1
|
Park H, Kam TI, Dawson VL, Dawson TM. α-Synuclein pathology as a target in neurodegenerative diseases. Nat Rev Neurol 2025; 21:32-47. [PMID: 39609631 DOI: 10.1038/s41582-024-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
α-Synuclein misfolds into pathological forms that lead to various neurodegenerative diseases known collectively as α-synucleinopathies. In this Review, we provide a comprehensive overview of pivotal advances in α-synuclein research. We examine structural features and physiological functions of α-synuclein and summarize current insights into key post-translational modifications, such as nitration, phosphorylation, ubiquitination, sumoylation and truncation, considering their contributions to neurodegeneration. We also highlight the existence of disease-specific α-synuclein strains and their mechanisms of pathological spread, and discuss seed amplification assays and PET tracers as emerging diagnostic tools for detecting pathological α-synuclein in clinical settings. We also discuss α-synuclein aggregation and clearance mechanisms, and review cell-autonomous and non-cell-autonomous processes that contribute to neuronal death, including the roles of adaptive and innate immunity in α-synuclein-driven neurodegeneration. Finally, we highlight promising therapeutic approaches that target pathological α-synuclein and provide insights into emerging areas of research.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Bellini G, D'Antongiovanni V, Palermo G, Antonioli L, Fornai M, Ceravolo R, Bernardini N, Derkinderen P, Pellegrini C. α-Synuclein in Parkinson's Disease: From Bench to Bedside. Med Res Rev 2024. [PMID: 39704040 DOI: 10.1002/med.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
α-Synuclein (α-syn), a pathological hallmark of PD, is emerging as a bridging element at the crossroads between neuro/immune-inflammatory responses and neurodegeneration in PD. Several evidence show that pathological α-syn accumulates in neuronal and non-neuronal cells (i.e., neurons, microglia, macrophages, skin cells, and intestinal cells) in central and peripheral tissues since the prodromal phase of the disease, contributing to brain pathology. Indeed, pathological α-syn deposition can promote neurogenic/immune-inflammatory responses that contribute to systemic and central neuroinflammation associated with PD. After providing an overview of the structure and functions of physiological α-syn as well as its pathological forms, we review current studies about the role of neuronal and non-neuronal α-syn at the crossroads between neuroinflammation and neurodegeneration in PD. In addition, we provide an overview of the correlation between the accumulation of α-syn in central and peripheral tissues and PD, related symptoms, and neuroinflammation. Special attention was paid to discussing whether targeting α-syn can represent a suitable therapeutical approach for PD.
Collapse
Affiliation(s)
- Gabriele Bellini
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Neurology, The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone Health, New York City, New York, USA
| | - Vanessa D'Antongiovanni
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pascal Derkinderen
- Department of Neurology, Nantes Université, CHU Nantes, INSERM, Nantes, France
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Ma L, Liu Y, Ren Y, Mi N, Fang J, Bao R, Xu X, Zhang H, Tang Y. Integrating bioinformatics and machine learning to uncover lncRNA LINC00269 as a key regulator in Parkinson's disease via pyroptosis pathways. Eur J Med Res 2024; 29:582. [PMID: 39696629 DOI: 10.1186/s40001-024-02201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pyroptosis, a specific type of programmed cell death, which has become a significant factor to Parkinson's disease (PD). Concurrently, long non-coding RNAs (lncRNAs) have garnered attention for their regulatory roles in neurodegenerative disorders. This study was designed to ascertain the key lncRNAs in pyroptosis pathways of PD and elucidate their regulatory mechanisms. METHODS Employing a combination of bioinformatics and machine learning, we analyzed PD data sets GSE133347 and GSE110716. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) recognized different lncRNAs. Through various algorithms such as Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Weighted Gene Co-expression Network Analysis (WGCNA), we recognized LINC01606 and LINC00269, which are key factors during the emergence and development of PD. Furthermore, experimental validation was conducted in PD mouse models to confirm these bioinformatics findings. RESULTS The analysis showed that there were a large number of apoptosis-related gene expression changes in Parkinson's syndrome, for example, CASP1 and GSDME were up-regulated, and CASP9 and AIM2 were down-regulated. Among the lncRNAs, LINC01606 and LINC00269 were identified as potential modulators of pyroptosis. Notably, LINC00269 was observed to be significantly downregulated in the brain tissues of a PD mouse model, supporting its involvement in PD. The study also highlighted potential interactions of these lncRNAs with genes like ONECUT2, PRLR, CTNNA3, and LRP2. CONCLUSIONS This study identifies LINC00269 as a potential contributor to pyroptosis pathways in PD. While further investigation is required to fully elucidate its role, these findings provide new insights into PD pathogenesis and suggest potential avenues for future research on diagnostic and therapeutic targets. The study underscores the importance of integrating bioinformatics with experimental validation in neurodegenerative disease research.
Collapse
Affiliation(s)
- LiLi Ma
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Number 23, You Zheng Street, Nan Gang District, Harbin, 150001, Heilongjiang Province, China
- Department of Neurology, Jilin City Hospital of Chemical Industry, Jilin City, Jilin, China
| | - Yue Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Yajing Ren
- School of Medical and Life Sciences, Chengdu University of TCM, Cheng du City, 611137, Sichuan Province, China
| | - Na Mi
- Department of Neurology, Chi Feng Municipal Hospital, Chi Feng City, 024000, Inner Mongolia Autonomous Region, China
| | - Jing Fang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Rui Bao
- Department of Rehabilitation, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Xiuzhi Xu
- General Medical Department, Heilongjiang Provincial Hospital, Harbin, 150036, Heilongjiang Province, China
| | - Hongjia Zhang
- Department of Neurology, Jilin City Hospital of Chemical Industry, Jilin City, Jilin, China.
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Number 23, You Zheng Street, Nan Gang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
4
|
Kloske CM, Mahinrad S, Barnum CJ, Batista AF, Bradshaw EM, Butts B, Carrillo MC, Chakrabarty P, Chen X, Craft S, Da Mesquita S, Dabin LC, Devanand D, Duran-Laforet V, Elyaman W, Evans EE, Fitzgerald-Bocarsly P, Foley KE, Harms AS, Heneka MT, Hong S, Huang YWA, Jackvony S, Lai L, Guen YL, Lemere CA, Liddelow SA, Martin-Peña A, Orr AG, Quintana FJ, Ramey GD, Rexach JE, Rizzo SJS, Sexton C, Tang AS, Torrellas JG, Tsai AP, van Olst L, Walker KA, Wharton W, Tansey MG, Wilcock DM. Advancements in Immunity and Dementia Research: Highlights from the 2023 AAIC Advancements: Immunity Conference. Alzheimers Dement 2024. [PMID: 39692624 DOI: 10.1002/alz.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 12/19/2024]
Abstract
The immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated. In March of 2023, the Alzheimer's Association convened the Alzheimer's Association International Conference (AAIC), Advancements: Immunity, to discuss the roles of the immune system in ADRD. A wide range of topics were discussed, such as animal models that replicate human pathology, immune-related biomarkers and clinical trials, and lessons from other fields describing immune responses in neurodegeneration. This manuscript presents highlights from the conference and outlines avenues for future research on the roles of immunity in neurodegenerative disorders. HIGHLIGHTS: The immune system plays a central role in the pathogenesis of Alzheimer's disease. The immune system exerts numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The 2023 AAIC, Advancements: Immunity, encouraged discussions and collaborations on understanding the role of the immune system.
Collapse
Affiliation(s)
| | | | | | - Andre F Batista
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth M Bradshaw
- Department of Neurology, The Carol and Gene Ludwig Center for Research on Neurodegeneration, Division of Translational Neurobiology, Columbia University, New York, New York, USA
| | | | | | - Paramita Chakrabarty
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, Florida, USA
| | - Xiaoying Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne Craft
- Alzheimer's Disease Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Luke C Dabin
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Violeta Duran-Laforet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Wassim Elyaman
- Department of Neurology, Division of Translational Neurobiology, Columbia University Irving Medical Center, New York, New York, USA
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Kate E Foley
- Department of Neurology, Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| | - Ashley S Harms
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, Massachusetts, USA
| | - Soyon Hong
- UK Dementia Research Institute at University College London, Institute of Neurology, London, UK
| | | | - Stephanie Jackvony
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Neuroscience Graduate Program, Weill Cornell Medicine, New York, New York, USA
| | - Laijun Lai
- University of Connecticut, Storrs, Connecticut, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California, USA
- Department of Medicine, Quantitative Sciences Unit, Stanford University School of Medicine, Palo Alto, California, USA
| | - Cynthia A Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shane A Liddelow
- Departments of Neuroscience & Physiology and Ophthalmology, Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - Alfonso Martin-Peña
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Neuroscience Graduate Program, Weill Cornell Medicine, New York, New York, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Gene Lay Institute for Immunology and Inflammation, Boston, Massachusetts, USA
- The Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Grace D Ramey
- Biological and Medical Informatics PhD Program, University of California San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, USA
| | - Jessica E Rexach
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Stacey J S Rizzo
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Alice S Tang
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, San Francisco, California, USA
| | - Jose G Torrellas
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA
| | - Andy P Tsai
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA
| | - Lynn van Olst
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA) Intramural Research Program, Baltimore, Maryland, USA
| | | | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, Gainesville, Florida, USA
| | - Donna M Wilcock
- Department of Neurology, Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Kumar V, Kumar P. Pathophysiological role of high mobility group box-1 signaling in neurodegenerative diseases. Inflammopharmacology 2024:10.1007/s10787-024-01595-9. [PMID: 39546221 DOI: 10.1007/s10787-024-01595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Nucleocytoplasmic translocation of HMGB1 (high mobility group box-1) plays a significant role in disease progression. Several methods contribute to the translocation of HMGB1 from the nucleus to the cytoplasm, including inflammasome activation, TNF-α signaling, CRM1-mediated transport, reactive oxygen species (ROS), JAK/STAT pathway, RIP3-mediated p53 involvement, XPO-1-mediated transport, and calcium-dependent mechanisms. Due to its diverse functions at various subcellular locations, HMGB1 has been identified as a crucial factor in several Central Nervous System (CNS) disorders, including Huntington's disease (HD), Parkinson's disease (PD), and Alzheimer's disease (AD). HMGB1 displays a wide array of roles in the extracellular environment as it interacts with several receptors, including CXCR4, TLR2, TLR4, TLR8, and RAGE, by engaging in these connections, HMGB1 can effectively regulate subsequent signaling pathways, hence exerting an impact on the progression of brain disorders through neuroinflammation. Therefore, focusing on treating neuroinflammation could offer a common therapeutic strategy for several disorders. The objective of the current literature is to demonstrate the pathological role of HMGB1 in various neurological disorders. This review also offers insights into numerous therapeutic targets that promise to advance multiple treatments intended to alleviate brain illnesses.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
6
|
Harackiewicz O, Grembecka B. The Role of Microglia and Astrocytes in the Pathomechanism of Neuroinflammation in Parkinson's Disease-Focus on Alpha-Synuclein. J Integr Neurosci 2024; 23:203. [PMID: 39613467 DOI: 10.31083/j.jin2311203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024] Open
Abstract
Glial cells, including astrocytes and microglia, are pivotal in maintaining central nervous system (CNS) homeostasis and responding to pathological insults. This review elucidates the complex immunomodulatory functions of glial cells, with a particular focus on their involvement in inflammation cascades initiated by the accumulation of alpha-synuclein (α-syn), a hallmark of Parkinson's disease (PD). Deriving insights from studies on both sporadic and familial forms of PD, as well as animal models of PD, we explore how glial cells contribute to the progression of inflammation triggered by α-syn aggregation. Additionally, we analyze the interplay between glial cells and the blood-brain barrier (BBB), highlighting the role of these cells in maintaining BBB integrity and permeability in the context of PD pathology. Furthermore, we delve into the potential activation of repair and neuroprotective mechanisms mediated by glial cells amidst α-syn-induced neuroinflammation. By integrating information on sporadic and familial PD, as well as BBB dynamics, this review aims to deepen our understanding of the multifaceted interactions between glial cells, α-syn pathology, and CNS inflammation, thereby offering valuable insights into therapeutic strategies for PD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Oliwia Harackiewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
7
|
Yang G, Zhang B, Xu CY, Wu JW, Zhang Y, Yu Y, He XG, Dou J. Utilizing Machine Learning to Identify Biomarkers of Endoplasmic Reticulum Stress and Analyze Immune Cell Infiltration in Parkinson's Disease. Mol Neurobiol 2024; 61:8544-8551. [PMID: 38521829 DOI: 10.1007/s12035-024-03948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 03/25/2024]
Abstract
The neurodegenerative disorder known as Parkinson's disease (PD) affects many people. The objective of this investigation was to examine the relationship between immune system infiltration, ATP-binding cassette transporter subfamily A member 7 (ABCA7) and TBL2 as well as potential therapeutic targets for the identification of PD associated to endoplasmic reticulum (ER) stress. First, we obtained PD data through GEO and divided it into two sets: a training set (GSE8397) plus a set for validation (GSE7621). Functional enrichment analysis was performed on a set of DEGs that overlapped with genes involved in endoplasmic reticulum stress. To identify genes of PD linked with endoplasmic reticulum stress, we employed random forest (RF) along with the least absolute shrinkage and selection operator (LASSO) logistic regression. Spearman's rank correlation analysis was then used to find associations among diagnostic markers with immune cell penetration. A grand total of 2 stress-related endoplasmic reticulum signature transcripts were identified. ABCA7 and TBL2 were shown to have diagnostic potential for PD and immune infiltrating cells have a role in the etiology of the disease. Additionally, resting CD4 memory, plasma cells, and NK cells overall exhibited positive associations with ABCA7, whereas triggered macrophages, T cells with active CD4 memory, activating NK cells, T cells with activated CD4 naive, engaged NK cells, and neutrophils all had adverse interactions with ABCA7. Overall, ABCA7 together with TBL2 have diagnostic utility for PD, and several types of immune cells, especially macrophages, may be involved in the development and progression of the disease.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Bing Zhang
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Chun Yang Xu
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Jia Wen Wu
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yi Zhang
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yue Yu
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Xiao Gang He
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.
| | - Jun Dou
- Children's Hospital Affiliated to Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Lu J, Wu K, Sha X, Lin J, Chen H, Yu Z. TRPV1 alleviates APOE4-dependent microglial antigen presentation and T cell infiltration in Alzheimer's disease. Transl Neurodegener 2024; 13:52. [PMID: 39468688 PMCID: PMC11520887 DOI: 10.1186/s40035-024-00445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/17/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Persistent innate and adaptive immune responses in the brain contribute to the progression of Alzheimer's disease (AD). APOE4, the most important genetic risk factor for sporadic AD, encodes apolipoprotein E4, which by itself is a potent modulator of immune response. However, little is known about the immune hub that governs the crosstalk between the nervous and the adaptive immune systems. Transient receptor potential vanilloid type 1 (TRPV1) channel is a ligand-gated, nonselective cation channel with Ca2+ permeability, which has been proposed as a neuroprotective target in AD. METHODS Using Ca2+-sensitive dyes, dynamic changes of Ca2+ in microglia were measured, including exogenous Ca2+ uptake and endoplasmic reticulum Ca2+ release. The mRFP-GFP-tagged LC3 plasmid was expressed in microglia to characterize the role of TRPV1 in the autophagic flux. Transcriptomic analyses and flow cytometry were performed to investigate the effects of APOE4 on brain microglia and T cells from APOE-targeted replacement mice with microglia-specific TRPV1 gene deficiency. RESULTS Both APOE4 microglia derived from induced pluripotent stem cells of AD patients and APOE4-related tauopathy mouse model showed significantly increased cholesterol biosynthesis and accumulation compared to their APOE3 counterparts. Further, cholesterol dysregulation was associated with persistent activation of microglia and elevation of major histocompatibility complex II-dependent antigen presentation in microglia, subsequently accompanied by T cell infiltration. In addition, TRPV1-mediated transient Ca2+ influx mitigated cholesterol biosynthesis in microglia by suppressing the transcriptional activation of sterol regulatory element-binding protein 2, promoted autophagic activity and reduced lysosomal cholesterol accumulation, which were sufficient to resolve excessive immune response and neurodegeneration in APOE4-related tauopathy mouse model. Moreover, microglia-specific deficiency of TRPV1 gene accelerated glial inflammation, T cell response and associated neurodegeneration in an APOE4-related tauopathy mouse model. CONCLUSIONS The findings provide new perspectives for the treatment of APOE4-dependent neurodegeneration including AD.
Collapse
Affiliation(s)
- Jia Lu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kexin Wu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xudong Sha
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
9
|
Xie F, Shen B, Luo Y, Zhou H, Xie Z, Zhu S, Wei X, Chang Z, Zhu Z, Ding C, Jin K, Yang C, Batzu L, Chaudhuri KR, Chan LL, Tan EK, Wang Q. Repetitive transcranial magnetic stimulation alleviates motor impairment in Parkinson's disease: association with peripheral inflammatory regulatory T-cells and SYT6. Mol Neurodegener 2024; 19:80. [PMID: 39456006 PMCID: PMC11515224 DOI: 10.1186/s13024-024-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been used to treat various neurological disorders. However, the molecular mechanism underlying the therapeutic effect of rTMS on Parkinson's disease (PD) has not been fully elucidated. Neuroinflammation like regulatory T-cells (Tregs) appears to be a key modulator of disease progression in PD. If rTMS affects the peripheral Tregs in PD remains unknown. METHODS Here, we conducted a prospective clinical study (Chinese ClinicalTrials. gov: ChiCTR 2100051140) involving 54 PD patients who received 10-day rTMS (10 Hz) stimulation on the primary motor cortex (M1) region or sham treatment. Clinical and function assessment as well as flow cytology study were undertaken in 54 PD patients who were consecutively recruited from the department of neurology at Zhujiang hospital between September 2021 and January 2022. Subsequently, we implemented flow cytometry analysis to examine the Tregs population in spleen of MPTP-induced PD mice that received rTMS or sham treatment, along with quantitative proteomic approach reveal novel molecular targets for Parkinson's disease, and finally, the RNA interference method verifies the role of these new molecular targets in the treatment of PD. RESULTS We demonstrated that a 10-day rTMS treatment on the M1 motor cortex significantly improved motor dysfunction in PD patients. The beneficial effects persisted for up to 40 days, and were associated with an increase in peripheral Tregs. There was a positive correlation between Tregs and motor improvements in PD cases. Similarly, a 10-day rTMS treatment on the brains of MPTP-induced PD mice significantly ameliorated motor symptoms. rTMS reversed the downregulation of circulating Tregs and tyrosine hydroxylase neurons in these mice. It also increased anti-inflammatory mediators, deactivated microglia, and decreased inflammatory cytokines. These effects were blocked by administration of a Treg inhibitor anti-CD25 antibody in MPTP-induced PD mice. Quantitative proteomic analysis identified TLR4, TH, Slc6a3 and especially Syt6 as the hub node proteins related to Tregs and rTMS therapy. Lastly, we validated the role of Treg and rTMS-related protein syt6 in MPTP mice using the virus interference method. CONCLUSIONS Our clinical and experimental studies suggest that rTMS improves motor function by modulating the function of Tregs and suppressing toxic neuroinflammation. Hub node proteins (especially Syt6) may be potential therapeutic targets. TRIAL REGISTRATION Chinese ClinicalTrials, ChiCTR2100051140. Registered 15 December 2021, https://www.chictr.org.cn/bin/project/edit?pid=133691.
Collapse
Affiliation(s)
- Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bibiao Shen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Chengwu Yang
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, T. H. Chan School of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Lucia Batzu
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Ling-Ling Chan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
10
|
Dou L, Xu Z, Xu J, Su C, Pieper AA, Zhu X, Leverenz JB, Wang F, Cummings J, Cheng F. A network-based systems genetics framework identifies pathobiology and drug repurposing in Parkinson's disease. RESEARCH SQUARE 2024:rs.3.rs-4869009. [PMID: 39483867 PMCID: PMC11527220 DOI: 10.21203/rs.3.rs-4869009/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. However, current treatments are directed at symptoms and lack ability to slow or prevent disease progression. Large-scale genome-wide association studies (GWAS) have identified numerous genomic loci associated with PD, which may guide the development of disease-modifying treatments. We presented a systems genetics approach to identify potential risk genes and repurposable drugs for PD. First, we leveraged non-coding GWAS loci effects on multiple human brain-specific quantitative trait loci (xQTLs) under the protein-protein interactome (PPI) network. We then prioritized a set of PD likely risk genes (pdRGs) by integrating five types of molecular xQTLs: expression (eQTLs), protein (pQTLs), splicing (sQTLs), methylation (meQTLs), and histone acetylation (haQTLs). We also integrated network proximity-based drug repurposing and patient electronic health record (EHR) data observations to propose potential drug candidates for PD treatments. We identified 175 pdRGs from QTL-regulated GWAS findings, such as SNCA, CTSB, LRRK2, DGKQ, CD38 and CD44. Multi-omics data validation revealed that the identified pdRGs are likely to be druggable targets, differentially expressed in multiple cell types and impact both the parkin ubiquitin-proteasome and alpha-synuclein (a-syn) pathways. Based on the network proximity-based drug repurposing followed by EHR data validation, we identified usage of simvastatin as being significantly associated with reduced incidence of PD (fall outcome: hazard ratio (HR) = 0.91, 95% confidence interval (CI): 0.87-0.94; for dementia outcome: HR = 0.88, 95% CI: 0.86-0.89), after adjusting for 267 covariates. Our network-based systems genetics framework identifies potential risk genes and repurposable drugs for PD and other neurodegenerative diseases if broadly applied.
Collapse
Affiliation(s)
- Lijun Dou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhenxin Xu
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Jielin Xu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chang Su
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Andrew A. Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - James B. Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, Nevada 89154, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
12
|
Xiong LL, Du RL, Niu RZ, Xue LL, Chen L, Huangfu LR, Cai XX, He XY, Huang J, Huang XY, Liu J, Yu CY, Wang WY, Wang TH. Single-cell RNA sequencing reveals peripheral immunological features in Parkinson's Disease. NPJ Parkinsons Dis 2024; 10:185. [PMID: 39366969 PMCID: PMC11452393 DOI: 10.1038/s41531-024-00790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/27/2024] [Indexed: 10/06/2024] Open
Abstract
Although many researchers of Parkinson's disease (PD) have shifted their focus from the central nervous system (CNS) to the peripheral blood, a significant knowledge gap remains between PD severity and the peripheral immune response. In the current study, we aimed to map the peripheral immunity atlas in peripheral blood mononuclear cells (PBMCs) from PD patients and healthy controls using single-cell RNA sequencing (scRNA-seq). Our study employed scRNA-seq analysis to map the peripheral immunity atlas in PD by profiling PBMCs from PD-Early, PD-Late patients and matched controls. By enlarging the blood sample size, we validated the roles of NK cells in numerous immune-related biological processes. We also detected the infiltration of NK cells into the cerebral motor cortex as the disease progressed, using human brain sections, and elucidated the communication between the periphery and CNS and its implications for PD. As a result, cell subpopulation atlases in PBMCs from PD patients and healthy controls along with differentially expressed genes in NK cells were identified by scRNA-seq analysis, representing 6 major immune cell subsets among which NK cells declined in the progression of PD. We further validated NK cell reduction in increasing samples and found that they participated in numerous immune-related biological processes and infiltration into the cerebral motor cortex as the disease proceeded, evidencingd the close communication between the peripheral immune response and CNS. Strikingly, XCL2 positively correlated with PD severity, with good predictive performance of PD and specific expression in subclusters C2 and C5 of NK cells. All these findings delineated the critical role of peripheral immune response mediated by NK cells in the pathogenesis of PD. NK cell-specific XCL2 could be used as a diagnostic marker for treating PD. The indispensable function of NK cells and NK cell-specific molecular biomarkers highlighted the implication of the peripheral immune response in PD progression. Trial registration: ChiCTR, ChiCTR1900023975. Registered 20 June 2019 - Retrospectively registered, https://www.chictr.org.cn/showproj.html?proj=31035 .
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Ruo-Lan Du
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rui-Ze Niu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
- Mental Health Center of Kunming Medical University, Kunming, 650034, Yunnan, China
| | - Lu-Lu Xue
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Chen
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li-Ren Huangfu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiao-Xing Cai
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiu-Ying He
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Huang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xue-Yan Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wen-Yuan Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Roodveldt C, Bernardino L, Oztop-Cakmak O, Dragic M, Fladmark KE, Ertan S, Aktas B, Pita C, Ciglar L, Garraux G, Williams-Gray C, Pacheco R, Romero-Ramos M. The immune system in Parkinson's disease: what we know so far. Brain 2024; 147:3306-3324. [PMID: 38833182 PMCID: PMC11449148 DOI: 10.1093/brain/awae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Parkinson's disease is characterized neuropathologically by the degeneration of dopaminergic neurons in the ventral midbrain, the accumulation of α-synuclein (α-syn) aggregates in neurons and chronic neuroinflammation. In the past two decades, in vitro, ex vivo and in vivo studies have consistently shown the involvement of inflammatory responses mediated by microglia and astrocytes, which may be elicited by pathological α-syn or signals from affected neurons and other cell types, and are directly linked to neurodegeneration and disease development. Apart from the prominent immune alterations seen in the CNS, including the infiltration of T cells into the brain, more recent studies have demonstrated important changes in the peripheral immune profile within both the innate and adaptive compartments, particularly involving monocytes, CD4+ and CD8+ T cells. This review aims to integrate the consolidated understanding of immune-related processes underlying the pathogenesis of Parkinson's disease, focusing on both central and peripheral immune cells, neuron-glia crosstalk as well as the central-peripheral immune interaction during the development of Parkinson's disease. Our analysis seeks to provide a comprehensive view of the emerging knowledge of the mechanisms of immunity in Parkinson's disease and the implications of this for better understanding the overall pathogenesis of this disease.
Collapse
Affiliation(s)
- Cintia Roodveldt
- Centre for Molecular Biology and Regenerative Medicine-CABIMER, University of Seville-CSIC, Seville 41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville 41009, Spain
| | - Liliana Bernardino
- Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Ozgur Oztop-Cakmak
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Department of Molecular Biology and Endocrinology, ‘VINČA’ Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Kari E Fladmark
- Department of Biological Science, University of Bergen, 5006 Bergen, Norway
| | - Sibel Ertan
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur 15200, Turkey
| | - Carlos Pita
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Lucia Ciglar
- Center Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria
| | - Gaetan Garraux
- Movere Group, Faculty of Medicine, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580702, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia 7510156, Santiago, Chile
| | - Marina Romero-Ramos
- Department of Biomedicine & The Danish Research Institute of Translational Neuroscience—DANDRITE, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Han Z, Wang B, Wen YQ, Li YN, Feng CX, Ding XS, Shen Y, Yang Q, Gao L. Acteoside alleviates lipid peroxidation by enhancing Nrf2-mediated mitophagy to inhibit ferroptosis for neuroprotection in Parkinson's disease. Free Radic Biol Med 2024; 223:493-505. [PMID: 39048340 DOI: 10.1016/j.freeradbiomed.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Increasing evidence underscores the pivotal role of ferroptosis in Parkinson's Disease (PD) pathogenesis. Acteoside (ACT) has been reported to possess neuroprotective properties. However, the effects of ACT on ferroptosis and its molecular mechanisms remain unknown. This study aimed to explore whether ACT can regulate ferroptosis in dopaminergic (DA) neurons within both in vitro and in vivo PD models and to elucidate the underlying regulatory mechanisms. PD models were established and treated with various concentrations of ACT. Cell viability assays, Western blot, lipid peroxidation assessments, immunohistochemistry, and transmission electron microscopy were employed to confirm ACT's inhibition of ferroptosis and its protective effect on DA neurons across PD models. Immunofluorescence staining, MitoSOX staining, and confocal laser scanning microscopy further validated ACT's regulation regulatory effects on ferroptosis via the Nrf2-mitophagy pathway. Four animal behavioral tests were used to assess behavioral improvements in PD animals. ACT inhibited ferroptosis in PD models in vitro, as evidenced by increased cell viability, the upregulation of GPX4 and SLC7A11, reduced lipid peroxides, and attenuation of mitochondrial morphological alterations typical of ferroptosis. By activating the Nrf2-mitophagy axis, ACT enhanced mitochondrial integrity and reduced lipid peroxidation, mitigating ferroptosis. These in vitro results were consistent with in vivo findings, where ACT treatment significantly preserved DA neurons, curbed ferroptosis in these cells, and alleviated cognitive and behavioral deficits. This study is the first demonstration of ACT's capability to inhibit neuronal ferroptosis and protect DA neurons, thus alleviating behavioral and cognitive impairments in both in vitro and in vivo PD models. Furthermore, The suppression of ferroptosis by ACT is achieved through the activation of the Nrf2-mitophagy signaling pathway. Our results show that ACT is beneficial for both treating and preventing PD. They also offer novel therapeutic options for treating PD and molecular targets for regulating ferroptosis.
Collapse
Affiliation(s)
- Zheng Han
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Department of Neurosurgery, 967th Hospital of the PLA Joint Logistic Support Force, Dalian, Liaoning Province, 116021, China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Center for Frontier Medicine Innovation, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yu-Qi Wen
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yang-Ni Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Chen-Xi Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
15
|
Campagnolo M, Weis L, Sandre M, Tushevski A, Russo FP, Savarino E, Carecchio M, Stocco E, Macchi V, De Caro R, Parchi P, Bubacco L, Porzionato A, Antonini A, Emmi A. Immune landscape of the enteric nervous system differentiates Parkinson's disease patients from controls: The PADUA-CESNE cohort. Neurobiol Dis 2024; 200:106609. [PMID: 39048026 DOI: 10.1016/j.nbd.2024.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Gastrointestinal dysfunction has emerged as a prominent early feature of Parkinson's Disease, shedding new light on the pivotal role of the enteric nervous system in its pathophysiology. However, the role of immune-cell clusters and inflammatory and glial markers in the gut pathogenetic process needs further elucidation. OBJECTIVES We aimed to study duodenum tissue samples to characterize PD's enteric nervous system pathology further. Twenty patients with advanced PD, six with early PD, and 18 matched controls were included in the PADUA-CESNE cohort. METHODS Duodenal biopsies from 26 patients with early to advanced stage PD and 18 age-matched HCs were evaluated for the presence of surface markers (CD3+, CD4+, CD8+, CD20+, CD68+, HLA-DR), presence of misfolded alpha-synuclein and enteric glial alteration (GFAP). Correlation of immulogic pattern and clinical characteristic were analyzed. RESULTS The findings validate that in patients with Parkinson's Disease, the activation and reactive gliosis are linked to the neurodegeneration triggered by the presence of misfolded alpha-synuclein in the enteric nervous system. This process intensifies from the initial to the advanced stages of the disease. The clusters of T- and B-lymphocytes in the enteric system, along with the overall expression of HLA-DR in antigen-presenting cells, exceeded those in the control group. Conversely, no differences in terms of macrophage populations were found. CONCLUSIONS These findings broaden our understanding of the mechanisms underlying the enteric nervous system's involvement in PD and point to the gastrointestinal system as a potential therapeutic target, especially in the early stages of the disease. Moreover, our results propose a role of T- and B-lymphocytes in maintaining inflammation and ultimately influencing alpha-synuclein misfolding and aggregation.
Collapse
Affiliation(s)
- Marta Campagnolo
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy
| | - Luca Weis
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
| | - Michele Sandre
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
| | - Aleksandar Tushevski
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Edoardo Savarino
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Miryam Carecchio
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy
| | - Elena Stocco
- Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy; Department of Women's and Children's Health, University of Padova, Padova, Italy; Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Veronica Macchi
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy.
| | - Raffaele De Caro
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luigi Bubacco
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Department of Biology, University of Padova, Padova, Italy
| | - Andrea Porzionato
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Padua Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Aron Emmi
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy; Padua Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
16
|
Tastan B, Heneka MT. The impact of neuroinflammation on neuronal integrity. Immunol Rev 2024; 327:8-32. [PMID: 39470038 DOI: 10.1111/imr.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration. Thus, this review aims to provide a comprehensive overview of the multifaceted interactions among neurons and key inflammatory players, exploring mechanisms through which inflammation influences neuronal functionality and structural integrity in the CNS. Further, it will discuss how these inflammatory mechanisms lead to impairment in neuronal functions and architecture and highlight the consequences caused by dysregulated neuronal functions, such as cognitive dysfunction and mood disorders. By integrating insights from recent research findings, this review will enhance our understanding of the neuroinflammatory landscape and set the stage for future interventions that could transform current approaches to preserve neuronal integrity and function in CNS-related inflammatory conditions.
Collapse
Affiliation(s)
- Bora Tastan
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, Massachusetts, USA
| |
Collapse
|
17
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
18
|
Hong H, Wang Y, Menard M, Buckley JA, Zhou L, Volpicelli-Daley L, Standaert DG, Qin H, Benveniste EN. Suppression of the JAK/STAT pathway inhibits neuroinflammation in the line 61-PFF mouse model of Parkinson's disease. J Neuroinflammation 2024; 21:216. [PMID: 39218899 PMCID: PMC11368013 DOI: 10.1186/s12974-024-03210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of α-synuclein (α-Syn) into insoluble aggregates called Lewy pathology. The Line 61 α-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human α-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human α-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-α-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-α-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.
Collapse
Affiliation(s)
- Huixian Hong
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Yong Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Marissa Menard
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jessica A Buckley
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Laura Volpicelli-Daley
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA.
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA.
| |
Collapse
|
19
|
Freuchet A, Pinçon A, Sette A, Lindestam Arlehamn CS. Inflammation and heterogeneity in synucleinopathies. Front Immunol 2024; 15:1432342. [PMID: 39281666 PMCID: PMC11392857 DOI: 10.3389/fimmu.2024.1432342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Neurodegenerative diseases represent a huge healthcare challenge which is predicted to increase with an aging population. Synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), present complex challenges in understanding their onset and progression. They are characterized by the abnormal aggregation of α-synuclein in the brain leading to neurodegeneration. Accumulating evidence supports the existence of distinct subtypes based on the site of α-synuclein aggregation initiation, genetics, and, more recently, neuroinflammation. Mediated by both central nervous system-resident cells, peripheral immune cells, and gut dysbiosis, neuroinflammation appears as a key process in the onset and progression of neuronal loss. Sex-based differences add another layer of complexity to synucleinopathies, influencing disease prevalence - with a known higher incidence of PD in males compared to females - as well as phenotype and immune responses. Biological sex affects neuroinflammatory pathways and the immune response, suggesting the need for sex-specific therapeutic strategies and biomarker identification. Here, we review the heterogeneity of synucleinopathies, describing the etiology, the mechanisms by which the inflammatory processes contribute to the pathology, and the consideration of sex-based differences to highlight the need for personalized therapeutics.
Collapse
Affiliation(s)
- Antoine Freuchet
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Anaëlle Pinçon
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Master de Biologie, Ecole Normale Superieure de Lyon, University of Lyon, Lyon, France
| | - Alessandro Sette
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Cecilia S Lindestam Arlehamn
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
20
|
Bido S, Nannoni M, Muggeo S, Gambarè D, Ruffini G, Bellini E, Passeri L, Iaia S, Luoni M, Provinciali M, Giannelli SG, Giannese F, Lazarevic D, Gregori S, Broccoli V. Microglia-specific IL-10 gene delivery inhibits neuroinflammation and neurodegeneration in a mouse model of Parkinson's disease. Sci Transl Med 2024; 16:eadm8563. [PMID: 39167665 DOI: 10.1126/scitranslmed.adm8563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/23/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Neuroinflammation plays a key role in exacerbating dopaminergic neuron (DAN) loss in Parkinson's disease (PD). However, it remains unresolved how to effectively normalize this immune response given the complex interplay between the innate and adaptive immune responses occurring within a scarcely accessible organ like the brain. In this study, we uncovered a consistent correlation between neuroinflammation, brain parenchymal lymphocytes, and DAN loss among several commonly used mouse models of PD generated by a variety of pathological triggers. We validated a viral therapeutic approach for the microglia-specific expression of interleukin 10 (IL-10) to selectively mitigate the excessive inflammatory response. We found that this approach induced a local nigral IL-10 release that alleviated DAN loss in mice overexpressing the human SNCA gene in the substantia nigra. Single-cell transcriptomics revealed that IL-10 induced the emergence of a molecularly distinct microglial cell state, enriched in markers of cell activation with enhanced expression of prophagocytic pathways. IL-10 promoted microglial phagocytotic and clearance activities in vitro and reduced αSYN aggregate burden in the nigral area in mice overexpressing SNCA. Furthermore, IL-10 stimulated the differentiation of CD4+ T lymphocytes into active T regulatory cells and promoted inhibitory characteristics in CD8+ T cells. In summary, our results show that local and microglia-specific IL-10 transduction elicited strong immunomodulation in the nigral tissue with enhanced suppression of lymphocyte toxicity that was associated with DAN survival. These results offer insights into the therapeutic benefits of IL-10 and showcase a promising gene delivery approach that could minimize undesired side effects.
Collapse
Affiliation(s)
- Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Melania Nannoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diana Gambarè
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giorgia Ruffini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Iaia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Martino Provinciali
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Gea Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Giannese
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| |
Collapse
|
21
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
22
|
Clarke JR, Bacelar TS, Fernandes GG, Silva RCD, Antonio LS, Queiroz M, de Souza RV, Valadão LF, Ribeiro GS, De Lima EV, Colodeti LC, Mangeth LC, Wiecikowski A, da Silva TN, Paula-Neto HA, da Costa R, Cordeiro Y, Passos GF, Figueiredo CP. Abatacept inhibits Th17 differentiation and mitigates α-synuclein-induced dopaminergic dysfunction in mice. Mol Psychiatry 2024:10.1038/s41380-024-02618-1. [PMID: 39152331 DOI: 10.1038/s41380-024-02618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is a multifaceted disease characterized by degeneration of nigrostriatal dopaminergic neurons, which results in motor and non-motor dysfunctions. Accumulation of α-synuclein (αSYN) in Lewy bodies is a key pathological feature of PD. Although the exact cause of PD remains unknown, accumulating evidence suggests that brain infiltration of T cells plays a critical role in the pathogenesis of disease, contributing to neuroinflammation and dopaminergic neurodegeneration. Here, we used a mouse model of brain-infused aggregated αSYN, which recapitulates motor and non-motor dysfunctions seen in PD patients. We found that αSYN-induced motor dysfunction in mice is accompanied by an increased number of brain-residing Th17 (IL17+ CD4+) cells, but not CD8+ T cells. To evaluate whether the modulation of T cell response could rescue αSYN-induced damage, we chronically treated animals with abatacept (8 mg/kg, sc, 3x per week), a selective T-cell co-stimulation modulator. We found that abatacept treatment decreased Th1 (IFNƔ+ CD4+) and Th17 (IL17+ CD4+) cells in the brain, rescued motor function and prevented dopaminergic neuronal loss in αSYN-infused mice. These results highlight the significance of effector CD4+ T cells, especially Th17, in the progression of PD and introduce novel possibilities for repurposing immunomodulatory drugs used for arthritis as PD-modifying therapies.
Collapse
Affiliation(s)
- Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Thiago Sa Bacelar
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Raquel Costa da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leticia S Antonio
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Queiroz
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renata V de Souza
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leticia F Valadão
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel S Ribeiro
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emanuelle V De Lima
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Lilian C Colodeti
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana C Mangeth
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adalgisa Wiecikowski
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Talita N da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Heitor A Paula-Neto
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Robson da Costa
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yraima Cordeiro
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Giselle F Passos
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Claudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
23
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
24
|
Kong X, Xu L, Mou Z, Lyu W, Shan K, Wang L, Liu F, Rong F, Li J, Wei P. The anti-inflammatory effects of itaconate and its derivatives in neurological disorders. Cytokine Growth Factor Rev 2024; 78:37-49. [PMID: 38981775 DOI: 10.1016/j.cytogfr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Almost 16 % of the global population is affected by neurological disorders, including neurodegenerative and cerebral neuroimmune diseases, triggered by acute or chronic inflammation. Neuroinflammation is recognized as a common pathogenic mechanism in a wide array of neurological conditions including Alzheimer's disease, Parkinson's disease, postoperative cognitive dysfunction, stroke, traumatic brain injury, and multiple sclerosis. Inflammatory process in the central nervous system (CNS) can lead to neuronal damage and neuronal apoptosis, consequently exacerbating these diseases. Itaconate, an immunomodulatory metabolite from the tricarboxylic acid cycle, suppresses neuroinflammation and modulates the CNS immune response. Emerging human studies suggest that itaconate levels in plasma and cerebrospinal fluid may serve as biomarkers associated with inflammatory responses in neurological disorders. Preclinical studies have shown that itaconate and its highly cell-permeable derivatives are promising candidates for preventing and treating neuroinflammation-related neurological disorders. The underlying mechanism may involve the regulation of immune cells in the CNS and neuroinflammation-related signaling pathways and molecules including Nrf2/KEAP1 signaling pathway, reactive oxygen species, and NLRP3 inflammasome. Here, we introduce the metabolism and function of itaconate and the synthesis and development of its derivatives. We summarize the potential impact and therapeutic potential of itaconate and its derivatives on brain immune cells and the associated signaling pathways and molecules, based on preclinical evidence via various neurological disorder models. We also discuss the challenges and potential solutions for clinical translation to promote further research on itaconate and its derivatives for neuroinflammation-related neurological disorders.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Zheng Mou
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Kaiyue Shan
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Longfei Wang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fanghao Liu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China.
| |
Collapse
|
25
|
Arce-Sillas A, Álvarez-Luquín DD, Leyva-Hernández J, Montes-Moratilla E, Vivas-Almazán V, Pérez-Correa C, Rodríguez-Ortiz U, Espinosa-Cárdenas R, Fragoso G, Sciutto E, Adalid-Peralta L. Increased levels of regulatory T cells and IL-10-producing regulatory B cells are linked to improved clinical outcome in Parkinson's disease: a 1-year observational study. J Neural Transm (Vienna) 2024; 131:901-916. [PMID: 38822829 DOI: 10.1007/s00702-024-02790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Whilst the contribution of peripheral and central inflammation to neurodegeneration in Parkinson's disease and the role of the immune response in this disorder are well known, the effects of the anti-inflammatory response on the disease have not been described in depth. This study is aimed to assess the changes in the regulatory/inflammatory immune response in recently diagnosed, untreated PD patients and a year after. Twenty-one PD patients and 19 healthy controls were included and followed-up for 1 year. The levels of immunoregulatory cells (CD4+ Tregs, Bregs, and CD8+ Tregs); classical, nonclassical, and intermediate monocytes, and proinflammatory cells (Th1, Th2, and Th17) were measured by flow cytometry. Cytokine levels were determined by ELISA. Clinical follow-up was based on the Hoehn & Yahr and UDPRS scales. Our results indicate that the regulatory response in PD patients on follow-up was characterized by increased levels of active Tregs, functional Tregs, TR1, IL-10-producing functional Bregs, and IL-10-producing classical monocytes, along with decreased counts of Bregs and plasma cells. With respect to the proinflammatory immune response, peripheral levels of Th1 IFN-γ+ cells were decreased in treated PD patients, whilst the levels of CD4+ TBET+ cells, HLA-DR+ intermediate monocytes, IL-6, and IL-4 were increased after a 1-year follow-up. Our main finding was an increased regulatory T cell response after a 1-year follow-up and its link with clinical improvement in PD patients. In conclusion, after a 1-year follow-up, PD patients exhibited increased levels of regulatory populations, which correlated with clinical improvement. However, a persistent inflammatory environment and active immune response were observed.
Collapse
Affiliation(s)
- Asiel Arce-Sillas
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Diana Denisse Álvarez-Luquín
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Jaquelin Leyva-Hernández
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Esteban Montes-Moratilla
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Viridiana Vivas-Almazán
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Citzielli Pérez-Correa
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | | | - Raquel Espinosa-Cárdenas
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Laura Adalid-Peralta
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
- Instituto Nacional de Neurología y Neurocirugía, Mexico City, México.
| |
Collapse
|
26
|
Chen Z, Li W, Meng B, Xu C, Huang Y, Li G, Wen Z, Liu J, Mao Z. Neuronal-enriched small extracellular vesicles trigger a PD-L1-mediated broad suppression of T cells in Parkinson's disease. iScience 2024; 27:110243. [PMID: 39006478 PMCID: PMC11246066 DOI: 10.1016/j.isci.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Many clinical studies indicate a significant decrease of peripheral T cells in Parkinson's disease (PD). There is currently no mechanistic explanation for this important observation. Here, we found that small extracellular vesicles (sEVs) derived from in vitro and in vivo PD models suppressed IL-4 and INF-γ production from both purified CD4+ and CD8+ T cells and inhibited their activation and proliferation. Furthermore, neuronal-enriched sEVs (NEEVs) isolated from plasma of A53T-syn mice and culture media of human dopaminergic neurons carrying A53T-syn mutation also suppressed Th1 and Th2 differentiation of naive CD4+ T cells. Mechanistically, the suppressed phenotype induced by NEEVs was associated with altered programmed death ligand 1 (PD-L1) level in T cells. Blocking PD-L1 with an anti-PD-L1 antibody or a small molecule inhibitor BMS-1166 reversed T cell suppression. Our study provides the basis for exploring peripheral T cells in PD pathogenesis and as biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Zhichun Chen
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Wenming Li
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bo Meng
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chongchong Xu
- Departments of Psychiatry and Behavioral Sciences and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yiqi Huang
- The Graduate Program in Neuroscience, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zixu Mao
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Farris T, González-Ochoa S, Mohammed M, Rajakaruna H, Tonello J, Kanagasabai T, Korolkova O, Shimamoto A, Ivanova A, Shanker A. Loss of Mitochondrial Tusc2/Fus1 Triggers a Brain Pro-Inflammatory Microenvironment and Early Spatial Memory Impairment. Int J Mol Sci 2024; 25:7406. [PMID: 39000512 PMCID: PMC11242373 DOI: 10.3390/ijms25137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Brain pathological changes impair cognition early in disease etiology. There is an urgent need to understand aging-linked mechanisms of early memory loss to develop therapeutic strategies and prevent the development of cognitive impairment. Tusc2 is a mitochondrial-resident protein regulating Ca2+ fluxes to and from mitochondria impacting overall health. We previously reported that Tusc2-/- female mice develop chronic inflammation and age prematurely, causing age- and sex-dependent spatial memory deficits at 5 months old. Therefore, we investigated Tusc2-dependent mechanisms of memory impairment in 4-month-old mice, comparing changes in resident and brain-infiltrating immune cells. Interestingly, Tusc2-/- female mice demonstrated a pro-inflammatory increase in astrocytes, expression of IFN-γ in CD4+ T cells and Granzyme-B in CD8+T cells. We also found fewer FOXP3+ T-regulatory cells and Ly49G+ NK and Ly49G+ NKT cells in female Tusc2-/- brains, suggesting a dampened anti-inflammatory response. Moreover, Tusc2-/- hippocampi exhibited Tusc2- and sex-specific protein changes associated with brain plasticity, including mTOR activation, and Calbindin and CamKII dysregulation affecting intracellular Ca2+ dynamics. Overall, the data suggest that dysregulation of Ca2+-dependent processes and a heightened pro-inflammatory brain microenvironment in Tusc2-/- mice could underlie cognitive impairment. Thus, strategies to modulate the mitochondrial Tusc2- and Ca2+- signaling pathways in the brain should be explored to improve cognitive health.
Collapse
Affiliation(s)
- Tonie Farris
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Salvador González-Ochoa
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Muna Mohammed
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Harshana Rajakaruna
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| | - Jane Tonello
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Thanigaivelan Kanagasabai
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Olga Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Alla Ivanova
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
28
|
Zheng Y, Li Y, Cai H, Kou W, Yang C, Li S, Wang J, Zhang N, Feng T. Alterations of Peripheral Lymphocyte Subsets in Isolated Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2024; 39:1179-1189. [PMID: 38529776 DOI: 10.1002/mds.29798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Adaptive immune dysfunction may play a crucial role in Parkinson's disease (PD) development. Isolated rapid eye movement sleep behavior disorder (iRBD) represents the prodromal stage of synucleinopathies, including PD. Elucidating the peripheral adaptive immune system is crucial in iRBD, but current knowledge remains limited. OBJECTIVE This study aimed to characterize peripheral lymphocyte profiles in iRBD patients compared with healthy control subjects (HCs). METHODS This cross-sectional study recruited polysomnography-confirmed iRBD patients and age- and sex-matched HCs. Venous blood was collected from each participant. Flow cytometry was used to evaluate surface markers and intracellular cytokine production in peripheral blood mononuclear cells. RESULTS Forty-four iRBD patients and 36 HCs were included. Compared with HCs, patients with iRBD exhibited significant decreases in absolute counts of total lymphocytes and CD3+ T cells. In terms of T cell subsets, iRBD patients showed higher frequencies and counts of proinflammatory T helper 1 cells and INF-γ+ CD8+ T cells, along with lower frequencies and counts of anti-inflammatory T helper 2 cells. A significant increase in the frequency of central memory T cells in CD8+ T cells was also observed in iRBD. Regarding B cells, iRBD patients demonstrated reduced frequencies and counts of double-negative memory B cells compared with control subjects. CONCLUSIONS This study demonstrated alterations in the peripheral adaptive immune system in iRBD, specifically in CD4+ and INF-γ+ CD8+ T cell subsets. An overall shift toward a proinflammatory state of adaptive immunity was already evident in iRBD. These observations might provide insights into the optimal timing for initiating immune interventions in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yatong Li
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyi Kou
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
29
|
Thorp EB, Filipp M, Dima M, Tan C, Feinstein M, Popko B, DeBerge M. CCR2 + monocytes promote white matter injury and cognitive dysfunction after myocardial infarction. Brain Behav Immun 2024; 119:818-835. [PMID: 38735403 PMCID: PMC11574971 DOI: 10.1016/j.bbi.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Survivors of myocardial infarction are at increased risk for vascular dementia. Neuroinflammation has been implicated in the pathogenesis of vascular dementia, yet little is known about the cellular and molecular mediators of neuroinflammation after myocardial infarction. Using a mouse model of myocardial infarction coupled with flow cytometric analyses and immunohistochemistry, we discovered increased monocyte abundance in the brain after myocardial infarction, which was associated with increases in brain-resident perivascular macrophages and microglia. Myeloid cell recruitment and activation was also observed in post-mortem brains of humans that died after myocardial infarction. Spatial and single cell transcriptomic profiling of brain-resident myeloid cells after experimental myocardial infarction revealed increased expression of monocyte chemoattractant proteins. In parallel, myocardial infarction increased crosstalk between brain-resident myeloid cells and oligodendrocytes, leading to neuroinflammation, white matter injury, and cognitive dysfunction. Inhibition of monocyte recruitment preserved white matter integrity and cognitive function, linking monocytes to neurodegeneration after myocardial infarction. Together, these preclinical and clinical results demonstrate that monocyte infiltration into the brain after myocardial infarction initiate neuropathological events that lead to vascular dementia.
Collapse
Affiliation(s)
- Edward B Thorp
- Department of Pathology, Northwestern University, Chicago, IL, United States.
| | - Mallory Filipp
- Department of Pathology, Northwestern University, Chicago, IL, United States
| | - Maria Dima
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University, Chicago, IL, United States
| | - Chunfeng Tan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew Feinstein
- Department of Pathology, Northwestern University, Chicago, IL, United States; Department of Medicine, Division of Cardiology, Northwestern University, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University, Chicago, IL, United States
| | - Matthew DeBerge
- Department of Pathology, Northwestern University, Chicago, IL, United States; Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| |
Collapse
|
30
|
Yang Y, Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res 2024; 19:1463-1472. [PMID: 38051888 PMCID: PMC10883481 DOI: 10.4103/1673-5374.387967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/24/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson's disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of Lewy bodies in the brain, the pathological hallmark of Parkinson's disease. For decades, much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson's disease as a systemic disease. Recent evidence demonstrates that, at least in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation. In this review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson's disease. We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
31
|
Maurya SK, Borgonovo JE, Biswal S, Martínez-Cerdeño V, Mishra R, Muñoz EM. Editorial: Trends in neuroimmunology: cross-talk between brain-resident and peripheral immune cells in both health and disease. Front Immunol 2024; 15:1442322. [PMID: 39026666 PMCID: PMC11256089 DOI: 10.3389/fimmu.2024.1442322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Shashank K. Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Janina E. Borgonovo
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, and MIND Institute at the UC Davis Medical Center, University of California, Davis School of Medicine, Sacramento, CA, United States
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Estela M. Muñoz
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo (UNCuyo), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| |
Collapse
|
32
|
Balzano T, Del Rey NLG, Esteban-García N, Reinares-Sebastián A, Pineda-Pardo JA, Trigo-Damas I, Obeso JA, Blesa J. Neurovascular and immune factors of vulnerability of substantia nigra dopaminergic neurons in non-human primates. NPJ Parkinsons Dis 2024; 10:118. [PMID: 38886348 PMCID: PMC11183116 DOI: 10.1038/s41531-024-00735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Dopaminergic neurons in the ventral tier of the substantia nigra pars compacta (SNc) degenerate prominently in Parkinson's disease (PD), while those in the dorsal tier and ventral tegmental area are relatively spared. The factors determining why these neurons are more vulnerable than others are still unrevealed. Neuroinflammation and immune cell infiltration have been demonstrated to be a key feature of neurodegeneration in PD. However, the link between selective dopaminergic neuron vulnerability, glial and immune cell response, and vascularization and their interactions has not been deciphered. We aimed to investigate the contribution of glial cell activation and immune cell infiltration in the selective vulnerability of ventral dopaminergic neurons within the midbrain in a non-human primate model of PD. Structural characteristics of the vasculature within specific regions of the midbrain were also evaluated. Parkinsonian monkeys exhibited significant microglial and astroglial activation in the whole midbrain, but no major sub-regional differences were observed. Remarkably, the ventral substantia nigra was found to be typically more vascularized compared to other regions. This feature might play some role in making this region more susceptible to immune cell infiltration under pathological conditions, as greater infiltration of both T- and B- lymphocytes was observed in parkinsonian monkeys. Higher vascular density within the ventral region of the SNc may be a relevant factor for differential vulnerability of dopaminergic neurons in the midbrain. The increased infiltration of T- and B- cells in this region, alongside other molecules or toxins, may also contribute to the susceptibility of dopaminergic neurons in PD.
Collapse
Affiliation(s)
- Tiziano Balzano
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Natalia López-González Del Rey
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Noelia Esteban-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Alejandro Reinares-Sebastián
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Inés Trigo-Damas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | - José A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain.
| |
Collapse
|
33
|
Marin-Rodero M, Reyes EC, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a unique compartment of regulatory T cells that bulwarks adult hippocampal neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599387. [PMID: 38948783 PMCID: PMC11212874 DOI: 10.1101/2024.06.17.599387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Our knowledge about the meningeal immune system has recently burgeoned, particularly our understanding of how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains sparse. This study highlights the heterogeneous and polyfunctional regulatory-T (Treg) cell compartment in the meninges. A Treg subtype specialized in controlling Th1-cell responses and another known to control responses in B-cell follicles were substantial components of this compartment, foretelling that punctual Treg-cell ablation rapidly unleashed interferon-gamma production by meningeal lymphocytes, unlocked their access to the brain parenchyma, and altered meningeal B-cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial-cell types; within the dentate gyrus, neural stem cells showed exacerbated death and desisted from further differentiation, associated with inhibition of spatial-reference memory. Thus, meningeal Treg cells are a multifaceted bulwark to brain homeostasis at steady-state. One sentence summary A distinct population of regulatory T cells in the murine meninges safeguards homeostasis by keeping local interferon-γ-producing lymphocytes in check, thereby preventing their invasion of the parenchyma, activation of hippocampal glial cells, death of neural stem cells, and memory decay.
Collapse
|
34
|
Corbin-Stein NJ, Childers GM, Webster JM, Zane A, Yang YT, Ali MA, Sandoval IM, Manfredsson FP, Kordower JH, Tyrrell DJ, Harms AS. Tissue resident memory CD8+ T cells are present but not critical for demyelination and neurodegeneration in a mouse model of multiple system atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597035. [PMID: 38895456 PMCID: PMC11185520 DOI: 10.1101/2024.06.02.597035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Multiple system atrophy (MSA) is rare, fast progressing, and fatal synucleinopathy with alpha-synuclein (α-syn) inclusions located within oligodendroglia called glial cytoplasmic inclusions (GCI). Along with GCI pathology there is severe demyelination, neurodegeneration, and neuroinflammation. In post-mortem tissue, there is significant infiltration of CD8+ T cells into the brain parenchyma, however their role in disease progression is unknown. To determine the role of CD8+ T cells, a modified AAV, Olig001-SYN, was used to selectively overexpress α-syn in oligodendrocytes modeling MSA in mice. Four weeks post transduction, we observed significant CD8+ T cell infiltration into the striatum of Olig001-SYN transduced mice recapitulating the CD8+ T cell infiltration observed in post-mortem tissue. To understand the role of CD8+ T cells, a CD8 knockout mice were transduced with Olig001-SYN. Six months post transduction into a mouse lacking CD8+ T cells, demyelination and neurodegeneration were unchanged. Four weeks post transduction, neuroinflammation and demyelination were enhanced in CD8 knockout mice compared to wild type controls. Applying unbiased spectral flow cytometry, CD103+, CD69+, CD44+, CXCR6+, CD8+ T cells were identified when α-syn was present in oligodendrocytes, suggesting the presence of tissue resident memory CD8+ T (Trm) cells during MSA disease progression. This study indicates that CD8+ T cells are not critical in driving MSA pathology but are needed to modulate the neuroinflammation and demyelination response.
Collapse
Affiliation(s)
- Nicole J. Corbin-Stein
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Gabrielle M. Childers
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Jhodi M. Webster
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Asta Zane
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Ya-Ting Yang
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Md Akkas Ali
- University of Alabama at Birmingham, Department of Pathology and Division of Molecular and Cellular Pathology, Birmingham, AL
| | - Ivette M. Sandoval
- Barrow Neurological Institute, Department of Translational Neuroscience, Phoenix, AZ
| | | | - Jeffrey H. Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ
| | - Daniel J. Tyrrell
- University of Alabama at Birmingham, Department of Pathology and Division of Molecular and Cellular Pathology, Birmingham, AL
| | - Ashley S. Harms
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| |
Collapse
|
35
|
Wang X, Liu H, Li J, Jiang J, Li T. Association study of S100A9 gene polymorphisms with Parkinson's disease risk and age of disease onset. Acta Neurol Belg 2024; 124:919-925. [PMID: 38413479 DOI: 10.1007/s13760-024-02486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE Intestinal inflammation is associated with several neurodegenerative diseases, including Parkinson's disease (PD). Intestinal inflammation is also closely related to genetic and environmental factors. S100 calcium-binding protein A9 (S100A9) is also thought to be genetically associated with intestinal inflammation and PD risk. This study investigated the association between S100A9 gene polymorphisms and PD risk and age of disease onset. METHODS This study used a case-control method and included 242 PD patients and 242 healthy participants. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed. S100A9 expression in the serum of the patients and controls was detected using reverse transcription‑quantitative PCR (RT-qPCR). RESULTS The CC genotype and C allele of the rs3014866 polymorphism in S100A9 had significantly higher distribution in PD patients. The recessive and dominant models demonstrated that the patients carrying the rs3014866 C allele had a significantly increased risk of developing PD as compared with patients homozygous for the TT genotype. The generalized linear model results demonstrated that rs3014866 was associated with the age of disease onset independent of environmental exposure factors (smoking and toxins). Furthermore, the S100A9 mRNA transcription level in the patients' serum was significantly higher than that of the controls. Moreover, the serum of patients with the CC genotype had higher S100A9 expression levels. CONCLUSIONS The results combined the relationship between S100A9 and PD susceptibility and age of disease onset. The findings might suggest new ideas for PD clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xingqiong Wang
- School of Statistics, Renmin University of China, Beijing, 100000, China
| | - Hanxuan Liu
- Beijing Jinghua Anliang Technology Co., Ltd, Beijing, 100000, China
| | - Jian Li
- School of Statistics, Renmin University of China, Beijing, 100000, China
| | - Jingjing Jiang
- Clinical Biological Sample Center, Medical Innovation Research Division of Chinese, PLA General Hospital, Beijing, 100000, China
| | - Teng Li
- Department of Pain Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tinghua University, Beijing, 100000, China.
- Department of Pain Center, Xiamen Changgung Hospital, Xiamen, 361000, China.
| |
Collapse
|
36
|
Peng H, Wu L, Chen S, Wu S, Shi X, Ma J, Yang H, Li X. Lymphocyte antigen 96: A new potential biomarker and immune target in Parkinson's disease. Exp Gerontol 2024; 190:112415. [PMID: 38614225 DOI: 10.1016/j.exger.2024.112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Lymphocyte antigen 96 (LY96) plays an important role in innate immunity and has been reported to be associated with various neurological diseases. However, its role in Parkinson's disease (PD) remains unclear. METHODS Transcriptome data from a total of 49 patients with PD and 34 healthy controls were downloaded from the Gene Expression Omnibus (GEO) database to analyse the expression pattern of LY96 and its relationship with gene function and immune-related markers. In addition, peripheral blood samples were collected from clinical patients to validate LY96 mRNA expression levels. Finally, an in vitro cell model of PD based on highly differentiated SH-SY5Y cells was constructed, with small interfering RNA-silenced LY96 expression, and LY96 mRNA level, cell viability, flow cytometry, and mitochondrial membrane potential assays were performed. RESULTS The results of the analyses of the GEO database and clinical samples revealed significantly abnormally high LY96 expression in patients with PD compared with healthy controls. The results of cell experiments showed that inhibiting LY96 expression alleviated adverse cellular effects by increasing cell viability, reducing apoptosis, and reducing oxidative stress. Gene set enrichment analysis showed that LY96 was positively correlated with T1 helper cells, T2 helper cells, neutrophils, natural killer T cells, myeloid-derived suppressor cells, macrophages, and activated CD4 cells, and may participate in PD through natural killer cell-mediated cytotoxicity pathways and extracellular matrix receptor interaction pathways. CONCLUSION These findings suggested that LY96 might be a novel potential biomarker for PD, and offer insights into its immunoregulatory role.
Collapse
Affiliation(s)
- Haoran Peng
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Longyu Wu
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Shaopu Wu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xiaoxue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Jianjun Ma
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Hongqi Yang
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xue Li
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.
| |
Collapse
|
37
|
Galindo AN, Frey Rubio DA, Hettiaratchi MH. Biomaterial strategies for regulating the neuroinflammatory response. MATERIALS ADVANCES 2024; 5:4025-4054. [PMID: 38774837 PMCID: PMC11103561 DOI: 10.1039/d3ma00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/07/2024] [Indexed: 05/24/2024]
Abstract
Injury and disease in the central nervous system (CNS) can result in a dysregulated inflammatory environment that inhibits the repair of functional tissue. Biomaterials present a promising approach to tackle this complex inhibitory environment and modulate the mechanisms involved in neuroinflammation to halt the progression of secondary injury and promote the repair of functional tissue. In this review, we will cover recent advances in biomaterial strategies, including nanoparticles, hydrogels, implantable scaffolds, and neural probe coatings, that have been used to modulate the innate immune response to injury and disease within the CNS. The stages of inflammation following CNS injury and the main inflammatory contributors involved in common neurodegenerative diseases will be discussed, as understanding the inflammatory response to injury and disease is critical for identifying therapeutic targets and designing effective biomaterial-based treatment strategies. Biomaterials and novel composites will then be discussed with an emphasis on strategies that deliver immunomodulatory agents or utilize cell-material interactions to modulate inflammation and promote functional tissue repair. We will explore the application of these biomaterial-based strategies in the context of nanoparticle- and hydrogel-mediated delivery of small molecule drugs and therapeutic proteins to inflamed nervous tissue, implantation of hydrogels and scaffolds to modulate immune cell behavior and guide axon elongation, and neural probe coatings to mitigate glial scarring and enhance signaling at the tissue-device interface. Finally, we will present a future outlook on the growing role of biomaterial-based strategies for immunomodulation in regenerative medicine and neuroengineering applications in the CNS.
Collapse
Affiliation(s)
- Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - David A Frey Rubio
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
38
|
Caldarelli M, Rio P, Marrone A, Ocarino F, Chiantore M, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Gut-Brain Axis: Focus on Sex Differences in Neuroinflammation. Int J Mol Sci 2024; 25:5377. [PMID: 38791415 PMCID: PMC11120930 DOI: 10.3390/ijms25105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been a growing interest in the concept of the "gut-brain axis". In addition to well-studied diseases associated with an imbalance in gut microbiota, such as cancer, chronic inflammation, and cardiovascular diseases, research is now exploring the potential role of gut microbial dysbiosis in the onset and development of brain-related diseases. When the function of the intestinal barrier is altered by dysbiosis, the aberrant immune system response interacts with the nervous system, leading to a state of "neuroinflammation". The gut microbiota-brain axis is mediated by inflammatory and immunological mechanisms, neurotransmitters, and neuroendocrine pathways. This narrative review aims to illustrate the molecular basis of neuroinflammation and elaborate on the concept of the gut-brain axis by virtue of analyzing the various metabolites produced by the gut microbiome and how they might impact the nervous system. Additionally, the current review will highlight how sex influences these molecular mechanisms. In fact, sex hormones impact the brain-gut microbiota axis at different levels, such as the central nervous system, the enteric nervous one, and enteroendocrine cells. A deeper understanding of the gut-brain axis in human health and disease is crucial to guide diagnoses, treatments, and preventive interventions.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Marrone
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
39
|
Chew G, Mai AS, Ouyang JF, Qi Y, Chao Y, Wang Q, Petretto E, Tan EK. Transcriptomic imputation of genetic risk variants uncovers novel whole-blood biomarkers of Parkinson's disease. NPJ Parkinsons Dis 2024; 10:99. [PMID: 38719867 PMCID: PMC11078960 DOI: 10.1038/s41531-024-00698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Blood-based gene expression signatures could potentially be used as biomarkers for PD. However, it is unclear whether genetically-regulated transcriptomic signatures can provide novel gene candidates for use as PD biomarkers. We leveraged on the Genotype-Tissue Expression (GTEx) database to impute whole-blood transcriptomic expression using summary statistics of three large-scale PD GWAS. A random forest classifier was used with the consensus whole-blood imputed gene signature (IGS) to discriminate between cases and controls. Outcome measures included Area under the Curve (AUC) of Receiver Operating Characteristic (ROC) Curve. We demonstrated that the IGS (n = 37 genes) is conserved across PD GWAS studies and brain tissues. IGS discriminated between cases and controls in an independent whole-blood RNA-sequencing study (1176 PD, 254 prodromal, and 860 healthy controls) with mean AUC and accuracy of 64.8% and 69.4% for PD cohort, and 78.8% and 74% for prodromal cohort. PATL2 was the top-performing imputed gene in both PD and prodromal PD cohorts, whose classifier performance varied with biological sex (higher performance for males and females in the PD and prodromal PD, respectively). Single-cell RNA-sequencing studies (scRNA-seq) of healthy humans and PD patients found PATL2 to be enriched in terminal effector CD8+ and cytotoxic CD4+ cells, whose proportions are both increased in PD patients. We demonstrated the utility of GWAS transcriptomic imputation in identifying novel whole-blood transcriptomic signatures which could be leveraged upon for PD biomarker derivation. We identified PATL2 as a potential biomarker in both clinical and prodromic PD.
Collapse
Affiliation(s)
- Gabriel Chew
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Aaron Shengting Mai
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John F Ouyang
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Yueyue Qi
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Yinxia Chao
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Enrico Petretto
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Eng-King Tan
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.
| |
Collapse
|
40
|
Hong H, Wang Y, Menard M, Buckley J, Zhou L, Volpicelli-Daley L, Standaert D, Qin H, Benveniste E. Suppression of the JAK/STAT Pathway Inhibits Neuroinflammation in the Line 61-PFF Mouse Model of Parkinson's Disease. RESEARCH SQUARE 2024:rs.3.rs-4307273. [PMID: 38766241 PMCID: PMC11100885 DOI: 10.21203/rs.3.rs-4307273/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of a-synuclein (a-Syn) into insoluble aggregates called Lewy pathology. The Line 61 a-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human a-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human a-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-a-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-a-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.
Collapse
|
41
|
Gu R, Pan J, Awan MUN, Sun X, Yan F, Bai L, Bai J. The major histocompatibility complex participates in Parkinson's disease. Pharmacol Res 2024; 203:107168. [PMID: 38583689 DOI: 10.1016/j.phrs.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.
Collapse
Affiliation(s)
- Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianyu Pan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Maher Un Nisa Awan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming 650500, China
| | - Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
42
|
Gao Y, Lu Y, Liang X, Zhao M, Yu X, Fu H, Yang W. CD4 + T-Cell Senescence in Neurodegenerative Disease: Pathogenesis and Potential Therapeutic Targets. Cells 2024; 13:749. [PMID: 38727285 PMCID: PMC11083511 DOI: 10.3390/cells13090749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the increasing proportion of the aging population, neurodegenerative diseases have become one of the major health issues in society. Neurodegenerative diseases (NDs), including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neurodegeneration associated with aging, leading to a gradual decline in cognitive, emotional, and motor functions in patients. The process of aging is a normal physiological process in human life and is accompanied by the aging of the immune system, which is known as immunosenescence. T-cells are an important part of the immune system, and their senescence is the main feature of immunosenescence. The appearance of senescent T-cells has been shown to potentially lead to chronic inflammation and tissue damage, with some studies indicating a direct link between T-cell senescence, inflammation, and neuronal damage. The role of these subsets with different functions in NDs is still under debate. A growing body of evidence suggests that in people with a ND, there is a prevalence of CD4+ T-cell subsets exhibiting characteristics that are linked to senescence. This underscores the significance of CD4+ T-cells in NDs. In this review, we summarize the classification and function of CD4+ T-cell subpopulations, the characteristics of CD4+ T-cell senescence, the potential roles of these cells in animal models and human studies of NDs, and therapeutic strategies targeting CD4+ T-cell senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (Y.L.); (X.L.); (M.Z.); (X.Y.); (H.F.)
| |
Collapse
|
43
|
Iba M, Kwon S, Kim C, Szabo M, Horan-Portelance L, Lopez-Ocasio M, Dagur P, Overk C, Rissman RA, Masliah E. Immunotherapy with an antibody against CD1d modulates neuroinflammation in an α-synuclein transgenic model of Lewy body like disease. J Neuroinflammation 2024; 21:93. [PMID: 38622654 PMCID: PMC11017481 DOI: 10.1186/s12974-024-03087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
The neuroinflammatory process in synucleinopathies of the aging population such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB) involves microglial activation as well as infiltration of the CNS by T cells and natural killer T cells (NKTs). To evaluate the potential of targeting NKT cells to modulate neuroinflammation, we treated α-syn transgenic (tg) mice (e.g.: Thy1 promoter line 61) with an antibody against CD1d, which is a glycoprotein expressed in antigen presenting cells (APCs). CD1d-presented lipid antigens activate NKT cells through the interaction with T cell receptor in NKTs, resulting in the production of cytokines. Thus, we hypothesized that blocking the APC-NKT interaction with an anti-CD1d antibody might reduce neuroinflammation and neurodegeneration in models of DLB/PD. Treatment with the anti-CD1d antibody did not have effects on CD3 (T cells), slightly decreased CD4 and increased CD8 lymphocytes in the mice. Moreover, double labeling studies showed that compared to control (IgG) treated α-syn tg mice, treatment with anti-CD1d decreased numbers of CD3/interferon γ (IFN γ)-positive cells, consistent with NKTs. Further double labeling studies showed that CD1d-positive cells co-localized with the astrocytes marker GFAP and that anti-CD1d antibody reduced this effect. While in control α-syn tg mice CD3 positive cells were near astrocytes, this was modified by the treatment with the CD1d antibody. By qPCR, levels of IFN γ, CCL4, and interleukin-6 were increased in the IgG treated α-syn tg mice. Treatment with CD1d antibody blunted this cytokine response that was associated with reduced astrocytosis and microgliosis in the CNS of the α-syn tg mice treated with CD1d antibody. Flow cytometric analysis of immune cells in α-syn tg mice revealed that CD1d-tet + T cells were also increased in the spleen of α-syn tg mice, which treatment with the CD1d antibody reduced. Reduced neuroinflammation in the anti-CD1d-treated α-syn tg mice was associated with amelioration of neurodegenerative pathology. These results suggest that reducing infiltration of NKT cells with an antibody against CD1d might be a potential therapeutical approach for DLB/PD.
Collapse
Affiliation(s)
- Michiyo Iba
- Laboratory of Neurogenetics, Molecular Neuropathology Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Somin Kwon
- Laboratory of Neurogenetics, Molecular Neuropathology Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Changyoun Kim
- Laboratory of Neurogenetics, Molecular Neuropathology Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marcell Szabo
- Laboratory of Neurogenetics, Molecular Neuropathology Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liam Horan-Portelance
- Laboratory of Neurogenetics, Molecular Neuropathology Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Lopez-Ocasio
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pradeep Dagur
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, Molecular Neuropathology Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20814, USA.
| |
Collapse
|
44
|
Liu X, Shen L, Wan M, Xie H, Wang Z. Peripheral extracellular vesicles in neurodegeneration: pathogenic influencers and therapeutic vehicles. J Nanobiotechnology 2024; 22:170. [PMID: 38610012 PMCID: PMC11015679 DOI: 10.1186/s12951-024-02428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis epitomize a class of insidious and relentless neurological conditions that are difficult to cure. Conventional therapeutic regimens often fail due to the late onset of symptoms, which occurs well after irreversible neurodegeneration has begun. The integrity of the blood-brain barrier (BBB) further impedes efficacious drug delivery to the central nervous system, presenting a formidable challenge in the pharmacological treatment of NDDs. Recent scientific inquiries have shifted focus toward the peripheral biological systems, investigating their influence on central neuropathology through the lens of extracellular vesicles (EVs). These vesicles, distinguished by their ability to breach the BBB, are emerging as dual operatives in the context of NDDs, both as conveyors of pathogenic entities and as prospective vectors for therapeutic agents. This review critically summarizes the burgeoning evidence on the role of extracerebral EVs, particularly those originating from bone, adipose tissue, and gut microbiota, in modulating brain pathophysiology. It underscores the duplicity potential of peripheral EVs as modulators of disease progression and suggests their potential as novel vehicles for targeted therapeutic delivery, positing a transformative impact on the future landscape of NDD treatment strategies. Search strategy A comprehensive literature search was conducted using PubMed, Web of Science, and Scopus from January 2000 to December 2023. The search combined the following terms using Boolean operators: "neurodegenerative disease" OR "Alzheimer's disease" OR "Parkinson's disease" OR "Amyotrophic lateral sclerosis" AND "extracellular vesicles" OR "exosomes" OR "outer membrane vesicles" AND "drug delivery systems" AND "blood-brain barrier". MeSH terms were employed when searching PubMed to refine the results. Studies were included if they were published in English, involved human subjects, and focused on the peripheral origins of EVs, specifically from bone, adipose tissue, and gut microbiota, and their association with related diseases such as osteoporosis, metabolic syndrome, and gut dysbiosis. Articles were excluded if they did not address the role of EVs in the context of NDDs or did not discuss therapeutic applications. The titles and abstracts of retrieved articles were screened using a dual-review process to ensure relevance and accuracy. The reference lists of selected articles were also examined to identify additional relevant studies.
Collapse
Affiliation(s)
- Xixi Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, Hunan, 410008, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| |
Collapse
|
45
|
Niso-Santano M, Fuentes JM, Galluzzi L. Immunological aspects of central neurodegeneration. Cell Discov 2024; 10:41. [PMID: 38594240 PMCID: PMC11004155 DOI: 10.1038/s41421-024-00666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 04/11/2024] Open
Abstract
The etiology of various neurodegenerative disorders that mainly affect the central nervous system including (but not limited to) Alzheimer's disease, Parkinson's disease and Huntington's disease has classically been attributed to neuronal defects that culminate with the loss of specific neuronal populations. However, accumulating evidence suggests that numerous immune effector cells and the products thereof (including cytokines and other soluble mediators) have a major impact on the pathogenesis and/or severity of these and other neurodegenerative syndromes. These observations not only add to our understanding of neurodegenerative conditions but also imply that (at least in some cases) therapeutic strategies targeting immune cells or their products may mediate clinically relevant neuroprotective effects. Here, we critically discuss immunological mechanisms of central neurodegeneration and propose potential strategies to correct neurodegeneration-associated immunological dysfunction with therapeutic purposes.
Collapse
Affiliation(s)
- Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain.
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.
| | - José M Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
46
|
Hull A, Atilano ML, Gergi L, Kinghorn KJ. Lysosomal storage, impaired autophagy and innate immunity in Gaucher and Parkinson's diseases: insights for drug discovery. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220381. [PMID: 38368939 PMCID: PMC10874704 DOI: 10.1098/rstb.2022.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/08/2023] [Indexed: 02/20/2024] Open
Abstract
Impairment of autophagic-lysosomal pathways is increasingly being implicated in Parkinson's disease (PD). GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD) and are the commonest known genetic risk factor for PD. GBA1 mutations have been shown to cause autophagic-lysosomal impairment. Defective autophagic degradation of unwanted cellular constituents is associated with several pathologies, including loss of normal protein homeostasis, particularly of α-synuclein, and innate immune dysfunction. The latter is observed both peripherally and centrally in PD and GD. Here, we will discuss the mechanistic links between autophagy and immune dysregulation, and the possible role of these pathologies in communication between the gut and brain in these disorders. Recent work in a fly model of neuronopathic GD (nGD) revealed intestinal autophagic defects leading to gastrointestinal dysfunction and immune activation. Rapamycin treatment partially reversed the autophagic block and reduced immune activity, in association with increased survival and improved locomotor performance. Alterations in the gut microbiome are a critical driver of neuroinflammation, and studies have revealed that eradication of the microbiome in nGD fly and mouse models of PD ameliorate brain inflammation. Following these observations, lysosomal-autophagic pathways, innate immune signalling and microbiome dysbiosis are discussed as potential therapeutic targets in PD and GD. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Alexander Hull
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Laith Gergi
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Kerri J Kinghorn
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
47
|
Moțățăianu A, Andone S, Stoian A, Bălașa R, Huțanu A, Sărmășan E. A Potential Role of Interleukin-5 in the Pathogenesis and Progression of Amyotrophic Lateral Sclerosis: A New Molecular Perspective. Int J Mol Sci 2024; 25:3782. [PMID: 38612591 PMCID: PMC11011909 DOI: 10.3390/ijms25073782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Cumulative data suggest that neuroinflammation plays a prominent role in amyotrophic lateral sclerosis (ALS) pathogenesis. The purpose of this work was to assess if patients with ALS present a specific peripheral cytokine profile and if it correlates with neurological disability assessed by ALSFRS-R, the rate of disease progression, and the pattern of disease progression (horizontal spreading [HSP] versus vertical spreading [VSP]). We determined the levels of 15 cytokines in the blood of 59 patients with ALS and 40 controls. We identified a positive correlation between levels of pro-inflammatory cytokines (interleukin [IL]-17F, IL-33, IL-31) and the age of ALS patients, as well as a positive correlation between IL-12p/70 and survival from ALS onset and ALS diagnosis. Additionally, there was a positive correlation between the ALSFRS-R score in the upper limb and respiratory domain and IL-5 levels. In our ALS cohort, the spreading pattern was 42% horizontal and 58% vertical, with patients with VSP showing a faster rate of ALS progression. Furthermore, we identified a negative correlation between IL-5 levels and the rate of disease progression, as well as a positive correlation between IL-5 and HSP of ALS. To the best of our knowledge, this is the first study reporting a "protective" role of IL-5 in ALS.
Collapse
Affiliation(s)
- Anca Moțățăianu
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Sebastian Andone
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adina Stoian
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Rodica Bălașa
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adina Huțanu
- Department of Laboratory Medicine, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Emanuela Sărmășan
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
| |
Collapse
|
48
|
Wang H, Liu YT, Ren YL, Guo XY, Wang Y. Association of peripheral immune activation with amyotrophic lateral sclerosis and Parkinson's disease: A systematic review and meta-analysis. J Neuroimmunol 2024; 388:578290. [PMID: 38301596 DOI: 10.1016/j.jneuroim.2024.578290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Recent studies have revealed the link between immune activation and neurodegenerative diseases. METHODS By employing meta-analysis, we estimated the standardized mean difference (SMD) and their corresponding 95% confidence intervals (CIs) between the groups. RESULTS According to the pre-set criteria, a total of 21 published articles including 2377 ALS patients and 1244 HCs, as well as 60 articles including 5111 PD patients and 4237 HCs, were identified. This study provided evidence of peripheral immune activation in the pathogenesis of ALS and PD. CONCLUSION Our results suggested monitoring changes in peripheral blood immune cell populations, particularly lymphocyte subsets, will benefit understanding the developments and exploring reliable and specific biomarkers of these two diseases.
Collapse
Affiliation(s)
- Han Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yi-Ti Liu
- Department of Neurology, Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan-Ling Ren
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao-Yan Guo
- Department of Neurology, Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
49
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. J Neuroinflammation 2024; 21:67. [PMID: 38481312 PMCID: PMC10938757 DOI: 10.1186/s12974-024-03059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles during development as well as in health and disease. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., Box 8057, St. Louis, MO, 63110, USA.
| | - Haowu Jiang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., CB 8054, St. Louis, MO, 63110, USA.
| |
Collapse
|
50
|
Chen BR, Wu T, Chen TH, Wang Y. Neuroimmune interactions and their roles in neurodegenerative diseases. FUNDAMENTAL RESEARCH 2024; 4:251-261. [PMID: 38933502 PMCID: PMC11197660 DOI: 10.1016/j.fmre.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 06/28/2024] Open
Abstract
The nervous system possesses bidirectional, sophisticated and delicate communications with the immune system. These neuroimmune interactions play a vitally important role in the initiation and development of many disorders, especially neurodegenerative diseases. Although scientific advancements have made tremendous progress in this field during the last few years, neuroimmune communications are still far from being elucidated. By organizing recent research, in this review, we discuss the local and intersystem neuroimmune interactions and their roles in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Unveiling these will help us gain a better understanding of the process of interplay inside the body and how the organism maintains homeostasis. It will also facilitate a view of the diseases from a holistic, pluralistic and interconnected perspective, thus providing a basis of developing novel and effective methods to diagnose, intervene and treat diseases.
Collapse
Affiliation(s)
- Bai-Rong Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Ting Wu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Ting-Hui Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|