1
|
McAfee L, Heath Z, Anderson W, Hozi M, Orr JW, Kang YA. The development of an automated microscope image tracking and analysis system. Biotechnol Prog 2024:e3490. [PMID: 38888043 DOI: 10.1002/btpr.3490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Microscopy image analysis plays a crucial role in understanding cellular behavior and uncovering important insights in various biological and medical research domains. Tracking cells within the time-lapse microscopy images is a fundamental technique that enables the study of cell dynamics, interactions, and migration. While manual cell tracking is possible, it is time-consuming and prone to subjective biases that impact results. In order to solve this issue, we sought to create an automated software solution, named cell analyzer, which is able to track cells within microscopy images with minimal input required from the user. The program of cell analyzer was written in Python utilizing the open source computer vision (OpenCV) library and featured a graphical user interface that makes it easy for users to access. The functions of all codes were verified through closeness, area, centroid, contrast, variance, and cell tracking test. Cell analyzer primarily utilizes image preprocessing and edge detection techniques to isolate cell boundaries for detection and analysis. It uniquely recorded the area, displacement, speed, size, and direction of detected cell objects and visualized the data collected automatically for fast analysis. Our cell analyzer provides an easy-to-use tool through a graphical user interface for tracking cell motion and analyzing quantitative cell images.
Collapse
Affiliation(s)
- Lillian McAfee
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, Newberg, Oregon, USA
| | - Zach Heath
- Department of Computer science, George Fox University, Newberg, Oregon, USA
| | - William Anderson
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, Newberg, Oregon, USA
| | - Marvin Hozi
- Department of Computer science, George Fox University, Newberg, Oregon, USA
| | - John Walker Orr
- Department of Computer science, George Fox University, Newberg, Oregon, USA
| | - Youngbok Abraham Kang
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, Newberg, Oregon, USA
| |
Collapse
|
2
|
Katoh TA, Fukai YT, Ishibashi T. Optical microscopic imaging, manipulation, and analysis methods for morphogenesis research. Microscopy (Oxf) 2024; 73:226-242. [PMID: 38102756 PMCID: PMC11154147 DOI: 10.1093/jmicro/dfad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/20/2023] [Accepted: 03/22/2024] [Indexed: 12/17/2023] Open
Abstract
Morphogenesis is a developmental process of organisms being shaped through complex and cooperative cellular movements. To understand the interplay between genetic programs and the resulting multicellular morphogenesis, it is essential to characterize the morphologies and dynamics at the single-cell level and to understand how physical forces serve as both signaling components and driving forces of tissue deformations. In recent years, advances in microscopy techniques have led to improvements in imaging speed, resolution and depth. Concurrently, the development of various software packages has supported large-scale, analyses of challenging images at the single-cell resolution. While these tools have enhanced our ability to examine dynamics of cells and mechanical processes during morphogenesis, their effective integration requires specialized expertise. With this background, this review provides a practical overview of those techniques. First, we introduce microscopic techniques for multicellular imaging and image analysis software tools with a focus on cell segmentation and tracking. Second, we provide an overview of cutting-edge techniques for mechanical manipulation of cells and tissues. Finally, we introduce recent findings on morphogenetic mechanisms and mechanosensations that have been achieved by effectively combining microscopy, image analysis tools and mechanical manipulation techniques.
Collapse
Affiliation(s)
- Takanobu A Katoh
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yohsuke T Fukai
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tomoki Ishibashi
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
3
|
Toscano E, Cimmino E, Pennacchio FA, Riccio P, Poli A, Liu YJ, Maiuri P, Sepe L, Paolella G. Methods and computational tools to study eukaryotic cell migration in vitro. Front Cell Dev Biol 2024; 12:1385991. [PMID: 38887515 PMCID: PMC11180820 DOI: 10.3389/fcell.2024.1385991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cellular movement is essential for many vital biological functions where it plays a pivotal role both at the single cell level, such as during division or differentiation, and at the macroscopic level within tissues, where coordinated migration is crucial for proper morphogenesis. It also has an impact on various pathological processes, one for all, cancer spreading. Cell migration is a complex phenomenon and diverse experimental methods have been developed aimed at dissecting and analysing its distinct facets independently. In parallel, corresponding analytical procedures and tools have been devised to gain deep insight and interpret experimental results. Here we review established experimental techniques designed to investigate specific aspects of cell migration and present a broad collection of historical as well as cutting-edge computational tools used in quantitative analysis of cell motion.
Collapse
Affiliation(s)
- Elvira Toscano
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Elena Cimmino
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Fabrizio A. Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Patrizia Riccio
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | | | - Yan-Jun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Giovanni Paolella
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
4
|
Németh A, Bányai GL, Dobos NK, Kós T, Gaál A, Varga Z, Buzás EI, Khamari D, Dank M, Takács I, Szász AM, Garay T. Extracellular vesicles promote migration despite BRAF inhibitor treatment in malignant melanoma cells. Cell Commun Signal 2024; 22:282. [PMID: 38778340 PMCID: PMC11110207 DOI: 10.1186/s12964-024-01660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Extracellular vesicles (EVs) constitute a vital component of intercellular communication, exerting significant influence on metastasis formation and drug resistance mechanisms. Malignant melanoma (MM) is one of the deadliest forms of skin cancers, because of its high metastatic potential and often acquired resistance to oncotherapies. The prevalence of BRAF mutations in MM underscores the importance of BRAF-targeted therapies, such as vemurafenib and dabrafenib, alone or in combination with the MEK inhibitor, trametinib. This study aimed to elucidate the involvement of EVs in MM progression and ascertain whether EV-mediated metastasis promotion persists during single agent BRAF (vemurafenib, dabrafenib), or MEK (trametinib) and combined BRAF/MEK (dabrafenib/trametinib) inhibition.Using five pairs of syngeneic melanoma cell lines, we assessed the impact of EVs - isolated from their respective supernatants - on melanoma cell proliferation and migration. Cell viability and spheroid growth assays were employed to evaluate proliferation, while migration was analyzed through mean squared displacement (MSD) and total traveled distance (TTD) measurements derived from video microscopy and single-cell tracking.Our results indicate that while EV treatments had remarkable promoting effect on cell migration, they exerted only a modest effect on cell proliferation and spheroid growth. Notably, EVs demonstrated the ability to mitigate the inhibitory effects of BRAF inhibitors, albeit they were ineffective against a MEK inhibitor and the combination of BRAF/MEK inhibitors. In summary, our findings contribute to the understanding of the intricate role played by EVs in tumor progression, metastasis, and drug resistance in MM.
Collapse
Affiliation(s)
- Afrodité Németh
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gréta L Bányai
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Nikolett K Dobos
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Tamás Kós
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Anikó Gaál
- Institute of Materials and Environmental Chemistry; Biological Nanochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry; Biological Nanochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Delaram Khamari
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Magdolna Dank
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - A Marcell Szász
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - Tamás Garay
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Joshi AS, Bapat MV, Singh P, Mijakovic I. Viridibacillus culture derived silver nanoparticles exert potent anticancer action in 2D and 3D models of lung cancer via mitochondrial depolarization-mediated apoptosis. Mater Today Bio 2024; 25:100997. [PMID: 38379934 PMCID: PMC10876681 DOI: 10.1016/j.mtbio.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Lung cancer is one of the most commonly occurring cancer types that accounts for almost 2 million cases per year. Its resistance to anticancer drugs, failure of new molecules in clinical trials, severe side-effects of current treatments, and its recurrence limit the success of anticancer therapies. Nanotherapeutic agents offer several advantages over conventional anticancer therapies, including improved retention in tumors, specificity, and anticancer effects at lower concentrations, hence reducing the side-effects. Here, we have explored the anticancer activity of silver nanoparticles synthesized in Viridibacillus sp. enriched culture medium for the first time. Such green nanoparticles, synthesized by biological systems, are superior to chemically synthesized ones in terms of their environmental footprint and production cost, and have one crucial advantage of excellent stability owing to their biological corona. To assess anticancer activity of these nanoparticles, we used conventional 2D cultured A549 cells as well as 3D spheroids of A549 cells. In both models of lung cancer, our silver nanoparticles diminished cell proliferation, arrested DNA synthesis, and showed a dose dependent cytotoxic effect. The nanoparticles damaged the DNA and mitochondrial structures in both A549 cells and A549 spheroids, leading to mitochondrial depolarization and increased cell permeability. Low lethal median doses (LD50) for 2D cultured A549 cells (1 μg/ml) and for A549 spheroids (13 μg/ml) suggest that our nanoparticles are potent anticancer agents. We also developed in vitro tumor progression model and in vitro tumor size model using 3D spheroids to test anticancer potential of our nanoparticles which otherwise would require longer experimental duration along with large number of animals and trained personnel. In these models, our nanoparticles showed strong dose dependent anticancer activity. In case of in vitro tumor progression model, the A549 cells failed to form tight spheroidal mass and showed increased dead cell fraction since day 1 as compared to control. On the other hand, in case of in vitro tumor size model, the 4 and 8 μg/ml nanoparticle treatment led to reduction in spheroid size from 615 ± 53 μm to 440 ± 45 μm and 612 ± 44 μm to 368 ± 62 μm respectively, within the time span of 3 days post treatment. We believe that use of such novel experimental models offers excellent and fast alternative to in vivo studies, and to the best of our knowledge, this is the first report that gives proof-of-concept for use of such novel in vitro cancer models to test anticancer agents such as Viridibacilli culture derived silver nanoparticles. Based on our results, we propose that these nanoparticles offer an interesting alternative for anticancer therapies, especially if they can be combined with classical anticancer drugs.
Collapse
Affiliation(s)
- Abhayraj S. Joshi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mugdha V. Bapat
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Sweden
| |
Collapse
|
6
|
Ozulumba T, Zatorski JM, Arneja A, Hammel JH, Braciale TJ, Luckey CJ, Munson JM, Pompano RR. Mitigating reactive oxygen species production and increasing gel porosity improves lymphocyte motility and fibroblast spreading in photocrosslinked gelatin-thiol hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.574282. [PMID: 38293038 PMCID: PMC10827049 DOI: 10.1101/2024.01.14.574282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
On-chip 3D culture systems that incorporate immune cells such as lymphocytes and stromal cells are needed to model immune organs in engineered systems such as organs-on-chip. Photocrosslinking is a useful tool for creating such immune-competent hydrogel cultures with spatial cell organization. However, loss of viability and motility in photocrosslinked gels can limit its utility, especially when working with fragile primary cells. We hypothesized that optimizing photoexposure-induced ROS production, hydrogel porosity or a combination of both factors was necessary to sustain cell viability and motility during culture in photocrosslinked gelatin-thiol (GelSH) hydrogels. Jurkat T cells, primary human CD4+ T cells and human lymphatic fibroblasts were selected as representative lymphoid immune cells to test this hypothesis. Direct exposure of these cells to 385 nm light and LAP photoinitiator dramatically increased ROS levels. Pretreatment with an antioxidant, ascorbic acid (AA), protected the cells from light + LAP-induced ROS and was non-toxic at optimized doses. Furthermore, scanning electron microscopy showed that native GelSH hydrogels had limited porosity, and that adding collagen to GelSH precursor before crosslinking markedly increased gel porosity. Next, we tested the impact of AA pretreatment and increasing gel porosity, alone or in combination, on cell viability and function in 3D GelSH hydrogel cultures. Increasing gel porosity, rather than AA pretreatment, was more critical for rescuing viability of Jurkat T cells and spreading of human lymphatic fibroblasts in GelSH-based gels, but both factors improved the motility of primary human CD4+ T cells. Increased porosity enabled formation of spatially organized co-cultures of primary human CD4+ T cells and human lymphatic fibroblasts in photo-crosslinked gels in a multi-lane microfluidic chip, towards modeling the lymphoid organ microenvironment. Some optimization is still needed to improve homogeneity between regions on the chip. These findings will enable researchers utilizing photocrosslinking methods to develop immunocompetent 3D culture models that support viability and function of sensitive lymphoid cells.
Collapse
|
7
|
Ouderkirk S, Sedley A, Ong M, Shifflet MR, Harkrider QC, Wright NT, Miller CJ. A Perspective on Developing Modeling and Image Analysis Tools to Investigate Mechanosensing Proteins. Integr Comp Biol 2023; 63:1532-1542. [PMID: 37558388 PMCID: PMC10755202 DOI: 10.1093/icb/icad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
The shift of funding organizations to prioritize interdisciplinary work points to the need for workflow models that better accommodate interdisciplinary studies. Most scientists are trained in a specific field and are often unaware of the kind of insights that other disciplines could contribute to solving various problems. In this paper, we present a perspective on how we developed an experimental pipeline between a microscopy and image analysis/bioengineering lab. Specifically, we connected microscopy observations about a putative mechanosensing protein, obscurin, to image analysis techniques that quantify cell changes. While the individual methods used are well established (fluorescence microscopy; ImageJ WEKA and mTrack2 programs; MATLAB), there are no existing best practices for how to integrate these techniques into a cohesive, interdisciplinary narrative. Here, we describe a broadly applicable workflow of how microscopists can more easily quantify cell properties (e.g., perimeter, velocity) from microscopy videos of eukaryotic (MDCK) adherent cells. Additionally, we give examples of how these foundational measurements can create more complex, customizable cell mechanics tools and models.
Collapse
Affiliation(s)
- Stephanie Ouderkirk
- Department of Chemistry, James Madison University, Harrisonburg, VA 22807, USA
| | - Alex Sedley
- Department of Engineering, James Madison University, Harrisonburg, VA 22807, USA
| | - Mason Ong
- Department of Engineering, James Madison University, Harrisonburg, VA 22807, USA
| | - Mary Ruth Shifflet
- Department of Chemistry, Bridgewater College, Bridgewater, VA 22812, USA
| | - Quinn C Harkrider
- Department of Chemistry, James Madison University, Harrisonburg, VA 22807, USA
| | - Nathan T Wright
- Department of Chemistry, James Madison University, Harrisonburg, VA 22807, USA
| | - Callie J Miller
- Department of Engineering, James Madison University, Harrisonburg, VA 22807, USA
| |
Collapse
|
8
|
Kuliesiute U, Joseph K, Straehle J, Madapusi Ravi V, Kueckelhaus J, Kada Benotmane J, Zhang J, Vlachos A, Beck J, Schnell O, Neniskyte U, Heiland DH. Sialic acid metabolism orchestrates transcellular connectivity and signaling in glioblastoma. Neuro Oncol 2023; 25:1963-1975. [PMID: 37288604 PMCID: PMC10628944 DOI: 10.1093/neuonc/noad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND In glioblastoma (GBM), the effects of altered glycocalyx are largely unexplored. The terminal moiety of cell coating glycans, sialic acid, is of paramount importance for cell-cell contacts. However, sialic acid turnover in gliomas and its impact on tumor networks remain unknown. METHODS We streamlined an experimental setup using organotypic human brain slice cultures as a framework for exploring brain glycobiology, including metabolic labeling of sialic acid moieties and quantification of glycocalyx changes. By live, 2-photon and high-resolution microscopy we have examined morphological and functional effects of altered sialic acid metabolism in GBM. By calcium imaging we investigated the effects of the altered glycocalyx on a functional level of GBM networks. RESULTS The visualization and quantitative analysis of newly synthesized sialic acids revealed a high rate of de novo sialylation in GBM cells. Sialyltrasferases and sialidases were highly expressed in GBM, indicating that significant turnover of sialic acids is involved in GBM pathology. Inhibition of either sialic acid biosynthesis or desialylation affected the pattern of tumor growth and lead to the alterations in the connectivity of glioblastoma cells network. CONCLUSIONS Our results indicate that sialic acid is essential for the establishment of GBM tumor and its cellular network. They highlight the importance of sialic acid for glioblastoma pathology and suggest that dynamics of sialylation have the potential to be targeted therapeutically.
Collapse
Affiliation(s)
- Ugne Kuliesiute
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kevin Joseph
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vidhya Madapusi Ravi
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Jan Kueckelhaus
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Jasim Kada Benotmane
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Junyi Zhang
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juergen Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner siteFreiburg
| |
Collapse
|
9
|
Joshi AS, Madhusudanan M, Mijakovic I. 3D printed inserts for reproducible high throughput screening of cell migration. Front Cell Dev Biol 2023; 11:1256250. [PMID: 37711850 PMCID: PMC10498783 DOI: 10.3389/fcell.2023.1256250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Cell migration is a fundamental and complex phenomenon that occurs in normal physiology and in diseases like cancer. Hence, understanding cell migration is very important in the fields of developmental biology and biomedical sciences. Cell migration occurs in 3 dimensions (3D) and involves an interplay of migrating cell(s), neighboring cells, extracellular matrix, and signaling molecules. To understand this phenomenon, most of the currently available techniques still rely on 2-dimensional (2D) cell migration assay, also known as the scratch assay or the wound healing assay. These methods suffer from limited reproducibility in creating a cell-free region (a scratch or a wound). Mechanical/heat related stress to cells is another issue which hampers the applicability of these methods. To tackle these problems, we developed an alternative method based on 3D printed biocompatible cell inserts, for quantifying cell migration in 24-well plates. The inserts were successfully validated via a high throughput assay for following migration of lung cancer cell line (A549 cell line) in the presence of standard cell migration promoters and inhibitors. We also developed an accompanying image analysis pipeline which demonstrated that our method outperforms the state-of-the-art methodologies for assessing the cell migration in terms of reproducibility and simplicity.
Collapse
Affiliation(s)
- Abhayraj S. Joshi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mukil Madhusudanan
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
10
|
Leal J, Shaner S, Jedrusik N, Savelyeva A, Asplund M. Electrotaxis evokes directional separation of co-cultured keratinocytes and fibroblasts. Sci Rep 2023; 13:11444. [PMID: 37454232 PMCID: PMC10349865 DOI: 10.1038/s41598-023-38664-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Bioelectric communication plays a significant role in several cellular processes and biological mechanisms, such as division, differentiation, migration, cancer metastasis, and wound healing. Ion flow across cellular walls leads to potential gradients and subsequent formation of constant or time-varying electric fields(EFs), which regulate cellular processes. An EF is natively generated towards the wound center during epithelial wound healing, aiming to align and guide cell migration, particularly of macrophages, fibroblasts, and keratinocytes. While this phenomenon, known as electrotaxis or galvanotaxis, has been extensively investigated across many cell types, it is typically explored one cell type at a time, which does not accurately represent cellular interactions during complex biological processes. Here we show the co-cultured electrotaxis of epidermal keratinocytes and dermal fibroblasts with a salt-bridgeless microfluidic approach for the first time. The electrotactic response of these cells was first assessed in mono-culture to establish a baseline, resulting in the characteristic cathodic migration for keratinocytes and anodic for fibroblasts. Both cell types retained their electrotactic properties in co-culture leading to clear cellular partition even in the presence of cellular collisions. The methods leveraged here pave the way for future co-culture electrotaxis experiments where the concurrent influence of cell types can be thoroughly investigated.
Collapse
Affiliation(s)
- José Leal
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
| | - Sebastian Shaner
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Nicole Jedrusik
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Anna Savelyeva
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden.
- Division of Nursing and Medical Technology, Luleå University of Technology, 97187, Luleå, Sweden.
| |
Collapse
|
11
|
Ráduly Z, Szabó L, Dienes B, Szentesi P, Bana ÁV, Hajdú T, Kókai E, Hegedűs C, Csernoch L, Gönczi M. Migration of Myogenic Cells Is Highly Influenced by Cytoskeletal Septin7. Cells 2023; 12:1825. [PMID: 37508490 PMCID: PMC10378681 DOI: 10.3390/cells12141825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Septin7 as a unique member of the GTP binding protein family, is widely expressed in the eukaryotic cells and considered to be essential in the formation of hetero-oligomeric septin complexes. As a cytoskeletal component, Septin7 is involved in many important cellular processes. However, its contribution in striated muscle physiology is poorly described. In skeletal muscle, a highly orchestrated process of migration is crucial in the development of functional fibers and in regeneration. Here, we describe the pronounced appearance of Septin7 filaments and a continuous change of Septin7 protein architecture during the migration of myogenic cells. In Septin7 knockdown C2C12 cultures, the basic parameters of migration are significantly different, and the intracellular calcium concentration change in migrating cells are lower compared to that of scrambled cultures. Using a plant cytokinin, forchlorfenuron, to dampen septin dynamics, the altered behavior of the migrating cells is described, where Septin7-depleted cells are more resistant to the treatment. These results indicate the functional relevance of Septin7 in the migration of myoblasts, implying its contribution to muscle myogenesis and regeneration.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Viktória Bana
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
12
|
Zargari A, Lodewijk GA, Mashhadi N, Cook N, Neudorf CW, Araghbidikashani K, Hays R, Kozuki S, Rubio S, Hrabeta-Robinson E, Brooks A, Hinck L, Shariati SA. DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy. CELL REPORTS METHODS 2023; 3:100500. [PMID: 37426758 PMCID: PMC10326378 DOI: 10.1016/j.crmeth.2023.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/01/2023] [Accepted: 05/17/2023] [Indexed: 07/11/2023]
Abstract
Time-lapse microscopy is the only method that can directly capture the dynamics and heterogeneity of fundamental cellular processes at the single-cell level with high temporal resolution. Successful application of single-cell time-lapse microscopy requires automated segmentation and tracking of hundreds of individual cells over several time points. However, segmentation and tracking of single cells remain challenging for the analysis of time-lapse microscopy images, in particular for widely available and non-toxic imaging modalities such as phase-contrast imaging. This work presents a versatile and trainable deep-learning model, termed DeepSea, that allows for both segmentation and tracking of single cells in sequences of phase-contrast live microscopy images with higher precision than existing models. We showcase the application of DeepSea by analyzing cell size regulation in embryonic stem cells.
Collapse
Affiliation(s)
- Abolfazl Zargari
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Gerrald A. Lodewijk
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Najmeh Mashhadi
- Department of Computer Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nathan Cook
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Celine W. Neudorf
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Robert Hays
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Sayaka Kozuki
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Stefany Rubio
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Eva Hrabeta-Robinson
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Angela Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - S. Ali Shariati
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
13
|
Shim C, Kim W, Nguyen TTD, Kim DY, Choi YS, Chung YD. CellTrackVis: interactive browser-based visualization for analyzing cell trajectories and lineages. BMC Bioinformatics 2023; 24:124. [PMID: 36991341 DOI: 10.1186/s12859-023-05218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Automatic cell tracking methods enable practitioners to analyze cell behaviors efficiently. Notwithstanding the continuous development of relevant software, user-friendly visualization tools have room for further improvements. Typical visualization mostly comes with main cell tracking tools as a simple plug-in, or relies on specific software/platforms. Although some tools are standalone, limited visual interactivity is provided, or otherwise cell tracking outputs are partially visualized. RESULTS This paper proposes a self-reliant visualization system, CellTrackVis, to support quick and easy analysis of cell behaviors. Interconnected views help users discover meaningful patterns of cell motions and divisions in common web browsers. Specifically, cell trajectory, lineage, and quantified information are respectively visualized in a coordinated interface. In particular, immediate interactions among modules enable the study of cell tracking outputs to be more effective, and also each component is highly customizable for various biological tasks. CONCLUSIONS CellTrackVis is a standalone browser-based visualization tool. Source codes and data sets are freely available at http://github.com/scbeom/celltrackvis with the tutorial at http://scbeom.github.io/ctv_tutorial .
Collapse
Affiliation(s)
- Changbeom Shim
- School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Australia
| | - Wooil Kim
- Data Intelligence Team, Samsung Research, Seoul, South Korea
| | - Tran Thien Dat Nguyen
- School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Australia
| | - Du Yong Kim
- School of Engineering, RMIT University, Melbourne, Australia
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Perth, Australia
| | - Yon Dohn Chung
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
14
|
Shaner S, Savelyeva A, Kvartuh A, Jedrusik N, Matter L, Leal J, Asplund M. Bioelectronic microfluidic wound healing: a platform for investigating direct current stimulation of injured cell collectives. LAB ON A CHIP 2023; 23:1531-1546. [PMID: 36723025 PMCID: PMC10013350 DOI: 10.1039/d2lc01045c] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Upon cutaneous injury, the human body naturally forms an electric field (EF) that acts as a guidance cue for relevant cellular and tissue repair and reorganization. However, the direct current (DC) flow imparted by this EF can be impacted by a variety of diseases. This work delves into the impact of DC stimulation on both healthy and diabetic in vitro wound healing models of human keratinocytes, the most prevalent cell type of the skin. The culmination of non-metal electrode materials and prudent microfluidic design allowed us to create a compact bioelectronic platform to study the effects of different sustained (12 hours galvanostatic DC) EF configurations on wound closure dynamics. Specifically, we compared if electrotactically closing a wound's gap from one wound edge (i.e., uni-directional EF) is as effective as compared to alternatingly polarizing both the wound's edges (i.e., pseudo-converging EF) as both of these spatial stimulation strategies are fundamental to the eventual translational electrode design and strategy. We found that uni-directional electric guidance cues were superior in group keratinocyte healing dynamics by enhancing the wound closure rate nearly three-fold for both healthy and diabetic-like keratinocyte collectives, compared to their non-stimulated respective controls. The motility-inhibited and diabetic-like keratinocytes regained wound closure rates with uni-directional electrical stimulation (increase from 1.0 to 2.8% h-1) comparable to their healthy non-stimulated keratinocyte counterparts (3.5% h-1). Our results bring hope that electrical stimulation delivered in a controlled manner can be a viable pathway to accelerate wound repair, and also by providing a baseline for other researchers trying to find an optimal electrode blueprint for in vivo DC stimulation.
Collapse
Affiliation(s)
- Sebastian Shaner
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Anna Savelyeva
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Anja Kvartuh
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
| | - Nicole Jedrusik
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Lukas Matter
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
| | - José Leal
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Maria Asplund
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstr. 19, 79104, Freiburg, Germany
- Division of Nursing and Medical Technology, Luleå University of Technology, 971 87, Luleå, Sweden
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, 412 58, Gothenburg, Sweden.
| |
Collapse
|
15
|
Solbu AA, Caballero D, Damigos S, Kundu SC, Reis RL, Halaas Ø, Chahal AS, Strand BL. Assessing cell migration in hydrogels: An overview of relevant materials and methods. Mater Today Bio 2023; 18:100537. [PMID: 36659998 PMCID: PMC9842866 DOI: 10.1016/j.mtbio.2022.100537] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022] Open
Abstract
Cell migration is essential in numerous living processes, including embryonic development, wound healing, immune responses, and cancer metastasis. From individual cells to collectively migrating epithelial sheets, the locomotion of cells is tightly regulated by multiple structural, chemical, and biological factors. However, the high complexity of this process limits the understanding of the influence of each factor. Recent advances in materials science, tissue engineering, and microtechnology have expanded the toolbox and allowed the development of biomimetic in vitro assays to investigate the mechanisms of cell migration. Particularly, three-dimensional (3D) hydrogels have demonstrated a superior ability to mimic the extracellular environment. They are therefore well suited to studying cell migration in a physiologically relevant and more straightforward manner than in vivo approaches. A myriad of synthetic and naturally derived hydrogels with heterogeneous characteristics and functional properties have been reported. The extensive portfolio of available hydrogels with different mechanical and biological properties can trigger distinct biological responses in cells affecting their locomotion dynamics in 3D. Herein, we describe the most relevant hydrogels and their associated physico-chemical characteristics typically employed to study cell migration, including established cell migration assays and tracking methods. We aim to give the reader insight into existing literature and practical details necessary for performing cell migration studies in 3D environments.
Collapse
Affiliation(s)
- Anita Akbarzadeh Solbu
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - David Caballero
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Spyridon Damigos
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Subhas C. Kundu
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Øyvind Halaas
- Department of Clinical and Molecular Medicine, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Aman S. Chahal
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Berit L. Strand
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
16
|
Vondra S, Höbler AL, Lackner AI, Raffetseder J, Mihalic ZN, Vogel A, Saleh L, Kunihs V, Haslinger P, Wahrmann M, Husslein H, Oberle R, Kargl J, Haider S, Latos P, Schabbauer G, Knöfler M, Ernerudh J, Pollheimer J. The human placenta shapes the phenotype of decidual macrophages. Cell Rep 2023; 42:111977. [PMID: 36640334 DOI: 10.1016/j.celrep.2022.111977] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/07/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
During human pregnancy, placenta-derived extravillous trophoblasts (EVTs) invade the decidua and communicate with maternal immune cells. The decidua distinguishes into basalis (decB) and parietalis (decP). The latter remains unaffected by EVT invasion. By defining a specific gating strategy, we report the accumulation of macrophages in decB. We describe a decidua basalis-associated macrophage (decBAM) population with a differential transcriptome and secretome compared with decidua parietalis-associated macrophages (decPAMs). decBAMs are CD11chi and efficient inducers of Tregs, proliferate in situ, and secrete high levels of CXCL1, CXCL5, M-CSF, and IL-10. In contrast, decPAMs exert a dendritic cell-like, motile phenotype characterized by induced expression of HLA class II molecules, enhanced phagocytosis, and the ability to activate T cells. Strikingly, EVT-conditioned media convert decPAMs into a decBAM phenotype. These findings assign distinct macrophage phenotypes to decidual areas depending on placentation and further highlight a critical role for EVTs in the induction of decB-associated macrophage polarization.
Collapse
Affiliation(s)
- Sigrid Vondra
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Anna-Lena Höbler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Andreas Ian Lackner
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Johanna Raffetseder
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Zala Nikita Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Andrea Vogel
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Leila Saleh
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria
| | - Victoria Kunihs
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria
| | - Peter Haslinger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Markus Wahrmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Heinrich Husslein
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Raimund Oberle
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sandra Haider
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Paulina Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Martin Knöfler
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Qureshi MH, Ozlu N, Bayraktar H. Adaptive tracking algorithm for trajectory analysis of cells and layer-by-layer assessment of motility dynamics. Comput Biol Med 2022; 150:106193. [PMID: 37859286 DOI: 10.1016/j.compbiomed.2022.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2022]
Abstract
Tracking biological objects such as cells or subcellular components imaged with time-lapse microscopy enables us to understand the molecular principles about the dynamics of cell behaviors. However, automatic object detection, segmentation and extracting trajectories remain as a rate-limiting step due to intrinsic challenges of video processing. This paper presents an adaptive tracking algorithm (Adtari) that automatically finds the optimum search radius and cell linkages to determine trajectories in consecutive frames. A critical assumption in most tracking studies is that displacement remains unchanged throughout the movie and cells in a few frames are usually analyzed to determine its magnitude. Tracking errors and inaccurate association of cells may occur if the user does not correctly evaluate the value or prior knowledge is not present on cell movement. The key novelty of our method is that minimum intercellular distance and maximum displacement of cells between frames are dynamically computed and used to determine the threshold distance. Since the space between cells is highly variable in a given frame, our software recursively alters the magnitude to determine all plausible matches in the trajectory analysis. Our method therefore eliminates a major preprocessing step where a constant distance was used to determine the neighbor cells in tracking methods. Cells having multiple overlaps and splitting events were further evaluated by using the shape attributes including perimeter, area, ellipticity and distance. The features were applied to determine the closest matches by minimizing the difference in their magnitudes. Finally, reporting section of our software were used to generate instant maps by overlaying cell features and trajectories. Adtari was validated by using videos with variable signal-to-noise, contrast ratio and cell density. We compared the adaptive tracking with constant distance and other methods to evaluate performance and its efficiency. Our algorithm yields reduced mismatch ratio, increased ratio of whole cell track, higher frame tracking efficiency and allows layer-by-layer assessment of motility to characterize single-cells. Adaptive tracking provides a reliable, accurate, time efficient and user-friendly open source software that is well suited for analysis of 2D fluorescence microscopy video datasets.
Collapse
Affiliation(s)
- Mohammad Haroon Qureshi
- Department of Molecular Biology and Genetics, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey; Center for Translational Research, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Halil Bayraktar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Sariyer, 34467, Istanbul, Turkey.
| |
Collapse
|
18
|
Ding N, Jiang H, Thapa P, Hao Y, Alshahrani A, Allison D, Izumi T, Rangnekar VM, Liu X, Wei Q. Peroxiredoxin IV plays a critical role in cancer cell growth and radioresistance through the activation of the Akt/GSK3 signaling pathways. J Biol Chem 2022; 298:102123. [PMID: 35697073 PMCID: PMC9257407 DOI: 10.1016/j.jbc.2022.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
High levels of redox enzymes have been commonly observed in various types of human cancer, although whether and how the enzymes contribute to cancer malignancy and therapeutic resistance have yet to be understood. Peroxiredoxin IV (Prx4) is an antioxidant with bona fide peroxidase and molecular chaperone functions. Here, we report that Prx4 is highly expressed in prostate cancer patient specimens, as well as established prostate cancer cell lines, and that its levels can be further stimulated through the activation of androgen receptor signaling. We used lentivirus-mediated shRNA knockdown and CRISPR-Cas9 based KO techniques to establish Prx4-depleted prostate cancer cells, which showed delayed cell cycle progression, reduced rate of cell proliferation, migration, and invasion compared to control cells. In addition, we used proteome profiler phosphokinase arrays to identify signaling changes in Prx4-depleted cells; we found that loss of Prx4 results in insufficient phosphorylation of both Akt and its downstream kinase GSK3α/β. Moreover, we demonstrate that Prx4-depleted cells are more sensitive to ionizing radiation as they display compromised ability to scavenge reactive oxygen species and increased accumulation of DNA damage. In mouse xenograft models, we show depletion of Prx4 leads to significant suppression of tumor growth, and tumors formed by Prx4-depleted cells respond more effectively to radiation therapy. Our findings suggest that increased levels of Prx4 contribute to the malignancy and radioresistance of prostate cancer through the activation of Akt/GSK3 signaling pathways. Therefore, strategies targeting Prx4 may be utilized to potentially inhibit tumor growth and overcome radioresistance in prostate cancer.
Collapse
Affiliation(s)
- Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Derek Allison
- Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Vivek M Rangnekar
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
19
|
Ershov D, Phan MS, Pylvänäinen JW, Rigaud SU, Le Blanc L, Charles-Orszag A, Conway JRW, Laine RF, Roy NH, Bonazzi D, Duménil G, Jacquemet G, Tinevez JY. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat Methods 2022; 19:829-832. [PMID: 35654950 DOI: 10.1038/s41592-022-01507-1] [Citation(s) in RCA: 272] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022]
Abstract
TrackMate is an automated tracking software used to analyze bioimages and is distributed as a Fiji plugin. Here, we introduce a new version of TrackMate. TrackMate 7 is built to address the broad spectrum of modern challenges researchers face by integrating state-of-the-art segmentation algorithms into tracking pipelines. We illustrate qualitatively and quantitatively that these new capabilities function effectively across a wide range of bio-imaging experiments.
Collapse
Affiliation(s)
- Dmitry Ershov
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France.,Institut Pasteur, Université de Paris Cité, Biostatistics and Bioinformatic Hub, Paris, France
| | - Minh-Son Phan
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France
| | - Joanna W Pylvänäinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland
| | - Stéphane U Rigaud
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France
| | - Laure Le Blanc
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France
| | - Arthur Charles-Orszag
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France
| | - James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Romain F Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.,The Francis Crick Institute, London, UK.,Micrographia Bio, Translation and Innovation Hub, London, UK
| | - Nathan H Roy
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Daria Bonazzi
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France
| | - Guillaume Duménil
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland. .,Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland. .,Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Jean-Yves Tinevez
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France.
| |
Collapse
|
20
|
Gwatimba A, Rosenow T, Stick SM, Kicic A, Iosifidis T, Karpievitch YV. AI-Driven Cell Tracking to Enable High-Throughput Drug Screening Targeting Airway Epithelial Repair for Children with Asthma. J Pers Med 2022; 12:jpm12050809. [PMID: 35629232 PMCID: PMC9146422 DOI: 10.3390/jpm12050809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The airway epithelium of children with asthma is characterized by aberrant repair that may be therapeutically modifiable. The development of epithelial-targeting therapeutics that enhance airway repair could provide a novel treatment avenue for childhood asthma. Drug discovery efforts utilizing high-throughput live cell imaging of patient-derived airway epithelial culture-based wound repair assays can be used to identify compounds that modulate airway repair in childhood asthma. Manual cell tracking has been used to determine cell trajectories and wound closure rates, but is time consuming, subject to bias, and infeasible for high-throughput experiments. We therefore developed software, EPIC, that automatically tracks low-resolution low-framerate cells using artificial intelligence, analyzes high-throughput drug screening experiments and produces multiple wound repair metrics and publication-ready figures. Additionally, unlike available cell trackers that perform cell segmentation, EPIC tracks cells using bounding boxes and thus has simpler and faster training data generation requirements for researchers working with other cell types. EPIC outperformed publicly available software in our wound repair datasets by achieving human-level cell tracking accuracy in a fraction of the time. We also showed that EPIC is not limited to airway epithelial repair for children with asthma but can be applied in other cellular contexts by outperforming the same software in the Cell Tracking with Mitosis Detection Challenge (CTMC) dataset. The CTMC is the only established cell tracking benchmark dataset that is designed for cell trackers utilizing bounding boxes. We expect our open-source and easy-to-use software to enable high-throughput drug screening targeting airway epithelial repair for children with asthma.
Collapse
Affiliation(s)
- Alphons Gwatimba
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- School of Computer Science and Software Engineering, University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence:
| | - Tim Rosenow
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Nedlands, WA 6009, Australia
| | - Stephen M. Stick
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- Division of Paediatrics, Medical School, University of Western Australia, Nedlands, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- Division of Paediatrics, Medical School, University of Western Australia, Nedlands, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, University of Western Australia, Nedlands, WA 6009, Australia
- School of Population Health, Curtin University, Bentley, WA 6102, Australia
| | - Thomas Iosifidis
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, University of Western Australia, Nedlands, WA 6009, Australia
- School of Population Health, Curtin University, Bentley, WA 6102, Australia
| | - Yuliya V. Karpievitch
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
21
|
HDAC Inhibition with Valproate Improves Direct Cytotoxicity of Monocytes against Mesothelioma Tumor Cells. Cancers (Basel) 2022; 14:cancers14092164. [PMID: 35565292 PMCID: PMC9100202 DOI: 10.3390/cancers14092164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Tumor-associated macrophages and monocyte myeloid-derived immunosuppressive cells are associated with bad prognosis in malignant pleural mesothelioma (MPM). This study shows that peripheral blood monocytes can, nevertheless, be cytotoxic for MPM tumor cells. This cytotoxic activity that involves direct cell-to-cell contact can be improved with a lysine deacetylase inhibitor (VPA), opening new prospects for further improvement of still unsatisfactory MPM therapies. Abstract The composition of the tumor microenvironment (TME) mediates the outcome of chemo- and immunotherapies in malignant pleural mesothelioma (MPM). Tumor-associated macrophages (TAMs) and monocyte myeloid-derived immunosuppressive cells (M-MDSCs) constitute a major fraction of the TME. As central cells of the innate immune system, monocytes exert well-characterized functions of phagocytosis, cytokine production, and antibody-dependent cell-mediated cytotoxicity (ADCC). The objective of this study was to evaluate the ability of monocytes to exert a direct cytotoxicity by cell-to-cell contact with MPM cells. The experimental model is based on cocultures between human blood-derived monocytes sorted by negative selection and mesothelioma cell lines. Data show (i) that blood-derived human monocytes induce tumor cell death by direct cell-to-cell contact, (ii) that VPA is a pharmacological enhancer of this cytotoxic activity, (iii) that VPA increases monocyte migration and their aggregation with MPM cells, and (iv) that the molecular mechanisms behind VPA modulation of monocytes involve a downregulation of the membrane receptors associated with the M2 phenotype, i.e., CD163, CD206, and CD209. These conclusions, thus, broaden our understanding about the molecular mechanisms involved in immunosurveillance of the tumor microenvironment and open new prospects for further improvement of still unsatisfactory MPM therapies
Collapse
|
22
|
Pereiro X, Beriain S, Rodriguez L, Roiz-Valle D, Ruzafa N, Vecino E. Characteristics of Whale Müller Glia in Primary and Immortalized Cultures. Front Neurosci 2022; 16:854278. [PMID: 35360150 PMCID: PMC8964101 DOI: 10.3389/fnins.2022.854278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Müller cells are the principal glial cells in the retina and they assume many of the functions carried out by astrocytes, oligodendrocytes and ependymal cells in other regions of the central nervous system. Müller cells express growth factors, neurotransmitter transporters and antioxidant agents that could fulfill important roles in preventing excitotoxic damage to retinal neurons. Vertebrate Müller cells are well-defined cells, characterized by a common set of features throughout the phylum. Nevertheless, several major differences have been observed among the Müller cells in distinct vertebrates, such as neurogenesis, the capacity to reprogram fish Müller glia to neurons. Here, the Müller glia of the largest adult mammal in the world, the whale, have been analyzed, and given the difficulties in obtaining cetacean cells for study, these whale glia were analyzed both in primary cultures and as immortalized whale Müller cells. After isolating the retina from the eye of a beached sei whale (Balaenoptera borealis), primary Müller cell cultures were established and once the cultures reached confluence, half of the cultures were immortalized with the simian virus 40 (SV40) large T-antigen commonly used to immortalize human cell lines. The primary cell cultures were grown until cells reached senescence. Expression of the principal molecular markers of Müller cells (GFAP, Vimentin and Glutamine synthetase) was studied in both primary and immortalized cells at each culture passage. Proliferation kinetics of the cells were analyzed by time-lapse microscopy: the time between divisions, the time that cells take to divide, and the proportion of dividing cells in the same field. The karyotypes of the primary and immortalized whale Müller cells were also characterized. Our results shown that W21M proliferate more rapidly and they have a stable karyotype. W21M cells display a heterogeneous cell morphology, less motility and a distinctive expression of some typical molecular markers of Müller cells, with an increase in dedifferentiation markers like α-SMA and β-III tubulin, while they preserve their GS expression depending on the culture passage. Here we also discuss the possible influence of the animal's age and size on these cells, and on their senescence.
Collapse
Affiliation(s)
- Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Sandra Beriain
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Lara Rodriguez
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - David Roiz-Valle
- Department of Biochemistry and Molecular Biology, University Institute of Oncology (IUOPA), University of Oviedo, Oviedo, Spain
| | - Noelia Ruzafa
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| |
Collapse
|
23
|
Establishing trajectories of moving objects without identities: The intricacies of cell tracking and a solution. INFORM SYST 2022. [DOI: 10.1016/j.is.2021.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Jang DG, Kwon KY, Song EK, Park TJ. Integrin β-like 1 protein (ITGBL1) promotes cell migration by preferentially inhibiting integrin-ECM binding at the trailing edge. Genes Genomics 2022; 44:405-413. [PMID: 35066808 PMCID: PMC8921176 DOI: 10.1007/s13258-021-01204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Background Cell migration is a basic cellular behavior involved in multiple phenomena in the human body such as embryonic development, wound healing, immune reactions, and cancer metastasis. For proper cell migration, integrin and the ECM binding complex must be disassembled for the retraction of trailing edges. Objective Integrin must be differentially regulated at leading edges or trailing edges during cell migration. Previously, we showed that ITGBL1 was a secreted protein and inhibits integrin activity. Therefore, we examined the function of ITGBL1 on the retraction of trailing edges during cell migration. Methods To examined the function of ITGBL1 on cell migration, we knocked-down or overexpressed ITGBL1 by using ITGBL1 siRNA or ITGBL1 plasmid DNA in human chondrocytes or ATDC5 cells. We then characterized cellular migration and directionality by performing wound healing assays. Also, to analyze leading-edge formation and trailing-edge retraction, we labeled cell membranes with membrane-GFP and performed live imaging of migrating cells and. Finally, we specifically detected active forms of integrin, FAK and Vinculin using specific antibodies upon ITGBL1 depletion or overexpression. Result In this study, ITGBL1 preferentially inhibited integrin activity at the trailing edges to promote cell migration. ITGBL1-depleted cells showed increased focal adhesions at the membranous traces of trailing edges to prevent the retraction of trailing edges. In contrast, overexpression of ITGBL1 upregulated directional cell migration by promoting focal adhesion disassembly at the trailing edges. Conclusion ITGBL1 facilitates directional cell migration by promoting disassembly of the trailing edge focal adhesion complex. Supplementary Information The online version contains supplementary material available at 10.1007/s13258-021-01204-x.
Collapse
Affiliation(s)
- Dong Gil Jang
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Keun Yeong Kwon
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Eun Kyung Song
- School of Medicine, Stanford University, Palo Alto, CA, 94305, USA.
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
25
|
Lee G, Cho Y, Kim EH, Choi JM, Chae SS, Lee MG, Kim J, Choi WJ, Kwon J, Han EH, Kim SH, Park S, Chung YH, Chi SG, Jung BH, Shin JH, Lee JO. Pillar-Based Mechanical Induction of an Aggressive Tumorigenic Lung Cancer Cell Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20-31. [PMID: 34914354 DOI: 10.1021/acsami.1c12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tissue microarchitecture imposes physical constraints to the migration of individual cells. Especially in cancer metastasis, three-dimensional structural barriers within the extracellular matrix are known to affect the migratory behavior of cells, regulating the pathological state of the cells. Here, we employed a culture platform with micropillar arrays of 2 μm diameter and 16 μm pitch (2.16 micropillar) as a mechanical stimulant. Using this platform, we investigated how a long-term culture of A549 human lung carcinoma cells on the (2.16) micropillar-embossed dishes would influence the pathological state of the cell. A549 cells grown on the (2.16) micropillar array with 10 μm height exhibited a significantly elongated morphology and enhanced migration even after the detachment and reattachment, as evidenced in the conventional wound-healing assay, single-cell tracking analysis, and in vivo tumor colonization assays. Moreover, the pillar-induced morphological deformation in nuclei was accompanied by cell-cycle arrest in the S phase, leading to suppressed proliferation. While these marked traits of morphology-migration-proliferation support more aggressive characteristics of metastatic cancer cells, typical indices of epithelial-mesenchymal transition were not found, but instead, remarkable traces of amoeboidal transition were confirmed. Our study also emphasizes the importance of mechanical stimuli from the microenvironment during pathogenesis and how gained traits can be passed onto subsequent generations, ultimately affecting their pathophysiological behavior. Furthermore, this study highlights the potential use of pillar-based mechanical stimuli as an in vitro cell culture strategy to induce more aggressive tumorigenic cancer cell models.
Collapse
Affiliation(s)
- Geonhee Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced of Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Hye Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jong Min Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Sang Chae
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jonghyun Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Won Jin Choi
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Joseph Kwon
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Eun Hee Han
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Young-Ho Chung
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced of Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
26
|
Murphy KJ, Reed DA, Vennin C, Conway JRW, Nobis M, Yin JX, Chambers CR, Pereira BA, Lee V, Filipe EC, Trpceski M, Ritchie S, Lucas MC, Warren SC, Skhinas JN, Magenau A, Metcalf XL, Stoehr J, Major G, Parkin A, Bidanel R, Lyons RJ, Zaratzian A, Tayao M, Da Silva A, Abdulkhalek L, Gill AJ, Johns AL, Biankin AV, Samra J, Grimmond SM, Chou A, Goetz JG, Samuel MS, Lyons JG, Burgess A, Caldon CE, Horvath LG, Daly RJ, Gadegaard N, Wang Y, Sansom OJ, Morton JP, Cox TR, Pajic M, Herrmann D, Timpson P. Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. SCIENCE ADVANCES 2021; 7:eabh0363. [PMID: 34586840 PMCID: PMC8480933 DOI: 10.1126/sciadv.abh0363] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/06/2021] [Indexed: 05/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Förster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micropatterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow–induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy.
Collapse
Affiliation(s)
- Kendelle J. Murphy
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Daniel A. Reed
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Claire Vennin
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Oncode Institute, Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - James R. W. Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Max Nobis
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Julia X. Yin
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Cecilia R. Chambers
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Brooke A. Pereira
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Victoria Lee
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Elysse C. Filipe
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Michael Trpceski
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Shona Ritchie
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Morghan C. Lucas
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sean C. Warren
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Joanna N. Skhinas
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Astrid Magenau
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Xanthe L. Metcalf
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Janett Stoehr
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Gretel Major
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Ashleigh Parkin
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Romain Bidanel
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Ruth J. Lyons
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Anaiis Zaratzian
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Michael Tayao
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Andrew Da Silva
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Lea Abdulkhalek
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Australian Pancreatic Genome Initiative (APGI)
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Oncode Institute, Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, NSW 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, NSW 2064, Australia
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- Department of Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
- Department of Anatomical Pathology, SydPath, Darlinghurst, NSW 2010, Australia
- INSERM UMR, Tumour Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Centre for Cancer Biology, SA Pathology and University of South Australia, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Dermatology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, NSW 2000, Australia
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2006, Australia
- Cancer Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Australian Pancreatic Cancer Matrix Atlas (APMA)
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Oncode Institute, Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, NSW 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, NSW 2064, Australia
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- Department of Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
- Department of Anatomical Pathology, SydPath, Darlinghurst, NSW 2010, Australia
- INSERM UMR, Tumour Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Centre for Cancer Biology, SA Pathology and University of South Australia, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Dermatology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, NSW 2000, Australia
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2006, Australia
- Cancer Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Anthony J. Gill
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, NSW 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, NSW 2064, Australia
| | - Amber L. Johns
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Andrew V. Biankin
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Jaswinder Samra
- Department of Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Sean M. Grimmond
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Angela Chou
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, NSW 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, NSW 2064, Australia
- Department of Anatomical Pathology, SydPath, Darlinghurst, NSW 2010, Australia
| | - Jacky G. Goetz
- INSERM UMR, Tumour Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Michael S. Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - J. Guy Lyons
- Dermatology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew Burgess
- ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, NSW 2000, Australia
| | - C. Elizabeth Caldon
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Lisa G. Horvath
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2006, Australia
| | - Roger J. Daly
- Cancer Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Nikolaj Gadegaard
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Yingxiao Wang
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Owen J. Sansom
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Jennifer P. Morton
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Thomas R. Cox
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Marina Pajic
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| |
Collapse
|
27
|
Um SH, Lee J, Song IS, Ok MR, Kim YC, Han HS, Rhee SH, Jeon H. Regulation of cell locomotion by nanosecond-laser-induced hydroxyapatite patterning. Bioact Mater 2021; 6:3608-3619. [PMID: 33869901 PMCID: PMC8022786 DOI: 10.1016/j.bioactmat.2021.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
Hydroxyapatite, an essential mineral in human bones composed mainly of calcium and phosphorus, is widely used to coat bone graft and implant surfaces for enhanced biocompatibility and bone formation. For a strong implant-bone bond, the bone-forming cells must not only adhere to the implant surface but also move to the surface requiring bone formation. However, strong adhesion tends to inhibit cell migration on the surface of hydroxyapatite. Herein, a cell migration highway pattern that can promote cell migration was prepared using a nanosecond laser on hydroxyapatite coating. The developed surface promoted bone-forming cell movement compared with the unpatterned hydroxyapatite surface, and the cell adhesion and movement speed could be controlled by adjusting the pattern width. Live-cell microscopy, cell tracking, and serum protein analysis revealed the fundamental principle of this phenomenon. These findings are applicable to hydroxyapatite-coated biomaterials and can be implemented easily by laser patterning without complicated processes. The cell migration highway can promote and control cell movement while maintaining the existing advantages of hydroxyapatite coatings. Furthermore, it can be applied to the surface treatment of not only implant materials directly bonded to bone but also various implanted biomaterials implanted that require cell movement control.
Collapse
Affiliation(s)
- Seung-Hoon Um
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jaehong Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - In-Seok Song
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Myoung-Ryul Ok
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yu-Chan Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sang-Hoon Rhee
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
28
|
Napiwocki B, Stempien A, Lang D, Kruepke R, Kim G, Zhang J, Eckhardt L, Glukhov A, Kamp T, Crone W. Micropattern platform promotes extracellular matrix remodeling by human PSC-derived cardiac fibroblasts and enhances contractility of co-cultured cardiomyocytes. Physiol Rep 2021; 9:e15045. [PMID: 34617673 PMCID: PMC8496154 DOI: 10.14814/phy2.15045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023] Open
Abstract
In native heart tissue, cardiac fibroblasts provide the structural framework of extracellular matrix (ECM) while also influencing the electrical and mechanical properties of cardiomyocytes. Recent advances in the field of stem cell differentiation have led to the availability of human pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs) in addition to cardiomyocytes (iPSC-CMs). Here we use a novel 2D in vitro micropatterned platform that provides control over ECM geometry and substrate stiffness. When cultured alone on soft micropatterned substrates, iPSC-CFs are confined to the micropatterned features and remodel the ECM into anisotropic fibers. Similar remodeling and ECM production occurs when cultured with iPSC-CMs in a co-culture model. In addition to modifications in the ECM, our results show that iPSC-CFs influence iPSC-CM function with accelerated Ca2+ transient rise-up time and greater contractile strains in the co-culture conditions compared to when iPSC-CMs are cultured alone. These combined observations highlight the important role cardiac fibroblasts play in vivo and the need for co-culture models like the one presented here to provide more representative in vitro cardiac constructs.
Collapse
Affiliation(s)
- B.N. Napiwocki
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - A. Stempien
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - D. Lang
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - R.A. Kruepke
- Engineering Mechanics ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - G. Kim
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - J. Zhang
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - L.L. Eckhardt
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - A.V. Glukhov
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - T.J. Kamp
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Cell and Regenerative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - W.C. Crone
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Engineering Mechanics ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Engineering PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
29
|
Wortel IM, Liu AY, Dannenberg K, Berry JC, Miller MJ, Textor J. CelltrackR: An R package for fast and flexible analysis of immune cell migration data. IMMUNOINFORMATICS 2021; 1-2. [PMID: 37034276 PMCID: PMC10079262 DOI: 10.1016/j.immuno.2021.100003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Visualization of cell migration via time-lapse microscopy has greatly advanced our understanding of the immune system. However, subtle differences in migration dynamics are easily obscured by biases and imaging artifacts. While several analysis methods have been suggested to address these issues, an integrated tool implementing them is currently lacking. Here, we present celltrackR, an R package containing a diverse set of state-of-the-art analysis methods for (immune) cell tracks. CelltrackR supports the complete pipeline for track analysis by providing methods for data management, quality control, extracting and visualizing migration statistics, clustering tracks, and simulating cell migration. CelltrackR supports the analysis of both 2D and 3D cell tracks. CelltrackR is an open-source package released under the GPL-2 license, and is freely available on both GitHub and CRAN. Although the package was designed specifically for immune cell migration data, many of its methods will also be of use in other research areas dealing with moving objects.
Collapse
|
30
|
Holt JR, Zeng WZ, Evans EL, Woo SH, Ma S, Abuwarda H, Loud M, Patapoutian A, Pathak MM. Spatiotemporal dynamics of PIEZO1 localization controls keratinocyte migration during wound healing. eLife 2021; 10:65415. [PMID: 34569935 PMCID: PMC8577841 DOI: 10.7554/elife.65415] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Keratinocytes, the predominant cell type of the epidermis, migrate to reinstate the epithelial barrier during wound healing. Mechanical cues are known to regulate keratinocyte re-epithelialization and wound healing; however, the underlying molecular transducers and biophysical mechanisms remain elusive. Here, we show through molecular, cellular, and organismal studies that the mechanically activated ion channel PIEZO1 regulates keratinocyte migration and wound healing. Epidermal-specific Piezo1 knockout mice exhibited faster wound closure while gain-of-function mice displayed slower wound closure compared to littermate controls. By imaging the spatiotemporal localization dynamics of endogenous PIEZO1 channels, we find that channel enrichment at some regions of the wound edge induces a localized cellular retraction that slows keratinocyte collective migration. In migrating single keratinocytes, PIEZO1 is enriched at the rear of the cell, where maximal retraction occurs, and we find that chemical activation of PIEZO1 enhances retraction during single as well as collective migration. Our findings uncover novel molecular mechanisms underlying single and collective keratinocyte migration that may suggest a potential pharmacological target for wound treatment. More broadly, we show that nanoscale spatiotemporal dynamics of Piezo1 channels can control tissue-scale events, a finding with implications beyond wound healing to processes as diverse as development, homeostasis, disease, and repair.
Collapse
Affiliation(s)
- Jesse R Holt
- Departmentof Physiology & Biophysics, UC Irvine, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, United States.,Center for Complex Biological Systems, UC Irvine, Irvine, United States
| | - Wei-Zheng Zeng
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Elizabeth L Evans
- Departmentof Physiology & Biophysics, UC Irvine, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, United States
| | - Seung-Hyun Woo
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Shang Ma
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Hamid Abuwarda
- Departmentof Physiology & Biophysics, UC Irvine, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, United States
| | - Meaghan Loud
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Medha M Pathak
- Departmentof Physiology & Biophysics, UC Irvine, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, United States.,Center for Complex Biological Systems, UC Irvine, Irvine, United States.,Department of Biomedical Engineering, UC Irvine, Irvine, United States
| |
Collapse
|
31
|
Xie T, St Pierre SR, Olaranont N, Brown LE, Wu M, Sun Y. Condensation tendency and planar isotropic actin gradient induce radial alignment in confined monolayers. eLife 2021; 10:e60381. [PMID: 34542405 PMCID: PMC8478414 DOI: 10.7554/elife.60381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2021] [Indexed: 02/01/2023] Open
Abstract
A monolayer of highly motile cells can establish long-range orientational order, which can be explained by hydrodynamic theory of active gels and fluids. However, it is less clear how cell shape changes and rearrangement are governed when the monolayer is in mechanical equilibrium states when cell motility diminishes. In this work, we report that rat embryonic fibroblasts (REF), when confined in circular mesoscale patterns on rigid substrates, can transition from the spindle shapes to more compact morphologies. Cells align radially only at the pattern boundary when they are in the mechanical equilibrium. This radial alignment disappears when cell contractility or cell-cell adhesion is reduced. Unlike monolayers of spindle-like cells such as NIH-3T3 fibroblasts with minimal intercellular interactions or epithelial cells like Madin-Darby canine kidney (MDCK) with strong cortical actin network, confined REF monolayers present an actin gradient with isotropic meshwork, suggesting the existence of a stiffness gradient. In addition, the REF cells tend to condense on soft substrates, a collective cell behavior we refer to as the 'condensation tendency'. This condensation tendency, together with geometrical confinement, induces tensile prestretch (i.e. an isotropic stretch that causes tissue to contract when released) to the confined monolayer. By developing a Voronoi-cell model, we demonstrate that the combined global tissue prestretch and cell stiffness differential between the inner and boundary cells can sufficiently define the cell radial alignment at the pattern boundary.
Collapse
Affiliation(s)
- Tianfa Xie
- Department of Mechanical and Industrial Engineering, University of MassachusettsAmherstUnited States
| | - Sarah R St Pierre
- Department of Mechanical and Industrial Engineering, University of MassachusettsAmherstUnited States
| | - Nonthakorn Olaranont
- Department of Mathematical Sciences, Worcester Polytechnic InstituteWorcesterUnited States
| | - Lauren E Brown
- Department of Biomedical Engineering, University of MassachusettsAmherstUnited States
| | - Min Wu
- Department of Mathematical Sciences, Worcester Polytechnic InstituteWorcesterUnited States
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of MassachusettsAmherstUnited States
- Department of Biomedical Engineering, University of MassachusettsAmherstUnited States
- Department of Chemical Engineering, University of MassachusettsAmherstUnited States
| |
Collapse
|
32
|
Zaritsky A, Jamieson AR, Welf ES, Nevarez A, Cillay J, Eskiocak U, Cantarel BL, Danuser G. Interpretable deep learning uncovers cellular properties in label-free live cell images that are predictive of highly metastatic melanoma. Cell Syst 2021; 12:733-747.e6. [PMID: 34077708 PMCID: PMC8353662 DOI: 10.1016/j.cels.2021.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 01/22/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
Deep learning has emerged as the technique of choice for identifying hidden patterns in cell imaging data but is often criticized as "black box." Here, we employ a generative neural network in combination with supervised machine learning to classify patient-derived melanoma xenografts as "efficient" or "inefficient" metastatic, validate predictions regarding melanoma cell lines with unknown metastatic efficiency in mouse xenografts, and use the network to generate in silico cell images that amplify the critical predictive cell properties. These exaggerated images unveiled pseudopodial extensions and increased light scattering as hallmark properties of metastatic cells. We validated this interpretation using live cells spontaneously transitioning between states indicative of low and high metastatic efficiency. This study illustrates how the application of artificial intelligence can support the identification of cellular properties that are predictive of complex phenotypes and integrated cell functions but are too subtle to be identified in the raw imagery by a human expert. A record of this paper's transparent peer review process is included in the supplemental information. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Assaf Zaritsky
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Andrew R Jamieson
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erik S Welf
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andres Nevarez
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA
| | - Justin Cillay
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ugur Eskiocak
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandi L Cantarel
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Maier JP, Ravi VM, Kueckelhaus J, Behringer SP, Garrelfs N, Will P, Sun N, von Ehr J, Goeldner JM, Pfeifer D, Follo M, Hannibal L, Walch AK, Hofmann UG, Beck J, Heiland DH, Schnell O, Joseph K. Inhibition of metabotropic glutamate receptor III facilitates sensitization to alkylating chemotherapeutics in glioblastoma. Cell Death Dis 2021; 12:723. [PMID: 34290229 PMCID: PMC8295384 DOI: 10.1038/s41419-021-03937-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/20/2023]
Abstract
Glioblastoma (GBM), the most malignant tumor of the central nervous system, is marked by its dynamic response to microenvironmental niches. In particular, this cellular plasticity contributes to the development of an immediate resistance during tumor treatment. Novel insights into the developmental trajectory exhibited by GBM show a strong capability to respond to its microenvironment by clonal selection of specific phenotypes. Using the same mechanisms, malignant GBM do develop intrinsic mechanisms to resist chemotherapeutic treatments. This resistance was reported to be sustained by the paracrine and autocrine glutamate signaling via ionotropic and metabotropic receptors. However, the extent to which glutamatergic signaling modulates the chemoresistance and transcriptional profile of the GBM remains unexplored. In this study we aimed to map the manifold effects of glutamate signaling in GBM as the basis to further discover the regulatory role and interactions of specific receptors, within the GBM microenvironment. Our work provides insights into glutamate release dynamics, representing its importance for GBM growth, viability, and migration. Based on newly published multi-omic datasets, we explored the and characterized the functions of different ionotropic and metabotropic glutamate receptors, of which the metabotropic receptor 3 (GRM3) is highlighted through its modulatory role in maintaining the ability of GBM cells to evade standard alkylating chemotherapeutics. We addressed the clinical relevance of GRM3 receptor expression in GBM and provide a proof of concept where we manipulate intrinsic mechanisms of chemoresistance, driving GBM towards chemo-sensitization through GRM3 receptor inhibition. Finally, we validated our findings in our novel human organotypic section-based tumor model, where GBM growth and proliferation was significantly reduced when GRM3 inhibition was combined with temozolomide application. Our findings present a new picture of how glutamate signaling via mGluR3 interacts with the phenotypical GBM transcriptional programs in light of recently published GBM cell-state discoveries.
Collapse
Affiliation(s)
- Julian P Maier
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Vidhya M Ravi
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany.,Neuroelectronic Systems, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jan Kueckelhaus
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Simon P Behringer
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Niklas Garrelfs
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Paulina Will
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jasmin von Ehr
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jonathan M Goeldner
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Medicine I, Medical Center-University of Freiburg, Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Axel Karl Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ulrich G Hofmann
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Neuroelectronic Systems, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Kevin Joseph
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany. .,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany. .,Neuroelectronic Systems, Medical Center-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
34
|
Turnham DJ, Yang WW, Davies J, Varnava A, Ridley AJ, Conlan RS, Clarkson RWE. Bcl-3 promotes multi-modal tumour cell migration via NF-κB1 mediated regulation of Cdc42. Carcinogenesis 2021; 41:1432-1443. [PMID: 31957805 DOI: 10.1093/carcin/bgaa005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/21/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
A key challenge in the implementation of anti-metastatics as cancer therapies is the multi-modal nature of cell migration, which allows tumour cells to evade the targeted inhibition of specific cell motility pathways. The nuclear factor-kappaB (NF-κB) co-factor B-cell lymphoma 3 (Bcl-3) has been implicated in breast cancer cell migration and metastasis, yet it remains to be determined exactly which cell motility pathways are controlled by Bcl-3 and whether migrating tumour cells are able to evade Bcl-3 intervention. Addressing these questions and the mechanism underpinning Bcl-3's role in this process would help determine its potential as a therapeutic target. Here we identify Bcl-3 as an upstream regulator of the two principal forms of breast cancer cell motility, involving collective and single-cell migration. This was found to be mediated by the master regulator Cdc42 through binding of the NF-κB transcription factor p50 to the Cdc42 promoter. Notably, Bcl-3 depletion inhibited both stable and transitory motility phenotypes in breast cancer cells with no evidence of migratory adaptation. Overexpression of Bcl-3 enhanced migration and increased metastatic tumour burden of breast cancer cells in vivo, whereas overexpression of a mutant Bcl-3 protein, which is unable to bind p50, suppressed cell migration and metastatic tumour burden suggesting that disruption of Bcl-3/NF-κB complexes is sufficient to inhibit metastasis. These findings identify a novel role for Bcl-3 in intrinsic and adaptive multi-modal cell migration mediated by its direct regulation of the Rho GTPase Cdc42 and identify the upstream Bcl-3:p50 transcription complex as a potential therapeutic target for metastatic disease.
Collapse
Affiliation(s)
- Daniel J Turnham
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff, UK
| | - William W Yang
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Julia Davies
- Swansea University Medical School, Singleton Park, Swansea, UK
| | - Athina Varnava
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff, UK
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - R Steven Conlan
- Swansea University Medical School, Singleton Park, Swansea, UK
| | - Richard W E Clarkson
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff, UK
| |
Collapse
|
35
|
Ilyas AMO, Alam MK, Musah JD, Saw LO, Venkatesh S, Yeung CC, Yang M, Vellaisamy ALR, Lau C. Development of a carboxyl-terminated indium tin oxide electrode for improving cell adhesion and facilitating low noise, real-time impedance measurements. Am J Physiol Cell Physiol 2021; 320:C974-C986. [PMID: 33689477 DOI: 10.1152/ajpcell.00537.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The working electrode's surface property is crucial to cell adhesion and signal collection in electric cell-substrate impedance sensing (ECIS). To date, the indium tin oxide (ITO)-based working electrode is of interest in ECIS study due to its high transparency and biocompatibility. Of great concern is the impedance signal loss, distortion, and data interpretation conflict profoundly created by the movement of multiple cells during ECIS study. Here, a carboxyl-terminated ITO substrate was prepared by stepwise surface amino silanization, with N-hydroxy succinimide (NHS) and 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) treatment, respectively. We investigated the stepwise changes in the property of the treated ITO, cell-substrate adhesion, collective cell mobility, and time course of change in absolute impedance from multiple Chinese hamster ovary (CHO) cells [(Δt-Δ|Z|)CELLS]. The carboxyl-terminated ITO substrate with a surface roughness of 6.37 nm shows enhanced conductivity, 75% visible light transparency, improved cell adherence, reduced collective cell migration speed by approximately twofold, and diminished signal distortion in the [(Δt-Δ|Z|)CELLS]. Thus, our study provides an ITO surface-treatment strategy to reduce multiple cell movement effects and to obtain essential cell information from the ECIS study of multiple cells through undistorted (Δt-Δ|Z|)CELLS.
Collapse
Affiliation(s)
- A M Olabisi Ilyas
- Department of Physics, City University of Hong Kong, Kowloon, Special Administrative Region of China.,Department of Physics, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | - Md Kowsar Alam
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Special Administrative Region of China.,Department of Physics, University of Chittagong, Chittagong, Bangladesh
| | - Jamal-Deen Musah
- State Key Laboratory of Terahertz and Millimeter Waves, Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Special Administrative Region of China
| | - Lin Oo Saw
- State Key Laboratory of Terahertz and Millimeter Waves, Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Special Administrative Region of China
| | - Shishir Venkatesh
- State Key Laboratory of Terahertz and Millimeter Waves, Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Special Administrative Region of China
| | - Chi-Chung Yeung
- Department of Chemistry, City University of Hong Kong, Kowloon, Special Administrative Region of China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Special Administrative Region of China
| | - A L R Vellaisamy
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Kowloon, Special Administrative Region of China
| |
Collapse
|
36
|
Amelanotic B16-F10 Melanoma Compatible with Advanced Three-Dimensional Imaging Modalities. J Invest Dermatol 2021; 141:2090-2094.e6. [PMID: 33675788 DOI: 10.1016/j.jid.2021.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
|
37
|
Rodríguez-Pérez F, Manford AG, Pogson A, Ingersoll AJ, Martínez-González B, Rape M. Ubiquitin-dependent remodeling of the actin cytoskeleton drives cell fusion. Dev Cell 2021; 56:588-601.e9. [PMID: 33609460 DOI: 10.1016/j.devcel.2021.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/14/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022]
Abstract
Cell-cell fusion is a frequent and essential event during development, and its dysregulation causes diseases ranging from infertility to muscle weakness. Fusing cells need to repeatedly remodel their plasma membrane through orchestrated formation and disassembly of actin filaments, but how the dynamic reorganization of the cortical actin cytoskeleton is controlled is still poorly understood. Here, we identified a ubiquitin-dependent toggle switch that establishes reversible actin bundling during mammalian cell fusion. We found that EPS8-IRSp53 complexes stabilize cortical actin bundles at sites of cell contact to promote close membrane alignment. EPS8 monoubiquitylation by CUL3KCTD10 displaces EPS8-IRSp53 from membranes and counteracts actin bundling, a dual activity that restricts actin bundling to allow paired cells to progress with fusion. We conclude that cytoskeletal rearrangements during development are precisely controlled by ubiquitylation, raising the possibility of modulating the efficiency of cell-cell fusion for therapeutic benefit.
Collapse
Affiliation(s)
- Fernando Rodríguez-Pérez
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andrew G Manford
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Angela Pogson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andrew J Ingersoll
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Lee G, Oh JW, Her NG, Jeong WK. DeepHCS ++: Bright-field to fluorescence microscopy image conversion using multi-task learning with adversarial losses for label-free high-content screening. Med Image Anal 2021; 70:101995. [PMID: 33640720 DOI: 10.1016/j.media.2021.101995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 01/06/2023]
Abstract
In this paper, we propose a novel microscopy image translation method for transforming a bright-field microscopy image into three different fluorescence images to observe the apoptosis, nuclei, and cytoplasm of cells, which visualize dead cells, nuclei of cells, and cytoplasm of cells, respectively. These biomarkers are commonly used in high-content drug screening to analyze drug response. The main contribution of the proposed work is the automatic generation of three fluorescence images from a conventional bright-field image; this can greatly reduce the time-consuming and laborious tissue preparation process and improve throughput of the screening process. Our proposed method uses only a single bright-field image and the corresponding fluorescence images as a set of image pairs for training an end-to-end deep convolutional neural network. By leveraging deep convolutional neural networks with a set of image pairs of bright-field and corresponding fluorescence images, our proposed method can produce synthetic fluorescence images comparable to real fluorescence microscopy images with high accuracy. Our proposed model uses multi-task learning with adversarial losses to generate more accurate and realistic microscopy images. We assess the efficacy of the proposed method using real bright-field and fluorescence microscopy image datasets from patient-driven samples of a glioblastoma, and validate the method's accuracy with various quality metrics including cell number correlation (CNC), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), cell viability correlation (CVC), error maps, and R2 correlation.
Collapse
Affiliation(s)
- Gyuhyun Lee
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), South Korea.
| | - Jeong-Woo Oh
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, South Korea; Institute for Refractory Cancer Research, Samsung Medical Center, South Korea
| | - Nam-Gu Her
- Institute for Refractory Cancer Research, Samsung Medical Center, South Korea
| | - Won-Ki Jeong
- Department of Computer Science and Engineering, College of Informatics, Korea University, South Korea.
| |
Collapse
|
39
|
Andreev D, Liu M, Weidner D, Kachler K, Faas M, Grüneboom A, Schlötzer-Schrehardt U, Muñoz LE, Steffen U, Grötsch B, Killy B, Krönke G, Luebke AM, Niemeier A, Wehrhan F, Lang R, Schett G, Bozec A. Osteocyte necrosis triggers osteoclast-mediated bone loss through macrophage-inducible C-type lectin. J Clin Invest 2021; 130:4811-4830. [PMID: 32773408 DOI: 10.1172/jci134214] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Although the control of bone-resorbing osteoclasts through osteocyte-derived RANKL is well defined, little is known about the regulation of osteoclasts by osteocyte death. Indeed, several skeletal diseases, such as bone fracture, osteonecrosis, and inflammation are characterized by excessive osteocyte death. Herein we show that osteoclasts sense damage-associated molecular patterns (DAMPs) released by necrotic osteocytes via macrophage-inducible C-type lectin (Mincle), which induced their differentiation and triggered bone loss. Osteoclasts showed robust Mincle expression upon exposure to necrotic osteocytes in vitro and in vivo. RNA sequencing and metabolic analyses demonstrated that Mincle activation triggers osteoclastogenesis via ITAM-based calcium signaling pathways, skewing osteoclast metabolism toward oxidative phosphorylation. Deletion of Mincle in vivo effectively blocked the activation of osteoclasts after induction of osteocyte death, improved fracture repair, and attenuated inflammation-mediated bone loss. Furthermore, in patients with osteonecrosis, Mincle was highly expressed at skeletal sites of osteocyte death and correlated with strong osteoclastic activity. Taken together, these data point to what we believe is a novel DAMP-mediated process that allows osteoclast activation and bone loss in the context of osteocyte death.
Collapse
Affiliation(s)
- Darja Andreev
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Mengdan Liu
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Daniela Weidner
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Katerina Kachler
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Maria Faas
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Anika Grüneboom
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | | | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Bettina Grötsch
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Barbara Killy
- Institute of Clinical Microbiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | | | - Andreas Niemeier
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Falk Wehrhan
- Department of Oral and Maxillofacial Surgery, FAU and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| |
Collapse
|
40
|
Quantifying Intracellular Particle Flows by DIC Object Tracking. Biophys J 2021; 120:393-401. [PMID: 33359170 DOI: 10.1016/j.bpj.2020.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/17/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022] Open
Abstract
Label-free imaging techniques such as differential interference contrast (DIC) allow the observation of cells and large subcellular structures in their native, unperturbed states with minimal exposure to light. The development of robust computational image-analysis routines is vital to quantitative label-free imaging. The reliability of quantitative analysis of time-series microscopy data based on single-particle tracking relies on accurately detecting objects as distinct from the background, i.e., segmentation. Typical approaches to segmenting DIC images either involve converting images to those resembling phase contrast, mimicking the optics of DIC object formation, or using the morphological properties of objects. Here, we describe MATLAB based, single-particle tracking tool with a GUI for mobility analysis of objects from in vitro and in vivo DIC time-series microscopy. The tool integrates contrast enhancement with multiple modified Gaussian filters, automated threshold detection for segmentation and minimal distance-based two-dimensional single-particle tracking. We compare the relative performance of multiple filters and demonstrate the utility of the tool for DIC object tracking (DICOT). We quantify subcellular dynamics of a time series of Caenorhabditis elegans embryos in the one-celled stage by detecting birefringent yolk granules in the cytoplasm with high precision. The resulting two-dimensional map of oscillatory dynamics of granules quantifies the cytoplasmic flows driven by anaphasic spindle oscillations. The frequency of oscillations across the anterior-posterior (A-P) and transverse axes of the embryo correspond well with the reported frequency of spindle oscillations. We validate the quantitative accuracy of our method by tracking the in vitro diffusive mobility of micron-sized beads in glycerol solutions. Estimates of the diffusion coefficients of the granules are used to measure the viscosity of a dilution series of glycerol. Thus, our computational method is likely to be useful for both intracellular mobility and in vitro microrheology.
Collapse
|
41
|
Fazeli E, Roy NH, Follain G, Laine RF, von Chamier L, Hänninen PE, Eriksson JE, Tinevez JY, Jacquemet G. Automated cell tracking using StarDist and TrackMate. F1000Res 2020. [DOI: 10.12688/f1000research.27019.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance, and wound healing. Therefore, the mechanisms governing cellular locomotion have been under intense scrutiny over the last 50 years. One of the main tools of this scrutiny is live-cell quantitative imaging, where researchers image cells over time to study their migration and quantitatively analyze their dynamics by tracking them using the recorded images. Despite the availability of computational tools, manual tracking remains widely used among researchers due to the difficulty setting up robust automated cell tracking and large-scale analysis. Here we provide a detailed analysis pipeline illustrating how the deep learning network StarDist can be combined with the popular tracking software TrackMate to perform 2D automated cell tracking and provide fully quantitative readouts. Our proposed protocol is compatible with both fluorescent and widefield images. It only requires freely available and open-source software (ZeroCostDL4Mic and Fiji), and does not require any coding knowledge from the users, making it a versatile and powerful tool for the field. We demonstrate this pipeline's usability by automatically tracking cancer cells and T cells using fluorescent and brightfield images. Importantly, we provide, as supplementary information, a detailed step-by-step protocol to allow researchers to implement it with their images.
Collapse
|
42
|
Fazeli E, Roy NH, Follain G, Laine RF, von Chamier L, Hänninen PE, Eriksson JE, Tinevez JY, Jacquemet G. Automated cell tracking using StarDist and TrackMate. F1000Res 2020; 9:1279. [PMID: 33224481 PMCID: PMC7670479 DOI: 10.12688/f1000research.27019.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/30/2022] Open
Abstract
The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance, and wound healing. Therefore, the mechanisms governing cellular locomotion have been under intense scrutiny over the last 50 years. One of the main tools of this scrutiny is live-cell quantitative imaging, where researchers image cells over time to study their migration and quantitatively analyze their dynamics by tracking them using the recorded images. Despite the availability of computational tools, manual tracking remains widely used among researchers due to the difficulty setting up robust automated cell tracking and large-scale analysis. Here we provide a detailed analysis pipeline illustrating how the deep learning network StarDist can be combined with the popular tracking software TrackMate to perform 2D automated cell tracking and provide fully quantitative readouts. Our proposed protocol is compatible with both fluorescent and widefield images. It only requires freely available and open-source software (ZeroCostDL4Mic and Fiji), and does not require any coding knowledge from the users, making it a versatile and powerful tool for the field. We demonstrate this pipeline's usability by automatically tracking cancer cells and T cells using fluorescent and brightfield images. Importantly, we provide, as supplementary information, a detailed step-by-step protocol to allow researchers to implement it with their images.
Collapse
Affiliation(s)
- Elnaz Fazeli
- Laboratory of Biophysics, Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Nathan H. Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Romain F. Laine
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Lucas von Chamier
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Pekka E. Hänninen
- Laboratory of Biophysics, Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - John E. Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | | | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
43
|
Becsky D, Szabo K, Gyulai-Nagy S, Gajdos T, Bartos Z, Balind A, Dux L, Horvath P, Erdelyi M, Homolya L, Keller-Pinter A. Syndecan-4 Modulates Cell Polarity and Migration by Influencing Centrosome Positioning and Intracellular Calcium Distribution. Front Cell Dev Biol 2020; 8:575227. [PMID: 33178691 PMCID: PMC7593626 DOI: 10.3389/fcell.2020.575227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Efficient cell migration requires cellular polarization, which is characterized by the formation of leading and trailing edges, appropriate positioning of the nucleus and reorientation of the Golgi apparatus and centrosomes toward the leading edge. Migration also requires the development of an asymmetrical front-to-rear calcium (Ca2+) gradient to regulate focal adhesion assembly and actomyosin contractility. Here we demonstrate that silencing of syndecan-4, a transmembrane heparan sulfate proteoglycan, interferes with the correct polarization of migrating mammalian myoblasts (i.e., activated satellite stem cells). In particular, syndecan-4 knockdown completely abolished the intracellular Ca2+ gradient, abrogated centrosome reorientation and thus decreased cell motility, demonstrating the role of syndecan-4 in cell polarity. Additionally, syndecan-4 exhibited a polarized distribution during migration. Syndecan-4 knockdown cells exhibited decreases in the total movement distance during directional migration, maximum and vectorial distances from the starting point, as well as average and maximum cell speeds. Super-resolution direct stochastic optical reconstruction microscopy images of syndecan-4 knockdown cells revealed nanoscale changes in the actin cytoskeletal architecture, such as decreases in the numbers of branches and individual branch lengths in the lamellipodia of the migrating cells. Given the crucial importance of myoblast migration during embryonic development and postnatal muscle regeneration, we conclude that our results could facilitate an understanding of these processes and the general role of syndecan-4 during cell migration.
Collapse
Affiliation(s)
- Daniel Becsky
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Kitti Szabo
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Szuzina Gyulai-Nagy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamas Gajdos
- Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsuzsa Bartos
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, Budapest, Hungary
| | - Arpad Balind
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Laszlo Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Peter Horvath
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Miklos Erdelyi
- Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Laszlo Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, Budapest, Hungary
| | - Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
44
|
Díaz Lantada A, Mazarío Picazo N, Guttmann M, Wissmann M, Schneider M, Worgull M, Hengsbach S, Rupp F, Bade K, Plaza GR. Soft-Lithography of Polyacrylamide Hydrogels Using Microstructured Templates: Towards Controlled Cell Populations on Biointerfaces. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1586. [PMID: 32235578 PMCID: PMC7177395 DOI: 10.3390/ma13071586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 02/08/2023]
Abstract
Polyacrylamide hydrogels are interesting materials for studying cells and cell-material interactions, thanks to the possibility of precisely adjusting their stiffness, shear modulus and porosity during synthesis, and to the feasibility of processing and manufacturing them towards structures and devices with controlled morphology and topography. In this study a novel approach, related to the processing of polyacrylamide hydrogels using soft-lithography and employing microstructured templates, is presented. The main novelty relies on the design and manufacturing processes used for achieving the microstructured templates, which are transferred by soft-lithography, with remarkable level of detail, to the polyacrylamide hydrogels. The conceived process is demonstrated by patterning polyacrylamide substrates with a set of vascular-like and parenchymal-like textures, for controlling cell populations. Final culture of amoeboid cells, whose dynamics is affected by the polyacrylamide patterns, provides a preliminary validation of the described strategy and helps to discuss its potentials.
Collapse
Affiliation(s)
- Andrés Díaz Lantada
- Product Development Laboratory, Mechanical Engineering Department, Universidad Politécnica de Madrid, c/José Gutiérrez Abascal 2, 28006 Madrid, Spain;
| | - Noelia Mazarío Picazo
- Product Development Laboratory, Mechanical Engineering Department, Universidad Politécnica de Madrid, c/José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Centre for Biomedical Technology, Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Crta. M40, km. 38, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Markus Guttmann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Markus Wissmann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Marc Schneider
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Matthias Worgull
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Stefan Hengsbach
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Florian Rupp
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Klaus Bade
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Gustavo R. Plaza
- Centre for Biomedical Technology, Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Crta. M40, km. 38, 28223 Pozuelo de Alarcón, Madrid, Spain;
| |
Collapse
|
45
|
Zhu P, Hawkins J, Linthicum WH, Wang M, Li N, Zhou N, Wen Q, Timme-Laragy A, Song X, Sun Y. Heavy Metal Exposure Leads to Rapid Changes in Cellular Biophysical Properties. ACS Biomater Sci Eng 2020; 6:1965-1976. [PMID: 33455329 DOI: 10.1021/acsbiomaterials.9b01640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biophysical properties of cells, such as cell mechanics, cell shape, and cell migration, are emerging hallmarks for characterizing various cell functions. Conversely, disruptions to these biophysical properties may be used as reliable indicators of disruptions to cell homeostasis, such as in the case of chemical-induced toxicity. In this study, we demonstrate that treatment of lead(II) nitrate and cadmium nitrate leads to dosage-dependent changes in a collection of biophysical properties, including cellular traction forces, focal adhesions, mechanical stiffness, cell shape, migration speed, permeability, and wound-healing efficacy in mammalian cells. As those changes appear within a few hours after the treatment with a trace amount of lead/cadmium, our results highlight the promise of using biophysical properties to screen environmental chemicals to identify potential toxicants and establish dose response curves. Our systematic and quantitative characterization of the rapid changes in cytoskeletal structure and cell functions upon heavy metal treatment may inspire new research on the mechanisms of toxicity.
Collapse
Affiliation(s)
- Peiran Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | | | - Will Hamilton Linthicum
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Menglin Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Department of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui Province, China
| | | | - Nanjia Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | | | - Xiaofei Song
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | | |
Collapse
|
46
|
Pora A, Yoon S, Dreissen G, Hoffmann B, Merkel R, Windoffer R, Leube RE. Regulation of keratin network dynamics by the mechanical properties of the environment in migrating cells. Sci Rep 2020; 10:4574. [PMID: 32165652 PMCID: PMC7067805 DOI: 10.1038/s41598-020-61242-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/24/2020] [Indexed: 01/19/2023] Open
Abstract
Keratin intermediate filaments provide mechanical resilience for epithelia. They are nevertheless highly dynamic and turn over continuously, even in sessile keratinocytes. The aim of this study was to characterize and understand how the dynamic behavior of the keratin cytoskeleton is integrated in migrating cells. By imaging human primary keratinocytes producing fluorescent reporters and by using standardized image analysis we detect inward-directed keratin flow with highest rates in the cell periphery. The keratin flow correlates with speed and trajectory of migration. Changes in fibronectin-coating density and substrate stiffness induces concordant changes in migration speed and keratin flow. When keratinocytes are pseudo-confined on stripes, migration speed and keratin flow are reduced affecting the latter disproportionately. The regulation of keratin flow is linked to the regulation of actin flow. Local speed and direction of keratin and actin flow are very similar in migrating keratinocytes with keratin flow lagging behind actin flow. Conversely, reduced actin flow in areas of high keratin density indicates an inhibitory function of keratins on actin dynamics. Together, we propose that keratins enhance persistence of migration by directing actin dynamics and that the interplay of keratin and actin dynamics is modulated by matrix adhesions.
Collapse
Affiliation(s)
- Anne Pora
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Sungjun Yoon
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Georg Dreissen
- Institute of Biological Information Processing 2, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing 2, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
47
|
Paiva JS, Jorge PAS, Ribeiro RSR, Balmaña M, Campos D, Mereiter S, Jin C, Karlsson NG, Sampaio P, Reis CA, Cunha JPS. iLoF: An intelligent Lab on Fiber Approach for Human Cancer Single-Cell Type Identification. Sci Rep 2020; 10:3171. [PMID: 32081911 PMCID: PMC7035380 DOI: 10.1038/s41598-020-59661-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/16/2019] [Indexed: 01/30/2023] Open
Abstract
With the advent of personalized medicine, there is a movement to develop "smaller" and "smarter" microdevices that are able to distinguish similar cancer subtypes. Tumor cells display major differences when compared to their natural counterparts, due to alterations in fundamental cellular processes such as glycosylation. Glycans are involved in tumor cell biology and they have been considered to be suitable cancer biomarkers. Thus, more selective cancer screening assays can be developed through the detection of specific altered glycans on the surface of circulating cancer cells. Currently, this is only possible through time-consuming assays. In this work, we propose the "intelligent" Lab on Fiber (iLoF) device, that has a high-resolution, and which is a fast and portable method for tumor single-cell type identification and isolation. We apply an Artificial Intelligence approach to the back-scattered signal arising from a trapped cell by a micro-lensed optical fiber. As a proof of concept, we show that iLoF is able to discriminate two human cancer cell models sharing the same genetic background but displaying a different surface glycosylation profile with an accuracy above 90% and a speed rate of 2.3 seconds. We envision the incorporation of the iLoF in an easy-to-operate microchip for cancer identification, which would allow further biological characterization of the captured circulating live cells.
Collapse
Affiliation(s)
- Joana S Paiva
- INESC TEC - INESC Technology and Science, Porto, Portugal
- Physics and Astronomy Department, Faculty of Sciences, University of Porto, Porto, Portugal
- Faculty of Engineering, University of Porto, Porto, Portugal
| | - Pedro A S Jorge
- INESC TEC - INESC Technology and Science, Porto, Portugal
- Physics and Astronomy Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rita S R Ribeiro
- INESC TEC - INESC Technology and Science, Porto, Portugal
- Faculty of Engineering, University of Porto, Porto, Portugal
- 4DCell, Paris, France
| | - Meritxell Balmaña
- i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter Campus, 1030, Vienna, Austria
| | - Diana Campos
- i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Stefan Mereiter
- Faculty of Engineering, University of Porto, Porto, Portugal
- i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter Campus, 1030, Vienna, Austria
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Paula Sampaio
- i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Celso A Reis
- i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - João P S Cunha
- INESC TEC - INESC Technology and Science, Porto, Portugal.
- Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
48
|
Force-dependent extracellular matrix remodeling by early-stage cancer cells alters diffusion and induces carcinoma-associated fibroblasts. Biomaterials 2020; 234:119756. [PMID: 31954229 DOI: 10.1016/j.biomaterials.2020.119756] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
It is known cancer cells secrete cytokines inducing normal fibroblasts (NFs) to become carcinoma-associated fibroblasts (CAFs). However, it is not clear how the CAF-promoting cytokines can effectively navigate the dense ECM, a diffusion barrier, in the tumor microenvironment to reach NFs during the early stages of cancer development. In this study, we devised a 3D coculture system to investigate the possible mechanism of CAF induction at early stages of breast cancer. We found that in a force-dependent manner, ECM fibrils are radially aligned relative to the tumor spheroid. The fibril alignment enhances the diffusion of exosomes containing CAF-promoting cytokines towards NFs. Suppression of force generation or ECM remodeling abolishes the enhancement of exosome diffusion and the subsequent CAF induction. In summary, our finding suggests that early-stage, pre-metastatic cancer cells can generate high forces to align the ECM fibrils, thereby enhancing the diffusion of CAF-promoting exosomes to reach the stroma and induce CAFs.
Collapse
|
49
|
Tu-Sekine B, Padhi A, Jin S, Kalyan S, Singh K, Apperson M, Kapania R, Hur SC, Nain A, Kim SF. Inositol polyphosphate multikinase is a metformin target that regulates cell migration. FASEB J 2019; 33:14137-14146. [PMID: 31657647 DOI: 10.1096/fj.201900717rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metformin has been shown to alter cell adhesion protein expression, which is thought to play a role in its observed antitumor properties. We found that metformin treatment down-regulated integrin β1 concomitant with the loss of inositol polyphosphate multikinase (IPMK) in murine myocytes, adipocytes, and hepatocytes. To determine if IPMK was upstream of integrin β1 expression, we examined IPMK-/- mouse embryonic fibroblast cells and found that integrins β1 and β3 gene expression was reduced by half, relative to wild-type cells, whereas focal adhesion kinase (FAK) activity and Rho/Rac/Cdc42 protein levels were increased, resulting in migration defects. Using nanonet force microscopy, we determined that cell:extracellular matrix adhesion and cell contractility forces were decreased, confirming the functional relevance of integrin and Rho protein dysregulation. Pharmacological studies showed that inhibition of both FAK1 and proline-rich tyrosine kinase 2 partially restored integrin β1 expression, suggesting negative regulation of integrin β1 by FAK. Together our data indicate that IPMK participates in the regulation of cell migration and provides a potential link between metformin and wound healing impairment.-Tu-Sekine, B., Padhi, A., Jin, S., Kalyan, S., Singh, K., Apperson, M., Kapania, R., Hur, S. C., Nain, A., Kim, S. F. Inositol polyphosphate multikinase is a metformin target that regulates cell migration.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abinash Padhi
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sunghee Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Srivathsan Kalyan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karanpreet Singh
- Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Matthew Apperson
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Rakesh Kapania
- Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amrinder Nain
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
50
|
Chandorkar Y, Castro Nava A, Schweizerhof S, Van Dongen M, Haraszti T, Köhler J, Zhang H, Windoffer R, Mourran A, Möller M, De Laporte L. Cellular responses to beating hydrogels to investigate mechanotransduction. Nat Commun 2019; 10:4027. [PMID: 31492837 PMCID: PMC6731269 DOI: 10.1038/s41467-019-11475-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/11/2019] [Indexed: 12/31/2022] Open
Abstract
Cells feel the forces exerted on them by the surrounding extracellular matrix (ECM) environment and respond to them. While many cell fate processes are dictated by these forces, which are highly synchronized in space and time, abnormal force transduction is implicated in the progression of many diseases (muscular dystrophy, cancer). However, material platforms that enable transient, cyclic forces in vitro to recreate an in vivo-like scenario remain a challenge. Here, we report a hydrogel system that rapidly beats (actuates) with spatio-temporal control using a near infra-red light trigger. Small, user-defined mechanical forces (~nN) are exerted on cells growing on the hydrogel surface at frequencies up to 10 Hz, revealing insights into the effect of actuation on cell migration and the kinetics of reversible nuclear translocation of the mechanosensor protein myocardin related transcription factor A, depending on the actuation amplitude, duration and frequency.
Collapse
Affiliation(s)
- Yashoda Chandorkar
- DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstr. 50, Aachen, 52074, Germany
| | - Arturo Castro Nava
- DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstr. 50, Aachen, 52074, Germany
| | - Sjören Schweizerhof
- DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstr. 50, Aachen, 52074, Germany
| | - Marcel Van Dongen
- DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstr. 50, Aachen, 52074, Germany
| | - Tamás Haraszti
- DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstr. 50, Aachen, 52074, Germany
| | - Jens Köhler
- DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstr. 50, Aachen, 52074, Germany
| | - Hang Zhang
- DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstr. 50, Aachen, 52074, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, Uniklinik, RWTH Aachen University, Aachen, 52074, Germany
| | - Ahmed Mourran
- DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstr. 50, Aachen, 52074, Germany
| | - Martin Möller
- DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstr. 50, Aachen, 52074, Germany
| | - Laura De Laporte
- DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstr. 50, Aachen, 52074, Germany.
- ITMC- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, 52074, Germany.
| |
Collapse
|