1
|
Bellini G, D'Antongiovanni V, Palermo G, Antonioli L, Fornai M, Ceravolo R, Bernardini N, Derkinderen P, Pellegrini C. α-Synuclein in Parkinson's Disease: From Bench to Bedside. Med Res Rev 2025; 45:909-946. [PMID: 39704040 PMCID: PMC11976381 DOI: 10.1002/med.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
α-Synuclein (α-syn), a pathological hallmark of PD, is emerging as a bridging element at the crossroads between neuro/immune-inflammatory responses and neurodegeneration in PD. Several evidence show that pathological α-syn accumulates in neuronal and non-neuronal cells (i.e., neurons, microglia, macrophages, skin cells, and intestinal cells) in central and peripheral tissues since the prodromal phase of the disease, contributing to brain pathology. Indeed, pathological α-syn deposition can promote neurogenic/immune-inflammatory responses that contribute to systemic and central neuroinflammation associated with PD. After providing an overview of the structure and functions of physiological α-syn as well as its pathological forms, we review current studies about the role of neuronal and non-neuronal α-syn at the crossroads between neuroinflammation and neurodegeneration in PD. In addition, we provide an overview of the correlation between the accumulation of α-syn in central and peripheral tissues and PD, related symptoms, and neuroinflammation. Special attention was paid to discussing whether targeting α-syn can represent a suitable therapeutical approach for PD.
Collapse
Affiliation(s)
- Gabriele Bellini
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Department of NeurologyThe Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone HealthNew York CityNew YorkUSA
| | - Vanessa D'Antongiovanni
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giovanni Palermo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Roberto Ceravolo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Nunzia Bernardini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Pascal Derkinderen
- Department of NeurologyNantes Université, CHU Nantes, INSERMNantesFrance
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
2
|
Liu C, Gu F, Zou Z, Wang F, Li D, Song J, Hong Y, Wu X, Yang X, Liu WH, Liu G, Zhou Y, Liu Q. Marine-Derived Alternariol Suppresses Inflammation by Regulating T Cell Activation and Migration. Mar Drugs 2025; 23:133. [PMID: 40137319 PMCID: PMC11944012 DOI: 10.3390/md23030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
T cells play pivotal roles in inflammation's initiation and progression. Exploring natural compounds that regulate T cell function is crucial for preventing and treating inflammation. Herein, we report that Alternariol (AOH), a marine-derived secondary metabolite, exerts an anti-inflammatory activity by targeting T cell function. Using an ovalbumin (OVA)-induced OT-II CD4+ T cell activation model, we demonstrated that AOH potently suppresses T cell proliferation and cytokine secretion, mildly promotes T cell apoptosis, and spares antigen presentation processes. Mechanistically, AOH controlled early T cell activation by inhibiting the expression of activation markers (CD69, CD25, CD44) and transcription factors (T-bet, Eomes), leading to impaired Th1 cytokine production. In vivo experiments revealed that AOH attenuated OVA-induced lung injury in mice by reducing immune cell infiltration in pulmonary tissues and draining lymph nodes. Notably, AOH dramatically suppressed OVA-specific T cells migrating to the inflammatory lung while impairing T-cell-mediated other immune cell infiltration. Collectively, AOH exhibited potent anti-inflammatory effects by modulating T cell proliferation, function, and migration, offering a promising therapeutic strategy for T-cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Chenfeng Liu
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei 230031, China (F.W.); (D.L.)
| | - Fudie Gu
- Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (F.G.)
| | - Zhengbiao Zou
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China (X.Y.)
| | - Fengli Wang
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei 230031, China (F.W.); (D.L.)
| | - Dashuai Li
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei 230031, China (F.W.); (D.L.)
| | - Jing Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xuhui Wu
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xianwen Yang
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China (X.Y.)
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Guangming Liu
- Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (F.G.)
- Faculty of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Yu Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qingmei Liu
- Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (F.G.)
| |
Collapse
|
3
|
Kline EM, Jernigan JE, Scharer CD, Maurer J, Hicks SL S, Herrick M MK, Wallings RL, Kelly SD, Chang J, Menees KB, McFarland NR, Boss JM, Tansey MG, Joers V. MHCII reduction is insufficient to protect mice from alpha-synuclein-induced degeneration and the Parkinson's HLA locus exhibits epigenetic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.31.610581. [PMID: 40093159 PMCID: PMC11908218 DOI: 10.1101/2024.08.31.610581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Major histocompatibility complex class II (MHCII) molecules are antigen presentation proteins and increased in post-mortem Parkinson's disease (PD) brain. Attempts to decrease MHCII expression have led to neuroprotection in PD mouse models. Our group reported that a SNP at rs3129882 in the MHCII gene Human leukocyte Antigen (HLA) DRA is associated with increased MHCII transcripts and surface protein and increased risk for late-onset idiopathic PD. We therefore hypothesized that decreased MHCII may mitigate dopaminergic degeneration. During an ongoing α-synuclein lesion, mice with MHCII reduction in systemic and brain innate immune cells (LysMCre+I-Abfl/fl or CRE+) displayed brain T cell repertoire shifts and greater preservation of the dopaminergic phenotype in nigrostriatal terminals. Next, we investigated a human cohort to characterize the immunophenotype of subjects with and without the high-risk GG genotype at the rs3129882 SNP. We confirmed that the high-risk GG genotype is associated with peripheral changes in MHCII inducibility, frequency of CD4+ T cells, and differentially accessible chromatin regions within the MHCII locus. Although our mouse studies indicate that myeloid MHCII reduction coinciding with an intact adaptive immune system is insufficient to fully protect dopamine neurons from α-synuclein-induced degeneration, our data are consistent with the overwhelming evidence implicating antigen presentation in PD pathophysiology.
Collapse
Affiliation(s)
- Elizabeth M Kline
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT USA
| | - Janna E Jernigan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Jeffrey Maurer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Sakeenah Hicks SL
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Mary K Herrick M
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
| | - Sean D Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly B Menees
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
| | - Nikolaus R McFarland
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL USA
| | - Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL USA
| |
Collapse
|
4
|
Wang G, Wang Y, Tang X, Li D, Zhao Y, Zhang F. Identification and validation of Atp5f1c in CD4 + T cell as a hub protein in Parkinson's disease. Int J Biol Macromol 2025; 297:139858. [PMID: 39814280 DOI: 10.1016/j.ijbiomac.2025.139858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Parkinson's disease (PD) is an age-related and progressive neurodegenerative disease. Growing evidences indicate that CD4+ T cell dysfunction plays an essential role in the progress of PD. Here, in LPS-induced PD mice, we isolated midbrain CD4+ T cell and peripheral CD4+ T cell to perform proteomics, and then screened a total of 167 co-expression proteins via integrated bioinformatics analysis. In addition, the subcellular localization, GO analysis, KEGG pathways and protein-protein interaction of 167 co-expression proteins were assessed. Furthermore, GeneMANIA searched the hub proteins and their co-expression genes and found 13 overlapping hub proteins, including Ndufa3, Cox5b, Mrpl21, Ndufab1, Idh3g, Ndufb7, Cyc1, Cisd1, Atp5f1c, Sdhc, Ndufb9, Mtnd1 and Mrpl17. Next, GO analysis and KEGG analysis of the 13 overlapping hub proteins were also exhibited. Further analysis identified that 4 hub proteins (Idh3g, Cisd1, Atp5f1c and Mtnd1) were downregulated both in midbrain and peripheral CD4+ T cell from proteomics. Identification and rescue experiment analysis showed that only Atp5f1c was decreased in LPS- and 6-OHDA-induced PD mice and dopamine (DA) neuronal loss and ATP production decrease were disappeared after Atp5f1c over-expression/Atp5f1c reinfusion both in vivo and in vitro. In conclusion, Atp5f1c was verified as a potential CD4+ T cell-related hub protein for PD.
Collapse
Affiliation(s)
- Guoqing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuanyuan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianjin Tang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Daidi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yujia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
5
|
Sampson T. Microbial amyloids in neurodegenerative amyloid diseases. FEBS J 2025; 292:1265-1281. [PMID: 38041542 PMCID: PMC11144261 DOI: 10.1111/febs.17023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Human-disease associated amyloidogenic proteins are not unique in their ability to form amyloid fibrillar structures. Numerous microbes produce amyloidogenic proteins that have distinct functions for their physiology in their amyloid form, rather than solely detrimental. Emerging data indicate associations between various microbial organisms, including those which produce functional amyloids, with neurodegenerative diseases. Here, we review some of the evidence suggesting that microbial amyloids impact amyloid disease in host organisms. Experimental data are building a foundation for continued lines of enquiry and suggest that that direct or indirect interactions between microbial and host amyloids may be a contributor to amyloid pathologies. Inhibiting microbial amyloids or their interactions with the host may therefore represent a tangible target to limit various amyloid pathologies.
Collapse
Affiliation(s)
- Timothy Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
6
|
Qiao CM, Ma XY, Tan LL, Xia YM, Li T, Wu J, Cui C, Zhao WJ, Shen YQ. Indoleamine 2, 3-dioxygenase 1 inhibition mediates the therapeutic effects in Parkinson's disease mice by modulating inflammation and neurogenesis in a gut microbiota dependent manner. Exp Neurol 2025; 385:115142. [PMID: 39793693 DOI: 10.1016/j.expneurol.2025.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Abnormal tryptophan metabolism is closely linked with neurological disorders. Research has shown that indoleamine 2,3-dioxygenase 1 (IDO-1), the first rate-limiting enzyme in tryptophan degradation, is upregulated in Parkinson's disease (PD). However, the precise role of IDO-1 in PD pathogenesis remains elusive. In this study, we administered 1-methyl-tryptophan (1-MT), an IDO-1 inhibitor, intraperitoneally at 15 mg/kg daily for 21 days to PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at 30 mg/kg daily for 5 days. Our results show that IDO-1 inhibition improves behavioral performance, reduces dopaminergic neuron loss, and decreases serum quinolinic acid (QA) content and the aryl hydrocarbon receptor (AHR) expression in the striatum and colon. It also alleviates glial-associated neuroinflammation and mitigates colonic inflammation (decreasing iNOS, COX2) by suppressing the Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway. Furthermore, IDO-1 inhibition promotes hippocampal neurogenesis (increasing doublecortin positive (DCX+) cells and SOX2+ cells), which have recently been recognized as key pathological features and potential therapeutic targets in PD, likely through the activation of the BDNF/TrkB pathway. We further explored the gut-brain connection by depleting the gut microbiota in mice using antibiotics. Notably, the neuroprotective effects of IDO-1 inhibition were completely abolished in pseudo-germ-free mice (administrated an antibiotic mixture orally for 14 days prior to 1-MT treatment), highlighting the dependency of 1-MT's neuroprotective effects on the presence of gut microbiota. Finally, we found IDO-1 inhibition corrects the abnormal elevation of fecal short chain fatty acids (SCFAs). Collectively, these findings suggest that IDO-1 inhibition may represent a promising therapeutic approach for PD.
Collapse
Affiliation(s)
- Chen-Meng Qiao
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Yu Ma
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lu-Lu Tan
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yi-Meng Xia
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ting Li
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Wu
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chun Cui
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Jiang Zhao
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Qin Shen
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Gerasimova E, Beenen AC, Kachkin D, Regensburger M, Zundler S, Blumenthal DB, Lutzny-Geier G, Winner B, Prots I. Novel co-culture model of T cells and midbrain organoids for investigating neurodegeneration in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:36. [PMID: 40021643 PMCID: PMC11871142 DOI: 10.1038/s41531-025-00882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/26/2025] [Indexed: 03/03/2025] Open
Abstract
Recent studies demonstrate that brain infiltration of peripheral immune cells and their interaction with brain-resident cells contribute to Parkinson's disease (PD). However, mechanisms of T cell-brain cell communication are not fully elucidated and models allowing investigation of interaction between T cells and brain-resident cells are required. In this study, we developed a three-dimensional (3D) model composed of stem cell-derived human midbrain organoids (hMO) and peripheral blood T cells. We demonstrated that organoids consist of multiple midbrain-specific cell types, allowing to study T cell motility and interactions with midbrain tissue in a spatially organized microenvironment. We optimized co-culture conditions and demonstrated that T cells infiltrate hMO tissue, leading to neural cell loss. Our work establishes a novel 3D cell co-culture model as a promising tool to investigate the effect of the adaptive immune system on the midbrain and can be used in future studies to address these processes in the context of PD.
Collapse
Affiliation(s)
- Elizaveta Gerasimova
- Dental Clinic 1-Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Amke C Beenen
- Dental Clinic 1-Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniil Kachkin
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Translational Research Center (TRC), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gloria Lutzny-Geier
- Department of Internal Medicine 5 - Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Dental Clinic 1-Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
8
|
Marin-Rodero M, Cintado E, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis. Sci Immunol 2025; 10:eadu2910. [PMID: 39873623 PMCID: PMC11924117 DOI: 10.1126/sciimmunol.adu2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (Treg) compartment in the meninges. A Treg subtype specialized in controlling interferon-γ (IFN-γ) responses and another dedicated to regulating follicular B cell responses were substantial components of this compartment. Accordingly, punctual Treg ablation rapidly unleashed IFN-γ production by meningeal lymphocytes, unlocked access to the brain parenchyma, and altered meningeal B cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial cell types. Within the dentate gyrus, neural stem cells underwent more death and were blocked from further differentiation, which coincided with impairments in short-term spatial-reference memory. Thus, meningeal Tregs are a multifaceted safeguard of brain homeostasis at steady state.
Collapse
Affiliation(s)
| | - Elisa Cintado
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Alec J. Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | | | | | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | | | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital; Boston, MA, USA
| | - José Luís Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
9
|
Mansour RM, Shaker AAS, Abulsoud AI, Mageed SSA, Ashraf A, Elsakka EGE, Dahab MI, Sadek MM, Awad FA, Lutfy RH, Elimam H, Faraag AHI, Nassar YA, Ali MA, Mohammed OA, Abdel-Reheim MA, Doghish AS. The Role of MicroRNAs in Neurodegeneration: Insights from Huntington's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04750-7. [PMID: 40009259 DOI: 10.1007/s12035-025-04750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
MicroRNA (miRNAs) is a single non-coding strand with a small sequence of approximately 21-25 nucleotides, which could be a biomarker or act as a therapeutic agent for disease. This review explores the dynamic role of miRNAs in Huntington's disease (HD), encompassing their regulatory function, potential as diagnostic biomarker tools, and emerging therapeutic applications. We delved into the dysregulation of specific miRNAs in HD, for instance, downregulated levels of miR-9 and miR-124 and increased levels of miR-155 and miR-196a. These alterations highlight the promise of miRNAs as non-invasive tools for early HD detection and disease progression monitoring. Moving beyond diagnosis, the exciting potential of miRNA-based therapies. By mimicking downregulated miRNAs or inhibiting dysregulated ones, we can potentially restore the balance of mutant target gene expression and modify disease progression. Recent research using engineered miRNAs delivered via an adeno-associated virus (AAV) vector in a transgenic HD minipig model demonstrates encouraging results in reducing mutant HD and improving motor function.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, 11795, Helwan, Egypt
- Biology Department, School of Biotechnology, Badr University in Cairo, 11829, Badr City, Cairo, Egypt
| | - Abanoub A S Shaker
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, 11785, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt
| | - Mohammed I Dahab
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Mohamed M Sadek
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat, 32897, Sadat City, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
- Botany and Microbiology Department, Faculty of Science, Helwan University, 11795, Helwan, Egypt
| | - Yara A Nassar
- Department of Botany, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt.
| |
Collapse
|
10
|
Xie Y, Chen J, Xu S, Cheng O. Estrogen deficiency promotes neurodegeneration in female hemi-parkinsonian mice: The role of regulatory T cells. Int Immunopharmacol 2025; 148:114104. [PMID: 39862633 DOI: 10.1016/j.intimp.2025.114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Circulating levels of the female hormone estrogen has been associated with the development of Parkinson's disease (PD), although the underlying mechanism remains unclear. Immune homeostasis mediated by peripheral regulatory T cells (Treg) is a crucial factor in PD. The aim of this study was to explore the effects of estrogen deficiency on neuroinflammation and neurodegeneration in a rodent model of PD, with particular reference to Treg. METHODS Estrogen deficiency was established in a mouse model by bilateral ovariectomy (OVX). PD was modeled by the injection of LPS into the striatum. Motor performance was assessed in each experimental group. Dopaminergic degeneration was evaluated using tyrosine-hydroxylase (Th) immunohistochemical staining of the substantia nigra (SN) and striatum. Dopamine and dopamine metabolite levels in the striatum were also evaluated, together with the infiltration of CD4 T cells into the SN. Neuroinflammation was assessed by evaluating the mRNA level of microglial and M1/M2 phenotype markers, as well as the abundance of pro-inflammatory cytokines in the midbrain. The frequency of peripheral Treg cells was evaluated using flow cytometry. RESULTS OVX prior to LPS injection markedly aggravated neurodegeneration, neuroinflammation, motor performance, and CD4 T cell infiltration compared to the LPS-only group. Estradiol treatment or activation of the G protein-coupled estrogen receptor (GPER) in OVX mice prior to LPS injection induced functional improvement and reduced the levels of neurodegeneration, neuroinflammation, and CD4 T cell infiltration. OVX prior to LPS injection also led to a decreased frequency of Treg compared to the LPS-only group. Moreover, estradiol treatment or GPER activation of OVX mice prior to LPS injection significantly increased the Treg frequency. Antibody-mediated depletion of Treg after GPER activation counteracted the ability of GPER to alleviate neurodegeneration, CD4 T cell infiltration, the release of pro-inflammatory cytokines, and motor performance in the PD model. CONCLUSION Estrogen deficiency can disrupt Treg-mediated immune homeostasis and thus further aggravate microglial inflammation and dopaminergic degeneration in PD model. The effects of estrogen on Treg may be partially mediated by GPER signaling, and thus GPER is a promising target for PD, especially in estrogen-deficient women.
Collapse
Affiliation(s)
- Yangzhi Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiacheng Chen
- Department of Intensive Care Unit, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, China
| | - Sicong Xu
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
11
|
Qin F, Cao R, Cui W, Bai X, Yuan J, Zhang Y, Liu Y, Cao N, Dong N, Zhou M, Chen T, Liu F, Sun W, Zheng Y, Zhao W, Liu B, Gao C. Listerin promotes α-synuclein degradation to alleviate Parkinson's disease through the ESCRT pathway. SCIENCE ADVANCES 2025; 11:eadp3672. [PMID: 39937915 DOI: 10.1126/sciadv.adp3672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive accumulation of abnormal α-synuclein (α-syn) within dopaminergic neurons in the substantia nigra region of the brain. Despite excessive accumulation of α-syn being key to the pathogenesis of PD, the mechanisms governing its clearance remain elusive. In this study, we found that the endosomal sorting complex required for transport (ESCRT) system plays a crucial role in capturing and facilitating the degradation of ubiquitinated α-syn. The E3 ubiquitin ligase Listerin was found to promote K27-linked polyubiquitination of α-syn, directing it to the endosome for subsequent degradation. We showed that the deletion of the Listerin gene exacerbates the neurodegenerative progression in a mouse model of PD, whereas the overexpression of Listerin effectively mitigates disease progression in PD mice. Consequently, our study reveals a mechanism for α-syn degradation and identifies Listerin as a promising therapeutic target for the treatment of PD.
Collapse
Affiliation(s)
- Fei Qin
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Runyu Cao
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenjing Cui
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuemei Bai
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiahua Yuan
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuling Zhang
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yaxing Liu
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Nan Cao
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Na Dong
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Min Zhou
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tian Chen
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Feng Liu
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wanwei Sun
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yi Zheng
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Zhao
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bingyu Liu
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chengjiang Gao
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
12
|
Furusawa-Nishii E, Solongo B, Rai K, Yoshikawa S, Chiba A, Okuzumi A, Ueno SI, Hoshino Y, Imamichi-Tatano Y, Kimura H, Hatano T, Hattori N, Miyake S. α-Synuclein orchestrates Th17 responses as antigen and adjuvant in Parkinson's disease. J Neuroinflammation 2025; 22:38. [PMID: 39934862 DOI: 10.1186/s12974-025-03359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Recently, the role of T cells in the pathology of α-synuclein (αS)-mediated neurodegenerative disorders called synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy, has attracted increasing attention. Although the existence of αS-specific T cells and the immunogenicity of the post-translationally modified αS fragment have been reported in PD and DLB, the key cellular subset associated with disease progression and its induction mechanism remain largely unknown.Peripheral blood mononuclear cells (PBMCs) from synucleinopathy patients and healthy controls were cultured in the presence of the αS peptide pools. Cytokine analysis using culture supernatants revealed that C-terminal αS peptides with a phosphorylated serine 129 residue (pS129), a feature of pathological αS aggregates, promoted the production of IL-17A, IL-17F, IL-22, IFN-γ and IL-13 in PD patients compared with that in controls. In pS129 peptide-reactive PD cases, Ki67 expression was increased in CD4 T cells but not in CD8 T cells, and intracellular cytokine staining assay revealed the existence of pS129 peptide-specific Th1 and Th17 cells. The pS129 peptide-specific Th17 responses, but not Th1 responses, demonstrated a positive correlation with the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III scores. A similar correlation was observed for IL-17A levels in the culture supernatant of PBMCs from PD patients with disease duration < 10 years. Interestingly, enhanced Th17 responses to pS129 peptides were uniquely found in PD patients among the synucleinopathies, suggesting that Th17 responses are amplified by certain mechanisms in PD patients. To investigate such mechanisms, we analyzed Th17-inducible capacity of αS-exposed dendritic cells (DCs). In vitro stimulation with αS aggregates generated Th17-inducible DCs with IL-6 and IL-23 production through the signaling of TLR4 and spliced X-box binding protein-1 (XBP1s). In fact, the levels of IL-6 and IL-23 in plasma, and the XBP1s ratio in type 2 conventional DCs were increased in PD patients compared with those in controls.Here, we propose the importance of αS-specific Th17 responses in the progression of PD and the underlying mechanisms inducing Th17 responses. These findings may provide novel therapeutic strategies to prevent disease development through the suppression of TLR4-XBP1s-IL-23 signaling in DCs.
Collapse
Affiliation(s)
- Emi Furusawa-Nishii
- Department of Immunology, Juntendo University, Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Bataa Solongo
- Department of Immunology, Juntendo University, Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kou Rai
- Department of Immunology, Juntendo University, Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Soichiro Yoshikawa
- Department of Immunology, Juntendo University, Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University, Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Ayami Okuzumi
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasunobu Hoshino
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoko Imamichi-Tatano
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Haruka Kimura
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
- Neurodegenerative Disorders Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University, Faculty of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
13
|
Kumar V, Kumar P. Pathophysiological role of high mobility group box-1 signaling in neurodegenerative diseases. Inflammopharmacology 2025; 33:703-727. [PMID: 39546221 DOI: 10.1007/s10787-024-01595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Nucleocytoplasmic translocation of HMGB1 (high mobility group box-1) plays a significant role in disease progression. Several methods contribute to the translocation of HMGB1 from the nucleus to the cytoplasm, including inflammasome activation, TNF-α signaling, CRM1-mediated transport, reactive oxygen species (ROS), JAK/STAT pathway, RIP3-mediated p53 involvement, XPO-1-mediated transport, and calcium-dependent mechanisms. Due to its diverse functions at various subcellular locations, HMGB1 has been identified as a crucial factor in several Central Nervous System (CNS) disorders, including Huntington's disease (HD), Parkinson's disease (PD), and Alzheimer's disease (AD). HMGB1 displays a wide array of roles in the extracellular environment as it interacts with several receptors, including CXCR4, TLR2, TLR4, TLR8, and RAGE, by engaging in these connections, HMGB1 can effectively regulate subsequent signaling pathways, hence exerting an impact on the progression of brain disorders through neuroinflammation. Therefore, focusing on treating neuroinflammation could offer a common therapeutic strategy for several disorders. The objective of the current literature is to demonstrate the pathological role of HMGB1 in various neurological disorders. This review also offers insights into numerous therapeutic targets that promise to advance multiple treatments intended to alleviate brain illnesses.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
14
|
Clarke JR, Bacelar TS, Fernandes GG, Silva RCD, Antonio LS, Queiroz M, de Souza RV, Valadão LF, Ribeiro GS, De Lima EV, Colodeti LC, Mangeth LC, Wiecikowski A, da Silva TN, Paula-Neto HA, da Costa R, Cordeiro Y, Passos GF, Figueiredo CP. Abatacept inhibits Th17 differentiation and mitigates α-synuclein-induced dopaminergic dysfunction in mice. Mol Psychiatry 2025; 30:547-555. [PMID: 39152331 DOI: 10.1038/s41380-024-02618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is a multifaceted disease characterized by degeneration of nigrostriatal dopaminergic neurons, which results in motor and non-motor dysfunctions. Accumulation of α-synuclein (αSYN) in Lewy bodies is a key pathological feature of PD. Although the exact cause of PD remains unknown, accumulating evidence suggests that brain infiltration of T cells plays a critical role in the pathogenesis of disease, contributing to neuroinflammation and dopaminergic neurodegeneration. Here, we used a mouse model of brain-infused aggregated αSYN, which recapitulates motor and non-motor dysfunctions seen in PD patients. We found that αSYN-induced motor dysfunction in mice is accompanied by an increased number of brain-residing Th17 (IL17+ CD4+) cells, but not CD8+ T cells. To evaluate whether the modulation of T cell response could rescue αSYN-induced damage, we chronically treated animals with abatacept (8 mg/kg, sc, 3x per week), a selective T-cell co-stimulation modulator. We found that abatacept treatment decreased Th1 (IFNƔ+ CD4+) and Th17 (IL17+ CD4+) cells in the brain, rescued motor function and prevented dopaminergic neuronal loss in αSYN-infused mice. These results highlight the significance of effector CD4+ T cells, especially Th17, in the progression of PD and introduce novel possibilities for repurposing immunomodulatory drugs used for arthritis as PD-modifying therapies.
Collapse
Affiliation(s)
- Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Thiago Sa Bacelar
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Raquel Costa da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leticia S Antonio
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Queiroz
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renata V de Souza
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leticia F Valadão
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel S Ribeiro
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emanuelle V De Lima
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Lilian C Colodeti
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana C Mangeth
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adalgisa Wiecikowski
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Talita N da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Heitor A Paula-Neto
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Robson da Costa
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yraima Cordeiro
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Giselle F Passos
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Claudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Liu L, Zhang X, Chai Y, Zhang J, Deng Q, Chen X. Skull bone marrow and skull meninges channels: redefining the landscape of central nervous system immune surveillance. Cell Death Dis 2025; 16:53. [PMID: 39875352 PMCID: PMC11775313 DOI: 10.1038/s41419-025-07336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
The understanding of neuroimmune function has evolved from concepts of immune privilege and protection to a new stage of immune interaction. The discovery of skull meninges channels (SMCs) has opened new avenues for understanding central nervous system (CNS) immunity. Here, we characterize skull bone marrow and SMCs by detailing the anatomical structures adjacent to the skull, the differences between skull and peripheral bone marrow, mainstream animal processing methods, and the role of skull bone marrow in monitoring various CNS diseases. Additionally, we highlight several unresolved issues based on current research findings, aiming to guide future research directions.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China.
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China.
| |
Collapse
|
16
|
Dou L, Xu Z, Xu J, Zang C, Su C, Pieper AA, Leverenz JB, Wang F, Zhu X, Cummings J, Cheng F. A network-based systems genetics framework identifies pathobiology and drug repurposing in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:22. [PMID: 39837893 PMCID: PMC11751448 DOI: 10.1038/s41531-025-00870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. However, current treatments only manage symptoms and lack the ability to slow or prevent disease progression. We utilized a systems genetics approach to identify potential risk genes and repurposable drugs for PD. First, we leveraged non-coding genome-wide association studies (GWAS) loci effects on five types of brain-specific quantitative trait loci (xQTLs, including expression, protein, splicing, methylation and histone acetylation) under the protein-protein interactome (PPI) network. We then prioritized 175 PD likely risk genes (pdRGs), such as SNCA, CTSB, LRRK2, DGKQ, and CD44, which are enriched in druggable targets and differentially expressed genes across multiple human brain-specific cell types. Integrating network proximity-based drug repurposing and patient electronic health record (EHR) data observations, we identified Simvastatin as being significantly associated with reduced incidence of PD (hazard ratio (HR) = 0.91 for fall outcome, 95% confidence interval (CI): 0.87-0.94; HR = 0.88 for dementia outcome, 95% CI: 0.86-0.89) after adjusting for 267 covariates. In summary, our network-based systems genetics framework identifies potential risk genes and repurposable drugs for PD and other neurodegenerative diseases if broadly applied.
Collapse
Affiliation(s)
- Lijun Dou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Zhenxing Xu
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Jielin Xu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chengxi Zang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Chang Su
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - James B Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of Medicine, UNLV, Las Vegas, NV, 89154, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
17
|
Yang G, Su R, Bu J, Li Y, Lin X, Jin J, Zhang Y, Zhuang P, Guo H, Yin Q. Emerging role of adaptive immunity in diabetes-induced cognitive impairment: from the periphery to the brain. Metab Brain Dis 2025; 40:102. [PMID: 39821703 DOI: 10.1007/s11011-025-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025]
Abstract
Diabetic cognitive impairment (DCI) is a central nervous system complication induced by peripheral metabolic dysfunction of diabetes mellitus. Cumulative studies have shown that neuro-immune crosstalk is involved in the pathological progression of DCI. However, current studies mostly focus on the interaction between innate immunity cells and neurons, while ignoring the role of adaptive immunity cells in DCI. Notably, recent studies have revealed adaptive immune cells are involved in cognitive development and the progression of neurodegenerative diseases. Equally important, accumulated past studies have also shown that diabetic patients experience imbalanced peripheral adaptive immune homeostasis and disrupted transmission of adaptive immune cells to the central system. Therefore, this review first updated the cognitive mechanism of adaptive immune regulation, and then summarized the contribution of adaptive immunity to DCI from the aspects of peripheral adaptive immune homeostasis, transmission pathways, and brain tissue infiltration. Furthermore, we also summarized the potential of anti-diabetic drugs to regulate adaptive immunity, and looked forward to the potential value of regulatory adaptive immunity in the prevention and treatment of DCI, to provide a new strategy for the prevention and treatment of DCI.
Collapse
Affiliation(s)
- Genhui Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Runtao Su
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jie Bu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xueling Lin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiahui Jin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanjun Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Pengwei Zhuang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Hong Guo
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qingsheng Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
18
|
Song W, Zhou ZM, Zhang LL, Shu HF, Xia JR, Qin X, Hua R, Zhang YM. Infiltrating peripheral monocyte TREM-1 mediates dopaminergic neuron injury in substantia nigra of Parkinson's disease model mice. Cell Death Dis 2025; 16:18. [PMID: 39809747 PMCID: PMC11733277 DOI: 10.1038/s41419-025-07333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Neuroinflammation is a key factor in the pathogenesis of Parkinson's disease (PD). Activated microglia in the central nervous system (CNS) and infiltration of peripheral immune cells contribute to dopaminergic neuron loss. However, the role of peripheral immune responses, particularly triggering receptor expressed on myeloid cells-1 (TREM-1), in PD remains unclear. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced PD mouse model, we examined TREM-1 expression and monocyte infiltration in the substantia nigra pars compacta (SNpc). We found that MPTP increased peripheral monocytes, and deletion of peripheral monocytes protected against MPTP neurotoxicity in the SNpc. TREM-1 inhibition, both genetically and pharmacologically, reduced monocyte infiltration, alleviated neuroinflammation, and preserved dopaminergic neurons, resulting in improved motor function. Furthermore, adoptive transfer of TREM-1-expressing monocytes from PD model mice to naive mice induced neuronal damage and motor deficits. These results underscore the critical role of peripheral monocytes and TREM-1 in PD progression, suggesting that targeting TREM-1 could be a promising therapeutic approach to prevent dopaminergic neurodegeneration and motor dysfunction in PD. Schematic diagram of monocyte TREM-1-mediated dopaminergic neuron damage. The figure illustrates that in experimental MPTP-induced PD model mice, the number of inflammatory monocytes in the peripheral blood increases, after which the monocytes infiltrate the CNS through the Blood-Brain Barrier(BBB). These infiltrating monocytes increase the release of inflammatory cytokines and eventually cause neuronal injury. TREM-1 gene deletion and pharmacological blockade limit inflammatory monocyte recruitment into the SNpc and ameliorate neuroinflammatory events and the loss of dopaminergic neurons.
Collapse
Affiliation(s)
- Wei Song
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- Yancheng Stomatological Hospital, Yancheng, China
| | - Zi-Ming Zhou
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Le-le Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Hai-Feng Shu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Jin-Ru Xia
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xia Qin
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
19
|
Torrente D, Su EJ, Citalán-Madrid AF, Schielke GP, Magaoay D, Warnock M, Stevenson T, Mann K, Lesept F, Delétage N, Blanc M, Norris EH, Vivien D, Lawrence DA. The interaction of tPA with NMDAR1 drives neuroinflammation and neurodegeneration in α-synuclein-mediated neurotoxicity. J Neuroinflammation 2025; 22:8. [PMID: 39810216 PMCID: PMC11731172 DOI: 10.1186/s12974-025-03336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice. We further investigate tPA's potential role in SN pathology in an α-synuclein mouse model of Parkinson's disease (PD). To characterize the mechanism of tPA action in α-synuclein-mediated pathology in the SN and to identify possible therapeutic pathways, we performed RNA-seq analysis of the SN and used multiple transgenic mouse models. These included tPA deficient mice and two newly developed transgenic mice, a knock-in model expressing endogenous levels of proteolytically inactive tPA (tPA Ala-KI) and a second model overexpressing proteolytically inactive tPA (tPA Ala-BAC). Our findings show that striatal GABAergic neurons send tPA+ projections to dopaminergic (DA)-neurons in the SN and that tPA is released from SN-derived synaptosomes upon stimulation. We also found that tPA levels in the SN increased following α-synuclein overexpression. Importantly, tPA deficiency protects DA-neurons from degeneration, prevents behavioral deficits, and reduces microglia activation and T-cell infiltration induced by α-synuclein overexpression. RNA-seq analysis indicates that tPA in the SN is required for the upregulation of genes involved in the innate and adaptive immune responses induced by α-synuclein overexpression. Overexpression of α-synuclein in tPA Ala-KI mice, expressing only proteolytically inactive tPA, confirms that tPA-mediated neuroinflammation and neurodegeneration is independent of its proteolytic activity. Moreover, overexpression of proteolytically inactive tPA in tPA Ala-BAC mice leads to increased neuroinflammation and neurodegeneration compared to mice expressing normal levels of tPA, suggesting a tPA dose response. Finally, treatment of mice with glunomab, a neutralizing antibody that selectively blocks tPA binding to the N-methyl-D-aspartate receptor-1 (NMDAR1) without affecting NMDAR1 ion channel function, identifies the tPA interaction with NMDAR1 as necessary for tPA-mediated neuroinflammation and neurodegeneration in response to α-synuclein-mediated neurotoxicity. Thus, our data identifies a novel pathway that promotes DA-neuron degeneration and suggests a potential therapeutic intervention for PD targeting the tPA-NMDAR1 interaction.
Collapse
Affiliation(s)
- Daniel Torrente
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Enming J Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Alí Francisco Citalán-Madrid
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Gerald P Schielke
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Daniel Magaoay
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark Warnock
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Tamara Stevenson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Kris Mann
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Flavie Lesept
- Lys Therapeutics, Main offices: 56 rue Saint Jean de Dieu, Lyon, 69007, France
- Lys Therapeutics, HQ: Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | - Nathalie Delétage
- Lys Therapeutics, Main offices: 56 rue Saint Jean de Dieu, Lyon, 69007, France
- Lys Therapeutics, HQ: Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | - Manuel Blanc
- Lys Therapeutics, Main offices: 56 rue Saint Jean de Dieu, Lyon, 69007, France
- Lys Therapeutics, HQ: Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders (PhIND), UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Normandie Univ, Caen, France
- Department of Clinical Research, Caen University Hospital, CHU, Caen, France
| | - Daniel A Lawrence
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA.
| |
Collapse
|
20
|
Griffin EF, Owens MG. Dopaminergic neurodegeneration in C. elegans cultivated with Porphorymonas gingivalis. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001423. [PMID: 39839711 PMCID: PMC11749262 DOI: 10.17912/micropub.biology.001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
Disruption of the human microbiome has emerged as a major contributing factor in the etiology of neurodegenerative disease. Previous work suggests a positive correlation between periodontal inflammation and Parkinson's disease. Here, we show that feeding C. elegans animals Porphorymonas gingivalis causes neurodegeneration that is not additive with neurodegeneration induced by the Parkinson's-associated protein, α-synuclein. In contrast, α-synuclein-expressing animals fed P. gingivalis show additional disruption in basal slowing, suggesting that P. gingivalis induces neurodegeneration while altering neuronal function of extant neurons. Though the mechanism is unclear, these results suggest a relationship between P. gingivalis and neurodegeneration that warrants further investigation.
Collapse
Affiliation(s)
- Edward F. Griffin
- Natural Sciences, Converse University, Spartanburg, South Carolina, United States
| | - Madeline G. Owens
- Natural Sciences, Converse University, Spartanburg, South Carolina, United States
| |
Collapse
|
21
|
Li M, Chen M, Li H, Gao D, Zhao L, Zhu M. Glial cells improve Parkinson's disease by modulating neuronal function and regulating neuronal ferroptosis. Front Cell Dev Biol 2025; 12:1510897. [PMID: 39830208 PMCID: PMC11739109 DOI: 10.3389/fcell.2024.1510897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
The main characteristics of Parkinson's disease (PD) are the loss of dopaminergic (DA) neurons and abnormal aggregation of cytosolic proteins. However, the exact pathogenesis of PD remains unclear, with ferroptosis emerging as one of the key factors driven by iron accumulation and lipid peroxidation. Glial cells, including microglia, astrocytes, and oligodendrocytes, serve as supportive cells in the central nervous system (CNS), but their abnormal activation can lead to DA neuron death and ferroptosis. This paper explores the interactions between glial cells and DA neurons, reviews the changes in glial cells during the pathological process of PD, and reports on how glial cells regulate ferroptosis in PD through iron homeostasis and lipid peroxidation. This opens up a new pathway for basic research and therapeutic strategies in Parkinson's disease.
Collapse
Affiliation(s)
- Mengzhu Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Mengxuan Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Haiyan Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Da Gao
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijun Zhao
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Kloske CM, Mahinrad S, Barnum CJ, Batista AF, Bradshaw EM, Butts B, Carrillo MC, Chakrabarty P, Chen X, Craft S, Da Mesquita S, Dabin LC, Devanand D, Duran‐Laforet V, Elyaman W, Evans EE, Fitzgerald‐Bocarsly P, Foley KE, Harms AS, Heneka MT, Hong S, Huang YA, Jackvony S, Lai L, Guen YL, Lemere CA, Liddelow SA, Martin‐Peña A, Orr AG, Quintana FJ, Ramey GD, Rexach JE, Rizzo SJS, Sexton C, Tang AS, Torrellas JG, Tsai AP, van Olst L, Walker KA, Wharton W, Tansey MG, Wilcock DM. Advancements in Immunity and Dementia Research: Highlights from the 2023 AAIC Advancements: Immunity Conference. Alzheimers Dement 2025; 21:e14291. [PMID: 39692624 PMCID: PMC11772715 DOI: 10.1002/alz.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 12/19/2024]
Abstract
The immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated. In March of 2023, the Alzheimer's Association convened the Alzheimer's Association International Conference (AAIC), Advancements: Immunity, to discuss the roles of the immune system in ADRD. A wide range of topics were discussed, such as animal models that replicate human pathology, immune-related biomarkers and clinical trials, and lessons from other fields describing immune responses in neurodegeneration. This manuscript presents highlights from the conference and outlines avenues for future research on the roles of immunity in neurodegenerative disorders. HIGHLIGHTS: The immune system plays a central role in the pathogenesis of Alzheimer's disease. The immune system exerts numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The 2023 AAIC, Advancements: Immunity, encouraged discussions and collaborations on understanding the role of the immune system.
Collapse
|
23
|
Park H, Kam TI, Dawson VL, Dawson TM. α-Synuclein pathology as a target in neurodegenerative diseases. Nat Rev Neurol 2025; 21:32-47. [PMID: 39609631 DOI: 10.1038/s41582-024-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
α-Synuclein misfolds into pathological forms that lead to various neurodegenerative diseases known collectively as α-synucleinopathies. In this Review, we provide a comprehensive overview of pivotal advances in α-synuclein research. We examine structural features and physiological functions of α-synuclein and summarize current insights into key post-translational modifications, such as nitration, phosphorylation, ubiquitination, sumoylation and truncation, considering their contributions to neurodegeneration. We also highlight the existence of disease-specific α-synuclein strains and their mechanisms of pathological spread, and discuss seed amplification assays and PET tracers as emerging diagnostic tools for detecting pathological α-synuclein in clinical settings. We also discuss α-synuclein aggregation and clearance mechanisms, and review cell-autonomous and non-cell-autonomous processes that contribute to neuronal death, including the roles of adaptive and innate immunity in α-synuclein-driven neurodegeneration. Finally, we highlight promising therapeutic approaches that target pathological α-synuclein and provide insights into emerging areas of research.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Ma L, Liu Y, Ren Y, Mi N, Fang J, Bao R, Xu X, Zhang H, Tang Y. Integrating bioinformatics and machine learning to uncover lncRNA LINC00269 as a key regulator in Parkinson's disease via pyroptosis pathways. Eur J Med Res 2024; 29:582. [PMID: 39696629 DOI: 10.1186/s40001-024-02201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pyroptosis, a specific type of programmed cell death, which has become a significant factor to Parkinson's disease (PD). Concurrently, long non-coding RNAs (lncRNAs) have garnered attention for their regulatory roles in neurodegenerative disorders. This study was designed to ascertain the key lncRNAs in pyroptosis pathways of PD and elucidate their regulatory mechanisms. METHODS Employing a combination of bioinformatics and machine learning, we analyzed PD data sets GSE133347 and GSE110716. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) recognized different lncRNAs. Through various algorithms such as Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Weighted Gene Co-expression Network Analysis (WGCNA), we recognized LINC01606 and LINC00269, which are key factors during the emergence and development of PD. Furthermore, experimental validation was conducted in PD mouse models to confirm these bioinformatics findings. RESULTS The analysis showed that there were a large number of apoptosis-related gene expression changes in Parkinson's syndrome, for example, CASP1 and GSDME were up-regulated, and CASP9 and AIM2 were down-regulated. Among the lncRNAs, LINC01606 and LINC00269 were identified as potential modulators of pyroptosis. Notably, LINC00269 was observed to be significantly downregulated in the brain tissues of a PD mouse model, supporting its involvement in PD. The study also highlighted potential interactions of these lncRNAs with genes like ONECUT2, PRLR, CTNNA3, and LRP2. CONCLUSIONS This study identifies LINC00269 as a potential contributor to pyroptosis pathways in PD. While further investigation is required to fully elucidate its role, these findings provide new insights into PD pathogenesis and suggest potential avenues for future research on diagnostic and therapeutic targets. The study underscores the importance of integrating bioinformatics with experimental validation in neurodegenerative disease research.
Collapse
Affiliation(s)
- LiLi Ma
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Number 23, You Zheng Street, Nan Gang District, Harbin, 150001, Heilongjiang Province, China
- Department of Neurology, Jilin City Hospital of Chemical Industry, Jilin City, Jilin, China
| | - Yue Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Yajing Ren
- School of Medical and Life Sciences, Chengdu University of TCM, Cheng du City, 611137, Sichuan Province, China
| | - Na Mi
- Department of Neurology, Chi Feng Municipal Hospital, Chi Feng City, 024000, Inner Mongolia Autonomous Region, China
| | - Jing Fang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Rui Bao
- Department of Rehabilitation, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Xiuzhi Xu
- General Medical Department, Heilongjiang Provincial Hospital, Harbin, 150036, Heilongjiang Province, China
| | - Hongjia Zhang
- Department of Neurology, Jilin City Hospital of Chemical Industry, Jilin City, Jilin, China.
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Number 23, You Zheng Street, Nan Gang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
25
|
Harackiewicz O, Grembecka B. The Role of Microglia and Astrocytes in the Pathomechanism of Neuroinflammation in Parkinson's Disease-Focus on Alpha-Synuclein. J Integr Neurosci 2024; 23:203. [PMID: 39613467 DOI: 10.31083/j.jin2311203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024] Open
Abstract
Glial cells, including astrocytes and microglia, are pivotal in maintaining central nervous system (CNS) homeostasis and responding to pathological insults. This review elucidates the complex immunomodulatory functions of glial cells, with a particular focus on their involvement in inflammation cascades initiated by the accumulation of alpha-synuclein (α-syn), a hallmark of Parkinson's disease (PD). Deriving insights from studies on both sporadic and familial forms of PD, as well as animal models of PD, we explore how glial cells contribute to the progression of inflammation triggered by α-syn aggregation. Additionally, we analyze the interplay between glial cells and the blood-brain barrier (BBB), highlighting the role of these cells in maintaining BBB integrity and permeability in the context of PD pathology. Furthermore, we delve into the potential activation of repair and neuroprotective mechanisms mediated by glial cells amidst α-syn-induced neuroinflammation. By integrating information on sporadic and familial PD, as well as BBB dynamics, this review aims to deepen our understanding of the multifaceted interactions between glial cells, α-syn pathology, and CNS inflammation, thereby offering valuable insights into therapeutic strategies for PD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Oliwia Harackiewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
26
|
Yang G, Zhang B, Xu CY, Wu JW, Zhang Y, Yu Y, He XG, Dou J. Utilizing Machine Learning to Identify Biomarkers of Endoplasmic Reticulum Stress and Analyze Immune Cell Infiltration in Parkinson's Disease. Mol Neurobiol 2024; 61:8544-8551. [PMID: 38521829 DOI: 10.1007/s12035-024-03948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 03/25/2024]
Abstract
The neurodegenerative disorder known as Parkinson's disease (PD) affects many people. The objective of this investigation was to examine the relationship between immune system infiltration, ATP-binding cassette transporter subfamily A member 7 (ABCA7) and TBL2 as well as potential therapeutic targets for the identification of PD associated to endoplasmic reticulum (ER) stress. First, we obtained PD data through GEO and divided it into two sets: a training set (GSE8397) plus a set for validation (GSE7621). Functional enrichment analysis was performed on a set of DEGs that overlapped with genes involved in endoplasmic reticulum stress. To identify genes of PD linked with endoplasmic reticulum stress, we employed random forest (RF) along with the least absolute shrinkage and selection operator (LASSO) logistic regression. Spearman's rank correlation analysis was then used to find associations among diagnostic markers with immune cell penetration. A grand total of 2 stress-related endoplasmic reticulum signature transcripts were identified. ABCA7 and TBL2 were shown to have diagnostic potential for PD and immune infiltrating cells have a role in the etiology of the disease. Additionally, resting CD4 memory, plasma cells, and NK cells overall exhibited positive associations with ABCA7, whereas triggered macrophages, T cells with active CD4 memory, activating NK cells, T cells with activated CD4 naive, engaged NK cells, and neutrophils all had adverse interactions with ABCA7. Overall, ABCA7 together with TBL2 have diagnostic utility for PD, and several types of immune cells, especially macrophages, may be involved in the development and progression of the disease.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Bing Zhang
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Chun Yang Xu
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Jia Wen Wu
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yi Zhang
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yue Yu
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Xiao Gang He
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.
| | - Jun Dou
- Children's Hospital Affiliated to Soochow University, Suzhou, China.
| |
Collapse
|
27
|
Lu J, Wu K, Sha X, Lin J, Chen H, Yu Z. TRPV1 alleviates APOE4-dependent microglial antigen presentation and T cell infiltration in Alzheimer's disease. Transl Neurodegener 2024; 13:52. [PMID: 39468688 PMCID: PMC11520887 DOI: 10.1186/s40035-024-00445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/17/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Persistent innate and adaptive immune responses in the brain contribute to the progression of Alzheimer's disease (AD). APOE4, the most important genetic risk factor for sporadic AD, encodes apolipoprotein E4, which by itself is a potent modulator of immune response. However, little is known about the immune hub that governs the crosstalk between the nervous and the adaptive immune systems. Transient receptor potential vanilloid type 1 (TRPV1) channel is a ligand-gated, nonselective cation channel with Ca2+ permeability, which has been proposed as a neuroprotective target in AD. METHODS Using Ca2+-sensitive dyes, dynamic changes of Ca2+ in microglia were measured, including exogenous Ca2+ uptake and endoplasmic reticulum Ca2+ release. The mRFP-GFP-tagged LC3 plasmid was expressed in microglia to characterize the role of TRPV1 in the autophagic flux. Transcriptomic analyses and flow cytometry were performed to investigate the effects of APOE4 on brain microglia and T cells from APOE-targeted replacement mice with microglia-specific TRPV1 gene deficiency. RESULTS Both APOE4 microglia derived from induced pluripotent stem cells of AD patients and APOE4-related tauopathy mouse model showed significantly increased cholesterol biosynthesis and accumulation compared to their APOE3 counterparts. Further, cholesterol dysregulation was associated with persistent activation of microglia and elevation of major histocompatibility complex II-dependent antigen presentation in microglia, subsequently accompanied by T cell infiltration. In addition, TRPV1-mediated transient Ca2+ influx mitigated cholesterol biosynthesis in microglia by suppressing the transcriptional activation of sterol regulatory element-binding protein 2, promoted autophagic activity and reduced lysosomal cholesterol accumulation, which were sufficient to resolve excessive immune response and neurodegeneration in APOE4-related tauopathy mouse model. Moreover, microglia-specific deficiency of TRPV1 gene accelerated glial inflammation, T cell response and associated neurodegeneration in an APOE4-related tauopathy mouse model. CONCLUSIONS The findings provide new perspectives for the treatment of APOE4-dependent neurodegeneration including AD.
Collapse
Affiliation(s)
- Jia Lu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kexin Wu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xudong Sha
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
28
|
Xie F, Shen B, Luo Y, Zhou H, Xie Z, Zhu S, Wei X, Chang Z, Zhu Z, Ding C, Jin K, Yang C, Batzu L, Chaudhuri KR, Chan LL, Tan EK, Wang Q. Repetitive transcranial magnetic stimulation alleviates motor impairment in Parkinson's disease: association with peripheral inflammatory regulatory T-cells and SYT6. Mol Neurodegener 2024; 19:80. [PMID: 39456006 PMCID: PMC11515224 DOI: 10.1186/s13024-024-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been used to treat various neurological disorders. However, the molecular mechanism underlying the therapeutic effect of rTMS on Parkinson's disease (PD) has not been fully elucidated. Neuroinflammation like regulatory T-cells (Tregs) appears to be a key modulator of disease progression in PD. If rTMS affects the peripheral Tregs in PD remains unknown. METHODS Here, we conducted a prospective clinical study (Chinese ClinicalTrials. gov: ChiCTR 2100051140) involving 54 PD patients who received 10-day rTMS (10 Hz) stimulation on the primary motor cortex (M1) region or sham treatment. Clinical and function assessment as well as flow cytology study were undertaken in 54 PD patients who were consecutively recruited from the department of neurology at Zhujiang hospital between September 2021 and January 2022. Subsequently, we implemented flow cytometry analysis to examine the Tregs population in spleen of MPTP-induced PD mice that received rTMS or sham treatment, along with quantitative proteomic approach reveal novel molecular targets for Parkinson's disease, and finally, the RNA interference method verifies the role of these new molecular targets in the treatment of PD. RESULTS We demonstrated that a 10-day rTMS treatment on the M1 motor cortex significantly improved motor dysfunction in PD patients. The beneficial effects persisted for up to 40 days, and were associated with an increase in peripheral Tregs. There was a positive correlation between Tregs and motor improvements in PD cases. Similarly, a 10-day rTMS treatment on the brains of MPTP-induced PD mice significantly ameliorated motor symptoms. rTMS reversed the downregulation of circulating Tregs and tyrosine hydroxylase neurons in these mice. It also increased anti-inflammatory mediators, deactivated microglia, and decreased inflammatory cytokines. These effects were blocked by administration of a Treg inhibitor anti-CD25 antibody in MPTP-induced PD mice. Quantitative proteomic analysis identified TLR4, TH, Slc6a3 and especially Syt6 as the hub node proteins related to Tregs and rTMS therapy. Lastly, we validated the role of Treg and rTMS-related protein syt6 in MPTP mice using the virus interference method. CONCLUSIONS Our clinical and experimental studies suggest that rTMS improves motor function by modulating the function of Tregs and suppressing toxic neuroinflammation. Hub node proteins (especially Syt6) may be potential therapeutic targets. TRIAL REGISTRATION Chinese ClinicalTrials, ChiCTR2100051140. Registered 15 December 2021, https://www.chictr.org.cn/bin/project/edit?pid=133691.
Collapse
Affiliation(s)
- Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bibiao Shen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Chengwu Yang
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, T. H. Chan School of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Lucia Batzu
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Ling-Ling Chan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
29
|
Dou L, Xu Z, Xu J, Su C, Pieper AA, Zhu X, Leverenz JB, Wang F, Cummings J, Cheng F. A network-based systems genetics framework identifies pathobiology and drug repurposing in Parkinson's disease. RESEARCH SQUARE 2024:rs.3.rs-4869009. [PMID: 39483867 PMCID: PMC11527220 DOI: 10.21203/rs.3.rs-4869009/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. However, current treatments are directed at symptoms and lack ability to slow or prevent disease progression. Large-scale genome-wide association studies (GWAS) have identified numerous genomic loci associated with PD, which may guide the development of disease-modifying treatments. We presented a systems genetics approach to identify potential risk genes and repurposable drugs for PD. First, we leveraged non-coding GWAS loci effects on multiple human brain-specific quantitative trait loci (xQTLs) under the protein-protein interactome (PPI) network. We then prioritized a set of PD likely risk genes (pdRGs) by integrating five types of molecular xQTLs: expression (eQTLs), protein (pQTLs), splicing (sQTLs), methylation (meQTLs), and histone acetylation (haQTLs). We also integrated network proximity-based drug repurposing and patient electronic health record (EHR) data observations to propose potential drug candidates for PD treatments. We identified 175 pdRGs from QTL-regulated GWAS findings, such as SNCA, CTSB, LRRK2, DGKQ, CD38 and CD44. Multi-omics data validation revealed that the identified pdRGs are likely to be druggable targets, differentially expressed in multiple cell types and impact both the parkin ubiquitin-proteasome and alpha-synuclein (a-syn) pathways. Based on the network proximity-based drug repurposing followed by EHR data validation, we identified usage of simvastatin as being significantly associated with reduced incidence of PD (fall outcome: hazard ratio (HR) = 0.91, 95% confidence interval (CI): 0.87-0.94; for dementia outcome: HR = 0.88, 95% CI: 0.86-0.89), after adjusting for 267 covariates. Our network-based systems genetics framework identifies potential risk genes and repurposable drugs for PD and other neurodegenerative diseases if broadly applied.
Collapse
Affiliation(s)
- Lijun Dou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhenxin Xu
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Jielin Xu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chang Su
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Andrew A. Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - James B. Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, Nevada 89154, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
30
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
31
|
Xiong LL, Du RL, Niu RZ, Xue LL, Chen L, Huangfu LR, Cai XX, He XY, Huang J, Huang XY, Liu J, Yu CY, Wang WY, Wang TH. Single-cell RNA sequencing reveals peripheral immunological features in Parkinson's Disease. NPJ Parkinsons Dis 2024; 10:185. [PMID: 39366969 PMCID: PMC11452393 DOI: 10.1038/s41531-024-00790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/27/2024] [Indexed: 10/06/2024] Open
Abstract
Although many researchers of Parkinson's disease (PD) have shifted their focus from the central nervous system (CNS) to the peripheral blood, a significant knowledge gap remains between PD severity and the peripheral immune response. In the current study, we aimed to map the peripheral immunity atlas in peripheral blood mononuclear cells (PBMCs) from PD patients and healthy controls using single-cell RNA sequencing (scRNA-seq). Our study employed scRNA-seq analysis to map the peripheral immunity atlas in PD by profiling PBMCs from PD-Early, PD-Late patients and matched controls. By enlarging the blood sample size, we validated the roles of NK cells in numerous immune-related biological processes. We also detected the infiltration of NK cells into the cerebral motor cortex as the disease progressed, using human brain sections, and elucidated the communication between the periphery and CNS and its implications for PD. As a result, cell subpopulation atlases in PBMCs from PD patients and healthy controls along with differentially expressed genes in NK cells were identified by scRNA-seq analysis, representing 6 major immune cell subsets among which NK cells declined in the progression of PD. We further validated NK cell reduction in increasing samples and found that they participated in numerous immune-related biological processes and infiltration into the cerebral motor cortex as the disease proceeded, evidencingd the close communication between the peripheral immune response and CNS. Strikingly, XCL2 positively correlated with PD severity, with good predictive performance of PD and specific expression in subclusters C2 and C5 of NK cells. All these findings delineated the critical role of peripheral immune response mediated by NK cells in the pathogenesis of PD. NK cell-specific XCL2 could be used as a diagnostic marker for treating PD. The indispensable function of NK cells and NK cell-specific molecular biomarkers highlighted the implication of the peripheral immune response in PD progression. Trial registration: ChiCTR, ChiCTR1900023975. Registered 20 June 2019 - Retrospectively registered, https://www.chictr.org.cn/showproj.html?proj=31035 .
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Ruo-Lan Du
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rui-Ze Niu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
- Mental Health Center of Kunming Medical University, Kunming, 650034, Yunnan, China
| | - Lu-Lu Xue
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Chen
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li-Ren Huangfu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiao-Xing Cai
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiu-Ying He
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Huang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xue-Yan Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wen-Yuan Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
32
|
Roodveldt C, Bernardino L, Oztop-Cakmak O, Dragic M, Fladmark KE, Ertan S, Aktas B, Pita C, Ciglar L, Garraux G, Williams-Gray C, Pacheco R, Romero-Ramos M. The immune system in Parkinson's disease: what we know so far. Brain 2024; 147:3306-3324. [PMID: 38833182 PMCID: PMC11449148 DOI: 10.1093/brain/awae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Parkinson's disease is characterized neuropathologically by the degeneration of dopaminergic neurons in the ventral midbrain, the accumulation of α-synuclein (α-syn) aggregates in neurons and chronic neuroinflammation. In the past two decades, in vitro, ex vivo and in vivo studies have consistently shown the involvement of inflammatory responses mediated by microglia and astrocytes, which may be elicited by pathological α-syn or signals from affected neurons and other cell types, and are directly linked to neurodegeneration and disease development. Apart from the prominent immune alterations seen in the CNS, including the infiltration of T cells into the brain, more recent studies have demonstrated important changes in the peripheral immune profile within both the innate and adaptive compartments, particularly involving monocytes, CD4+ and CD8+ T cells. This review aims to integrate the consolidated understanding of immune-related processes underlying the pathogenesis of Parkinson's disease, focusing on both central and peripheral immune cells, neuron-glia crosstalk as well as the central-peripheral immune interaction during the development of Parkinson's disease. Our analysis seeks to provide a comprehensive view of the emerging knowledge of the mechanisms of immunity in Parkinson's disease and the implications of this for better understanding the overall pathogenesis of this disease.
Collapse
Affiliation(s)
- Cintia Roodveldt
- Centre for Molecular Biology and Regenerative Medicine-CABIMER, University of Seville-CSIC, Seville 41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville 41009, Spain
| | - Liliana Bernardino
- Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Ozgur Oztop-Cakmak
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Department of Molecular Biology and Endocrinology, ‘VINČA’ Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Kari E Fladmark
- Department of Biological Science, University of Bergen, 5006 Bergen, Norway
| | - Sibel Ertan
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur 15200, Turkey
| | - Carlos Pita
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Lucia Ciglar
- Center Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria
| | - Gaetan Garraux
- Movere Group, Faculty of Medicine, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580702, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia 7510156, Santiago, Chile
| | - Marina Romero-Ramos
- Department of Biomedicine & The Danish Research Institute of Translational Neuroscience—DANDRITE, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
33
|
Han Z, Wang B, Wen YQ, Li YN, Feng CX, Ding XS, Shen Y, Yang Q, Gao L. Acteoside alleviates lipid peroxidation by enhancing Nrf2-mediated mitophagy to inhibit ferroptosis for neuroprotection in Parkinson's disease. Free Radic Biol Med 2024; 223:493-505. [PMID: 39048340 DOI: 10.1016/j.freeradbiomed.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Increasing evidence underscores the pivotal role of ferroptosis in Parkinson's Disease (PD) pathogenesis. Acteoside (ACT) has been reported to possess neuroprotective properties. However, the effects of ACT on ferroptosis and its molecular mechanisms remain unknown. This study aimed to explore whether ACT can regulate ferroptosis in dopaminergic (DA) neurons within both in vitro and in vivo PD models and to elucidate the underlying regulatory mechanisms. PD models were established and treated with various concentrations of ACT. Cell viability assays, Western blot, lipid peroxidation assessments, immunohistochemistry, and transmission electron microscopy were employed to confirm ACT's inhibition of ferroptosis and its protective effect on DA neurons across PD models. Immunofluorescence staining, MitoSOX staining, and confocal laser scanning microscopy further validated ACT's regulation regulatory effects on ferroptosis via the Nrf2-mitophagy pathway. Four animal behavioral tests were used to assess behavioral improvements in PD animals. ACT inhibited ferroptosis in PD models in vitro, as evidenced by increased cell viability, the upregulation of GPX4 and SLC7A11, reduced lipid peroxides, and attenuation of mitochondrial morphological alterations typical of ferroptosis. By activating the Nrf2-mitophagy axis, ACT enhanced mitochondrial integrity and reduced lipid peroxidation, mitigating ferroptosis. These in vitro results were consistent with in vivo findings, where ACT treatment significantly preserved DA neurons, curbed ferroptosis in these cells, and alleviated cognitive and behavioral deficits. This study is the first demonstration of ACT's capability to inhibit neuronal ferroptosis and protect DA neurons, thus alleviating behavioral and cognitive impairments in both in vitro and in vivo PD models. Furthermore, The suppression of ferroptosis by ACT is achieved through the activation of the Nrf2-mitophagy signaling pathway. Our results show that ACT is beneficial for both treating and preventing PD. They also offer novel therapeutic options for treating PD and molecular targets for regulating ferroptosis.
Collapse
Affiliation(s)
- Zheng Han
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Department of Neurosurgery, 967th Hospital of the PLA Joint Logistic Support Force, Dalian, Liaoning Province, 116021, China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Center for Frontier Medicine Innovation, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yu-Qi Wen
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yang-Ni Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Chen-Xi Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
34
|
Tastan B, Heneka MT. The impact of neuroinflammation on neuronal integrity. Immunol Rev 2024; 327:8-32. [PMID: 39470038 DOI: 10.1111/imr.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration. Thus, this review aims to provide a comprehensive overview of the multifaceted interactions among neurons and key inflammatory players, exploring mechanisms through which inflammation influences neuronal functionality and structural integrity in the CNS. Further, it will discuss how these inflammatory mechanisms lead to impairment in neuronal functions and architecture and highlight the consequences caused by dysregulated neuronal functions, such as cognitive dysfunction and mood disorders. By integrating insights from recent research findings, this review will enhance our understanding of the neuroinflammatory landscape and set the stage for future interventions that could transform current approaches to preserve neuronal integrity and function in CNS-related inflammatory conditions.
Collapse
Affiliation(s)
- Bora Tastan
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, Massachusetts, USA
| |
Collapse
|
35
|
Campagnolo M, Weis L, Sandre M, Tushevski A, Russo FP, Savarino E, Carecchio M, Stocco E, Macchi V, De Caro R, Parchi P, Bubacco L, Porzionato A, Antonini A, Emmi A. Immune landscape of the enteric nervous system differentiates Parkinson's disease patients from controls: The PADUA-CESNE cohort. Neurobiol Dis 2024; 200:106609. [PMID: 39048026 DOI: 10.1016/j.nbd.2024.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Gastrointestinal dysfunction has emerged as a prominent early feature of Parkinson's Disease, shedding new light on the pivotal role of the enteric nervous system in its pathophysiology. However, the role of immune-cell clusters and inflammatory and glial markers in the gut pathogenetic process needs further elucidation. OBJECTIVES We aimed to study duodenum tissue samples to characterize PD's enteric nervous system pathology further. Twenty patients with advanced PD, six with early PD, and 18 matched controls were included in the PADUA-CESNE cohort. METHODS Duodenal biopsies from 26 patients with early to advanced stage PD and 18 age-matched HCs were evaluated for the presence of surface markers (CD3+, CD4+, CD8+, CD20+, CD68+, HLA-DR), presence of misfolded alpha-synuclein and enteric glial alteration (GFAP). Correlation of immulogic pattern and clinical characteristic were analyzed. RESULTS The findings validate that in patients with Parkinson's Disease, the activation and reactive gliosis are linked to the neurodegeneration triggered by the presence of misfolded alpha-synuclein in the enteric nervous system. This process intensifies from the initial to the advanced stages of the disease. The clusters of T- and B-lymphocytes in the enteric system, along with the overall expression of HLA-DR in antigen-presenting cells, exceeded those in the control group. Conversely, no differences in terms of macrophage populations were found. CONCLUSIONS These findings broaden our understanding of the mechanisms underlying the enteric nervous system's involvement in PD and point to the gastrointestinal system as a potential therapeutic target, especially in the early stages of the disease. Moreover, our results propose a role of T- and B-lymphocytes in maintaining inflammation and ultimately influencing alpha-synuclein misfolding and aggregation.
Collapse
Affiliation(s)
- Marta Campagnolo
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy
| | - Luca Weis
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
| | - Michele Sandre
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
| | - Aleksandar Tushevski
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Edoardo Savarino
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Miryam Carecchio
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy
| | - Elena Stocco
- Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy; Department of Women's and Children's Health, University of Padova, Padova, Italy; Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Veronica Macchi
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy.
| | - Raffaele De Caro
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luigi Bubacco
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Department of Biology, University of Padova, Padova, Italy
| | - Andrea Porzionato
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Padua Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Aron Emmi
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy; Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy; Padua Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
36
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
37
|
Hong H, Wang Y, Menard M, Buckley JA, Zhou L, Volpicelli-Daley L, Standaert DG, Qin H, Benveniste EN. Suppression of the JAK/STAT pathway inhibits neuroinflammation in the line 61-PFF mouse model of Parkinson's disease. J Neuroinflammation 2024; 21:216. [PMID: 39218899 PMCID: PMC11368013 DOI: 10.1186/s12974-024-03210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of α-synuclein (α-Syn) into insoluble aggregates called Lewy pathology. The Line 61 α-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human α-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human α-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-α-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-α-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.
Collapse
Affiliation(s)
- Huixian Hong
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Yong Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Marissa Menard
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jessica A Buckley
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA
| | - Laura Volpicelli-Daley
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA.
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL, 35294, USA.
| |
Collapse
|
38
|
Freuchet A, Pinçon A, Sette A, Lindestam Arlehamn CS. Inflammation and heterogeneity in synucleinopathies. Front Immunol 2024; 15:1432342. [PMID: 39281666 PMCID: PMC11392857 DOI: 10.3389/fimmu.2024.1432342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Neurodegenerative diseases represent a huge healthcare challenge which is predicted to increase with an aging population. Synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), present complex challenges in understanding their onset and progression. They are characterized by the abnormal aggregation of α-synuclein in the brain leading to neurodegeneration. Accumulating evidence supports the existence of distinct subtypes based on the site of α-synuclein aggregation initiation, genetics, and, more recently, neuroinflammation. Mediated by both central nervous system-resident cells, peripheral immune cells, and gut dysbiosis, neuroinflammation appears as a key process in the onset and progression of neuronal loss. Sex-based differences add another layer of complexity to synucleinopathies, influencing disease prevalence - with a known higher incidence of PD in males compared to females - as well as phenotype and immune responses. Biological sex affects neuroinflammatory pathways and the immune response, suggesting the need for sex-specific therapeutic strategies and biomarker identification. Here, we review the heterogeneity of synucleinopathies, describing the etiology, the mechanisms by which the inflammatory processes contribute to the pathology, and the consideration of sex-based differences to highlight the need for personalized therapeutics.
Collapse
Affiliation(s)
- Antoine Freuchet
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Anaëlle Pinçon
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Master de Biologie, Ecole Normale Superieure de Lyon, University of Lyon, Lyon, France
| | - Alessandro Sette
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Cecilia S Lindestam Arlehamn
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
39
|
Bido S, Nannoni M, Muggeo S, Gambarè D, Ruffini G, Bellini E, Passeri L, Iaia S, Luoni M, Provinciali M, Giannelli SG, Giannese F, Lazarevic D, Gregori S, Broccoli V. Microglia-specific IL-10 gene delivery inhibits neuroinflammation and neurodegeneration in a mouse model of Parkinson's disease. Sci Transl Med 2024; 16:eadm8563. [PMID: 39167665 DOI: 10.1126/scitranslmed.adm8563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/23/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Neuroinflammation plays a key role in exacerbating dopaminergic neuron (DAN) loss in Parkinson's disease (PD). However, it remains unresolved how to effectively normalize this immune response given the complex interplay between the innate and adaptive immune responses occurring within a scarcely accessible organ like the brain. In this study, we uncovered a consistent correlation between neuroinflammation, brain parenchymal lymphocytes, and DAN loss among several commonly used mouse models of PD generated by a variety of pathological triggers. We validated a viral therapeutic approach for the microglia-specific expression of interleukin 10 (IL-10) to selectively mitigate the excessive inflammatory response. We found that this approach induced a local nigral IL-10 release that alleviated DAN loss in mice overexpressing the human SNCA gene in the substantia nigra. Single-cell transcriptomics revealed that IL-10 induced the emergence of a molecularly distinct microglial cell state, enriched in markers of cell activation with enhanced expression of prophagocytic pathways. IL-10 promoted microglial phagocytotic and clearance activities in vitro and reduced αSYN aggregate burden in the nigral area in mice overexpressing SNCA. Furthermore, IL-10 stimulated the differentiation of CD4+ T lymphocytes into active T regulatory cells and promoted inhibitory characteristics in CD8+ T cells. In summary, our results show that local and microglia-specific IL-10 transduction elicited strong immunomodulation in the nigral tissue with enhanced suppression of lymphocyte toxicity that was associated with DAN survival. These results offer insights into the therapeutic benefits of IL-10 and showcase a promising gene delivery approach that could minimize undesired side effects.
Collapse
Affiliation(s)
- Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Melania Nannoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diana Gambarè
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giorgia Ruffini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Iaia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Martino Provinciali
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Gea Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Giannese
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| |
Collapse
|
40
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
41
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
42
|
Kong X, Xu L, Mou Z, Lyu W, Shan K, Wang L, Liu F, Rong F, Li J, Wei P. The anti-inflammatory effects of itaconate and its derivatives in neurological disorders. Cytokine Growth Factor Rev 2024; 78:37-49. [PMID: 38981775 DOI: 10.1016/j.cytogfr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Almost 16 % of the global population is affected by neurological disorders, including neurodegenerative and cerebral neuroimmune diseases, triggered by acute or chronic inflammation. Neuroinflammation is recognized as a common pathogenic mechanism in a wide array of neurological conditions including Alzheimer's disease, Parkinson's disease, postoperative cognitive dysfunction, stroke, traumatic brain injury, and multiple sclerosis. Inflammatory process in the central nervous system (CNS) can lead to neuronal damage and neuronal apoptosis, consequently exacerbating these diseases. Itaconate, an immunomodulatory metabolite from the tricarboxylic acid cycle, suppresses neuroinflammation and modulates the CNS immune response. Emerging human studies suggest that itaconate levels in plasma and cerebrospinal fluid may serve as biomarkers associated with inflammatory responses in neurological disorders. Preclinical studies have shown that itaconate and its highly cell-permeable derivatives are promising candidates for preventing and treating neuroinflammation-related neurological disorders. The underlying mechanism may involve the regulation of immune cells in the CNS and neuroinflammation-related signaling pathways and molecules including Nrf2/KEAP1 signaling pathway, reactive oxygen species, and NLRP3 inflammasome. Here, we introduce the metabolism and function of itaconate and the synthesis and development of its derivatives. We summarize the potential impact and therapeutic potential of itaconate and its derivatives on brain immune cells and the associated signaling pathways and molecules, based on preclinical evidence via various neurological disorder models. We also discuss the challenges and potential solutions for clinical translation to promote further research on itaconate and its derivatives for neuroinflammation-related neurological disorders.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Zheng Mou
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Kaiyue Shan
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Longfei Wang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fanghao Liu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China.
| |
Collapse
|
43
|
Arce-Sillas A, Álvarez-Luquín DD, Leyva-Hernández J, Montes-Moratilla E, Vivas-Almazán V, Pérez-Correa C, Rodríguez-Ortiz U, Espinosa-Cárdenas R, Fragoso G, Sciutto E, Adalid-Peralta L. Increased levels of regulatory T cells and IL-10-producing regulatory B cells are linked to improved clinical outcome in Parkinson's disease: a 1-year observational study. J Neural Transm (Vienna) 2024; 131:901-916. [PMID: 38822829 DOI: 10.1007/s00702-024-02790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Whilst the contribution of peripheral and central inflammation to neurodegeneration in Parkinson's disease and the role of the immune response in this disorder are well known, the effects of the anti-inflammatory response on the disease have not been described in depth. This study is aimed to assess the changes in the regulatory/inflammatory immune response in recently diagnosed, untreated PD patients and a year after. Twenty-one PD patients and 19 healthy controls were included and followed-up for 1 year. The levels of immunoregulatory cells (CD4+ Tregs, Bregs, and CD8+ Tregs); classical, nonclassical, and intermediate monocytes, and proinflammatory cells (Th1, Th2, and Th17) were measured by flow cytometry. Cytokine levels were determined by ELISA. Clinical follow-up was based on the Hoehn & Yahr and UDPRS scales. Our results indicate that the regulatory response in PD patients on follow-up was characterized by increased levels of active Tregs, functional Tregs, TR1, IL-10-producing functional Bregs, and IL-10-producing classical monocytes, along with decreased counts of Bregs and plasma cells. With respect to the proinflammatory immune response, peripheral levels of Th1 IFN-γ+ cells were decreased in treated PD patients, whilst the levels of CD4+ TBET+ cells, HLA-DR+ intermediate monocytes, IL-6, and IL-4 were increased after a 1-year follow-up. Our main finding was an increased regulatory T cell response after a 1-year follow-up and its link with clinical improvement in PD patients. In conclusion, after a 1-year follow-up, PD patients exhibited increased levels of regulatory populations, which correlated with clinical improvement. However, a persistent inflammatory environment and active immune response were observed.
Collapse
Affiliation(s)
- Asiel Arce-Sillas
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Diana Denisse Álvarez-Luquín
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Jaquelin Leyva-Hernández
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Esteban Montes-Moratilla
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Viridiana Vivas-Almazán
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Citzielli Pérez-Correa
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | | | - Raquel Espinosa-Cárdenas
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Laura Adalid-Peralta
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
- Instituto Nacional de Neurología y Neurocirugía, Mexico City, México.
| |
Collapse
|
44
|
Chen Z, Li W, Meng B, Xu C, Huang Y, Li G, Wen Z, Liu J, Mao Z. Neuronal-enriched small extracellular vesicles trigger a PD-L1-mediated broad suppression of T cells in Parkinson's disease. iScience 2024; 27:110243. [PMID: 39006478 PMCID: PMC11246066 DOI: 10.1016/j.isci.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Many clinical studies indicate a significant decrease of peripheral T cells in Parkinson's disease (PD). There is currently no mechanistic explanation for this important observation. Here, we found that small extracellular vesicles (sEVs) derived from in vitro and in vivo PD models suppressed IL-4 and INF-γ production from both purified CD4+ and CD8+ T cells and inhibited their activation and proliferation. Furthermore, neuronal-enriched sEVs (NEEVs) isolated from plasma of A53T-syn mice and culture media of human dopaminergic neurons carrying A53T-syn mutation also suppressed Th1 and Th2 differentiation of naive CD4+ T cells. Mechanistically, the suppressed phenotype induced by NEEVs was associated with altered programmed death ligand 1 (PD-L1) level in T cells. Blocking PD-L1 with an anti-PD-L1 antibody or a small molecule inhibitor BMS-1166 reversed T cell suppression. Our study provides the basis for exploring peripheral T cells in PD pathogenesis and as biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Zhichun Chen
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Wenming Li
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bo Meng
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chongchong Xu
- Departments of Psychiatry and Behavioral Sciences and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yiqi Huang
- The Graduate Program in Neuroscience, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zixu Mao
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
45
|
Farris T, González-Ochoa S, Mohammed M, Rajakaruna H, Tonello J, Kanagasabai T, Korolkova O, Shimamoto A, Ivanova A, Shanker A. Loss of Mitochondrial Tusc2/Fus1 Triggers a Brain Pro-Inflammatory Microenvironment and Early Spatial Memory Impairment. Int J Mol Sci 2024; 25:7406. [PMID: 39000512 PMCID: PMC11242373 DOI: 10.3390/ijms25137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Brain pathological changes impair cognition early in disease etiology. There is an urgent need to understand aging-linked mechanisms of early memory loss to develop therapeutic strategies and prevent the development of cognitive impairment. Tusc2 is a mitochondrial-resident protein regulating Ca2+ fluxes to and from mitochondria impacting overall health. We previously reported that Tusc2-/- female mice develop chronic inflammation and age prematurely, causing age- and sex-dependent spatial memory deficits at 5 months old. Therefore, we investigated Tusc2-dependent mechanisms of memory impairment in 4-month-old mice, comparing changes in resident and brain-infiltrating immune cells. Interestingly, Tusc2-/- female mice demonstrated a pro-inflammatory increase in astrocytes, expression of IFN-γ in CD4+ T cells and Granzyme-B in CD8+T cells. We also found fewer FOXP3+ T-regulatory cells and Ly49G+ NK and Ly49G+ NKT cells in female Tusc2-/- brains, suggesting a dampened anti-inflammatory response. Moreover, Tusc2-/- hippocampi exhibited Tusc2- and sex-specific protein changes associated with brain plasticity, including mTOR activation, and Calbindin and CamKII dysregulation affecting intracellular Ca2+ dynamics. Overall, the data suggest that dysregulation of Ca2+-dependent processes and a heightened pro-inflammatory brain microenvironment in Tusc2-/- mice could underlie cognitive impairment. Thus, strategies to modulate the mitochondrial Tusc2- and Ca2+- signaling pathways in the brain should be explored to improve cognitive health.
Collapse
Affiliation(s)
- Tonie Farris
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Salvador González-Ochoa
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Muna Mohammed
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Harshana Rajakaruna
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| | - Jane Tonello
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Thanigaivelan Kanagasabai
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Olga Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Alla Ivanova
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
46
|
Zheng Y, Li Y, Cai H, Kou W, Yang C, Li S, Wang J, Zhang N, Feng T. Alterations of Peripheral Lymphocyte Subsets in Isolated Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2024; 39:1179-1189. [PMID: 38529776 DOI: 10.1002/mds.29798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Adaptive immune dysfunction may play a crucial role in Parkinson's disease (PD) development. Isolated rapid eye movement sleep behavior disorder (iRBD) represents the prodromal stage of synucleinopathies, including PD. Elucidating the peripheral adaptive immune system is crucial in iRBD, but current knowledge remains limited. OBJECTIVE This study aimed to characterize peripheral lymphocyte profiles in iRBD patients compared with healthy control subjects (HCs). METHODS This cross-sectional study recruited polysomnography-confirmed iRBD patients and age- and sex-matched HCs. Venous blood was collected from each participant. Flow cytometry was used to evaluate surface markers and intracellular cytokine production in peripheral blood mononuclear cells. RESULTS Forty-four iRBD patients and 36 HCs were included. Compared with HCs, patients with iRBD exhibited significant decreases in absolute counts of total lymphocytes and CD3+ T cells. In terms of T cell subsets, iRBD patients showed higher frequencies and counts of proinflammatory T helper 1 cells and INF-γ+ CD8+ T cells, along with lower frequencies and counts of anti-inflammatory T helper 2 cells. A significant increase in the frequency of central memory T cells in CD8+ T cells was also observed in iRBD. Regarding B cells, iRBD patients demonstrated reduced frequencies and counts of double-negative memory B cells compared with control subjects. CONCLUSIONS This study demonstrated alterations in the peripheral adaptive immune system in iRBD, specifically in CD4+ and INF-γ+ CD8+ T cell subsets. An overall shift toward a proinflammatory state of adaptive immunity was already evident in iRBD. These observations might provide insights into the optimal timing for initiating immune interventions in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yatong Li
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyi Kou
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
47
|
Thorp EB, Filipp M, Dima M, Tan C, Feinstein M, Popko B, DeBerge M. CCR2 + monocytes promote white matter injury and cognitive dysfunction after myocardial infarction. Brain Behav Immun 2024; 119:818-835. [PMID: 38735403 PMCID: PMC11574971 DOI: 10.1016/j.bbi.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Survivors of myocardial infarction are at increased risk for vascular dementia. Neuroinflammation has been implicated in the pathogenesis of vascular dementia, yet little is known about the cellular and molecular mediators of neuroinflammation after myocardial infarction. Using a mouse model of myocardial infarction coupled with flow cytometric analyses and immunohistochemistry, we discovered increased monocyte abundance in the brain after myocardial infarction, which was associated with increases in brain-resident perivascular macrophages and microglia. Myeloid cell recruitment and activation was also observed in post-mortem brains of humans that died after myocardial infarction. Spatial and single cell transcriptomic profiling of brain-resident myeloid cells after experimental myocardial infarction revealed increased expression of monocyte chemoattractant proteins. In parallel, myocardial infarction increased crosstalk between brain-resident myeloid cells and oligodendrocytes, leading to neuroinflammation, white matter injury, and cognitive dysfunction. Inhibition of monocyte recruitment preserved white matter integrity and cognitive function, linking monocytes to neurodegeneration after myocardial infarction. Together, these preclinical and clinical results demonstrate that monocyte infiltration into the brain after myocardial infarction initiate neuropathological events that lead to vascular dementia.
Collapse
Affiliation(s)
- Edward B Thorp
- Department of Pathology, Northwestern University, Chicago, IL, United States.
| | - Mallory Filipp
- Department of Pathology, Northwestern University, Chicago, IL, United States
| | - Maria Dima
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University, Chicago, IL, United States
| | - Chunfeng Tan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew Feinstein
- Department of Pathology, Northwestern University, Chicago, IL, United States; Department of Medicine, Division of Cardiology, Northwestern University, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University, Chicago, IL, United States
| | - Matthew DeBerge
- Department of Pathology, Northwestern University, Chicago, IL, United States; Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| |
Collapse
|
48
|
Yang Y, Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res 2024; 19:1463-1472. [PMID: 38051888 PMCID: PMC10883481 DOI: 10.4103/1673-5374.387967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/24/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson's disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of Lewy bodies in the brain, the pathological hallmark of Parkinson's disease. For decades, much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson's disease as a systemic disease. Recent evidence demonstrates that, at least in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation. In this review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson's disease. We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
49
|
Maurya SK, Borgonovo JE, Biswal S, Martínez-Cerdeño V, Mishra R, Muñoz EM. Editorial: Trends in neuroimmunology: cross-talk between brain-resident and peripheral immune cells in both health and disease. Front Immunol 2024; 15:1442322. [PMID: 39026666 PMCID: PMC11256089 DOI: 10.3389/fimmu.2024.1442322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Shashank K. Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Janina E. Borgonovo
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, and MIND Institute at the UC Davis Medical Center, University of California, Davis School of Medicine, Sacramento, CA, United States
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Estela M. Muñoz
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo (UNCuyo), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| |
Collapse
|
50
|
Balzano T, Del Rey NLG, Esteban-García N, Reinares-Sebastián A, Pineda-Pardo JA, Trigo-Damas I, Obeso JA, Blesa J. Neurovascular and immune factors of vulnerability of substantia nigra dopaminergic neurons in non-human primates. NPJ Parkinsons Dis 2024; 10:118. [PMID: 38886348 PMCID: PMC11183116 DOI: 10.1038/s41531-024-00735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Dopaminergic neurons in the ventral tier of the substantia nigra pars compacta (SNc) degenerate prominently in Parkinson's disease (PD), while those in the dorsal tier and ventral tegmental area are relatively spared. The factors determining why these neurons are more vulnerable than others are still unrevealed. Neuroinflammation and immune cell infiltration have been demonstrated to be a key feature of neurodegeneration in PD. However, the link between selective dopaminergic neuron vulnerability, glial and immune cell response, and vascularization and their interactions has not been deciphered. We aimed to investigate the contribution of glial cell activation and immune cell infiltration in the selective vulnerability of ventral dopaminergic neurons within the midbrain in a non-human primate model of PD. Structural characteristics of the vasculature within specific regions of the midbrain were also evaluated. Parkinsonian monkeys exhibited significant microglial and astroglial activation in the whole midbrain, but no major sub-regional differences were observed. Remarkably, the ventral substantia nigra was found to be typically more vascularized compared to other regions. This feature might play some role in making this region more susceptible to immune cell infiltration under pathological conditions, as greater infiltration of both T- and B- lymphocytes was observed in parkinsonian monkeys. Higher vascular density within the ventral region of the SNc may be a relevant factor for differential vulnerability of dopaminergic neurons in the midbrain. The increased infiltration of T- and B- cells in this region, alongside other molecules or toxins, may also contribute to the susceptibility of dopaminergic neurons in PD.
Collapse
Affiliation(s)
- Tiziano Balzano
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Natalia López-González Del Rey
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Noelia Esteban-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Alejandro Reinares-Sebastián
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Inés Trigo-Damas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | - José A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain.
| |
Collapse
|