1
|
Han B, Dong X, Li M, Wang Z, Shi C, Zhou Q, Liu Z, Yan L. Morphological diversity variation of seed traits among 587 germplasm resources of Medicago Genus and 32 germplasm resources of Trigonella Genus. Sci Rep 2025; 15:3059. [PMID: 39856189 PMCID: PMC11759673 DOI: 10.1038/s41598-025-87185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Germplasm resources within the Medicago genus are highly regarded for their value as forage crops and their critical roles in nitrogen cycling, ecosystem restoration, and soil structure improvement. Therefore, understanding the diversity of seed morphology in this genus is essential for advancing its development and utilization. This study analyzed seed samples from 587 germplasm accessions representing 77 species within Medicago genus, as well as 32 accessions from 21 species within the closely related genus Trigonella. A statistical analysis was conducted on twelve traits, including seven quantitative traits-straight length (SL), straight width (SW), width-to-length ratio (WL), perimeter (PE), radicle length (RL), hilum length (HL), and 100-seed weight (SY)-and five qualitative traits, including seed coat condition, radicle characteristics, seed size, shape, and color. The results revealed that: (1) there was significant diversity (P < 0.05) in SL, SW, WL, PE, RL, HL, and SY across Medicago species; (2) principal component analysis of the 587 Medicago accessions identified SL, SW, PE, HL, RL, and SY as the primary contributors to morphological diversity; and (3) high-resolution images of seeds from various accessions were captured for future research. This study provides a solid foundation for the establishment of seed banks and the enhancement of germplasm resources through the systematic analysis of these morphological traits.
Collapse
Affiliation(s)
- Bingcheng Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xueming Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Mingyu Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhaoming Wang
- National Center of Pratacultural Technology Innovation (under preparation), Hohhot, 010070, China
| | - Congcong Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Longfeng Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Basak S, Parajulee D, Dhir S, Sangra A, Dhir SK. Improved Protocol for Efficient Agrobacterium-Mediated Transient Gene Expression in Medicago sativa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:2992. [PMID: 39519910 PMCID: PMC11547841 DOI: 10.3390/plants13212992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Medicago sativa L. (Alfalfa) is a globally recognized forage legume that has recently gained attention for its high protein content, making it suitable for both human and animal consumption. However, due to its perennial nature and autotetraploid genetics, conventional plant breeding requires a longer timeframe compared to other crops. Therefore, genetic engineering offers a faster route for trait modification and improvement. Here, we describe a protocol for achieving efficient transient gene expression in alfalfa through genetic transformation with the Agrobacterium tumefaciens pCAMBIA1304 vector. This vector contains the reporter genes β-glucuronidase (GUS) and green fluorescent protein (GFP), along with a selectable hygromycin B phosphotransferase gene, all driven by the CaMV 35s promoter. Various transformation parameters-such as different explant types, leaf ages, leaf sizes, wounding types, bacterial concentrations (OD600nm), tissue preculture periods, infection periods, co-cultivation periods, and different concentrations of acetosyringone, silver nitrate, and calcium chloride-were optimized using 3-week-old in vitro-grown plantlets. Results were attained from data based on the semi-quantitative observation of the percentage and number of GUS spots on different days of agro-infection in alfalfa explants. The highest percentage of GUS positivity (76.2%) was observed in 3-week-old, scalpel-wounded, segmented alfalfa leaf explants after 3 days of agro-infection at a bacterial concentration of 0.6, with 2 days of preculture, 30 min of co-cultivation, and the addition of 150 µM acetosyringone, 4 mM calcium chloride, and 75 µM silver nitrate. The transient expression of genes of interest was confirmed via histochemical GUS and GFP assays. The results based on transient reporter gene expression suggest that various factors influence T-DNA delivery in the Agrobacterium-mediated transformation of alfalfa. The improved protocol can be used in stable transformation techniques for alfalfa.
Collapse
Affiliation(s)
- Suma Basak
- Center for Biotechnology, Department of Agricultural Sciences, Fort Valley State University, Fort Valley, GA 31030, USA; (D.P.); (S.K.D.)
| | - Dipika Parajulee
- Center for Biotechnology, Department of Agricultural Sciences, Fort Valley State University, Fort Valley, GA 31030, USA; (D.P.); (S.K.D.)
| | - Seema Dhir
- Department of Biology, College of Arts and Sciences, Fort Valley State University, Fort Valley, GA 31030, USA;
| | - Ankush Sangra
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
| | - Sarwan K. Dhir
- Center for Biotechnology, Department of Agricultural Sciences, Fort Valley State University, Fort Valley, GA 31030, USA; (D.P.); (S.K.D.)
| |
Collapse
|
3
|
Pirnajmedin F, Majidi MM, Jaškūnė K. Adaptive strategies to drought stress in grasses of the poaceae family under climate change: Physiological, genetic and molecular perspectives: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108814. [PMID: 38875780 DOI: 10.1016/j.plaphy.2024.108814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Drought stress is one of the most critical abiotic factors which negatively impacts on growth, productivity, and survival of plants. Grass species have an important role in the sustainable intensification of cropping systems. This review focus on the specific drought tolerance characteristics in grass species and application of prevalent classical and molecular methods for genetic improvement of them to drought stress. Generally, grass species adapt to drought stress by utilizing more than one strategy including of changes in the root growth, photosynthetic pigments, activation of antioxidant enzymes, and accumulation of compatible osmolytes. They also have other specific characteristics consisted of summer dormancy, drought recovery, and persistence, which lead to drought adaptation after prolonged drought. Studies on different grasses, indicated that most of above mentioned traits usually have positive correlation with drought tolerance. Also, high heritability has been reported for most of them in different grasses. Therefore, an effective index might be considering in identification of drought tolerance genotypes. Recently, high-throughput imaging phenotyping and advanced molecular techniques such as genotyping-by-sequencing (GBS), RNA sequencing, genome-wide association study, and genome editing help conventional breeding methods to increase the accuracy, selection efficiency, genetic gains, and speed of breeding programs for developing drought tolerant cultivars.
Collapse
Affiliation(s)
- Fatemeh Pirnajmedin
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mohammad Mahdi Majidi
- Plant Genetics and Breeding, Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Kristina Jaškūnė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Lithuania.
| |
Collapse
|
4
|
Zhukorskyi ОМ, Tsereniuk ОМ, Vashchenko PА, Khokhlov AM, Chereuta YV, Akimov ОV, Kryhina NV. The effect of the ryanodine receptor gene on the reproductive traits of Welsh sows. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
The reproductive performance of sows largely determines the efficiency of the entire pig farming industry. The purpose of our work is the evaluation of polymorphism of the ryanodine receptor gene and its impact on the reproductive traits of sows of the Welsh breed of pigs. For this study, 148 pigs of the Welsh breed were used. The reproductive traits of sows were evaluated in two adjacent generations. We conducted a comprehensive assessment of the reproductive ability of sows using the SIRQS (selection index of reproductive qualities of sows), determined phenotypic consolidation coefficients and assessed the genetic potential of the animals’ productivity. The polymorphism of the RYR1 gene was determined using polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP). Data processing was performed using single-factor analysis of variance (ANOVA). Polymorphism of the ryanodine receptor gene in sows of the Welsh pig breed was evaluated. 8.0% of the animals were identified as carriers of the mutant allele of the RYR1 gene. However, no homozygous RYR1-nn animals were found. Pigs of the maternal generation carrying the homozygous NN genotype had better reproductive performance in all indicators. Sows that were carriers of the mutant allele were characterized by lower values of the genetic productivity potential compared with the entire estimated population for all productive traits. Sows which were free of the mutant allele of the RYR1 gene were characterized by large values of the SIRQS index. The values of the coefficients of phenotypic consolidation of the number of live born piglets in sows without the mutant allele were lower than in sows with the mutant allele n. Better performance of sows free of the mutant allele of the RYR1 gene was established over sows carrying it in all evaluated traits of reproductive capacity (for different traits P ranged from 0.021 to 1.0*10–4), except for number of piglets born alive per sow in the daughter generation. Sows with the NN genotype had better selection index values by 15.7% in the maternal generation and by 10.2% in the daughter generation. In order to increase the reproductive ability of sows in the studied population of Welsh pigs and achieve similar results in other herds of this breed, animals free from the mutant allele of the RYR1 gene should be selected for further reproduction in the process of breeding, while on the contrary, carriers of this gene should be gradually eliminated from the herd. To carry out breeding work, further research is needed on the entire population of Welsh pigs for the RYR1 gene.
Collapse
|
5
|
Wang ZY, Spangenberg G. Protoplast Isolation, Transformation, and Regeneration for Forage and Turf Grasses. Methods Mol Biol 2022; 2464:143-152. [PMID: 35258831 DOI: 10.1007/978-1-0716-2164-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Forage and turf grasses are widely grown and contribute significantly to sustainable agriculture. This chapter describes a protocol for protoplast transformation and plant regeneration for major forage and turf grass species, including tall fescue, red fescue, meadow fescue, perennial ryegrass, and Italian ryegrass. Embryogenic calli induced from caryopsis were used to establish embryogenic cell suspension cultures. Protoplasts were isolated from embryogenic suspension cultures and used for direct gene transfer. Chimeric genes were introduced into protoplasts by polyethylene glycol treatment. Upon selection with antibiotics or herbicide, resistant calli were obtained and transgenic plants were regenerated from these calli.
Collapse
Affiliation(s)
- Zeng-Yu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China.
| | - German Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
6
|
Bellido AM, Souza Canadá ED, Permingeat HR, Echenique V. Genetic Transformation of Apomictic Grasses: Progress and Constraints. FRONTIERS IN PLANT SCIENCE 2021; 12:768393. [PMID: 34804102 PMCID: PMC8602796 DOI: 10.3389/fpls.2021.768393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 05/17/2023]
Abstract
The available methods for plant transformation and expansion beyond its limits remain especially critical for crop improvement. For grass species, this is even more critical, mainly due to drawbacks in in vitro regeneration. Despite the existence of many protocols in grasses to achieve genetic transformation through Agrobacterium or biolistic gene delivery, their efficiencies are genotype-dependent and still very low due to the recalcitrance of these species to in vitro regeneration. Many plant transformation facilities for cereals and other important crops may be found around the world in universities and enterprises, but this is not the case for apomictic species, many of which are C4 grasses. Moreover, apomixis (asexual reproduction by seeds) represents an additional constraint for breeding. However, the transformation of an apomictic clone is an attractive strategy, as the transgene is immediately fixed in a highly adapted genetic background, capable of large-scale clonal propagation. With the exception of some species like Brachiaria brizantha which is planted in approximately 100 M ha in Brazil, apomixis is almost non-present in economically important crops. However, as it is sometimes present in their wild relatives, the main goal is to transfer this trait to crops to fix heterosis. Until now this has been a difficult task, mainly because many aspects of apomixis are unknown. Over the last few years, many candidate genes have been identified and attempts have been made to characterize them functionally in Arabidopsis and rice. However, functional analysis in true apomictic species lags far behind, mainly due to the complexity of its genomes, of the trait itself, and the lack of efficient genetic transformation protocols. In this study, we review the current status of the in vitro culture and genetic transformation methods focusing on apomictic grasses, and the prospects for the application of new tools assayed in other related species, with two aims: to pave the way for discovering the molecular pathways involved in apomixis and to develop new capacities for breeding purposes because many of these grasses are important forage or biofuel resources.
Collapse
Affiliation(s)
- Andrés M. Bellido
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS – CCT – CONICET Bahía Blanca), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | | | | | - Viviana Echenique
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS – CCT – CONICET Bahía Blanca), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
7
|
Hao H, Li Z, Leng C, Lu C, Luo H, Liu Y, Wu X, Liu Z, Shang L, Jing HC. Sorghum breeding in the genomic era: opportunities and challenges. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1899-1924. [PMID: 33655424 PMCID: PMC7924314 DOI: 10.1007/s00122-021-03789-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/05/2021] [Indexed: 05/04/2023]
Abstract
The importance and potential of the multi-purpose crop sorghum in global food security have not yet been fully exploited, and the integration of the state-of-art genomics and high-throughput technologies into breeding practice is required. Sorghum, a historically vital staple food source and currently the fifth most important major cereal, is emerging as a crop with diverse end-uses as food, feed, fuel and forage and a model for functional genetics and genomics of tropical grasses. Rapid development in high-throughput experimental and data processing technologies has significantly speeded up sorghum genomic researches in the past few years. The genomes of three sorghum lines are available, thousands of genetic stocks accessible and various genetic populations, including NAM, MAGIC, and mutagenised populations released. Functional and comparative genomics have elucidated key genetic loci and genes controlling agronomical and adaptive traits. However, the knowledge gained has far away from being translated into real breeding practices. We argue that the way forward is to take a genome-based approach for tailored designing of sorghum as a multi-functional crop combining excellent agricultural traits for various end uses. In this review, we update the new concepts and innovation systems in crop breeding and summarise recent advances in sorghum genomic researches, especially the genome-wide dissection of variations in genes and alleles for agronomically important traits. Future directions and opportunities for sorghum breeding are highlighted to stimulate discussion amongst sorghum academic and industrial communities.
Collapse
Affiliation(s)
- Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chuanyuan Leng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cheng Lu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanming Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiquan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Li Shang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Duke SO. Glyphosate: Uses Other Than in Glyphosate-Resistant Crops, Mode of Action, Degradation in Plants, and Effects on Non-target Plants and Agricultural Microbes. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:1-65. [PMID: 33895876 DOI: 10.1007/398_2020_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Glyphosate is the most used herbicide globally. It is a unique non-selective herbicide with a mode of action that is ideal for vegetation management in both agricultural and non-agricultural settings. Its use was more than doubled by the introduction of transgenic, glyphosate-resistant (GR) crops. All of its phytotoxic effects are the result of inhibition of only 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), but inhibition of this single enzyme of the shikimate pathway results in multiple phytotoxicity effects, both upstream and downstream from EPSPS, including loss of plant defenses against pathogens. Degradation of glyphosate in plants and microbes is predominantly by a glyphosate oxidoreductase to produce aminomethylphosphonic acid and glyoxylate and to a lesser extent by a C-P lyase to produce sarcosine and phosphate. Its effects on non-target plant species are generally less than that of many other herbicides, as it is not volatile and is generally sprayed in larger droplet sizes with a relatively low propensity to drift and is inactivated by tight binding to most soils. Some microbes, including fungal plant pathogens, have glyphosate-sensitive EPSPS. Thus, glyphosate can benefit GR crops by its activity on some plant pathogens. On the other hand, glyphosate can adversely affect some microbes that are beneficial to agriculture, such as Bradyrhizobium species, although GR crop yield data indicate that such an effect has been minor. Effects of glyphosate on microbes of agricultural soils are generally minor and transient, with other agricultural practices having much stronger effects.
Collapse
Affiliation(s)
- Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA.
| |
Collapse
|
9
|
Acuña CA, Martínez EJ, Zilli AL, Brugnoli EA, Espinoza F, Marcón F, Urbani MH, Quarin CL. Reproductive Systems in Paspalum: Relevance for Germplasm Collection and Conservation, Breeding Techniques, and Adoption of Released Cultivars. FRONTIERS IN PLANT SCIENCE 2019; 10:1377. [PMID: 31824520 PMCID: PMC6881461 DOI: 10.3389/fpls.2019.01377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The objective of this review is to analyze and describe the impact that mode of reproduction in Paspalum has on germplasm conservation, genetic improvement, and commercialization of cultivars. Germplasm collection and conservation can now be rethought considering the newly available information related to how diversity is allocated in nature and how it can be transferred between the sexual and apomictic germplasm using novel breeding approaches. An inventory of species and accessions conserved around the world is analyzed in relation to the main germplasm banks. Because of the importance of apomixis in Paspalum species different breeding approaches have been used and tested. Knowledge related to the inheritance of apomixis, variable expressivity of the trait and techniques for early identification of apomicts has helped to improve the efficiency of the breeding methods. Novel breeding techniques are also being developed and are described regarding its advantages and limitations. Finally, the impact of reproductive mode on the adoption of the released cultivars is discussed.
Collapse
Affiliation(s)
- Carlos A. Acuña
- Instituto de Botánica del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Giraldo PA, Cogan NOI, Spangenberg GC, Smith KF, Shinozuka H. Development and Application of Droplet Digital PCR Tools for the Detection of Transgenes in Pastures and Pasture-Based Products. FRONTIERS IN PLANT SCIENCE 2019; 9:1923. [PMID: 30671074 PMCID: PMC6331530 DOI: 10.3389/fpls.2018.01923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Implementation of molecular biotechnology, such as transgenic technologies, in forage species can improve agricultural profitability through achievement of higher productivity, better use of resources such as soil nutrients, water, or light, and reduced environmental impact. Development of detection and quantification techniques for genetically modified plants are necessary to comply with traceability and labeling requirements prior to regulatory approval for release. Real-time PCR has been the standard method used for detection and quantification of genetically modified events, and droplet digital PCR is a recent alternative technology that offers a higher accuracy. Evaluation of both technologies was performed using a transgenic high-energy forage grass as a case study. Two methods for detection and quantification of the transgenic cassette, containing modified fructan biosynthesis genes, and a selectable marker gene, hygromycin B phosphotransferase used for transformation, were developed. Real-time PCR was assessed using two detection techniques, SYBR Green I and fluorescent probe-based methods. A range of different agricultural commodities were tested including fresh leaves, tillers, seeds, pollen, silage and hay, simulating a broad range of processed agricultural commodities that are relevant in the commercial use of genetically modified pastures. The real-time and droplet digital PCR methods were able to detect both exogenous constructs in all agricultural products. However, a higher sensitivity and repeatability in transgene detection was observed with the droplet digital PCR technology. Taking these results more broadly, it can be concluded that the droplet digital PCR technology provides the necessary resolution for quantitative analysis and detection, allowing absolute quantification of the target sequence at the required limits of detection across all jurisdictions globally. The information presented here provides guidance and resources for pasture-based biotechnology applications that are required to comply with traceability requirements.
Collapse
Affiliation(s)
- Paula A. Giraldo
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Noel O. I. Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria, Hamilton, VIC, Australia
| | - Kevin F. Smith
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Agriculture Victoria, Hamilton, VIC, Australia
| | - Hiroshi Shinozuka
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| |
Collapse
|
11
|
Jiang Q, Fu C, Wang ZY. A Unified Agrobacterium-Mediated Transformation Protocol for Alfalfa (Medicago sativa L.) and Medicago truncatula. Methods Mol Biol 2019; 1864:153-163. [PMID: 30415335 DOI: 10.1007/978-1-4939-8778-8_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Simplification of transformation procedures greatly improves work efficiency. In this chapter, we introduce a unified Agrobacterium-mediated transformation protocol that is used for both alfalfa (Medicago sativa L., Regen SY4D) and Medicago truncatula (ecotype R108). Whole trifoliates or leaflets are used as explants. Sonication is applied to enhance Agrobacterium infection and cytokinins are added to the medium to facilitate shoot regeneration. More than 90% transformation efficiency is achieved for alfalfa, while the relatively lower efficiency of up to 60% is obtained for M. truncatula, which depends on different selectable markers in the gene constructs. Transgenic plants are produced within 4-8 months with average timeline of 6 months. Using this unified protocol, the same types of media are used for both species which results in significant saving in time and resources.
Collapse
Affiliation(s)
| | - Chunxiang Fu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | | |
Collapse
|
12
|
Noori F, Etesami H, Najafi Zarini H, Khoshkholgh-Sima NA, Hosseini Salekdeh G, Alishahi F. Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:129-138. [PMID: 29990724 DOI: 10.1016/j.ecoenv.2018.06.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 05/25/2023]
Abstract
There are fewer reports on plant growth promoting (PGP) bacteria living in nodules as helper to tolerance to abiotic stress such as salinity and drought. The study was conducted to isolate rhizobial and non-rhizobial drought and salinity tolerant bacteria from the surface sterilized root nodules of alfalfa, grown in saline soils, and evaluate the effects of effective isolates on plant growth under salt stress. Based on drought and salinity tolerance of bacterial isolates and having multiple PGP traits, two non-rhizobial endophytic isolates and one rhizobial endophytic isolate were selected for further identification and characterization. Based on partial sequences of 16 S rRNA genes, non-rhizobial isolates and rhizobial isolate were closely related to Klebsiella sp., Kosakonia cowanii, and Sinorhizobium meliloti, respectively. None of the two non-rhizobial strains were able to form nodules on alfalfa roots under greenhouse and in vitro conditions. Co-inoculation of alfalfa plant with Klebsiella sp. A36, K. cowanii A37, and rhizobial strain S. meliloti ARh29 had a positive effect on plant growth indices under salinity stress. In addition, the single inoculation of non-rhizobial strains without rhizobial strain resulted in an increase in alfalfa growth indices compared to the plants non-inoculated and the ones inoculated with S. meliloti ARh29 alone under salinity stress, indicating that nodule non-rhizobial strains have PGP potentials and may be a promising way for improving effectiveness of Rhizobium bio-fertilizers in salt-affected soils.
Collapse
Affiliation(s)
- Fatemeh Noori
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hassan Etesami
- Agriculture & Natural resources Campus, Faculty of Agricultural Engineering & Technology, Department of Soil Science, University of Tehran, Tehran 31587-77871, Iran.
| | - Hamid Najafi Zarini
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Nayer Azam Khoshkholgh-Sima
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Farshad Alishahi
- Agriculture & Natural resources Campus, Faculty of Agricultural Engineering & Technology, Department of Soil Science, University of Tehran, Tehran 31587-77871, Iran
| |
Collapse
|
13
|
Capstaff NM, Miller AJ. Improving the Yield and Nutritional Quality of Forage Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:535. [PMID: 29740468 PMCID: PMC5928394 DOI: 10.3389/fpls.2018.00535] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/06/2018] [Indexed: 05/02/2023]
Abstract
Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.
Collapse
|
14
|
Huang S, Wang C, Liang J. Genetic resources and genetic transformation in bermudagrass – a review. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1398051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Shilian Huang
- Guangdong Engineering Research Center for Grassland Science, College of Life Science, South China Agricultural University, Guangzhou, P. R. China
| | - Chen Wang
- Guangdong Engineering Research Center for Grassland Science, College of Life Science, South China Agricultural University, Guangzhou, P. R. China
| | - Junsong Liang
- Department of Chemistry and Bichemistry, College of Biology & Pharmacy, Yulin Normal University, Yulin, P. R. China
- Department of Garden and Flower, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, P. R. China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, P. R. China
| |
Collapse
|
15
|
Liu S, Fu C, Gou J, Sun L, Huhman D, Zhang Y, Wang ZY. Simultaneous Downregulation of MTHFR and COMT in Switchgrass Affects Plant Performance and Induces Lesion-Mimic Cell Death. FRONTIERS IN PLANT SCIENCE 2017; 8:982. [PMID: 28676804 PMCID: PMC5476930 DOI: 10.3389/fpls.2017.00982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/24/2017] [Indexed: 05/11/2023]
Abstract
Switchgrass (Panicum virgatum) has been developed into a model lignocellulosic bioenergy crop. Downregulation of caffeic acid O-methyltransferase (COMT), a key enzyme in lignin biosynthesis, has been shown to alter lignification and increase biofuel yield in switchgrass. Methylenetetrahydrofolate reductase (MTHFR) mediates C1 metabolism and provides methyl units consumed by COMT. It was predicted that co-silencing of MTHFR and COMT would impact lignification even more than either of the single genes. However, our results showed that strong downregulation of MTHFR in a COMT-deficient background led to altered plant growth and development, but no significant change in lignin content or composition was found when compared with COMT plants. Another unexpected finding was that the double MTHFR/COMT downregulated plants showed a novel lesion-mimic leaf phenotype. Molecular analyses revealed that the lesion-mimic phenotype was caused by the synergistic effect of MTHFR and COMT genes, with MTHFR playing a predominant role. Microarray analysis showed significant induction of genes related to oxidative and defense responses. The results demonstrated the lack of additive effects of MTHFR and COMT on lignification. Furthermore, this research revealed an unexpected role of the two genes in the modulation of lesion-mimic cell death as well as their synergistic effects on agronomic performance.
Collapse
Affiliation(s)
- Sijia Liu
- Department of Grassland Science, China Agricultural University, National Energy R&D Center for BiomassBeijing, China
- Forage Improvement Division, The Samuel Roberts Noble Foundation, ArdmoreOK, United States
| | - Chunxiang Fu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| | - Jiqing Gou
- Forage Improvement Division, The Samuel Roberts Noble Foundation, ArdmoreOK, United States
- BioEnergy Science Center, Oak Ridge National Laboratory (DOE), Oak RidgeTN, United States
| | - Liang Sun
- Computing Services, The Samuel Roberts Noble Foundation, ArdmoreOK, United States
| | - David Huhman
- Plant Biology Division, The Samuel Roberts Noble Foundation, ArdmoreOK, United States
| | - Yunwei Zhang
- Department of Grassland Science, China Agricultural University, National Energy R&D Center for BiomassBeijing, China
| | - Zeng-Yu Wang
- Forage Improvement Division, The Samuel Roberts Noble Foundation, ArdmoreOK, United States
- BioEnergy Science Center, Oak Ridge National Laboratory (DOE), Oak RidgeTN, United States
| |
Collapse
|
16
|
Zapiola ML, Mallory-Smith CA. Pollen-mediated gene flow from transgenic perennial creeping bentgrass and hybridization at the landscape level. PLoS One 2017; 12:e0173308. [PMID: 28257488 PMCID: PMC5336273 DOI: 10.1371/journal.pone.0173308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/17/2017] [Indexed: 01/30/2023] Open
Abstract
The planting of 162 ha of transgenic glyphosate-resistant creeping bentgrass (Agrostis stolonifera) near Madras, OR, USA, allowed a unique opportunity to study gene flow over time from a perennial outcrossing species at the landscape level. While conducting a four year in situ survey, we collected panicles and leaf tissue samples from creeping bentgrass and its sexually compatible species. Seeds from the panicles were planted, and seedlings were tested in the greenhouse for expression of the transgene. Gene flow via pollen was found in all four years, at frequencies of 0.004 to 2.805%. Chloroplast markers, in combination with internal transcribed spacer nuclear sequence analysis, were used to aid in identification of transgenic interspecific and intergeneric hybrid seedlings found during the testing and of established plants that could not be positively identified in the field. Interspecific transgenic hybrids produced on redtop (Agrostis gigantea) plants in situ were identified three of the four years and one intergeneric transgenic creeping bentgrass x rabbitfoot grass (Polypogon monspeliensis) hybrid was identified in 2005. In addition, we confirmed a non-transgenic creeping bentgrass x redtop hybrid in situ, demonstrating that interspecific hybrids have established in the environment outside production fields. Results of this study should be considered for deregulation of transgenic events, studies of population dynamics, and prediction of gene flow in the environment.
Collapse
Affiliation(s)
- María Luz Zapiola
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Carol Ann Mallory-Smith
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
17
|
Park JJ, Yoo CG, Flanagan A, Pu Y, Debnath S, Ge Y, Ragauskas AJ, Wang ZY. Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:284. [PMID: 29213323 PMCID: PMC5708096 DOI: 10.1186/s13068-017-0972-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/18/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND The development of genome editing technologies offers new prospects in improving bioenergy crops like switchgrass (Panicum virgatum). Switchgrass is an outcrossing species with an allotetraploid genome (2n = 4x = 36), a complexity which forms an impediment to generating homozygous knock-out plants. Lignin, a major component of the plant cell wall and a contributor to cellulosic feedstock's recalcitrance to decomposition, stands as a barrier to efficient biofuel production by limiting enzyme access to cell wall polymers during the fermentation process. RESULTS We developed a CRISPR/Cas9 genome editing system in switchgrass to target a key enzyme involved in the early steps of monolignol biosynthesis, 4-Coumarate:coenzyme A ligase (4CL). Three 4CL genes, Pv4CL1, Pv4CL2, and Pv4CL3, were identified in switchgrass. Expression analysis revealed that Pv4CL1 transcripts were more abundant in the stem than in the leaf, while Pv4CL2 transcripts were barely detectable and Pv4CL3 was mainly expressed in the leaf. Pv4CL1 was selected as the target for CRISPR/Cas9 editing because of its preferential expression in highly lignified stem tissues. Specific guide RNA was constructed to target Pv4CL1. After introducing the construct into switchgrass calli, 39 transgenic plants were regenerated. Using two rounds of PCR screening and sequencing, four plants were confirmed to have tetra-allelic mutations simultaneously. The Pv4CL1 knock-out plants had reduced cell wall thickness, an 8-30% reduction in total lignin content, a 7-11% increase in glucose release, and a 23-32% increase in xylose release. CONCLUSION This study established a successful CRISPR/Cas9 system in switchgrass with mutation efficiency reaching 10%. The system allows the precise targeting of the selected Pv4CL1 gene to create switchgrass knock-out mutant plants with decreased lignin content and reduced recalcitrance.
Collapse
Affiliation(s)
- Jong-Jin Park
- Noble Research Institute, Ardmore, OK 73401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Chang Geun Yoo
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Amy Flanagan
- Noble Research Institute, Ardmore, OK 73401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Yunqiao Pu
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | | | - Yaxin Ge
- Noble Research Institute, Ardmore, OK 73401 USA
| | - Arthur J. Ragauskas
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
- Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
| | - Zeng-Yu Wang
- Noble Research Institute, Ardmore, OK 73401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
18
|
Haploid and Doubled Haploid Techniques in Perennial Ryegrass (Lolium perenne L.) to Advance Research and Breeding. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6040060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Chen S, Kaeppler SM, Vogel KP, Casler MD. Selection Signatures in Four Lignin Genes from Switchgrass Populations Divergently Selected for In Vitro Dry Matter Digestibility. PLoS One 2016; 11:e0167005. [PMID: 27893787 PMCID: PMC5125650 DOI: 10.1371/journal.pone.0167005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022] Open
Abstract
Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four loci in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. This study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shawn M. Kaeppler
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Energy, Great Lakes Bioenergy Research Center, Madison, Wisconsin, United States of America
| | - Kenneth P. Vogel
- USDA-ARS, Grain, Forage, and Bioenergy Research Unit, Lincoln, Nebraska, United States of America
- Department of Agronomy & Horticulture, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Michael D. Casler
- Department of Energy, Great Lakes Bioenergy Research Center, Madison, Wisconsin, United States of America
- USDA-ARS, U.S. Dairy Forage Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
20
|
Khan MS, Khan MA, Ahmad D. Assessing Utilization and Environmental Risks of Important Genes in Plant Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:792. [PMID: 27446095 PMCID: PMC4919908 DOI: 10.3389/fpls.2016.00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/22/2016] [Indexed: 05/22/2023]
Abstract
Transgenic plants with improved salt and drought stress tolerance have been developed with a large number of abiotic stress-related genes. Among these, the most extensively used genes are the glycine betaine biosynthetic codA, the DREB transcription factors, and vacuolar membrane Na(+)/H(+) antiporters. The use of codA, DREBs, and Na(+)/H(+) antiporters in transgenic plants has conferred stress tolerance and improved plant phenotype. However, the future deployment and commercialization of these plants depend on their safety to the environment. Addressing environmental risk assessment is challenging since mechanisms governing abiotic stress tolerance are much more complex than that of insect resistance and herbicide tolerance traits, which have been considered to date. Therefore, questions arise, whether abiotic stress tolerance genes need additional considerations and new measurements in risk assessment and, whether these genes would have effects on weediness and invasiveness potential of transgenic plants? While considering these concerns, the environmental risk assessment of abiotic stress tolerance genes would need to focus on the magnitude of stress tolerance, plant phenotype and characteristics of the potential receiving environment. In the present review, we discuss environmental concerns and likelihood of concerns associated with the use of abiotic stress tolerance genes. Based on our analysis, we conclude that the uses of these genes in domesticated crop plants are safe for the environment. Risk assessment, however, should be carefully conducted on biofeedstocks and perennial plants taking into account plant phenotype and the potential receiving environment.
Collapse
Affiliation(s)
- Mohammad S. Khan
- Faculty of Crop Production Sciences, Institute of Biotechnology and Genetic Engineering, The University of Agriculture, PeshawarPakistan
| | - Muhammad A. Khan
- Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACTAustralia
| | - Dawood Ahmad
- Faculty of Crop Production Sciences, Institute of Biotechnology and Genetic Engineering, The University of Agriculture, PeshawarPakistan
| |
Collapse
|
21
|
Voorend W, Nelissen H, Vanholme R, De Vliegher A, Van Breusegem F, Boerjan W, Roldán-Ruiz I, Muylle H, Inzé D. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:997-1007. [PMID: 26903034 PMCID: PMC5019232 DOI: 10.1111/pbi.12458] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/17/2015] [Accepted: 07/28/2015] [Indexed: 05/07/2023]
Abstract
Increased biomass yield and quality are of great importance for the improvement of feedstock for the biorefinery. For the production of bioethanol, both stem biomass yield and the conversion efficiency of the polysaccharides in the cell wall to fermentable sugars are of relevance. Increasing the endogenous levels of gibberellic acid (GA) by ectopic expression of GA20-OXIDASE1 (GA20-OX1), the rate-limiting step in GA biosynthesis, is known to affect cell division and cell expansion, resulting in larger plants and organs in several plant species. In this study, we examined biomass yield and quality traits of maize plants overexpressing GA20-OX1 (GA20-OX1). GA20-OX1 plants accumulated more vegetative biomass than control plants in greenhouse experiments, but not consistently over two years of field trials. The stems of these plants were longer but also more slender. Investigation of GA20-OX1 biomass quality using biochemical analyses showed the presence of more cellulose, lignin and cell wall residue. Cell wall analysis as well as expression analysis of lignin biosynthetic genes in developing stems revealed that cellulose and lignin were deposited earlier in development. Pretreatment of GA20-OX1 biomass with NaOH resulted in a higher saccharification efficiency per unit of dry weight, in agreement with the higher cellulose content. On the other hand, the cellulose-to-glucose conversion was slower upon HCl or hot-water pretreatment, presumably due to the higher lignin content. This study showed that biomass yield and quality traits can be interconnected, which is important for the development of future breeding strategies to improve lignocellulosic feedstock for bioethanol production.
Collapse
Affiliation(s)
- Wannes Voorend
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Plant Sciences Unit - Growth and Development, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| | - Hilde Nelissen
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Alex De Vliegher
- Plant Sciences Unit - Crop Husbandry and Environment, Institute for Agricultural and Fisheries Research (ILVO), Merelbeke, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Isabel Roldán-Ruiz
- Plant Sciences Unit - Growth and Development, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| | - Hilde Muylle
- Plant Sciences Unit - Growth and Development, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| |
Collapse
|
22
|
Huesing JE, Andres D, Braverman MP, Burns A, Felsot AS, Harrigan GG, Hellmich RL, Reynolds A, Shelton AM, Jansen van Rijssen W, Morris EJ, Eloff JN. Global Adoption of Genetically Modified (GM) Crops: Challenges for the Public Sector. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:394-402. [PMID: 26751159 DOI: 10.1021/acs.jafc.5b05116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Advances in biotechnology continue to drive the development of a wide range of insect-protected, herbicide-tolerant, stress-tolerant, and nutritionally enhanced genetically modified (GM) crops, yet societal and public policy considerations may slow their commercialization. Such restrictions may disproportionately affect developing countries, as well as smaller entrepreneurial and public sector initiatives. The 2014 IUPAC International Congress of Pesticide Chemistry (San Francisco, CA, USA; August 2014) included a symposium on "Challenges Associated with Global Adoption of Agricultural Biotechnology" to review current obstacles in promoting GM crops. Challenges identified by symposium presenters included (i) poor public understanding of GM technology and the need for enhanced communication strategies, (ii) nonharmonized and prescriptive regulatory requirements, and (iii) limited experience with regulations and product development within some public sector programs. The need for holistic resistance management programs to enable the most effective use of insect-protected crops was also a point of emphasis. This paper provides details on the symposium discussion and provides background information that can be used in support of further adoption of beneficial GM crops. Overall, it emphasizes that global adoption of modern agricultural biotechnology has not only provided benefits to growers and consumers but has great potential to provide solutions to an increasing global population and diminishing agricultural land. This potential will be realized by continued scientific innovation, harmonized regulatory systems, and broader communication of the benefits of the high-yielding, disease-resistant, and nutritionally enhanced crops attainable through modern biotechnology.
Collapse
Affiliation(s)
- Joseph E Huesing
- Bureau for Food Security, Research Division, U.S. Agency for International Development , Washington, D.C. 20004, United States
| | - David Andres
- Bayer Cropscience AG, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
- Representing Europabio, Avenue de l'Armée 6, 1040 Etterbeek, Belgium
| | - Michael P Braverman
- IR-4 Project, Rutgers University , Princeton, New Jersey 08540, United States
| | - Andrea Burns
- Syngenta Crop Protection, LLC, 3054 East Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| | - Allan S Felsot
- Department of Entomology, Washington State University , Richland, Washington 99354, United States
| | - George G Harrigan
- Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Richard L Hellmich
- USDA-ARS, Corn Insects and Crop Genetics Research Unit and Department of Entomology, Iowa State University , Ames, Iowa 50011, United States
| | - Alan Reynolds
- Biopesticides and Pollution Prevention Division, U.S. Environmental Protection Agency , Washington, D.C. 20460, United States
| | - Anthony M Shelton
- Department of Entomology, Cornell University/NYSAES , Geneva, New York 14456, United States
| | - Wilna Jansen van Rijssen
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria , Private Bag X04, Onderstepoort 0110, South Africa
| | - E Jane Morris
- School of Biology, University of Leeds , Leeds LS2 9JT, United Kingdom
| | - Jacobus N Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria , Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
23
|
Huang J, Smith AR, Zhang T, Zhao D. Creating Completely Both Male and Female Sterile Plants by Specifically Ablating Microspore and Megaspore Mother Cells. FRONTIERS IN PLANT SCIENCE 2016; 7:30. [PMID: 26870055 PMCID: PMC4740954 DOI: 10.3389/fpls.2016.00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/10/2016] [Indexed: 05/20/2023]
Abstract
Although genetically modified (GM) plants have improved commercially important traits, such as biomass and biofuel production, digestibility, bioremediation, ornamental value, and tolerance to biotic and abiotic stresses, there remain economic, political, or social concerns over potential ecological effects of transgene flow from GM plants. The current solution for preventing transgene flow from GM plants is genetically engineering sterility; however, approaches to generating both male and female sterility are limited. In addition, existing strategies for creating sterility lead to loss or modifications of entire flowers or floral organs. Here, we demonstrate that instead of the 1.5-kb promoter, the entire SOLO DANCERS (SDS) gene is required for its meiocyte-specific expression. We then developed an efficient method to specifically ablate microspore and megaspore mother cells using the SDS and BARNASE fusion gene, which resulted in complete sterility in both male and female reproductive organs in Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), but did not affect plant growth or development, including the formation of all flower organs. Therefore, our research provides a general and effective tool to prevent transgene flow in GM plants.
Collapse
|
24
|
Zhang WJ, Wang T. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:110-8. [PMID: 25804814 DOI: 10.1016/j.plantsci.2014.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 05/02/2023]
Abstract
Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa.
Collapse
Affiliation(s)
- Wan-Jun Zhang
- Department of Grassland Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| | - Tao Wang
- State Key Laboratory of Agro-biotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
25
|
Neilson EH, Edwards AM, Blomstedt CK, Berger B, Møller BL, Gleadow RM. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1817-32. [PMID: 25697789 PMCID: PMC4378625 DOI: 10.1093/jxb/eru526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/24/2014] [Accepted: 12/04/2014] [Indexed: 05/04/2023]
Abstract
The use of high-throughput phenotyping systems and non-destructive imaging is widely regarded as a key technology allowing scientists and breeders to develop crops with the ability to perform well under diverse environmental conditions. However, many of these phenotyping studies have been optimized using the model plant Arabidopsis thaliana. In this study, The Plant Accelerator(®) at The University of Adelaide, Australia, was used to investigate the growth and phenotypic response of the important cereal crop, Sorghum bicolor L. Moench and related hybrids to water-limited conditions and different levels of fertilizer. Imaging in different spectral ranges was used to monitor plant composition, chlorophyll, and moisture content. Phenotypic image analysis accurately measured plant biomass. The data set obtained enabled the responses of the different sorghum varieties to the experimental treatments to be differentiated and modelled. Plant architectural instead of architecture elements were determined using imaging and found to correlate with an improved tolerance to stress, for example diurnal leaf curling and leaf area index. Analysis of colour images revealed that leaf 'greenness' correlated with foliar nitrogen and chlorophyll, while near infrared reflectance (NIR) analysis was a good predictor of water content and leaf thickness, and correlated with plant moisture content. It is shown that imaging sorghum using a high-throughput system can accurately identify and differentiate between growth and specific phenotypic traits. R scripts for robust, parsimonious models are provided to allow other users of phenomic imaging systems to extract useful data readily, and thus relieve a bottleneck in phenotypic screening of multiple genotypes of key crop plants.
Collapse
Affiliation(s)
- E H Neilson
- School of Biological Sciences, Monash University, Clayton 3800, Australia Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - A M Edwards
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| | - C K Blomstedt
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| | - B Berger
- The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Glen Osmond 5064, Australia
| | - B Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-1799 Copenhagen V, Denmark
| | - R M Gleadow
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| |
Collapse
|
26
|
Exotic Eucalyptus plantations in the southeastern US: risk assessment, management and policy approaches. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0844-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Abstract
Alfalfa (Medicago sativa L.) is a high-quality forage crop widely grown throughout the world. This chapter describes an efficient protocol that allows for the generation of large number of transgenic alfalfa plants by sonication-assisted Agrobacterium-mediated transformation. Binary vectors carrying different selectable marker genes that confer resistance to phosphinothricin (bar), kanamycin (npt II), or hygromycin (hph) were used to generate transgenic alfalfa plants. Intact trifoliates collected from clonally propagated plants in the greenhouse were sterilized with bleach and then inoculated with Agrobacterium strain EHA105. More than 80 % of infected leaf pieces could produce rooted transgenic plants in 4-5 months after Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
- Chunxiang Fu
- Forage Improvement Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | | | | |
Collapse
|
28
|
Somleva MN, Xu CA, Ryan KP, Thilmony R, Peoples O, Snell KD, Thomson J. Transgene autoexcision in switchgrass pollen mediated by the Bxb1 recombinase. BMC Biotechnol 2014; 14:79. [PMID: 25148894 PMCID: PMC4148497 DOI: 10.1186/1472-6750-14-79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/18/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) has a great potential as a platform for the production of biobased plastics, chemicals and energy mainly because of its high biomass yield on marginal land and low agricultural inputs. During the last decade, there has been increased interest in the genetic improvement of this crop through transgenic approaches. Since switchgrass, like most perennial grasses, is exclusively cross pollinating and poorly domesticated, preventing the dispersal of transgenic pollen into the environment is a critical requisite for the commercial deployment of this important biomass crop. In this study, the feasibility of controlling pollen-mediated gene flow in transgenic switchgrass using the large serine site-specific recombinase Bxb1 has been investigated. RESULTS A novel approach utilizing co-transformation of two separate vectors was used to test the functionality of the Bxb1/att recombination system in switchgrass. In addition, two promoters with high pollen-specific activity were identified and thoroughly characterized prior to their introduction into a test vector explicitly designed for both autoexcision and quantitative analyses of recombination events. Our strategy for developmentally programmed precise excision of the recombinase and marker genes in switchgrass pollen resulted in the generation of transgene-excised progeny. The autoexcision efficiencies were in the range of 22-42% depending on the transformation event and assay used. CONCLUSION The results presented here mark an important milestone towards the establishment of a reliable biocontainment system for switchgrass which will facilitate the development of this crop as a biorefinery feedstock through advanced biotechnological approaches.
Collapse
Affiliation(s)
| | - Chang Ai Xu
- Metabolix, Inc., 21 Erie St., Cambridge, MA 02139, USA
| | - Kieran P Ryan
- Metabolix, Inc., 21 Erie St., Cambridge, MA 02139, USA
| | | | | | | | - James Thomson
- USDA-ARS-CIU, 800 Buchanan St., Albany, CA 94710, USA
| |
Collapse
|
29
|
Mares P, Pokorna TJ, Sochor J, Zeman L, Baron M, Mlcek J, Balla S. The influence of feeding GMO-peas on growth of animal models. POTRAVINARSTVO 2014. [DOI: 10.5219/322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction of genetically modified (GM) food or feed into the commercial sale represents a very complicated process. One of the most important steps in approval process is the evaluation of all risks on the health status of people and animal models. Within our project the genetically modified peas was breeded that showed significant resistance against Pea seed-borne mosaic virus and Pea enation mosaic virus. Preclinical studies have been conducted to found out the effect of GMO peas on animals - rats of outbreeding line Wistar. In a total, 24 male, specific pathogen free Wistar rats were used in the experiment. At the beginning of the experiment, the animals were 28 days old. The three experimental groups with 8 individuals were created. The first group of rats was fed with GMO peas, the second group of rats consumed mix of pea cultivar Raman and the third group was control without pea addition (wheat and soya were used instead of pea). In the present study we focused our attention on health, growth and utility features of rats fed with GM pea. All characteristic were observed during the experiment lasting 35 days. Consumed feed was weighted daily and the weight of the animals was measured every seven days. The average values were compared within the groups. The aim of the experiment was to verify if resistant lines of pea influence the weight growth of animal models. The results of our experiment showed that even a high concentration (30% of GM pea) did not influence growth rate of rats to compare with both rats fed with pea of Raman cultivar and control group. We did not observe any health problems of animal models during the experiment.
Collapse
|
30
|
Hoffman LC, Cawthorn D. Exotic protein sources to meet all needs. Meat Sci 2013; 95:764-71. [DOI: 10.1016/j.meatsci.2013.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
|
31
|
Li J, Gao H, Jiang J, Dzyubenko N, Chapurin V, Wang Z, Wang X. Overexpression of the Galega orientalis gibberellin receptor improves biomass production in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:1-6. [PMID: 23995087 DOI: 10.1016/j.plaphy.2013.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/28/2013] [Indexed: 05/01/2023]
Abstract
Gibberellins (GAs) are well-known phytohormones that contribute to a wide range of plant growth and development functions including stem elongation and leaf expansion. GA receptors perceive GA and transmit signals to activate GA-regulated reactions. In this study, a GA receptor gene with homology to other leguminous plants was isolated from Galega orientalis and termed GoGID. The 1732-bp full-length GoGID gene included an open reading frame of 1035 bp encoding a peptide of 344 amino acids. Sequence analysis indicated that GoGID shares conserved HGGS motif and active amino acid sites (Ser-Asp-Val/IIe) that are essential for maintaining it GA-binding activity. GoGID mRNA expression was more abundant in leaves than in roots or stems and could be up-regulated by the exogenous hormones. Overexpression of GoGID in transgenic tobacco plants promoted plant elongation and improved biomass production. These results suggested that GoGID functions as a GA receptor to alter GA-mediated signaling. GoGID may have a role in genetic engineering for the improvement of forage crops.
Collapse
Affiliation(s)
- Jun Li
- Department of Forage Germplasm Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
32
|
van der Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade LM. The potential of C4 grasses for cellulosic biofuel production. FRONTIERS IN PLANT SCIENCE 2013; 4:107. [PMID: 23653628 PMCID: PMC3642498 DOI: 10.3389/fpls.2013.00107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/08/2013] [Indexed: 05/04/2023]
Abstract
With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed. These include three important field crops-maize, sugarcane and sorghum-and two undomesticated perennial energy grasses-miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum, and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of biofuel.
Collapse
Affiliation(s)
- Tim van der Weijde
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Claire L. Alvim Kamei
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Andres F. Torres
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Wilfred Vermerris
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
- Department of Microbiology and Cell Science and Genetics Institute, University of FloridaGainesville, FL, USA
| | - Oene Dolstra
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Luisa M. Trindade
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| |
Collapse
|
33
|
Holme IB, Wendt T, Holm PB. Intragenesis and cisgenesis as alternatives to transgenic crop development. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:395-407. [PMID: 23421562 DOI: 10.1111/pbi.12055] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 05/21/2023]
Abstract
One of the major concerns of the general public about transgenic crops relates to the mixing of genetic materials between species that cannot hybridize by natural means. To meet this concern, the two transformation concepts cisgenesis and intragenesis were developed as alternatives to transgenesis. Both concepts imply that plants must only be transformed with genetic material derived from the species itself or from closely related species capable of sexual hybridization. Furthermore, foreign sequences such as selection genes and vector-backbone sequences should be absent. Intragenesis differs from cisgenesis by allowing use of new gene combinations created by in vitro rearrangements of functional genetic elements. Several surveys show higher public acceptance of intragenic/cisgenic crops compared to transgenic crops. Thus, although the intragenic and cisgenic concepts were introduced internationally only 9 and 7 years ago, several different traits in a variety of crops have currently been modified according to these concepts. Five of these crops are now in field trials and two have pending applications for deregulation. Currently, intragenic/cisgenic plants are regulated as transgenic plants worldwide. However, as the gene pool exploited by intragenesis and cisgenesis are identical to the gene pool available for conventional breeding, less comprehensive regulatory measures are expected. The regulation of intragenic/cisgenic crops is presently under evaluation in the EU and in the US regulators are considering if a subgroup of these crops should be exempted from regulation. It is accordingly possible that the intragenic/cisgenic route will be of major significance for future plant breeding.
Collapse
Affiliation(s)
- Inger Bæksted Holme
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Research Centre Flakkebjerg, Slagelse, Denmark.
| | | | | |
Collapse
|
34
|
Somleva MN, Peoples OP, Snell KD. PHA bioplastics, biochemicals, and energy from crops. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:233-52. [PMID: 23294864 DOI: 10.1111/pbi.12039] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 11/21/2012] [Accepted: 11/28/2012] [Indexed: 05/09/2023]
Abstract
Large scale production of polyhydroxyalkanoates (PHAs) in plants can provide a sustainable supply of bioplastics, biochemicals, and energy from sunlight and atmospheric CO(2). PHAs are a class of polymers with various chain lengths that are naturally produced by some microorganisms as storage materials. The properties of these polyesters make them functionally equivalent to many of the petroleum-based plastics that are currently in the market place. However, unlike most petroleum-derived plastics, PHAs can be produced from renewable feedstocks and easily degrade in most biologically active environments. This review highlights research efforts over the last 20 years to engineer the production of PHAs in plants with a focus on polyhydroxybutryrate (PHB) production in bioenergy crops with C(4) photosynthesis. PHB has the potential to be a high volume commercial product with uses not only in the plastics and materials markets, but also in renewable chemicals and feed. The major challenges of improving product yield and plant fitness in high biomass yielding C(4) crops are discussed in detail.
Collapse
|
35
|
Affiliation(s)
- Susanne Barth
- Teagasc, Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland.
| |
Collapse
|