhammad Saad Rehmani
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - BaoShan Xian
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shaowei Wei
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Juan He
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhenxin Feng
- School of Astronautics, Northwestern Polytechnical University, Xi'an, 710129, China
| | - He Huang
- School of Astronautics, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Kai Shu
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
6
|
van der Walt K, Nadarajan J. Seed Storage Physiology of Lophomyrtus and Neomyrtus, Two Threatened Myrtaceae Genera Endemic to New Zealand. PLANTS (BASEL, SWITZERLAND) 2023; 12:1067. [PMID: 36903930 PMCID: PMC10005796 DOI: 10.3390/plants12051067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
There is no published information on the seed germination or seed storage physiology of Lophomyrtus bullata, Lophomyrtus obcordata, and Neomyrtus pedunculata. This lack of information is hampering conservation efforts of these critically endangered species. This study investigated the seed morphology, seed germination requirements, and long-term seed storage methods for all three species. The impact of desiccation, desiccation and freezing, as well as desiccation plus storage at 5 °C, -18 °C, and -196 °C on seed viability (germination) and seedling vigour was assessed. Fatty acid profiles were compared between L. obcordata and L. bullata. Variability in storage behaviour between the three species was investigated through differential scanning calorimetry (DSC) by comparing thermal properties of lipids. L. obcordata seed were desiccation-tolerant and viability was retained when desiccated seed was stored for 24 months at 5 °C. L. bullata seed was both desiccation- and freezing-sensitive, while N. pedunculata was desiccation-sensitive. DSC analysis revealed that lipid crystallisation in L. bullata occurred between -18 °C and -49 °C and between -23 °C and -52 °C in L. obcordata and N. pedunculata. It is postulated that the metastable lipid phase, which coincides with the conventional seed banking temperature (i.e., storing seeds at -20 ± 4 °C and 15 ± 3% RH), could cause the seeds to age more rapidly through lipid peroxidation. Seeds of L. bullata, L. obcordata and N. pedunculata are best stored outside of their lipid metastable temperature ranges.
Collapse
Affiliation(s)
- Karin van der Walt
- Ōtari Native Botanic Garden, Wellington City Council, 150 Wilton Road, Wellington 6012, New Zealand
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| | - Jayanthi Nadarajan
- The New Zealand Institute for Plant and Food Research Limited, Fitzherbert Science Centre, Batchelar Road, Palmerston North 4474, New Zealand
| |
Collapse
|
7
|
Nadarajan J, Walters C, Pritchard HW, Ballesteros D, Colville L. Seed Longevity-The Evolution of Knowledge and a Conceptual Framework. PLANTS (BASEL, SWITZERLAND) 2023; 12:471. [PMID: 36771556 PMCID: PMC9919896 DOI: 10.3390/plants12030471] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The lifespan or longevity of a seed is the time period over which it can remain viable. Seed longevity is a complex trait and varies greatly between species and even seed lots of the same species. Our scientific understanding of seed longevity has advanced from anecdotal 'Thumb Rules,' to empirically based models, biophysical explanations for why those models sometimes work or fail, and to the profound realisation that seeds are the model of the underexplored realm of biology when water is so limited that the cytoplasm solidifies. The environmental variables of moisture and temperature are essential factors that define survival or death, as well as the timescale to measure lifespan. There is an increasing understanding of how these factors induce cytoplasmic solidification and affect glassy properties. Cytoplasmic solidification slows down, but does not stop, the chemical reactions involved in ageing. Continued degradation of proteins, lipids and nucleic acids damage cell constituents and reduce the seed's metabolic capacity, eventually impairing the ability to germinate. This review captures the evolution of knowledge on seed longevity over the past five decades in relation to seed ageing mechanisms, technology development, including tools to predict seed storage behaviour and non-invasive techniques for seed longevity assessment. It is concluded that seed storage biology is a complex science covering seed physiology, biophysics, biochemistry and multi-omic technologies, and simultaneous knowledge advancement in these areas is necessary to improve seed storage efficacy for crops and wild species biodiversity conservation.
Collapse
Affiliation(s)
- Jayanthi Nadarajan
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Palmerston North 4410, New Zealand
| | - Christina Walters
- USDA—Agricultural Research Service, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA
| | - Hugh W. Pritchard
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath RH17 6TN, UK
- Chinese Academy of Sciences, Kunming Institute of Botany, Kunming 650201, China
| | - Daniel Ballesteros
- Faculty of Farmacy, Department of Botany and Geology, University of Valencia, Av. Vicent Estelles s/n, 46100 Valencia, Spain
| | - Louise Colville
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath RH17 6TN, UK
| |
Collapse
|
8
|
Albani Rocchetti G, Carta A, Mondoni A, Godefroid S, Davis CC, Caneva G, Albrecht MA, Alvarado K, Bijmoer R, Borosova R, Bräuchler C, Breman E, Briggs M, Buord S, Cave LH, Da Silva NG, Davey AH, Davies RM, Dickie JB, Fabillo M, Fleischmann A, Franks A, Hall G, Kantvilas G, Klak C, Liu U, Medina L, Reinhammar LG, Sebola RJ, Schönberger I, Sweeney P, Voglmayr H, White A, Wieringa JJ, Zippel E, Abeli T. Selecting the best candidates for resurrecting extinct-in-the-wild plants from herbaria. NATURE PLANTS 2022; 8:1385-1393. [PMID: 36536014 DOI: 10.1038/s41477-022-01296-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/31/2022] [Indexed: 05/12/2023]
Abstract
Resurrecting extinct species is a fascinating and challenging idea for scientists and the general public. Whereas some theoretical progress has been made for animals, the resurrection of extinct plants (de-extinction sensu lato) is a relatively recently discussed topic. In this context, the term 'de-extinction' is used sensu lato to refer to the resurrection of 'extinct in the wild' species from seeds or tissues preserved in herbaria, as we acknowledge the current impossibility of knowing a priori whether a herbarium seed is alive and can germinate. In plants, this could be achieved by germinating or in vitro tissue-culturing old diaspores such as seeds or spores available in herbarium specimens. This paper reports the first list of plant de-extinction candidates based on the actual availability of seeds in herbarium specimens of globally extinct plants. We reviewed globally extinct seed plants using online resources and additional literature on national red lists, resulting in a list of 361 extinct taxa. We then proposed a method of prioritizing candidates for seed-plant de-extinction from diaspores found in herbarium specimens and complemented this with a phylogenetic approach to identify species that may maximize evolutionarily distinct features. Finally, combining data on seed storage behaviour and longevity, as well as specimen age in the novel 'best de-extinction candidate' score (DEXSCO), we identified 556 herbarium specimens belonging to 161 extinct species with available seeds. We expect that this list of de-extinction candidates and the novel approach to rank them will boost research efforts towards the first-ever plant de-extinction.
Collapse
Affiliation(s)
| | | | - Andrea Mondoni
- Department of Earth and Environmental Science, University of Pavia, Pavia, Italy
| | - Sandrine Godefroid
- Research Department, Meise Botanic Garden, Meise, Belgium
- Service général de l'Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie, Brussels, Belgium
- Laboratory of Plant Ecology and Biogeochemistry, Université libre de Bruxelles, Brussels, Belgium
| | - Charles C Davis
- Department of Organismic Biology, Harvard University, Cambridge, MA, USA
- Harvard University Herbaria, Cambridge, MA, USA
| | - Giulia Caneva
- Department of Science, University of Roma Tre, Rome, Italy
| | - Matthew A Albrecht
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, USA
| | - Karla Alvarado
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Roxali Bijmoer
- Naturalis Biodiversity Center, Botany Section, Leiden, the Netherlands
| | | | | | - Elinor Breman
- Royal Botanic Gardens, Kew, Wakehurst; Ardingly, Haywards Heath, West Sussex, UK
| | | | - Stephane Buord
- Conservatoire botanique national de Brest, Brest, France
| | | | - Nílber Gonçalves Da Silva
- Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rachael M Davies
- Royal Botanic Gardens Kew, Seed and Lab-Based Collections, Sussex, UK
| | - John B Dickie
- Royal Botanic Gardens Kew, Seed and Lab-Based Collections, Sussex, UK
| | - Melodina Fabillo
- Queensland Herbarium, Department of Environment and Science, Brisbane Botanic Gardens Mt Coot-tha, Toowong, Queensland, Australia
| | - Andreas Fleischmann
- Botanische Staatssammlung München (SNSB-BSM), and GeoBio-Center LMU, Ludwig-Maximilians-University, Munich, Germany
| | - Andrew Franks
- Queensland Herbarium, Department of Environment and Science, Brisbane Botanic Gardens Mt Coot-tha, Toowong, Queensland, Australia
| | - Geoffrey Hall
- Centre sur la biodiversité de l'Université de Montréal (CITES CA-035), Montréal, Québec, Canada
| | - Gintaras Kantvilas
- Tasmanian Herbarium, Tasmanian Museum and Art Gallery, Sandy Bay, Tasmania, Australia
| | - Cornelia Klak
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Udayangani Liu
- Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, West Sussex, England, UK
| | | | | | - Ramagwai J Sebola
- South African National Biodiversity Institute, Pretoria, South Africa
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand; WITS, Johannesburg, South Africa
| | - Ines Schönberger
- Allan Herbarium, Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Patrick Sweeney
- Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Hermann Voglmayr
- Department for Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Adam White
- CSIRO Black Mountain Laboratories, Black Mountain, Australian Capital Territory, Australia
| | - Jan J Wieringa
- Naturalis Biodiversity Center, Botany Section, Leiden, the Netherlands
| | - Elke Zippel
- Dahlem Seed Bank, Botanical Garden and Botanic Museum Berlin, Berlin, Germany
| | - Thomas Abeli
- Department of Science, University of Roma Tre, Rome, Italy
- IUCN SSC Conservation Translocation Specialist Group, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Zhou L, Lu L, Chen C, Zhou T, Wu Q, Wen F, Chen J, Pritchard HW, Peng C, Pei J, Yan J. Comparative changes in sugars and lipids show evidence of a critical node for regeneration in safflower seeds during aging. FRONTIERS IN PLANT SCIENCE 2022; 13:1020478. [PMID: 36388552 PMCID: PMC9661361 DOI: 10.3389/fpls.2022.1020478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
During seed aging, there is a critical node (CN) where the population viability drops sharply. Exploring the specific locations of the CN in different species of plants is crucial for understanding the biological storage properties of seeds and refining seed life span management. Safflower, a bulk oil crop that relies on seeds for propagation, has a short seed life. However, at present, its biological characteristics during storage are not clear, especially the changes in metabolic capability and cell structures. Such knowledge is needed to improve the management of safflower seed life span and effective preservation in gene banks. Here, the seed survival curve of oilseed safflower under the controlled deterioration conditions of 60% relative humidity and 50°C was detected. The seed population showed an inverted S shape for the fall in germination. In the first 12 days of aging, germination remained above 86%. Prior to the CN at approximately day 10 (C10), when viability was in the "plateau" interval, seed vigor reduced at the same imbibition time point. Further analysis of the changes in sugar concentration found that the sucrose content decreased slowly with aging and the content of raffinose and two monosaccharides decreased abruptly at C10. Differentially metabolized lipids, namely lysophospholipids [lyso-phosphatidylcholine (LPC) and lyso-phosphatidylethanolamines (LPE)] and PMeOH, increased at day 3 of aging (C3). Fatty acid content increased by C6, and the content of phospholipids [phosphatidylcholines (PC), phosphatidylethanolamines (PE), and phosphatidylinositols (PI) and glycolipids [digalactosyl diacylglycerol, monogalactosyl diacylglycerol, and sulphoquinovosyl diglycerides (SQDG)] decreased significantly from C10. In addition, the activities of raffinose hydrolase alpha-galactosidase and the glyoxylate key enzyme isocitrate lyase decreased with seed aging. Confocal microscopy and transmission electron microscopy revealed shrinkage of the seed plasma membrane at C10 and the later fragmentation. Seedling phenotypic indicators and 2,3,5-triphenyltetrazolium chloride activity assays also verified that there were significant changes in seeds quality at the CN. In summary, the time point C10 is a CN during seed population aging. Before the CN, sugar and lipid metabolism, especially fatty acid metabolism into sugar, can make up for the energy consumed by aging. After this point, the seeds were irreversibly damaged, and their viability was greatly and rapidly reduced as the cell structure became increasingly destroyed.
Collapse
Affiliation(s)
- Lanyu Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijie Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feiyan Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hugh W. Pritchard
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst, Ardingly, United Kingdom
- Chinese Academy of Sciences, Kunming Institute of Botany, Kunming Yunnan, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Humphries T, Florentine S. Assessing Seedbank Longevity and Seed Persistence of the Invasive Tussock Grass Nassella trichotoma Using in-Field Burial and Laboratory-Controlled Ageing. PLANTS (BASEL, SWITZERLAND) 2022; 11:2377. [PMID: 36145778 PMCID: PMC9505095 DOI: 10.3390/plants11182377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The ability to produce highly dense and persistent seedbanks is a major contributor to the successful widespread establishment of invasive plants. This study seeks to identify seed persistence and seedbank longevity for the invasive tussock grass Nassella trichotoma (Nees.) Hack. ex Arechav in order to recommend management strategies for preventing re-emergence from the seedbank. To determine the seedbank longevity and persistence, two experiments were conducted: (i) seeds were buried at four depths (0, 1, 2, and 4 cm) and collected and assessed for viability, seed decay, and in-field germination after 6, 9, 12, 15, and 18 months of field burial; and (ii) seeds were exposed to artificial ageing conditions (60% RH and 45 °C) for 1, 2, 5, 9, 20, 30, 50, 75, 100, and 120 days, and viability was determined through germination tests and tetrazolium tests. Less than 10% of the seeds collected after 12 months of in-field burial were viable. The artificial ageing treatment found germination declined to 50% after 5.8 days, further suggesting that N. trichotoma seeds are short lived. The results from both experiments indicate that N. trichotoma has a transient seedbank, with less than 10% of the seeds demonstrating short-term persistence. It is likely the persistent seeds beyond 12 months were exhibiting secondary dormancy as viable seeds did not germinate under optimal germination conditions. The "Best Practice Guidelines" recommend monitoring for seedbank recruitment for at least three years after treating N. trichotoma infestations. The results of this study support this recommendation as a small proportion of the seeds demonstrated short-term persistence.
Collapse
|
11
|
Seglias AE. Can alpine plant species "bank" on conservation?: Using artificial aging to understand seed longevity. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11493. [PMID: 36258790 PMCID: PMC9575086 DOI: 10.1002/aps3.11493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 06/16/2023]
Abstract
Premise To conserve native plants, many institutions are turning toward ex-situ conservation methods, such as storage in seed banks; however, not all seeds are able to survive in seed bank conditions, or may not in the long term. Experimental aging has shown that alpine species lose viability more quickly than low-elevation species. Furthermore, the germination requirements for rare species are largely unknown, but are a necessary first step in understanding storage behavior and viability decline. Methods Five alpine species were subjected to germination and accelerated aging experiments to understand their longevity in storage. For the accelerated aging experiment, the seeds were rehydrated in a dark incubator and subsequently placed in a drying oven. Following the aging process, the seeds were placed into previously determined germination conditions. Results All species had p 50 values of <13.7 days, which is the threshold to consider a species short lived. These results suggest that we cannot haphazardly store seeds and assume that all species will survive for decades. Discussion Accelerated aging experiments are not a perfect measure of seed longevity, and true longevity needs to be empirically determined. However, this experimental method allows us to predict which species may be short lived and whether alternative ex-situ conservation methods might be needed beyond conventional seed banking.
Collapse
Affiliation(s)
- Alexandra E. Seglias
- Department of Research and ConservationDenver Botanic Gardens, 909 York StreetDenver, Colorado80206USA
| |
Collapse
|
12
|
Rehmani MS, Aziz U, Xian B, Shu K. Seed Dormancy and Longevity: A Mutual Dependence or a Trade-Off? PLANT & CELL PHYSIOLOGY 2022; 63:1029-1037. [PMID: 35594901 DOI: 10.1093/pcp/pcac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy is an important agronomic trait in cereals and leguminous crops as low levels of seed dormancy during harvest season, coupled with high humidity, can cause preharvest sprouting. Seed longevity is another critical trait for commercial crop propagation and production, directly influencing seed germination and early seedling establishment. Both traits are precisely regulated by the integration of genetic and environmental cues. Despite the significance of these two traits in crop production, the relationship between them at the molecular level is still elusive, even with contradictory conclusions being reported. Some studies have proposed a positive correlation between seed dormancy and longevity in association with differences in seed coat permeability or seed reserve accumulation, whereas an increasing number of studies have highlighted a negative relationship, largely with respect to phytohormone-dependent pathways. In this review paper, we try to provide some insights into the interactions between regulatory mechanisms of genetic and environmental cues, which result in positive or negative relationships between seed dormancy and longevity. Finally, we conclude that further dissection of the molecular mechanism responsible for this apparently contradictory relationship between them is needed.
Collapse
Affiliation(s)
- Muhammad Saad Rehmani
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
| | - Usman Aziz
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
| | - BaoShan Xian
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
| | - Kai Shu
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45, Gaoxin South 9 Road, Shenzhen 518057, China
| |
Collapse
|
13
|
Szuba A, Kalemba EM, Wawrzyniak MK, Suszka J, Chmielarz P. Deterioration in the Quality of Recalcitrant Quercus robur Seeds during Six Months of Storage at Subzero Temperatures: Ineffective Activation of Prosurvival Mechanisms and Evidence of Freezing Stress from an Untargeted Metabolomic Study. Metabolites 2022; 12:756. [PMID: 36005628 PMCID: PMC9413681 DOI: 10.3390/metabo12080756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Pedunculate oak (Quercus robur L.) is an economically important forest-forming species in Poland that produces seeds that are sensitive to desiccation; therefore, short-lived seeds are classified as recalcitrant. Such seeds display active metabolism throughout storage. Acorns stored under controlled conditions (moisture content of 40%, temperature -3 °C) maintain viability for up to 1.5-2 years. Meanwhile, oaks only produce large numbers of seeds every few years during so-called mast years. This results in a scarcity of good-quality seeds for continuous nursery production and restoration. The recalcitrant storage behavior and the requirements of foresters make it necessary to develop a new protocol for longer acorn storage at lower temperatures. Two storage temperatures were tested: -3 °C (currently used in forest practice) and -7 °C. Our results showed that acorns stored for six months exhibited deterioration and reduced germination capacity, as well as reduced seedling performance, particularly when acorns were stored at -7 °C. To elucidate the decrease in quality during storage, an untargeted metabolomics study was performed for the first time and supported with the analysis of carbohydrates and percentages of carbon (C) and nitrogen (N). Embryonic axes were characterized by a lower C:N ratio and higher hydration. A total of 1985 metabolites were detected, and 303 were successfully identified and quantified, revealing 44 known metabolites that displayed significantly up- or downregulated abundance. We demonstrated for the first time that the significant deterioration of seed germination potential, particularly in seeds stored at -7 °C, was accompanied by an increased abundance of phenolic compounds and carbohydrates but also amino acids and phosphorylated monosaccharides, particularly in the embryonic axes. The increased abundance of defense-related metabolites (1,2,4-Benzenetriol; BTO), products of ascorbic acid degradation (threonic and isothreonic acid), as well as antifreezing compounds (sugar alcohols, predominantly threitol), was reported in seed stored at -7 °C. We hypothesize that seed deterioration was caused by freezing stress experienced during six months of storage at -7 °C, a decline in antioxidative potential and the unsuccessful rerouting of the energy-production pathways. Additionally, our data are a good example of the application of high-throughput metabolomic tools in forest management.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, PL-62035 Kórnik, Poland
| | | | | | | | | |
Collapse
|
14
|
Gianella M, Balestrazzi A, Ravasio A, Mondoni A, Börner A, Guzzon F. Comparative seed longevity under genebank storage and artificial ageing: a case study in heteromorphic wheat wild relatives. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:836-845. [PMID: 35506610 DOI: 10.1111/plb.13421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Seed longevity is a complex trait that depends on numerous factors. It varies among species and populations, and within different seed morphs produced by the same plant. Little is known about variation in longevity in different seed morphs or the physiological and molecular basis of these differences. We evaluated the longevity and oxidative stress status in heteromorphic seeds aged in two different storage conditions. We compared controlled ageing tests (seed storage at 45°C and 60% relative humidity; a method of accelerated ageing used to estimate longevity in genebank conditions) with storage in a genebank for up to 40 years (-18°C and 8% seed moisture content). We employed as study species two wild wheats characterized by seed heteromorphism: Aegilops tauschii and Triticum monococcum subsp. aegilopoides. We estimated the ROS content and the expression of genes coding for enzymes related to the H2 O2 scavenging pathway. Results confirmed that seed longevity varies between different seed morphs. Different storage environments resulted in different longevity and survival curves. ROS levels, even if with variable patterns, were higher in several aged seed lots. We observed consistency in the expression of two genes (GSR and CAT) related to ROS scavenging in the late phase of pre-germinative metabolism. Differences in seed longevity between morphs were observed for the first time under genebank conditions. Our results suggest also that controlled ageing tests should be used with caution to infer ranks of longevity under cold storage.
Collapse
Affiliation(s)
- M Gianella
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
- Royal Botanic Gardens, Kew, Ardingly, UK
| | - A Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - A Ravasio
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - A Mondoni
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - A Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - F Guzzon
- International Maize and Wheat Improvement Center (CIMMYT), El Bátan, Texcoco, Mexico
| |
Collapse
|
15
|
Ramtekey V, Cherukuri S, Kumar S, V. SK, Sheoran S, K. UB, K. BN, Kumar S, Singh AN, Singh HV. Seed Longevity in Legumes: Deeper Insights Into Mechanisms and Molecular Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:918206. [PMID: 35968115 PMCID: PMC9364935 DOI: 10.3389/fpls.2022.918206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Sustainable agricultural production largely depends upon the viability and longevity of high-quality seeds during storage. Legumes are considered as rich source of dietary protein that helps to ensure nutritional security, but associated with poor seed longevity that hinders their performance and productivity in farmer's fields. Seed longevity is the key determinant to assure proper seed plant value and crop yield. Thus, maintenance of seed longevity during storage is of prime concern and a pre-requisite for enhancing crop productivity of legumes. Seed longevity is significantly correlated with other seed quality parameters such as germination, vigor, viability and seed coat permeability that affect crop growth and development, consequently distressing crop yield. Therefore, information on genetic basis and regulatory networks associated with seed longevity, as well as molecular dissection of traits linked to longevity could help in developing crop varieties with good storability. Keeping this in view, the present review focuses towards highlighting the molecular basis of seed longevity, with special emphasis on candidate genes and proteins associated with seed longevity and their interplay with other quality parameters. Further, an attempt was made to provide information on 3D structures of various genetic loci (genes/proteins) associated to seed longevity that could facilitate in understanding the interactions taking place within the seed at molecular level. This review compiles and provides information on genetic and genomic approaches for the identification of molecular pathways and key players involved in the maintenance of seed longevity in legumes, in a holistic manner. Finally, a hypothetical fast-forward breeding pipeline has been provided, that could assist the breeders to successfully develop varieties with improved seed longevity in legumes.
Collapse
Affiliation(s)
| | | | - Sunil Kumar
- Indian Agricultural Statistics Research Institute-IASRI, New Delhi, India
| | | | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, India
| | - Udaya Bhaskar K.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Bhojaraja Naik K.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Sanjay Kumar
- ICAR-Indian Institute of Seed Science, Mau, India
| | | | | |
Collapse
|
16
|
Tiloca G, Brundu G, Ballesteros D. Bryophyte Spores Tolerate High Desiccation Levels and Exposure to Cryogenic Temperatures but Contain Storage Lipids and Chlorophyll: Understanding the Essential Traits Needed for the Creation of Bryophyte Spore Banks. PLANTS (BASEL, SWITZERLAND) 2022; 11:1262. [PMID: 35567263 PMCID: PMC9100633 DOI: 10.3390/plants11091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Understanding the desiccation and freezing tolerance of bryophyte spores is vital to explain how plants conquered land and current species distribution patterns and help to develop efficient ex situ conservation methods. However, knowledge of these traits is scarce. We investigated tolerance to drying (at 15% relative humidity [RH] for two weeks) and freezing (1 h exposure to liquid nitrogen) on the spores of 12 bryophyte species (23 accessions) from the UK. The presence of storage lipids and their thermal fingerprint, and the levels of unfrozen water content, were determined by differential scanning calorimetry (DSC). The presence of chlorophyll in dry spores was detected by fluorescence microscopy. All species and accessions tested tolerated the drying and freezing levels studied. DSC suggested that 4.1−29.3% of the dry mass is storage lipids, with crystallization and melting temperatures peaking at around −30 °C. Unfrozen water content was determined <0.147 g H2O g−1 dry weight (DW). Most of the spores investigated showed the presence of chlorophyll in the cytoplasm by red autofluorescence. Bryophyte spores can be stored dry at low temperatures, such as orthodox seeds, supporting the creation of bryophyte spore banks. However, the presence of storage lipids and chlorophyll in the cytoplasm may reduce spore longevity during conventional storage at −20 °C. Alternatively, cryogenic spore storage is possible.
Collapse
Affiliation(s)
- Giuseppe Tiloca
- Seed and Stress Biology, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly RH17 6TN, West Sussex, UK;
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Sardinia, Italy;
| | - Giuseppe Brundu
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Sardinia, Italy;
| | - Daniel Ballesteros
- Seed and Stress Biology, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly RH17 6TN, West Sussex, UK;
- Departamento de Botànica y geología, Universitat de València, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
17
|
Prasad C. T. M, Kodde J, Angenent GC, de Vos RCH, Diez-Simon C, Mumm R, Hay FR, Siricharoen S, Yadava DK, Groot SPC. Experimental rice seed aging under elevated oxygen pressure: Methodology and mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:1050411. [PMID: 36531402 PMCID: PMC9751813 DOI: 10.3389/fpls.2022.1050411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 05/13/2023]
Abstract
Seed aging during storage results in loss of vigor and germination ability due to the accumulation of damage by oxidation reactions. Experimental aging tests, for instance to study genetic variation, aim to mimic natural aging in a shorter timeframe. As the oxidation rate is increased by elevating the temperature, moisture, and oxygen levels, this study aimed to (1) investigate the effect of experimental rice seed aging by an elevated partial pressure of oxygen (EPPO), (2) elucidate the mechanism of dry-EPPO aging and (3) compare aging under dry-EPPO conditions to aging under traditional moist-controlled deterioration (CD) conditions and to long-term ambient storage. Dry seeds from 20 diverse rice accessions were experimentally aged under EPPO (200 times higher oxygen levels), at 50% relative humidity (RH), along with storage under high-pressure nitrogen gas and ambient conditions as controls. While no decline in germination was observed with ambient storage, there was significant aging of the rice seeds under EPPO storage, with considerable variation in the aging rate among the accessions, with an average decline toward 50% survival obtained after around 21 days in EPPO storage and total loss of germination after 56 days. Storage under high-pressure nitrogen gas resulted in a small but significant decline, by an average of 5% germination after 56 days. In a second experiment, seven rice seed lots were stored under EPPO as compared to a moist-CD test and two different long-term ambient storage conditions, i.e., conditioned warehouse seed storage (CWSS) and traditional rice seed storage (TRSS). Untargeted metabolomics (with identification of lipid and volatile compounds profiles) showed a relatively high increase in levels of oxidized lipids and related volatiles under all four storage conditions. These compounds had a high negative correlation with seed viability, indicating oxidation as a main deteriorating process during seed aging. Correlation analysis indicated that EPPO storage at 50% RH is more related to aging under TRSS at 60% and CD-aging at 75% ERH rather than CWSS at 40% ERH. In conclusion, aging rice seeds under EPPO conditions is a suitable experimental aging method for analyzing variation among seed lots or genotypes for longevity under storage.
Collapse
Affiliation(s)
- Manjunath Prasad C. T.
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, Netherlands
- Department of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jan Kodde
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Gerco C. Angenent
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Ric C. H. de Vos
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Carmen Diez-Simon
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Roland Mumm
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Fiona R. Hay
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Sasiwimon Siricharoen
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Devendra K. Yadava
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Steven P. C. Groot
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Steven P. C. Groot,
| |
Collapse
|
18
|
Tomlinson S, Tudor EP, Turner SR, Cross S, Riviera F, Stevens J, Valliere J, Lewandrowski W. Leveraging the value of conservation physiology for ecological restoration. Restor Ecol 2021. [DOI: 10.1111/rec.13616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sean Tomlinson
- School of Biological Sciences, University of Adelaide, North Terrace Adelaide South Australia 5000 Australia
- School of Molecular and Life Sciences, Curtin University Bentley Western Australia 6102 Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park, Western Australia 6005 Australia
| | - Emily P. Tudor
- School of Molecular and Life Sciences, Curtin University Bentley Western Australia 6102 Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park, Western Australia 6005 Australia
- School of Biological Sciences, University of Western Australia Crawley Western Australia 6009 Australia
| | - Shane R. Turner
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park, Western Australia 6005 Australia
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
- School of Biological Sciences, University of Western Australia Crawley Western Australia 6009 Australia
| | - Sophie Cross
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
| | - Fiamma Riviera
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
- School of Biological Sciences, University of Western Australia Crawley Western Australia 6009 Australia
| | - Jason Stevens
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park, Western Australia 6005 Australia
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
- School of Biological Sciences, University of Western Australia Crawley Western Australia 6009 Australia
| | - Justin Valliere
- Department of Biology California State University Dominguez Hills Carson California 90747 US
| | - Wolfgang Lewandrowski
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park, Western Australia 6005 Australia
- School of Biological Sciences, University of Western Australia Crawley Western Australia 6009 Australia
| |
Collapse
|
19
|
Vahsen ML, Gentile RM, Summers JL, Kleiner HS, Foster B, McCormack RM, James EW, Koch RA, Metts DL, Saunders C, Megonigal JP, Blum MJ, McLachlan JS. Accounting for variability when resurrecting dormant propagules substantiates their use in eco-evolutionary studies. Evol Appl 2021; 14:2831-2847. [PMID: 34950232 PMCID: PMC8674891 DOI: 10.1111/eva.13316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
There has been a steady rise in the use of dormant propagules to study biotic responses to environmental change over time. This is particularly important for organisms that strongly mediate ecosystem processes, as changes in their traits over time can provide a unique snapshot into the structure and function of ecosystems from decades to millennia in the past. Understanding sources of bias and variation is a challenge in the field of resurrection ecology, including those that arise because often-used measurements like seed germination success are imperfect indicators of propagule viability. Using a Bayesian statistical framework, we evaluated sources of variability and tested for zero-inflation and overdispersion in data from 13 germination trials of soil-stored seeds of Schoenoplectus americanus, an ecosystem engineer in coastal salt marshes in the Chesapeake Bay. We hypothesized that these two model structures align with an ecological understanding of dormancy and revival: zero-inflation could arise due to failed germinations resulting from inviability or failed attempts to break dormancy, and overdispersion could arise by failing to measure important seed traits. A model that accounted for overdispersion, but not zero-inflation, was the best fit to our data. Tetrazolium viability tests corroborated this result: most seeds that failed to germinate did so because they were inviable, not because experimental methods failed to break their dormancy. Seed viability declined exponentially with seed age and was mediated by seed provenance and experimental conditions. Our results provide a framework for accounting for and explaining variability when estimating propagule viability from soil-stored natural archives which is a key aspect of using dormant propagules in eco-evolutionary studies.
Collapse
Affiliation(s)
- Megan L. Vahsen
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Rachel M. Gentile
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Jennifer L. Summers
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Helena S. Kleiner
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - Benjamin Foster
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Regina M. McCormack
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Evan W. James
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Rachel A. Koch
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Dailee L. Metts
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Colin Saunders
- Southeast Environmental Research CenterFlorida International UniversityMiamiFloridaUSA
| | | | - Michael J. Blum
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Jason S. McLachlan
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
20
|
Breman E, Ballesteros D, Castillo-Lorenzo E, Cockel C, Dickie J, Faruk A, O’Donnell K, Offord CA, Pironon S, Sharrock S, Ulian T. Plant Diversity Conservation Challenges and Prospects-The Perspective of Botanic Gardens and the Millennium Seed Bank. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112371. [PMID: 34834734 PMCID: PMC8623176 DOI: 10.3390/plants10112371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 05/22/2023]
Abstract
There is a pressing need to conserve plant diversity to prevent extinctions and to enable sustainable use of plant material by current and future generations. Here, we review the contribution that living collections and seed banks based in botanic gardens around the world make to wild plant conservation and to tackling global challenges. We focus in particular on the work of Botanic Gardens Conservation International and the Millennium Seed Bank of the Royal Botanic Gardens, Kew, with its associated global Partnership. The advantages and limitations of conservation of plant diversity as both living material and seed collections are reviewed, and the need for additional research and conservation measures, such as cryopreservation, to enable the long-term conservation of 'exceptional species' is discussed. We highlight the importance of networks and sharing access to data and plant material. The skill sets found within botanic gardens and seed banks complement each other and enable the development of integrated conservation (linking in situ and ex situ efforts). Using a number of case studies we demonstrate how botanic gardens and seed banks support integrated conservation and research for agriculture and food security, restoration and reforestation, as well as supporting local livelihoods.
Collapse
Affiliation(s)
- Elinor Breman
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK; (D.B.); (E.C.-L.); (C.C.); (J.D.); (A.F.); (T.U.)
- Correspondence:
| | - Daniel Ballesteros
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK; (D.B.); (E.C.-L.); (C.C.); (J.D.); (A.F.); (T.U.)
| | - Elena Castillo-Lorenzo
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK; (D.B.); (E.C.-L.); (C.C.); (J.D.); (A.F.); (T.U.)
| | - Christopher Cockel
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK; (D.B.); (E.C.-L.); (C.C.); (J.D.); (A.F.); (T.U.)
| | - John Dickie
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK; (D.B.); (E.C.-L.); (C.C.); (J.D.); (A.F.); (T.U.)
| | - Aisyah Faruk
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK; (D.B.); (E.C.-L.); (C.C.); (J.D.); (A.F.); (T.U.)
| | - Katherine O’Donnell
- Botanic Gardens Conservation International, Descanso House, 199 Kew Road, London TW9 3BW, UK (S.S.)
| | - Catherine A. Offord
- The Australian Plant Bank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, Sydney, NSW 2567, Australia;
| | - Samuel Pironon
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK;
| | - Suzanne Sharrock
- Botanic Gardens Conservation International, Descanso House, 199 Kew Road, London TW9 3BW, UK (S.S.)
| | - Tiziana Ulian
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK; (D.B.); (E.C.-L.); (C.C.); (J.D.); (A.F.); (T.U.)
| |
Collapse
|
21
|
Michalak M, Plitta-Michalak BP, Nadarajan J, Colville L. Volatile signature indicates viability of dormant orthodox seeds. PHYSIOLOGIA PLANTARUM 2021; 173:788-804. [PMID: 34008870 DOI: 10.1111/ppl.13465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/11/2021] [Indexed: 06/12/2023]
Abstract
All seeds eventually die even under optimal storage conditions. The moment of viability loss is difficult to predict and detect. In order to differentiate between dead and viable dormant orthodox seeds, GC-MS analysis was used to non-invasively evaluate the volatile signature of seeds of Pyrus communis L. and Sorbus aucuparia L. Dormant seeds are capable of extended metabolic depression. However, their low metabolic rate remains largely unquantified, and there are no measurements of metabolites, i.e. volatile organic compounds (VOC) for physiologically dormant seeds during storage. Therefore, to address this issue, seeds were stored at a broad range of moisture content (MC) ranging from 2 to 30% under cryogenic (-196°C), cool (5°C) and elevated (40°C) temperatures. Volatile emission was highly dependent on seed MC and storage temperature and was higher under conditions associated with seed viability loss. However, changes in the emission of volatiles entrapped in seeds and released during 24 h after storage were detected for all conditions, providing insight into the processes occurring in dry dormant seeds. Among the 36 volatiles identified, three (acetaldehyde, ethanol, ethyl acetate) were highly correlated with seed germinability and show potential for the non-invasive screening of viability. Significantly, all three VOC are derived mostly from glycolysis and peroxidation and were detected even under very low moisture and temperature storage conditions. This is the first study to report on VOC accumulation and emission from physiologically dormant seeds and provide a broader view into their viability.
Collapse
Affiliation(s)
- Marcin Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Beata P Plitta-Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Jayanthi Nadarajan
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, UK
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Fitzherbert Science Centre, Palmerston North, New Zealand
| | - Louise Colville
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, UK
| |
Collapse
|
22
|
Engels JMM, Ebert AW. A Critical Review of the Current Global Ex Situ Conservation System for Plant Agrobiodiversity. II. Strengths and Weaknesses of the Current System and Recommendations for Its Improvement. PLANTS (BASEL, SWITZERLAND) 2021; 10:1904. [PMID: 34579439 PMCID: PMC8472064 DOI: 10.3390/plants10091904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
In this paper, we review gene bank operations that have an influence on the global conservation system, with the intention to identify critical aspects that should be improved for optimum performance. We describe the role of active and base collections and the importance of linking germplasm conservation and use, also in view of new developments in genomics and phenomics that facilitate more effective and efficient conservation and use of plant agrobiodiversity. Strengths, limitations, and opportunities of the existing global ex situ conservation system are discussed, and measures are proposed to achieve a rational, more effective, and efficient global system for germplasm conservation and sustainable use. The proposed measures include filling genetic and geographic gaps in current ex situ collections; determining unique accessions at the global level for long-term conservation in virtual base collections; intensifying existing international collaborations among gene banks and forging collaborations with the botanic gardens community; increasing investment in conservation research and user-oriented supportive research; improved accession-level description of the genetic diversity of crop collections; improvements of the legal and policy framework; and oversight of the proposed network of global base collections.
Collapse
|
23
|
de Andrade LG, Sánchez-Tapia A, de Andrade ACS. Germination, viability and dormancy of 47 species from threatened tropical montane grassland in southeast Brazil: Implications for ex situ conservation. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:735-742. [PMID: 33884724 DOI: 10.1111/plb.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
To mitigate anthropogenic impacts on plant diversity in tropical montane grasslands, one of the most threatened ecosystems in Brazil, it will be essential to develop ex situ conservation strategies to preserve wild species. The lack of basic research on the seed storage behaviour of grassland species may, however, limit their use for reintroduction and restoration projects. We investigated seed storage behaviour at the community level by comparing the effects of cold-low RH (10 °C; 10% RH) and freezing-low RH (20 °C; 10% RH) conditions on seed viability, germination and dormancy of 47 species. Fresh seeds of 43% of the species showed primary dormancy. More than half of the species showed high seed survival responses (viability >60%) under both storage temperatures. Despite a variety of dormancy responses among the different species, the low RH storage conditions tested released dormancy for most species during 12- and 30-month storage times. Multivariate analysis of the best (freezing-low RH, 30 months) storage condition evidenced the formation of five distinct groups, three with species having high conservation potential in seed banks. Although further studies are needed to test dormancy-breaking treatments and improve seed conservation practices, this first approach to assessing seed banking techniques could contribute to demand for locally adapted seeds for ecological restoration projects in tropical montane grasslands.
Collapse
Affiliation(s)
- L G de Andrade
- Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Seed Laboratory - Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - A Sánchez-Tapia
- Seed Laboratory - Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - A C S de Andrade
- Seed Laboratory - Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Hay FR, Whitehouse KJ, Ellis RH, Sackville Hamilton NR, Lusty C, Ndjiondjop MN, Tia D, Wenzl P, Santos LG, Yazbek M, Azevedo VC, Peerzada OH, Abberton M, Oyatomi O, de Guzman F, Capilit G, Muchugi A, Kinyanjui Z. CGIAR genebank viability data reveal inconsistencies in seed collection management. GLOBAL FOOD SECURITY 2021. [DOI: 10.1016/j.gfs.2021.100557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Exogenous Antioxidants Enhance Seedling Growth and Yield of Artificially Aged Cabbage and Lettuce Seeds. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aged seeds exhibit compromised vigour in terms of germination, seedling emergence and growth, but this can to some extent be alleviated by invigoration treatments before sowing. This study aimed to investigate ageing rates and patterns in cabbage (Brassica oleraceae) and lettuce (Lactuca sativa) seeds and whether the beneficial effects of invigorating aged seeds with exogenous antioxidants translate to enhanced seedling performance. Seeds were artificially aged to 25% viability before soaking in 0.4 mM glycerol, 0.6 mM GSH and 0.2 mM trolox for cabbage, and 0.6 mM glycerol, GSH and trolox for lettuce; deionised water served as a control. After 14 days of sowing, seedling emergence percentage, mean emergence time, mean daily emergence, and time taken to 25% emergence were computed. Seedling vigour index, root and shoot dry weight, root:shoot ratio, leaf area, leaf area ratio, and leaf chlorophyll content were assessed 6 weeks after sowing. Furthermore, the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), and chlorophyll fluorescence were measured 6 weeks after sowing. Notably, ageing resulted in the loss of seed vigour and viability at higher rates in lettuce than cabbage. Seed pretreatment with glycerol promoted seedling growth in both species and shoot dry weight in lettuce, while glycerol and GSH enhanced Pn, Gs and E in lettuce. Trolox also enhanced Pn and E in lettuce. The beneficial effects of the antioxidant treatments are thought to be associated with the protection of photosystems from oxidative stress and/or stimulation of enzymes involved in photosynthesis, possibly through an enhanced antioxidant defence system during the early development stages when seedlings are particularly vulnerable to stress.
Collapse
|
26
|
Shoemaker WR, Jones SE, Muscarella ME, Behringer MG, Lehmkuhl BK, Lennon JT. Microbial population dynamics and evolutionary outcomes under extreme energy limitation. Proc Natl Acad Sci U S A 2021; 118:e2101691118. [PMID: 34385301 PMCID: PMC8379937 DOI: 10.1073/pnas.2101691118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microorganisms commonly inhabit energy-limited ecosystems where cellular maintenance and reproduction is highly constrained. To gain insight into how individuals persist under such conditions, we derived demographic parameters from a collection of 21 heterotrophic bacterial taxa by censusing 100 populations in an effectively closed system for 1,000 d. All but one taxon survived prolonged resource scarcity, yielding estimated times to extinction ranging over four orders of magnitude from 100 to 105 y. Our findings corroborate reports of long-lived bacteria recovered from ancient environmental samples, while providing insight into mechanisms of persistence. As death rates declined over time, lifespan was extended through the scavenging of dead cells. Although reproduction was suppressed in the absence of exogenous resources, populations continued to evolve. Hundreds of mutations were acquired, contributing to genome-wide signatures of purifying selection as well as molecular signals of adaptation. Consistent ecological and evolutionary dynamics indicate that distantly related bacteria respond to energy limitation in a similar and predictable manner, which likely contributes to the stability and robustness of microbial life.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Biology, Indiana University, Bloomington, IN, 47405;
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Stuart E Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | | | | | - Brent K Lehmkuhl
- Department of Biology, Indiana University, Bloomington, IN, 47405
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405;
| |
Collapse
|
27
|
Abstract
Resurrection genomics is an alternative to ancient DNA approaches in studying the genetics and evolution of past and possibly extinct populations. By reviving biological material such as germinating ancient seeds from archaeological and paleontological sites, or historical collections, one can study genomes of lost populations. We applied this approach by sequencing the genomes of seven Judean date palms (Phoenix dactylifera) that were germinated from ∼2,000 y old seeds recovered in the Southern Levant. Using this genomic data, we were able to document that introgressive hybridization of the wild Cretan palm Phoenix theophrasti into date palms had occurred in the Eastern Mediterranean by ∼2,200 y ago and examine the evolution of date palm populations in this pivotal region two millennia ago. Seven date palm seeds (Phoenix dactylifera L.), radiocarbon dated from the fourth century BCE to the second century CE, were recovered from archaeological sites in the Southern Levant and germinated to yield viable plants. We conducted whole-genome sequencing of these germinated ancient samples and used single-nucleotide polymorphism data to examine the genetics of these previously extinct Judean date palms. We find that the oldest seeds from the fourth to first century BCE are related to modern West Asian date varieties, but later material from the second century BCE to second century CE showed increasing genetic affinities to present-day North African date palms. Population genomic analysis reveals that by ∼2,400 to 2,000 y ago, the P. dactylifera gene pool in the Eastern Mediterranean already contained introgressed segments from the Cretan palm Phoenix theophrasti, a crucial genetic feature of the modern North African date palm populations. The P. theophrasti introgression fraction content is generally higher in the later samples, while introgression tracts are longer in these ancient germinated date palms compared to modern North African varieties. These results provide insights into crop evolution arising from an analysis of plants originating from ancient germinated seeds and demonstrate what can be accomplished with the application of a resurrection genomics approach.
Collapse
|
28
|
Guzzon F, Gianella M, Velazquez Juarez JA, Sanchez Cano C, Costich DE. Seed longevity of maize conserved under germplasm bank conditions for up to 60 years. ANNALS OF BOTANY 2021; 127:775-785. [PMID: 33580665 PMCID: PMC8103804 DOI: 10.1093/aob/mcab009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/13/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS The long-term conservation of seeds of plant genetic resources is of key importance for food security and preservation of agrobiodiversity. Nevertheless, there is scarce information available about seed longevity of many crops under germplasm bank conditions. METHODS Through germination experiments as well as the analysis of historical monitoring data, we studied the decline in viability manifested by 1000 maize (Zea mays subsp. mays) seed accessions conserved for an average of 48 years at the CIMMYT germplasm bank, the largest maize seedbank in the world, under two cold storage conditions: an active (-3 °C; intended for seed distribution) and a base conservation chamber (-15 °C; for long-term conservation). KEY RESULTS Seed lots stored in the active chamber had a significantly lower and more variable seed germination, averaging 81.4 %, as compared with the seed lots conserved in the base chamber, averaging 92.1 %. The average seed viability detected in this study was higher in comparison with that found in other seed longevity studies on maize conserved under similar conditions. A significant difference was detected in seed germination and longevity estimates (e.g. p85 and p50) among accessions. Correlating seed longevity with seed traits and passport data, grain type showed the strongest correlation, with flint varieties being longer lived than floury and dent types. CONCLUSIONS The more rapid loss of seed viability detected in the active chamber suggests that the seed conservation approach, based on the storage of the same seed accessions in two chambers with different temperatures, might be counterproductive for overall long-term conservation and that base conditions should be applied in both. The significant differences detected in seed longevity among accessions underscores that different viability monitoring and regeneration intervals should be applied to groups of accessions showing different longevity profiles.
Collapse
Affiliation(s)
- Filippo Guzzon
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico State, Mexico
- For correspondence. E-mail
| | - Maraeva Gianella
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | | | - Cesar Sanchez Cano
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico State, Mexico
| | - Denise E Costich
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico State, Mexico
| |
Collapse
|
29
|
Han B, Fernandez V, Pritchard HW, Colville L. Gaseous environment modulates volatile emission and viability loss during seed artificial ageing. PLANTA 2021; 253:106. [PMID: 33864524 PMCID: PMC8053187 DOI: 10.1007/s00425-021-03620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/27/2021] [Indexed: 05/03/2023]
Abstract
Modulation of the gaseous environment using oxygen absorbers and/or silica gel shows potential for enhancing seed longevity through trapping toxic volatiles emitted by seeds during artificial ageing. Volatile profiling using non-invasive gas chromatography-mass spectrometry provides insight into the specific processes occurring during seed ageing. Production of alcohols, aldehydes and ketones, derived from processes such as alcoholic fermentation, lipid peroxidation and Maillard reactions, are known to be dependent on storage temperature and relative humidity, but little is known about the potential modulating role of the gaseous environment, which also affects seed lifespan, on volatile production. Seeds of Lolium perenne (Poaceae), Agrostemma githago (Caryophyllaceae) and Pisum sativum (Fabaceae) were aged under normal atmospheric oxygen conditions and in sealed vials containing either oxygen absorbers, oxygen absorbers and silica gel (equilibrated at 60% RH), or silica gel alone. Seeds of A. githago that were aged in the absence of oxygen maintained higher viability and produced fewer volatiles than seeds aged in air. In addition, seeds of A. githago and L. perenne aged in the presence of silica gel were longer lived than those aged without silica, with no effect on seed moisture content or oxygen concentration in the storage containers, but with silica gel acting as a volatile trap. These results indicate that the use of inexpensive oxygen absorbers and silica gel could improve seed longevity in storage for some species and suggests a potential, and previously unidentified, role for silica gel in ultra-dry storage.
Collapse
Affiliation(s)
- Biao Han
- Shandong Forest Germplasm Resources Center, Ji’nan City, China
| | - Vincent Fernandez
- Imaging and Analysis Centre, Natural History Museum, Cromwell Road, London, UK
| | - Hugh W. Pritchard
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, UK
| | - Louise Colville
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, UK
| |
Collapse
|
30
|
Bizouerne E, Buitink J, Vu BL, Vu JL, Esteban E, Pasha A, Provart N, Verdier J, Leprince O. Gene co-expression analysis of tomato seed maturation reveals tissue-specific regulatory networks and hubs associated with the acquisition of desiccation tolerance and seed vigour. BMC PLANT BIOLOGY 2021; 21:124. [PMID: 33648457 PMCID: PMC7923611 DOI: 10.1186/s12870-021-02889-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND During maturation seeds acquire several physiological traits to enable them to survive drying and disseminate the species. Few studies have addressed the regulatory networks controlling acquisition of these traits at the tissue level particularly in endospermic seeds such as tomato, which matures in a fully hydrated environment and does not undergo maturation drying. Using temporal RNA-seq analyses of the different seed tissues during maturation, gene network and trait-based correlations were used to explore the transcriptome signatures associated with desiccation tolerance, longevity, germination under water stress and dormancy. RESULTS During maturation, 15,173 differentially expressed genes were detected, forming a gene network representing 21 expression modules, with 3 being specific to seed coat and embryo and 5 to the endosperm. A gene-trait significance measure identified a common gene module between endosperm and embryo associated with desiccation tolerance and conserved with non-endospermic seeds. In addition to genes involved in protection such LEA and HSP and ABA response, the module included antioxidant and repair genes. Dormancy was released concomitantly with the increase in longevity throughout fruit ripening until 14 days after the red fruit stage. This was paralleled by an increase in SlDOG1-2 and PROCERA transcripts. The progressive increase in seed vigour was captured by three gene modules, one in common between embryo and endosperm and two tissue-specific. The common module was enriched with genes associated with mRNA processing in chloroplast and mitochondria (including penta- and tetratricopeptide repeat-containing proteins) and post-transcriptional regulation, as well several flowering genes. The embryo-specific module contained homologues of ABI4 and CHOTTO1 as hub genes associated with seed vigour, whereas the endosperm-specific module revealed a diverse set of processes that were related to genome stability, defence against pathogens and ABA/GA response genes. CONCLUSION The spatio-temporal co-expression atlas of tomato seed maturation will serve as a valuable resource for the in-depth understanding of the dynamics of gene expression associated with the acquisition of seed vigour at the tissue level.
Collapse
Affiliation(s)
- Elise Bizouerne
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Julia Buitink
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Benoît Ly Vu
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Joseph Ly Vu
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Eddi Esteban
- Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jérôme Verdier
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Olivier Leprince
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.
| |
Collapse
|
31
|
Arend da Silva I, Guido A, Müller SC. Predicting plant performance for the ecological restoration of grasslands: the role of regenerative traits. Restor Ecol 2020. [DOI: 10.1111/rec.13182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Isis Arend da Silva
- Laboratório de Ecologia Vegetal, Programa de Pós‐Graduação em Ecologia Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91540‐000 Porto Alegre Brazil
| | - Anaclara Guido
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Nacional de Pasturas y Forrajes, Estación Experimental del Este, INIA Ruta 8 km 281 Treinta y Tres Uruguay
| | - Sandra Cristina Müller
- Laboratório de Ecologia Vegetal, Programa de Pós‐Graduação em Ecologia Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91540‐000 Porto Alegre Brazil
| |
Collapse
|
32
|
Molecular and environmental factors regulating seed longevity. Biochem J 2020; 477:305-323. [PMID: 31967650 DOI: 10.1042/bcj20190165] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022]
Abstract
Seed longevity is a central pivot of the preservation of biodiversity, being of main importance to face the challenges linked to global climate change and population growth. This complex, quantitative seed quality trait is acquired on the mother plant during the second part of seed development. Understanding what factors contribute to lifespan is one of the oldest and most challenging questions in plant biology. One of these challenges is to recognize that longevity depends on the storage conditions that are experimentally used because they determine the type and rate of deleterious conditions that lead to cell death and loss of viability. In this review, we will briefly review the different storage methods that accelerate the deteriorative reactions during storage and argue that a minimum amount of information is necessary to interpret the longevity data. Next, we will give an update on recent discoveries on the hormonal factors regulating longevity, both from the ABA signaling pathway but also other hormonal pathways. In addition, we will review the effect of both maternal and abiotic factors that influence longevity. In the last section of this review, we discuss the problems in unraveling cause-effect relationship between the time of death during storage and deteriorative reactions leading to seed ageing. We focus on the three major types of cellular damage, namely membrane permeability, lipid peroxidation and RNA integrity for which germination data on seed stored in dedicated seed banks for long period times are now available.
Collapse
|
33
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
34
|
Dong H, Liu T, Liu Z, Song Z. Fate of the soil seed bank of giant ragweed and its significance in preventing and controlling its invasion in grasslands. Ecol Evol 2020; 10:4854-4866. [PMID: 32551066 PMCID: PMC7297783 DOI: 10.1002/ece3.6238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/08/2022] Open
Abstract
Giant ragweed (Ambrosia trifida, L. henceforth referred to as GR), an annual non-native invasive weed, may cause health problems and can reduce agricultural productivity. Chemical control of GR in grasslands may have irreversible side effects on herbs and livestock. In an attempt to propose a solution to the harmful effects of GR on grasslands, this study explores the fate of its soil seed bank (SSB) and considers the physical control of its SSB reduction. By studying GR distributed in grasslands of the Yili Valley, Xinjiang, China, we measured the spatial and temporal changes in seed density, seed germination, dormancy, and death. We analyzed seed germination, dormancy, and death following different storage periods. The study analyzed population characteristics over time, including seed fate, and examined physical control methods for reducing the SSB density. The SSB of GR occurs in the upper 0-15 cm of soil in grasslands. Seed density in the SSB decreased by 68.1% to 82.01% from the reproductive growth period to the senescence period. More than 98.7% of the seeds were rotten, eaten, germinated, dispersed, or died within one year after being produced. The seed germination rate of the SSB decreased with the number of years after invasion. When stored for 0.5 or 3.5 years, seed germination rates fell by 40%, during which time seed death rate increased by almost 40%. When GR was completely eradicated for two consecutive years, the SSB and population densities decreased by >99%. The vast majority of GR seeds germinated or died within one year; the germination rate decreased significantly if the seeds were stored dry at room temperature for a long time. Newly produced seeds are the main source of seeds in the SSB. Therefore, thoroughly eradicating GR plants for several years before the seeds can mature provides an effective control method in grasslands.
Collapse
Affiliation(s)
- Hegan Dong
- College of Life ScienceShihezi UniversityShiheziChina
- Rural Energy and Environment Work Station in YiliYining XingjiangChina
| | - Tong Liu
- College of Life ScienceShihezi UniversityShiheziChina
| | | | | |
Collapse
|
35
|
De Vitis M, Hay FR, Dickie JB, Trivedi C, Choi J, Fiegener R. Seed storage: maintaining seed viability and vigor for restoration use. Restor Ecol 2020. [DOI: 10.1111/rec.13174] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Fiona R. Hay
- Department of AgroecologyAarhus University 4200 Slagelse Denmark
| | - John B. Dickie
- Collection DepartmentRoyal Botanic Gardens Kew RH17 6TN U.K
| | - Clare Trivedi
- Conservation Science DepartmentRoyal Botanic Gardens Kew RH17 6TN U.K
| | - Jaeyong Choi
- Department of Environment and Forest ResourceChungnam National University Daejeon Republic of Korea
| | - Rob Fiegener
- Institute for Applied Ecology 97333 Corvallis OR U.S.A
| |
Collapse
|
36
|
Hourston JE, Pérez M, Gawthrop F, Richards M, Steinbrecher T, Leubner-Metzger G. The effects of high oxygen partial pressure on vegetable Allium seeds with a short shelf-life. PLANTA 2020; 251:105. [PMID: 32417974 PMCID: PMC7230053 DOI: 10.1007/s00425-020-03398-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/03/2020] [Indexed: 05/13/2023]
Abstract
Storage at an elevated partial pressure of oxygen and classical artificial ageing cause a rapid loss of seed viability of short-lived vegetable seeds. Prolonging seed longevity during storage is of major importance for gene banks and the horticultural industry. Slowing down biochemical deterioration, including oxygen-dependent deterioration caused by oxidative processes can boost longevity. This can be affected by the seed structure and the oxygen permeability of seed coat layers. Classical artificial seed ageing assays are used to estimate seed 'shelf-life' by mimicking seed ageing via incubating seeds at elevated temperature and elevated relative humidity (causing elevated equilibrium seed moisture content). In this study, we show that seed lots of vegetable Allium species are short-lived both during dry storage for several months and in seed ageing assays at elevated seed moisture levels. Micromorphological analysis of the Allium cepa x Allium fistulosum salad onion seed identified intact seed coat and endosperm layers. Allium seeds equilibrated at 70% relative humidity were used to investigate seed ageing at tenfold elevated partial pressure of oxygen (high pO2) at room temperature (22 ºC) in comparison to classical artificial ageing at elevated temperature (42 ºC). Our results reveal that 30 days high pO2 treatment causes a rapid loss of seed viability which quantitatively corresponded to the seed viability loss observed by ~ 7 days classical artificial ageing. A similar number of normal seedlings develop from the germinating (viable) proportion of seeds in the population. Many long-lived seeds first exhibit a seed vigour loss, evident from a reduced germination speed, preceding the loss in seed viability. In contrast to this, seed ageing of our short-lived Allium vegetable seems to be characterised by a rapid loss in seed viability.
Collapse
Affiliation(s)
- James E Hourston
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Frances Gawthrop
- Tozer Seeds Ltd, Pyports, Downside Bridge Rd, Cobham, KT11 3EH, UK
| | - Michael Richards
- Tozer Seeds Ltd, Pyports, Downside Bridge Rd, Cobham, KT11 3EH, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, 78371, Olomouc, Czech Republic.
| |
Collapse
|
37
|
Does Storage under Gene Bank Conditions Affect Seed Germination and Seedling Growth? The Case of Senecio morisii (Asteraceae), a Vascular Plant Exclusive to Sardinian Water Meadows. PLANTS 2020; 9:plants9050581. [PMID: 32370198 PMCID: PMC7284729 DOI: 10.3390/plants9050581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022]
Abstract
Understanding seed viability under long-term storage conditions provides basic and useful information to investigate the effectiveness of seed banking. Besides the germination success, seedling establishment is also an important requirement, and a decisive step to ensure plant propagation. We used comparative data of germination, seedling growth, and survival percentage between fresh and 10-years-stored seeds of Senecio morisii, a narrow endemic and vulnerable species of Sardinia (Italy), in order to evaluate if differences exist in these traits between fresh and 10-years-stored seeds. Stored seeds showed higher germination percentages than fresh ones, whereas seedling growth and survival did not present significant differences between them, except for seedling growth in plants produced from seeds germinated at 25 °C. This study allowed us to assess if seeds of S. morisii were able to germinate under controlled conditions, and if they maintained their viability and germination capacity for at least 10 years of long-term storage in the seed bank. In addition, the high seedling survival detected in both fresh and stored seeds suggests that stored seeds of S. morisii can be used to support reinforcement or reintroduction actions when fresh materials are not available.
Collapse
|
38
|
Abeli T, Dalrymple S, Godefroid S, Mondoni A, Müller JV, Rossi G, Orsenigo S. Ex situ collections and their potential for the restoration of extinct plants. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:303-313. [PMID: 31329316 DOI: 10.1111/cobi.13391] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
The alarming current and predicted species extinction rates have galvanized conservationists in their efforts to avoid future biodiversity losses, but for species extinct in the wild, few options exist. We posed the questions, can these species be restored, and, if so, what role can ex situ plant collections (i.e., botanic gardens, germplasm banks, herbaria) play in the recovery of plant genetic diversity? We reviewed the relevant literature to assess the feasibility of recovering lost plant genetic diversity with using ex situ material and the probability of survival of subsequent translocations. Thirteen attempts to recover species extinct in the wild were found, most of which used material preserved in botanic gardens (12) and seed banks (2). One case of a locally extirpated population was recovered from herbarium material. Eight (60%) of these cases were successful or partially successful translocations of the focal species or population; the other 5 failed or it was too early to determine the outcome. Limiting factors of the use of ex situ source material for the restoration of plant genetic diversity in the wild include the scarcity of source material, low viability and reduced longevity of the material, low genetic variation, lack of evolution (especially for material stored in germplasm banks and herbaria), and socioeconomic factors. However, modern collecting practices present opportunities for plant conservation, such as improved collecting protocols and improved cultivation and storage conditions. Our findings suggest that all types of ex situ collections may contribute effectively to plant species conservation if their use is informed by a thorough understanding of the aforementioned problems. We conclude that the recovery of plant species currently classified as extinct in the wild is not 100% successful, and the possibility of successful reintroduction should not be used to justify insufficient in situ conservation.
Collapse
Affiliation(s)
- Thomas Abeli
- Department of Science, University of Roma Tre, Viale Guglielmo Marconi 446, Roma, 00146, Italy
| | - Sarah Dalrymple
- School of Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, U.K
| | - Sandrine Godefroid
- Research Department, Botanic Garden Meise, Nieuwelaan 38, Meise, 1860, Belgium
- Service général de l'Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie-Bruxelles, rue A. Lavallée 1, Brussels, 1080, Belgium
- Laboratory of Plant Ecology and Biogeochemistry, Université libre de Bruxelles, CP 244, Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Andrea Mondoni
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100, Pavia, Italy
| | - Jonas V Müller
- Millennium Seed Bank, Conservation Science, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, RH17 6TN, West Sussex, U.K
| | - Graziano Rossi
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100, Pavia, Italy
| | - Simone Orsenigo
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100, Pavia, Italy
| |
Collapse
|
39
|
Pirredda M, González-Benito ME, Martín C, Mira S. Genetic and Epigenetic Stability in Rye Seeds under Different Storage Conditions: Ageing and Oxygen Effect. PLANTS 2020; 9:plants9030393. [PMID: 32210066 PMCID: PMC7154831 DOI: 10.3390/plants9030393] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 02/01/2023]
Abstract
Seed ageing is a complex process and can be described as the loss of viability or quality with time. It is important to elucidate whether genetic and epigenetic stability is altered in stored seeds and in seedlings produced from them. Non-stored and stored rye seeds at different stages of ageing were compared, as well as the seedlings obtained from them. Seeds were stored at 35 °C and 15% water content, under vacuum or air atmosphere. DNA of seeds and seedlings was isolated at three stages of the deterioration curve: P75 (13 days), P20 (29 days), and P0 (36 days). Genetic stability was assessed by RAPD technique, and epigenetic changes by MSAP markers. While seeds showed genetic stability after storage, the similarity of seedlings obtained from seeds stored for 29 days was lower (95%) when compared to seedlings from control seeds. Epigenetic changes were between 15% and 30% (both de novo methylation and demethylation) in the stored seeds compared to control seeds, with no differences between 13 and 29 days of storage with either air or vacuum atmospheres. In seedlings, epigenetic changes significantly increased with storage time. In conclusion, ageing increased epigenetic instability in both seeds and seedlings, when compared to controls.
Collapse
Affiliation(s)
| | | | | | - Sara Mira
- Correspondence: ; Tel.: +34-91-06-70888
| |
Collapse
|
40
|
Gianella M, Balestrazzi A, Pagano A, Müller JV, Kyratzis AC, Kikodze D, Canella M, Mondoni A, Rossi G, Guzzon F. Heteromorphic seeds of wheat wild relatives show germination niche differentiation. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:191-202. [PMID: 31639249 DOI: 10.1111/plb.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/12/2019] [Indexed: 05/12/2023]
Abstract
Crop wild relatives are fundamental genetic resources for crop improvement. Wheat wild relatives often produce heteromorphic seeds that differ in morphological and physiological traits. Several Aegilops and Triticum species possess, within the same spikelet, a dimorphic seed pair, with one seed being larger than the other. A comprehensive analysis is needed to understand which traits are involved in seed dimorphism and if these aspects of variation in dimorphic pairs are functionally related. To this end, dispersal units of Triticum urartu and five Aegilops species were X-rayed and the different seed morphs weighed. Germination tests were carried out on seeds, both dehulled and left in their dispersal units. Controlled ageing tests were performed to detect differences in seed longevity among seed morphs, and the antioxidant profile was assessed in terms of antioxidant compounds equipment and expression of selected antioxidant genes. We used PCA to group seed morphs sharing similar patterns of germination traits, longevity estimates and antioxidant profile. Different seed morphs differed significantly in terms of mass, final germination, germination timing, longevity estimates and antioxidant profile in most of the tested species. Small seeds germinated slower, had lower germination when left in their dispersal units, a higher antioxidant potential and were longer-lived than large seeds. The antioxidant gene expression varied between morphs, with different patterns across species but not clearly reflecting the phenotypic observations. The results highlight different trait trade-offs in dimorphic seeds of Aegilops and T. urartu, affecting their germination phenology and longevity, thereby resulting in recruitment niche differentiation.
Collapse
Affiliation(s)
- M Gianella
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - A Balestrazzi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - A Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - J V Müller
- Millennium Seed Bank, Conservation Science Department, Royal Botanic Gardens Kew, Wakehurst Place, UK
| | - A C Kyratzis
- Vegetable Crops Sector, Agricultural Research Institute of Cyprus, Nicosia, Cyprus
| | - D Kikodze
- Institute of Botany, Ilia State University, Tbilisi, Georgia
| | - M Canella
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - A Mondoni
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - G Rossi
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - F Guzzon
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado de Mexico, Mexico
| |
Collapse
|
41
|
Wiebach J, Nagel M, Börner A, Altmann T, Riewe D. Age-dependent loss of seed viability is associated with increased lipid oxidation and hydrolysis. PLANT, CELL & ENVIRONMENT 2020; 43:303-314. [PMID: 31472094 DOI: 10.1111/pce.13651] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 05/05/2023]
Abstract
The accumulation of reactive oxygen species has been associated with a loss of seed viability. Therefore, we have investigated the germination ability of a range of seed stocks, including two wheat collections and one barley collection that had been dry-aged for 5-40 years. Metabolite profiling analysis revealed that the accumulation of glycerol was negatively correlated with the ability to germinate in all seed sets. Furthermore, lipid degradation products such as glycerol phosphates and galactose were accumulated in some seed sets. A quantitative analysis of nonoxidized and oxidized lipids was performed in the wheat seed set that showed the greatest variation in germination. This analysis revealed that the levels of fully acylated and nonoxidized storage lipids like triacylglycerols and structural lipids like phospho- and galactolipids were decreasing. Moreover, the abundance of oxidized variants and hydrolysed products such as mono-/diacylglycerols, lysophospholipids, and fatty acids accumulated as viability decreased. The proportional formation of oxidized and nonoxidized fatty acids provides evidence for an enzymatic hydrolysis of specifically oxidized lipids in dry seeds. The results link reactive oxygen species with lipid oxidation, structural damage, and death in long-term aged seeds.
Collapse
Affiliation(s)
- Janine Wiebach
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, 06466, Germany
- Charité - Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Berlin, 10117, Germany
| | - Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, 06466, Germany
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, 06466, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, 06466, Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, 06466, Germany
- Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, 14195, Germany
| |
Collapse
|
42
|
Solberg SØ, Yndgaard F, Andreasen C, von Bothmer R, Loskutov IG, Asdal Å. Long-Term Storage and Longevity of Orthodox Seeds: A Systematic Review. FRONTIERS IN PLANT SCIENCE 2020; 11:1007. [PMID: 32719707 PMCID: PMC7347988 DOI: 10.3389/fpls.2020.01007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/19/2020] [Indexed: 05/03/2023]
Abstract
As part of conservation of plant genetic resources, long-term storage of seeds is highly relevant for genebanks. Here we present a systematic review and a meta-analysis of studies on seed longevity focusing on half-life (P50) under different storage conditions. Six studies were selected for the meta-analysis; in addition, a high number of additional references were included in the discussion of the results. The results show that under ambient conditions, half-life is short, from 5 to 10 years, while under more optimal conditions, which for orthodox seeds is at low humidity and low temperature, half-life is more in the 40-60 years range, although with large interspecies variation. Under long-term genebank conditions, with seeds dried to equilibrium and thereafter kept at minus 18-20°C in waterproof bags or jars, half-life can be twice or three times as long. In general, many of the grain legume seeds, as well as corn, common oat, and common barley are long-lived, while cereal rye, onion, garden lettuce, pepper, and some of the forage grasses are more short-lived. Conditions during maturation and harvesting influence longevity, and proper maturation and gentle handling are known to be of importance. Seed longevity models have been developed to predict final germination based on initial viability, temperature, humidity, storage time, and species information. We compared predicted germination to results from the long-term experiments. The predicted values were higher or much higher than the observed values, which demonstrate that something in the seed handling in the genebanks have not been optimal. Long-term studies are now available with data at least up to 60 years of storage. Our review shows that the knowledge and methodology developed for the conservation of plant genetic resources should also work for wild species of orthodox seed nature.
Collapse
Affiliation(s)
- Svein Øivind Solberg
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Elverum, Norway
- *Correspondence: Svein Øivind Solberg,
| | | | - Christian Andreasen
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Roland von Bothmer
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Igor G. Loskutov
- N. I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | | |
Collapse
|
43
|
Elias RA, Lando AP, Viana WG, Ortiz J, da Costa CD, Schmidt ÉC, Souza LA, Guerra MP, Steiner N. Structural aspects of cypsela and seed development of Trichocline catharinensis (Cabrera): a Brazilian endemic species. PROTOPLASMA 2019; 256:1495-1506. [PMID: 31144034 DOI: 10.1007/s00709-019-01361-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
This is the first study to describe in a timescale morphohistological and ultrastructural characteristics of fruit (cypsela) and seed development in Trichocline catharinensis, which was completed 21 days after anthesis (DAA). At anthesis, we identified an ovary with three differentiated regions, including the inner epidermis, inner part, and outer epidermis. The mature ovule showed an integument with the outer epidermis, integumentary parenchyma, and endothelium. Cells around the endothelium form the periendothelial zone with thick cell walls that showed Periodic acid-Schiff (PAS)-positive reaction. The periendothelial zone and endothelium showed degradation of the cells during embryogenesis. The main stages of embryo development from fecundation through mature seed were identified. The ripe cypsela showed the pericarp (exocarp), seed coat (exotesta), and remaining endosperm surrounding the embryo. Mature embryos were straight with shoot apical meristem (SAM), and root apical meristem (RAM) was separated by the hypocotyl. Light microscopy (LM) and transmission electron microscopy (TEM) analyses indicate cells with characteristics of meristem cells, as well as proteins and lipid bodies and mitochondria with few cristae in cotyledon cells. Our findings provide insight into taxonomic and physiological studies by detailing cypsela and seed ontogenesis from an endemic and vulnerable Asteraceae from southern Brazil. This study is also a starting point for establishing the biological criteria for seed harvesting and future studies of seed physiology and conservation of plant genetic resource.
Collapse
Affiliation(s)
- Rosa Angelica Elias
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Paula Lando
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Willian G Viana
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Jacqueline Ortiz
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Cláudia Dias da Costa
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Éder Carlos Schmidt
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, C.P. 476, Florianópolis, SC, 88049-900, Brazil
| | - Luiz Antônio Souza
- Department of Biology, State University of Maringá, Av. Colombo 5790, Zona 7, Maringá, Paraná, 87020-900, Brazil
| | - Miguel Pedro Guerra
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Neusa Steiner
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
44
|
Lee JS, Velasco-Punzalan M, Pacleb M, Valdez R, Kretzschmar T, McNally KL, Ismail AM, Cruz PCS, Sackville Hamilton NR, Hay FR. Variation in seed longevity among diverse Indica rice varieties. ANNALS OF BOTANY 2019; 124:447-460. [PMID: 31180503 PMCID: PMC6798842 DOI: 10.1093/aob/mcz093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/24/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Understanding variation in seed longevity, especially within closely related germplasm, will lead to better understanding of the molecular basis of this trait, which is particularly important for seed genebanks, but is also relevant to anyone handling seeds. We therefore set out to determine the relative seed longevity of diverse Indica rice accessions through storage experiments. Since antioxidants are purported to play a role in seed storability, the antioxidant activity and phenolic content of caryopses were determined. METHODS Seeds of 299 Indica rice accessions harvested at 31, 38 and 45 d after heading (DAH) between March and May 2015 and differing in harvest moisture content (MC) were subsequently stored at 10.9 % MC and 45 °C. Samples were taken at regular intervals and sown for germination. Germination data were subjected to probit analysis and the resulting parameters that describe the loss of viability during storage were used for genome-wide association (GWA) analysis. KEY RESULTS The seed longevity parameters, Ki [initial viability in normal equivalent deviates (NED)], -σ-1 (σ is the time for viability to fall by 1 NED in experimental storage) and p50 [time for viability to fall to 50 % (0 NED)], varied considerably across the 299 Indica accessions. Seed longevity tended to increase as harvest MC decreased and to decrease as harvest MC increased. Eight major loci associated with seed longevity parameters were identified through GWA analysis. The favourable haplotypes on chromosomes 1, 3, 4, 9 and 11 enhanced p50 by ratios of 0.22-1.86. CONCLUSIONS This is the first study to describe the extent of variation in σ within a species' variety group. A priori candidate genes selected based on rice genome annotation and gene network ontology databases suggested that the mechanisms conferring high seed longevity might be related to DNA repair and transcription, sugar metabolism, reactive oxygen species scavenging and embryonic/root development.
Collapse
Affiliation(s)
- Jae-Sung Lee
- International Rice Research Institute, Los Baños, College, Laguna, Philippines
| | | | - Myrish Pacleb
- International Rice Research Institute, Los Baños, College, Laguna, Philippines
| | - Rocel Valdez
- International Rice Research Institute, Los Baños, College, Laguna, Philippines
- Institute of Crop Science, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Tobias Kretzschmar
- International Rice Research Institute, Los Baños, College, Laguna, Philippines
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Kenneth L McNally
- International Rice Research Institute, Los Baños, College, Laguna, Philippines
| | - Abdel M Ismail
- International Rice Research Institute, Los Baños, College, Laguna, Philippines
| | - Pompe C Sta Cruz
- Institute of Crop Science, University of the Philippines Los Baños, College, Laguna, Philippines
| | | | - Fiona R Hay
- International Rice Research Institute, Los Baños, College, Laguna, Philippines
- Department of Agroecology, Aarhus University, Forsøgsvej, Slagelse, Denmark
| |
Collapse
|
45
|
Lipid Thermal Fingerprints of Long-term Stored Seeds of Brassicaceae. PLANTS 2019; 8:plants8100414. [PMID: 31615156 PMCID: PMC6843794 DOI: 10.3390/plants8100414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 11/23/2022]
Abstract
Thermal fingerprints for seeds of 20 crop wild relatives of Brassicaceae stored for 8 to 44 years at the Plant Germplasm Bank—Universidad Politécnica de Madrid and the Royal Botanic Gardens, Kew’s Millennium Seed Bank—were generated using differential scanning calorimetry (DSC) and analyzed in relation to storage stability. Relatively poor storing oily seeds at −20 °C tended to have lipids with crystallization and melting transitions spread over a wide temperature range (c. 40 °C) that spanned the storage temperature, plus a melting end temperature of around 15 °C. We postulated that in dry storage, the variable longevity in Brassicaceae seeds could be associated with the presence of a metastable lipid phase at the temperature at which they are being stored. Consistent with that, when high-quality seed samples of various species were assessed after banking at −5 to −10 °C for c. 40 years, melting end temperatures were observed to be much lower (c. 0 to −30 °C) and multiple lipid phases did not occur at the storage temperature. We conclude that multiple features of the seed lipid thermal fingerprint could be used as biophysical markers to predict potential poor performance of oily seeds during long-term, decadal storage.
Collapse
|
46
|
Colville L, Pritchard HW. Seed life span and food security. THE NEW PHYTOLOGIST 2019; 224:557-562. [PMID: 31225902 DOI: 10.1111/nph.16006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/16/2019] [Indexed: 05/20/2023]
Abstract
Much is known about the inter-specific distribution of life span in a wide diversity of vertebrates and in adult plants, but not for seeds, yet the functional trait seed life span underpins global agriculture, plant species conservation and seed persistence in the soil. We sourced data for five storage conditions (soil seed bank; high temperature - high humidity accelerated ageing; temperate, cooler, open storage; cool, dry, refrigerator; and cold, dry, freezer); and analysed the distribution of orthodox seed life span amongst crop and wild species. In all cases, whether for maximum known in situ life span in the soil seed bank (417 species), or for half-lives (P50s) ex situ (732 species), the distribution is right-skewed. The finding that seeds of > 50% of species are likely to have life spans ≤ 20% of the longest recorded under the same conditions has implications for future research on the evolution of seed traits and gene bank collections management.
Collapse
Affiliation(s)
- Louise Colville
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK
| | - Hugh W Pritchard
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK
| |
Collapse
|
47
|
Duncan C, Schultz N, Lewandrowski W, Good MK, Cook S. Lower dormancy with rapid germination is an important strategy for seeds in an arid zone with unpredictable rainfall. PLoS One 2019; 14:e0218421. [PMID: 31504045 PMCID: PMC6736279 DOI: 10.1371/journal.pone.0218421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/27/2019] [Indexed: 11/24/2022] Open
Abstract
Seed germination traits are key drivers of population dynamics, yet they are under-represented in community ecology studies, which have predominately focussed on adult plant and seed morphological traits. We studied the seed traits and germination strategy of eight woody plant species to investigate regeneration strategies in the arid zone of eastern Australia. To cope with stochastic and minimal rainfall, we predict that arid seeds will either have rapid germination across a wide range of temperatures, improved germination under cooler temperatures, or dormancy and/or longevity traits to delay or stagger germination across time. To understand how temperature affects germination responses, seeds of eight keystone arid species were germinated under laboratory conditions, and under three diurnal temperatures (30/20°C, 25/15°C and 17/7°C) for 30 days. We also tested for decline in seed viability across 24 months in a dry-aging treatment (~20°C). Six of the eight arid species studied had non-dormant, rapidly germinating seeds, and only two species had physiological dormancy traits. Seed longevity differed widely between species, from one recalcitrant species surviving only months in aging (P50 = <3 months) and one serotinous species surviving for many years (P50 = 84 months). Our results highlight the importance of understanding the reproductive strategies of plant species in arid environments. Rapid germination, the dominant seed trait of species included in this study, allows arid species to capitalise on sporadic rainfall. However, some species also exhibit dormancy and delayed germination; this an alternative strategy which spreads the risk of germination failure over time.
Collapse
Affiliation(s)
- Corrine Duncan
- School of Health and Life Sciences, Federation University, Mt Helen, VIC, Australia
- * E-mail:
| | - Nick Schultz
- School of Health and Life Sciences, Federation University, Mt Helen, VIC, Australia
| | - Wolfgang Lewandrowski
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Megan K. Good
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Simon Cook
- School of Health and Life Sciences, Federation University, Mt Helen, VIC, Australia
| |
Collapse
|
48
|
Ex situ conservation storage potential of Saxifraga cernua (Saxifragaceae) bulbils from alpine species. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00338-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractIn high latitude and alpine environments many plants show an increase in viviparous reproduction in response to harsh environmental conditions. Low or no seed set means that ex situ conservation in the form of seed banking is not a conservation option for such species. We investigated the potential for bulbils to be stored ex situ in seed banks using traditional storage methods (drying and freezing at −20 °C) and cryopreservation (drying and freezing at −180 °C) as a means of ensuring the long-term conservation of such species. In addition, the impact of drying bulbils to 15% eRH or maintaining initial humidity (60% eRH) was investigated. The study was based on bulbils of the drooping or nodding saxifrage (Saxifraga cernua) collected in Bellalui (commune d’Icogne, Switzerland) at an altitude of 2200 m.a.s.l. Our findings suggest that conservation under traditional seed banking methods or by cryopreservation is a viable option for species producing small (<2 mm) bulbils. This provides new hope for conserving high altitude or latitude plants producing bulbils.
Collapse
|
49
|
Chau MM, Chambers T, Weisenberger L, Keir M, Kroessig TI, Wolkis D, Kam R, Yoshinaga AY. Seed freeze sensitivity and ex situ longevity of 295 species in the native Hawaiian flora. AMERICAN JOURNAL OF BOTANY 2019; 106:1248-1270. [PMID: 31502257 PMCID: PMC6856683 DOI: 10.1002/ajb2.1351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/24/2019] [Indexed: 05/20/2023]
Abstract
PREMISE Ex situ seed banking is critical for plant conservation globally, especially for threatened floras in tropical ecosystems like Hawai'i. Seed bank managers must maximize longevity, and species managers must plan restoration before seeds lose viability. Previous observations suggested some native Hawaiian seeds lost viability in frozen storage (-18°C). We investigated seed storage behavior in the Hawaiian flora to optimize storage conditions and recommend re-collection intervals (RCI) to maximize viability of stored seeds. METHODS Using 20+ years of real-time seed storage viability data, we tested freeze sensitivity for 197 species and calculated RCIs for 295 species. Using paired tests of accessions stored >2 yr at 5°C and -18°C, we developed an index of relative performance to determine freeze sensitivity. We calculated RCIs at 70% of highest germination (P70). RESULTS We identified four families (Campanulaceae, Cyperaceae, Rubiaceae, and Urticaceae) and four genera with seed freeze sensitivity and six additional genera with likely freeze sensitivity. Storage longevity was variable, but 195 species had viability >70% at the most recent tests (1 to 20+ yr), 123 species had RCIs >10 yr, and 45 species had RCIs <5 yr. CONCLUSIONS Freeze sensitive storage behavior is more widely observed in Hawai'i than any other regional flora, perhaps due to insufficient testing elsewhere. We present a new protocol to test seed freeze sensitivity, which is often not evident until 2-5 years of storage. Re-collection intervals will guide restoration practices in Hawai'i, and results inform seed conservation efforts globally, especially tropical and subtropical regions.
Collapse
Affiliation(s)
- Marian M. Chau
- Lyon ArboretumUniversity of Hawai‘i at MānoaHonoluluHI96822USA
| | - Timothy Chambers
- U. S. Army Natural Resources Program on O‘ahuSchofield BarracksHI96857USA
| | - Lauren Weisenberger
- U. S. Fish and Wildlife ServicePacific Islands Fish and Wildlife OfficeHonoluluHI96850USA
| | - Matthew Keir
- State of Hawai‘i Department of Land and Natural Resources – Division of Forestry and WildlifeHonoluluHI96813USA
| | | | | | - Roy Kam
- U. S. Army Natural Resources Program on O‘ahuSchofield BarracksHI96857USA
| | - Alvin Y. Yoshinaga
- Lyon ArboretumUniversity of Hawai‘i at MānoaHonoluluHI96822USA
- Center for Conservation Research and TrainingPacific Biosciences Research CenterUniversity of Hawai‘i at MānoaHonoluluHI96822USA (Retired)
| |
Collapse
|
50
|
Tausch S, Leipold M, Reisch C, Poschlod P. Dormancy and endosperm presence influence the ex situ conservation potential in central European calcareous grassland plants. AOB PLANTS 2019; 11:plz035. [PMID: 31528324 PMCID: PMC6735842 DOI: 10.1093/aobpla/plz035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
The preservation of plant species under ex situ conditions in seed banks strongly depends on seed longevity. However, detailed knowledge on this seed ecological aspect is limited and comparative studies from central European habitats are scarce. Therefore, we investigated the seed longevity of 39 calcareous grassland species in order to assess the prospects of ex situ storage of seeds originating from a single, strongly threatened habitat. Seed longevity (p 50 ) was determined by artificially ageing the seeds under rapid ageing conditions (45 °C and 60 % eRH (equilibrium relative humidity)), testing for germination and calculating survival curves. We consulted seed and germination traits that are expected to be related to seed longevity. P 50 values strongly varied within calcareous grassland species. The p 50 values ranged between 3.4 and 282.2 days. We discovered significantly positive effects of physical dormancy and endosperm absence on p 50 . Physiological dormancy was associated to comparatively short longevity. These relationships remained significant when accounting for phylogenetic effects. Seed mass, seed shape, and seed coat thickness were not associated with longevity. We therefore recommend more frequent viability assessments of stored endospermic, non-physically and physiologically dormant seeds.
Collapse
Affiliation(s)
- Simone Tausch
- Ecology and Conservation Biology, Institute of Plant Sciences, Faculty of Biology and Preclinical Sciences, University of Regensburg, Universitätsstrasse, Regensburg, Germany
| | - Martin Leipold
- Ecology and Conservation Biology, Institute of Plant Sciences, Faculty of Biology and Preclinical Sciences, University of Regensburg, Universitätsstrasse, Regensburg, Germany
| | - Christoph Reisch
- Ecology and Conservation Biology, Institute of Plant Sciences, Faculty of Biology and Preclinical Sciences, University of Regensburg, Universitätsstrasse, Regensburg, Germany
| | - Peter Poschlod
- Ecology and Conservation Biology, Institute of Plant Sciences, Faculty of Biology and Preclinical Sciences, University of Regensburg, Universitätsstrasse, Regensburg, Germany
| |
Collapse
|