1
|
Bahrami S, Nordengen K, Rokicki J, Shadrin AA, Rahman Z, Smeland OB, Jaholkowski PP, Parker N, Parekh P, O'Connell KS, Elvsåshagen T, Toft M, Djurovic S, Dale AM, Westlye LT, Kaufmann T, Andreassen OA. The genetic landscape of basal ganglia and implications for common brain disorders. Nat Commun 2024; 15:8476. [PMID: 39353893 PMCID: PMC11445552 DOI: 10.1038/s41467-024-52583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
The basal ganglia are subcortical brain structures involved in motor control, cognition, and emotion regulation. We conducted univariate and multivariate genome-wide association analyses (GWAS) to explore the genetic architecture of basal ganglia volumes using brain scans obtained from 34,794 Europeans with replication in 4,808 white and generalization in 5,220 non-white Europeans. Our multivariate GWAS identified 72 genetic loci associated with basal ganglia volumes with a replication rate of 55.6% at P < 0.05 and 87.5% showed the same direction, revealing a distributed genetic architecture across basal ganglia structures. Of these, 50 loci were novel, including exonic regions of APOE, NBR1 and HLAA. We examined the genetic overlap between basal ganglia volumes and several neurological and psychiatric disorders. The strongest genetic overlap was between basal ganglia and Parkinson's disease, as supported by robust LD-score regression-based genetic correlations. Mendelian randomization indicated genetic liability to larger striatal volume as potentially causal for Parkinson's disease, in addition to a suggestive causal effect of greater genetic liability to Alzheimer's disease on smaller accumbens. Functional analyses implicated neurogenesis, neuron differentiation and development in basal ganglia volumes. These results enhance our understanding of the genetic architecture and molecular associations of basal ganglia structure and their role in brain disorders.
Collapse
Grants
- R01 MH129742 NIMH NIH HHS
- Stiftelsen Kristian Gerhard Jebsen (Kristian Gerhard Jebsen Foundation)
- Norwegian Health Association (22731, 25598), the South-Eastern Norway Regional Health Authority (2013-123, 2017-112, 2019-108, 2014-097, 2015-073, 2016-083), the Research Council of Norway (276082, 323961. 213837, 223273, 248778, 273291, 262656, 229129, 283798, 311993, 324499. 204966, 249795, 273345).
Collapse
Affiliation(s)
- Shahram Bahrami
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway.
| | - Kaja Nordengen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Jaroslav Rokicki
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Zillur Rahman
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Nadine Parker
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pravesh Parekh
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Torbjørn Elvsåshagen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Department of Behavioral Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mathias Toft
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Lars T Westlye
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Ole A Andreassen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway.
- Department of Psychiatry, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
2
|
Liloia D, Zamfira DA, Tanaka M, Manuello J, Crocetta A, Keller R, Cozzolino M, Duca S, Cauda F, Costa T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev 2024; 164:105791. [PMID: 38960075 DOI: 10.1016/j.neubiorev.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Mauro Cozzolino
- Department of Humanities, Philosophical and Educational Sciences, University of Salerno, Fisciano, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
3
|
Huang W, Cano JC, Fénelon K. Deciphering the role of brainstem glycinergic neurons during startle and prepulse inhibition. Brain Res 2024; 1836:148938. [PMID: 38615924 DOI: 10.1016/j.brainres.2024.148938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Prepulse inhibition (PPI) of the auditory startle response, a key measure of sensorimotor gating, diminishes with age and is impaired in various neurological conditions. While PPI deficits are often associated with cognitive impairments, their reversal is routinely used in experimental systems for antipsychotic drug screening. Yet, the cellular and circuit-level mechanisms of PPI remain unclear, even under non-pathological conditions. We recently showed that brainstem neurons located in the caudal pontine reticular nucleus (PnC) expressing the glycine transporter type 2 (GlyT2±) receive inputs from the central nucleus of the amygdala (CeA) and contribute to PPI but via an uncharted pathway. Here, using tract-tracing, immunohistochemistry and in vitro optogenetic manipulations coupled to field electrophysiological recordings, we reveal the neuroanatomical distribution of GlyT2± PnC neurons and PnC-projecting CeA glutamatergic neurons and we provide mechanistic insights on how these glutamatergic inputs suppress auditory neurotransmission in PnC sections. Additionally, in vivo experiments using GlyT2-Cre mice confirm that optogenetic activation of GlyT2± PnC neurons enhances PPI and is sufficient to induce PPI in young mice, emphasizing their role. However, in older mice, PPI decline is not further influenced by inhibiting GlyT2± neurons. This study highlights the importance of GlyT2± PnC neurons in PPI and underscores their diminished activity in age-related PPI decline.
Collapse
Affiliation(s)
- Wanyun Huang
- Biology Department, University of Massachusetts Amherst, Life Science Laboratories, 240 Thatcher Road, Amherst, MA, 01002, USA
| | - Jose C Cano
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79912, USA
| | - Karine Fénelon
- Biology Department, University of Massachusetts Amherst, Life Science Laboratories, 240 Thatcher Road, Amherst, MA, 01002, USA.
| |
Collapse
|
4
|
Inui K, Takeuchi N, Borgil B, Shingaki M, Sugiyama S, Taniguchi T, Nishihara M, Watanabe T, Suzuki D, Motomura E, Kida T. Age and sex effects on paired-pulse suppression and prepulse inhibition of auditory evoked potentials. Front Neurosci 2024; 18:1378619. [PMID: 38655109 PMCID: PMC11035799 DOI: 10.3389/fnins.2024.1378619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Responses to a sensory stimulus are inhibited by a preceding stimulus; if the two stimuli are identical, paired-pulse suppression (PPS) occurs; if the preceding stimulus is too weak to reliably elicit the target response, prepulse inhibition (PPI) occurs. PPS and PPI represent excitability changes in neural circuits induced by the first stimulus, but involve different mechanisms and are impaired in different diseases, e.g., impaired PPS in schizophrenia and Alzheimer's disease and impaired PPI in schizophrenia and movement disorders. Therefore, these measures provide information on several inhibitory mechanisms that may have roles in clinical conditions. In the present study, PPS and PPI of the auditory change-related cortical response were examined to establish normative data on healthy subjects (35 females and 32 males, aged 19-70 years). We also investigated the effects of age and sex on PPS and PPI to clarify whether these variables need to be considered as biases. The test response was elicited by an abrupt increase in sound pressure in a continuous sound and was recorded by electroencephalography. In the PPS experiment, the two change stimuli to elicit the cortical response were a 15-dB increase from the background of 65 dB separated by 600 ms. In the PPI experiment, the prepulse and test stimuli were 2- and 10-dB increases, respectively, with an interval of 50 ms. The results obtained showed that sex exerted similar effects on the two measures, with females having stronger test responses and weaker inhibition. On the other hand, age exerted different effects: aging correlated with stronger test responses and weaker inhibition in the PPS experiment, but had no effects in the PPI experiment. The present results suggest age and sex biases in addition to normative data on PPS and PPI of auditory change-related potentials. PPS and PPI, as well as other similar paradigms, such as P50 gating, may have different and common mechanisms. Collectively, they may provide insights into the pathophysiologies of diseases with impaired inhibitory function.
Collapse
Affiliation(s)
- Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Japan
| | | | - Bayasgalan Borgil
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Megumi Shingaki
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoya Taniguchi
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Takayasu Watanabe
- Department of Clinical Laboratory, Mie University Hospital, Tsu, Japan
| | - Dai Suzuki
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tetsuo Kida
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
5
|
Sharma AR, Batra G, Dhir N, Jain A, Modi T, Saini L, Thakur N, Mishra A, Singh RS, Singh A, Singla R, Prakash A, Goyal M, Bhatia A, Medhi B, Modi M. "Comparative evaluation of different chemical agents induced Autism Spectrum Disorder in experimental Wistar rats". Behav Brain Res 2024; 458:114728. [PMID: 37923221 DOI: 10.1016/j.bbr.2023.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition with uncertain etiology and pathophysiology. Several studies revealed that the commonly used animal models like Valproic Acid (VPA) and Propionic Acid (PPA) do not precisely represent the disease as the human patient does. The current study was conducted on different chemically (VPA, PPA, Poly I:C, Dioxin (2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)) & Chlorpyrifos (CPF)) induced ASD-like animal models and validated the best suitable experimental animal model, which would closely resemble with clinical features of the ASD. This validated model might help to explore the pathophysiology of ASD. This study included rat pups prenatally exposed to VPA, PPA, Poly I:C, Dioxin & CPF within GD9 to GD15 doses. The model groups were validated through developmental and behavioral parameters, Gene Expressions, Oxidative Stress, and Pro-inflammatory and Anti-inflammatory cytokines levels. Developmental and neurobehavioral parameters showed significant changes in model groups compared to the control. In oxidative stress parameters and neuro-inflammatory cytokines levels, model groups exhibited high oxidative stress and neuro-inflammation compared to control groups. Gene expression profile of ASD-related genes showed significant downregulation in model groups compared to the control group. Moreover, the Poly I:C group showed more significant results than other model groups. The comparison of available ASD-like experimental animal models showed that the Poly I:C induced model represented the exact pathophysiology of ASD as the human patient does. Poly I:C was reported in the maternal immune system activation via the inflammatory cytokines pathway, altering embryonic development and causing ASD in neonates.
Collapse
Affiliation(s)
- Amit Raj Sharma
- Department of Neurology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Gitika Batra
- Department of Neurology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Neha Dhir
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Ashish Jain
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Tanish Modi
- Clinical Trainee, Department of Neurology, PGIMER, Chandigarh, India
| | - Lokesh Saini
- All India Institute of Medical Sciences, Paediatric Neurology, Jodhpur, India
| | - Neetika Thakur
- Department of Endocrinology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Abhishek Mishra
- University of Minnesota Twin Cities, Department of Biomedical Sciences, USA
| | - Rahul Solomon Singh
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Ashutosh Singh
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Rubal Singla
- University of Minnesota Twin Cities, Department of Biomedical Sciences, USA
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Manoj Goyal
- Department of Neurology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Manish Modi
- Department of Neurology, Post Graduate Institute Medical Education and Research, Chandigarh, India.
| |
Collapse
|
6
|
Shen L, Zhang J, Fan S, Ping L, Yu H, Xu F, Cheng Y, Xu X, Yang C, Zhou C. Cortical thickness abnormalities in autism spectrum disorder. Eur Child Adolesc Psychiatry 2024; 33:65-77. [PMID: 36542200 DOI: 10.1007/s00787-022-02133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The pathological mechanism of autism spectrum disorder (ASD) remains unclear. Nowadays, surface-based morphometry (SBM) based on structural magnetic resonance imaging (sMRI) techniques have reported cortical thickness (CT) variations in ASD. However, the findings were inconsistent and heterogeneous. This current meta-analysis conducted a whole-brain vertex-wise coordinate-based meta-analysis (CBMA) on CT studies to explore the most noticeable and robust CT changes in ASD individuals by applying the seed-based d mapping (SDM) program. A total of 26 investigations comprised 27 datasets were included, containing 1,635 subjects with ASD and 1470 HC, along with 94 coordinates. Individuals with ASD exhibited significantly altered CT in several regions compared to HC, including four clusters with thicker CT in the right superior temporal gyrus (STG.R), the left middle temporal gyrus (MTG.L), the left anterior cingulate/paracingulate gyri, the right superior frontal gyrus (SFG.R, medial orbital parts), as well as three clusters with cortical thinning including the left parahippocampal gyrus (PHG.L), the right precentral gyrus (PCG.R) and the left middle frontal gyrus (MFG.L). Adults with ASD only demonstrated CT thinning in the right parahippocampal gyrus (PHG.R), revealed by subgroup meta-analyses. Meta-regression analyses found that CT in STG.R was positively correlated with age. Meanwhile, CT in MFG.L and PHG.L had negative correlations with the age of ASD individuals. These results suggested a complicated and atypical cortical development trajectory in ASD, and would provide a deeper understanding of the neural mechanism underlying the cortical morphology in ASD.
Collapse
Affiliation(s)
- Liancheng Shen
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Junqing Zhang
- Department of Pharmacy, Shandong Daizhuang Hospital, Jining, China
| | - Shiran Fan
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Fangfang Xu
- School of Mental Health, Jining Medical University, Jining, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunyan Yang
- School of Rehabilitation Medicine, Jining Medical University, Jining, China.
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China.
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
7
|
Liloia D, Cauda F, Uddin LQ, Manuello J, Mancuso L, Keller R, Nani A, Costa T. Revealing the Selectivity of Neuroanatomical Alteration in Autism Spectrum Disorder via Reverse Inference. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1075-1083. [PMID: 35131520 DOI: 10.1016/j.bpsc.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although neuroimaging research has identified atypical neuroanatomical substrates in individuals with autism spectrum disorder (ASD), it is at present unclear whether and to what extent disorder-selective gray matter alterations occur in this spectrum of conditions. In fact, a growing body of evidence shows a substantial overlap between the pathomorphological changes across different brain diseases, which may complicate identification of reliable neural markers and differentiation of the anatomical substrates of distinct psychopathologies. METHODS Using a novel data-driven and Bayesian methodology with published voxel-based morphometry data (849 peer-reviewed experiments and 22,304 clinical subjects), this study performs the first reverse inference investigation to explore the selective structural brain alteration profile of ASD. RESULTS We found that specific brain areas exhibit a >90% probability of gray matter alteration selectivity for ASD: the bilateral precuneus (Brodmann area 7), right inferior occipital gyrus (Brodmann area 18), left cerebellar lobule IX and Crus II, right cerebellar lobule VIIIA, and right Crus I. Of note, many brain voxels that are selective for ASD include areas that are posterior components of the default mode network. CONCLUSIONS The identification of these spatial gray matter alteration patterns offers new insights into understanding the complex neurobiological underpinnings of ASD and opens attractive prospects for future neuroimaging-based interventions.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin, Turin, Italy
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Jordi Manuello
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Lorenzo Mancuso
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Andrea Nani
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin, Turin, Italy
| |
Collapse
|
8
|
Schulz SE, Luszawski M, Hannah KE, Stevenson RA. Sensory Gating in Neurodevelopmental Disorders: A Scoping Review. Res Child Adolesc Psychopathol 2023; 51:1005-1019. [PMID: 37014483 DOI: 10.1007/s10802-023-01058-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/05/2023]
Abstract
This review aimed to explore the current understanding of sensory gating in neurodevelopmental disorders as a possible transdiagnostic mechanism. We applied methods according to the Joanna Briggs Institute Manual for Evidence Synthesis, following the population, concept, and context scoping review eligibility criteria. Using a comprehensive search strategy in five relevant research databases (Medline, EMBASE, CINAHL, PsychInfo, and Scopus), we searched for relevant peer-reviewed, primary research articles and unpublished data. Two independent reviewers screened the titles and abstracts, full-texts, and completed data extraction. We identified a total of 81 relevant articles and used descriptive analyses to summarize the characteristics and outcomes of all identified studies. Literature regarding sensory gating was most common in autistic populations with relatively fewer studies examining attention-deficit/hyperactivity disorder, tic disorders, and childhood-onset fluency disorder (COFD). The methods to assess sensory gating varied widely both within and between groups and included measures such as habituation, prepulse inhibition, affect-modulated inhibition, medication and other intervention trials. Most consistently, when participants complete questionnaires about their sensory experiences, those who have neurodevelopmental disorders report differences in their sensory gating. Affect-modulated inhibition appears to be discrepant between samples with and without neurodevelopmental disorder diagnoses. Habituation was the most commonly reported phenomenon and many differences in habituation have been found in autistic individuals and individuals with tic disorders whereas concerns with inhibition seemed more common in COFD. Overall, the evidence is inconsistent within and between disorders suggesting there is still much to learn about sensory gating in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Samantha E Schulz
- Department of Psychology, University of Western Ontario, London, Canada
- Brain and Mind Institute, University of Western Ontario, London, Canada
- Western Institute for Neuroscience, University of Western Ontario, London, ON, Canada
| | - Michelle Luszawski
- Department of Psychology, University of Western Ontario, London, Canada
- Brain and Mind Institute, University of Western Ontario, London, Canada
- Western Institute for Neuroscience, University of Western Ontario, London, ON, Canada
| | - Kara E Hannah
- Department of Psychology, University of Western Ontario, London, Canada
- Brain and Mind Institute, University of Western Ontario, London, Canada
- Western Institute for Neuroscience, University of Western Ontario, London, ON, Canada
| | - Ryan A Stevenson
- Department of Psychology, University of Western Ontario, London, Canada.
- Brain and Mind Institute, University of Western Ontario, London, Canada.
- Western Institute for Neuroscience, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
9
|
Schiöth HB, Donzelli L, Arvidsson N, Williams MJ, Moulin TC. Evidence for Prepulse Inhibition of Visually Evoked Motor Response in Drosophila melanogaster. BIOLOGY 2023; 12:biology12040635. [PMID: 37106835 PMCID: PMC10135638 DOI: 10.3390/biology12040635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Prepulse inhibition (PPI) is a widely investigated behavior to study the mechanisms of disorders such as anxiety, schizophrenia, and bipolar mania. PPI has been observed across various vertebrate and invertebrate species; however, it has not yet been reported in adult Drosophila melanogaster. In this study, we describe the first detection of PPI of visually evoked locomotor arousal in flies. To validate our findings, we demonstrate that PPI in Drosophila can be partially reverted by the N-methyl D-aspartate (NMDA) receptor antagonist MK-801, known for inducing sensorimotor gating deficits in rodent models. Additionally, we show that the visually evoked response can be inhibited by multiple stimuli presentation, which can also be affected by MK-801. Given the versatility of Drosophila as a model organism for genetic screening and analysis, our results suggest that high-throughput behavioral screenings of adult flies can become a valuable tool for investigating the mechanisms behind PPI.
Collapse
Affiliation(s)
- Helgi B Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Laura Donzelli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Nicklas Arvidsson
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Michael J Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Thiago C Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
10
|
Furuya K, Katsumata Y, Ishibashi M, Matsumoto Y, Morimoto T, Aonishi T. Computational model predicts the neural mechanisms of prepulse inhibition in Drosophila larvae. Sci Rep 2022; 12:15211. [PMID: 36075992 PMCID: PMC9458643 DOI: 10.1038/s41598-022-19210-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Prepulse inhibition (PPI) is a behavioural phenomenon in which a preceding weaker stimulus suppresses the startle response to a subsequent stimulus. The effect of PPI has been found to be reduced in psychiatric patients and is a promising neurophysiological indicator of psychiatric disorders. Because the neural circuit of the startle response has been identified at the cellular level, investigating the mechanism underlying PPI in Drosophila melanogaster larvae through experiment-based mathematical modelling can provide valuable insights. We recently identified PPI in Drosophila larvae and found that PPI was reduced in larvae mutated with the Centaurin gamma 1A (CenG1A) gene, which may be associated with autism. In this study, we used numerical simulations to investigate the neural mechanisms underlying PPI in Drosophila larvae. We adjusted the parameters of a previously developed Drosophila larvae computational model and demonstrated that the model could reproduce several behaviours, including PPI. An analysis of the temporal changes in neuronal activity when PPI occurs using our neural circuit model suggested that the activity of specific neurons triggered by prepulses has a considerable effect on PPI. Furthermore, we validated our speculations on PPI reduction in CenG1A mutants with simulations.
Collapse
Affiliation(s)
- Kotaro Furuya
- School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama-shi, Kanagawa, 226-8503, Japan.
| | - Yuki Katsumata
- School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama-shi, Kanagawa, 226-8503, Japan
| | - Masayuki Ishibashi
- School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama-shi, Kanagawa, 226-8503, Japan
| | - Yutaro Matsumoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo, 192-0392, Japan
| | - Takako Morimoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo, 192-0392, Japan
| | - Toru Aonishi
- School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama-shi, Kanagawa, 226-8503, Japan.
| |
Collapse
|
11
|
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that occurs during early childhood. The change from being normal across several contexts to displaying the behavioral phenotype of ASD occurs in infants and toddlers with autism. Findings provided by magnetic resonance imaging (MRI)-based research owing to the developmental phase, including potential pathways underlying the pathogenesis of the condition and the potential for signs and symptomatic risk prediction. The present study focuses on the characteristic features of magnetic resonance imaging autistic brain, how these changes are correlated to autism signs and symptoms and the implications of MRI as a potential tool for the early diagnosis of ASD. PRISMA style was used to conduct this review. Research articles related to the key concepts of this review, which is looking at MRI brain changes in autistic patients, were revised and incorporated with what is known with the pathophysiology of brain regions in relation to signs and symptoms of autism. Studies on brain MRI of autism were revied for major brain features and regions such as brain volume, cortex and hippocampus. This review reveals that brain changes seen in MRI are highly correlated with the signs and symptoms of autism. There are numerous distinct features noted in an autistic brain using MRI. Based on these findings, various developmental brain paths and autistic behavior culminate in a typical diagnosis, and it is possible that addressing these trajectories would improve the accuracy in which children are detected and provide the necessary treatment.
Collapse
Affiliation(s)
- Nahla L. Faizo
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, KSA
| |
Collapse
|
12
|
Capellán R, Moreno-Fernández M, Orihuel J, Roura-Martínez D, Ucha M, Ambrosio E, Higuera-Matas A. Ex vivo 1H-MRS brain metabolic profiling in a two-hit model of neurodevelopmental disorders: Prenatal immune activation and peripubertal stress. Schizophr Res 2022; 243:232-240. [PMID: 31787482 DOI: 10.1016/j.schres.2019.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/28/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023]
Abstract
Prenatal infections are environmental risk factors for neurodevelopmental disorders. In addition, traumatic experiences during adolescence in individuals exposed to infections during gestation could increase the risk of schizophrenia. It is of the most crucial importance to discover potential markers of the disease in its early stages or before its onset, so that therapeutic strategies may be implemented. In the present study, we combined a proposed two-hit model of schizophrenia-related symptoms with proton magnetic resonance spectroscopy (1H-MRS) to discover potential biomarkers. To this end, we i.p. injected 100 μg/kg/ml of lipopolysaccharide (LPS) or saline on gestational days 15 and 16 to pregnant rats. Their male offspring were then subjected to five episodes of stress or handling on alternate days during postnatal days (PND) 28-38. Once the animals reached adulthood (PND70), we evaluated prepulse inhibition (PPI). At PND90, we performed an ex vivo 1H-MRS study in the cortex and striatum. While we did not detect alterations in PPI at the age tested, we found neurochemical disturbances induced by LPS, stress or (more interestingly) their interaction. LPS decreased glucose levels in the cortex and striatum and altered glutamate, glutamine and N-acetylaspartate levels. Glutamate and glutamine levels in the left (but not right) striatum were differentially affected by prenatal LPS exposure in a manner that depended on stress experiences. These results suggest that alterations in the glutamate cycle in the striatum could be used as early markers of developmental disorders.
Collapse
Affiliation(s)
- Roberto Capellán
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - Mario Moreno-Fernández
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - Javier Orihuel
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain.
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain.
| |
Collapse
|
13
|
Scaramella C, Alzagatiti JB, Creighton C, Mankatala S, Licea F, Winter GM, Emtage J, Wisnieski JR, Salazar L, Hussain A, Lee FM, Mammootty A, Mammootty N, Aldujaili A, Runnberg KA, Hernandez D, Zimmerman-Thompson T, Makwana R, Rouvere J, Tahmasebi Z, Zavradyan G, Campbell CS, Komaranchath M, Carmona J, Trevitt J, Glanzman D, Roberts AC. Bisphenol A Exposure Induces Sensory Processing Deficits in Larval Zebrafish during Neurodevelopment. eNeuro 2022; 9:ENEURO.0020-22.2022. [PMID: 35508370 PMCID: PMC9116930 DOI: 10.1523/eneuro.0020-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Because of their ex utero development, relatively simple nervous system, translucency, and availability of tools to investigate neural function, larval zebrafish are an exceptional model for understanding neurodevelopmental disorders and the consequences of environmental toxins. Furthermore, early in development, zebrafish larvae easily absorb chemicals from water, a significant advantage over methods required to expose developing organisms to chemical agents in utero Bisphenol A (BPA) and BPA analogs are ubiquitous environmental toxins with known molecular consequences. All humans have measurable quantities of BPA in their bodies. Most concerning, the level of BPA exposure is correlated with neurodevelopmental difficulties in people. Given the importance of understanding the health-related effects of this common toxin, we have exploited the experimental advantages of the larval zebrafish model system to investigate the behavioral and anatomic effects of BPA exposure. We discovered that BPA exposure early in development leads to deficits in the processing of sensory information, as indicated by BPA's effects on prepulse inhibition (PPI) and short-term habituation (STH) of the C-start reflex. We observed no changes in locomotion, thigmotaxis, and repetitive behaviors (circling). Despite changes in sensory processing, we detected no regional or whole-brain volume changes. Our results show that early BPA exposure can induce sensory processing deficits, as revealed by alterations in simple behaviors that are mediated by a well-defined neural circuit.
Collapse
Affiliation(s)
- Courtney Scaramella
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Joseph B Alzagatiti
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Christopher Creighton
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Samandeep Mankatala
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Fernando Licea
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gabriel M Winter
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Jasmine Emtage
- Department of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Joseph R Wisnieski
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Luis Salazar
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Anjum Hussain
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | - Faith M Lee
- Department of Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Asma Mammootty
- Saint Louis University School of Medicine, St. Louis, MO 63104
| | | | - Andrew Aldujaili
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristine A Runnberg
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Daniela Hernandez
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | | | - Rikhil Makwana
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Julien Rouvere
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Zahra Tahmasebi
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gohar Zavradyan
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | | | - Meghna Komaranchath
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Javier Carmona
- Department of Physics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jennifer Trevitt
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - David Glanzman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
- Integrative Center for Learning and Memory, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Adam C Roberts
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| |
Collapse
|
14
|
Edelson SM. Evidence from Characteristics and Comorbidities Suggesting That Asperger Syndrome Is a Subtype of Autism Spectrum Disorder. Genes (Basel) 2022; 13:274. [PMID: 35205319 PMCID: PMC8871744 DOI: 10.3390/genes13020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
The current version of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders (DSM-V) does not consider Asperger syndrome a diagnostic category. This study was undertaken to see if there is evidence that this diagnosis should be reinstated. An online survey was conducted to examine symptoms and behaviors associated with the current diagnostic criteria of autism spectrum disorders (ASD) (DSM-V), and those associated with Asperger syndrome based on the previous version (DSM-IV-TR). The study also examined other characteristics historically associated with autism, as well as impairments often reported in infancy/young childhood and medical comorbidities frequently associated with autism. The sample included 251 individuals who had received a diagnosis of Asperger syndrome and 1888 who were diagnosed with autism or ASD. Numerous similarities and differences were found between the two groups. The findings are discussed in relation to reestablishing Asperger syndrome as a valid diagnostic category as well as a subtype of ASD.
Collapse
|
15
|
Lorenzini L, van Wingen G, Cerliani L. Atypically high influence of subcortical activity on primary sensory regions in autism. Neuroimage Clin 2022; 32:102839. [PMID: 34624634 PMCID: PMC8503568 DOI: 10.1016/j.nicl.2021.102839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
The age-dependent decrease of subcortico-cortical connectivity is attenuated in ASD. Primary sensory regions remain less segregated from subcortical activity in ASD. This could underlie an excessive amount of sensory input relayed to the cortex.
Background Hypersensitivity, stereotyped behaviors and attentional problems in autism spectrum disorder (ASD) are compatible with inefficient filtering of undesired or irrelevant sensory information at early stages of neural processing. This could stem from the persistent overconnectivity between primary sensory regions and deep brain nuclei in both children and adults with ASD – as reported by several previous studies – which could reflect a decreased or arrested maturation of brain connectivity. However, it has not yet been investigated whether this overconnectivity can be modelled as an excessive directional influence of subcortical brain activity on primary sensory cortical regions in ASD, with respect to age-matched typically developing (TD) individuals. Methods To this aim, we used dynamic causal modelling to estimate (1) the directional influence of subcortical activity on cortical processing and (2) the functional segregation of primary sensory cortical regions from subcortical activity in 166 participants with ASD and 193 TD participants from the Autism Brain Imaging Data Exchange (ABIDE). We then specifically tested the hypothesis that the age-related changes of these indicators of brain connectivity would differ between the two groups. Results We found that in TD participants age was significantly associated with decreased influence of subcortical activity on cortical processing, paralleled by an increased functional segregation of cortical sensory processing from subcortical activity. Instead these effects were highly reduced and mostly absent in ASD participants, suggesting a delayed or arrested development of the segregation between subcortical and cortical sensory processing in ASD. Conclusion This atypical configuration of subcortico-cortical connectivity in ASD can result in an excessive amount of unprocessed sensory input relayed to the cortex, which is likely to impact cognitive functioning in everyday situations where it is beneficial to limit the influence of basic sensory information on cognitive processing, such as activities requiring focused attention or social interactions.
Collapse
Affiliation(s)
- Luigi Lorenzini
- Dept. of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 5, 1105AZ Amsterdam, The Netherlands; Dept. Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam Neuroscience, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Guido van Wingen
- Dept. of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 5, 1105AZ Amsterdam, The Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WT, University of Amsterdam, The Netherlands
| | - Leonardo Cerliani
- Dept. of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 5, 1105AZ Amsterdam, The Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WT, University of Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Social Brain Lab, Meibergdreef 47, 1105BA Amsterdam, The Netherlands
| |
Collapse
|
16
|
Efremova A, Lisy J, Hrdlicka M. The relationship between brain abnormalities and autistic psychopathology in pervasive developmental disorders. J Appl Biomed 2021; 19:91-96. [PMID: 34907708 DOI: 10.32725/jab.2021.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of the present research has been to determine whether there is a relationship between brain abnormalities found on magnetic resonance imaging (MRI) and autistic psychopathology. A retrospective analysis covering a period between 1998 and 2015 included 489 children with autism (404 boys, 85 girls; average age 8.0 ± 4.2 years) who underwent an MRI of the brain. For clinical diagnosis of autism, the International Classification of Diseases, 10th revision (ICD-10), was used. Autistic psychopathology was evaluated by means of the Autism Diagnostic Interview - Revised. The Spearman nonparametric correlation analysis and chi-square test were used to examine the possible relationships between variables. The group of autistic children did not manifest a statistically significant correlation between the parameters examined on MRI and autistic psychopathology. A correlation between other cysts and repetitive behavior was significant only at trend level (P = 0.054). Gliosis of the brain was significantly more frequent in autistic children with mental retardation than in children without mental retardation (14.1% vs. 7.4%; P = 0.028). Nonmyelinated areas in the brain were significantly more frequent in autistic children with autistic regression than in children without autistic regression (29.9% vs. 15.7%; P = 0.008). Mental retardation was significantly more frequent in autistic children with autistic regression than in children without regression (73.2% vs. 52.5%; P = 0.002). Our research study did not reveal a statistically significant correlation of brain abnormalities on MRI with autistic psychopathology.
Collapse
Affiliation(s)
- Andrea Efremova
- University Hospital Motol and Charles University, Second Faculty of Medicine, Department of Child Psychiatry, Prague, Czech Republic.,Charles University, First Faculty of Medicine, Prague, Czech Republic
| | - Jiri Lisy
- University Hospital Motol and Charles University, Second Faculty of Medicine, Department of Radiology, Prague, Czech Republic.,Hospital Na Homolce, Department of Radiology, Prague, Czech Republic
| | - Michal Hrdlicka
- University Hospital Motol and Charles University, Second Faculty of Medicine, Department of Child Psychiatry, Prague, Czech Republic.,Masaryk University, Faculty of Arts, Department of Psychology, Brno, Czech Republic
| |
Collapse
|
17
|
Nakamura M, Ye K, E Silva MB, Yamauchi T, Hoeppner DJ, Fayyazuddin A, Kang G, Yuda EA, Nagashima M, Enomoto S, Hiramoto T, Sharp R, Kaneko I, Tajinda K, Adachi M, Mihara T, Tokuno S, Geyer MA, Broin PÓ, Matsumoto M, Hiroi N. Computational identification of variables in neonatal vocalizations predictive for postpubertal social behaviors in a mouse model of 16p11.2 deletion. Mol Psychiatry 2021; 26:6578-6588. [PMID: 33859357 PMCID: PMC8517042 DOI: 10.1038/s41380-021-01089-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Autism spectrum disorder (ASD) is often signaled by atypical cries during infancy. Copy number variants (CNVs) provide genetically identifiable cases of ASD, but how early atypical cries predict a later onset of ASD among CNV carriers is not understood in humans. Genetic mouse models of CNVs have provided a reliable tool to experimentally isolate the impact of CNVs and identify early predictors for later abnormalities in behaviors relevant to ASD. However, many technical issues have confounded the phenotypic characterization of such mouse models, including systematically biased genetic backgrounds and weak or absent behavioral phenotypes. To address these issues, we developed a coisogenic mouse model of human proximal 16p11.2 hemizygous deletion and applied computational approaches to identify hidden variables within neonatal vocalizations that have predictive power for postpubertal dimensions relevant to ASD. After variables of neonatal vocalizations were selected by least absolute shrinkage and selection operator (Lasso), random forest, and Markov model, regression models were constructed to predict postpubertal dimensions relevant to ASD. While the average scores of many standard behavioral assays designed to model dimensions did not differentiate a model of 16p11.2 hemizygous deletion and wild-type littermates, specific call types and call sequences of neonatal vocalizations predicted individual variability of postpubertal reciprocal social interaction and olfactory responses to a social cue in a genotype-specific manner. Deep-phenotyping and computational analyses identified hidden variables within neonatal social communication that are predictive of postpubertal behaviors.
Collapse
Affiliation(s)
- Mitsuteru Nakamura
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kenny Ye
- Department of Epidemiology and Health Science, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariel Barbachan E Silva
- School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Takahira Yamauchi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daniel J Hoeppner
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Amir Fayyazuddin
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Emi A Yuda
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Masako Nagashima
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shingo Enomoto
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Takeshi Hiramoto
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Richard Sharp
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Itaru Kaneko
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Katsunori Tajinda
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Megumi Adachi
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Takuma Mihara
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Shinichi Tokuno
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Graduate School of Health Innovation, Kanagawa University of Human Services, Kawasaki-shi, Kanagawa, Japan
| | - Mark A Geyer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Pilib Ó Broin
- School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Mitsuyuki Matsumoto
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Cell Systems Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
18
|
Shiota Y, Matsudaira I, Takeuchi H, Ono C, Tomita H, Kawashima R, Taki Y. The influence of NRXN1 on systemizing and the brain structure in healthy adults. Brain Imaging Behav 2021; 16:692-701. [PMID: 34529206 DOI: 10.1007/s11682-021-00530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
Certain behavioral characteristics of autism spectrum disorder can be found in otherwise healthy people. Individuals with difficulties in social adaptation may have subclinical autistic traits; however, effective biomarkers of these traits have not yet been established. There is a dire need for objective indices of these traits that combine behavior, brain images, and genetic information. In this study, we examined the association among a single nucleotide polymorphism of NRXN1 (rs858932; C/G), autistic traits, and brain structure in 311 healthy adults. We found that carriers of minor alleles (carriers of the G-allele) had significantly higher systemizing scores than major-allele (C-allele) homozygotes. Furthermore, the regional white matter volume in the right anterior limb of the internal capsule was significantly greater in carriers of the G-allele than in C-allele homozygotes. To the best of our knowledge, this is the first report of NRXN1 rs858932 being involved in systemizing and the brain structure of healthy adults. Our findings provide insight into the effects of genetics on autistic traits and their respective neural substrates.
Collapse
Affiliation(s)
- Yuka Shiota
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Izumi Matsudaira
- Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Chiaki Ono
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Soffer M, Argaman-Danos S. Self-labeling, perceived stigma toward autism spectrum disorder, and self-esteem and the change in autism nosology. Disabil Health J 2021; 14:101162. [PMID: 34229978 DOI: 10.1016/j.dhjo.2021.101162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Since the DSM-5 came into force, individuals previously diagnosed with Asperger's syndrome (AS) were newly labeled as having autism spectrum disorder (ASD), raising concerns about the exacerbation of stigma toward individuals with AS. OBJECTIVE This study explored: (a) the self-labeling among people previously diagnosed with AS; (b) the correlation among self-labeling, perceived public stigma (PPS) toward ASD, and self-esteem among people with AS; and (c) whether self-labeling mediates the relationship of PPS with ASD and self-esteem. METHODS A convenience sample of 89 individuals previously diagnosed with AS completed anonymous online questionnaires. RESULTS Most participants self-labeled as people with AS. Self-labeling was not significantly correlated with PPS or self-esteem. Self-labeling did not mediate the correlation between PPS and self-esteem; PPS was directly correlated with self-esteem. CONCLUSIONS Our study's findings suggest that stigma and language are not necessarily connected. This implies that rehabilitation and health care professionals should not assume that language perpetuates stigma, but rather that stigma-both among the public and as perceived by people with ASD-should be the focus of intervention.
Collapse
Affiliation(s)
- Michal Soffer
- School of Social Work, Faculty of Social Welfare & Health Sciences, University of Haifa, 199 Abba Hushi Blvd., Mount Carmel, Haifa, 3498838, Israel.
| | - Shay Argaman-Danos
- School of Social Work, Faculty of Social Welfare & Health Sciences, University of Haifa, 199 Abba Hushi Blvd., Mount Carmel, Haifa, 3498838, Israel
| |
Collapse
|
20
|
Xie Y, Zhang X, Liu F, Qin W, Fu J, Xue K, Yu C. Brain mRNA Expression Associated with Cortical Volume Alterations in Autism Spectrum Disorder. Cell Rep 2021; 32:108137. [PMID: 32937121 DOI: 10.1016/j.celrep.2020.108137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/23/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous studies report abnormal cerebral cortex volume (CCV) in autism spectrum disorder (ASD); however, genes related to CCV abnormalities in ASD remain largely unknown. Here, we identify genes associated with CCV alterations in ASD by performing spatial correlations between the gene expression of 6 donated brains and neuroimaging data from 1,404 ASD patients and 1,499 controls. Based on spatial correlations between gene expression and CCV differences from two independent meta-analyses and between gene expression and individual CCV distributions of 404 patients and 496 controls, we identify 417 genes associated with both CCV differences and individual CCV distributions. These genes are enriched for genetic association signals and genes downregulated in the ASD post-mortem brain. The expression patterns of these genes are correlated with brain activation patterns of language-related neural processes frequently impaired in ASD. These findings highlight a model whereby genetic risk impacts gene expression (downregulated), which leads to CCV alterations in ASD.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Xue Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China.
| |
Collapse
|
21
|
Albajara Sáenz A, Villemonteix T, Van Schuerbeek P, Baijot S, Septier M, Defresne P, Delvenne V, Passeri G, Raeymaekers H, Victoor L, Willaye E, Peigneux P, Deconinck N, Massat I. Motor Abnormalities in Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Are Associated With Regional Grey Matter Volumes. Front Neurol 2021; 12:666980. [PMID: 34017307 PMCID: PMC8129495 DOI: 10.3389/fneur.2021.666980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are associated with motor impairments, with some children holding a comorbid diagnosis of Developmental Coordination Disorder (DCD). However, DCD is underdiagnosed in these populations and the volume abnormalities that contribute to explaining these motor impairments are poorly understood. In this study, motor abilities as measured by the Developmental Coordination Disorder Questionnaire (DCDQ) were compared between children with ADHD, children with ASD and typically developing (TD) children, aged 8–12 years old. Additionally, the association between the DCDQ scores (general coordination, fine motor/handwriting, control during movement, total) and regional volume abnormalities were explored in 6 regions of interest (pre-central gyrus, post-central gyrus, inferior parietal cortex, superior frontal gyrus, middle frontal gyrus, medial frontal gyrus), within each group and across all participants. Children with ASD and children with ADHD showed impaired motor abilities in all the DCDQ-derived scores compared to TD children. Additionally, most children with ASD or ADHD had an indication or suspicion of DCD. Within the ASD group, coordination abilities were associated with the volume of the right medial frontal gyrus, and within the ADHD group, the total DCDQ score was associated with the volume of the right superior frontal gyrus. This study underlines the importance of routinely checking motor abilities in populations with ASD or ADHD in clinical practise and contributes to the understanding of structural abnormalities subtending motor impairments in these disorders.
Collapse
Affiliation(s)
- Ariadna Albajara Sáenz
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas Villemonteix
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium.,Paris 8 Vincennes - St Denis University, Laboratoire de Psychopathologie et Neuropsychologie, Saint Denis, France
| | | | - Simon Baijot
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium.,Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles, Brussels, Belgium
| | - Mathilde Septier
- Hôpital Universitaire Robert Debré, Paris, France.,Institut de Psychiatrie et de Neurosciences de Paris Inserm U894 Team 1, Paris, France
| | - Pierre Defresne
- Fondation SUSA (Service Universitaire Spéécialisé pour personnes avec Autisme), Université de Mons, Mons, Belgium
| | - Véronique Delvenne
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles, Brussels, Belgium
| | - Gianfranco Passeri
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles, Brussels, Belgium
| | - Hubert Raeymaekers
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Laurent Victoor
- PsyPluriel, Centre Européen de Psychologie Médicale, Brussels, Belgium
| | - Eric Willaye
- Fondation SUSA (Service Universitaire Spéécialisé pour personnes avec Autisme), Université de Mons, Mons, Belgium
| | - Philippe Peigneux
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Deconinck
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Massat
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels, Belgium.,National Fund of Scientific Research, Brussels, Belgium.,Department of Neurology, Erasme Hospital, Brussels, Belgium
| |
Collapse
|
22
|
Sommer JL, Low AM, Jepsen JRM, Fagerlund B, Vangkilde S, Habekost T, Glenthøj B, Oranje B. Effects of methylphenidate on sensory and sensorimotor gating of initially psychostimulant-naïve adult ADHD patients. Eur Neuropsychopharmacol 2021; 46:83-92. [PMID: 33663902 DOI: 10.1016/j.euroneuro.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
Deficient information processing in ADHD theoretically results in sensory overload, which in turn may underlie its symptoms. If this sensory overload is caused by deficient filtering of environmental stimuli, then one would expect finding deficits in P50 gating and prepulse inhibition of the startle reflex (PPI). Previous reports on these measures in ADHD have shown inconsistent findings, which may have been caused by either medication use or comorbidity (e.g. ASD). The primary aim of this study was therefore to explore P50 suppression and PPI in adult, psychostimulant-naïve patients with ADHD without major comorbidity, and to examine the effects of 6 weeks treatment with methylphenidate (MPH) on these measures. A total of 42 initially psychostimulant-naive, adult ADHD patients without major comorbidity and 42 matched healthy controls, were assessed for their P50 gating, PPI, and habituation/sensitization abilities at baseline and after 6 weeks of treatment with methylphenidate. Although six weeks of treatment with MPH significantly reduced symptomatology as well as improved daily life functioning in our patients, it neither significantly affected PPI, P50 suppression nor sensitization, but habituation unexpectedly decreased. The absence of PPI and P50 suppression deficits in our patients in the psychostimulant-naïve state indicates no gating deficits. In turn, this suggests that the difficulties to inhibit distraction of attention by irrelevant stimuli that many patients with (adult) ADHD report, have a different origin than the theoretical causes of sensory overload frequently reported in studies on patients with schizophrenia.
Collapse
Affiliation(s)
- Julijana le Sommer
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark; Department of Psychology, University of Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Denmark
| | - Ann-Marie Low
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark; Department of Psychology, University of Copenhagen, Denmark
| | - Jens Richardt Møllegaard Jepsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark; Child and Adolescent Mental Health Center, Mental Health Services, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark
| | | | | | - Birte Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Denmark
| | - Bob Oranje
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark; Department of Psychiatry, UMC-Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
23
|
Serotonin 5-HT 1B receptor-mediated behavior and binding in mice with the overactive and dysregulated serotonin transporter Ala56 variant. Psychopharmacology (Berl) 2021; 238:1111-1120. [PMID: 33511450 PMCID: PMC8728944 DOI: 10.1007/s00213-020-05758-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
RATIONALE Elevated whole-blood serotonin (5-HT) is a robust biomarker in ~ 30% of patients with autism spectrum disorders, in which repetitive behavior is a core symptom. Furthermore, elevated whole-blood 5-HT has also been described in patients with pediatric obsessive-compulsive disorder. The 5-HT1B receptor is associated with repetitive behaviors seen in both disorders. Chronic blockade of serotonin transporter (SERT) reduces 5-HT1B receptor levels in the orbitofrontal cortex (OFC) and attenuates the sensorimotor deficits and hyperactivity seen with the 5-HT1B agonist RU24969. We hypothesized that enhanced SERT function would increase 5-HT1B receptor levels in OFC and enhance sensorimotor deficits and hyperactivity induced by RU24969. OBJECTIVES We examined the impact of the SERT Ala56 mutation, which leads to enhanced SERT function, on 5-HT1B receptor binding and 5-HT1B-mediated sensorimotor deficits. METHODS Specific binding to 5-HT1B receptors was measured in OFC and striatum of naïve SERT Ala56 or wild-type mice. The impact of the 5-HT1A/1B receptor agonist RU24969 on prepulse inhibition (PPI) of startle, hyperactivity, and expression of cFos was examined. RESULTS While enhanced SERT function increased 5-HT1B receptor levels in OFC of Ala56 mice, RU24969-induced PPI deficits and hyperlocomotion were not different between genotypes. Baseline levels of cFos expression were not different between groups. RU24969 increased cFos expression in OFC of wild-types and decreased cFos in the striatum. CONCLUSIONS While reducing 5-HT1B receptors may attenuate sensorimotor gating deficits, increased 5-HT1B levels in SERT Ala56 mice do not necessarily exacerbate these deficits, potentially due to compensations during neural circuit development in this model system.
Collapse
|
24
|
Robust and replicable measurement for prepulse inhibition of the acoustic startle response. Mol Psychiatry 2021; 26:1909-1927. [PMID: 32144356 PMCID: PMC7483293 DOI: 10.1038/s41380-020-0703-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Measuring animal behavior in the context of experimental manipulation is critical for modeling, and understanding neuropsychiatric disease. Prepulse inhibition of the acoustic startle response (PPI) is a behavioral phenomenon studied extensively for this purpose, but the results of PPI studies are often inconsistent. As a result, the utility of this phenomenon remains uncertain. Here, we deconstruct the phenomenon of PPI and confirm several limitations of the methodology traditionally utilized to describe PPI, including that the underlying startle response has a non-Gaussian distribution, and that the traditional PPI metric changes with different stimuli. We then develop a novel model that reveals PPI to be a combination of the previously appreciated scaling of the startle response, as well as a scaling of sound processing. Using our model, we find no evidence for differences in PPI in a rat model of Fragile-X Syndrome (FXS) compared with wild-type controls. These results in the rat provide a reliable methodology that could be used to clarify inconsistent PPI results in mice and humans. In contrast, we find robust differences between wild-type male and female rats. Our model allows us to understand the nature of these differences, and we find that both the startle-scaling and sound-scaling components of PPI are a function of the baseline startle response. Males and females differ specifically in the startle-scaling, but not the sound-scaling, component of PPI. These findings establish a robust experimental and analytical approach that has the potential to provide a consistent biomarker of brain function.
Collapse
|
25
|
Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10120951. [PMID: 33302549 PMCID: PMC7764453 DOI: 10.3390/brainsci10120951] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is an early neurodevelopmental disorder that involves deficits in interpersonal communication, social interaction, and repetitive behaviors. Although ASD pathophysiology is still uncertain, alterations in the abnormal development of the frontal lobe, limbic areas, and putamen generate an imbalance between inhibition and excitation of neuronal activity. Interestingly, recent findings suggest that a disruption in neuronal connectivity is associated with neural alterations in white matter production and myelination in diverse brain regions of patients with ASD. This review is aimed to summarize the most recent evidence that supports the notion that abnormalities in the oligodendrocyte generation and axonal myelination in specific brain regions are involved in the pathophysiology of ASD. Fundamental molecular mediators of these pathological processes are also examined. Determining the role of alterations in oligodendrogenesis and myelination is a fundamental step to understand the pathophysiology of ASD and identify possible therapeutic targets.
Collapse
|
26
|
Mostapha M, Kim SH, Evans AC, Dager SR, Estes AM, McKinstry RC, Botteron KN, Gerig G, Pizer SM, Schultz RT, Hazlett HC, Piven J, Girault JB, Shen MD, Styner MA. A Novel Method for High-Dimensional Anatomical Mapping of Extra-Axial Cerebrospinal Fluid: Application to the Infant Brain. Front Neurosci 2020; 14:561556. [PMID: 33132824 PMCID: PMC7561674 DOI: 10.3389/fnins.2020.561556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
Cerebrospinal fluid (CSF) plays an essential role in early postnatal brain development. Extra-axial CSF (EA-CSF) volume, which is characterized by CSF in the subarachnoid space surrounding the brain, is a promising marker in the early detection of young children at risk for neurodevelopmental disorders. Previous studies have focused on global EA-CSF volume across the entire dorsal extent of the brain, and not regionally-specific EA-CSF measurements, because no tools were previously available for extracting local EA-CSF measures suitable for localized cortical surface analysis. In this paper, we propose a novel framework for the localized, cortical surface-based analysis of EA-CSF. The proposed processing framework combines probabilistic brain tissue segmentation, cortical surface reconstruction, and streamline-based local EA-CSF quantification. The quantitative analysis of local EA-CSF was applied to a dataset of typically developing infants with longitudinal MRI scans from 6 to 24 months of age. There was a high degree of consistency in the spatial patterns of local EA-CSF across age using the proposed methods. Statistical analysis of local EA-CSF revealed several novel findings: several regions of the cerebral cortex showed reductions in EA-CSF from 6 to 24 months of age, and specific regions showed higher local EA-CSF in males compared to females. These age-, sex-, and anatomically-specific patterns of local EA-CSF would not have been observed if only a global EA-CSF measure were utilized. The proposed methods are integrated into a freely available, open-source, cross-platform, user-friendly software tool, allowing neuroimaging labs to quantify local extra-axial CSF in their neuroimaging studies to investigate its role in typical and atypical brain development.
Collapse
Affiliation(s)
- Mahmoud Mostapha
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, United States
| | - Sun Hyung Kim
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Stephen R Dager
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Annette M Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States
| | - Kelly N Botteron
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Guido Gerig
- Department of Computer Science and Engineering, New York University, New York, NY, United States
| | - Stephen M Pizer
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, United States
| | - Robert T Schultz
- Department of Pediatrics, Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Heather C Hazlett
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States.,Carolina Institute for Developmental Disabilities, UNC School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Joseph Piven
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States.,Carolina Institute for Developmental Disabilities, UNC School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Jessica B Girault
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States.,Carolina Institute for Developmental Disabilities, UNC School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Mark D Shen
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States.,Carolina Institute for Developmental Disabilities, UNC School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States.,UNC Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Martin A Styner
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, United States.,Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
27
|
Xu N, Lei L, Lin Y, Ju LS, Morey TE, Gravenstein N, Yang J, Martynyuk AE. A Methyltransferase Inhibitor (Decitabine) Alleviates Intergenerational Effects of Paternal Neonatal Exposure to Anesthesia With Sevoflurane. Anesth Analg 2020; 131:1291-1299. [PMID: 32925350 PMCID: PMC7593836 DOI: 10.1213/ane.0000000000005097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Neonatal exposure to sevoflurane induces neurobehavioral and neuroendocrine abnormalities in exposed male rats (generation F0) and neurobehavioral, but not neuroendocrine, abnormalities in their male, but not female, offspring (generation F1). These effects of sevoflurane are accompanied by a hypermethylated neuron-specific K-2Cl (Kcc2) Cl exporter gene in the F0 spermatozoa and the F1 male hypothalamus, while the gene's expression is reduced in the F0 and F1 hypothalamus. We investigated whether inhibition of deoxyribonucleic acid methyltransferases (DNMTs) before paternal sevoflurane exposure could alleviate the anesthetic's F0 and F1 effects. METHODS Sprague-Dawley male rats were anesthetized with 2.1% sevoflurane for 5 hours on postnatal day (P) 5 and mated with control females on P90 to generate offspring. The nonselective DNMT inhibitor decitabine (0.5 mg/kg, intraperitoneally) was administered 30 minutes before sevoflurane exposure. The F0 and F1 male rats were evaluated in in vivo and in vitro tests in adulthood. RESULTS Paternal exposure to sevoflurane induced impaired prepulse inhibition of the acoustic startle response and exacerbated corticosterone responses to stress in F0 males and impaired prepulse inhibition of the startle responses in F1 males. These effects were accompanied in both generations by reduced and increased expressions of hypothalamic Kcc2 and Dnmt3a/b, respectively. Decitabine deterred the effects of paternal exposure to sevoflurane in F0 and F1 males. CONCLUSIONS These results suggest that similar decitabine-sensitive mechanisms regulating expression of multiple genes are involved in the mediation of neurobehavioral abnormalities in sires neonatally exposed to sevoflurane and in their future unexposed male offspring.
Collapse
Affiliation(s)
- Ning Xu
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Lei Lei
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Yunan Lin
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Timothy E. Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Nikolaus Gravenstein
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anatoly E. Martynyuk
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
28
|
Norton SA, Gifford JJ, Pawlak AP, Derbaly A, Sherman SL, Zhang H, Wagner GC, Kusnecov AW. Long-lasting Behavioral and Neuroanatomical Effects of Postnatal Valproic Acid Treatment. Neuroscience 2020; 434:8-21. [PMID: 32112916 DOI: 10.1016/j.neuroscience.2020.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 10/24/2022]
Abstract
Valproic acid (VPA) administered to mice during the early postnatal period causes social, cognitive, and motor deficits similar to those observed in humans with autism spectrum disorder (ASD). However, previous studies on the effects of early exposure to VPA have largely focused on behavioral deficits occurring before or during the juvenile period of life. Given that ASD is a life-long condition, the present study ought to extend our understanding of the behavioral profile following early postnatal VPA into adulthood. Male mice treated with VPA on postnatal day 14 (P14) displayed increased aggression, decreased avoidance of the open arms in the elevated plus maze, and impaired reversal learning in the Y maze. This may indicate a disinhibited or impulsive phenotype in male, but not female, mice treated with VPA during the second week of postnatal life. Decreased dendritic spine density and dendritic spine morphological abnormalities in the mPFC of VPA-treated mice may be indicative of PFC hypofunction, consistent with the observed behavioral differences. Since these types of long-lasting deficits are not exclusively found in ASD, early life exposure to VPA may reflect dysfunction of a neurobiological domain common to several developmental disorders, including ASD, ADHD, and conduct disorder.
Collapse
Affiliation(s)
- Sara A Norton
- Department of Psychology, Rutgers University, New Brunswick, NJ 08854, United States.
| | - Janace J Gifford
- Department of Psychology, Rutgers University, New Brunswick, NJ 08854, United States.
| | - Anthony P Pawlak
- Center of Alcohol and Substance Use Studies, Rutgers University, New Brunswick, NJ 08854, United States.
| | - Anna Derbaly
- Department of Psychology, Rutgers University, New Brunswick, NJ 08854, United States.
| | - Sara L Sherman
- Department of Psychology, Rutgers University, New Brunswick, NJ 08854, United States.
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, United States.
| | - George C Wagner
- Department of Psychology, Rutgers University, New Brunswick, NJ 08854, United States.
| | - Alexander W Kusnecov
- Department of Psychology, Rutgers University, New Brunswick, NJ 08854, United States.
| |
Collapse
|
29
|
Leming M, Górriz JM, Suckling J. Ensemble Deep Learning on Large, Mixed-Site fMRI Datasets in Autism and Other Tasks. Int J Neural Syst 2020; 30:2050012. [DOI: 10.1142/s0129065720500124] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep learning models for MRI classification face two recurring problems: they are typically limited by low sample size, and are abstracted by their own complexity (the “black box problem”). In this paper, we train a convolutional neural network (CNN) with the largest multi-source, functional MRI (fMRI) connectomic dataset ever compiled, consisting of 43,858 datapoints. We apply this model to a cross-sectional comparison of autism spectrum disorder (ASD) versus typically developing (TD) controls that has proved difficult to characterize with inferential statistics. To contextualize these findings, we additionally perform classifications of gender and task versus rest. Employing class-balancing to build a training set, we trained [Formula: see text] modified CNNs in an ensemble model to classify fMRI connectivity matrices with overall AUROCs of 0.6774, 0.7680, and 0.9222 for ASD versus TD, gender, and task versus rest, respectively. Additionally, we aim to address the black box problem in this context using two visualization methods. First, class activation maps show which functional connections of the brain our models focus on when performing classification. Second, by analyzing maximal activations of the hidden layers, we were also able to explore how the model organizes a large and mixed-center dataset, finding that it dedicates specific areas of its hidden layers to processing different covariates of data (depending on the independent variable analyzed), and other areas to mix data from different sources. Our study finds that deep learning models that distinguish ASD from TD controls focus broadly on temporal and cerebellar connections, with a particularly high focus on the right caudate nucleus and paracentral sulcus.
Collapse
Affiliation(s)
- Matthew Leming
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge, CB20SZ, UK
| | - Juan Manuel Górriz
- Department of Signal Theory, Networking and Communications, University of Granada, Avenida del Hospicio, E-18071 Granada, Spain
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge, CB20SZ, UK
| |
Collapse
|
30
|
Lukito S, Norman L, Carlisi C, Radua J, Hart H, Simonoff E, Rubia K. Comparative meta-analyses of brain structural and functional abnormalities during cognitive control in attention-deficit/hyperactivity disorder and autism spectrum disorder. Psychol Med 2020; 50:894-919. [PMID: 32216846 PMCID: PMC7212063 DOI: 10.1017/s0033291720000574] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND People with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) have abnormalities in frontal, temporal, parietal and striato-thalamic networks. It is unclear to what extent these abnormalities are distinctive or shared. This comparative meta-analysis aimed to identify the most consistent disorder-differentiating and shared structural and functional abnormalities. METHODS Systematic literature search was conducted for whole-brain voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies of cognitive control comparing people with ASD or ADHD with typically developing controls. Regional gray matter volume (GMV) and fMRI abnormalities during cognitive control were compared in the overall sample and in age-, sex- and IQ-matched subgroups with seed-based d mapping meta-analytic methods. RESULTS Eighty-six independent VBM (1533 ADHD and 1295 controls; 1445 ASD and 1477 controls) and 60 fMRI datasets (1001 ADHD and 1004 controls; 335 ASD and 353 controls) were identified. The VBM meta-analyses revealed ADHD-differentiating decreased ventromedial orbitofrontal (z = 2.22, p < 0.0001) but ASD-differentiating increased bilateral temporal and right dorsolateral prefrontal GMV (zs ⩾ 1.64, ps ⩽ 0.002). The fMRI meta-analyses of cognitive control revealed ASD-differentiating medial prefrontal underactivation but overactivation in bilateral ventrolateral prefrontal cortices and precuneus (zs ⩾ 1.04, ps ⩽ 0.003). During motor response inhibition specifically, ADHD relative to ASD showed right inferior fronto-striatal underactivation (zs ⩾ 1.14, ps ⩽ 0.003) but shared right anterior insula underactivation. CONCLUSIONS People with ADHD and ASD have mostly distinct structural abnormalities, with enlarged fronto-temporal GMV in ASD and reduced orbitofrontal GMV in ADHD; and mostly distinct functional abnormalities, which were more pronounced in ASD.
Collapse
Affiliation(s)
- Steve Lukito
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Luke Norman
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
- The Social and Behavioral Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Christina Carlisi
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Joaquim Radua
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
- Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
| | - Heledd Hart
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Emily Simonoff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
31
|
Abstract
Current understanding of the neuroanatomical abnormalities in autism includes gross anatomical changes in several brain areas and microstructural alterations in neuronal cells as well. There are many controversies in the interpretation of the imaging data, evaluation of volume and size of particular brain areas, and their functional translation into a broad autism phenotype. Critical questions of neuronal pathology in autism include the concept of the reversible plasticity of morphological changes, volume alterations of brain areas, and both short- and long-term consequences of adverse events present during the brain development. At the cellular level, remodeling of the actin cytoskeleton is considered as one of the critical factors associated with the autism spectrum disorders. Alterations in the composition of the neuronal cytoskeleton, in particular abnormalities in the polymerization of actin filaments and their associated proteins underlie the functional consequences in behavior resulting in symptoms and clinical correlates of autism spectrum disorder. In the present review, a special attention is devoted to the role of oxytocin in experimental models of neurodevelopmental disorders manifesting alterations in neuronal morphology.
Collapse
|
32
|
Richards R, Greimel E, Kliemann D, Koerte IK, Schulte-Körne G, Reuter M, Wachinger C. Increased hippocampal shape asymmetry and volumetric ventricular asymmetry in autism spectrum disorder. NEUROIMAGE-CLINICAL 2020; 26:102207. [PMID: 32092683 PMCID: PMC7037573 DOI: 10.1016/j.nicl.2020.102207] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Found increased subcortical asymmetry associated with autism. Utilized a new measure of shape asymmetry for analysis of structural differences. Observed significantly increased shape asymmetry of the hippocampus. Observed significantly increased volumetric asymmetry in the lateral ventricles. Focalized abnormalities may result in detectable shape (but not volume) differences.
Autism spectrum disorder (ASD) is a prevalent and fast-growing pervasive neurodevelopmental disorder worldwide. Despite the increasing prevalence of ASD and the breadth of research conducted on the disorder, a conclusive etiology has yet to be established and controversy still exists surrounding the anatomical abnormalities in ASD. In particular, structural asymmetries have seldom been investigated in ASD, especially in subcortical regions. Additionally, the majority of studies for identifying structural biomarkers associated with ASD have focused on small sample sizes. Therefore, the present study utilizes a large-scale, multi-site database to investigate asymmetries in the amygdala, hippocampus, and lateral ventricles, given the potential involvement of these regions in ASD. Contrary to prior work, we are not only computing volumetric asymmetries, but also shape asymmetries, using a new measure of asymmetry based on spectral shape descriptors. This measure represents the magnitude of the asymmetry and therefore captures both directional and undirectional asymmetry. The asymmetry analysis is conducted on 437 individuals with ASD and 511 healthy controls using T1-weighted MRI scans from the Autism Brain Imaging Data Exchange (ABIDE) database. Results reveal significant asymmetries in the hippocampus and the ventricles, but not in the amygdala, in individuals with ASD. We observe a significant increase in shape asymmetry in the hippocampus, as well as increased volumetric asymmetry in the lateral ventricles in individuals with ASD. Asymmetries in these regions have not previously been reported, likely due to the different characterization of neuroanatomical asymmetry and smaller sample sizes used in previous studies. Given that these results were demonstrated in a large cohort, such asymmetries may be worthy of consideration in the development of neurodiagnostic classification tools for ASD.
Collapse
Affiliation(s)
- Rose Richards
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Nussbaumstr. 5a, 80336 Munich, Germany.
| | - Ellen Greimel
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Nussbaumstr. 5a, 80336 Munich, Germany
| | - Dorit Kliemann
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Inga K Koerte
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Nussbaumstr. 5a, 80336 Munich, Germany; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Nussbaumstr. 5a, 80336 Munich, Germany
| | - Martin Reuter
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Suite 2301, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA; Image Analysis, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christian Wachinger
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Nussbaumstr. 5a, 80336 Munich, Germany.
| |
Collapse
|
33
|
Pote I, Wang S, Sethna V, Blasi A, Daly E, Kuklisova‐Murgasova M, Lloyd‐Fox S, Mercure E, Busuulwa P, Stoencheva V, Charman T, Williams SCR, Johnson MH, Murphy DGM, McAlonan GM. Familial risk of autism alters subcortical and cerebellar brain anatomy in infants and predicts the emergence of repetitive behaviors in early childhood. Autism Res 2019; 12:614-627. [PMID: 30801993 PMCID: PMC6519039 DOI: 10.1002/aur.2083] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental condition, and infant siblings of children with ASD are at a higher risk of developing autistic traits or an ASD diagnosis, when compared to those with typically developing siblings. Reports of differences in brain anatomy and function in high-risk infants which predict later autistic behaviors are emerging, but although cerebellar and subcortical brain regions have been frequently implicated in ASD, no high-risk study has examined these regions. Therefore, in this study, we compared regional MRI volumes across the whole brain in 4-6-month-old infants with (high-risk, n = 24) and without (low-risk, n = 26) a sibling with ASD. Within the high-risk group, we also examined whether any regional differences observed were associated with autistic behaviors at 36 months. We found that high-risk infants had significantly larger cerebellar and subcortical volumes at 4-6-months of age, relative to low-risk infants; and that larger volumes in high-risk infants were linked to more repetitive behaviors at 36 months. Our preliminary observations require replication in longitudinal studies of larger samples. If correct, they suggest that the early subcortex and cerebellum volumes may be predictive biomarkers for childhood repetitive behaviors. Autism Res 2019, 12: 614-627. © 2019 The Authors. Autism Research published by International Society for Autism Research published byWiley Periodicals, Inc. LAY SUMMARY: Individuals with a family history of autism spectrum disorder (ASD) are at risk of ASD and related developmental difficulties. This study revealed that 4-6-month-old infants at high-risk of ASD have larger cerebellum and subcortical volumes than low-risk infants, and that larger volumes in high-risk infants are associated with more repetitive behaviors in childhood.
Collapse
Affiliation(s)
- Inês Pote
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Siying Wang
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Vaheshta Sethna
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Anna Blasi
- Centre for Brain and Cognitive Development, BirkbeckUniversity of LondonLondonUK
| | - Eileen Daly
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Maria Kuklisova‐Murgasova
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Sarah Lloyd‐Fox
- Centre for Brain and Cognitive Development, BirkbeckUniversity of LondonLondonUK
| | - Evelyne Mercure
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Paula Busuulwa
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- GKT School of Medical EducationKing's College LondonLondonUK
| | - Vladimira Stoencheva
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Steven C. R. Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and King's College LondonLondonUK
| | - Mark H. Johnson
- Centre for Brain and Cognitive Development, BirkbeckUniversity of LondonLondonUK
| | - Declan G. M. Murphy
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and King's College LondonLondonUK
| | - Grainne M. McAlonan
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and King's College LondonLondonUK
| | | |
Collapse
|
34
|
Masuda F, Nakajima S, Miyazaki T, Yoshida K, Tsugawa S, Wada M, Ogyu K, Croarkin PE, Blumberger DM, Daskalakis ZJ, Mimura M, Noda Y. Motor cortex excitability and inhibitory imbalance in autism spectrum disorder assessed with transcranial magnetic stimulation: a systematic review. Transl Psychiatry 2019; 9:110. [PMID: 30846682 PMCID: PMC6405856 DOI: 10.1038/s41398-019-0444-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/02/2019] [Accepted: 02/16/2019] [Indexed: 01/21/2023] Open
Abstract
Cortical excitation/inhibition (E/I) imbalances contribute to various clinical symptoms observed in autism spectrum disorder (ASD). However, the detailed pathophysiologic underpinning of E/I imbalance remains uncertain. Transcranial magnetic stimulation (TMS) motor-evoked potentials (MEP) are a non-invasive tool for examining cortical inhibition in ASD. Here, we conducted a systematic review on TMS neurophysiology in motor cortex (M1) such as MEPs and short-interval intracortical inhibition (SICI) between individuals with ASD and controls. Out of 538 initial records, we identified six articles. Five studies measured MEP, where four studies measured SICI. There were no differences in MEP amplitudes between the two groups, whereas SICI was likely to be reduced in individuals with ASD compared with controls. Notably, SICI largely reflects GABA(A) receptor-mediated function. Conversely, other magnetic resonance spectroscopy and postmortem methodologies assess GABA levels. The present review demonstrated that there may be neurophysiological deficits in GABA receptor-mediated function in ASD. In conclusion, reduced GABAergic function in the neural circuits could underlie the E/I imbalance in ASD, which may be related to the pathophysiology of clinical symptoms of ASD. Therefore, a novel treatment that targets the neural circuits related to GABA(A) receptor-mediated function in regions involved in the pathophysiology of ASD may be promising.
Collapse
Affiliation(s)
- Fumi Masuda
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan ,0000 0000 9747 6806grid.410827.8Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan
| | - Shinichiro Nakajima
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan ,0000 0001 2157 2938grid.17063.33Multimodal Imaging Group, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Takahiro Miyazaki
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- 0000 0004 0459 167Xgrid.66875.3aDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Sakiko Tsugawa
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Wada
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kamiyu Ogyu
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Paul E. Croarkin
- 0000 0000 8793 5925grid.155956.bPharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Daniel M. Blumberger
- 0000 0001 2157 2938grid.17063.33Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Zafiris J. Daskalakis
- 0000 0001 2157 2938grid.17063.33Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Masaru Mimura
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
35
|
Abstract
Atypical responses to sound are common in individuals with autism spectrum disorder (ASD), and growing evidence suggests an underlying auditory brainstem pathology. This review of the literature provides a comprehensive account of the structural and functional evidence for auditory brainstem abnormalities in ASD. The studies reviewed were published between 1975 and 2016 and were sourced from multiple online databases. Indices of both the quantity and quality of the studies reviewed are considered. Findings show converging evidence for auditory brainstem pathology in ASD, although the specific functions and anatomical structures involved remain equivocal. Two main trends emerge from the literature: (1) abnormalities occur mainly at higher levels of the auditory brainstem, according to structural imaging and electrophysiology studies; and (2) brainstem abnormalities appear to be more common in younger than older children with ASD. These findings suggest delayed maturation of neural transmission pathways between lower and higher levels of the brainstem and are consistent with the auditory disorders commonly observed in ASD, including atypical sound sensitivity, poor sound localization, and difficulty listening in background noise. Limitations of existing studies are discussed, and recommendations for future research are offered.
Collapse
|
36
|
Abstract
BACKGROUND There is currently a renaissance of interest in the many functions of cerebrospinal fluid (CSF). Altered flow of CSF, for example, has been shown to impair the clearance of pathogenic inflammatory proteins involved in neurodegenerative diseases, such as amyloid-β. In addition, the role of CSF in the newly discovered lymphatic system of the brain has become a prominently researched area in clinical neuroscience, as CSF serves as a conduit between the central nervous system and immune system. MAIN BODY This article will review the importance of CSF in regulating normal brain development and function, from the prenatal period throughout the lifespan, and highlight recent research that CSF abnormalities in autism spectrum disorder (ASD) are present in infancy, are detectable by conventional structural MRI, and could serve as an early indicator of altered neurodevelopment. CONCLUSION The identification of early CSF abnormalities in children with ASD, along with emerging knowledge of the underlying pathogenic mechanisms, has the potential to serve as early stratification biomarkers that separate children with ASD into biological subtypes that share a common pathophysiology. Such subtypes could help parse the phenotypic heterogeneity of ASD and map on to targeted, biologically based treatments.
Collapse
Affiliation(s)
- Mark D Shen
- Carolina Institute for Developmental Disabilities, Department of Psychiatry, and the UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina at Chapel Hill School of Medicine, Campus Box 3367, Chapel Hill, NC, 27599-3367, USA.
| |
Collapse
|
37
|
Prenatal exposure to TiO 2 nanoparticles in mice causes behavioral deficits with relevance to autism spectrum disorder and beyond. Transl Psychiatry 2018; 8:193. [PMID: 30237468 PMCID: PMC6148221 DOI: 10.1038/s41398-018-0251-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Environmental factors are involved in the etiology of autism spectrum disorder (ASD) and may contribute to the raise in its incidence rate. It is currently unknown whether the increasing use of nanoparticles such as titanium dioxide (TiO2 NPs) in consumer products and biomedical applications may play a role in these associations. While nano-sized TiO2 is generally regarded as safe and non-toxic, excessive exposure to TiO2 NPs may be associated with negative health consequences especially when occurring during sensitive developmental periods. To test if prenatal exposure to TiO2 NPs alters fetal development and behavioral functions relevant to ASD, C57Bl6/N dams were subjected to a single intravenous injection of a low (100 µg) or high (1000 µg) dose of TiO2 NPs or vehicle solution on gestation day 9. ASD-related behavioral functions were assessed in the offspring using paradigms that index murine versions of ASD symptoms. Maternal exposure to TiO2 NPs led to subtle and dose-dependent impairments in neonatal vocal communication and juvenile sociability, as well as a dose-dependent increase in prepulse inhibition of the acoustic startle reflex of both sexes. These behavioral alterations emerged in the absence of pregnancy complications. Prenatal exposure to TiO2 NPs did not cause overt fetal malformations or changes in pregnancy outcomes, nor did it affect postnatal growth of the offspring. Taken together, our study provides a first set of preliminary data suggesting that prenatal exposure to nano-sized TiO2 can induce behavioral deficits relevant to ASD and related neurodevelopmental disorders without inducing major changes in physiological development. If extended further, our preclinical findings may provide an incentive for epidemiological studies examining the role of prenatal TiO2 NPs exposure in the etiology of ASD and other neurodevelopmental disorders.
Collapse
|
38
|
Khan A, Powell SB. Sensorimotor gating deficits in "two-hit" models of schizophrenia risk factors. Schizophr Res 2018; 198:68-83. [PMID: 29070440 PMCID: PMC5911431 DOI: 10.1016/j.schres.2017.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
Genetic and environmental models of neuropsychiatric disease have grown exponentially over the last 20years. One measure that is often used to evaluate the translational relevance of these models to human neuropsychiatric disease is prepulse inhibition of startle (PPI), an operational measure of sensorimotor gating. Deficient PPI characterizes several neuropsychiatric disorders but has been most extensively studied in schizophrenia. It has become a useful tool in translational neuropharmacological and molecular genetics studies because it can be measured across species using almost the same experimental parameters. Although initial studies of PPI in rodents were pharmacological because of the robust predictive validity of PPI for antipsychotic efficacy, more recently, PPI has become standard common behavioral measures used in genetic and neurodevelopmental models of schizophrenia. Here we review "two hit" models of schizophrenia and discuss the utility of PPI as a tool in phenotyping these models of relevant risk factors. In the review, we consider approaches to rodent models of genetic and neurodevelopmental risk factors and selectively review "two hit" models of gene×environment and environment×environment interactions in which PPI has been measured.
Collapse
Affiliation(s)
- Asma Khan
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States; Research Service, VA San Diego Healthcare System, La Jolla, CA, United States
| | - Susan B Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States; Research Service, VA San Diego Healthcare System, La Jolla, CA, United States.
| |
Collapse
|
39
|
Swerdlow NR, Light GA. Sensorimotor gating deficits in schizophrenia: Advancing our understanding of the phenotype, its neural circuitry and genetic substrates. Schizophr Res 2018; 198. [PMID: 29525460 PMCID: PMC6103885 DOI: 10.1016/j.schres.2018.02.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, United States.
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
40
|
Takahashi H, Kamio Y. Acoustic startle response and its modulation in schizophrenia and autism spectrum disorder in Asian subjects. Schizophr Res 2018; 198:16-20. [PMID: 28578923 DOI: 10.1016/j.schres.2017.05.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 12/28/2022]
Abstract
The acoustic startle response (ASR) and its modulation, including prepulse inhibition (PPI), are considered to be promising neurophysiological indices for translational research in psychiatry. Impairment of the PPI has been reported in several psychiatric disorders, but particularly in schizophrenia, where PPI is considered to be a candidate endophenotype of the disorder. Although the profiles of the ASR differ between races, recent studies of single ethnicity samples in Asia were in accord with a number of studies from Western countries, in reporting that patients with schizophrenia exhibit impaired PPI. The PPI of the ASR is known to develop before 8years of age, and PPI impairment has only been reported in adults (not children) with autism spectrum disorder (ASD), which involves atypical features that are present from early development. Recent Asian studies of children with ASD suggest that comprehensive investigation of the ASR and its modulation, including the startle response to weak startle stimuli, peak startle latency, and PPI, may contribute to an understanding of the impairment of the neural circuitry in children with ASD and its comorbid behavioral problems. In this review, we review recent findings on the ASR and its modulation from Asian countries, and discuss its potential use for studying sensorimotor gating and its relationship to schizophrenia and ASD. In conclusion, the ASR and its modulation can provide a well-established global neurophysiological index for translational research in psychiatric disorders. Future studies investigating the development of sensorimotor gating in early development may contribute to prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Hidetoshi Takahashi
- Department of Child and Adolescent Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8553, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8551, Japan.
| | - Yoko Kamio
- Department of Child and Adolescent Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8553, Japan.
| |
Collapse
|
41
|
Zhao G, Walsh K, Long J, Gui W, Denisova K. Reduced structural complexity of the right cerebellar cortex in male children with autism spectrum disorder. PLoS One 2018; 13:e0196964. [PMID: 29995885 PMCID: PMC6040688 DOI: 10.1371/journal.pone.0196964] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 04/24/2018] [Indexed: 12/31/2022] Open
Abstract
The cerebellum contains 80% of all neurons in the human brain and contributes prominently to implicit learning and predictive processing across motor, sensory, and cognitive domains. As morphological features of the cerebellum in atypically developing individuals remain unexplored in-vivo, this is the first study to use high-resolution 3D fractal analysis to estimate fractal dimension (FD), a measure of structural complexity of an object, of the left and right cerebellar cortex (automatically segmented from Magnetic Resonance Images using FreeSurfer), in male children with Autism Spectrum Disorders (ASD) (N = 20; mean age: 8.8 years old, range: 7.13-10.27) and sex, age, verbal-IQ, and cerebellar volume-matched typically developing (TD) boys (N = 18; mean age: 8.9 years old, range: 6.47-10.52). We focus on an age range within the 'middle and late childhood' period of brain development, between 6 and 12 years. A Mann-Whitney U test revealed a significant reduction in the FD of the right cerebellar cortex in ASD relative to TD boys (P = 0.0063, Bonferroni-corrected), indicating flatter and less regular surface protrusions in ASD relative to TD males. Consistent with the prediction that the cerebellum participates in implicit learning, those ASD boys with a higher (vs. lower) PIQ>VIQ difference showed higher, more normative complexity values, closer to TD children, providing new insight on our understanding of the neurological basis of differences in verbal and performance cognitive abilities that often characterize individuals with ASD.
Collapse
Affiliation(s)
- Guihu Zhao
- School of Information Science and Engineering, Central South University, Changsha, Hunan, P. R. China
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, United States of America
| | - Kirwan Walsh
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, United States of America
| | - Jun Long
- School of Information Science and Engineering, Central South University, Changsha, Hunan, P. R. China
- * E-mail: (KD); (JL)
| | - Weihua Gui
- School of Information Science and Engineering, Central South University, Changsha, Hunan, P. R. China
| | - Kristina Denisova
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, United States of America
- Sackler Institute for Psychobiology, Columbia University College of Physicians and Surgeons, New York, NY, United States of America
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States of America
- * E-mail: (KD); (JL)
| |
Collapse
|
42
|
Murphy D, Glaser K, Hayward H, Eklund H, Cadman T, Findon J, Woodhouse E, Ashwood K, Beecham J, Bolton P, McEwen F, Wilson E, Ecker C, Wong I, Simonoff E, Russell A, McCarthy J, Chaplin E, Young S, Asherson P. Crossing the divide: a longitudinal study of effective treatments for people with autism and attention deficit hyperactivity disorder across the lifespan. PROGRAMME GRANTS FOR APPLIED RESEARCH 2018. [DOI: 10.3310/pgfar06020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BackgroundAutism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) frequently persist into adolescence and young adulthood. However, there are few clinical services that support those with these disorders through adulthood.ObjectiveOur aim was to determine if clinical services meet the needs of people with ASD and ADHD, who are ‘at transition’ from childhood to adulthood.DesignA longitudinal study of individuals with ASD and ADHD, the impact of services and treatments.MethodsOur research methods included (1) interviewing > 180 affected individuals (and their families) with a confirmed diagnosis of ASD and/or ADHD, (2) screening for ASD and ADHD in approximately 1600 patients and (3) surveying general practitioner prescribing to 5651 ASD individuals across the UK. In addition, we tested the effectiveness of (1) new ASD diagnostic interview measures in 169 twins, 145 familes and 150 non-twins, (2) a magnetic resonance imaging-based diagnostic aid in 40 ASD individuals, (3) psychological treatments in 46 ASD individuals and (4) the feasability of e-learning in 28 clinicians.SettingNHS clinical services and prisons.ParticipantsFocus – young people with ASD and ADHD as they ‘transition’ from childhood and adolescence into early adulthood.InterventionsTesting the utility of diagnostic measures and services, web-based learning interventions, pharmacological prescribing and cognitive–behavioural treatments.Main outcome measuresSymptom severity, service provision and met/unmet need.ResultsPeople with ASD and ADHD have very significant unmet needs as they transition through adolescence and young adulthood. A major contributor to this is the presence of associated mental health symptoms. However, these are mostly undiagnosed (and untreated) by clinical services. Furthermore, the largest determinant of service provision was age and not severity of symptoms. We provide new tools to help diagnose both the core disorders and their associated symptoms. We also provide proof of concept for the effectiveness of simple psychological interventions to treat obsessional symptoms, the potential to run treatment trials in prisons and training interventions.LimitationsOur findings only apply to clinical service settings.ConclusionsAs individuals ‘transition’ their contact with treatment and support services reduces significantly. Needs-led services are required, which can both identify individuals with the ‘core symptoms’ of ASD and ADHD and treat their residual symptoms and associated conditions.Future workTo test our new diagnostic measures and treatment approaches in larger controlled trials.Trial registrationCurrent Controlled Trials ISRCTN87114880.FundingThe National Institute for Health Research Programme Grants for Applied Research programme.
Collapse
Affiliation(s)
- Declan Murphy
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, London, UK
| | - Karen Glaser
- Institute of Gerontology, King’s College London, London, UK
| | - Hannah Hayward
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, London, UK
| | - Hanna Eklund
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, London, UK
| | - Tim Cadman
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, London, UK
| | - James Findon
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, London, UK
| | - Emma Woodhouse
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, UK
| | - Karen Ashwood
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, UK
| | | | - Patrick Bolton
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King’s College London, London, UK
| | - Fiona McEwen
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King’s College London, London, UK
| | - Ellie Wilson
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, London, UK
| | - Christine Ecker
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, London, UK
| | - Ian Wong
- Department of Pharmacology and Pharmacy, University of Hong Kong, PokFuLam, Hong Kong
| | - Emily Simonoff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King’s College London, London, UK
| | - Ailsa Russell
- Department of Psychology, University of Bath, Bath, UK
| | | | - Eddie Chaplin
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, London, UK
| | - Susan Young
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, London, UK
| | - Philip Asherson
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, UK
| |
Collapse
|
43
|
Hiroi N. Critical reappraisal of mechanistic links of copy number variants to dimensional constructs of neuropsychiatric disorders in mouse models. Psychiatry Clin Neurosci 2018; 72:301-321. [PMID: 29369447 PMCID: PMC5935536 DOI: 10.1111/pcn.12641] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/27/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022]
Abstract
Copy number variants are deletions and duplications of a few thousand to million base pairs and are associated with extraordinarily high levels of autism spectrum disorder, schizophrenia, intellectual disability, or attention-deficit hyperactivity disorder. The unprecedented levels of robust and reproducible penetrance of copy number variants make them one of the most promising and reliable entry points to delve into the mechanistic bases of many mental disorders. However, the precise mechanistic bases of these associations still remain elusive in humans due to the many genes encoded in each copy number variant and the diverse associated phenotypic features. Genetically engineered mice have provided a technical means to ascertain precise genetic mechanisms of association between copy number variants and dimensional aspects of mental illnesses. Molecular, cellular, and neuronal phenotypes can be detected as potential mechanistic substrates for various behavioral constructs of mental illnesses. However, mouse models come with many technical pitfalls. Genetic background is not well controlled in many mouse models, leading to rather obvious interpretative issues. Dose alterations of many copy number variants and single genes within copy number variants result in some molecular, cellular, and neuronal phenotypes without a behavioral phenotype or with a behavioral phenotype opposite to what is seen in humans. In this review, I discuss technical and interpretative pitfalls of mouse models of copy number variants and highlight well-controlled studies to suggest potential neuronal mechanisms of dimensional aspects of mental illnesses. Mouse models of copy number variants represent toeholds to achieve a better understanding of the mechanistic bases of dimensions of neuropsychiatric disorders and thus for development of mechanism-based therapeutic options in humans.
Collapse
Affiliation(s)
- Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, USA.,Department of Neuroscience, Albert Einstein College of Medicine, New York, USA.,Department of Genetics, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
44
|
Cheng CH, Chan PYS, Hsu SC, Liu CY. Meta-analysis of sensorimotor gating in patients with autism spectrum disorders. Psychiatry Res 2018; 262:413-419. [PMID: 28918862 DOI: 10.1016/j.psychres.2017.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 01/24/2023]
Abstract
Prepulse inhibition (PPI) of startle response is a well-established neurophysiological marker of sensorimotor gating ability in psychiatric patients including those with autism spectrum disorders (ASD). PPI has been utilized as an indicator of the central inhibitory function and is potentially linked to the clinical features of this disease. However, it remains inconclusive whether ASD patients exhibit PPI deficits compared with healthy controls. The present meta-analysis aimed to explore the pooled effect sizes of PPI in ASD patients. We searched major electronic databases from 1990 to January 2017. Seven studies, consisting of 21 individual investigations with 135 healthy controls and 99 ASD patients, were obtained. The effect size, calculated as Hedges's g and 95% confidence interval, were estimated. Overall, we found ASD patients exhibited an impaired PPI compared with healthy controls (p = 0.008). Specifically, significant PPI deficits were observed among ASD children/adolescents, compared with their healthy counterparts (p = 0.019). However, differences in PPI responses were not observed among adults. Conclusively, our results reconciled the previous studies and showed that ASD children/adolescents, but not adults, exhibit reduced sensorimotor gating function compared to healthy controls. We also suggest that the parameters of PPI are particularly important and the results should be interpreted with cautions.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Pei-Ying S Chan
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
45
|
van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Busatto GF, Calderoni S, Daly E, Deruelle C, Di Martino A, Dinstein I, Duran FLS, Durston S, Ecker C, Fair D, Fedor J, Fitzgerald J, Freitag CM, Gallagher L, Gori I, Haar S, Hoekstra L, Jahanshad N, Jalbrzikowski M, Janssen J, Lerch J, Luna B, Martinho MM, McGrath J, Muratori F, Murphy CM, Murphy DG, O’Hearn K, Oranje B, Parellada M, Retico A, Rosa P, Rubia K, Shook D, Taylor M, Thompson PM, Tosetti M, Wallace GL, Zhou F, Buitelaar JK. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group. Am J Psychiatry 2018; 175:359-369. [PMID: 29145754 PMCID: PMC6546164 DOI: 10.1176/appi.ajp.2017.17010100] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Neuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group. METHOD The sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach. RESULTS The case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohen's d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions. CONCLUSIONS The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different regions, with a developmental peak around adolescence. These findings suggest an interplay in the abnormal development of the striatal, frontal, and temporal regions in ASD across the lifespan.
Collapse
Affiliation(s)
- Daan van Rooij
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Evdokia Anagnostou
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Celso Arango
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Guillaume Auzias
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Marlene Behrmann
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Geraldo F. Busatto
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Sara Calderoni
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Eileen Daly
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Christine Deruelle
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Adriana Di Martino
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Ilan Dinstein
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Fabio Luis Souza Duran
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Sarah Durston
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Christine Ecker
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Damien Fair
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Jennifer Fedor
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Jackie Fitzgerald
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Christine M. Freitag
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Louise Gallagher
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Ilaria Gori
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Shlomi Haar
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Liesbeth Hoekstra
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Neda Jahanshad
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Maria Jalbrzikowski
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Joost Janssen
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Jason Lerch
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Beatriz Luna
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Mauricio Moller Martinho
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Jane McGrath
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Filippo Muratori
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Clodagh M. Murphy
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Declan G.M. Murphy
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Kirsten O’Hearn
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Bob Oranje
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Mara Parellada
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Alessandra Retico
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Pedro Rosa
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Katya Rubia
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Devon Shook
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Margot Taylor
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Paul M. Thompson
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Michela Tosetti
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Gregory L. Wallace
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Fengfeng Zhou
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| | - Jan K. Buitelaar
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Nijmegen, the Netherlands; the Karakter Child and Adolescent Psychiatry University Center, Nijmegen; the Bloorview Research Institute, University of Toronto, Toronto; the Child and Adolescent Psychiatry Department, Gregorio Marañón General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid
| |
Collapse
|
46
|
Coba MP, Ramaker MJ, Ho EV, Thompson SL, Komiyama NH, Grant SGN, Knowles JA, Dulawa SC. Dlgap1 knockout mice exhibit alterations of the postsynaptic density and selective reductions in sociability. Sci Rep 2018; 8:2281. [PMID: 29396406 PMCID: PMC5797244 DOI: 10.1038/s41598-018-20610-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/16/2018] [Indexed: 11/09/2022] Open
Abstract
The scaffold protein DLGAP1 is localized at the post-synaptic density (PSD) of glutamatergic neurons and is a component of supramolecular protein complexes organized by PSD95. Gain-of-function variants of DLGAP1 have been associated with obsessive-compulsive disorder (OCD), while haploinsufficient variants have been linked to autism spectrum disorder (ASD) and schizophrenia in human genetic studies. We tested male and female Dlgap1 wild type (WT), heterozygous (HT), and knockout (KO) mice in a battery of behavioral tests: open field, dig, splash, prepulse inhibition, forced swim, nest building, social approach, and sucrose preference. We also used biochemical approaches to examine the role of DLGAP1 in the organization of PSD protein complexes. Dlgap1 KO mice were most notable for disruption of protein interactions in the PSD, and deficits in sociability. Other behavioral measures were largely unaffected. Our data suggest that Dlgap1 knockout leads to PSD disruption and reduced sociability, consistent with reports of DLGAP1 haploinsufficient variants in schizophrenia and ASD.
Collapse
Affiliation(s)
- M P Coba
- Department of Psychiatry and the Behavioral Sciences, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - M J Ramaker
- Department of Psychiatry, University of California, San Diego, USA
| | - E V Ho
- Department of Psychiatry, University of California, San Diego, USA
| | - S L Thompson
- Department of Psychiatry, University of California, San Diego, USA
- Committee on Neurobiology, The University of Chicago, Chicago, USA
| | - N H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, Edinburgh University, Edinburgh, Scotland
| | - S G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, Edinburgh University, Edinburgh, Scotland
| | - J A Knowles
- Department of Psychiatry and the Behavioral Sciences, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S C Dulawa
- Department of Psychiatry, University of California, San Diego, USA.
| |
Collapse
|
47
|
Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol 2018; 299:217-227. [DOI: 10.1016/j.expneurol.2017.04.017] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 01/12/2023]
|
48
|
Adorjan I, Ahmed B, Feher V, Torso M, Krug K, Esiri M, Chance SA, Szele FG. Calretinin interneuron density in the caudate nucleus is lower in autism spectrum disorder. Brain 2017; 140:2028-2040. [PMID: 29177493 DOI: 10.1093/brain/awx131] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/18/2017] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder is a debilitating condition with possible neurodevelopmental origins but unknown neuroanatomical correlates. Whereas investigators have paid much attention to the cerebral cortex, few studies have detailed the basal ganglia in autism. The caudate nucleus may be involved in the repetitive movements and limbic changes of autism. We used immunohistochemistry for calretinin and neuropeptide Y in 24 age- and gender-matched patients with autism spectrum disorder and control subjects ranging in age from 13 to 69 years. Patients with autism had a 35% lower density of calretinin+ interneurons in the caudate that was driven by loss of small calretinin+ neurons. This was not caused by altered size of the caudate, as its cross-sectional surface areas were similar between diagnostic groups. Controls exhibited an age-dependent increase in the density of medium and large calretinin+ neurons, whereas subjects with autism did not. Diagnostic groups did not differ regarding ionized calcium-binding adapter molecule 1+ immunoreactivity for microglia, suggesting chronic inflammation did not cause the decreased calretinin+ density. There was no statistically significant difference in the density of neuropeptide Y+ neurons between subjects with autism and controls. The decreased calretinin+ density may disrupt the excitation/inhibition balance in the caudate leading to dysfunctional corticostriatal circuits. The description of such changes in autism spectrum disorder may clarify pathomechanisms and thereby help identify targets for drug intervention and novel therapeutic strategies.
Collapse
Affiliation(s)
- Istvan Adorjan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bashir Ahmed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Virginia Feher
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Mario Torso
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Kristine Krug
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Margaret Esiri
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Steven A Chance
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Dachtler J, Fox K. Do cortical plasticity mechanisms differ between males and females? J Neurosci Res 2017; 95:518-526. [PMID: 27870449 PMCID: PMC5111614 DOI: 10.1002/jnr.23850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
The difference between male and female behavior and male and female susceptibility to a number of neuropsychiatric conditions is not controversial. From a biological perspective, one might expect to see at least some of these differences underpinned by identifiable physical differences in the brain. This Mini‐Review focuses on evidence that plasticity mechanisms differ between males and females and ask at what scale of organization the differences might exist, at the systems level, the circuits level, or the synaptic level. Emerging evidence suggests that plasticity differences may extend to the scale of synaptic mechanisms. In particular, the CaMKK, NOS1 and estrogen receptor pathways show sexual dimorphisms with implications for plasticity in the hippocampus and cerebral cortex. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James Dachtler
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
50
|
Abstract
It is widely acknowledged that the brain anatomy of children and adolescents with autism spectrum disorder (ASD) shows a different developmental pattern then typical age-matched peers. There is however, a paucity of studies examining gray matter in mid and late adulthood in ASD. In this cross-sectional neuroimaging study, we, performed vertex-wise whole-brain and region-of-interest analyses of cortical volume, thickness, surface area, and gyrification index in 51 adults with and 49 without ASD, between 30 and 75 years. There was significant age-related volume loss and cortical thinning, but there were no group differences. The lack of significant anatomical differences between intellectual able individuals with and without ASD, suggests that ASD is not (strongly) related to gray matter morphology in mid and late adulthood.
Collapse
Affiliation(s)
- P Cédric M P Koolschijn
- Dutch Autism & ADHD Research Center, Brain and Cognition, University of Amsterdam, PO Box 15915, 1001 NK, Amsterdam, The Netherlands. .,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands.
| | - Hilde M Geurts
- Dutch Autism & ADHD Research Center, Brain and Cognition, University of Amsterdam, PO Box 15915, 1001 NK, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands.,Dr. Leo Kannerhuis, Amsterdam, The Netherlands
| |
Collapse
|