1
|
Wang J, Shou F, Yu Q, Lu X, Wan Y, Huang W, Hu N, Jin Z, Shan X, Laureys S, Di H. Homeostatic plasticity in patients with disorders of consciousness detected by combined stimulation: a study protocol. Front Neurol 2025; 16:1503946. [PMID: 40134693 PMCID: PMC11932910 DOI: 10.3389/fneur.2025.1503946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Background Non-invasive neuromodulation (NIN) techniques have been widely utilized in treating patients with disorders of consciousness (DoC), but their therapeutic effects have been inconsistent. Given the reliance of NIN techniques on synaptic plasticity, and the potential impairment of synaptic plasticity (particularly homeostatic plasticity) resulting from severe brain injury, it is possible that the variation in therapeutic effects is due to alterations in homeostatic plasticity in patients with DoC. Therefore, this study will use preconditioning TMS to examine the retention of homeostatic plasticity in patients with DoC. Methods We will enroll 30 patients with DoC and 15 healthy controls and randomize the order of their sessions. According to the priming protocol, the trial was divided into three different sessions with a 2-day break between each session. The session will involve a 10-min duration of transcranial direct current stimulation (tDCS) priming, followed by a 192-s period of transcranial magnetic stimulation (TMS) test. Transcranial stimulation will be specifically targeted toward the left primary motor cortex. Measurements of motor evoked potentials will be taken at several time points: baseline, after tDCS, and after TMS. Coma Recovery Scale-Revised will be conducted both baseline and after TMS. Discussion Studying whether homeostatic plasticity is preserved in patients with DoC is beneficial for gaining a better understanding of their brain condition. If the homeostatic plasticity of patients with DoC is impaired, then NIN, which are based on altering synaptic plasticity in healthy individuals to achieve stimulating effects, may not be directly translatable to the therapeutic interventions for patients with DoC. Instead, the homeostatic plasticity of patients should be restored before implementing the intervention.
Collapse
Affiliation(s)
- Jingwen Wang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fangfang Shou
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Qiuyi Yu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xulan Lu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yuwen Wan
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Wangshan Huang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Nantu Hu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhenyi Jin
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xinru Shan
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Steven Laureys
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
- Canada Excellence Research Chair in Neuroplasticity, CERVO Brain Centre, Laval University, Quebec, QC, Canada
| | - Haibo Di
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Reinhold C, Knorr S, McFleder RL, Harder-Rauschenberger L, Gräfenhan T, Schlosser A, Sendtner M, Volkmann J, Ip CW. Peripheral nerve injury induces dystonia-like movements and dysregulation in the energy metabolism: A multi-omics descriptive study in Thap1 +/- mice. Neurobiol Dis 2025; 205:106783. [PMID: 39732371 DOI: 10.1016/j.nbd.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024] Open
Abstract
DYT-THAP1 dystonia is a monogenetic form of dystonia, a movement disorder characterized by the involuntary co-contraction of agonistic and antagonistic muscles. The disease is caused by mutations in the THAP1 gene, although the precise mechanisms by which these mutations contribute to the pathophysiology of dystonia remain unclear. The incomplete penetrance of DYT-THAP1 dystonia, estimated at 40 to 60 %, suggests that an environmental trigger may be required for the manifestation of the disease in genetically predisposed individuals. To investigate the gene-environment interaction in the development of dystonic features, we performed a sciatic nerve crush injury in a genetically predisposed DYT-THAP1 heterozygous knockout mouse model (Thap1+/-). We employed a multi-omic assessment to study the pathophysiological pathways underlying the disease. Phenotypic analysis using an unbiased deep learning algorithm revealed that nerve-injured Thap1+/- mice exhibited significantly more dystonia like movements (DLM) over the course of the 12-week experiment compared to naive Thap1+/- mice. In contrast, nerve-injured wildtype (wt) mice only showed a significant increase in DLM compared to their naive counterpart during the first weeks after injury. Furthermore, at week 11 after nerve crush, nerve-injured Thap1+/- mice displayed significantly more DLM than nerve-injured wt counterparts. Multi-omic analysis of the cerebellum, striatum and cortex in nerve-injured Thap1+/- mice revealed differences that are indicative of an altered energy metabolism compared to naive Thap1+/- and nerve-injured wt animals. These findings suggest that aberrant energy metabolism in brain regions relevant to dystonia may underlie the dystonic phenotype observed in nerve injured Thap1+/- mice.
Collapse
Affiliation(s)
- Colette Reinhold
- Department of Neurology, University Hospital of Wuerzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Wuerzburg, Germany
| | | | | | - Tom Gräfenhan
- Core Unit Systems Medicine, Medical Faculty, University Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Wuerzburg, Germany.
| |
Collapse
|
3
|
Zolezzi DM, Larsen DB, Zamorano AM, Graven-Nielsen T. Facilitation of Early and Middle Latency SEP after tDCS of M1: No Evidence of Primary Somatosensory Homeostatic Plasticity. Neuroscience 2024; 551:143-152. [PMID: 38735429 DOI: 10.1016/j.neuroscience.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Homeostatic plasticity is a mechanism that stabilizes cortical excitability within a physiological range. Most homeostatic plasticity protocols have primed and tested the homeostatic response of the primary motor cortex (M1). This study investigated if a homeostatic response could be recorded from the primary sensory cortex (S1) after inducing homeostatic plasticity in M1. In 31 healthy participants, homeostatic plasticity was induced over M1 with a priming and testing block of transcranial direct current stimulation (tDCS) in two different sessions (anodal and cathodal). S1 excitability was assessed by early (N20, P25) and middle-latency (N33-P45) somatosensory evoked potentials (SEP) extracted from 4 electrodes (CP5, CP3, P5, P3). Baseline and post-measures (post-priming, 0-min, 10-min, and 20-min after homeostatic induction) were taken. Anodal M1 homeostatic plasticity induction significantly facilitated the N20-P25, P45 peak, and N33-P45 early SEP components up to 20-min post-induction, without any indication of a homeostatic response (i.e., reduced SEP). Cathodal homeostatic induction did not induce any significant effect on early or middle latency SEPs. M1 homeostatic plasticity induction by anodal stimulation protocol to the primary motor cortex did not induce a homeostatic response in SEPs.
Collapse
Affiliation(s)
- Daniela M Zolezzi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis B Larsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Anna M Zamorano
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
4
|
Gunduz A, Valls-Solé J, Serranová T, Coppola G, Kofler M, Jääskeläinen SK. The blink reflex and its modulation - Part 2: Pathophysiology and clinical utility. Clin Neurophysiol 2024; 160:75-94. [PMID: 38412746 DOI: 10.1016/j.clinph.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/30/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
The blink reflex (BR) is integrated at the brainstem; however, it is modulated by inputs from various structures such as the striatum, globus pallidus, substantia nigra, and nucleus raphe magnus but also from afferent input from the peripheral nervous system. Therefore, it provides information about the pathophysiology of numerous peripheral and central nervous system disorders. The BR is a valuable tool for studying the integrity of the trigemino-facial system, the relevant brainstem nuclei, and circuits. At the same time, some neurophysiological techniques applying the BR may indicate abnormalities involving structures rostral to the brainstem that modulate or control the BR circuits. This is a state-of-the-art review of the clinical application of BR modulation; physiology is reviewed in part 1. In this review, we aim to present the role of the BR and techniques related to its modulation in understanding pathophysiological mechanisms of motor control and pain disorders, in which these techniques are diagnostically helpful. Furthermore, some BR techniques may have a predictive value or serve as a basis for follow-up evaluation. BR testing may benefit in the diagnosis of hemifacial spasm, dystonia, functional movement disorders, migraine, orofacial pain, and psychiatric disorders. Although the abnormalities in the integrity of the BR pathway itself may provide information about trigeminal or facial nerve disorders, alterations in BR excitability are found in several disease conditions. BR excitability studies are suitable for understanding the common pathophysiological mechanisms behind various clinical entities, elucidating alterations in top-down inhibitory systems, and allowing for follow-up and quantitation of many neurological syndromes.
Collapse
Affiliation(s)
- Aysegul Gunduz
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Neurology, Division of Neurophysiology, Istanbul, Turkey.
| | - Josep Valls-Solé
- IDIBAPS. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170 08024, Barcelona, Spain.
| | - Tereza Serranová
- Department of Neurology and Center of Clinical Neuroscience, Charles University, Prague 1st Faculty of Medicine and General University Hospital, Prague, Kateřinská 30, 12800 Prague 2, Czech Republic.
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, via Franco Faggiana 1668 04100, Latina, Italy.
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, A-6170 Zirl, Austria.
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Division of Medical Imaging, Turku University Hospital and University of Turku, Postal Box 52, FIN 20521 Turku, Finland.
| |
Collapse
|
5
|
Zolezzi DM, Larsen DB, McPhee M, Graven-Nielsen T. Effects of pain on cortical homeostatic plasticity in humans: a systematic review. Pain Rep 2024; 9:e1141. [PMID: 38444774 PMCID: PMC10914232 DOI: 10.1097/pr9.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/09/2023] [Accepted: 12/28/2023] [Indexed: 03/07/2024] Open
Abstract
Homeostatic plasticity (HP) is a negative feedback mechanism that prevents excessive facilitation or depression of cortical excitability (CE). Cortical HP responses in humans have been investigated by using 2 blocks of noninvasive brain stimulation with a no-stimulation block in between. A healthy HP response is characterized by reduced CE after 2 excitatory stimulation blocks and increased CE when using inhibitory stimulation. Conversely, impaired HP responses have been demonstrated in experimental and chronic pain conditions. Therefore, this systematic review aimed to provide an overview of the effect of pain on cortical HP in humans. Scopus, Embase, and PubMed were searched from inception until November 20, 2023. The included studies (1) compared experimental or clinical pain conditions with healthy controls, (2) induced HP using 2 blocks of stimulation with a no-stimulation interval, and (3) evaluated CE measures such as motor-evoked potentials. Four studies were included, consisting of 5 experiments and 146 participants, of whom 63 were patients with chronic pain and 48 were subjected to an experimental pain model. This systematic review found support for an HP impairment in pain compared with that in pain-free states, reflected by a lack of CE reduction after excitatory-excitatory HP induction over the primary motor cortex. Inhibitory-inhibitory HP induction did not produce a consistent HP response across studies, independent of pain or pain-free states. Standardization of HP induction protocols and outcome calculations is needed to ensure reproducibility and study comparison. Future HP studies may consider investigating sensory domains including nociception, which would further our understanding of abnormal HP regulation in pain conditions.
Collapse
Affiliation(s)
- Daniela M. Zolezzi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis B. Larsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Megan McPhee
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Fischer P, Piña-Fuentes D, Kassavetis P, Sadnicka A. Physiology of dystonia: Human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:137-162. [PMID: 37482391 DOI: 10.1016/bs.irn.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In this chapter, we discuss neurophysiological techniques that have been used in the study of dystonia. We examine traditional disease models such as inhibition and excessive plasticity and review the evidence that these play a causal role in pathophysiology. We then review the evidence for sensory and peripheral influences within pathophysiology and look at an emergent literature that tries to probe how oscillatory brain activity may be linked to dystonia pathophysiology.
Collapse
Affiliation(s)
- Petra Fischer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Dan Piña-Fuentes
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands; Department of Neurology, OLVG, Amsterdam, The Netherlands
| | | | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, United Kingdom; Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
7
|
Bakulin IS, Poydasheva AG, Zabirova AH, Suponeva NA, Piradov MA. Metaplasticity and non-invasive brain stimulation: the search for new biomarkers and directions for therapeutic neuromodulation. ANNALS OF CLINICAL AND EXPERIMENTAL NEUROLOGY 2022; 16:74-82. [DOI: 10.54101/acen.2022.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metaplasticity (plasticity of synaptic plasticity) is defined as a change in the direction or degree of synaptic plasticity in response to preceding neuronal activity. Recent advances in brain stimulation methods have enabled us to non-invasively examine cortical metaplasticity, including research in a clinical setting. According to current knowledge, non-invasive neuromodulation affects synaptic plasticity by inducing cortical processes that are similar to long-term potentiation and depression. Two stimulation blocks are usually used to assess metaplasticity priming and testing blocks. The technology of studying metaplasticity involves assessing the influence of priming on the testing protocol effect.
Several dozen studies have examined the effects of different stimulation protocols in healthy persons. They found that priming can both enhance and weaken, or even change the direction of the testing protocol effect. The interaction between priming and testing stimulation depends on many factors: the direction of their effect, duration of the stimulation blocks, and the interval between them.
Non-invasive brain stimulation can be used to assess aberrant metaplasticity in nervous system diseases, in order to develop new biomarkers. Metaplasticity disorders are found in focal hand dystonia, migraine with aura, multiple sclerosis, chronic disorders of consciousness, and age-related cognitive changes.
The development of new, metaplasticity-based, optimized, combined stimulation protocols appears to be highly promising for use in therapeutic neuromodulation in clinical practice.
Collapse
|
8
|
Aïssa HB, Sala RW, Georgescu Margarint EL, Frontera JL, Varani AP, Menardy F, Pelosi A, Hervé D, Léna C, Popa D. Functional abnormalities in the cerebello-thalamic pathways in a mouse model of DYT25 dystonia. eLife 2022; 11:79135. [PMID: 35699413 PMCID: PMC9197392 DOI: 10.7554/elife.79135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Dystonia is often associated with functional alterations in the cerebello-thalamic pathways, which have been proposed to contribute to the disorder by propagating pathological firing patterns to the forebrain. Here, we examined the function of the cerebello-thalamic pathways in a model of DYT25 dystonia. DYT25 (Gnal+/−) mice carry a heterozygous knockout mutation of the Gnal gene, which notably disrupts striatal function, and systemic or striatal administration of oxotremorine to these mice triggers dystonic symptoms. Our results reveal an increased cerebello-thalamic excitability in the presymptomatic state. Following the first dystonic episode, Gnal+/- mice in the asymptomatic state exhibit a further increase of the cerebello-thalamo-cortical excitability, which is maintained after θ-burst stimulations of the cerebellum. When administered in the symptomatic state induced by a cholinergic activation, these stimulations decreased the cerebello-thalamic excitability and reduced dystonic symptoms. In agreement with dystonia being a multiregional circuit disorder, our results suggest that the increased cerebello-thalamic excitability constitutes an early endophenotype, and that the cerebellum is a gateway for corrective therapies via the depression of cerebello-thalamic pathways.
Collapse
Affiliation(s)
- Hind Baba Aïssa
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Romain W Sala
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Elena Laura Georgescu Margarint
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Jimena Laura Frontera
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Andrés Pablo Varani
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Fabien Menardy
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Assunta Pelosi
- Inserm UMR-S 1270, Paris, France.,Sorbonne Université, Sciences and Technology Faculty, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Denis Hervé
- Inserm UMR-S 1270, Paris, France.,Sorbonne Université, Sciences and Technology Faculty, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Daniela Popa
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
9
|
Impairment of sleep homeostasis in cervical dystonia patients. Sci Rep 2022; 12:6866. [PMID: 35477733 PMCID: PMC9046419 DOI: 10.1038/s41598-022-10802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Alterations in brain plasticity seem to play a role in the pathophysiology of cervical dystonia (CD). Since evidences indicate that sleep regulates brain plasticity, we hypothesized that an alteration in sleep homeostatic mechanisms may be involved in the pathogenesis of CD. We explored sleep in control subjects (CTL) and CD patients before (Tpre-BoNT) and after (Tpost-BoNT) botulinum toxin (BoNT) treatment. A physiological slow wave activity (SWA) power decrease throughout the night was observed in CTL but not in CD at Tpre-BoNT. BoNT restored the physiological SWA decrease in CD at Tpost-BoNT. Furthermore, in the first part of the night, CD at Tpost-BNT showed a frontal increase and parietal decrease in SWA power compared to CD at Tpre-BoNT, with a SWA distribution comparable to that observed in CTL. Our data highlighted a pathophysiological relationship between SWA during sleep and CD and provided novel insight into the transient central plastic effect of BoNT.
Collapse
|
10
|
Quartarone A, Ghilardi MF. Neuroplasticity in dystonia: Motor symptoms and beyond. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:207-218. [PMID: 35034735 DOI: 10.1016/b978-0-12-819410-2.00031-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This chapter first focuses on the role of altered neuroplasticity mechanisms and their regulation in the genesis of motor symptoms in the various forms of dystonia. In particular, a review of the available literature about focal dystonia suggests that use-dependent plasticity may become detrimental and produce dystonia when practice and repetition are excessive and predisposing conditions are present. Interestingly, recent evidence also shows that functional or psychogenic dystonia, despite the normal plasticity in the sensorimotor system, is characterized by plasticity-related dysfunction within limbic regions. Finally, this chapter reviews the non-motor symptoms that often accompany the motor features of dystonia, including depression and anxiety as well as obsessive-compulsive disorders, pain, and cognitive dysfunctions. Based on the current understanding of these symptoms, we discuss the evidence of their possible relationship to maladaptive plasticity in non-motor basal ganglia circuits involved in their genesis.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| | - Maria Felice Ghilardi
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine and Neuroscience Program, Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
11
|
Stipancic KL, Kuo YL, Miller A, Ventresca HM, Sternad D, Kimberley TJ, Green JR. The effects of continuous oromotor activity on speech motor learning: speech biomechanics and neurophysiologic correlates. Exp Brain Res 2021; 239:3487-3505. [PMID: 34524491 PMCID: PMC8599312 DOI: 10.1007/s00221-021-06206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
Sustained limb motor activity has been used as a therapeutic tool for improving rehabilitation outcomes and is thought to be mediated by neuroplastic changes associated with activity-induced cortical excitability. Although prior research has reported enhancing effects of continuous chewing and swallowing activity on learning, the potential beneficial effects of sustained oromotor activity on speech improvements is not well-documented. This exploratory study was designed to examine the effects of continuous oromotor activity on subsequent speech learning. Twenty neurologically healthy young adults engaged in periods of continuous chewing and speech after which they completed a novel speech motor learning task. The motor learning task was designed to elicit improvements in accuracy and efficiency of speech performance across repetitions of eight-syllable nonwords. In addition, transcranial magnetic stimulation was used to measure the cortical silent period (cSP) of the lip motor cortex before and after the periods of continuous oromotor behaviors. All repetitions of the nonword task were recorded acoustically and kinematically using a three-dimensional motion capture system. Productions were analyzed for accuracy and duration, as well as lip movement distance and speed. A control condition estimated baseline improvement rates in speech performance. Results revealed improved speech performance following 10 min of chewing. In contrast, speech performance following 10 min of continuous speech was degraded. There was no change in the cSP as a result of either oromotor activity. The clinical implications of these findings are discussed in the context of speech rehabilitation and neuromodulation.
Collapse
Affiliation(s)
- Kaila L Stipancic
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yi-Ling Kuo
- Department of Physical Therapy, Upstate Medical University, Syracuse, NY, USA
| | - Amanda Miller
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA, USA
| | - Hayden M Ventresca
- Department of Rehabilitation Sciences, MGH Institute of Health Professions, Building 79/96, 2nd Floor 13th Street, Boston, MA, 02129, USA
| | - Dagmar Sternad
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Teresa J Kimberley
- Department of Rehabilitation Sciences, MGH Institute of Health Professions, Building 79/96, 2nd Floor 13th Street, Boston, MA, 02129, USA
| | - Jordan R Green
- Department of Rehabilitation Sciences, MGH Institute of Health Professions, Building 79/96, 2nd Floor 13th Street, Boston, MA, 02129, USA.
| |
Collapse
|
12
|
Infortuna C, Mineo L, Buffer S, Thomas FP, Muscatello MRA, Aguglia E, Bruno A, Zoccali RA, Sheikh A, Chusid E, Han Z, Battaglia F. Acute social and somatic stress alters cortical metaplasticity probed with non-invasive brain stimulation in humans. Int J Psychophysiol 2021; 170:1-5. [PMID: 34547303 DOI: 10.1016/j.ijpsycho.2021.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Studying the neuronal mechanisms that govern the cortical adaptations to acute stress is critical for understanding the development of neuropsychiatric diseases. Homeostatic plasticity stabilizes the neural activity in which a previous synaptic event drives subsequent synaptic plasticity. In this study, we evaluated the effect of acute stress induced with the socially evaluated cold pressor test (SECPT) on cortical metaplasticity in humans using a non-invasive brain stimulation protocol. After being exposed to the SECPT and control stress conditions, 30 healthy participants were tested for cortical metaplasticity assessed with changes in the amplitude of the motor evoked potential (MEP) induced by a single-pulse transcranial magnetic stimulation (TMS). Cortical metaplasticity was induced by combining priming with cathodal tDCS (cTDCS) followed by a sub-threshold 1-Hz repetitive stimulation (rTMS) test session. Our results showed that SECPT induced cardiovascular adaptations (increase in systolic, diastolic blood pressure, and heart rate), indicating that SECPT effectively induced acute stress. Also, in our experiments stimulation of subjects with 1-Hz rTMS after they had undergone the SECPT condition induced inhibition of MEP whereas 1-Hz rTMS administered after the control condition induced a facilitatory (physiologic) response pattern. Here we observed that acute stress impairs homeostatic metaplasticity. The dysfunctional regulation of cortical plastic changes after stress could play a pivotal role in the pathogenesis of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Carmenrita Infortuna
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, University of Messina, Messina, Italy
| | - Ludovico Mineo
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Steven Buffer
- Department of Medical Sciences and Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Florian P Thomas
- Department of Neurology, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA
| | - Maria Rosaria Anna Muscatello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, University of Messina, Messina, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Antonio Bruno
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Rocco Antonio Zoccali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, University of Messina, Messina, Italy
| | - Asad Sheikh
- Department of Pre-clinical Sciences, New York College of Podiatric Medicine, New York, USA
| | - Eileen Chusid
- Department of Pre-clinical Sciences, New York College of Podiatric Medicine, New York, USA
| | - Zhyiong Han
- Department of Neurology, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA
| | - Fortunato Battaglia
- Department of Neurology, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA.
| |
Collapse
|
13
|
Rauschenberger L, Knorr S, Pisani A, Hallett M, Volkmann J, Ip CW. Second hit hypothesis in dystonia: Dysfunctional cross talk between neuroplasticity and environment? Neurobiol Dis 2021; 159:105511. [PMID: 34537328 DOI: 10.1016/j.nbd.2021.105511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
One of the great mysteries in dystonia pathophysiology is the role of environmental factors in disease onset and development. Progress has been made in defining the genetic components of dystonic syndromes, still the mechanisms behind the discrepant relationship between dystonic genotype and phenotype remain largely unclear. Within this review, the preclinical and clinical evidence for environmental stressors as disease modifiers in dystonia pathogenesis are summarized and critically evaluated. The potential role of extragenetic factors is discussed in monogenic as well as adult-onset isolated dystonia. The available clinical evidence for a "second hit" is analyzed in light of the reduced penetrance of monogenic dystonic syndromes and put into context with evidence from animal and cellular models. The contradictory studies on adult-onset dystonia are discussed in detail and backed up by evidence from animal models. Taken together, there is clear evidence of a gene-environment interaction in dystonia, which should be considered in the continued quest to unravel dystonia pathophysiology.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| |
Collapse
|
14
|
Wittkopf PG, Larsen DB, Graven-Nielsen T. Protocols for inducing homeostatic plasticity reflected in the corticospinal excitability in healthy human participants: A systematic review and meta-analysis. Eur J Neurosci 2021; 54:5444-5461. [PMID: 34251703 DOI: 10.1111/ejn.15389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
Homeostatic plasticity complements synaptic plasticity by stabilising neural activity within a physiological range. In humans, homeostatic plasticity is investigated using two blocks of non-invasive brain stimulation (NIBS) with an interval without stimulation between blocks. The aim of this systematic review and meta-analysis was to investigate the effect of homeostatic plasticity induction protocols on motor evoked potentials (MEP) in healthy participants. Four databases were searched (Medline, Scopus, Embase and Cochrane library). Studies describing the application of two blocks of NIBS of the primary motor cortex with an interval of no stimulation between blocks reporting changes in corticospinal excitability by MEP amplitude were included. Thirty-seven reports with 55 experiments (700 participants) were included. Study quality was considered poor overall, with heterogeneity in study size, sample and designs. Two blocks of excitatory stimulation at the primary motor cortex produced a homeostatic response (decreased MEP) between 0 and 30 min post-protocols, when compared with a single stimulation block. Two blocks of inhibitory stimulation at the primary motor cortex using interval duration of 10 min or less produced a homeostatic response (increased MEP) between 0 and 30 min post-protocols, when compared with a single stimulation block. There were no differences in MEPs when compared with baseline MEPs. In conclusion, homeostatic plasticity induction using two blocks of NIBS with an interval of 10 min or less without stimulation between blocks produces a homeostatic response up to 30 min post-protocol. Improvements in participant selection, sample sizes and protocols of NIBS techniques are needed.
Collapse
Affiliation(s)
- Priscilla G Wittkopf
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis B Larsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
McClelland VM, Lin JP. Sensorimotor Integration in Childhood Dystonia and Dystonic Cerebral Palsy-A Developmental Perspective. Front Neurol 2021; 12:668081. [PMID: 34367047 PMCID: PMC8343097 DOI: 10.3389/fneur.2021.668081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Dystonia is a disorder of sensorimotor integration, involving dysfunction within the basal ganglia, cortex, cerebellum, or their inter-connections as part of the sensorimotor network. Some forms of dystonia are also characterized by maladaptive or exaggerated plasticity. Development of the neuronal processes underlying sensorimotor integration is incompletely understood but involves activity-dependent modeling and refining of sensorimotor circuits through processes that are already taking place in utero and which continue through infancy, childhood, and into adolescence. Several genetic dystonias have clinical onset in early childhood, but there is evidence that sensorimotor circuit development may already be disrupted prenatally in these conditions. Dystonic cerebral palsy (DCP) is a form of acquired dystonia with perinatal onset during a period of rapid neurodevelopment and activity-dependent refinement of sensorimotor networks. However, physiological studies of children with dystonia are sparse. This discussion paper addresses the role of neuroplasticity in the development of sensorimotor integration with particular focus on the relevance of these mechanisms for understanding childhood dystonia, DCP, and implications for therapy selection, including neuromodulation and timing of intervention.
Collapse
Affiliation(s)
- Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
16
|
Age-related changes in motor cortex plasticity assessed with non-invasive brain stimulation: an update and new perspectives. Exp Brain Res 2021; 239:2661-2678. [PMID: 34269850 DOI: 10.1007/s00221-021-06163-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
It is commonly accepted that the brains capacity to change, known as plasticity, declines into old age. Recent studies have used a variety of non-invasive brain stimulation (NIBS) techniques to examine this age-related decline in plasticity in the primary motor cortex (M1), but the effects seem inconsistent and difficult to unravel. The purpose of this review is to provide an update on studies that have used different NIBS techniques to assess M1 plasticity with advancing age and offer some new perspective on NIBS strategies to boost plasticity in the ageing brain. We find that early studies show clear differences in M1 plasticity between young and older adults, but many recent studies with motor training show no decline in use-dependent M1 plasticity with age. For NIBS-induced plasticity in M1, some protocols show more convincing differences with advancing age than others. Therefore, our view from the NIBS literature is that it should not be automatically assumed that M1 plasticity declines with age. Instead, the effects of age are likely to depend on how M1 plasticity is measured, and the characteristics of the elderly population tested. We also suggest that NIBS performed concurrently with motor training is likely to be most effective at producing improvements in M1 plasticity and motor skill learning in older adults. Proposed NIBS techniques for future studies include combining multiple NIBS protocols in a co-stimulation approach, or NIBS strategies to modulate intracortical inhibitory mechanisms, in an effort to more effectively boost M1 plasticity and improve motor skill learning in older adults.
Collapse
|
17
|
Caux-Dedeystère A, Allart E, Morel P, Kreisler A, Derambure P, Devanne H. Late cortical disinhibition in focal hand dystonia. Eur J Neurosci 2021; 54:4712-4720. [PMID: 34061422 DOI: 10.1111/ejn.15333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022]
Abstract
In writer's cramp (WC), a form of focal hand dystonia, cortical GABAergic inhibitory mechanisms are altered and may cause involuntary tonic contractions while writing. The objective of this study was to explore the time course of long-interval intracortical inhibition (LICI) that involves gamma-amino butyric acid (GABA)-B transmission and late cortical disinhibition (LCD) (that combines GABA-A and GABA-B mechanisms) in patients with WC and in control subjects. A double pulse transcranial magnetic stimulation protocol was used to evoke LICI and LCD while the subjects either gripped a cylinder between their thumb and index fingers or relaxed all their upper limb muscles. We measured the ratio between primed and unprimed motor evoked potential in the first dorsal interosseous at interstimulus intervals ranging between 60 and 300 ms. Though the cortical silent period was not different between the groups, LICI lasted longer in patients with WC, that is, LCD was delayed for more than 30 ms and reached a higher level. In addition to the alteration of inhibitory mechanism mediated by GABA-B transmission, LCD which probably involves presynaptic inhibition is also modified in patients with WC with possible consequences on the activity of primary motor cortex inhibitory and excitatory circuits which control the hand muscles.caus.
Collapse
Affiliation(s)
- Alexandre Caux-Dedeystère
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ Littoral Côte d'Opale, Univ Lille, Univ Artois, Calais, France
| | - Etienne Allart
- Rééducation Neurologique Cérébrolésion, CHU de Lille, Hôpital Pierre Swynghedauw, Lille, France.,univ Lille, UMR-S-1172 lilncog, Lille, France
| | - Pierre Morel
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ Littoral Côte d'Opale, Univ Lille, Univ Artois, Calais, France
| | - Alexandre Kreisler
- Neurologie & Pathologie du Mouvement, CHU de Lille, Hôpital Roger Salengro, Lille, France
| | - Philippe Derambure
- univ Lille, UMR-S-1172 lilncog, Lille, France.,Neurophysiologie Clinique, CHU de Lille, Hôpital Roger Salengro, Lille, France
| | - Hervé Devanne
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ Littoral Côte d'Opale, Univ Lille, Univ Artois, Calais, France.,Neurophysiologie Clinique, CHU de Lille, Hôpital Roger Salengro, Lille, France
| |
Collapse
|
18
|
Pham MV, Miyaguchi S, Watanabe H, Saito K, Otsuru N, Onishi H. Effect of Repetitive Passive Movement Before Motor Skill Training on Corticospinal Excitability and Motor Learning Depend on BDNF Polymorphisms. Front Hum Neurosci 2021; 15:621358. [PMID: 33633556 PMCID: PMC7901944 DOI: 10.3389/fnhum.2021.621358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
A decrease in cortical excitability tends to be easily followed by an increase induced by external stimuli via a mechanism aimed at restoring it; this phenomenon is called “homeostatic plasticity.” In recent years, although intervention methods aimed at promoting motor learning using this phenomenon have been studied, an optimal intervention method has not been established. In the present study, we examined whether subsequent motor learning can be promoted further by a repetitive passive movement, which reduces the excitability of the primary motor cortex (M1) before motor learning tasks. We also examined the relationship between motor learning and the brain-derived neurotrophic factor. Forty healthy subjects (Val/Val genotype, 17 subjects; Met carrier genotype, 23 subjects) participated. Subjects were divided into two groups of 20 individuals each. The first group was assigned to perform the motor learning task after an intervention consisting in the passive adduction–abduction movement of the right index finger at 5 Hz for 10 min (RPM condition), while the second group was assigned to perform the task without the passive movement (control condition). The motor learning task consisted in the visual tracking of the right index finger. The results showed that the corticospinal excitability was transiently reduced after the passive movement in the RPM condition, whereas it was increased to the level detected in the control condition after the motor learning task. Furthermore, the motor learning ability was decreased immediately after the passive movement; however, the motor performance finally improved to the level observed in the control condition. In individuals carrying the Val/Val genotype, higher motor learning was also found to be related to the more remarkable changes in corticospinal excitability caused by the RPM condition. This study revealed that the implementation of a passive movement before a motor learning tasks did not affect M1 excitatory changes and motor learning efficiency; in contrast, in subjects carrying the Val/Val polymorphism, the more significant excitatory changes in the M1 induced by the passive movement and motor learning task led to the improvement of motor learning efficiency. Our results also suggest that homeostatic plasticity occurring in the M1 is involved in this improvement.
Collapse
Affiliation(s)
- Manh Van Pham
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Graduate School, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Hai Duong Medical Technical University, Hai Duong, Vietnam
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
19
|
Stoeter P, Roa P, Bido P, Speckter H, Oviedo J, Rodriguez-Raecke R. Functional connectivity of the motor system in dystonia due to PKAN. eNeurologicalSci 2021; 22:100314. [PMID: 33537468 PMCID: PMC7840464 DOI: 10.1016/j.ensci.2021.100314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/30/2020] [Accepted: 01/17/2021] [Indexed: 12/01/2022] Open
Abstract
Purpose To demonstrate deviations of functional connectivity within the motor system in dystonic patients suffering from Pantothenate Kinase Associated Neurodegeneration, a genetic and metabolic disease, which is characterized by a primary lesion in the globus pallidus. Material and methods Functional Magnetic Resonance Imaging data were measured during resting state in 12 patients suffering from a confirmed mutation of the PANK2 gene. In this region-of-interest based analysis, data were evaluated in respect to correlation of signal time course between basal ganglia, motor-related cortical regions and cerebellum, were related to clinical data and were compared to a control group of 20 healthy volunteers. Results During resting state, correlation coefficients within the motor system were significantly lower in patients than in controls (0.025 vs. 0.133, p < 0.05). Network analysis by Network Based Statistics showed that these differences mainly affected the connectivity between a sub-network consisting of the basal ganglia and another one, the motor system-related cortical areas (p < 0.05). 6 out of 12 connections, which correlated significantly to duration of disease, were connections between both sub-networks. Conclusion The finding of a reduced functional connectivity within the motor network, between the basal ganglia and cortical motor-related areas, fits well into the concept of a general functional disturbance of the motor system in PKAN. For the first time, connectivity of fMRI signal during resting state of motor-related areas was measured in PKAN dystonia. NBS analysis of networks showed two sub-networks, one between basal ganglia and another one between cortical areas. Connectivity between both sub-networks was reduced in patients and correlated significantly to duration of disease. Findings support the view of widespread network abnormalities in PKAN dystonia, not just confined to the globus pallidus.
Collapse
Affiliation(s)
- Peter Stoeter
- Department of Radiology, CEDIMAT, Santo Domingo, Dominican Republic
| | - Pedro Roa
- Department of Neurology, CEDIMAT, Santo Domingo, Dominican Republic
| | - Pamela Bido
- Department of Neurology, CEDIMAT, Santo Domingo, Dominican Republic
| | - Herwin Speckter
- Department of Radiology, CEDIMAT, Santo Domingo, Dominican Republic
| | - Jairo Oviedo
- Department of Radiology, CEDIMAT, Santo Domingo, Dominican Republic
| | | |
Collapse
|
20
|
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol 2021; 132:269-306. [PMID: 33243615 PMCID: PMC9094636 DOI: 10.1016/j.clinph.2020.10.003] [Citation(s) in RCA: 712] [Impact Index Per Article: 178.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
This article is based on a consensus conference, promoted and supported by the International Federation of Clinical Neurophysiology (IFCN), which took place in Siena (Italy) in October 2018. The meeting intended to update the ten-year-old safety guidelines for the application of transcranial magnetic stimulation (TMS) in research and clinical settings (Rossi et al., 2009). Therefore, only emerging and new issues are covered in detail, leaving still valid the 2009 recommendations regarding the description of conventional or patterned TMS protocols, the screening of subjects/patients, the need of neurophysiological monitoring for new protocols, the utilization of reference thresholds of stimulation, the managing of seizures and the list of minor side effects. New issues discussed in detail from the meeting up to April 2020 are safety issues of recently developed stimulation devices and pulse configurations; duties and responsibility of device makers; novel scenarios of TMS applications such as in the neuroimaging context or imaging-guided and robot-guided TMS; TMS interleaved with transcranial electrical stimulation; safety during paired associative stimulation interventions; and risks of using TMS to induce therapeutic seizures (magnetic seizure therapy). An update on the possible induction of seizures, theoretically the most serious risk of TMS, is provided. It has become apparent that such a risk is low, even in patients taking drugs acting on the central nervous system, at least with the use of traditional stimulation parameters and focal coils for which large data sets are available. Finally, new operational guidelines are provided for safety in planning future trials based on traditional and patterned TMS protocols, as well as a summary of the minimal training requirements for operators, and a note on ethics of neuroenhancement.
Collapse
Affiliation(s)
- Simone Rossi
- Department of Scienze Mediche, Chirurgiche e Neuroscienze, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Italy.
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany; Institue of Medical Psychology, Otto-Guericke University Magdeburg, Germany
| | - Sven Bestmann
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carmen Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Linda L Carpenter
- Butler Hospital, Brown University Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Massimo Cincotta
- Unit of Neurology of Florence - Central Tuscany Local Health Authority, Florence, Italy
| | - Robert Chen
- Krembil Research Institute and Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Jeff D Daskalakis
- Center for Addiction and Mental Health (CAMH), University of Toronto, Canada
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico, Roma, Italy
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark S George
- Medical University of South Carolina, Charleston, SC, USA
| | - Donald Gilbert
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki, AHEPA University Hospital, Greece
| | | | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Aalto, Finland
| | - Jean Pascal Lefaucheur
- EA 4391, ENT Team, Faculty of Medicine, Paris Est Creteil University (UPEC), Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, (APHP), Créteil, France
| | - Letizia Leocani
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| | - Sarah H Lisanby
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Angel V Peterchev
- Departments of Psychiatry & Behavioral Sciences, Biomedical Engineering, Electrical & Computer Engineering, and Neurosurgery, Duke University, Durham, NC, USA
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Rothwell
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Paolo M Rossini
- Department of Neuroscience and Rehabilitation, IRCCS San Raffaele-Pisana, Roma, Italy
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshikatzu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abraham Zangen
- Zlotowski Center of Neuroscience, Ben Gurion University, Beer Sheva, Israel
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
21
|
Erro R, Antelmi E, Bhatia KP, Latorre A, Tinazzi M, Berardelli A, Rothwell JC, Rocchi L. Reversal of Temporal Discrimination in Cervical Dystonia after Low-Frequency Sensory Stimulation. Mov Disord 2020; 36:761-766. [PMID: 33159823 DOI: 10.1002/mds.28369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Somatosensory temporal discrimination is abnormal in dystonia and reflects reduced somatosensory inhibition. In healthy individuals, both the latter are enhanced by high-frequency repetitive somatosensory stimulation, whereas opposite effects are observed in patients with cervical dystonia. OBJECTIVES We tested whether low-frequency repetitive sensory stimulation, which in healthy individuals worsens discrimination, might have the opposite effect in patients with cervical dystonia at the physiological level and, in turn, improve their perceptual performance. METHODS Somatosensory temporal discrimination and several electrophysiological measures of sensorimotor inhibition were collected before and after 45 minutes of low-frequency repetitive sensory stimulation. RESULTS As predicted, and opposite to what happened in controls, low-frequency repetitive sensory stimulation in patients enhanced sensorimotor inhibition and normalized somatosensory temporal discrimination. CONCLUSIONS Patients with cervical dystonia have an abnormal response to repetitive sensory stimulation, which we hypothesize is attributed to abnormally sensitive homeostatic mechanisms of inhibitory circuitry in both sensory and motor systems. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA), Italy
| | - Elena Antelmi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
- Department of Human Neurosciences, University of Rome "Sapienza", Rome, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, University of Rome "Sapienza", Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
- Department of Human Neurosciences, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
22
|
Latorre A, Rocchi L, Bhatia KP. Delineating the electrophysiological signature of dystonia. Exp Brain Res 2020; 238:1685-1692. [PMID: 32712678 DOI: 10.1007/s00221-020-05863-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Over the last 30 years, the concept of dystonia has dramatically changed, from being considered a motor neurosis, to a pure basal ganglia disorder, to finally reach the definition of a network disorder involving the basal ganglia, cerebellum, thalamus and sensorimotor cortex. This progress has been possible due to the collaboration between clinicians and scientists, and the development of increasingly sophisticated electrophysiological techniques able to non-invasively investigate pathophysiological mechanisms in humans. This review is a chronological excursus of the electrophysiological studies that laid the foundation for the understanding of the pathophysiology of dystonia and delineated its electrophysiological signatures. Evidence for neurophysiological abnormalities is grouped according to the neural system involved, and a unifying theory, bringing together all the hypothesis and evidence provided to date, is proposed at the end.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
23
|
Liao WW, Chiang WC, Lin KC, Wu CY, Liu CT, Hsieh YW, Lin YC, Chen CL. Timing-dependent effects of transcranial direct current stimulation with mirror therapy on daily function and motor control in chronic stroke: a randomized controlled pilot study. J Neuroeng Rehabil 2020; 17:101. [PMID: 32690032 PMCID: PMC7370428 DOI: 10.1186/s12984-020-00722-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background The timing of transcranial direct current stimulation (tDCS) with neurorehabilitation interventions may affect its modulatory effects. Motor function has been reported to be modulated by the timing of tDCS; however, whether the timing of tDCS would also affect restoration of daily function and upper extremity motor control with neurorehabilitation in stroke patients remains largely unexplored. Mirror therapy (MT) is a potentially effective neurorehabilitation approach for improving paretic arm function in stroke patients. This study aimed to determine whether the timing of tDCS with MT would influence treatment effects on daily function, motor function and motor control in individuals with chronic stroke. Methods This study was a double-blinded randomized controlled trial. Twenty-eight individuals with chronic stroke received one of the following three interventions: (1) sequentially combined tDCS with MT (SEQ), (2) concurrently combined tDCS with MT (CON), and (3) sham tDCS with MT (SHAM). Participants received interventions for 90 min/day, 5 days/week for 4 weeks. Daily function was assessed using the Nottingham Extended Activities of Daily Living Scale. Upper extremity motor function was assessed using the Fugl-Meyer Assessment Scale. Upper extremity motor control was evaluated using movement kinematic assessments. Results There were significant differences in daily function between the three groups. The SEQ group had greater improvement in daily function than the CON and SHAM groups. Kinematic analyses showed that movement time of the paretic hand significantly reduced in the SEQ group after interventions. All three groups had significant improvement in motor function from pre-intervention to post-intervention. Conclusion The timing of tDCS with MT may influence restoration of daily function and movement efficiency of the paretic hand in chronic stroke patients. Sequentially applying tDCS prior to MT seems to be advantageous for enhancing daily function and hand movement control, and may be considered as a potentially useful strategy in future clinical application. Trial registration ClinicalTrials.gov Identifier: NCT02827864. Registered on 29th June, 2016.
Collapse
Affiliation(s)
- Wan-Wen Liao
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, 259 Wen-hwa 1st Road, Taoyuan City, Taiwan
| | - Wei-Chi Chiang
- Department of Occupational Therapy, I-Shou University, Kaohsiung, Taiwan
| | - Keh-Chung Lin
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Yi Wu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, 259 Wen-hwa 1st Road, Taoyuan City, Taiwan. .,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan. .,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Chien-Ting Liu
- Department of Rehabilitation, Taipei Tzu Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - Yu-Wei Hsieh
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, 259 Wen-hwa 1st Road, Taoyuan City, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yun-Chung Lin
- Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Ling Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan.,Graduate Institute of Early Intervention, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
24
|
Ganguly J, Murgai A, Sharma S, Aur D, Jog M. Non-invasive Transcranial Electrical Stimulation in Movement Disorders. Front Neurosci 2020; 14:522. [PMID: 32581682 PMCID: PMC7290124 DOI: 10.3389/fnins.2020.00522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
Dysfunction within large-scale brain networks as the basis for movement disorders is an accepted hypothesis. The treatment options for restoring network function are limited. Non-invasive brain stimulation techniques such as repetitive transcranial magnetic stimulation are now being studied to modify the network. Transcranial electrical stimulation (tES) is also a portable, cost-effective, and non-invasive way of network modulation. Transcranial direct current stimulation and transcranial alternating current stimulation have been studied in Parkinson’s disease, dystonia, tremor, and ataxia. Transcranial pulsed current stimulation and transcranial random noise stimulation are not yet studied enough. The literature in the use of these techniques is intriguing, yet many unanswered questions remain. In this review, we highlight the studies using these four potential tES techniques and their electrophysiological basis and consider the therapeutic implication in the field of movement disorders. The objectives are to consolidate the current literature, demonstrate that these methods are feasible, and encourage the application of such techniques in the near future.
Collapse
Affiliation(s)
- Jacky Ganguly
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Aditya Murgai
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Soumya Sharma
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Dorian Aur
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Mandar Jog
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
25
|
Plasticity and dystonia: a hypothesis shrouded in variability. Exp Brain Res 2020; 238:1611-1617. [PMID: 32206849 PMCID: PMC7413892 DOI: 10.1007/s00221-020-05773-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/07/2020] [Indexed: 12/19/2022]
Abstract
Studying plasticity mechanisms with Professor John Rothwell was a shared highlight of our careers. In this article, we discuss non-invasive brain stimulation techniques which aim to induce and quantify plasticity, the mechanisms and nature of their inherent variability and use such observations to review the idea that excessive and abnormal plasticity is a pathophysiological substrate of dystonia. We have tried to define the tone of our review by a couple of Professor John Rothwell's many inspiring characteristics; his endless curiosity to refine knowledge and disease models by scientific exploration and his wise yet humble readiness to revise scientific doctrines when the evidence is supportive. We conclude that high variability of response to non-invasive brain stimulation plasticity protocols significantly clouds the interpretation of historical findings in dystonia research. There is an opportunity to wipe the slate clean of assumptions and armed with an informative literature in health, re-evaluate whether excessive plasticity has a causal role in the pathophysiology of dystonia.
Collapse
|
26
|
Salehinejad MA, Ghanavati E. Complexity of cathodal tDCS: Relevance of stimulation repetition, interval, and intensity. J Physiol 2020; 598:1127-1129. [DOI: 10.1113/jp279409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mohammad Ali Salehinejad
- International Graduate School of Neuroscience Ruhr‐University Bochum Bochum Germany
- Department of Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Dortmund Germany
| | - Elham Ghanavati
- Department of Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Dortmund Germany
- Department of Psychology Ruhr‐University Bochum Bochum Germany
| |
Collapse
|
27
|
Gövert F, Becktepe J, Balint B, Rocchi L, Brugger F, Garrido A, Walter T, Hannah R, Rothwell J, Elble R, Deuschl G, Bhatia K. Temporal discrimination is altered in patients with isolated asymmetric and jerky upper limb tremor. Mov Disord 2019; 35:306-315. [PMID: 31724777 DOI: 10.1002/mds.27880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Unilateral or very asymmetric upper limb tremors with a jerky appearance are poorly investigated. Their clinical classification is an unsolved problem because their classification as essential tremor versus dystonic tremor is uncertain. To avoid misclassification as essential tremor or premature classification as dystonic tremor, the term indeterminate tremor was suggested. OBJECTIVES The aim of this study was to characterize this tremor subgroup electrophysiologically and evaluate whether diagnostically meaningful electrophysiological differences exist compared to patients with essential tremor and dystonic tremor. METHODS We enrolled 29 healthy subjects and 64 patients with tremor: 26 with dystonic tremor, 23 with essential tremor, and 15 patients with upper limb tremor resembling essential tremor but was unusually asymmetric and jerky (indeterminate tremor). We investigated the somatosensory temporal discrimination threshold, the short-interval intracortical inhibition, and the cortical plasticity by paired associative stimulation. RESULTS Somatosensory temporal discrimination threshold was significantly increased in patients with dystonic tremor and indeterminate tremor, but it was normal in the essential tremor patients and healthy controls. Significant differences in short-interval intracortical inhibition and paired associative stimulation were not found among the three patient groups and controls. CONCLUSION These results indicate that indeterminate tremor, as defined in this study, shares electrophysiological similarities with dystonic tremor rather than essential tremor. Therefore, we propose that indeterminate tremor should be considered as a separate clinical entity from essential tremor and that it might be dystonic in nature. Somatosensory temporal discrimination appears to be a useful tool in tremor classification. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Felix Gövert
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany.,Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jos Becktepe
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Florian Brugger
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alicia Garrido
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Movement Disorders Unit, Neurology Service, Hospital Clínic, Institut d'investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Tim Walter
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Ricci Hannah
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rodger Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
28
|
Conte A, Rocchi L, Latorre A, Belvisi D, Rothwell JC, Berardelli A. Ten‐Year Reflections on the Neurophysiological Abnormalities of Focal Dystonias in Humans. Mov Disord 2019; 34:1616-1628. [DOI: 10.1002/mds.27859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- IRCCS Neuromed Pozzilli (IS) Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | - Anna Latorre
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | | | - John C. Rothwell
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | - Alfredo Berardelli
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- IRCCS Neuromed Pozzilli (IS) Italy
| |
Collapse
|
29
|
Ribot B, Aupy J, Vidailhet M, Mazère J, Pisani A, Bezard E, Guehl D, Burbaud P. Dystonia and dopamine: From phenomenology to pathophysiology. Prog Neurobiol 2019; 182:101678. [PMID: 31404592 DOI: 10.1016/j.pneurobio.2019.101678] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
Abstract
A line of evidence suggests that the pathophysiology of dystonia involves the striatum, whose activity is modulated among other neurotransmitters, by the dopaminergic system. However, the link between dystonia and dopamine appears complex and remains unclear. Here, we propose a physiological approach to investigate the clinical and experimental data supporting a role of the dopaminergic system in the pathophysiology of dystonic syndromes. Because dystonia is a disorder of motor routines, we first focus on the role of dopamine and striatum in procedural learning. Second, we consider the phenomenology of dystonia from every angle in order to search for features giving food for thought regarding the pathophysiology of the disorder. Then, for each dystonic phenotype, we review, when available, the experimental and imaging data supporting a connection with the dopaminergic system. Finally, we propose a putative model in which the different phenotypes could be explained by changes in the balance between the direct and indirect striato-pallidal pathways, a process critically controlled by the level of dopamine within the striatum. Search strategy and selection criteria References for this article were identified through searches in PubMed with the search terms « dystonia », « dopamine", « striatum », « basal ganglia », « imaging data », « animal model », « procedural learning », « pathophysiology », and « plasticity » from 1998 until 2018. Articles were also identified through searches of the authors' own files. Only selected papers published in English were reviewed. The final reference list was generated on the basis of originality and relevance to the broad scope of this review.
Collapse
Affiliation(s)
- Bastien Ribot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Jérome Aupy
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Sorbonne Université, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière UPMC Univ Paris 6 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Joachim Mazère
- Université de Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France; Service de médecine nucléaire, CHU de Bordeaux, France
| | - Antonio Pisani
- Department of Neuroscience, University "Tor Vergata'', Rome, Italy; Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Dominique Guehl
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pierre Burbaud
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
30
|
Hypothesis of the optimal therapeutic effect of transcranial direct current stimulation (tDCS) for psychiatric disorders: Integration of positive cognitive tasks during the neuroplastic process. Med Hypotheses 2019; 125:1-4. [DOI: 10.1016/j.mehy.2019.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 11/18/2022]
|
31
|
Bianchi S, Fuertinger S, Huddleston H, Frucht SJ, Simonyan K. Functional and structural neural bases of task specificity in isolated focal dystonia. Mov Disord 2019; 34:555-563. [PMID: 30840778 DOI: 10.1002/mds.27649] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/31/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Task-specific focal dystonias selectively affect movements during the production of highly learned and complex motor behaviors. Manifestation of some task-specific focal dystonias, such as musician's dystonia, has been associated with excessive practice and overuse, whereas the etiology of others remains largely unknown. OBJECTIVES In this study, we aimed to examine the neural correlates of task-specific dystonias in order to determine their disorder-specific pathophysiological traits. METHODS Using multimodal neuroimaging analyses of resting-state functional connectivity, voxel-based morphometry and tract-based spatial statistics, we examined functional and structural abnormalities that are both common to and distinct between four different forms of task-specific focal dystonias. RESULTS Compared to the normal state, all task-specific focal dystonias were characterized by abnormal recruitment of parietal and premotor cortices that are necessary for both modality-specific and heteromodal control of the sensorimotor network. Contrasting the laryngeal and hand forms of focal dystonia revealed distinct patterns of sensorimotor integration and planning, again involving parietal cortex in addition to inferior frontal gyrus and anterior insula. On the other hand, musician's dystonia compared to nonmusician's dystonia was shaped by alterations in primary and secondary sensorimotor cortices together with middle frontal gyrus, pointing to impairments of sensorimotor guidance and executive control. CONCLUSION Collectively, this study outlines a specialized footprint of functional and structural alterations in different forms of task-specific focal dystonia, all of which also share a common pathophysiological framework involving premotor-parietal aberrations. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Serena Bianchi
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | - Stefan Fuertinger
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Hailey Huddleston
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | - Steven J Frucht
- Department of Neurology, New York University, New York, New York, USA
| | - Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Erro R, Rocchi L, Antelmi E, Liguori R, Tinazzi M, Berardelli A, Rothwell J, Bhatia KP. High frequency somatosensory stimulation in dystonia: Evidence fordefective inhibitory plasticity. Mov Disord 2018; 33:1902-1909. [PMID: 30376603 DOI: 10.1002/mds.27470] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/20/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Apart from motor symptoms, multiple deficits of sensory processing have been demonstrated in dystonia. The most consistent behavioural measure of this is abnormal somatosensory temporal discrimination threshold, which has recently been associated with physiological measures of reduced inhibition within the primary somatosensory area. High-frequency repetitive sensory stimulation is a patterned electric stimulation applied to the skin through surface electrodes that has been recently reported to shorten somatosensory temporal discrimination in healthy subjects and to increase the resting level of excitability in several different types of inhibitory interaction in the somatosensory and even motor areas. OBJECTIVES We tested whether high-frequency repetitive sensory stimulation could augment cortical inhibition and, in turn, ameliorate somatosensory temporal discrimination in cervical dystonia. METHODS Somatosensory temporal discrimination and a number of electrophysiological measures of sensorimotor inhibition and facilitation were measured before and after 45 minutes of high-frequency repetitive sensory stimulation. RESULTS As compared with a group of healthy volunteers of similar age, in whom high-frequency repetitive sensory stimulation increased inhibition and shortened somatosensory temporal discrimination, patients with cervical dystonia showed a consistent, paradoxical response: they had reduced suppression of paired-pulse somatosensory evoked potentials, as well as reduced high-frequency oscillations, lateral inhibition, and short interval intracortical inhibition. Somatosensory temporal discrimination deteriorated after the stimulation protocol, and correlated with reduced measures of inhibition within the primary somatosensory cortex. CONCLUSIONS We suggest that patients with dystonia have abnormal homeostatic inhibitory plasticity within the sensorimotor cortex and that this is responsible for their paradoxical response to high-frequency repetitive sensory stimulation. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,Center for Neurodegenerative Diseases, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana,", University of Salerno, Baronissi (Salerno), Italy
| | - Lorenzo Rocchi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,Department of Neurology and Psychiatry, University of Rome "Sapienza,", Rome, Italy
| | - Elena Antelmi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, University of Rome "Sapienza,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Institute, Via Atinense, Pozzilli, Italy
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| |
Collapse
|
33
|
Berndt M, Li Y, Gora-Stahlberg G, Jochim A, Haslinger B. Impaired white matter integrity between premotor cortex and basal ganglia in writer's cramp. Brain Behav 2018; 8:e01111. [PMID: 30239158 PMCID: PMC6192408 DOI: 10.1002/brb3.1111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Writer's cramp (WC) as a focal hand dystonia is characterized by abnormal postures of the hand during writing. Impaired inhibition and maladaptive plasticity in circuits linking the basal ganglia and sensorimotor cortices have been described. In particular, a dysfunction of lateral premotor cortices has been associated with impaired motor control in WC. We applied diffusion tensor imaging to identify changes in white matter connectivity between premotor regions and important cortical and subcortical structures. METHODS Whole brain white matter tracts were reconstructed in 18 right-handed WC patients and 18 matched controls, using probabilistic fiber tracking. We restricted our analyses to left-hemispheric fibers between the middle frontal gyrus (MFG) and basal ganglia, thalamus, primary motor, and sensory cortex. Diffusion parameters (fractional anisotropy and linear anisotropy) were compared between both groups. RESULTS A significant reduction in fractional anisotropy values was shown for patients (mean ± SD: 0.37 ± 0.02) vs. controls (0.39 ± 0.03) regarding fibers between the left-sided MFG and the putamen (p < 0.05). The same applied for linear anisotropy values in this connection (p < 0.05). CONCLUSIONS Our results suggest an impaired structural connectivity between the left-hemispheric MFG and putamen with a loss of equally aligned fibers in WC patients. This could reflect a structural basis for functional findings interpreted as altered inhibition and plasticity, both within the premotor cortex and the basal ganglia, that at last lead to the clinical symptoms of WC.
Collapse
Affiliation(s)
- Maria Berndt
- Department of Neurology, Klinikum rechts der Isar, Technische Universität Muenchen, Muenchen, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität Muenchen, Muenchen, Germany
| | - Yong Li
- Department of Neurology, Klinikum rechts der Isar, Technische Universität Muenchen, Muenchen, Germany
| | - Gina Gora-Stahlberg
- Department of Neurology, Klinikum rechts der Isar, Technische Universität Muenchen, Muenchen, Germany
| | - Angela Jochim
- Department of Neurology, Klinikum rechts der Isar, Technische Universität Muenchen, Muenchen, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technische Universität Muenchen, Muenchen, Germany
| |
Collapse
|
34
|
Test-Retest Reliability of Homeostatic Plasticity in the Human Primary Motor Cortex. Neural Plast 2018; 2018:6207508. [PMID: 29983706 PMCID: PMC6015686 DOI: 10.1155/2018/6207508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/16/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
Homeostatic plasticity regulates synaptic activity by preventing uncontrolled increases (long-term potentiation) or decreases (long-term depression) in synaptic efficacy. Homeostatic plasticity can be induced and assessed in the human primary motor cortex (M1) using noninvasive brain stimulation. However, the reliability of this methodology has not been investigated. Here, we examined the test-retest reliability of homeostatic plasticity induced and assessed in M1 using noninvasive brain stimulation in ten, right-handed, healthy volunteers on days 0, 2, 7, and 14. Homeostatic plasticity was induced in the left M1 using two blocks of anodal transcranial direct current stimulation (tDCS) applied for 7 min and 5 min, separated by a 3 min interval. To assess homeostatic plasticity, 15 motor-evoked potentials to single-pulse transcranial magnetic stimulation were recorded at baseline, between the two blocks of anodal tDCS, and at 0 min, 10 min, and 20 min follow-up. Test-retest reliability was evaluated using intraclass correlation coefficients (ICCs). Moderate-to-good test-retest reliability was observed for the M1 homeostatic plasticity response at all follow-up time points (0 min, 10 min, and 20 min, ICC range: 0.43-0.67) at intervals up to 2 weeks. The greatest reliability was observed when the homeostatic response was assessed at 10 min follow-up (ICC > 0.61). These data suggest that M1 homeostatic plasticity can be reliably induced and assessed in healthy individuals using two blocks of anodal tDCS at intervals of 48 hours, 7 days, and 2 weeks.
Collapse
|
35
|
Testing rTMS-Induced Neuroplasticity: A Single Case Study of Focal Hand Dystonia. Neural Plast 2018; 2018:6464896. [PMID: 30002674 PMCID: PMC5998194 DOI: 10.1155/2018/6464896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/30/2018] [Indexed: 11/18/2022] Open
Abstract
Focal hand dystonia in musicians is a neurological motor disorder in which aberrant plasticity is caused by excessive repetitive use. This work's purposes were to induce plasticity changes in a dystonic musician through five daily thirty-minute sessions of 1 Hz repetitive transcranial magnetic stimulation (rTMS) applied to the left M1 by using neuronavigated stimulation and to reliably measure the effect of these changes. To this aim, the relationship between neuroplasticity changes and motor recovery was investigated using fine-grained kinematic analysis. Our results suggest a statistically significant improvement in motor coordination both in a task resembling the dystonic-inducing symptoms and in a reach-to-grasp task. This single case study supports the safe and effective use of noninvasive brain stimulation in neurologic patients and highlights the importance of evaluating outcomes in measurable ways. This issue is a key aspect to focus on to classify the clinical expression of dystonia. These preliminary results promote the adoption of kinematic analysis as a valuable diagnostic tool.
Collapse
|
36
|
Caverzasio S, Amato N, Manconi M, Prosperetti C, Kaelin-Lang A, Hutchison WD, Galati S. Brain plasticity and sleep: Implication for movement disorders. Neurosci Biobehav Rev 2018; 86:21-35. [DOI: 10.1016/j.neubiorev.2017.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
|
37
|
Abstract
Dystonia can be seen in a number of different phenotypes that may arise from different etiologies. The pathophysiological substrate of dystonia is related to three lines of research. The first postulate a loss of inhibition which may account for the excess of movement and for the overflow phenomena. A second abnormality is sensory dysfunction which is related to the mild sensory complaints in patients with focal dystonias and may be responsible for some of the motor dysfunction. Finally, there are strong pieces of evidence from animal and human studies suggesting that alterations of synaptic plasticity characterized by a disruption of homeostatic plasticity, with a prevailing facilitation of synaptic potentiation may play a pivotal role in primary dystonia. These working hypotheses have been generalized in all form of dystonia. On the other hand, several pieces of evidence now suggest that the pathophysiology may be slightly different in the different types of dystonia. Therefore, in the present review, we would like to discuss the neural mechanisms underlying the different forms of dystonia to disentangle the different weight and role of environmental and predisposing factors.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Diane Ruge
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
38
|
Disruption of cortical synaptic homeostasis in individuals with chronic low back pain. Clin Neurophysiol 2018; 129:1090-1096. [PMID: 29472134 DOI: 10.1016/j.clinph.2018.01.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Homeostatic plasticity mechanisms regulate synaptic plasticity in the human brain. Impaired homeostatic plasticity may contribute to maladaptive synaptic plasticity and symptom persistence in chronic musculoskeletal pain. METHODS We examined homeostatic plasticity in fifty individuals with chronic low back pain (cLBP) and twenty-five pain-free controls. A single block (7-min) of anodal transcranial direct current stimulation ('single tDCS'), or two subsequent blocks (7-min and 5-min separated by 3-min rest; 'double tDCS'), were randomised across two experimental sessions to confirm an excitatory response to tDCS applied alone, and evaluate homeostatic plasticity, respectively. Corticomotor excitability was assessed in the corticomotor representation of the first dorsal interosseous muscle by transcranial magnetic stimulation-induced motor evoked potentials (MEPs) recorded before and 0, 10, 20, and 30-min following each tDCS protocol. RESULTS Compared with baseline, MEP amplitudes increased at all time points in both groups following the single tDCS protocol (P < 0.003). Following the double tDCS protocol, MEP amplitudes decreased in pain-free controls at all time points compared with baseline (P < 0.01), and were unchanged in the cLBP group. CONCLUSION These data indicate impaired homeostatic plasticity in the primary motor cortex of individuals with cLBP. SIGNIFICANCE Impaired homeostatic plasticity could explain maladaptive synaptic plasticity and symptom persistence in cLBP.
Collapse
|
39
|
Biabani M, Aminitehrani M, Zoghi M, Farrell M, Egan G, Jaberzadeh S. The effects of transcranial direct current stimulation on short-interval intracortical inhibition and intracortical facilitation: a systematic review and meta-analysis. Rev Neurosci 2017; 29:99-114. [DOI: 10.1515/revneuro-2017-0023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/20/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Transcranial direct current stimulation (tDCS) is increasingly being used to affect the neurological conditions with deficient intracortical synaptic activities (i.e. Parkinson’s disease and epilepsy). In addition, it is suggested that the lasting effects of tDCS on corticospinal excitability (CSE) have intracortical origin. This systematic review and meta-analysis aimed to examine whether tDCS has any effect on intracortical circuits. Eleven electronic databases were searched for the studies investigating intracortical changes induced by anodal (a) and cathodal (c) tDCS, in healthy individuals, using two paired-pulse transcranial magnetic stimulation (TMS) paradigms: short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Additionally, motor-evoked potential (MEP) size alterations, assessed by single-pulse TMS, were extracted from these studies to investigate the probable intracortical origin of tDCS effects on CSE. The methodological quality of included studies was examined using Physiotherapy Evidence Database (PEDro) and Downs and Black’s (D&B) assessment tools. Thirteen research papers, including 24 experiments, were included in this study scoring good and medium quality in PEDro and D&B scales, respectively. Immediately following anodal tDCS (a-tDCS) applications, we found significant decreases in SICI, but increases in ICF and MEP size. However, ICF and MEP size significantly decreased, and SICI increased immediately following cathodal tDCS (c-tDCS). The results of this systematic review and meta-analysis reveal that a-tDCS changes intracortical activities (SICI and ICF) toward facilitation, whereas c-tDCS alters them toward inhibition. It can also be concluded that increases and decreases in CSE after tDCS application are associated with corresponding changes in intracortical activities. The results suggest that tDCS can be clinically useful to modulate intracortical circuits.
Collapse
|
40
|
Jahanshahi M, Rothwell JC. Inhibitory dysfunction contributes to some of the motor and non-motor symptoms of movement disorders and psychiatric disorders. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0198. [PMID: 28242732 DOI: 10.1098/rstb.2016.0198] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2016] [Indexed: 12/13/2022] Open
Abstract
Recently, it has been proposed that similar to goal-directed and habitual action mediated by the fronto-striatal circuits, the fronto-striato-subthalamic-pallidal-thalamo-cortical network may also mediate goal-directed and habitual (automatic) inhibition in both the motor and non-motor domains. Within this framework, some of the clinical manifestations of Parkinson's disease, dystonia, Tourette syndrome and obsessive-compulsive disorder can be considered to represent an imbalance between goal-directed and habitual action and inhibition. It is possible that surgical interventions targeting the basal ganglia nuclei, such as deep brain stimulation of the subthalamic nucleus or the internal segment of the globus pallidus, improve these disorders by restoring a functional balance between facilitation and inhibition in the fronto-striatal networks. These proposals require investigation in future studies.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'.
Collapse
Affiliation(s)
- Marjan Jahanshahi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK
| |
Collapse
|
41
|
Suppa A, Quartarone A, Siebner H, Chen R, Di Lazzaro V, Del Giudice P, Paulus W, Rothwell J, Ziemann U, Classen J. The associative brain at work: Evidence from paired associative stimulation studies in humans. Clin Neurophysiol 2017; 128:2140-2164. [DOI: 10.1016/j.clinph.2017.08.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 12/25/2022]
|
42
|
Sidhu SK, Pourmajidian M, Opie GM, Semmler JG. Increasing motor cortex plasticity with spaced paired associative stimulation at different intervals in older adults. Eur J Neurosci 2017; 46:2674-2683. [PMID: 28965371 DOI: 10.1111/ejn.13729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/01/2022]
Abstract
The ability of priming non-invasive brain stimulation (NIBS) to modulate neuroplasticity induction (i.e. metaplasticity) within primary motor cortex (M1) may be altered in older adults. Previous studies in young subjects suggest that consecutive NIBS protocols interact in a time-dependent manner and involve homoeostatic metaplasticity mechanisms. This was investigated in older adults by assessing the response to consecutive blocks of paired-associative stimulation (PAS) separated by different inter-PAS intervals (IPIs). Fifteen older (62-82 years) subjects participated in four sessions, with each session involving two PAS blocks separated by IPIs of 10 (IPI10 ) or 30 (IPI30 ) mins. For each IPI, the first (priming) PAS block was either PASLTP (N20 latency + 2 ms) or PASLTD (N20 latency - 10 ms), while the second (test) PAS block was always PASLTP . Changes in M1 excitability were assessed by recording motor evoked potentials from a muscle of the right hand. For both IPIs, the response produced by PASLTD -primed PASLTP was significantly greater than the response produced by PASLTP -primed PASLTP . Furthermore, the effects of PASLTD priming on PASLTP were significantly greater for IPI30 . These findings suggest that priming PAS can increase plasticity induction in older adults, and this occurs through mechanisms involving homoeostatic metaplasticity. They also demonstrate that the timing between priming and test NIBS is a crucial determinant of this effect, with a 30-min interval being most effective. Providing a 30-min delay between priming NIBS and motor training may improve the efficacy of NIBS in augmenting motor performance and learning in the elderly.
Collapse
Affiliation(s)
- Simranjit K Sidhu
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, North Terrace Campus, Frome Road, Adelaide, SA 5005, Australia
| | - Maryam Pourmajidian
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, North Terrace Campus, Frome Road, Adelaide, SA 5005, Australia
| | - George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, North Terrace Campus, Frome Road, Adelaide, SA 5005, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, North Terrace Campus, Frome Road, Adelaide, SA 5005, Australia
| |
Collapse
|
43
|
Kroneberg D, Plettig P, Schneider GH, Kühn AA. Motor Cortical Plasticity Relates to Symptom Severity and Clinical Benefit From Deep Brain Stimulation in Cervical Dystonia. Neuromodulation 2017; 21:735-740. [PMID: 28961350 DOI: 10.1111/ner.12690] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To investigate the relationship between motor cortical plasticity, intracortical inhibition, and clinical response to pallidal deep brain stimulation (DBS) in patients with cervical dystonia (CD). MATERIALS AND METHODS Response to paired associative stimulation (PAS) and short interval intracortical inhibition (SICI) were assessed in patients with CD before and after three months of DBS and correlated with severity of dystonic symptoms as assessed by Toronto-Western-Spasmodic Torticollis Rating Scale (TWSTRS) severity score. Relations of electrophysiological parameters with clinical improvement were explored with correlation analysis. RESULTS Patients with higher levels of plasticity before surgery showed higher symptom severity (R = 0.83, p = 0.008) but had also the larger clinical benefit following DBS (R = 0.88, p = 0.003). This correlation was independent from preoperative (preOP) TWSTRS motor score as revealed by partial correlation analysis. Intracortical inhibition was not altered in CD and not related to clinical outcome after DBS. CONCLUSIONS Our findings indicate that a high degree of preOP plasticity is associated with higher symptom severity, underlining the role of abnormal plasticity in the pathophysiology of dystonia. At the same time individual degree of plasticity may drive reestablishment of normal motor programs, leading to better clinical outcome with DBS. The latter suggests that individual PAS-response may indicate the susceptibility for neuromodulatory processes as an important factor for clinical DBS effects. It might therefore serve as a neurophysiological marker to predict outcome and guide patient selection.
Collapse
Affiliation(s)
- Daniel Kroneberg
- Department of Neurology, Charité Campus Mitte, Charité - University Medicine Berlin, Berlin, Germany
| | - Philip Plettig
- Department of Neurology, Charité Campus Mitte, Charité - University Medicine Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité Campus Mitte, Charité - University Medicine Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité Campus Mitte, Charité - University Medicine Berlin, Berlin, Germany.,NeuroCure, Charité - University Medicine Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Charité - University Medicine Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
44
|
Marceglia S, Mrakic-Sposta S, Fumagalli M, Ferrucci R, Mameli F, Vergari M, Barbieri S, Priori A. Cathodal Transcranial Direct Current Stimulation Improves Focal Hand Dystonia in Musicians: A Two-Case Study. Front Neurosci 2017; 11:508. [PMID: 28955194 PMCID: PMC5601035 DOI: 10.3389/fnins.2017.00508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
Focal hand dystonia (FHD) in musicians is a movement disorder causing abnormal movements and irregularities in playing. Since weak electrical currents applied to the brain induce persistent excitability changes in humans, cathodal tDCS was proposed as a possible non-invasive approach for modulating cortical excitability in patients with FHD. However, the optimal targets and modalities have still to be determined. In this pilot study, we delivered cathodal (2 mA), anodal (2 mA) and sham tDCS over the motor areas bilaterally for 20 min daily for five consecutive days in two musicians with FHD. After cathodal tDCS, both patients reported a sensation of general wellness and improved symptoms of FHD. In conclusion, our pilot results suggest that cathodal tDCS delivered bilaterally over motor-premotor (M-PM) cortex for 5 consecutive days may be effective in improving symptoms in FHD.
Collapse
Affiliation(s)
- Sara Marceglia
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy.,Dipartimento di Ingegneria e Architettura, Università degli Studi di TriesteTrieste, Italy
| | - Simona Mrakic-Sposta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy.,Istituto di Bioimmagini e di Fisiologia Molecolare, Consiglio Nazionale delle RicercheSegrate, Italy
| | - Manuela Fumagalli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Roberta Ferrucci
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of MilanMilan, Italy
| | - Francesca Mameli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Maurizio Vergari
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Sergio Barbieri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of MilanMilan, Italy
| | - Alberto Priori
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of MilanMilan, Italy.,Department of Health Sciences, University of Milan and ASST Santi Paolo e CarloMilan, Italy
| |
Collapse
|
45
|
Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol 2017; 128:1774-1809. [PMID: 28709880 PMCID: PMC5985830 DOI: 10.1016/j.clinph.2017.06.001] [Citation(s) in RCA: 774] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Abstract
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence.
Collapse
Affiliation(s)
- A Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.
| | - I Alekseichuk
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - M Bikson
- Department of Biomedical Engineering, The City College of New York, New York, USA
| | - J Brockmöller
- Department of Clinical Pharmacology, University Medical Center Goettingen, Germany
| | - A R Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27) and Interdisciplinary Center for Applied Neuromodulation University Hospital, University of São Paulo, São Paulo, Brazil
| | - R Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke NIH, Bethesda, USA
| | | | - J Ellrich
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany; EBS Technologies GmbH, Europarc Dreilinden, Germany
| | - A Flöel
- Universitätsmedizin Greifswald, Klinik und Poliklinik für Neurologie, Greifswald, Germany
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - M S George
- Brain Stimulation Division, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - R Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - J Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany
| | - C S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
| | - F C Hummel
- Defitech Chair of Clinical Neuroengineering, Centre of Neuroprosthetics (CNP) and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, and EA 4391, Nerve Excitability and Therapeutic Team (ENT), Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - D Liebetanz
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - C K Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - C D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - C Miniussi
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - P C Miranda
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany
| | - M A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - R Nowak
- Neuroelectrics, Barcelona, Spain
| | - F Padberg
- Department of Psychiatry and Psychotherapy, Munich Center for Brain Stimulation, Ludwig-Maximilian University Munich, Germany
| | - A Pascual-Leone
- Division of Cognitive Neurology, Harvard Medical Center and Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center, Boston, USA
| | - W Poppendieck
- Department of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - A Priori
- Center for Neurotechnology and Experimental Brain Therapeutich, Department of Health Sciences, University of Milan Italy; Deparment of Clinical Neurology, University Hospital Asst Santi Paolo E Carlo, Milan, Italy
| | - S Rossi
- Department of Medicine, Surgery and Neuroscience, Human Physiology Section and Neurology and Clinical Neurophysiology Section, Brain Investigation & Neuromodulation Lab, University of Siena, Italy
| | - P M Rossini
- Area of Neuroscience, Institute of Neurology, University Clinic A. Gemelli, Catholic University, Rome, Italy
| | | | - M A Rueger
- Department of Neurology, University Hospital of Cologne, Germany
| | | | | | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Y Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| | - A Wexler
- Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - M Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - W Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| |
Collapse
|
46
|
Leite J, Morales-Quezada L, Carvalho S, Thibaut A, Doruk D, Chen CF, Schachter SC, Rotenberg A, Fregni F. Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System. Int J Neural Syst 2017; 27:1750026. [PMID: 28587498 PMCID: PMC5527347 DOI: 10.1142/s0129065717500265] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.
Collapse
Affiliation(s)
- Jorge Leite
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal,
| | - Leon Morales-Quezada
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA,
| | - Sandra Carvalho
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal,
| | - Aurore Thibaut
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA,
| | - Deniz Doruk
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA,
| | - Chiun-Fan Chen
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
- Engineering Science, Loyola University Chicago, Chicago, IL, USA
| | - Steven C. Schachter
- Center for Integration of Medicine and Innovative Technology, Harvard Medical School, Boston, MA, USA,
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, and the, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA,
| |
Collapse
|
47
|
Pirio Richardson S, Altenmüller E, Alter K, Alterman RL, Chen R, Frucht S, Furuya S, Jankovic J, Jinnah HA, Kimberley TJ, Lungu C, Perlmutter JS, Prudente CN, Hallett M. Research Priorities in Limb and Task-Specific Dystonias. Front Neurol 2017; 8:170. [PMID: 28515706 PMCID: PMC5413505 DOI: 10.3389/fneur.2017.00170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/11/2017] [Indexed: 11/13/2022] Open
Abstract
Dystonia, which causes intermittent or sustained abnormal postures and movements, can present in a focal or a generalized manner. In the limbs, focal dystonia can occur in either the upper or lower limbs and may be task-specific causing abnormal motor performance for only a specific task, such as in writer’s cramp, runner’s dystonia, or musician’s dystonia. Focal limb dystonia can be non-task-specific and may, in some circumstances, be associated with parkinsonian disorders. The true prevalence of focal limb dystonia is not known and is likely currently underestimated, leaving a knowledge gap and an opportunity for future research. The pathophysiology of focal limb dystonia shares some commonalities with other dystonias with a loss of inhibition in the central nervous system and a loss of the normal regulation of plasticity, called homeostatic plasticity. Functional imaging studies revealed abnormalities in several anatomical networks that involve the cortex, basal ganglia, and cerebellum. Further studies should focus on distinguishing cause from effect in both physiology and imaging studies to permit focus on most relevant biological correlates of dystonia. There is no specific therapy for the treatment of limb dystonia given the variability in presentation, but off-label botulinum toxin therapy is often applied to focal limb and task-specific dystonia. Various rehabilitation techniques have been applied and rehabilitation interventions may improve outcomes, but small sample size and lack of direct comparisons between methods to evaluate comparative efficacy limit conclusions. Finally, non-invasive and invasive therapeutic modalities have been explored in small studies with design limitations that do not yet clearly provide direction for larger clinical trials that could support new clinical therapies. Given these gaps in our clinical, pathophysiologic, and therapeutic knowledge, we have identified priorities for future research including: the development of diagnostic criteria for limb dystonia, more precise phenotypic characterization and innovative clinical trial design that considers clinical heterogeneity, and limited available number of participants.
Collapse
Affiliation(s)
- Sarah Pirio Richardson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Eckart Altenmüller
- Institute for Music Physiology and Musicians' Medicine (IMMM), Hannover University of Music, Drama and Media, Hannover, Germany
| | - Katharine Alter
- Functional and Applied Biomechanics Section, Rehabilitation Medicine, National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, USA
| | - Ron L Alterman
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert Chen
- Division of Neurology, Department of Medicine (Neurology), Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| | - Steven Frucht
- Robert and John M. Bendheim Parkinson and Movement Disorders Center, Mount Sinai Hospital, New York, NY, USA
| | - Shinichi Furuya
- Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Teresa J Kimberley
- Department of Rehabilitation Medicine, Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA.,Department of Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA.,Department of Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Cecília N Prudente
- Department of Rehabilitation Medicine, Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Langbour N, Michel V, Dilharreguy B, Guehl D, Allard M, Burbaud P. The Cortical Processing of Sensorimotor Sequences is Disrupted in Writer's Cramp. Cereb Cortex 2017; 27:2544-2559. [PMID: 27114174 DOI: 10.1093/cercor/bhw108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evidence for pre-existing abnormalities in the sensory and motor systems has been previously reported in writer's cramp (WC). However, the processing of somatosensory information during motor planning has received little attention. We hypothesized that sensorimotor integration processes might be impaired partly due to a disruption in the parieto-premotor network. To test this assumption, we designed 2 nonwriting motor tasks in which subjects had to perform a 4-finger motor sequence either on the basis of sensory stimuli previously memorized (SM task) or freely generated (SG task). Brain activity was measured by combining event-related functional magnetic resonance imaging and coherency electroencephalography in 15 WC patients and 15 normal controls. The bold signal was decreased in patients in both tasks during sensory stimulation but not during movement execution. However, the EEG study showed that coherency was decreased in patients compared with controls, during the delay of the SM task and during the execution of the SG task, on both the whole network and for specific couples of electrodes. Overall, these results demonstrate an endophenotypic impairment in the synchronization of cortical areas within the parieto-premotor network during somatosensory processing and motor planning in WC patients.
Collapse
Affiliation(s)
- N Langbour
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - V Michel
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,Service de Neurophysiologie Clinique, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
| | - B Dilharreguy
- Université de Bordeaux, INCIA, UMR 5287, F-33400 Talence, France.,CNRS, INCIA, UMR 5287, F-33400 Talence, France
| | - D Guehl
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,Service de Neurophysiologie Clinique, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
| | - M Allard
- Université de Bordeaux, INCIA, UMR 5287, F-33400 Talence, France.,CNRS, INCIA, UMR 5287, F-33400 Talence, France.,Service de Médecine Nucléaire, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
| | - P Burbaud
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,Service de Neurophysiologie Clinique, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
49
|
Manteghi F, Nasehi M, Zarrindast MR. Precondition of right frontal region with anodal tDCS can restore the fear memory impairment induced by ACPA in male mice. EXCLI JOURNAL 2017; 16:1-13. [PMID: 28337114 PMCID: PMC5318674 DOI: 10.17179/excli2016-693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/05/2016] [Indexed: 01/12/2023]
Abstract
Fear memory and learning cause behavioural patterns such as fight or flight responses, which increase survival probability, but unfit processing of fear memory and learning can lead to maladaptive behaviours and maladies such as phobias, Post-Traumatic Stress Disorder (PTSD) and anxiety disorders. The growing prevalence of these maladies shows the need to quest novel methods for their treatment. We used anodal transcranial direct current stimulation (tDCS) on the right frontal region as a precondition neuromodulator and arachidonylcyclopropylamide (ACPA), a selective CB1 cannabinoid receptor agonist, as a fear memory impairing agent to assess their effects on contextual and auditory fear conditioning (reliable model for fear studies). Right frontal anodal tDCS (0.2 mA for. 20 minutes) 24 hours before the train did not alter contextual and auditory learning and memory in short-term (24 hrs after the training phase). Moreover, intraperitoneal pre-train injection of ACPA (0.1 mg/kg) alone, decreased both contextual and auditory learning and memory in short- but not long-term. Right frontal anodal tDCS improved short-term contextual fear memory in subthreshold doses of ACPA. On the other hand, right frontal anodal tDCS in long-term improved (lower doses of ACPA) and restored (higher doses of ACPA) both fear memories. These findings showed that, aforementioned approach could cause durable learning and memory improvements. Also this combined modality could be useful for fear extinction training and maladies which inflict amnesia.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Dai W, Pi YL, Ni Z, Tan XY, Zhang J, Wu Y. Maintenance of balance between motor cortical excitation and inhibition after long-term training. Neuroscience 2016; 336:114-122. [PMID: 27600949 DOI: 10.1016/j.neuroscience.2016.08.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022]
Abstract
Motor learning with professional experience leads to cortical reorganization with plasticity. Long-term training facilitates motor cortical excitability. It is not clear how beneficial cortical plasticity is maintained during long-term training. We studied this question in 15 elite badminton athletes and 15 novices. We hypothesize that motor cortical excitation increases after long-term training and this is accompanied by increased motor cortical inhibition. Motor cortical excitation was measured with motor-evoked potential (MEP) input-output curve using transcranial magnetic stimulation (TMS). Motor cortical inhibition was measured with short-interval intracortical inhibition (SICI) and long-interval intracortical inhibition (LICI) by a paired-pulse TMS paradigm. We found MEP was increased at high TMS intensity and the MEP input-output curve was steeper in athletes compared to novices. Both SICI and LICI were also increased in athletes. In addition, both SICI and LICI were correlated with the slope of MEP input-output curve in athletes but not in novices. The slope of MEP input-output curve, SICI and LICI were also correlated with the training time in athletes. We conclude that both cortical excitation and cortical inhibition are increased, and that the balance between cortical excitation and inhibition is maintained during long-term training.
Collapse
Affiliation(s)
- Wen Dai
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yan-Ling Pi
- Shanghai Punan Hospital of Pudong New DistractDistrict, Shanghai, China
| | - Zhen Ni
- Division of Neurology, Krembil Neuroscience Centre and Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Canada
| | - Xiao-Ying Tan
- School of Physical Education and Coaching, Shanghai University of Sport, Shanghai, China
| | - Jian Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yin Wu
- School of Economics and Management, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|