1
|
Han Y, Wang Z, Han B, Zhang Y, Liu J, Yang Y. Allelic variation of TaABI5-A4 significantly affects seed dormancy in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:240. [PMID: 39341982 DOI: 10.1007/s00122-024-04753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
KEY MESSAGE We identified a pivotal transcription factor TaABI5-A4 that is significantly associated with pre-harvest sprouting in wheat; its function in regulating seed dormancy was confirmed in transgenic rice. ABI5 is a critical transcription factor in regulation of crop seed maturation, dormancy, germination, and post-germination. Sixteen copies of homologous sequences of ABI5 were identified in Chinese wheat line Zhou 8425B. Cultivars of two haplotypes TaABI5-A4a and TaABI5-A4b showed significantly different seed dormancies. Based on two SNPs between the sequences of TaABI5-A4a and TaABI5-A4b, two complementary dominant sequence-tagged site (STS) markers were developed and validated in a natural population of 103 Chinese wheat cultivars and advanced lines and 200 recombinant inbred lines (RILs) derived from the Yangxiaomai/Zhongyou 9507 cross; the STS markers can be used efficiently and reliably to evaluate the dormancy of wheat seeds. The transcription level of TaABI5-A4b was significantly increased in TaABI5-A4a-GFP transgenic rice lines compared with that in TaABI5-A4b-GFP. The average seed germination index of TaABI5-A4a-GFP transgenic rice lines was significantly lower than those of TaABI5-A4b-GFP. In addition, seeds of TaABI5-A4a-GFP transgenic lines had higher ABA sensitivity and endogenous ABA content, lower endogenous GA content and plant height, and thicker stem internodes than those of TaABI5-A4b-GFP. Allelic variation of TaABI5-A4-affected wheat seed dormancy and the gene function was confirmed in transgenic rice. The transgenic rice lines of TaABI5-A4a and TaABI5-A4b had significantly different sensitivities to ABA and contents of endogenous ABA and GA in mature seeds, thereby influencing the seed dormancy, plant height, and stem internode length and diameter.
Collapse
Affiliation(s)
- Yang Han
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Zeng Wang
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Bing Han
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Yingjun Zhang
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, Hebei, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yan Yang
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
2
|
Wang J, Lu Y, Xing S, Yang J, Liu L, Huang K, Liang D, Xia H, Zhang X, Lv X, Lin L. Transcriptome analysis reveals the promoting effects of exogenous melatonin on the selenium uptake in grape under selenium stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1447451. [PMID: 39239199 PMCID: PMC11374602 DOI: 10.3389/fpls.2024.1447451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Introduction Exogenous melatonin (MT) can promote horticultural crops growth under stress conditions. Methods In this study, the effects of exogenous MT on the accumulation of selenium (Se) in grape were studied under Se stress. Results and discussion Under Se stress, exogenous MT increased the biomass, content of photosynthetic pigments and antioxidant enzyme activity of grapevines. Compared with Se treatment, MT increased the root biomass, shoot biomass, chlorophyll a content, chlorophyll b content, carotenoids, superoxide dismutase activity, and peroxidase activity by 18.11%, 7.71%, 25.70%, 25.00%, 25.93%, 5.73%, and 9.41%, respectively. Additionally, MT increased the contents of gibberellin, auxin, and MT in grapevines under Se stress, while it decreased the content of abscisic acid. MT increased the contents of total Se, organic Se and inorganic Se in grapevines. Compared with Se treatment, MT increased the contents of total Se in the roots and shoots by 48.82% and 135.66%, respectively. A transcriptome sequencing analysis revealed that MT primarily regulated the cellular, metabolic, and bioregulatory processes of grapevine under Se stress, and the differentially expressed genes (DEGs) were primarily enriched in pathways, such as aminoacyl-tRNA biosynthesis, spliceosome, and flavonoid biosynthesis. These involved nine DEGs and nine metabolic pathways in total. Moreover, a field experiment showed that MT increased the content of Se in grapes and improved their quality. Therefore, MT can alleviate the stress of Se in grapevines and promote their growth and the accumulation of Se.
Collapse
Affiliation(s)
- Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuhang Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shanshan Xing
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jinman Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lei Liu
- Institute of Horticulture Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Kewen Huang
- Institute of Horticulture Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Sunic K, Spanic V. Genetic Biofortification of Winter Wheat with Selenium (Se). PLANTS (BASEL, SWITZERLAND) 2024; 13:1816. [PMID: 38999656 PMCID: PMC11244473 DOI: 10.3390/plants13131816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Wheat is one of the three most important cereals in the world, along with rice and maize. It serves as the primary food and source of energy for about 30-40% of the world's population. However, the low levels of micronutrients in wheat grains can lead to deficiencies of those micronutrients in people whose dietary habits are mostly based on cereals such as wheat. Apart from iron (Fe) and zinc (Zn), a lack of selenium (Se) is also one of the biggest problems in the world. The essentiality of Se has been confirmed for all animals and humans, and the lack of this micronutrient can cause serious health issues. Wheat dominates the world's cereal production, so it is one of the best plants for biofortification. Due to the fact that agronomic biofortification is not an economical or environmentally acceptable approach, genetic improvement of cereals such as wheat for the enhanced content of micronutrients in the grain represents the most efficient biofortification approach.
Collapse
Affiliation(s)
| | - Valentina Spanic
- Department for Cereal Breeding and Genetics, Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia;
| |
Collapse
|
4
|
Chen Y, Liu Z, Zeng W, Liu Y, Zhao D, Zhang Y, Jia X. Screening and Identification of Soil Selenium-Enriched Strains and Application in Auricularia auricula. Microorganisms 2024; 12:1136. [PMID: 38930518 PMCID: PMC11205748 DOI: 10.3390/microorganisms12061136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Selenium (Se) is an essential trace element for human physiological metabolism. The application of organic Se as a source to cultivate Se-rich plants for micronutrient supplementation has been receiving increasing attention. In our study, a bacterial strain named H1 was isolated from the soil in Heilongjiang Province, China, and under optimal culture conditions, the unit Se content could reach 3000 μg·g-1 and its 16S ribosomal DNA sequence seemed to be a new molecular record of an Enterobacter species. After the domestication of Se tolerance and Se-rich experiments, H1 can be used as a Se source for cultivation of Se-rich Auricularia auricula. The results showed that soluble protein, soluble sugar, free amino acid and vitamin C contents in Auricularia auricula were notably increased by 28.7%, 21.8%, 32.5% and 39.2% under the treatment of Se concentration of 0.24 mg·kg-1, respectively. These findings enhance our understanding that H1 is more conducive to Se uptake and nutrient accumulation.
Collapse
Affiliation(s)
- Yadong Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Zhenghan Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Weimin Zeng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Yang Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Dandan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Yanlong Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Xiangqian Jia
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
- Post-Doctoral Scientific Research Workstation of Heilongjiang Boli Economic Development Zone Management Committee, Qitaihe 154500, China
| |
Collapse
|
5
|
Ikram S, Li Y, Lin C, Yi D, Heng W, Li Q, Tao L, Hongjun Y, Weijie J. Selenium in plants: A nexus of growth, antioxidants, and phytohormones. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154237. [PMID: 38583194 DOI: 10.1016/j.jplph.2024.154237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
Selenium (Se) is an essential micronutrient for both human and animals. Plants serve as the primary source of Se in the food chain. Se concentration and availability in plants is influenced by soil properties and environmental conditions. Optimal Se levels promote plant growth and enhance stress tolerance, while excessive Se concentration can result in toxicity. Se enhances plants ROS scavenging ability by promoting antioxidant compound synthesis. The ability of Se to maintain redox balance depends upon ROS compounds, stress conditions and Se application rate. Furthermore, Se-dependent antioxidant compound synthesis is critically reliant on plant macro and micro nutritional status. As these nutrients are fundamental for different co-factors and amino acid synthesis. Additionally, phytohormones also interact with Se to promote plant growth. Hence, utilization of phytohormones and modified crop nutrition can improve Se-dependent crop growth and plant stress tolerance. This review aims to explore the assimilation of Se into plant proteins, its intricate effect on plant redox status, and the specific interactions between Se and phytohormones. Furthermore, we highlight the proposed physiological and genetic mechanisms underlying Se-mediated phytohormone-dependent plant growth modulation and identified research opportunities that could contribute to sustainable agricultural production in the future.
Collapse
Affiliation(s)
- Sufian Ikram
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Chai Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Debao Yi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wang Heng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Tao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Hongjun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiang Weijie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
6
|
Wang Y, Xie X, Chen H, Zhang K, Zhao B, Qiu R. Selenium-Induced Enhancement in Growth and Rhizosphere Soil Methane Oxidation of Prickly Pear. PLANTS (BASEL, SWITZERLAND) 2024; 13:749. [PMID: 38592767 PMCID: PMC10974067 DOI: 10.3390/plants13060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
As an essential element for plants, animals, and humans, selenium (Se) has been shown to participate in microbial methane oxidation. We studied the growth response and rhizosphere methane oxidation of an economic crop (prickly pear, Rosa roxburghii Tratt) through three treatments (Se0.6 mg/kg, Se2.0 mg/kg, and Se10 mg/kg) and a control (Se0 mg/kg) in a two-month pot experiment. The results showed that the height, total biomass, root biomass, and leaf biomass of prickly pear were significantly increased in the Se0.6 and Se2.0 treatments. The root-to-shoot ratio of prickly pear reached a maximum value in the Se2 treatment. The leaf carotenoid contents significantly increased in the three treatments. Antioxidant activities significantly increased in the Se0.6 and Se2 treatments. Low Se contents (0.6, 2 mg/kg) promoted root growth, including dry weight, length, surface area, volume, and root activity. There was a significant linear relationship between root and aboveground Se contents. The Se translocation factor increased as the soil Se content increased, ranging from 0.173 to 0.288. The application of Se can improve the state of rhizosphere soil's organic C and soil nutrients (N, P, and K). Se significantly promoted the methane oxidation rate in rhizosphere soils, and the Se10 treatment showed the highest methane oxidation rate. The soil Se gradients led to differentiation in the growth, rhizosphere soil properties, and methane oxidation capacity of prickly pear. The root Se content and Se translocation factor were significantly positively correlated with the methane oxidation rate. Prickly pear can accumulate Se when grown in Se-enriched soil. The 2 mg/kg Se soil treatment enhanced growth and methane oxidation in the rhizosphere soil of prickly pear.
Collapse
Affiliation(s)
- Yiming Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (X.X.); (H.C.); (K.Z.); (R.Q.)
| | - Xuechong Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (X.X.); (H.C.); (K.Z.); (R.Q.)
| | - Huijie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (X.X.); (H.C.); (K.Z.); (R.Q.)
| | - Kai Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (X.X.); (H.C.); (K.Z.); (R.Q.)
| | - Benliang Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (X.X.); (H.C.); (K.Z.); (R.Q.)
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (X.X.); (H.C.); (K.Z.); (R.Q.)
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| |
Collapse
|
7
|
Gao H, Ji Y, Chen W. Selenite resistance and biotransformation to SeNPs in Sinorhizobium meliloti 1021 and the synthetic promotion on alfalfa growth. Microbiol Res 2024; 280:127568. [PMID: 38118306 DOI: 10.1016/j.micres.2023.127568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Toxic selenite, commonly found in soil and water, can be transformed by microorganisms into selenium nanoparticles (SeNPs) as part of a detoxification process. In this study, a comprehensive investigation was conducted on the resistance and biotransformation of selenite in Sinorhizobium meliloti 1021 and the synergistic impact of SeNPs and the strain on alfalfa growth promotion was explored. Strain 1021 reduced 46% of 5 mM selenite into SeNPs within 72 h. The SeNPs, composed of proteins, lipids and polysaccharides, were primarily located outside rhizobial cells and had a tendency to aggregate. Under selenite stress, many genes participated in multidrug efflux, sulfur metabolism and redox processes were significantly upregulated. Of them, four genes, namely gmc, yedE, dsh3 and mfs, were firstly identified in strain 1021 that played crucial roles in selenite biotransformation and resistance. Biotoxic evaluations showed that selenite had toxic effects on roots and seedlings of alfalfa, while SeNPs exhibited antioxidant properties, promoted growth, and enhanced plant's tolerance to salt stress. Overall, our research provides novel insights into selenite biotransformation and resistance mechanisms in rhizobium and highlights the potential of SeNPs-rhizobium complex as biofertilizer to promote legume growth and salt tolerance.
Collapse
Affiliation(s)
- Huali Gao
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Yingrui Ji
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Wenfeng Chen
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
do Carmo Santos ML, Santos TA, Dos Santos Lopes N, Macedo Ferreira M, Martins Alves AM, Pirovani CP, Micheli F. The selenium-independent phospholipid hydroperoxide glutathione peroxidase from Theobroma cacao (TcPHGPX) protects plant cells against damages and cell death. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108332. [PMID: 38224638 DOI: 10.1016/j.plaphy.2023.108332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.
Collapse
Affiliation(s)
- Maria Luíza do Carmo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Taís Araújo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Natasha Dos Santos Lopes
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Monaliza Macedo Ferreira
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Akyla Maria Martins Alves
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil; CIRAD, UMR AGAP, F-34398, Montpellier, France.
| |
Collapse
|
9
|
Basit F, Abbas S, Zhu M, Tanwir K, El-Keblawy A, Sheteiwy MS, Raza A, Hu J, Hu W, Guan Y. Ascorbic acid and selenium nanoparticles synergistically interplay in chromium stress mitigation in rice seedlings by regulating oxidative stress indicators and antioxidant defense mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120044-120062. [PMID: 37936030 DOI: 10.1007/s11356-023-30625-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Ascorbic acid (AsA) and selenium nanoparticles (SeNPs) were versatile plant growth regulators, playing multiple roles in promoting plant growth under heavy metal stresses. This study aimed to evaluate the beneficial role of individual and combined effects of AsA and SeNPs on morpho-physio-biochemical traits of rice with or without chromium (Cr) amendment. The results indicated that Cr negatively affected plant biomass, gas exchange parameters, total soluble sugar, proline, relative water contents, and antioxidant-related gene expression via increasing reactive oxygen species (MDA, H2O2, O2•-) formation, resulting in plant growth reduction. The application of AsA and SeNPs, individually or in combination, decreased the uptake and translocation of Cr in rice seedlings, increased seedlings with tolerance to Cr toxicity, and significantly improved the rice seedling growth. Most notably, AsA + SeNP treatment strengthened the antioxidative defense system through ROS quenching and Cr detoxification. The results collectively suggested that the application of AsA and SeNPs alone or in combination had the potential to alleviate Cr toxicity in rice and possibly other crop species.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Mengjin Zhu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mohamed Salah Sheteiwy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weimin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Cheng C, Zhao X, Yang H, Coldea TE, Zhao H. Mechanism of selenite tolerance during barley germination: A combination of tissue selenium metabolism alterations and ascorbate-glutathione cycle modulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108189. [PMID: 37979575 DOI: 10.1016/j.plaphy.2023.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Selenite is widely used to increase Selenium (Se) content in cereals, however excessive selenite may be toxic to plant growth. In this study, barley was malted to elucidate the action mechanism of selenite in the generation and detoxification of oxidative toxicity. The results showed that high doses (600 μM) of selenite radically increased oxidative stress by the elevated accumulation of superoxide and malondialdehyde, leading to phenotypic symptoms of selenite-induced toxicity like stunted growth. Barley tolerates selenite through a combination of mechanisms, including altering Se distribution in barley, accelerating Se efflux, and increasing the activity of some essential antioxidant enzymes. Low doses (150 μM) of selenite improved barley biomass, respiratory rate, root vigor, and maintained the steady-state equilibrium between reactive oxygen species (ROS) and antioxidant enzyme. Selenite-induced proline may act as a biosignal to mediate the response of barley to Se stress. Furthermore, low doses of selenite increased the glutathione (GSH) and ascorbate (AsA) concentrations by mediating the ascorbate-glutathione cycle (AsA-GSH cycle). GSH intervention and dimethyl selenide volatilization appear to be the primary mechanisms of selenite tolerance in barley. Thus, results from this study will provide a better understanding of the mechanisms of selenite tolerance in crops.
Collapse
Affiliation(s)
- Chao Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiujie Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania; Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
11
|
van der Ent A, Salinitro M, Brueckner D, Spiers KM, Montanari S, Tassoni A, Schiavon M. Differences and similarities in selenium biopathways in Astragalus, Neptunia (Fabaceae) and Stanleya (Brassicaceae) hyperaccumulators. ANNALS OF BOTANY 2023; 132:349-361. [PMID: 37602676 PMCID: PMC10583200 DOI: 10.1093/aob/mcad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND AIMS Selenium hyperaccumulator species are of primary interest for studying the evolution of hyperaccumulation and for use in biofortification because selenium is an essential element in human nutrition. In this study, we aimed to determine whether the distributions of selenium in the three most studied hyperaccumulating taxa (Astragalus bisulcatus, Stanleya pinnata and Neptunia amplexicaulis) are similar or contrasting, in order to infer the underlying physiological mechanisms. METHODS This study used synchrotron-based micro-X-ray fluorescence (µXRF) techniques to visualize the distribution of selenium and other elements in fresh hydrated plant tissues of A. racemosus, S. pinnata and N. amplexicaulis. KEY RESULTS Selenium distribution differed widely in the three species: in the leaves of A. racemosus and N. amplexicaulis selenium was mainly concentrated in the pulvini, whereas in S. pinnata it was primarilylocalized in the leaf margins. In the roots and stems of all three species, selenium was absent in xylem cells, whereas it was particularly concentrated in the pith rays of S. pinnata and in the phloem cells of A. racemosus and N. amplexicaulis. CONCLUSIONS This study shows that Astragalus, Stanleya and Neptunia have different selenium-handling physiologies, with different mechanisms for translocation and storage of excess selenium. Important dissimilarities among the three analysed species suggest that selenium hyperaccumulation has probably evolved multiple times over under similar environmental pressures in the US and Australia.
Collapse
Affiliation(s)
- Antony van der Ent
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, Australia
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France
| | - Mirko Salinitro
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | | | - Sofia Montanari
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Tassoni
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Turin, Italy
| |
Collapse
|
12
|
Shiriaev A, Brizzolara S, Sorce C, Meoni G, Vergata C, Martinelli F, Maza E, Djari A, Pirrello J, Pezzarossa B, Malorgio F, Tonutti P. Selenium Biofortification Impacts the Tomato Fruit Metabolome and Transcriptional Profile at Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13554-13565. [PMID: 37638888 PMCID: PMC10510400 DOI: 10.1021/acs.jafc.3c02031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
In the present work, the effects of enriching tomatoes with selenium were studied in terms of physiological, metabolic, and molecular processes in the last stages of fruit development, particularly during ripening. A selenium concentration of 10 mg L-1 with sodium selenate and selenium nanoparticles was used in the spray treatments on the whole plants. No significant effects of selenium enrichment were detected in terms of ethylene production or color changes in the ripening fruit. However, selenium enrichment had an influence on both the primary and secondary metabolic processes and thus the biochemical composition of ripe tomatoes. Selenium decreased the amount of β-carotene, increased the accumulation of naringenin and chlorogenic acid, and decreased the coumaric acid level. Selenium also affected the volatile organic compound profile, with changes in the level of specific apocarotenoid compounds, such as β-ionone. These metabolomic changes may, to some extent, be due to the impact of selenium treatment on the transcription of genes involved in the metabolism of these compounds. RNA-seq analysis showed that the selenium application mostly impacted the expression of the genes involved in hormonal signaling, secondary metabolism, flavonoid biosynthesis, and glycosaminoglycan degradation.
Collapse
Affiliation(s)
- Anton Shiriaev
- Crop
Science Research Center, Sant’Anna
School of Advanced Studies, 56127 Pisa, Italy
- Research
Institute on Terrestrial Ecosystems, CNR, 56124 Pisa, Italy
| | - Stefano Brizzolara
- Crop
Science Research Center, Sant’Anna
School of Advanced Studies, 56127 Pisa, Italy
| | - Carlo Sorce
- Department
of Biology, University of Pisa, 56126 Pisa, Italy
| | - Gaia Meoni
- Magnetic
Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Chiara Vergata
- Department
of Biology, University of Florence, 50122 Florence, Italy
| | | | - Elie Maza
- Laboratoire
de Recherche en Sciences Végétales-Génomique
et Biotechnologie des Fruits − UMR 5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31062 Toulouse, France
| | - Anis Djari
- Laboratoire
de Recherche en Sciences Végétales-Génomique
et Biotechnologie des Fruits − UMR 5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31062 Toulouse, France
| | - Julien Pirrello
- Laboratoire
de Recherche en Sciences Végétales-Génomique
et Biotechnologie des Fruits − UMR 5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31062 Toulouse, France
| | | | - Fernando Malorgio
- Department
of Agriculture, Food and Environment, University
of Pisa, 56124 Pisa, Italy
| | - Pietro Tonutti
- Crop
Science Research Center, Sant’Anna
School of Advanced Studies, 56127 Pisa, Italy
| |
Collapse
|
13
|
Li Z, Xiao Y, Zhou K, Jin X, Li W, Li W, Zhang L, Wang J, Hu R, Lin L. Water extract of Fagopyrum dibotrys (D. Don) Hara straw increases selenium accumulation in peach seedlings under selenium-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:569-578. [PMID: 37684742 DOI: 10.1080/15226514.2023.2255287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
To promote the selenium (Se) uptakes in fruit trees under Se-contaminated soil, the effects of water extract of Fagopyrum dibotrys (D. Don) Hara straw on the Se accumulation in peach seedlings under selenium-contaminated soil were studied. The results showed that the root biomass, chlorophyll content, activities of antioxidant enzymes, and soluble protein content of peach seedlings were increased by the F. dibotrys straw extract. The different forms of Se (total Se, inorganic Se, and organic Se) were also increased in peach seedlings following treatment with the F. dibotrys straw extract. The highest total shoot Se content was treated by the 300-fold dilution of F. dibotrys straw, which was 30.87% higher than the control. The F. dibotrys straw extract also increased the activities of adenosine triphosphate sulfurase (ATPS), and adenosine 5'-phosphosulfate reductase (APR) in peach seedlings, but decreased the activity of serine acetyltransferase (SAT). Additionally, correlation and grey relational analyses revealed that chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se content. Overall, this study shows that the water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.
Collapse
Affiliation(s)
- Zhiyu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yunying Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Kexuan Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xin Jin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wanzhi Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lu Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Rongping Hu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Szőllősi R, Molnár Á, Janovszky P, Kéri A, Galbács G, Dernovics M, Kolbert Z. Selenate triggers diverse oxidative responses in Astragalus species with diverse selenium tolerance and hyperaccumulation capacity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107976. [PMID: 37625253 DOI: 10.1016/j.plaphy.2023.107976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Selenium (Se) hyperaccumulators are capable of uptake and tolerate high Se dosages. Excess Se-induced oxidative responses were compared in Astragalus bisulcatus and Astragalus cicer. Plants were grown on media supplemented with 0, 25 or 75 μM selenate for 14 days. Both A. bisulcatus and A. cicer accumulated >2000 μg/g dry weight Se to the shoot but the translocation factors of A. cicer were below 1 suggesting its non hyperaccumulator nature. A. cicer showed Se sensitivity indicated by reduced seedling fresh weight, root growth and root apical meristem viability, altered element homeostasis in the presence of Se. In Se-exposed A. bisulcatus, less toxic organic Se forms (mainly MetSeCys, γ-Glu-MetSeCys, and a selenosugar) dominated, while these were absent from A. cicer suggesting that the majority of the accumulated Se may be present as inorganic forms. The glutathione-dependent processes were more affected, while ascorbate levels were not notably influenced by Se in either species. Exogenous Se triggered more intense accumulation of malondialdehyde in the sensitive A. cicer compared with the tolerant A. bisulcatus. The extent of protein carbonylation in the roots of the 75 μM Se-exposed A. cicer exceeded that of A. bisulcatus indicating a correlation between selenate sensitivity and the degree of protein carbonylation. Overall, our results reveal connection between oxidative processes and Se sensitivity/tolerance/hyperaccumulation and contribute to the understanding of the molecular responses to excess Se.
Collapse
Affiliation(s)
- Réka Szőllősi
- Department of Plant Biology, University of Szeged, Közép alley 52, 6726, Szeged, Hungary
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Közép alley 52, 6726, Szeged, Hungary
| | - Patrick Janovszky
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm square 7, 6720, Szeged, Hungary
| | - Albert Kéri
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm square 7, 6720, Szeged, Hungary
| | - Gábor Galbács
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm square 7, 6720, Szeged, Hungary
| | - Mihály Dernovics
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik str. 2., 2462, Martonvásár, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép alley 52, 6726, Szeged, Hungary.
| |
Collapse
|
15
|
Li J, Huang C, Lai L, Wang L, Li M, Tan Y, Zhang T. Selenium hyperaccumulator plant Cardamine enshiensis: from discovery to application. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5515-5529. [PMID: 37355493 DOI: 10.1007/s10653-023-01595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 06/26/2023]
Abstract
Selenium (Se) is an essential trace element for animals and humans. Se biofortification and Se functional agriculture are emerging strategies to satisfy the needs of people who are deficient in Se. With 200 km2 of Se-excess area, Enshi is known as the "world capital of Se." Cardamine enshiensis (C. enshiensis) is a Se hyperaccumulation plant discovered in the Se mine drainage area of Enshi. It is edible and has been approved by National Health Commission of the People's Republic of China as a new source of food, and the annual output value of the Se-rich industry in Enshi City exceeds 60 billion RMB. This review will mainly focus on the discovery and mechanism underlying Se tolerance and Se hyperaccumulation in C. enshiensis and highlight its potential utilization in Se biofortification agriculture, graziery, and human health.
Collapse
Affiliation(s)
- Jiao Li
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuying Huang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.
| | - Lin Lai
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li Wang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Minglong Li
- Second Geological Brigade of Hubei Geological Bureau, Enshi, 445000, Hubei, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Tao Zhang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
16
|
Montanari S, Salinitro M, Simoni A, Ciavatta C, Tassoni A. Foraging for selenium: a comparison between hyperaccumulator and non-accumulator plant species. Sci Rep 2023; 13:10661. [PMID: 37391494 PMCID: PMC10313833 DOI: 10.1038/s41598-023-37249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Selenium (Se) hyperaccumulators are a unique group of plants that can accumulate this element in their aerial parts at concentrations exceeding 100 mg kgDW-1. These plants actively search for Se in the soil, a phenomenon known as root foraging, reported to date only by few studies. In this study, the effect of localized Se enrichment, in the form of selenite and selenate, was investigated on the root architecture of two Se-hyperaccumulators (Stanleya pinnata and Astragalus bisulcatus) and two non-accumulators (Brassica juncea and Medicago sativa). Rhizoboxes were divided into two halves: one half was filled with control soil while the other with selenate or selenite (30 mg kgDW-1) spiked soil. Seedling were transferred into the interface of the two soils and allowed to grow for three weeks under controlled light and temperature conditions. Staneya pinnata exhibited equal root density in both halves of the rhizobox when grown in control/control and selenite/control soil treatments. However, in the presence of selenate, S. pinnata developed 76% of the roots towards the selenate-enriched half, indicating an active root foraging. In contrast, A. bisulcatus and the non-accumulators B. juncea and M. sativa did not show any preferential distribution of roots. This study revealed that only S. pinnata showed the ability to detect and forage for Se when provided as selenate. Non-accumulators did not show any morphological or Se-accumulation difference associated with the presence of Se in soil in either form.
Collapse
Affiliation(s)
- Sofia Montanari
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Mirko Salinitro
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Andrea Simoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Claudio Ciavatta
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 40, 40127, Bologna, Italy
- Centro Interdipartimentale di Ricerca Industriale sull'Agroalimentare, University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy
| | - Annalisa Tassoni
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Centro Interdipartimentale di Ricerca Industriale sull'Agroalimentare, University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy
| |
Collapse
|
17
|
Qu L, Xu J, Dai Z, Elyamine AM, Huang W, Han D, Dang B, Xu Z, Jia W. Selenium in soil-plant system: Transport, detoxification and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131272. [PMID: 37003006 DOI: 10.1016/j.jhazmat.2023.131272] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and a beneficial element for plants. However, high Se doses always exhibit hazardous effects. Recently, Se toxicity in plant-soil system has received increasing attention. This review will summarize (1) Se concentration in soils and its sources, (2) Se bioavailability in soils and influencing factors, (3) mechanisms on Se uptake and translocation in plants, (4) toxicity and detoxification of Se in plants and (5) strategies to remediate Se pollution. High Se concentration mainly results from wastewater discharge and industrial waste dumping. Selenate (Se [VI]) and selenite (Se [IV]) are the two primary forms absorbed by plants. Soil conditions such as pH, redox potential, organic matter and microorganisms will influence Se bioavailability. In plants, excessive Se will interfere with element uptake, depress photosynthetic pigment biosynthesis, generate oxidative damages and cause genotoxicity. Plants employ a series of strategies to detoxify Se, such as activating antioxidant defense systems and sequestrating excessive Se in the vacuole. In order to alleviate Se toxicity to plants, some strategies can be applied, including phytoremediation, OM remediation, microbial remediation, adsorption technique, chemical reduction technology and exogenous substances (such as Methyl jasmonate, Nitric oxide and Melatonin). This review is expected to expand the knowledge of Se toxicity/detoxicity in soil-plant system and offer valuable insights into soils Se pollution remediation strategies.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhihua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Altaf MA, Sharma N, Srivastava D, Mandal S, Adavi S, Jena R, Bairwa RK, Gopalakrishnan AV, Kumar A, Dey A, Lal MK, Tiwari RK, Kumar R, Ahmed P. Deciphering the melatonin-mediated response and signalling in the regulation of heavy metal stress in plants. PLANTA 2023; 257:115. [PMID: 37169910 DOI: 10.1007/s00425-023-04146-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
MAIN CONCLUSION Melatonin has a protective effect against heavy metal stress in plants by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. It enhances osmolyte production, increases antioxidant enzyme activity, and improves photosynthesis, thereby improving cellular functions. Understanding the melatonin-mediated response and signalling can sustain crop production in heavy metal-stressed soils. Melatonin is a pleiotropic signal molecule that plays a critical role in plant growth and stress tolerance, particularly against heavy metals in soil. Heavy metals (HMs) are ubiquitously found in the soil-water environment and readily taken up by plants, thereby disrupting mineral nutrient homeostasis, osmotic balance, oxidative stress, and altered primary and secondary metabolism. Plants combat HM stress through inbuilt defensive mechanisms, such as metal exclusion, restricted foliar translocation, metal sequestration and compartmentalization, chelation, and scavenging of free radicals by antioxidant enzymes. Melatonin has a protective effect against the damaging effects of HM stress in plants. It achieves this by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. This mechanism improves the uptake of macronutrients and micronutrients in plants. Additionally, melatonin enhances osmolyte production, improving the plant's water relations, and increasing the activity of antioxidant enzymes to limit lipid peroxidation and reactive oxygen species (ROS) levels. Melatonin also decreases chlorophyll degradation while increasing its synthesis, and enhances RuBisCO activity for better photosynthesis. All these functions contribute to improving the cellular functions of plants exposed to HM stress. This review aims to gain better insight into the melatonin-mediated response and signalling under HM stress in plants, which may be useful in sustaining crop production in heavy metal-stressed soils.
Collapse
Affiliation(s)
- Muhammad Ahsan Altaf
- School of Horticulture, Hainan University, Haikou, 570228, People's Republic of China
| | - Nitin Sharma
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Dipali Srivastava
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sayanti Mandal
- Institute of Bioinformatics Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College, Pimpri, Pune, 411018, India
| | - Sandeep Adavi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-National Institute of Biotic Stress Management, Raipur, 493225, India
| | - Rupak Jena
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Rakesh Kumar Bairwa
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Parvaiz Ahmed
- Department of Botany, GDC, Pulwama, Jammu and Kashmir, 192301, India.
| |
Collapse
|
19
|
Urbano T, Filippini T, Wise LA, Sucato S, Polledri E, Malavolti M, Fustinoni S, Michalke B, Vinceti M. Selenium exposure and urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine: Major effects of chemical species and sex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161584. [PMID: 36702271 DOI: 10.1016/j.scitotenv.2023.161584] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an element present in trace amounts and different chemical forms. It may exert both beneficial and adverse effects on cellular redox status and on the generation of reactive oxygen species. 8-oxo-7,8-dihydro-2'deoxyguanosine (8-oxodG) is an oxidized derivative of deoxyguanosine, and a sensitive biomarker of oxidative stress and genotoxicity. The present study assessed the extent to which selenium status was associated with urinary 8-oxodG concentrations in a Northern Italian population. We recruited healthy, non-smoking blood donors living in the Reggio Emilia province during 2017-2019. We measured urinary 8-oxodG concentrations and used restricted cubic spline regression analyses to investigate the association between selenium status (estimated using food frequency questionnaires, urinary concentrations, and serum concentrations of selenium and selenium species) and 8-oxodG/g creatinine. Among 137 participants aged 30-60 years, median urinary selenium and 8-oxodG concentrations were 22.02 μg/L and 3.21 μg/g creatinine, respectively. Serum samples and selenium speciation analyses were available for 104 participants. Median total serum selenium levels and dietary intake were 116.5 μg/L and 78.7 μg/day, respectively. In spline regression analysis, there was little association between dietary, serum, or urinary selenium with 8-oxodG concentrations. In sex-specific analyses, urinary selenium showed a positive association with the endpoint among males. For single selenium species, we observed positive associations with urinary 8-oxodG for serum organic selenium species, and negative associations for inorganic selenium forms. In the most adjusted analysis, urinary 8-oxodG concentrations showed a strong positive association with selenomethione-bound selenium (Se-Met) and a negative association with inorganic tetravalent selenium, selenite. In sex-specific analyses, these associations were considerably stronger in males than in females. Overall, study findings indicate that selenium species exhibited very different patterns of associations with the biomarker of oxidative stress, and that these associations also depended on sex. Background exposure to Se-Met appears to be strongly and positively associated with oxidative stress.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sabrina Sucato
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marcella Malavolti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
20
|
Khan Z, Thounaojam TC, Chowdhury D, Upadhyaya H. The role of selenium and nano selenium on physiological responses in plant: a review. PLANT GROWTH REGULATION 2023; 100:409-433. [PMID: 37197287 PMCID: PMC10036987 DOI: 10.1007/s10725-023-00988-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/24/2023] [Indexed: 05/15/2023]
Abstract
Selenium (Se), being an essential micronutrient, enhances plant growth and development in trace amounts. It also protects plants against different abiotic stresses by acting as an antioxidant or stimulator in a dose-dependent manner. Knowledge of Se uptake, translocation, and accumulation is crucial to achieving the inclusive benefits of Se in plants. Therefore, this review discusses the absorption, translocation, and signaling of Se in plants as well as proteomic and genomic investigations of Se shortage and toxicity. Furthermore, the physiological responses to Se in plants and its ability to mitigate abiotic stress have been included. In this golden age of nanotechnology, scientists are interested in nanostructured materials due to their advantages over bulk ones. Thus, the synthesis of nano-Se or Se nanoparticles (SeNP) and its impact on plants have been studied, highlighting the essential functions of Se NP in plant physiology. In this review, we survey the research literature from the perspective of the role of Se in plant metabolism. We also highlight the outstanding aspects of Se NP that enlighten the knowledge and importance of Se in the plant system. Graphical abstract
Collapse
Affiliation(s)
- Zesmin Khan
- Department of Botany, Cotton University, Guwahati, 781001 Assam India
| | | | - Devasish Chowdhury
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035 India
| | | |
Collapse
|
21
|
Xiong Y, Xiang X, Xiao C, Zhang N, Cheng H, Rao S, Cheng S, Li L. Illumina RNA and SMRT Sequencing Reveals the Mechanism of Uptake and Transformation of Selenium Nanoparticles in Soybean Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040789. [PMID: 36840137 PMCID: PMC9966555 DOI: 10.3390/plants12040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 05/14/2023]
Abstract
Selenium (Se) is an essential element for mammals, and its deficiency in the diet is a global problem. Agronomic biofortification through exogenous Se provides a valuable strategy to enhance human Se intake. Selenium nanoparticles (SeNPs) have been regarded to be higher bioavailability and less toxicity in comparison with selenite and selenate. Still, little has been known about the mechanism of their metabolism in plants. Soybean (Glycine max L.) can enrich Se, providing an ideal carrier for Se biofortification. In this study, soybean sprouts were treated with SeNPs, and a combination of next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing was applied to clarify the underlying molecular mechanism of SeNPs metabolism. A total of 74,662 nonredundant transcripts were obtained, and 2109 transcription factors, 9687 alternative splice events, and 3309 long non-coding RNAs (lncRNAs) were predicted, respectively. KEGG enrichment analysis of the DEGs revealed that metabolic pathways, biosynthesis of secondary metabolites, and peroxisome were most enriched both in roots and leaves after exposure to SeNPs. A total of 117 transcripts were identified to be putatively involved in SeNPs transport and biotransformation in soybean. The top six hub genes and their closely coexpressed Se metabolism-related genes, such as adenylylsulfate reductase (APR3), methionine-tRNA ligase (SYM), and chloroplastic Nifs-like cysteine desulfurases (CNIF1), were screened by WGCNA and identified to play crucial roles in SeNPs accumulation and tolerance in soybean. Finally, a putative metabolism pathway of SeNPs in soybean was proposed. These findings have provided a theoretical foundation for future elucidation of the mechanism of SeNPs metabolism in plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Li
- Correspondence: ; Tel.: +86-133-4345-7040
| |
Collapse
|
22
|
Luo X, Wang X, Xia C, Peng J, Wang Y, Tang Y, Gao F. Quantitative ion character-activity relationship methods for assessing the ecotoxicity of soil metal(loid)s to lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24521-24532. [PMID: 36336735 DOI: 10.1007/s11356-022-23914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
New pollution elements introduced by the rapid development of modern industry and agriculture may pose a serious threat to the soil ecosystem. To explore the ecotoxicity and risk of these elements, we systematically studied the acute toxicity of 18 metal(loid)s toward lettuce using hydroponic experiments and quantitative relationships between element toxicity and ionic characteristics using ion-grouping and ligand-binding theory methods, thereby establishing a quantitative ion character-activity relationship (QICAR) model for predicting the phytotoxicity threshold of data-poor elements. The toxicity of 18 ions to lettuce differed by more than four orders of magnitude (0.05-804.44 μM). Correlation and linear regression analysis showed that the ionic characteristics significantly associated with this toxicity explained only 23.8-50.3% of the toxicity variation (R2Adj = 0.238-0.503, p < 0.05). Relationships between toxicity and ionic properties significantly improved after separating metal(loid) ions into soft and hard, with R2Adj of 0.793 and 0.784 (p < 0.05), respectively. Three ligand-binding parameters showed different predictive effects on lettuce metal(loid) toxicity. Compared with the binding constant of the biotic ligand model (log K) and the hard ligand scale (HLScale) (p > 0.05), the softness consensus scale (σCon) was significantly correlated with toxicity and provided the best prediction (R2Adj = 0.844, p < 0.001). We selected QICAR equations based on soft-hard ion classification and σCon methods to predict phytotoxicity of metal(loid)s, which can be used to derive ecotoxicity for data-poor metal(loid)s, providing preliminary assessment of their ecological risks.
Collapse
Affiliation(s)
- Xiaorong Luo
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China.
| | - Cunyan Xia
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Jing Peng
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Yujie Tang
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Fan Gao
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
23
|
Chen Q, Yu L, Chao W, Xiang J, Yang X, Ye J, Liao X, Zhou X, Rao S, Cheng S, Cong X, Xiao B, Xu F. Comparative physiological and transcriptome analysis reveals the potential mechanism of selenium accumulation and tolerance to selenate toxicity of Broussonetia papyrifera. TREE PHYSIOLOGY 2022; 42:2578-2595. [PMID: 35899437 DOI: 10.1093/treephys/tpac095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Broussonetia papyrifera is an important fodder tree that is widely distributed in China. Enhancing the selenium (Se) content in B. papyrifera may help to improve the nutritional value of the feed. In this study, sodium selenite and selenate were foliar applied to investigate the mechanisms of Se tolerance and accumulation in B. papyrifera. The results showed that both Se forms significantly increased the total Se content, and the proportion of organic Se was significantly higher in the sodium selenite treatment than in the control. In addition, the soluble sugar, phenolic acid and flavonoid contents and antioxidant enzyme activities were increased by exogenous Se. The de novo RNA sequencing results showed that 644 and 1804 differentially expressed genes were identified in the selenite and selenate comparison groups, respectively. Pathway enrichment analysis demonstrated that 24 of the 108 pathways were significantly enriched, of which sulfur assimilation genes in the sodium selenite-treated groups were upregulated, whereas Se conjugation and transporter genes, such as SBP1, PCS, GSTs, ABCs and GPX, were significantly induced under selenate treatment. The hub genes identified by weighted-gene co-expression network analysis further confirmed that sulfur assimilation, conjugation and transporter genes might play a vital role in Se assimilation and tolerance. From this, a model of Se metabolism in B. papyrifera was proposed based on the above physiological and RNA sequencing data. This study is the first study to report that B. papyrifera has a strong ability to accumulate and tolerate exogenous Se, thereby providing a foundation for further characterization of the accumulation and tolerance mechanism of B. papyrifera. Our findings can provide technical support for producing Se-enriched fodder.
Collapse
Affiliation(s)
- Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Li Yu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Wei Chao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Juan Xiang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaoli Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xian Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Shen Rao
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China
| | - Xin Cong
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Enshi Se-Run Material Engineering Technology Co., Ltd, Enshi, 445000, China
| | - Bo Xiao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
24
|
Sun C, Guo Q, Zeeshan M, Milham P, Qin S, Ma J, Yang Y, Lai H, Huang J. Dual RNA and 16S ribosomal DNA sequencing reveal arbuscular mycorrhizal fungi-mediated mitigation of selenate stress in Zea mays L. and reshaping of soil microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114217. [PMID: 36306613 DOI: 10.1016/j.ecoenv.2022.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Excessively high concentrations of selenium (Se) in soil are toxic to crop plants, and inoculation with arbuscular mycorrhizal fungi (AMF) can reverse Se stress in maize (Zea mays L.). To investigate the underlying mechanisms, maize seedlings were treated with sodium selenate (5 mg Se[VI] kg-1) and/or AMF (Funneliformis mosseae and Claroideoglomus etunicatum). Dual RNA sequencing in mycorrhiza and 16 S ribosomal DNA sequencing in soil were performed. The results showed that Se(VI) application alone decreased plant dry weight, but increased plant Se concentration, total Se content (mainly selenocysteine), and root superoxide content. Inoculation with either F. mosseae or C. etunicatum increased plant dry weight, decreased Se accumulation and selenocysteine proportion, enhanced root peroxidase activity, and alleviated oxidative stress in Se(VI)-treated plants. Inoculation also downregulated the expression of genes encoding Se transporters, assimilation enzymes, and cysteine-rich receptor-like kinases in Se(VI)-stressed plants, similar to plant-pathogen interaction and glutathione metabolism related genes. Conversely, genes encoding selenium-binding proteins and those related to phenylpropanoid biosynthesis were upregulated in inoculated plants under Se(VI) stress. Compared with Se(VI)-free plants, Se tolerance index, symbiotic feedback percentage on plant dry weight, and root colonization rate were all increased in inoculated plants under Se(VI) stress, corresponding to upregulated expression of 'key genes' in symbiosis. AMF inoculation increased bacterial diversity, decreased the relative abundances of selenobacteria related to plant Se absorption (e.g., Proteobacteria and Firmicutes), and improved bacterial network complexity in Se(VI)-stressed soils. We suggest that stress-mediated enhancement of mycorrhizal symbiosis contributed to plant Se(VI) tolerance, whereas AMF-mediated reshaping of soil bacterial community structure prevented excessive Se accumulation in maize.
Collapse
Affiliation(s)
- Chenyu Sun
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Muhammad Zeeshan
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Paul Milham
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia
| | - Shengfeng Qin
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Junqing Ma
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yisen Yang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jinghua Huang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
25
|
Ding F, Wei X, Dao Y, Zhao F, Wang R, Li P. Use of fulvic acid-like compounds from pulp-derived black liquor for enhancing the selenium content of peanut buds. BMC PLANT BIOLOGY 2022; 22:546. [PMID: 36443656 PMCID: PMC9703723 DOI: 10.1186/s12870-022-03903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cleaner production involving the extraction of useful material from the black liquor by-product of straw pulp would be environmentally beneficial and would permit increased wastewater usage. RESULTS The fulvic-acid-like components of pulp black liquor (PFA) with molecular weights below 10 kDa were isolated. The chemical and physiological characteristics of PFAs were investigated. Selenite can enhance the selenium nutrition level of crops, but excessive selenite may be toxic to plant growth. In order to explore how to increase selenite tolerance and selenium accumulation in peanut, the effects of PFA on selenium-associated properties in peanut seedlings were examined by growing seedlings with sodium selenite (0, 5, 15, and 25 mg·L- 1 Na2SeO3, 15 mg·L- 1 Na2SeO3 solution containing 60 mg-C/L PFA, and 25 mg·L- 1 Na2SeO3 containing 60 mg-C/L PFA). CONCLUSION The results showed that with 15 mg·L- 1 Na2SeO3, PFA significantly increased both the total and hypocotyl fresh weight of the seedlings but reduced the fresh weight of the root. PFA also effectively promoted the conversion of Se from inorganic to organic compounds in the root and hypocotyl, increased the soluble total sugar and soluble protein contents of the hypocotyl, and thus improved the edible quality and food safety of the selenium-enriched peanut buds. The results suggest that PFA can be used as an innovative bio-based substance for selenium-enriched sprout vegetable production.
Collapse
Affiliation(s)
- Feng Ding
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.
| | - Xiaofeng Wei
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Yuanren Dao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Fei Zhao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.
| |
Collapse
|
26
|
Pinto Irish K, Harvey MA, Harris HH, Aarts MGM, Chan CX, Erskine PD, van der Ent A. Micro-analytical and molecular approaches for understanding the distribution, biochemistry, and molecular biology of selenium in (hyperaccumulator) plants. PLANTA 2022; 257:2. [PMID: 36416988 PMCID: PMC9684236 DOI: 10.1007/s00425-022-04017-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Micro-analytical techniques to untangle Se distribution and chemical speciation in plants coupled with molecular biology analysis enable the deciphering of metabolic pathways responsible for Se tolerance and accumulation. Selenium (Se) is not essential for plants and is toxic at high concentrations. However, Se hyperaccumulator plants have evolved strategies to both tolerate and accumulate > 1000 µg Se g-1 DW in their living above-ground tissues. Given the complexity of the biochemistry of Se, various approaches have been adopted to study Se metabolism in plants. These include X-ray-based techniques for assessing distribution and chemical speciation of Se, and molecular biology techniques to identify genes implicated in Se uptake, transport, and assimilation. This review presents these techniques, synthesises the current state of knowledge on Se metabolism in plants, and highlights future directions for research into Se (hyper)accumulation and tolerance. We conclude that powerful insights may be gained from coupling information on the distribution and chemical speciation of Se to genome-scale studies to identify gene functions and molecular mechanisms that underpin Se tolerance and accumulation in these ecologically and biotechnologically important plants species. The study of Se metabolism is challenging and is a useful testbed for developing novel analytical approaches that are potentially more widely applicable to the study of the regulation of a wide range of metal(loid)s in hyperaccumulator plants.
Collapse
Affiliation(s)
- Katherine Pinto Irish
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia
| | - Maggie-Anne Harvey
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, SA, Australia
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Cheong Xin Chan
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD, 4072, Australia
| | - Peter D Erskine
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia
| | - Antony van der Ent
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
27
|
Wang Q, Hu J, Hu H, Li Y, Xiang M, Wang D. Integrated eco-physiological, biochemical, and molecular biological analyses of selenium fortification mechanism in alfalfa. PLANTA 2022; 256:114. [PMID: 36370252 DOI: 10.1007/s00425-022-04027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Foliar Se (IV) application at 100 mg/kg can act as a positive bio-stimulator of redox, photosynthesis, and nutrient metabolism in alfalfa via phenotypes, nutritional compositions, biochemistry, combined with transcriptome analysis. Selenium (Se) is an essential element for mammals, and plants are the primary source of dietary Se. However, Se usually has dual (beneficial/toxic) effects on the plant itself. Alfalfa (Medicago sativa L.) is one of the most important forage resources in the world due to its high nutritive value. In this study, we have investigated the effects of sodium selenite (Se (IV)) (0, 100, 200, 300, and 500 mg/kg) on eco-physiological, biochemical, and transcriptional mechanisms in alfalfa. The phenotypic and nutritional composition alterations revealed that lower Se (IV) (100 mg/kg) levels positively affected alfalfa; it enhanced the antioxidant activity, which may contribute to redox homeostasis and chloroplast function. At 100 mg/kg Se (IV) concentration, the H2O2, and malondialdehyde (MDA) contents decreased by 36.72% and 22.62%, respectively, whereas the activity of glutathione peroxidase (GPX) increased by 31.10%. Se supplementation at 100 mg/kg increased the plant pigments contents, the light-harvesting capacity of PSII (Fv/Fm) and PSI (ΔP700max), and the carbon fixation efficiency, which was demonstrated by enhanced photosynthesis (37.6%). Furthermore, alfalfa shifted carbon flux to protein synthesis to improve quality at 100 mg/kg of Se (IV) by upregulating carbohydrate and amino acid metabolic genes. On the contrary, at 500 mg/kg, Se (IV) became toxic. Higher Se (IV) disordered the plant antioxidant system, increasing H2O2 and MDA by 14.2 and 4.3%, respectively. Moreover, photosynthesis was inhibited by 20.2%, and more structural substances, such as lignin, were synthesized. These results strongly suggest that Se (IV) at a concentration of 100 mg/kg act as the positive bio-stimulator of redox metabolism, photosynthesis, and nutrient in alfalfa.
Collapse
Affiliation(s)
- Qingdong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Jinke Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Huafeng Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Hennan, China.
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China.
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China.
| | - Yan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Meiling Xiang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Dezhen Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| |
Collapse
|
28
|
Xiao Z, Lu Y, Zou Y, Zhang C, Ding L, Luo K, Tang Q, Zhou Y. Gene Identification, expression analysis and molecular docking of ATP sulfurylase in the selenization pathway of Cardamine hupingshanensis. BMC PLANT BIOLOGY 2022; 22:491. [PMID: 36253724 PMCID: PMC9578213 DOI: 10.1186/s12870-022-03872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND ATP sulfurylase (ATPS) is a crucial enzyme for the selenate assimilation pathway in plants. RESULTS In this study, genome-wide and comparative analyses of ATPS in Cardamine hupingshanensis, including sequence and structural analyses, were performed. The expression of ChATPS gene family members in C. hupingshanensis under selenium (Se) stress was also investigated, and our results suggest that ChATPS1-2 play key roles in the response to Se stress. Nine ATPS genes were found from C. hupingshanensis, which share highly conserved sequences with ATPS from Arabidopsis thaliana. In addition, we performed molecular docking of ATP sulfurylase in complex with compounds ATP, selenate, selenite, sulfate, and sulfite. ChAPS3-1 was found to have stronger binding energies with all compounds tested. Among these complexes, amino acid residues Arg, Gly, Ser, Glu, and Asn were commonly present. CONCLUSION Our study reveals the molecular mechanism of C. hupingshanensis ATP sulfurylase interacting with selenate, which is essential for understanding selenium assimilation. This information will guide further studies on the function of the ChATPS gene family in the selenium stress response and lay the foundation for the selenium metabolic pathway in higher plants.
Collapse
Affiliation(s)
- Zhijing Xiao
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, 44500 Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, 44500 Enshi, China
| | - Yanke Lu
- College of Biological and Food Engineering, Hubei Minzu University, 44500 Enshi, China
| | - Yi Zou
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 445000 Enshi, Hubei China
| | - Chi Zhang
- College of Biological and Food Engineering, Hubei Minzu University, 44500 Enshi, China
| | - Li Ding
- College of Biological and Food Engineering, Hubei Minzu University, 44500 Enshi, China
| | - Kai Luo
- College of Biological and Food Engineering, Hubei Minzu University, 44500 Enshi, China
| | - Qiaoyu Tang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, 44500 Enshi, China
| | - Yifeng Zhou
- College of Biological and Food Engineering, Hubei Minzu University, 44500 Enshi, China
| |
Collapse
|
29
|
Schiavon M, Nardi S, Pilon-Smits EAH, Dall’Acqua S. Foliar selenium fertilization alters the content of dietary phytochemicals in two rocket species. FRONTIERS IN PLANT SCIENCE 2022; 13:987935. [PMID: 36119625 PMCID: PMC9470978 DOI: 10.3389/fpls.2022.987935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Biofortification is the process that aims to enrich crops in micronutrients and valuable compounds. Selenium (Se) biofortification has particularly attracted increasing interest in recent times due to the growing number of individuals suffering from Se deficiency. Selenate and selenite are the Se forms most frequently administered to crops. In this study, Se was applied foliarly as selenate at 2.5, 5, or 10 mg per plant to two rocket species, Diplotaxis tenuifolia and Eruca sativa, grown in soil and the effects in terms of Se enrichment and content of primary and secondary metabolites were comparatively analyzed. We also compared our results with those obtained previously when selenate was supplied to the same species in hydroponics by addition to the nutrient solution. In most cases, the results were the opposite. In E. sativa, foliar Se treatment was more effective in promoting Se accumulation, sulfur (S), cysteine, and glucosinolates. No significant effect of Se was evident on total phenolic content, but there were individual phenols. Among amino acids, the content of proline was increased by Se, perhaps to counteract osmotic stress due to high Se accumulation. In D. tenuifolia, the content of S and cysteine decreased under Se treatment, but the amount of glutathione was steady, suggesting a preferred assimilation of cysteine toward the synthesis of this antioxidant. Consistent, the content of methionine and glucosinolates was reduced. The content of total phenolics was enhanced only by the low Se dosage. In both species, selenocysteine (SeCys) was identified, the content of which was higher compared to plants grown hydroponically. Concluding, most metabolic differences between rocket species were observed at high Se supplementation. Low Se foliar fertilization was effective in an enriching rocket in Se without affecting other phytochemicals. However, the Se dosages sufficient for biofortification could be even lower, as the Se concentration in rocket treated with 2.5 mg Se per plant was still very high and the edible part should not be eaten undiluted. Also, a single method of Se supplementation does not appear to be optimal for all plant species or the same species, as the metabolic responses could be very different.
Collapse
Affiliation(s)
- Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, TO, Italy
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy
| | | | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
30
|
Banerjee M, Chakravarty D, Kalwani P, Ballal A. Voyage of selenium from environment to life: Beneficial or toxic? J Biochem Mol Toxicol 2022; 36:e23195. [PMID: 35976011 DOI: 10.1002/jbt.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties. In this review, we describe the impact of selenium's journey from environment to diverse biological systems, with an emphasis on its chemical advantage. We describe the uneven distribution of Se and how this affects the bioavailability of this element, which, in turn, profoundly affects the habitat of a region. Once taken up, the subsequent incorporation of Se into proteins as selenocysteine and its antioxidant functions are detailed here. The causes of improved protein function due to the incorporation of redox-active Se atom (instead of S) are examined. Subsequently, the reasons for the deleterious effects of Se, which depend on its chemical form (organo-selenium or the inorganic forms) in different organisms are elaborated. Although Se is vital for the function of many antioxidant enzymes, how the pro-oxidant nature of Se can be potentially exploited in different therapies is highlighted. Furthermore, we succinctly explain how the presence of Se in biological systems offsets the toxic effects of heavy metal mercury. Finally, the different avenues of research that are fundamental to expand our understanding of selenium biology are suggested.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
31
|
Cipriano PE, da Silva RF, Martins FAD, de Lima AB, de Oliveira C, Faquin V, Guilherme LRG. Selenate Fertilization Of Sorghum Via Foliar Application And Its Effect On Nutrient Content And Antioxidant Metabolism. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
32
|
An analysis of the content changes in free and combinative forms of organic selenium in radish sprouts cultivated with solutions of selenoamino acids. Food Res Int 2022; 158:111558. [DOI: 10.1016/j.foodres.2022.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
|
33
|
Saleem M, Fariduddin Q. Novel mechanistic insights of selenium induced microscopic, histochemical and physio-biochemical changes in tomato (Solanum lycopersicum L.) plant. An account of beneficiality or toxicity. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128830. [PMID: 35429754 DOI: 10.1016/j.jhazmat.2022.128830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is a well-known beneficial element in plants. The window of Se between toxic and optimal concentration is narrow and uneven which fluctuates with plants species. This experiment was aimed to investigate the morpho-physiological, microscopic and histochemical responses of two different varieties of tomato (S-22 and PKM-1), exposed to different concentrations of Se (0, 10, 40 or 80 µM), applied to soil at 30 days after transplantation (DAT). At 40 DAT, it was observed that high concentrations (40 or 80 µM) of Se radically increased oxidative stress examined by elevated reactive oxygen species (ROS), malondialdehyde (MDA) content, cell death, electrolyte leakage and decreased chlorophyll content leading phenotypic symptoms of Se-induced toxicity like stunted growth and chlorosis. Furthermore, high doses of Se altered the chloroplast and stomatal organisation, and adversely affected the photosynthetic performance of plants. But low concentration of Se improved the plant dry mass, photosynthesis, Rubisco activity, protein content and maintained the steady-state equilibrium among ROS generation and antioxidant enzymes like catalase, peroxidase and superoxide dismutase. Our outcomes proposed that high concentration of Se generated toxicity (phyto-selenosis), whereas lower concentration of Se-triggered positive impact by improving growth, photosynthetic traits and maintaining steady-state equilibrium between scavenging-system and ROS generation.
Collapse
Affiliation(s)
- Mohd Saleem
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
34
|
Khan MS, Soyk A, Wolf I, Peter M, Meyer AJ, Rausch T, Wirtz M, Hell R. Discriminative Long-Distance Transport of Selenate and Selenite Triggers Glutathione Oxidation in Specific Subcellular Compartments of Root and Shoot Cells in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:894479. [PMID: 35812960 PMCID: PMC9263558 DOI: 10.3389/fpls.2022.894479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Selenium is an essential trace element required for seleno-protein synthesis in many eukaryotic cells excluding higher plants. However, a substantial fraction of organically bound selenide in human nutrition is directly or indirectly derived from plants, which assimilate inorganic selenium into organic seleno-compounds. In humans, selenium deficiency is associated with several health disorders Despite its importance for human health, selenium assimilation and metabolism is barely understood in plants. Here, we analyzed the impact of the two dominant forms of soil-available selenium, selenite and selenate, on plant development and selenium partitioning in plants. We found that the reference plant Arabidopsis thaliana discriminated between selenate and selenite application. In contrast to selenite, selenate was predominantly deposited in leaves. This explicit deposition of selenate caused chlorosis and impaired plant morphology, which was not observed upon selenite application. However, only selenate triggered the accumulation of the macronutrient sulfur, the sister element of selenium in the oxygen group. To understand the oxidation state-specific toxicity mechanisms for selenium in plants, we quantified the impact of selenate and selenite on the redox environment in the plastids and the cytosol in a time-resolved manner. Surprisingly, we found that selenite first caused the oxidation of the plastid-localized glutathione pool and had a marginal impact on the redox state of the cytosolic glutathione pool, specifically in roots. In contrast, selenate application caused more vigorous oxidation of the cytosolic glutathione pool but also impaired the plastidic redox environment. In agreement with the predominant deposition in leaves, the selenate-induced oxidation of both glutathione pools was more pronounced in leaves than in roots. Our results demonstrate that Se-species dependent differences in Se partitioning substantially contribute to whole plant Se toxicity and that these Se species have subcellular compartment-specific impacts on the glutathione redox buffer that correlate with toxicity symptoms.
Collapse
Affiliation(s)
- Muhammad Sayyar Khan
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Anna Soyk
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ingo Wolf
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Miriam Peter
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Andreas J. Meyer
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
- INRES - Chemical Signalling, University of Bonn, Bonn, Germany
| | - Thomas Rausch
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
35
|
El-Badri AM, Hashem AM, Batool M, Sherif A, Nishawy E, Ayaad M, Hassan HM, Elrewainy IM, Wang J, Kuai J, Wang B, Zheng S, Zhou G. Comparative efficacy of bio-selenium nanoparticles and sodium selenite on morpho-physiochemical attributes under normal and salt stress conditions, besides selenium detoxification pathways in Brassica napus L. J Nanobiotechnology 2022; 20:163. [PMID: 35351148 PMCID: PMC8962572 DOI: 10.1186/s12951-022-01370-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 01/13/2023] Open
Abstract
Selenium nanoparticles (SeNPs) have attracted considerable attention globally due to their significant potential for alleviating abiotic stresses in plants. Accordingly, further research has been conducted to develop nanoparticles using chemical ways. However, our knowledge about the potential benefit or phytotoxicity of bioSeNPs in rapeseed is still unclear. Herein, we investigated the effect of bioSeNPs on growth and physiochemical attributes, and selenium detoxification pathways compared to sodium selenite (Se (IV)) during the early seedling stage under normal and salt stress conditions. Our findings showed that the range between optimal and toxic levels of bioSeNPs was wider than Se (IV), which increased the plant’s ability to reduce salinity-induced oxidative stress. BioSeNPs improved the phenotypic characteristics of rapeseed seedlings without the sign of toxicity, markedly elevated germination, growth, photosynthetic efficiency and osmolyte accumulation versus Se (IV) under normal and salt stress conditions. In addition to modulation of Na+ and K+ uptake, bioSeNPs minimized the ROS level and MDA content by activating the antioxidant enzymes engaged in ROS detoxification by regulating these enzyme-related genes expression patterns. Importantly, the main effect of bioSeNPs and Se (IV) on plant growth appeared to be correlated with the change in the expression levels of Se-related genes. Our qRT-PCR results revealed that the genes involved in Se detoxification in root tissue were upregulated upon Se (IV) treated seedlings compared to NPs, indicating that bioSeNPs have a slightly toxic effect under higher concentrations. Furthermore, bioSeNPs might improve lateral root production by increasing the expression level of LBD16. Taken together, transamination and selenation were more functional methods of Se detoxification and proposed different degradation pathways that synthesized malformed or deformed selenoproteins, which provided essential mechanisms to increase Se tolerance at higher concentrations in rapeseed seedlings. Current findings could add more knowledge regarding the mechanisms underlying bioSeNPs induced plant growth.
Collapse
Affiliation(s)
- Ali Mahmoud El-Badri
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Ahmed M Hashem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ahmed Sherif
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Elsayed Nishawy
- Desert Research Center, Genetics Resource Department, Egyptian Deserts Gene Bank, Cairo, 11735, Egypt
| | - Mohammed Ayaad
- Plant Research Department, Nuclear Research Center, Atomic Energy Authority, Abo Zaabal, Cairo, 13795, Egypt
| | - Hamada M Hassan
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Ibrahim M Elrewainy
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Jing Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
36
|
Kostić O, Jarić S, Gajić G, Pavlović D, Mataruga Z, Radulović N, Mitrović M, Pavlović P. The Phytoremediation Potential and Physiological Adaptive Response of Tamarix tetrandra Pall. Ex M. Bieb. during the Restoration of Chronosequence Fly Ash Deposits. PLANTS 2022; 11:plants11070855. [PMID: 35406835 PMCID: PMC9003187 DOI: 10.3390/plants11070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
The challenging process of identifying and selecting plant species suited to the phytoremediation of fly ash (FA) dumps involves studying their functional properties and physiological response to a deficit of essential elements and toxicity from heavy metal(loid)-induced oxidative stress. We hypothesised that Tamarix tetrandra has high potential to be used for the phytoremediation of FA deposit sites thanks to its secretion strategy and antioxidative system. In this study, this hypothesis was examined by determining the bioconcentration and translocation factors for As, B, Cr, Cu, Mn, Ni, Se and Zn at the FA disposal lagoons at the ‘Nikola Tesla A’ thermal power plant in Obrenovac, Serbia, three (lagoon L1) and eleven (lagoon L2) years after the phytoremediation process had begun, and by measuring parameters of photosynthetic efficiency and chlorophyll concentration, non-enzymatic antioxidant defence (carotenoids, anthocyanins and phenolics), oxidative stress (concentration of malondialdehyde—MDA) and total antioxidant capacity to neutralise DPPH free radical activity. Tamarisk not only showed the ability to phytostabilise As, Cr and Ni and to accumulate low-availability Mn, Zn and Cu, but also the potential to maintain the structural and functional integrity of cell membranes and stable vitality at L1 under multiple stress conditions due to the high synthesis of phenols and tolerance to increased salinity. However, toxic concentrations of B and Se in leaves induced oxidative stress in tamarisk at L2 (reflected in higher MDA content and lower vitality) and also decreased the synthesis of chlorophyll, carotenoids, anthocyanins and total antioxidant activity. In addition, the prooxidative behaviour of phenols in the presence of spin-stabilising metals from FA could also have resulted in their weaker antioxidant protection at L2. These findings indicate that the choice of tamarisk was justified, but only at the beginning of the phytoremediation process because its presence contributed to an improvement in the harsh conditions at FA deposit sites and the creation of more favourable conditions for new plant species. This knowledge can be of great importance when planning sustainable ash deposit site management worldwide.
Collapse
|
37
|
Gui JY, Rao S, Gou Y, Xu F, Cheng S. Comparative study of the effects of selenium yeast and sodium selenite on selenium content and nutrient quality in broccoli florets (Brassica oleracea L. var. italica). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1707-1718. [PMID: 34460116 DOI: 10.1002/jsfa.11511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Approximately 0.5-1 billion people worldwide face the risk of selenium (Se) deficiency because of the low Se concentration in their diets. Broccoli can accumulate Se and comprises a source of daily Se supplement for humans. Se biofortification is an effective strategy for enhancing Se content in crops. In the present study, the effects of Se yeast and selenite application on the Se content and nutrient quality of broccoli were investigated. RESULTS Broccoli growth was promoted by Se yeast but inhibited by selenite. The total Se content of broccoli florets remarkably increased with increasing exogenous Se fertilizer concentrations. The main Se species in broccoli florets were methyl-selenocysteine and selenomethionine, and their contents were significantly higher under Se yeast treatments than under selenite treatments. Se(VI) was detected only under selenite treatments. Se yeast and selenite had different influences on soluble sugar, soluble protein, vitamin C and free amino acid contents in broccoli florets. The total phenolic acid and glucosinolate contents were substantially increased by Se yeast and selenite, although the total flavonoid content was reduced by Se yeast. Tests on antioxidant enzyme activities revealed that several antioxidant enzymes (catalase, peroxidase, superoxide dismutase and glutathione peroxidase) responded to Se yeast and selenite treatments. CONCLUSION Se yeast is preferred over selenite for maximizing Se uptake and nutrient accumulation in Se-rich broccoli cultivation. However, an extremely high Se content in broccoli florets cannot be directly consumed by humans, although they can be processed into Se supplements. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
38
|
Lima LW, Castleberry M, Wangeline AL, Aguirre B, Dall’Acqua S, Pilon-Smits EAH, Schiavon M. Hyperaccumulator Stanleya pinnata: In Situ Fitness in Relation to Tissue Selenium Concentration. PLANTS (BASEL, SWITZERLAND) 2022; 11:690. [PMID: 35270160 PMCID: PMC8912631 DOI: 10.3390/plants11050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Earlier studies have shown that Stanleya pinnata benefits from selenium hyperaccumulation through ecological benefits and enhanced growth. However, no investigation has assayed the effects of Se hyperaccumulation on plant fitness in the field. This research aimed to analyze how variation in Se accumulation affects S. pinnata fitness, judged from physiological and biochemical performance parameters and herbivory while growing naturally on two seleniferous sites. Natural variation in Se concentration in vegetative and reproductive tissues was determined, and correlations were explored between Se levels with fitness parameters, herbivory damage, and plant defense compounds. Leaf Se concentration varied between 13- and 55-fold in the two populations, averaging 868 and 2482 mg kg−1 dry weight (DW). Furthermore, 83% and 31% of plants from the two populations showed Se hyperaccumulator levels in leaves (>1000 mg kg−1 DW). In seeds, the Se levels varied 3−4-fold and averaged 3372 and 2267 mg kg−1 DW, well above the hyperaccumulator threshold. Plant size and reproductive parameters were not correlated with Se concentration. There was significant herbivory pressure even on the highest-Se plants, likely from Se-resistant herbivores. We conclude that the variation in Se hyperaccumulation did not appear to enhance or compromise S. pinnata fitness in seleniferous habitats within the observed Se range.
Collapse
Affiliation(s)
- Leonardo Warzea Lima
- Biology Department, Colorado State University, Fort Collins, CO 80523, USA; (L.W.L.); (M.C.); (E.A.H.P.-S.)
| | - McKenna Castleberry
- Biology Department, Colorado State University, Fort Collins, CO 80523, USA; (L.W.L.); (M.C.); (E.A.H.P.-S.)
| | - Ami L. Wangeline
- Biology Department, Laramie County Community College, Cheyenne, WY 82007, USA; (A.L.W.); (B.A.)
| | - Bernadette Aguirre
- Biology Department, Laramie County Community College, Cheyenne, WY 82007, USA; (A.L.W.); (B.A.)
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| | | | - Michela Schiavon
- Biology Department, Colorado State University, Fort Collins, CO 80523, USA; (L.W.L.); (M.C.); (E.A.H.P.-S.)
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
39
|
Li Z, Fan R, Peng X, Shu J, Liu L, Wang J, Lin L. Salicylic acid alleviates selenium stress and promotes selenium uptake of grapevine. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:625-635. [PMID: 35465205 PMCID: PMC8986911 DOI: 10.1007/s12298-022-01169-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
To determine suitable cultivation measures to enrich selenium (Se) and alleviate the Se stress in fruit trees, the effects of different exogenous salicylic acid (SA) concentrations (0, 50, 100, 150 and 200 mg/L) on the growth and Se uptake of grapevine under Se stress were studied. Under Se stress, SA increased the biomass of grapevine to some extent and had a linear relationship with both root and shoot biomass. The chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance, and intercellular CO2 concentration of grapevine tended to increase when the concentration of SA was < 150 mg/L and decrease when the concentration of SA was > 150 mg/L. Different concentrations of SA enhanced the activity of superoxide dismutase, while reducing that of peroxidase. It had no significant effect on the catalase activity of grapevine. SA decreased the content of osmotically active substances in grapevine to some extent. SA also increased the contents of total Se, inorganic Se and organic Se in grapevine to some extent, and had a linear or quadratic polynomial relationship with the total Se contents in both roots and shoots. When the SA concentration was 250 mg/L, the total Se contents in the roots and shoots were the highest and increased by 10.41% and 58.46%, respectively, compared with the control. Therefore, exogenous SA could promote the growth and Se uptake of grapevine under Se stress, with 250 mg/L serving as the most effective concentration.
Collapse
Affiliation(s)
- Zhiyu Li
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Rong Fan
- School of Literature, Journalism and Communication, Xihua University, Chengdu, Sichuan China
| | - Xuemei Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Junjiang Shu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Lei Liu
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| |
Collapse
|
40
|
Ye M, Li J, Yu R, Cong X, Huang D, Li Y, Chen S, Zhu S. Selenium Speciation in Selenium-Enriched Plant Foods. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
41
|
Qi M, Liu Y, Li Y, Wang M, Liu N, Kleawsampanjai P, Zhou F, Zhai H, Wang M, Dinh QT, Ren R, Liang D. Detoxification difference of cadmium between the application of selenate and selenite in native cadmium-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64475-64487. [PMID: 34312758 DOI: 10.1007/s11356-021-15564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) has strong mobility and could cause toxicity to plants, and selenium (Se) can effectively detoxify Cd stress. However, differences in the detoxification effects of different species and dosages of exogenous Se on Cd and its mechanism are still unclear. In this study, a pot experiment was conducted to determine the effects of different rates of selenite and selenate application on radish growth, the uptake and translocation of Cd, and the fractions of Cd transformation in native Cd-contaminated soil. Results indicated that the decrease in radish biomass in selenate treatment was significantly greater than that in selenite treatment at a high Se application rate (2.5 mg·kg-1) (p < 0.05). In contrast to selenite treatments, the application of selenate significantly increased the translocation of Cd from radish roots to shoots (p < 0.05). Cadmium concentration and its bioaccumulation factor in radish decreased gradually with increasing selenite application rates, while these values decreased at low Se rate (1 mg·kg-1) and increased at high Se rate for selenate treatment. Different Se application rates resulted in Cd fractions distributions to change in soil. Therefore, the application of selenite treatment had a greater detoxification effect on Cd in soil than that in selenate treatment, and the double toxic effect was observed between Se and Cd in high selenate treatment (2.5 mg·kg-1). Combined with human health risk asseeement, the application of 2.5 mg·kg-1 selenite could be a good approach for detoxification in native Cd-contaminated soil used in this study.
Collapse
Affiliation(s)
- Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nana Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pornpimol Kleawsampanjai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengke Wang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Quang Toan Dinh
- Center for Monitoring and Environmental Protection Thanh Hoa-Department of Natural Resources and Environment of Thanh Hoa, Thanh Hoa, Vietnam
| | - Rui Ren
- Shaanxi Hydrogeolog Engineering Geology and Environment Geology Survey Center, Shaanxi, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
42
|
Hoque MN, Tahjib-Ul-Arif M, Hannan A, Sultana N, Akhter S, Hasanuzzaman M, Akter F, Hossain MS, Sayed MA, Hasan MT, Skalicky M, Li X, Brestič M. Melatonin Modulates Plant Tolerance to Heavy Metal Stress: Morphological Responses to Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms222111445. [PMID: 34768875 PMCID: PMC8584185 DOI: 10.3390/ijms222111445] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022] Open
Abstract
Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and primary and secondary metabolism. It is important to perceive the complete and detailed regulatory mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation in plants to identify potential research gaps that should be addressed in the future. This review provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal stress and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Md. Najmol Hoque
- Department of Biochemistry and Molecular Biology, Khulna Agricultural University, Khulna 9100, Bangladesh;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Correspondence: (M.T.-U.-A.); (M.B.)
| | - Afsana Hannan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.H.); (N.S.); (S.A.)
| | - Naima Sultana
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.H.); (N.S.); (S.A.)
| | - Shirin Akhter
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.H.); (N.S.); (S.A.)
| | - Md. Hasanuzzaman
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Fahmida Akter
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Sazzad Hossain
- Department of Agronomy and Haor Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
| | - Md. Abu Sayed
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology, Dinajpur 5200, Bangladesh;
| | - Md. Toufiq Hasan
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
| | - Marián Brestič
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia
- Correspondence: (M.T.-U.-A.); (M.B.)
| |
Collapse
|
43
|
Zhou C, Huang JC, Gan X, He S, Zhou W. Selenium uptake, volatilization, and transformation by the cyanobacterium Microcystis aeruginosa and post-treatment of Se-laden biomass. CHEMOSPHERE 2021; 280:130593. [PMID: 33932907 DOI: 10.1016/j.chemosphere.2021.130593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
With a narrow margin between beneficial and toxic effects, selenium (Se) is of great concern due to its increasing level in aquatic environments. The accumulation and transformation of Se by the cyanobacterium Microcystis aeruginosa and effects of nutrients, particularly sulfate, were investigated. The nutrient-deprived cyanobacterium removed water-borne selenate (82.2 ± 0.93%) faster than selenite (58.9 ± 1.77%), with 86.0 ± 1.41% and 77.2 ± 1.00%, respectively, of the Se accumulated in the biomass and the rest volatilized. When supplied with excess nutrients, the Se accumulation and volatilization rates were significantly inhibited, with the removal efficiency dropping to 50.2 ± 2.59% and 7.37 ± 0.93% for selenite and selenate, respectively. When M. aeruginosa was tested with inadequate, appropriate, and adequate levels of sulfate, Se uptake decreased with increasing sulfate concentrations, particularly for selenate (from 34.1 to 4.81%). Using X-ray absorption near-edge structure to speciate biomass Se, selenite and selenate were transformed to organo-Se (87.3-100%), with or without nutrients present, suggesting M. aeruginosa could efficiently reduce Se oxyanions to more bioavailable forms. With increasing sulfate levels (5.0 and 10.0 mg S/L), percentages of SeMet converted from selenite decreased by 28.2-33.0%, with 19.1-33.2% as elemental Se, while organo-Se remained dominant (93.6-95.1%) in selenate-treated M. aeruginosa. Transmission electron microscopy shows structural damage in the cell wall at exposure to selenite (1600 μg Se/L), with the intracellular structure intact. To prevent Se biomagnification along aquatic food chains, the Se-laden biomass was combusted as a post-treatment, leading to a significant reduction in Se content (∼99.2%) and Se bioavailability, with inorganic Se (45.0-70.5%) predominant in the residue.
Collapse
Affiliation(s)
- Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.
| | - Xinyu Gan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
44
|
Regni L, Micheli M, Del Pino AM, Palmerini CA, D’Amato R, Facchin SL, Famiani F, Peruzzi A, Mairech H, Proietti P. The First Evidence of the Beneficial Effects of Se-Supplementation on In Vitro Cultivated Olive Tree Explants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081630. [PMID: 34451675 PMCID: PMC8399936 DOI: 10.3390/plants10081630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 05/13/2023]
Abstract
Selenium is an essential micronutrient that provides important benefits to plants and humans. At proper concentrations, selenium increases plant growth, pollen vitality, the shelf life of fresh products, and seems to improve stress resistance; these effects can certainly be attributed to its direct and indirect antioxidant capacity. For these reasons, in the present work, the effects of selenium at different dosages on in vitro cultivated olive explants were investigated to observe possible positive effects (in terms of growth and vigor) on the proliferation phase. The work was carried out on four different olive cultivars: "San Felice", "Canino", "Frantoio", and "Moraiolo". The explants were cultured in aseptic conditions on olive medium (OM), with the addition of 4 mg·L-1 of zeatin, 30 g·L-1 of sucrose, and 7 g·L-1 of agar. The experimental scheme included a comparison between explants grown with five different concentrations of Na2SeO4 (0, 10, 20, 40, and 80 mg L-1) added to the medium during three successive subcultures. Interesting information has emerged from the results and all varieties responded to different concentrations of Selenium. The optimal Se dosages varied for each cultivar, but in general, Se concentration between 10 and 40 mg L-1 increased fresh and dry weight of the explants and shoot lengths. Se treatment induced in all cultivars and for all dosages used an increase in total Se content in proliferated explants. Furthermore, as the subcultures proceeded, the ability of the explants to absorb Se did not diminish. The Se content ranged from 8.55 to 114.21 µg kg-1 plant DW in 'Frantoio', from 9.83 to 94.85 µg kg-1 plant DW in 'Moraiolo', from 19.84 to 114.21 µg kg-1 plant DW in 'Canino', and from 20.97 to 95.54 µg kg-1 plant DW in 'San Felice'. In general, the effect of selenium tends to decrease with the progress of subcultures and this suggests a sort of "adaptation" effect of the explants to its presence. The present study highlights for the first time the possibility of using in vitro cultures as biotechnological support to study supplementation with selenium and its effects on in vitro olive plant growth.
Collapse
|
45
|
Singh S, Kumar V, Datta S, Dhanjal DS, Singh S, Kumar S, Kapoor D, Prasad R, Singh J. Physiological responses, tolerance, and remediation strategies in plants exposed to metalloids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40233-40248. [PMID: 32748354 DOI: 10.1007/s11356-020-10293-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/27/2020] [Indexed: 05/25/2023]
Abstract
Metalloids are a subset of particular concern to risk assessors and toxicologists because of their well-documented potential hazards to plant system. Most of the metalloids are major environmental contaminants which affect crop productivity when present in high concentrations in soil. Metalloids are coupled with carrier proteins of the plasma membrane and translocated to various organs causing changes in key metabolic processes, damages cell biomolecules, and finally inhibit its growth. Phytoremediation-based approaches help in understanding the molecular and biochemical mechanisms for prerequisite recombinant genetic approaches. Recent advancements in proteomics and plant genomics help in understanding the role of transcription factors, metabolites, and genes in plant system which confers metal tolerance. The present review summarizes our current status of knowledge in this direction related to various physiological responses, detoxification mechanisms, and remediation strategies of metalloids in crop plants in relation to plant-metalloid tolerance. Further, the role of various transcription factors and miRNAs in conferring metal tolerance is also briefed. Hence, the present review mainly focused on the alterations in the physiological activities of plants due to metalloid toxicity and the various mechanisms which get activated inside the plants to mitigate their toxic effects.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
- Punjab Biotechnology Incubator (PBTI), Phase-V, S.A.S. Nagar, Punjab, 160059, India
- RAWTL, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar, Punjab, 160054, India
| | - Vijay Kumar
- Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, 474009, India
| | - Shivika Datta
- Department of Zoology, Doaba College Jalandhar, Jalandhar, Punjab, 144001, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Satyender Singh
- RAWTL, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar, Punjab, 160054, India
| | - Sanjay Kumar
- Punjab Biotechnology Incubator (PBTI), Phase-V, S.A.S. Nagar, Punjab, 160059, India
- RAWTL, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar, Punjab, 160054, India
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India.
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
46
|
Gao M, He R, Shi R, Li Y, Song S, Zhang Y, Su W, Liu H. Combination of Selenium and UVA Radiation Affects Growth and Phytochemicals of Broccoli Microgreens. Molecules 2021; 26:molecules26154646. [PMID: 34361799 PMCID: PMC8348033 DOI: 10.3390/molecules26154646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Addition of selenium or application of ultraviolet A (UVA) radiation for crop production could be an effective way of producing phytochemical-rich food. This study was conducted to investigate the effects of selenium and UVA radiation, as well as their combination on growth and phytochemical contents in broccoli microgreens. There were three treatments: Se (100 μmol/L Na2SeO3), UVA (40 μmol/m2/s) and Se + UVA (with application of Se and UVA). The control (CK) was Se spraying-free and UVA radiation-free. Although treatment with Se or/and UVA inhibited plant growth of broccoli microgreens, results showed that phytochemical contents increased. Broccoli microgreens under the Se treatment had higher contents of total soluble sugars, total phenolic compounds, total flavonoids, ascorbic acid, Fe, and organic Se and had lower Zn content. The UVA treatment increased the contents of total chlorophylls, total soluble proteins, total phenolic compounds, and FRAP. However, the Se + UVA treatment displayed the most remarkable effect on the contents of total anthocyanins, glucoraphanin, total aliphatic glucosinolates, and total glucosinolates; here, significant interactions between Se and UVA were observed. This study provides valuable insights into the combinational selenium and UVA for improving the phytochemicals of microgreens grown in an artificial lighting plant factory.
Collapse
|
47
|
Banerjee M, Kalwani P, Chakravarty D, Singh B, Ballal A. Functional and mechanistic insights into the differential effect of the toxicant 'Se(IV)' in the cyanobacterium Anabaena PCC 7120. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105839. [PMID: 34015754 DOI: 10.1016/j.aquatox.2021.105839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Selenium, an essential trace element for animals, poses a threat to all forms of life above a threshold concentration. The ubiquitously present cyanobacteria, a major photosynthetic biotic component of aquatic and other ecosystems, are excellent systems to study the effects of environmental toxicants. The molecular changes that led to beneficial or detrimental effects in response to different doses of selenium oxyanion Se(IV) were analyzed in the filamentous cyanobacterium Anabaena PCC 7120. This organism showed no inhibition in growth up to 15 mg/L sodium selenite, but above this dose i.e. 20-100 mg/L of Se(IV), both growth and photosynthesis were substantially inhibited. Along with the increased accumulation of non-protein thiols, a consistent reduction in levels of ROS was observed at 10 mg/mL dose of Se(IV). High dose of Se(IV) (above 20 mg/L) enhanced endogenous reactive oxygen species (ROS)/lipid peroxidation, and decreased photosynthetic capability. Treatment with 100 mg/L Se(IV) downregulated transcription of several photosynthesis pathways-related genes such as those encoding photosystem I and II proteins, phycobilisome rod-core linker protein, phycocyanobilin, phycoerythrocyanin-associated proteins etc. Interestingly, at a dose range of 10-15 mg/L Se(IV), Anabaena showed an increase in PSII photosynthetic yield and electron transport rate (at PSII), suggesting improved photosynthesis. Se was incorporated into the Anabaena cells, and Se-enriched thylakoid membranes showed higher redox conductivity than the thylakoid membranes from untreated cells. Overall, the data supports that modulation of photosynthetic machinery is one of the crucial mechanisms responsible for the dose-dependent contrasting effect of Se(IV) observed in Anabaena.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division; Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Prakash Kalwani
- Molecular Biology Division; Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Dhiman Chakravarty
- Molecular Biology Division; Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Beena Singh
- Radiation and Photo Chemistry Division; Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Anand Ballal
- Molecular Biology Division; Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
48
|
Lima LW, Nardi S, Santoro V, Schiavon M. The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants (Basel) 2021; 10:antiox10071031. [PMID: 34202330 PMCID: PMC8300636 DOI: 10.3390/antiox10071031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Dietary selenium (Se)-compounds accumulated in plants are essential for human metabolism and normal physiological processes. Inorganic and organic Se species can be readily absorbed by the human body, but are metabolized differently and thus exhibit distinct mechanisms of action. They can act as antioxidants or serve as a source of Se for the synthesis of selenoproteins. Selenocysteine, in particular, is incorporated at the catalytic center of these proteins through a specific insertion mechanism and, due to its electronic features, enhances their catalytic activity against biological oxidants. Selenite and other Se-organic compounds may also act as direct antioxidants in cells due to their strong nucleophilic properties. In addition, Se-amino acids are more easily subjected to oxidation than the corresponding thiols/thioethers and can bind redox-active metal ions. Adequate Se intake aids in preventing several metabolic disorders and affords protection against viral infections. At present, an epidemic caused by a novel coronavirus (SARS-CoV-2) threatens human health across several countries and impacts the global economy. Therefore, Se-supplementation could be a complementary treatment to vaccines and pharmacological drugs to reduce the viral load, mutation frequency, and enhance the immune system of populations with low Se intake in the diet.
Collapse
Affiliation(s)
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy;
| | - Veronica Santoro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
- Correspondence: ; Tel.: +1-1670-8520
| |
Collapse
|
49
|
Uptake Dynamics of Ionic and Elemental Selenium Forms and Their Metabolism in Multiple-Harvested Alfalfa (Medicago sativa L.). PLANTS 2021; 10:plants10071277. [PMID: 34201671 PMCID: PMC8309208 DOI: 10.3390/plants10071277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022]
Abstract
A pot experiment, under greenhouse conditions, was carried out aiming at investigating the agronomic biofortification of alfalfa (Medicago sativa L.) with Se and monitoring the Se uptake and accumulation dynamics within four consecutive harvests within the same growing season. Two ionic Se forms, i.e., sodium selenate (Se (VI)) and sodium selenite (Se (IV)), were applied once at a rate of 1, 10, and 50 mg kg−1 (added on Se basis), while 10 and 50 mg L−1 of a red elemental Se (red Se0) were used; all Se treatments were added as soil application. Application of Se (VI) at the rate of 50 mg kg−1 was toxic to alfalfa plants. The effect of Se forms on Se accumulation in alfalfa tissues, regardless of the applied Se concentration, follows: Se (VI) > Se (IV) > red Se0. The leaf, in general, possessed higher total Se content than the stem in all the treatments. The accumulation of Se in stem and leaf tissues showed a gradual decline between the harvests, especially for plants treated with either Se (VI) or Se (IV); however, the chemically synthesized red Se0 showed different results. The treatment of 10 mg kg−1 Se (VI) resulted in the highest total Se content in stem (202.5 and 98.0 µg g−1) and leaf (643.4 and 284.5 µg g−1) in the 1st and 2nd harvests, respectively. Similar tendency is reported for the Se (IV)-treated plants. Otherwise, the application of red Se0 resulted in a lower Se uptake; however, less fluctuation in total Se content between the four harvests was noticed compared to the ionic Se forms. The Se forms in stem and leaf of alfalfa extracted by water and subsequently by protease XIV enzyme were measured by strong anion exchange (SAX) HPLC-ICP-MS. The major Se forms in our samples were selenomethionine (SeMet) and Se (VI), while neither selenocysteine (SeCys) nor Se (IV) was detected. In water extract, however, Se (VI) was the major Se form, while SeMet was the predominant form in the enzyme extract. Yet, Se (VI) and SeMet contents declined within the harvests, except in stem of plants treated with 50 mg L−1 red Se0. The highest stem or leaf SeMet yield %, in all harvests, corresponded to the treatment of 50 mg L−1 red Se0. For instance, 63.6% (in stem) and 38.0% (in leaf) were calculated for SeMet yield % in the 4th harvest of plants treated with 50 mg L−1 red Se0. Our results provide information about uptake and accumulation dynamics of different ionic Se forms in case of multiple-harvested alfalfa, which, besides being a good model plant, is an important target plant species in green biorefining.
Collapse
|
50
|
Khalofah A, Migdadi H, El-Harty E. Antioxidant Enzymatic Activities and Growth Response of Quinoa ( Chenopodium quinoa Willd) to Exogenous Selenium Application. PLANTS (BASEL, SWITZERLAND) 2021; 10:719. [PMID: 33917228 PMCID: PMC8068041 DOI: 10.3390/plants10040719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 01/24/2023]
Abstract
Selenium is a trace element essential to many organisms, including higher plants. At low concentrations, it enhances growth and development; however, it is toxic at high concentrations. The development of crops with proper levels of selenium will be worth for both nutrition and Se-based therapeutics. This study aimed to investigate the morphological, physiological, and biochemical responses of the quinoa plant to 0, 2.5, 5, 10, and 20 mg/L of Na2SeO3·5H2O. Selenium at low concentrations (2.5 and 5 mg/L), quinoa plant showed a significant increase of growth parameters, relative water content, photosynthetic pigments, proline, total soluble sugars, and antioxidant enzymes activities as (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD, ascorbate peroxidase (APX), and glutathione reductase (GR)), and contents of malondialdehyde (MDA) and H2O2 were reduced. However, high concentrations (10 and 20) mg/L caused a decrease in plant growth parameters, relative water content, and photosynthetic pigments. In contrast, excess selenium increased the oxidative stress monitored by hydrogen peroxide and lipid peroxidation levels. The enzymatic antioxidant system responded to the selenium supply significantly increased. Osmolytes compounds, such as total sugars and proline, increased in selenium-treated plants. The increase in these osmolytes compounds may show a defense mechanism for the osmotic readjustment of quinoa plants to mitigate the toxicity caused by selenium. This study shows the morphological and physiological responses that must be considered for success in the sustainable cultivation of quinoa plants in environments containing excess selenium.
Collapse
Affiliation(s)
- Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Hussein Migdadi
- Department of Plant Production, King Saud University, College of Food and Agriculture Sciences, Riyadh 11461, Saudi Arabia;
- National Agricultural Research Center, Baqa 19381, Jordan
| | - Ehab El-Harty
- Department of Plant Production, King Saud University, College of Food and Agriculture Sciences, Riyadh 11461, Saudi Arabia;
| |
Collapse
|