1
|
Lin S, Gade AR, Wang HG, Niemeyer JE, Galante A, DiStefano I, Towers P, Nunez J, Matsui M, Schwartz TH, Rajadhyaksha A, Pitt GS. Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism. eLife 2025; 13:RP98661. [PMID: 39773461 PMCID: PMC11709433 DOI: 10.7554/elife.98661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell-type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.
Collapse
Affiliation(s)
- Susan Lin
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Aravind R Gade
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - James E Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian HospitalNew YorkUnited States
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Isabella DiStefano
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Jorge Nunez
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Theodore H Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian HospitalNew YorkUnited States
| | - Anjali Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell MedicineNew York CityUnited States
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| |
Collapse
|
2
|
Rusina E, Simonti M, Duprat F, Cestèle S, Mantegazza M. Voltage-gated sodium channels in genetic epilepsy: up and down of excitability. J Neurochem 2024; 168:3872-3890. [PMID: 37654020 PMCID: PMC11591406 DOI: 10.1111/jnc.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
The past two decades have witnessed a wide range of studies investigating genetic variants of voltage-gated sodium (NaV) channels, which are involved in a broad spectrum of diseases, including several types of epilepsy. We have reviewed here phenotypes and pathological mechanisms of genetic epilepsies caused by variants in NaV α and β subunits, as well as of some relevant interacting proteins (FGF12/FHF1, PRRT2, and Ankyrin-G). Notably, variants of all these genes can induce either gain- or loss-of-function of NaV leading to either neuronal hyperexcitability or hypoexcitability. We present the results of functional studies obtained with different experimental models, highlighting that they should be interpreted considering the features of the experimental system used. These systems are models, but they have allowed us to better understand pathophysiological issues, ameliorate diagnostics, orientate genetic counseling, and select/develop therapies within a precision medicine framework. These studies have also allowed us to gain insights into the physiological roles of different NaV channels and of the cells that express them. Overall, our review shows the progress that has been made, but also the need for further studies on aspects that have not yet been clarified. Finally, we conclude by highlighting some significant themes of general interest that can be gleaned from the results of the work of the last two decades.
Collapse
Affiliation(s)
- Evgeniia Rusina
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Martina Simonti
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Fabrice Duprat
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| | - Sandrine Cestèle
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Massimo Mantegazza
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| |
Collapse
|
3
|
Yu W, Hill SF, Huang Y, Zhu L, Demetriou Y, Ziobro J, Reger F, Jia X, Mattis J, Meisler MH. Allele-Specific Editing of a Dominant SCN8A Epilepsy Variant Protects against Seizures and Lethality in a Murine Model. Ann Neurol 2024; 96:958-969. [PMID: 39158034 PMCID: PMC11496010 DOI: 10.1002/ana.27053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE Developmental and epileptic encephalopathies (DEEs) can result from dominant, gain of function variants of neuronal ion channels. More than 450 de novo missense variants of the sodium channel gene SCN8A have been identified in individuals with DEE. METHODS We studied a mouse model carrying the patient Scn8a variant p.Asn1768Asp. An AAV-PHP.eB virus carrying an allele-specific single guide RNA (sgRNA) was administered by intracerebroventricular injection. Cas9 was provided by an inherited transgene. RESULTS Allele-specific disruption of the reading frame of the pathogenic transcript generated out-of-frame indels in 1/4 to 1/3 of transcripts throughout the brain. This editing efficiency was sufficient to rescue lethality and seizures. Neuronal hyperexcitability was reduced in cells expressing the virus. INTERPRETATION The data demonstrate efficient allele-specific editing of a dominant missense variant and support the feasibility of allele-specific therapy for DEE epilepsy. ANN NEUROL 2024;96:958-969.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Sophie F Hill
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Yumei Huang
- Center for Genomic Technologies, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Limei Zhu
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | | | - Julie Ziobro
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Faith Reger
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Xiaoyan Jia
- Center for Genomic Technologies, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Joanna Mattis
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| |
Collapse
|
4
|
Miralles RM, Boscia AR, Kittur S, Hanflink JC, Panchal PS, Yorek MS, Deutsch TCJ, Reever CM, Vundela SR, Wengert ER, Patel MK. Parvalbumin interneuron impairment causes synaptic transmission deficits and seizures in SCN8A developmental and epileptic encephalopathy. JCI Insight 2024; 9:e181005. [PMID: 39435659 PMCID: PMC11529981 DOI: 10.1172/jci.insight.181005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
SCN8A developmental and epileptic encephalopathy (DEE) is a severe epilepsy syndrome resulting from mutations in the voltage-gated sodium channel Nav1.6, encoded by the gene SCN8A. Nav1.6 is expressed in excitatory and inhibitory neurons, yet previous studies primarily focus on how SCN8A mutations affect excitatory neurons, with limited studies on the importance of inhibitory interneurons. Parvalbumin (PV) interneurons are a prominent inhibitory interneuron subtype that expresses Nav1.6. To assess PV interneuron function within SCN8A DEE, we used 2 mouse models harboring patient-derived SCN8A gain-of-function variants, Scn8aD/+, where the SCN8A variant N1768D is expressed globally, and Scn8aW/+-PV, where the SCN8A variant R1872W is selectively expressed in PV interneurons. Expression of the R1872W SCN8A variant selectively in PV interneurons led to development of spontaneous seizures and seizure-induced death. Electrophysiology studies showed that Scn8aD/+ and Scn8aW/+-PV interneurons were susceptible to depolarization block and exhibited increased persistent sodium current. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed synaptic transmission deficits in Scn8aD/+ and Scn8aW/+-PV interneurons. Together, our findings indicate that PV interneuron failure via depolarization block along with inhibitory synaptic impairment likely elicits an overall inhibitory reduction in SCN8A DEE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.
Collapse
Affiliation(s)
- Raquel M. Miralles
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | - Caeley M. Reever
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | - Eric R. Wengert
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Manoj K. Patel
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Müller P, Draguhn A, Egorov AV. Persistent sodium currents in neurons: potential mechanisms and pharmacological blockers. Pflugers Arch 2024; 476:1445-1473. [PMID: 38967655 PMCID: PMC11381486 DOI: 10.1007/s00424-024-02980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Persistent sodium current (INaP) is an important activity-dependent regulator of neuronal excitability. It is involved in a variety of physiological and pathological processes, including pacemaking, prolongation of sensory potentials, neuronal injury, chronic pain and diseases such as epilepsy and amyotrophic lateral sclerosis. Despite its importance, neither the molecular basis nor the regulation of INaP are sufficiently understood. Of particular significance is a solid knowledge and widely accepted consensus about pharmacological tools for analysing the function of INaP and for developing new therapeutic strategies. However, the literature on INaP is heterogeneous, with varying definitions and methodologies used across studies. To address these issues, we provide a systematic review of the current state of knowledge on INaP, with focus on mechanisms and effects of this current in the central nervous system. We provide an overview of the specificity and efficacy of the most widely used INaP blockers: amiodarone, cannabidiol, carbamazepine, cenobamate, eslicarbazepine, ethosuximide, gabapentin, GS967, lacosamide, lamotrigine, lidocaine, NBI-921352, oxcarbazepine, phenytoine, PRAX-562, propofol, ranolazine, riluzole, rufinamide, topiramate, valproaic acid and zonisamide. We conclude that there is strong variance in the pharmacological effects of these drugs, and in the available information. At present, GS967 and riluzole can be regarded bona fide INaP blockers, while phenytoin and lacosamide are blockers that only act on the slowly inactivating component of sodium currents.
Collapse
Affiliation(s)
- Peter Müller
- Department Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen , Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Alexei V Egorov
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Xia M, Wang T, Wang Y, Hu T, Chen D, Wang B. A neural perspective on the treatment of hypertension: the neurological network excitation and inhibition (E/I) imbalance in hypertension. Front Cardiovasc Med 2024; 11:1436059. [PMID: 39323755 PMCID: PMC11422145 DOI: 10.3389/fcvm.2024.1436059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Despite the increasing number of anti-hypertensive drugs have been developed and used in the clinical setting, persistent deficiencies persist, including issues such as lifelong dosage, combination therapy. Notwithstanding receiving the treatment under enduring these deficiencies, approximately 4 in 5 patients still fail to achieve reliable blood pressure (BP) control. The application of neuromodulation in the context of hypertension presents a pioneering strategy for addressing this condition, con-currently implying a potential central nervous mechanism underlying hypertension onset. We hypothesize that neurological networks, an essential component of maintaining appropriate neurological function, are involved in hypertension. Drawing on both peer-reviewed research and our laboratory investigations, we endeavor to investigate the underlying neural mechanisms involved in hypertension by identifying a close relationship between its onset of hypertension and an excitation and inhibition (E/I) imbalance. In addition to the involvement of excitatory glutamatergic and GABAergic inhibitory system, the pathogenesis of hypertension is also associated with Voltage-gated sodium channels (VGSCs, Nav)-mediated E/I balance. The overloading of glutamate or enhancement of glutamate receptors may be attributed to the E/I imbalance, ultimately triggering hypertension. GABA loss and GABA receptor dysfunction have also proven to be involved. Furthermore, we have identified that abnormalities in sodium channel expression and function alter neural excitability, thereby disturbing E/I balance and potentially serving as a mechanism underlying hypertension. These insights are expected to furnish potential strategies for the advancement of innovative anti-hypertensive therapies and a meaningful reference for the exploration of central nervous system (CNS) targets of anti-hypertensives.
Collapse
Affiliation(s)
- Min Xia
- Department of Anesthesiology, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Tianyu Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Yizhu Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Tingting Hu
- Department of Anesthesiology, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Defang Chen
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Yu W, Hill SF, Zhu L, Demetriou Y, Reger F, Mattis J, Meisler MH. Dentate gyrus granule cells are a locus of pathology in Scn8a developmental encephalopathy. Neurobiol Dis 2024; 199:106591. [PMID: 38969233 DOI: 10.1016/j.nbd.2024.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
Gain-of-function mutations in SCN8A cause developmental and epileptic encephalopathy (DEE), a disorder characterized by early-onset refractory seizures, deficits in motor and intellectual functions, and increased risk of sudden unexpected death in epilepsy. Altered activity of neurons in the corticohippocampal circuit has been reported in mouse models of DEE. We examined the effect of chronic seizures on gene expression in the hippocampus by single-nucleus RNA sequencing in mice expressing the patient mutation SCN8A-p.Asn1768Asp (N1768D). One hundred and eighty four differentially expressed genes were identified in dentate gyrus granule cells, many more than in other cell types. Electrophysiological recording from dentate gyrus granule cells demonstrated an elevated firing rate. Targeted reduction of Scn8a expression in the dentate gyrus by viral delivery of an shRNA resulted in doubling of median survival time from 4 months to 8 months, whereas delivery of shRNA to the CA1 and CA3 regions did not result in lengthened survival. These data indicate that granule cells of the dentate gyrus are a specific locus of pathology in SCN8A-DEE.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Sophie F Hill
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Limei Zhu
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Faith Reger
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Joanna Mattis
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Lin S, Gade AR, Wang HG, Niemeyer JE, Galante A, DiStefano I, Towers P, Nunez J, Matsui M, Schwartz TH, Rajadhyaksha AM, Pitt GS. Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590019. [PMID: 38659789 PMCID: PMC11042350 DOI: 10.1101/2024.04.18.590019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Developmental and Epileptic Encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.
Collapse
Affiliation(s)
- Susan Lin
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Aravind R. Gade
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - James E. Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | | | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Jorge Nunez
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Theodore H. Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Anjali M. Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
9
|
Wong JC, Escayg A. Carvedilol increases seizure resistance in a mouse model of SCN8A-derived epilepsy. Front Pharmacol 2024; 15:1397225. [PMID: 38895634 PMCID: PMC11184058 DOI: 10.3389/fphar.2024.1397225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Patients with mutations that alter the function of the sodium channel SCN8A present with a range of clinical features, including mild to severe seizures, developmental delay, intellectual disability, autism, feeding dysfunction, motor impairment, and hypotonia. In an effort to identify compounds that could be potentially beneficial in SCN8A-associated epilepsy, Atkin et al. conducted an in vitro screen which resulted in the identification of 90 compounds that effectively reduced sodium influx into the cells expressing the human SCN8A R1872Q mutation. The top compounds that emerged from this screen included amitriptyline, carvedilol, and nilvadipine. In the current study, we evaluated the ability of these three compounds to increase resistance to 6 Hz or pentylenetetrazole (PTZ)-induced seizures in wild-type CF1 mice and in a mouse line expressing the human SCN8A R1620L mutation. We also evaluated the effects of fenfluramine administration, which was recently associated with a 60%-90% decrease in seizure frequency in three patients with SCN8A-associated epilepsy. While amitriptyline, carvedilol, and fenfluramine provided robust protection against induced seizures in CF1 mice, only carvedilol was able to significantly increase resistance to 6 Hz- and PTZ-induced seizures in RL/+ mutants. These results provide support for further evaluation of carvedilol as a potential treatment for patients with SCN8A mutations.
Collapse
Affiliation(s)
- Jennifer C. Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
10
|
Quinn S, Zhang N, Fenton TA, Brusel M, Muruganandam P, Peleg Y, Giladi M, Haitin Y, Lerche H, Bassan H, Liu Y, Ben-Shalom R, Rubinstein M. Complex biophysical changes and reduced neuronal firing in an SCN8A variant associated with developmental delay and epilepsy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167127. [PMID: 38519006 DOI: 10.1016/j.bbadis.2024.167127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Mutations in the SCN8A gene, encoding the voltage-gated sodium channel NaV1.6, are associated with a range of neurodevelopmental syndromes. The p.(Gly1625Arg) (G1625R) mutation was identified in a patient diagnosed with developmental epileptic encephalopathy (DEE). While most of the characterized DEE-associated SCN8A mutations were shown to cause a gain-of-channel function, we show that the G1625R variant, positioned within the S4 segment of domain IV, results in complex effects. Voltage-clamp analyses of NaV1.6G1625R demonstrated a mixture of gain- and loss-of-function properties, including reduced current amplitudes, increased time constant of fast voltage-dependent inactivation, a depolarizing shift in the voltage dependence of activation and inactivation, and increased channel availability with high-frequency repeated depolarization. Current-clamp analyses in transfected cultured neurons revealed that these biophysical properties caused a marked reduction in the number of action potentials when firing was driven by the transfected mutant NaV1.6. Accordingly, computational modeling of mature cortical neurons demonstrated a mild decrease in neuronal firing when mimicking the patients' heterozygous SCN8A expression. Structural modeling of NaV1.6G1625R suggested the formation of a cation-π interaction between R1625 and F1588 within domain IV. Double-mutant cycle analysis revealed that this interaction affects the voltage dependence of inactivation in NaV1.6G1625R. Together, our studies demonstrate that the G1625R variant leads to a complex combination of gain and loss of function biophysical changes that result in an overall mild reduction in neuronal firing, related to the perturbed interaction network within the voltage sensor domain, necessitating personalized multi-tiered analysis for SCN8A mutations for optimal treatment selection.
Collapse
Affiliation(s)
- Shir Quinn
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nan Zhang
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Timothy A Fenton
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Marina Brusel
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Preethi Muruganandam
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Yoav Peleg
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Haim Bassan
- Pediatric Neurology and Development Center, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| | - Roy Ben-Shalom
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States.
| | - Moran Rubinstein
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Hill SF, Yu W, Ziobro J, Chalasani S, Reger F, Meisler MH. Long-Term Downregulation of the Sodium Channel Gene Scn8a Is Therapeutic in Mouse Models of SCN8A Epilepsy. Ann Neurol 2024; 95:754-759. [PMID: 38113311 PMCID: PMC11170564 DOI: 10.1002/ana.26861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE De novo mutations of the voltage-gated sodium channel gene SCN8A cause developmental and epileptic encephalopathy (DEE). Most pathogenic variants result in gain-of-function changes in activity of the sodium channel Nav1.6, poorly controlled seizures, and significant comorbidities. In previous work, an antisense oligonucleotide (ASO) reduced Scn8a transcripts and increased lifespan after neonatal administration to a mouse model. Here, we tested long-term ASO treatment initiated after seizure onset, as required for clinical application. METHODS ASO treatment was initiated after observation of a convulsive seizure and repeated at 4 to 6 week intervals for 1 year. We also tested the long-term efficacy of an AAV10-short hairpin RNA (shRNA) virus administered on P1. RESULTS Repeated treatment with the Scn8a ASO initiated after seizure onset provided long-term survival and reduced seizure frequency during a 12 month observation period. A single treatment with viral shRNA was also protective during 12 months of observation. INTERPRETATION Downregulation of Scn8a expression that is initiated after the onset of seizures is effective for long-term treatment in a model of SCN8A-DEE. Repeated ASO administration or a single dose of viral shRNA prevented seizures and extended survival through 12 months of observation. ANN NEUROL 2024;95:754-759.
Collapse
Affiliation(s)
- Sophie F Hill
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Julie Ziobro
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Sanjna Chalasani
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Faith Reger
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Miriam H Meisler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
12
|
Miralles RM, Boscia AR, Kittur S, Vundela SR, Wengert ER, Patel MK. Parvalbumin Interneuron Impairment Leads to Synaptic Transmission Deficits and Seizures in SCN8A Epileptic Encephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579511. [PMID: 38464208 PMCID: PMC10925130 DOI: 10.1101/2024.02.09.579511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
SCN8A epileptic encephalopathy (EE) is a severe epilepsy syndrome resulting from de novo mutations in the voltage-gated sodium channel Na v 1.6, encoded by the gene SCN8A . Na v 1.6 is expressed in both excitatory and inhibitory neurons, yet previous studies have primarily focused on the impact SCN8A mutations have on excitatory neuron function, with limited studies on the importance of inhibitory interneurons to seizure onset and progression. Inhibitory interneurons are critical in balancing network excitability and are known to contribute to the pathophysiology of other epilepsies. Parvalbumin (PV) interneurons are the most prominent inhibitory neuron subtype in the brain, making up about 40% of inhibitory interneurons. Notably, PV interneurons express high levels of Na v 1.6. To assess the role of PV interneurons within SCN8A EE, we used two mouse models harboring patient-derived SCN8A gain-of-function mutations, Scn8a D/+ , where the SCN8A mutation N1768D is expressed globally, and Scn8a W/+ -PV, where the SCN8A mutation R1872W is selectively expressed in PV interneurons. Expression of the R1872W SCN8A mutation selectively in PV interneurons led to the development of spontaneous seizures in Scn8a W/+ -PV mice and seizure-induced death, decreasing survival compared to wild-type. Electrophysiology studies showed that PV interneurons in Scn8a D/+ and Scn8a W/+ -PV mice were susceptible to depolarization block, a state of action potential failure. Scn8a D/+ and Scn8a W/+ -PV interneurons also exhibited increased persistent sodium current, a hallmark of SCN8A gain-of-function mutations that contributes to depolarization block. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed an increase in synaptic transmission failure at high frequencies (80-120Hz) as well as an increase in synaptic latency in Scn8a D/+ and Scn8a W/+ -PV interneurons. These data indicate a distinct impairment of synaptic transmission in SCN8A EE, potentially decreasing overall cortical network inhibition. Together, our novel findings indicate that failure of PV interneuron spiking via depolarization block along with frequency-dependent inhibitory synaptic impairment likely elicits an overall reduction in the inhibitory drive in SCN8A EE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.
Collapse
|
13
|
Artimagnella O, Mazzon E, Salamone S, Pollastro F, Gugliandolo A, Chiricosta L. Cannabinerol (CBNR) Influences Synaptic Genes Associated with Cytoskeleton and Ion Channels in NSC-34 Cell Line: A Transcriptomic Study. Biomedicines 2024; 12:189. [PMID: 38255294 PMCID: PMC10813620 DOI: 10.3390/biomedicines12010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabinoids are receiving great attention as a novel approach in the treatment of cognitive and motor disabilities, which characterize neurological disorders. To date, over 100 phytocannabinoids have been extracted from Cannabis sativa, and some of them have shown neuroprotective properties and the capacity to influence synaptic transmission. In this study, we investigated the effects of a less-known phytocannabinoid, cannabinerol (CBNR), on neuronal physiology. Using the NSC-34 motor-neuron-like cell line and next-generation sequencing analysis, we discovered that CBNR influences synaptic genes associated with synapse organization and specialization, including genes related to the cytoskeleton and ion channels. Specifically, the calcium, sodium, and potassium channel subunits (Cacna1b, Cacna1c, Cacnb1, Grin1, Scn8a, Kcnc1, Kcnj9) were upregulated, along with genes related to NMDAR (Agap3, Syngap1) and calcium (Cabp1, Camkv) signaling. Moreover, cytoskeletal and cytoskeleton-associated genes (Actn2, Ina, Trio, Marcks, Bsn, Rtn4, Dgkz, Htt) were also regulated by CBNR. These findings highlight the important role played by CBNR in the regulation of synaptogenesis and synaptic transmission, suggesting the need for further studies to evaluate the neuroprotective role of CBNR in the treatment of synaptic dysfunctions that characterize motor disabilities in many neurological disorders.
Collapse
Affiliation(s)
- Osvaldo Artimagnella
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy (E.M.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy (E.M.)
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy (E.M.)
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy (E.M.)
| |
Collapse
|
14
|
Chung KM, Hack J, Andrews J, Galindo-Kelly M, Schreiber J, Watkins J, Hammer MF. Clinical severity is correlated with age at seizure onset and biophysical properties of recurrent gain of function variants associated with SCN8A-related epilepsy. Epilepsia 2023; 64:3365-3376. [PMID: 37585367 DOI: 10.1111/epi.17747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Genetic variants in the SCN8A gene underlie a wide spectrum of neurodevelopmental phenotypes including several distinct seizure types and a host of comorbidities. One of the major challenges facing clinicians and researchers alike is to identify genotype-phenotype (G-P) correlations that may improve prognosis, guide treatment decisions, and lead to precision medicine approaches. METHODS We investigated G-P correlations among 270 participants harboring gain-of-function (GOF) variants enrolled in the International SCN8A Registry, a patient-driven online database. We performed correlation analyses stratifying the cohort by clinical phenotypes to identify diagnostic features that differ among patients with varying levels of clinical severity, and that differ among patients with distinct GOF variants. RESULTS Our analyses confirm positive correlations between age at seizure onset and developmental skills acquisition (developmental quotient), rate of seizure freedom, and percentage of cohort with developmental delays, and identify negative correlations with number of current and weaned antiseizure medications. This set of features is more detrimentally affected in individuals with a priori expectations of more severe clinical phenotypes. Our analyses also reveal a significant correlation between a severity index combining clinical features of individuals with a particular highly recurrent variant and an independent electrophysiological score assigned to each variant based on in vitro testing. SIGNIFICANCE This is one of the first studies to identify statistically significant G-P correlations for individual SCN8A variants with GOF properties. The results suggest that individual GOF variants (1) are predictive of clinical severity for individuals carrying those variants and (2) may underlie distinct clinical phenotypes of SCN8A disease, thus helping to explain the wide SCN8A-related epilepsy disease spectrum. These results also suggest that certain features present at initial diagnosis are predictive of clinical severity, and with more informed treatment plans, may serve to improve prognosis for patients with SCN8A GOF variants.
Collapse
Affiliation(s)
- Kyung Mi Chung
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Joshua Hack
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Jennifer Andrews
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | | | - John Schreiber
- Department of Neurology, Children's National Medical Center, Washington, District of Columbia, USA
| | - Joseph Watkins
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
| | - Michael F Hammer
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Neurology Department, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
15
|
Borowicz-Reutt K, Czernia J, Krawczyk M. Genetic Background of Epilepsy and Antiepileptic Treatments. Int J Mol Sci 2023; 24:16280. [PMID: 38003469 PMCID: PMC10671416 DOI: 10.3390/ijms242216280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Advanced identification of the gene mutations causing epilepsy syndromes is expected to translate into faster diagnosis and more effective treatment of these conditions. Over the last 5 years, approximately 40 clinical trials on the treatment of genetic epilepsies have been conducted. As a result, some medications that are not regular antiseizure drugs (e.g., soticlestat, fenfluramine, or ganaxolone) have been introduced to the treatment of drug-resistant seizures in Dravet, Lennox-Gastaut, maternally inherited chromosome 15q11.2-q13.1 duplication (Dup 15q) syndromes, and protocadherin 19 (PCDH 19)-clusterig epilepsy. And although the effects of soticlestat, fenfluramine, and ganaxolone are described as promising, they do not significantly affect the course of the mentioned epilepsy syndromes. Importantly, each of these syndromes is related to mutations in several genes. On the other hand, several mutations can occur within one gene, and different gene variants may be manifested in different disease phenotypes. This complex pattern of inheritance contributes to rather poor genotype-phenotype correlations. Hence, the detection of a specific mutation is not synonymous with a precise diagnosis of a specific syndrome. Bearing in mind that seizures develop as a consequence of the predominance of excitatory over inhibitory processes, it seems reasonable that mutations in genes encoding sodium and potassium channels, as well as glutamatergic and gamma-aminobutyric (GABA) receptors, play a role in the pathogenesis of epilepsy. In some cases, different pathogenic variants of the same gene can result in opposite functional effects, determining the effectiveness of therapy with certain medications. For instance, seizures related to gain-of-function (GoF) mutations in genes encoding sodium channels can be successfully treated with sodium channel blockers. On the contrary, the same drugs may aggravate seizures related to loss-of-function (LoF) variants of the same genes. Hence, knowledge of gene mutation-treatment response relationships facilitates more favorable selection of drugs for anticonvulsant therapy.
Collapse
Affiliation(s)
- Kinga Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.C.); (M.K.)
| | | | | |
Collapse
|
16
|
Hill SF, Jafar-Nejad P, Rigo F, Meisler MH. Reduction of Kcnt1 is therapeutic in mouse models of SCN1A and SCN8A epilepsy. Front Neurosci 2023; 17:1282201. [PMID: 37901435 PMCID: PMC10603267 DOI: 10.3389/fnins.2023.1282201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are severe seizure disorders with inadequate treatment options. Gain- or loss-of-function mutations of neuronal ion channel genes, including potassium channels and voltage-gated sodium channels, are common causes of DEE. We previously demonstrated that reduced expression of the sodium channel gene Scn8a is therapeutic in mouse models of sodium and potassium channel mutations. In the current study, we tested whether reducing expression of the potassium channel gene Kcnt1 would be therapeutic in mice with mutation of the sodium channel genes Scn1a or Scn8a. A Kcnt1 antisense oligonucleotide (ASO) prolonged survival of both Scn1a and Scn8a mutant mice, suggesting a modulatory effect for KCNT1 on the balance between excitation and inhibition. The cation channel blocker quinidine was not effective in prolonging survival of the Scn8a mutant. Our results implicate KCNT1 as a therapeutic target for treatment of SCN1A and SCN8A epilepsy.
Collapse
Affiliation(s)
- Sophie F. Hill
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | - Miriam H. Meisler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Bouzroud W, Tazzite A, Boussakri I, Gazzaz B, Dehbi H. A novel SCN8A variant of unknown significance in pediatric epilepsy: a case report. J Int Med Res 2023; 51:3000605231187931. [PMID: 37498161 PMCID: PMC10387795 DOI: 10.1177/03000605231187931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Variants in SCN8A are associated with several diseases, including developmental and epileptic encephalopathy, intermediate epilepsy or mild-to-moderate developmental and epileptic encephalopathy, self-limited familial infantile epilepsy, neurodevelopmental delays with generalized epilepsy, neurodevelopmental disorder without epilepsy, hypotonia, and movement disorders. Herein, we report an 8-year-old Moroccan boy with intermediate epilepsy of unknown origin, intellectual disability, autism spectrum disorder, and hyperactivity. The patient presented a normal 46, XY karyotype and a normal comparative genomic hybridization profile. Whole-exome sequencing was performed, and heterozygous variants were identified in KCNK4 and SCN8A. The SCN8A variant [c.4499C > T (p.Pro1500Leu)] was also detected in the healthy mother and was classified as a variant of uncertain clinical significance. This variant occurs in a highly conserved domain, which may affect the function of the encoded protein. More studies are needed to confirm the pathogenicity of this novel variant to establish the effective care, management, and genetic counselling of affected individuals.
Collapse
Affiliation(s)
- Wafaa Bouzroud
- Medical Genetics Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Amal Tazzite
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ikhlass Boussakri
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
| | - Bouchaïb Gazzaz
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Genetics Analysis Institute, Royal Gendarmerie, Rabat, Morocco
| | - Hind Dehbi
- Medical Genetics Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
18
|
Sun S, Wang H. Clocking Epilepsies: A Chronomodulated Strategy-Based Therapy for Rhythmic Seizures. Int J Mol Sci 2023; 24:4223. [PMID: 36835631 PMCID: PMC9962262 DOI: 10.3390/ijms24044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by hypersynchronous recurrent neuronal activities and seizures, as well as loss of muscular control and sometimes awareness. Clinically, seizures have been reported to display daily variations. Conversely, circadian misalignment and circadian clock gene variants contribute to epileptic pathogenesis. Elucidation of the genetic bases of epilepsy is of great importance because the genetic variability of the patients affects the efficacies of antiepileptic drugs (AEDs). For this narrative review, we compiled 661 epilepsy-related genes from the PHGKB and OMIM databases and classified them into 3 groups: driver genes, passenger genes, and undetermined genes. We discuss the potential roles of some epilepsy driver genes based on GO and KEGG analyses, the circadian rhythmicity of human and animal epilepsies, and the mutual effects between epilepsy and sleep. We review the advantages and challenges of rodents and zebrafish as animal models for epileptic studies. Finally, we posit chronomodulated strategy-based chronotherapy for rhythmic epilepsies, integrating several lines of investigation for unraveling circadian mechanisms underpinning epileptogenesis, chronopharmacokinetic and chronopharmacodynamic examinations of AEDs, as well as mathematical/computational modeling to help develop time-of-day-specific AED dosing schedules for rhythmic epilepsy patients.
Collapse
Affiliation(s)
- Sha Sun
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Guo QB, Zhan L, Xu HY, Gao ZB, Zheng YM. SCN8A epileptic encephalopathy mutations display a gain-of-function phenotype and divergent sensitivity to antiepileptic drugs. Acta Pharmacol Sin 2022; 43:3139-3148. [PMID: 35902765 PMCID: PMC9712530 DOI: 10.1038/s41401-022-00955-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
De novo missense mutations in SCN8A gene encoding voltage-gated sodium channel NaV1.6 are linked to a severe form of early infantile epileptic encephalopathy named early infantile epileptic encephalopathy type13 (EIEE13). The majority of the patients with EIEE13 does not respond favorably to the antiepileptic drugs (AEDs) in clinic and has a significantly increased risk of death. Although more than 60 EIEE13-associated mutations have been discovered, only few mutations have been functionally analyzed. In this study we investigated the functional influences of mutations N1466T and N1466K, two EIEE13-associated mutations located in the inactivation gate, on sodium channel properties. Sodium currents were recorded from CHO cells expressing the mutant and wide-type (WT) channels using the whole-cell patch-clamp technique. We found that, in comparison with WT channels, both the mutant channels exhibited increased window currents, persistent currents (INaP) and ramp currents, suggesting that N1466T and N1466K were gain-of-function (GoF) mutations. Sodium channel inhibition is one common mechanism of currently available AEDs, in which topiramate (TPM) was effective in controlling seizures of patients carrying either of the two mutations. We found that TPM (100 µM) preferentially inhibited INaP and ramp currents but did not affect transient currents (INaT) mediated by N1466T or N1466K. Among the other 6 sodium channel-inhibiting AEDs tested, phenytoin and carbamazepine displayed greater efficacy than TPM in suppressing both INaP and ramp currents. Functional characterization of mutants N1466T and N1466K is beneficial for understanding the pathogenesis of EIEE13. The divergent effects of sodium channel-inhibiting AEDs on INaP and ramp currents provide insight into the development of therapeutic strategies for the N1466T and N1466K-associated EIEE13.
Collapse
Affiliation(s)
- Qian-Bei Guo
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hai-Yan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhao-Bing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528437, China.
| | - Yue-Ming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
20
|
Emx1-Cre Is Expressed in Peripheral Autonomic Ganglia That Regulate Central Cardiorespiratory Functions. eNeuro 2022; 9:ENEURO.0093-22.2022. [PMID: 36192157 PMCID: PMC9581573 DOI: 10.1523/eneuro.0093-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/15/2022] Open
Abstract
The Emx1-IRES-Cre transgenic mouse is commonly used to direct genetic recombination in forebrain excitatory neurons. However, the original study reported that Emx1-Cre is also expressed embryonically in peripheral autonomic ganglia, which could potentially affect the interpretation of targeted circuitry contributing to systemic phenotypes. Here, we report that Emx1-Cre is expressed in the afferent vagus nerve system involved in autonomic cardiorespiratory regulatory pathways. Our imaging studies revealed expression of Emx1-Cre driven tdtomato fluorescence in the afferent vagus nerve innervating the dorsal medulla of brainstem, cell bodies in the nodose ganglion, and their potential target structures at the carotid bifurcation such as the carotid sinus and the superior cervical ganglion (SCG). Photostimulation of the afferent terminals in the nucleus tractus solitarius (NTS) in vitro using Emx1-Cre driven ChR2 reliably evoked EPSCs in the postsynaptic neurons with electrophysiological characteristics consistent with the vagus afferent nerves. In addition, optogenetic stimulation targeting the Emx1-Cre expressing structures identified in this study, such as vagus nerve, carotid bifurcation, and the dorsal medulla surface transiently depressed cardiorespiratory rate in urethane anesthetized mice in vivo Together, our study demonstrates that Emx1-IRES-Cre is expressed in the key peripheral autonomic nerve system and can modulate cardiorespiratory function independently of forebrain expression. These results raise caution when interpreting systemic phenotypes of Emx1-IRES-Cre conditional recombinant mice, and also suggest the utility of this line to investigate modulators of the afferent vagal system.
Collapse
|
21
|
Chen H, Li X, Wu H, Sun X, Che Y, Zha J, Wang R, Yu X, Chen Y, Zhong J. Case report: A novel de novo variant of SCN8A in a child with benign convulsions with mild gastroenteritis. Front Neurol 2022; 13:995513. [PMID: 36188413 PMCID: PMC9523015 DOI: 10.3389/fneur.2022.995513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Benign convulsions with mild gastroenteritis (CwG) is characterized by afebrile convulsions accompanied by mild gastroenteritis, and it can be considered after central nervous system infection, hypoglycemia, electrolyte disturbance, and moderate and severe dehydration are excluded. Previous studies have suggested that genetics may be involved in CWG. Herein, we reported a novel de novo variant of SCN8A in a child with CwG. This is the first report that SCN8A may be associated with CwG. Our report may provides evidence for the genetic etiology of CwG and expands the phenotypic and genetic spectrum of SCN8A-related disorders, which previously included severe developmental and epileptic encephalopathy (DEE) phenotype, benign epilepsy phenotype, spectrum of intermediate epilepsies, and patients with cognitive and/or behavioral disturbances without epilepsy. Phenotype of CwG has a good prognosis, and it does not require long-term antiepileptic therapy. Overtreatment should be avoided clinically. However, the conclusion needs to be further defined by long-term follow-up and similar clinical reports. In spite of this, our clinical observation provides possible evidence for future studies on the relationship between SCN8A and CwG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Chen
- Department of Neurology, The Affiliated Children's Hospital of Nanchang University (Jiangxi Provincial Children's Hospital), Nanchang, China
| | - Jianmin Zhong
- Department of Neurology, The Affiliated Children's Hospital of Nanchang University (Jiangxi Provincial Children's Hospital), Nanchang, China
| |
Collapse
|
22
|
Wenker IC, Boscia AR, Lewis C, Tariq A, Miralles R, Hanflink JC, Saraf P, Patel MK. Forebrain epileptiform activity is not required for seizure-induced apnea in a mouse model of Scn8a epilepsy. Front Neural Circuits 2022; 16:1002013. [PMID: 36160949 PMCID: PMC9490431 DOI: 10.3389/fncir.2022.1002013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) accounts for the deaths of 8-17% of patients with epilepsy. Although the mechanisms of SUDEP are essentially unknown, one proposed mechanism is respiratory arrest initiated by a convulsive seizure. In mice, we have previously observed that extended apnea occurs during the tonic phase of seizures. Although often survived, tonic seizures became fatal when breathing did not immediately recover postictally. We also found that respiratory muscles were tonically contracted during the apnea, suggesting that muscle contraction could be the cause of apnea. In the present study, we tested the hypothesis that pyramidal neurons of the motor cortex drive motor units during the tonic phase, which produces apnea. Mice harboring the patient-derived N1768D point mutation of an Scn8a allele were crossed with transgenic mice such that inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADD) receptors were selectively expressed in excitatory forebrain neurons. We then triggered audiogenic and hippocampal (HC) stimulated seizures under control conditions and when excitatory forebrain neurons were inhibited with the synthetic ligand Clozapine-N-Oxide (CNO). We found that inhibition with CNO was sufficient to increase seizure threshold of HC stimulated, but not audiogenic, seizures. In addition, regardless of seizure type, CNO nearly eliminated epileptiform activity that occurred proximal to the tonic phase; however, the seizure behaviors, notably the tonic phase and concomitant apnea, were unchanged. We interpret these results to indicate that while cortical neurons are likely critical for epileptogenesis and seizure initiation, the behavioral manifestations of tonic seizures are generated by neural circuitry in the mid- and/or hindbrain.
Collapse
|
23
|
Ma Z, Eaton M, Liu Y, Zhang J, Chen X, Tu X, Shi Y, Que Z, Wettschurack K, Zhang Z, Shi R, Chen Y, Kimbrough A, Lanman NA, Schust L, Huang Z, Yang Y. Deficiency of autism-related Scn2a gene in mice disrupts sleep patterns and circadian rhythms. Neurobiol Dis 2022; 168:105690. [PMID: 35301122 PMCID: PMC9018617 DOI: 10.1016/j.nbd.2022.105690] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) affects ~2% of the population in the US, and monogenic forms of ASD often result in the most severe manifestation of the disorder. Recently, SCN2A has emerged as a leading gene associated with ASD, of which abnormal sleep pattern is a common comorbidity. SCN2A encodes the voltage-gated sodium channel NaV1.2. Predominantly expressed in the brain, NaV1.2 mediates the action potential firing of neurons. Clinical studies found that a large portion of children with SCN2A deficiency have sleep disorders, which severely impact the quality of life of affected individuals and their caregivers. The underlying mechanism of sleep disturbances related to NaV1.2 deficiency, however, is not known. Using a gene-trap Scn2a-deficient mouse model (Scn2atrap), we found that Scn2a deficiency results in increased wakefulness and reduced non-rapid-eye-movement (NREM) sleep. Brain region-specific Scn2a deficiency in the suprachiasmatic nucleus (SCN) containing region, which is involved in circadian rhythms, partially recapitulates the sleep disturbance phenotypes. At the cellular level, we found that Scn2a deficiency disrupted the firing pattern of spontaneously firing neurons in the SCN region. At the molecular level, RNA-sequencing analysis revealed differentially expressed genes in the circadian entrainment pathway including core clock genes Per1 and Per2. Performing a transcriptome-based compound discovery, we identified dexanabinol (HU-211), a putative glutamate receptor modulator, that can partially reverse the sleep disturbance in mice. Overall, our study reveals possible molecular and cellular mechanisms underlying Scn2a deficiency-related sleep disturbances, which may inform the development of potential pharmacogenetic interventions for the affected individuals.
Collapse
Affiliation(s)
- Zhixiong Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Yushuang Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Xinyu Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yiqiang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Kyle Wettschurack
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Zaiyang Zhang
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Leah Schust
- FamilieSCN2A Foundation, P.O. Box 82, East Longmeadow, MA 01028, USA
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
24
|
Kahlig KM, Scott L, Hatch RJ, Griffin A, Martinez Botella G, Hughes ZA, Wittmann M. The novel persistent sodium current inhibitor PRAX-562 has potent anticonvulsant activity with improved protective index relative to standard of care sodium channel blockers. Epilepsia 2022; 63:697-708. [PMID: 35037706 PMCID: PMC9304232 DOI: 10.1111/epi.17149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study investigates the effects of PRAX-562 on sodium current (INa ), intrinsic neuronal excitability, and protection from evoked seizures to determine whether a preferential persistent INa inhibitor would exhibit improved preclinical efficacy and tolerability compared to two standard voltage-gated sodium channel (NaV ) blockers. METHODS Inhibition of INa was characterized using patch clamp analysis. The effect on intrinsic excitability was measured using evoked action potentials recorded from hippocampal CA1 pyramidal neurons in mouse brain slices. Anticonvulsant activity was evaluated using the maximal electroshock seizure (MES) model, and tolerability was assessed by measuring spontaneous locomotor activity (sLMA). RESULTS PRAX-562 potently and preferentially inhibited persistent INa induced by ATX-II or the SCN8A mutation N1768D (half-maximal inhibitory concentration [IC50 ] = 141 and 75 nmol·L-1 , respectively) relative to peak INa tonic/resting block (60× preference). PRAX-562 also exhibited potent use-dependent block (31× preference to tonic block). This profile is considerably different from standard NaV blockers, including carbamazepine (CBZ; persistent INa IC50 = 77 500 nmol·L-1 , preference ratios of 30× [tonic block], less use-dependent block observed at various frequencies). In contrast to CBZ, PRAX-562 reduced neuronal intrinsic excitability with only a minor reduction in action potential amplitude. PRAX-562 (10 mg/kg po) completely prevented evoked seizures without affecting sLMA (MES unbound brain half-maximal efficacious concentration = 4.3 nmol·L-1 , sLMA half-maximal tolerated concentration = 69.7 nmol·L-1 , protective index [PI] = 16×). In contrast, CBZ and lamotrigine (LTG) had PIs of approximately 5.5×, with significant overlap between doses that were anticonvulsant and that reduced locomotor activity. SIGNIFICANCE PRAX-562 demonstrated robust preclinical anticonvulsant activity similar to CBZ but improved compared to LTG. PRAX-562 exhibited significantly improved preclinical tolerability compared with standard NaV blockers (CBZ and LTG), potentially due to the preference for persistent INa . Preferential targeting of persistent INa may represent a differentiated therapeutic option for diseases of hyperexcitability, where standard NaV blockers have demonstrated efficacy but poor tolerability.
Collapse
Affiliation(s)
| | - Liam Scott
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | - Robert J Hatch
- Praxis Precision Medicines, Boston, Massachusetts, USA.,Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | | | | | - Zoë A Hughes
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | | |
Collapse
|
25
|
Wengert ER, Wagley PK, Strohm SM, Reza N, Wenker IC, Gaykema RP, Christiansen A, Liau G, Patel MK. Targeted Augmentation of Nuclear Gene Output (TANGO) of Scn1a rescues parvalbumin interneuron excitability and reduces seizures in a mouse model of Dravet Syndrome. Brain Res 2022; 1775:147743. [PMID: 34843701 DOI: 10.1016/j.brainres.2021.147743] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
Dravet Syndrome (DS) is a severe developmental and epileptic encephalopathy typically caused by loss-of-function de novo mutations in the SCN1A gene which encodes the voltage-gated sodium channel isoform NaV1.1. Decreased NaV1.1 expression results in impaired excitability of inhibitory interneurons and seizure onset. To date, there are no clinically available treatments for DS that directly address the core mechanism of disease; reduced NaV1.1 expression levels in interneurons. Recently, Targeted Augmentation of Nuclear Gene Output (TANGO) of SCN1A by the antisense oligonucleotide (ASO) STK-001, was shown to increase Scn1a mRNA levels, increase NaV1.1 protein expression, reduce seizures, and improve survival in the Scn1a+/- mouse model of DS. However, it remains unknown whether STK-001 treatment rescues the reduced intrinsic excitability of parvalbumin-positive (PV) inhibitory interneurons associated with DS. In this study, we demonstrate that STK-001 treatment reduces seizures, prolongs survival, and rescues PV interneuron excitability in Scn1a+/- mice to levels observed in WT littermates. Together, these results support the notion that TANGO-mediated augmentation of NaV1.1 levels directly targets and rescues one of the core disease mechanisms of DS.
Collapse
Affiliation(s)
- Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States; Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pravin K Wagley
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Samantha M Strohm
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Nuha Reza
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Ian C Wenker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Ronald P Gaykema
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | | | - Gene Liau
- Stoke Therapeutics, Bedford, MA, United States
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States; Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, United States.
| |
Collapse
|
26
|
Yu W, Mulligan MK, Williams RW, Meisler MH. Correction of the hypomorphic Gabra2 splice site variant in mouse strain C57BL/6J modifies the severity of Scn8a encephalopathy. HGG ADVANCES 2022; 3:100064. [PMID: 35047853 PMCID: PMC8756487 DOI: 10.1016/j.xhgg.2021.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/30/2021] [Indexed: 10/31/2022] Open
Abstract
De novo gain-of-function mutations of SCN8A are a significant cause of developmental and epileptic encephalopathy (DEE) (MIM: 614558). The severely affected individuals exhibit refractory seizures, developmental delay, and cognitive disabilities, often accompanied by impaired movement. Individuals with the identical SCN8A variant often differ in clinical course, suggesting a role for modifier genes in disease severity. In a previous study we demonstrated genetic linkage between a hypomorphic mutation in the Gabra2 gene and seizure severity in a mouse model of the human SCN8A pathogenic variant p.Arg1872Trp. Homozygosity for the hypomorphic Gabra2 mutation was associated with early seizure onset and shortened lifespan. We have now confirmed Gabra2 as the modifier gene using a knock-in allele that corrects the splice site variant in strain C57BL/6J. Correction of the Gabra2 variant restores transcript abundance, increases the age of seizure onset, and extends survival of the Scn8a mutant mice. GABRA2 encodes the α2 subunit of the GABAA receptor that provides inhibitory input to dendrites and the the axon initial segment of excitatory neurons. Quantitative variation in human GABAA receptor expression could contribute to variation in the severity of genetic epilepsies and suggests a potential therapeutic intervention.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Robert W Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
27
|
Teran FA, Bravo E, Richerson GB. Sudden unexpected death in epilepsy: Respiratory mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:153-176. [PMID: 36031303 PMCID: PMC10191258 DOI: 10.1016/b978-0-323-91532-8.00012-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Epilepsy is one of the most common chronic neurologic diseases, with a prevalence of 1% in the US population. Many people with epilepsy live normal lives, but are at risk of sudden unexpected death in epilepsy (SUDEP). This mysterious comorbidity of epilepsy causes premature death in 17%-50% of those with epilepsy. Most SUDEP occurs after a generalized seizure, and patients are typically found in bed in the prone position. Until recently, it was thought that SUDEP was due to cardiovascular failure, but patients who died while being monitored in hospital epilepsy units revealed that most SUDEP is due to postictal central apnea. Some cases may occur when seizures invade the amygdala and activate projections to the brainstem. Evidence suggests that the pathophysiology is linked to defects in the serotonin system and central CO2 chemoreception, and that there is considerable overlap with mechanisms thought to be involved in sudden infant death syndrome (SIDS). Future work is needed to identify biomarkers for patients at highest risk, improve ascertainment, develop methods to alert caregivers when SUDEP is imminent, and find effective approaches to prevent these fatal events.
Collapse
Affiliation(s)
- Frida A Teran
- Department of Neurology, University of Iowa, Iowa City, IA, United States; Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States.
| | - Eduardo Bravo
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - George B Richerson
- Department of Neurology, University of Iowa, Iowa City, IA, United States; Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
28
|
Wong JC, Butler KM, Shapiro L, Thelin JT, Mattison KA, Garber KB, Goldenberg PC, Kubendran S, Schaefer GB, Escayg A. Pathogenic in-Frame Variants in SCN8A: Expanding the Genetic Landscape of SCN8A-Associated Disease. Front Pharmacol 2021; 12:748415. [PMID: 34867351 PMCID: PMC8635767 DOI: 10.3389/fphar.2021.748415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
Numerous SCN8A mutations have been identified, of which, the majority are de novo missense variants. Most mutations result in epileptic encephalopathy; however, some are associated with less severe phenotypes. Mouse models generated by knock-in of human missense SCN8A mutations exhibit seizures and a range of behavioral abnormalities. To date, there are only a few Scn8a mouse models with in-frame deletions or insertions, and notably, none of these mouse lines exhibit increased seizure susceptibility. In the current study, we report the generation and characterization of two Scn8a mouse models (ΔIRL/+ and ΔVIR/+) carrying overlapping in-frame deletions within the voltage sensor of domain 4 (DIVS4). Both mouse lines show increased seizure susceptibility and infrequent spontaneous seizures. We also describe two unrelated patients with the same in-frame SCN8A deletion in the DIV S5-S6 pore region, highlighting the clinical relevance of this class of mutations.
Collapse
Affiliation(s)
- Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kameryn M Butler
- Department of Human Genetics, Emory University, Atlanta, GA, United States.,Greenwood Genetic Center, Greenwood, SC, United States
| | - Lindsey Shapiro
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Jacquelyn T Thelin
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kari A Mattison
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kathryn B Garber
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Paula C Goldenberg
- Department of Pediatrics and Medical Genetics, Harvard Medical School, Boston, MA, United States
| | - Shobana Kubendran
- Department of Pediatrics, Kansas University School of Medicine-Wichita, Wichita, KS, United States
| | - G Bradley Schaefer
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
29
|
Liu Y, Koko M, Lerche H. A SCN8A variant associated with severe early onset epilepsy and developmental delay: Loss- or gain-of-function? Epilepsy Res 2021; 178:106824. [PMID: 34847423 DOI: 10.1016/j.eplepsyres.2021.106824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
SCN8A, encoding the voltage-gated sodium channel subunit NaV1.6, has been associated with a wide spectrum of neuropsychiatric disorders. Missense variants in SCN8A which increase the channel activity can cause a severe developmental and epileptic encephalopathy (DEE). One DEE variant (p.(Arg223Gly)) was described to cause a predominant loss-of-function (LOF) mechanism when expressed in neuroblastoma cells, which is not consistent with the genotype-phenotype correlations in this gene. To resolve this discrepancy and understand the pathophysiological mechanism of this variant, we performed comprehensive electrophysiological studies in both neuroblastoma cells and primary hippocampal neuronal cultures. Although we also found that p.(Arg223Gly) significantly decreased Na+ current density and enhanced fast inactivation compared to the wild type (WT) channel in transfected neuroblastoma cells (both LOF mechanisms), it also caused a strong hyperpolarizing shift of steady-state activation and accelerated the recovery from fast inactivation (both gain-of-function (GOF) mechanisms). In cultured neurons transfected with mutant vs. WT NaV1.6 channels, we found more depolarized resting membrane potentials and a decreased rheobase leading to enhanced action potential firing. We conclude that SCN8A p.(Arg223Gly) leads to a net GOF resulting in neuronal hyperexcitability and a higher firing rate, fitting with the central role of GOF mechanisms in DEE.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
30
|
Goldberg EM. All our knowledge begins with the antisenses. J Clin Invest 2021; 131:e155233. [PMID: 34850739 PMCID: PMC8631590 DOI: 10.1172/jci155233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Epilepsy is the neurological disorder defined by spontaneous recurrent seizures, which are abnormal patterns of electrical discharge in the brain. A major advance in neurology over the last 20 years is the identification of genetic variation as an important cause of epilepsy, and in particular as a cause of the epileptic encephalopathies, defined by childhood-onset, treatment-resistant epilepsy accompanied by developmental delay leading to intellectual disability. Unfortunately, this progress in genetic diagnosis has yet to translate to effective precision or targeted therapeutics. However, in this issue of the JCI, Li and Jancovski et al. use antisense oligonucleotides (ASO) to treat or prevent epilepsy and epilepsy-associated cognitive and behavioral comorbidities in a mouse model of SCN2A encephalopathy, paralogous to the recurrent human variant SCN2A c.5645G>A (p.R1882Q) associated with epileptic encephalopathy. These findings may inform the development of targeted or personalized therapies for what is currently an incurable and largely untreatable disorder.
Collapse
Affiliation(s)
- Ethan M. Goldberg
- Division of Neurology, Department of Pediatrics and
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neuroscience and
- Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Abstract
SCN8A epileptic encephalopathy is a devastating epilepsy syndrome caused by mutant SCN8A, which encodes the voltage-gated sodium channel NaV1.6. To date, it is unclear if and how inhibitory interneurons, which express NaV1.6, influence disease pathology. Using both sexes of a transgenic mouse model of SCN8A epileptic encephalopathy, we found that selective expression of the R1872W SCN8A mutation in somatostatin (SST) interneurons was sufficient to convey susceptibility to audiogenic seizures. Patch-clamp electrophysiology experiments revealed that SST interneurons from mutant mice were hyperexcitable but hypersensitive to action potential failure via depolarization block under normal and seizure-like conditions. Remarkably, GqDREADD-mediated activation of WT SST interneurons resulted in prolonged electrographic seizures and was accompanied by SST hyperexcitability and depolarization block. Aberrantly large persistent sodium currents, a hallmark of SCN8A mutations, were observed and were found to contribute directly to aberrant SST physiology in computational modeling and pharmacological experiments. These novel findings demonstrate a critical and previously unidentified contribution of SST interneurons to seizure generation not only in SCN8A epileptic encephalopathy, but epilepsy in general.SIGNIFICANCE STATEMENT SCN8A epileptic encephalopathy is a devastating neurological disorder that results from de novo mutations in the sodium channel isoform Nav1.6. Inhibitory neurons express NaV1.6, yet their contribution to seizure generation in SCN8A epileptic encephalopathy has not been determined. We show that mice expressing a human-derived SCN8A variant (R1872W) selectively in somatostatin (SST) interneurons have audiogenic seizures. Physiological recordings from SST interneurons show that SCN8A mutations lead to an elevated persistent sodium current which drives initial hyperexcitability, followed by premature action potential failure because of depolarization block. Furthermore, chemogenetic activation of WT SST interneurons leads to audiogenic seizure activity. These findings provide new insight into the importance of SST inhibitory interneurons in seizure initiation, not only in SCN8A epileptic encephalopathy, but for epilepsy broadly.
Collapse
|
32
|
Goldman AM. More Genes, Better Outcome? Epilepsy Curr 2021; 21:300-302. [PMID: 34690574 PMCID: PMC8512912 DOI: 10.1177/15357597211025127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
Autistic-like behavior, spontaneous seizures, and increased neuronal excitability in a Scn8a mouse model. Neuropsychopharmacology 2021; 46:2011-2020. [PMID: 33658654 PMCID: PMC8429750 DOI: 10.1038/s41386-021-00985-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/05/2023]
Abstract
Patients with SCN8A epileptic encephalopathy exhibit a range of clinical features, including multiple seizure types, movement disorders, and behavioral abnormalities, such as developmental delay, mild-to-severe intellectual disability, and autism. Recently, the de novo heterozygous SCN8A R1620L mutation was identified in an individual with autism, intellectual disability, and behavioral seizures without accompanying electrographic seizure activity. To date, the effects of SCN8A mutations that are primarily associated with behavioral abnormalities have not been studied in a mouse model. To better understand the phenotypic and functional consequences of the R1620L mutation, we used CRISPR/Cas9 technology to generate mice expressing the corresponding SCN8A amino acid substitution. Homozygous mutants exhibit tremors and a maximum lifespan of 22 days, while heterozygous mutants (RL/+) exhibit autistic-like behaviors, such as hyperactivity and learning and social deficits, increased seizure susceptibility, and spontaneous seizures. Current clamp analyses revealed a reduced threshold for firing action potentials in heterozygous CA3 pyramidal neurons and reduced firing frequency, suggesting that the R1620L mutation has both gain- and loss-of-function effects. In vivo calcium imaging using miniscopes in freely moving RL/+ mutants showed hyperexcitability of cortical excitatory neurons that is likely to increase seizure susceptibility. Finally, we found that oxcarbazepine and Huperzine A, a sodium channel blocker and reversible acetylcholinesterase inhibitor, respectively, were capable of conferring robust protection against induced seizures in RL/+ mutants. This mouse line will provide the opportunity to better understand the range of clinical phenotypes associated with SCN8A mutations and to develop new therapeutic approaches.
Collapse
|
34
|
Zhang J, Chen X, Eaton M, Wu J, Ma Z, Lai S, Park A, Ahmad TS, Que Z, Lee JH, Xiao T, Li Y, Wang Y, Olivero-Acosta MI, Schaber JA, Jayant K, Yuan C, Huang Z, Lanman NA, Skarnes WC, Yang Y. Severe deficiency of the voltage-gated sodium channel Na V1.2 elevates neuronal excitability in adult mice. Cell Rep 2021; 36:109495. [PMID: 34348148 PMCID: PMC8382316 DOI: 10.1016/j.celrep.2021.109495] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Scn2a encodes the voltage-gated sodium channel NaV1.2, a main mediator of neuronal action potential firing. The current paradigm suggests that NaV1.2 gain-of-function variants enhance neuronal excitability, resulting in epilepsy, whereas NaV1.2 deficiency impairs neuronal excitability, contributing to autism. However, this paradigm does not explain why ∼20%-30% of individuals with NaV1.2 deficiency still develop seizures. Here, we report the counterintuitive finding that severe NaV1.2 deficiency results in increased neuronal excitability. Using a NaV1.2-deficient mouse model, we show enhanced intrinsic excitability of principal neurons in the prefrontal cortex and striatum, brain regions known to be involved in Scn2a-related seizures. This increased excitability is autonomous and reversible by genetic restoration of Scn2a expression in adult mice. RNA sequencing reveals downregulation of multiple potassium channels, including KV1.1. Correspondingly, KV channel openers alleviate the hyperexcitability of NaV1.2-deficient neurons. This unexpected neuronal hyperexcitability may serve as a cellular basis underlying NaV1.2 deficiency-related seizures.
Collapse
Affiliation(s)
- Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Jiaxiang Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Zhixiong Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Shirong Lai
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Anthony Park
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Talha S Ahmad
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Ji Hea Lee
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Tiange Xiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Yuansong Li
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Yujia Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Maria I Olivero-Acosta
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - James A Schaber
- Bioscience Imaging Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Krishna Jayant
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nadia A Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - William C Skarnes
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
35
|
Spinelli E, Christensen KR, Bryant E, Schneider A, Rakotomamonjy J, Muir AM, Giannelli J, Littlejohn RO, Roeder ER, Schmidt B, Wilson WG, Marco EJ, Iwama K, Kumada S, Pisano T, Barba C, Vetro A, Brilstra EH, van Jaarsveld RH, Matsumoto N, Goldberg-Stern H, Carney P, Ian Andrews P, El Achkar CM, Berkovic S, Rodan LH, McWalter K, Guerrini R, Scheffer IE, Mefford HC, Mandelstam S, Laux L, Millichap JJ, Guemez-Gamboa A, Nairn AC, Carvill GL. Pathogenic MAST3 Variants in the STK Domain Are Associated with Epilepsy. Ann Neurol 2021; 90:274-284. [PMID: 34185323 PMCID: PMC8324566 DOI: 10.1002/ana.26147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.
Collapse
Affiliation(s)
- Egidio Spinelli
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Kyle R Christensen
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut, USA
| | - Emily Bryant
- Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Division of Genetics, Birth Defects and Metabolism, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Amy Schneider
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Jennifer Rakotomamonjy
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alison M Muir
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jessica Giannelli
- Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Rebecca O Littlejohn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas, USA
| | - Elizabeth R Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas, USA
| | - Berkley Schmidt
- Division of Medical Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - William G Wilson
- Division of Medical Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Elysa J Marco
- Department of Pediatrics, University of California, San Francisco, California, USA
- Research Division, Cortica Healthcare, San Rafael, California, USA
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tiziana Pisano
- Neuroscience Department, Children’s Hospital A. Meyer-University of Florence
| | - Carmen Barba
- Neuroscience Department, Children’s Hospital A. Meyer-University of Florence
| | - Annalisa Vetro
- Neuroscience Department, Children’s Hospital A. Meyer-University of Florence
| | - Eva H Brilstra
- Genetics Department, University Medical Centre Utrecht, The Netherlands
| | | | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Patrick Carney
- Department of Neurology, Austin Health, Heidelberg, Australia
| | - P Ian Andrews
- Department of Neurology, Sydney Children’s Hospital, Sydney, Australia
| | | | - Sam Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Lance H Rodan
- Department of Neurology and Division of Genetics and Genomics, Boston Children’s Hospital
| | | | | | - Renzo Guerrini
- Neuroscience Department, Children’s Hospital A. Meyer-University of Florence
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Simone Mandelstam
- Department of Pediatrics and Radiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Imaging, Royal Children’s Hospital of Melbourne, Melbourne, Victoria, Australia
| | - Linda Laux
- Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - John J Millichap
- Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alicia Guemez-Gamboa
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut, USA
| | - Gemma L Carvill
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
36
|
Carvill GL, Matheny T, Hesselberth J, Demarest S. Haploinsufficiency, Dominant Negative, and Gain-of-Function Mechanisms in Epilepsy: Matching Therapeutic Approach to the Pathophysiology. Neurotherapeutics 2021; 18:1500-1514. [PMID: 34648141 PMCID: PMC8608973 DOI: 10.1007/s13311-021-01137-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 02/04/2023] Open
Abstract
This review summarizes the pathogenic mechanisms that underpin the monogenic epilepsies and discusses the potential of novel precision therapeutics to treat these disorders. Pathogenic mechanisms of epilepsy include recessive (null alleles), haploinsufficiency, imprinting, gain-of-function, and dominant negative effects. Understanding which pathogenic mechanism(s) that underlie each genetic epilepsy is pivotal to design precision therapies that are most likely to be beneficial for the patient. Novel therapeutics discussed include gene therapy, gene editing, antisense oligonucleotides, and protein replacement. Discussions are illustrated and reinforced with examples from the literature.
Collapse
Affiliation(s)
- Gemma L Carvill
- Departments of Neurology, Pharmacology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tyler Matheny
- Department Biochemistry and Molecular Genetics, School of Medicine, RNA Bioscience Initiative, University of Colorado, PO Box 6511, Aurora, CO, USA
| | - Jay Hesselberth
- Department Biochemistry and Molecular Genetics, School of Medicine, RNA Bioscience Initiative, University of Colorado, PO Box 6511, Aurora, CO, USA
| | - Scott Demarest
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
37
|
Abstract
Genetic testing has yielded major advances in our understanding of the causes of epilepsy. Seizures remain resistant to treatment in a significant proportion of cases, particularly in severe, childhood-onset epilepsy, the patient population in which an underlying causative genetic variant is most likely to be identified. A genetic diagnosis can be explanatory as to etiology, and, in some cases, might suggest a therapeutic approach; yet, a clear path from genetic diagnosis to treatment remains unclear in most cases. Here, we discuss theoretical considerations behind the attempted use of small molecules for the treatment of genetic epilepsies, which is but one among various approaches currently under development. We explore a few salient examples and consider the future of the small molecule approach for genetic epilepsies. We conclude that significant additional work is required to understand how genetic variation leads to dysfunction of epilepsy-associated protein targets, and how this impacts the function of diverse subtypes of neurons embedded within distributed brain circuits to yield epilepsy and epilepsy-associated comorbidities. A syndrome- or even variant-specific approach may be required to achieve progress. Advances in the field will require improved methods for large-scale target validation, compound identification and optimization, and the development of accurate model systems that reflect the core features of human epilepsy syndromes, as well as novel approaches towards clinical trials of such compounds in small rare disease cohorts.
Collapse
Affiliation(s)
- Ethan M Goldberg
- Department of Pediatrics, Division of Neurology, Abramson Research Center, The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Abramson Research Center Room 502A, 19104, Philadelphia, PA, USA.
- Departments of Neurology and Neuroscience, The University of Pennsylvania Perelman School of Medicine, 19104, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Abstract
The emergence of an array of genome-editing tools in recent years has facilitated the introduction of genetic modifications directly into the embryo, increasing the ease, efficiency and catalogue of alleles accessible to researchers across a range of species. Bypassing the requirement for a selection cassette and resulting in a broad range of outcomes besides the desired allele, genome editing has altered the allele validation process both temporally and technically. Whereas traditional gene targeting relies upon selection and allows allele validation at the embryonic stem cell modification stage, screening for the presence of the intended allele now occurs in the (frequently mosaic) founder animals. Final confirmation of the edited allele can only take place at the subsequent G1 generation and the validation strategy must differentiate the desired allele from a range of unintended outcomes. Here we present some of the challenges posed by gene editing, strategies for validation and considerations for animal colony management.
Collapse
Affiliation(s)
| | - Gemma F Codner
- The Mary Lyon Centre, Medical Research Council Harwell Institute, UK
| | - Lydia Teboul
- The Mary Lyon Centre, Medical Research Council Harwell Institute, UK
| |
Collapse
|
39
|
Khoshkhoo S, Lal D, Walsh CA. Application of single cell genomics to focal epilepsies: A call to action. Brain Pathol 2021; 31:e12958. [PMID: 34196990 PMCID: PMC8412079 DOI: 10.1111/bpa.12958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Focal epilepsies are the largest epilepsy subtype and associated with significant morbidity. Somatic variation is a newly recognized genetic mechanism underlying a subset of focal epilepsies, but little is known about the processes through which somatic mosaicism causes seizures, the cell types carrying the pathogenic variants, or their developmental origin. Meanwhile, the inception of single cell biology has completely revolutionized the study of neurological diseases and has the potential to answer some of these key questions. Focusing on single cell genomics, transcriptomics, and epigenomics in focal epilepsy research, circumvents the averaging artifact associated with studying bulk brain tissue and offers the kind of granularity that is needed for investigating the consequences of somatic mosaicism. Here we have provided a brief overview of some of the most developed single cell techniques and the major considerations around applying them to focal epilepsy research.
Collapse
Affiliation(s)
- Sattar Khoshkhoo
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennis Lal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Yu W, Smolen CE, Hill SF, Meisler MH. Spontaneous seizures and elevated seizure susceptibility in response to somatic mutation of sodium channel Scn8a in the mouse. Hum Mol Genet 2021; 30:902-907. [PMID: 33822038 PMCID: PMC8165645 DOI: 10.1093/hmg/ddab092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023] Open
Abstract
De novo mutations of neuronal sodium channels are responsible for ~5% of developmental and epileptic encephalopathies, but the role of somatic mutation of these genes in adult-onset epilepsy is not known. We evaluated the role of post-zygotic somatic mutation by adult activation of a conditional allele of the pathogenic variant Scn8aR1872W in the mouse. After activation of CAG-Cre-ER by tamoxifen, the mutant transcript was expressed throughout the brain at a level proportional to tamoxifen dose. The threshold for generation of spontaneous seizures was reached when the proportion of mutant transcript reached 8% of total Scn8a transcript, equivalent to expression of the epileptogenic variant in 16% of heterozygous neurons. Expression below this level did not result in spontaneous seizures, but did increase susceptibility to seizure induction by kainate or auditory stimulation. The relatively high threshold for spontaneous seizures indicates that somatic mutation of sodium channels is unlikely to contribute to the elevated incidence of epilepsy in the elderly population. However, somatic mutation could increase susceptibility to other seizure stimuli.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Corrine E Smolen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sophie F Hill
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109 USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109 USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109 USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
41
|
Abstract
dCas9-Based Scn1a Gene Activation Restores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice Colasante G, Lignani G, Brusco S, et al. Mol Ther. 2020;28(1):235-253. doi:10.1016/j.ymthe.2019.08.018 Dravet syndrome (DS) is a severe epileptic encephalopathy caused mainly by heterozygous loss-of-function mutations of the SCN1A gene, indicating haploinsufficiency as the pathogenic mechanism. Here, we tested whether catalytically dead Cas9 (dCas9)-mediated Scn1a gene activation can rescue Scn1a haploinsufficiency in a mouse DS model and restore physiological levels of its gene product, the Nav1.1 voltage-gated sodium channel. We screened single guide RNAs (sgRNAs) for their ability to stimulate Scn1a transcription in association with the dCas9 activation system. We identified a specific sgRNA that increases Scn1a gene expression levels in cell lines and primary neurons with high specificity. Nav1.1 protein levels were augmented, as was the ability of wild-type immature GABAergic interneurons to fire action potentials. A similar enhancement of Scn1a transcription was achieved in mature DS interneurons, rescuing their ability to fire. To test the therapeutic potential of this approach, we delivered the Scn1a-dCas9 activation system to DS pups using adeno-associated viruses. Parvalbumin interneurons recovered their firing ability, and febrile seizures were significantly attenuated. Our results pave the way for exploiting dCas9-based gene activation as an effective and targeted approach to DS and other disorders resulting from altered gene dosage. Scn8a Antisense Oligonucleotide Is Protective in Mouse Models of SCN8A Encephalopathy and Dravet syndrome Lenk GM, Jafar Nejad P, Hill SF, et al. Ann Neurol. 2020;87(3):339-346. doi:10.1002/ana.25676 SCN8A encephalopathy is a developmental and epileptic encephalopathy caused by de novo gain-of-function mutations of sodium channel Nav 1.6 that result in neuronal hyperactivity. Affected individuals exhibit early-onset drug-resistant seizures, developmental delay, and cognitive impairment. This study was carried out to determine whether reducing the abundance of the Scn8a transcript with an antisense oligonucleotide (ASO) would delay seizure onset and prolong survival in a mouse model of SCN8A encephalopathy. Antisense oligonucleotide treatment was tested in a conditional mouse model with Cre-dependent expression of the pathogenic patient SCN8A mutation p.Arg1872Trp (R1872 W). This model exhibits early onset of seizures, rapid progression, and 100% penetrance. An Scn1a+/− haploinsufficient mouse model of Dravet syndrome was also treated. Antisense oligonucleotide was administered by intracerebroventricular injection at postnatal day 2, followed in some cases by stereotactic injection at postnatal day 30. We observed a dose-dependent increase in length of survival from 15 to 65 days in the Scn8a-R1872W/+ mice treated with ASO. Electroencephalographic recordings were normal prior to seizure onset. Weight gain and activity in an open field were unaffected, but treated mice were less active in a wheel running assay. A single treatment with Scn8a ASO extended survival of Dravet syndrome mice from 3 weeks to >5 months. Reduction of Scn8a transcript by 25% to 50% delayed seizure onset and lethality in mouse models of SCN8A encephalopathy and Dravet syndrome. Reduction of SCN8A transcript is a promising approach to treatment of intractable childhood epilepsies.
Collapse
|
42
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
43
|
Wenker IC, Teran FA, Wengert ER, Wagley PK, Panchal PS, Blizzard EA, Saraf P, Wagnon JL, Goodkin HP, Meisler MH, Richerson GB, Patel MK. Postictal Death Is Associated with Tonic Phase Apnea in a Mouse Model of Sudden Unexpected Death in Epilepsy. Ann Neurol 2021; 89:1023-1035. [PMID: 33604927 DOI: 10.1002/ana.26053] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is an unpredictable and devastating comorbidity of epilepsy that is believed to be due to cardiorespiratory failure immediately after generalized convulsive seizures. METHODS We performed cardiorespiratory monitoring of seizure-induced death in mice carrying either a p.Arg1872Trp or p.Asn1768Asp mutation in a single Scn8a allele-mutations identified from patients who died from SUDEP-and of seizure-induced death in pentylenetetrazole-treated wild-type mice. RESULTS The primary cause of seizure-induced death for all mice was apnea, as (1) apnea began during a seizure and continued for tens of minutes until terminal asystole, and (2) death was prevented by mechanical ventilation. Fatal seizures always included a tonic phase that was coincident with apnea. This tonic phase apnea was not sufficient to produce death, as it also occurred during many nonfatal seizures; however, all seizures that were fatal had tonic phase apnea. We also made the novel observation that continuous tonic diaphragm contraction occurred during tonic phase apnea, which likely contributes to apnea by preventing exhalation, and this was only fatal when breathing did not resume after the tonic phase ended. Finally, recorded seizures from a patient with developmental epileptic encephalopathy with a previously undocumented SCN8A likely pathogenic variant (p.Leu257Val) revealed similarities to those of the mice, namely, an extended tonic phase that was accompanied by apnea. INTERPRETATION We conclude that apnea coincident with the tonic phase of a seizure, and subsequent failure to resume breathing, are the determining events that cause seizure-induced death in Scn8a mutant mice. ANN NEUROL 2021;89:1023-1035.
Collapse
Affiliation(s)
- Ian C Wenker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| | - Frida A Teran
- Department of Neurology, University of Iowa, Iowa City, IA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
| | - Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA.,Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - Pravin K Wagley
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA.,Department of Neurology, University of Virginia Health System, Charlottesville, VA
| | - Payal S Panchal
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| | - Elizabeth A Blizzard
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| | - Priyanka Saraf
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| | - Jacy L Wagnon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Howard P Goodkin
- Department of Neurology, University of Virginia Health System, Charlottesville, VA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - George B Richerson
- Department of Neurology, University of Iowa, Iowa City, IA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA.,Veterans Affairs Medical Center, Iowa City, IA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| |
Collapse
|
44
|
Wengert ER, Wenker IC, Wagner EL, Wagley PK, Gaykema RP, Shin JB, Patel MK. Adrenergic Mechanisms of Audiogenic Seizure-Induced Death in a Mouse Model of SCN8A Encephalopathy. Front Neurosci 2021; 15:581048. [PMID: 33762902 PMCID: PMC7982890 DOI: 10.3389/fnins.2021.581048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death amongst patients whose seizures are not adequately controlled by current therapies. Patients with SCN8A encephalopathy have an elevated risk for SUDEP. While transgenic mouse models have provided insight into the molecular mechanisms of SCN8A encephalopathy etiology, our understanding of seizure-induced death has been hampered by the inability to reliably trigger both seizures and seizure-induced death in these mice. Here, we demonstrate that mice harboring an Scn8a allele with the patient-derived mutation N1768D (D/+) are susceptible to audiogenic seizures and seizure-induced death. In adult D/+ mice, audiogenic seizures are non-fatal and have nearly identical behavioral, electrographical, and cardiorespiratory characteristics as spontaneous seizures. In contrast, at postnatal days 20–21, D/+ mice exhibit the same seizure behavior, but have a significantly higher incidence of seizure-induced death following an audiogenic seizure. Seizure-induced death was prevented by either stimulating breathing via mechanical ventilation or by acute activation of adrenergic receptors. Conversely, in adult D/+ mice inhibition of adrenergic receptors converted normally non-fatal audiogenic seizures into fatal seizures. Taken together, our studies show that in our novel audiogenic seizure-induced death model adrenergic receptor activation is necessary and sufficient for recovery of breathing and prevention of seizure-induced death.
Collapse
Affiliation(s)
- Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States
| | - Ian C Wenker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pravin K Wagley
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Ronald P Gaykema
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Jung-Bum Shin
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
45
|
Abstract
The voltage-gated sodium channel α-subunit genes comprise a highly conserved gene family. Mutations of three of these genes, SCN1A, SCN2A and SCN8A, are responsible for a significant burden of neurological disease. Recent progress in identification and functional characterization of patient variants is generating new insights and novel approaches to therapy for these devastating disorders. Here we review the basic elements of sodium channel function that are used to characterize patient variants. We summarize a large body of work using global and conditional mouse mutants to characterize the in vivo roles of these channels. We provide an overview of the neurological disorders associated with mutations of the human genes and examples of the effects of patient mutations on channel function. Finally, we highlight therapeutic interventions that are emerging from new insights into mechanisms of sodium channelopathies.
Collapse
|
46
|
Marshall GF, Gonzalez-Sulser A, Abbott CM. Modelling epilepsy in the mouse: challenges and solutions. Dis Model Mech 2021; 14:dmm.047449. [PMID: 33619078 PMCID: PMC7938804 DOI: 10.1242/dmm.047449] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In most mouse models of disease, the outward manifestation of a disorder can be measured easily, can be assessed with a trivial test such as hind limb clasping, or can even be observed simply by comparing the gross morphological characteristics of mutant and wild-type littermates. But what if we are trying to model a disorder with a phenotype that appears only sporadically and briefly, like epileptic seizures? The purpose of this Review is to highlight the challenges of modelling epilepsy, in which the most obvious manifestation of the disorder, seizures, occurs only intermittently, possibly very rarely and often at times when the mice are not under direct observation. Over time, researchers have developed a number of ways in which to overcome these challenges, each with their own advantages and disadvantages. In this Review, we describe the genetics of epilepsy and the ways in which genetically altered mouse models have been used. We also discuss the use of induced models in which seizures are brought about by artificial stimulation to the brain of wild-type animals, and conclude with the ways these different approaches could be used to develop a wider range of anti-seizure medications that could benefit larger patient populations. Summary: This Review discusses the challenges of modelling epilepsy in mice, a condition in which the outward manifestation of the disorder appears only sporadically, and reviews possible solutions encompassing both genetic and induced models.
Collapse
Affiliation(s)
- Grant F Marshall
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, 1 George Square, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
47
|
Tidball AM, Lopez-Santiago LF, Yuan Y, Glenn TW, Margolis JL, Clayton Walker J, Kilbane EG, Miller CA, Martina Bebin E, Scott Perry M, Isom LL, Parent JM. Variant-specific changes in persistent or resurgent sodium current in SCN8A-related epilepsy patient-derived neurons. Brain 2021; 143:3025-3040. [PMID: 32968789 DOI: 10.1093/brain/awaa247] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Missense variants in the SCN8A voltage-gated sodium channel gene are linked to early-infantile epileptic encephalopathy type 13, also known as SCN8A-related epilepsy. These patients exhibit a wide spectrum of intractable seizure types, severe developmental delay, movement disorders, and elevated risk of sudden unexpected death in epilepsy. The mechanisms by which SCN8A variants lead to epilepsy are poorly understood, although heterologous expression systems and mouse models have demonstrated altered sodium current properties. To investigate these mechanisms using a patient-specific model, we generated induced pluripotent stem cells from three patients with missense variants in SCN8A: p.R1872>L (Patient 1); p.V1592>L (Patient 2); and p.N1759>S (Patient 3). Using small molecule differentiation into excitatory neurons, induced pluripotent stem cell-derived neurons from all three patients displayed altered sodium currents. Patients 1 and 2 had elevated persistent current, while Patient 3 had increased resurgent current compared to controls. Neurons from all three patients displayed shorter axon initial segment lengths compared to controls. Further analyses focused on one of the patients with increased persistent sodium current (Patient 1) and the patient with increased resurgent current (Patient 3). Excitatory cortical neurons from both patients had prolonged action potential repolarization. Using doxycycline-inducible expression of the neuronal transcription factors neurogenin 1 and 2 to synchronize differentiation of induced excitatory cortical-like neurons, we investigated network activity and response to pharmacotherapies. Both small molecule differentiated and induced patient neurons displayed similar abnormalities in action potential repolarization. Patient induced neurons showed increased burstiness that was sensitive to phenytoin, currently a standard treatment for SCN8A-related epilepsy patients, or riluzole, an FDA-approved drug used in amyotrophic lateral sclerosis and known to block persistent and resurgent sodium currents, at pharmacologically relevant concentrations. Patch-clamp recordings showed that riluzole suppressed spontaneous firing and increased the action potential firing threshold of patient-derived neurons to more depolarized potentials. Two of the patients in this study were prescribed riluzole off-label. Patient 1 had a 50% reduction in seizure frequency. Patient 3 experienced an immediate and dramatic seizure reduction with months of seizure freedom. An additional patient with a SCN8A variant in domain IV of Nav1.6 (p.V1757>I) had a dramatic reduction in seizure frequency for several months after starting riluzole treatment, but then seizures recurred. Our results indicate that patient-specific neurons are useful for modelling SCN8A-related epilepsy and demonstrate SCN8A variant-specific mechanisms. Moreover, these findings suggest that patient-specific neuronal disease modelling offers a useful platform for discovering precision epilepsy therapies.
Collapse
Affiliation(s)
- Andrew M Tidball
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Yukun Yuan
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Trevor W Glenn
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - J Clayton Walker
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Emma G Kilbane
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - E Martina Bebin
- Department of Neurology, University of Alabama Birmingham School of Medicine, Birmingham, AL, USA.,Department of Pediatrics, University of Alabama Birmingham School of Medicine, Birmingham, AL, USA
| | - M Scott Perry
- Cook Children's Health Care System, Fort Worth, Texas, USA
| | - Lori L Isom
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Ann Arbor VA Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Lenck-Santini PP, Sakkaki S. Alterations of Neuronal Dynamics as a Mechanism for Cognitive Impairment in Epilepsy. Curr Top Behav Neurosci 2021; 55:65-106. [PMID: 33454922 DOI: 10.1007/7854_2020_193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Epilepsy is commonly associated with cognitive and behavioral deficits that dramatically affect the quality of life of patients. In order to identify novel therapeutic strategies aimed at reducing these deficits, it is critical first to understand the mechanisms leading to cognitive impairments in epilepsy. Traditionally, seizures and epileptiform activity in addition to neuronal injury have been considered to be the most significant contributors to cognitive dysfunction. In this review we however highlight the role of a new mechanism: alterations of neuronal dynamics, i.e. the timing at which neurons and networks receive and process neural information. These alterations, caused by the underlying etiologies of epilepsy syndromes, are observed in both animal models and patients in the form of abnormal oscillation patterns in unit firing, local field potentials, and electroencephalogram (EEG). Evidence suggests that such mechanisms significantly contribute to cognitive impairment in epilepsy, independently of seizures and interictal epileptiform activity. Therefore, therapeutic strategies directly targeting neuronal dynamics rather than seizure reduction may significantly benefit the quality of life of patients.
Collapse
Affiliation(s)
- Pierre-Pascal Lenck-Santini
- Aix-Marseille Université, INSERM, INMED, Marseille, France. .,Department of Neurological sciences, University of Vermont, Burlington, VT, USA.
| | - Sophie Sakkaki
- Department of Neurological sciences, University of Vermont, Burlington, VT, USA.,Université de. Montpellier, CNRS, INSERM, IGF, Montpellier, France
| |
Collapse
|
49
|
Wang W, Frankel WN. Overlaps, gaps, and complexities of mouse models of Developmental and Epileptic Encephalopathy. Neurobiol Dis 2021; 148:105220. [PMID: 33301879 PMCID: PMC8547712 DOI: 10.1016/j.nbd.2020.105220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 11/28/2022] Open
Abstract
Mouse models have made innumerable contributions to understanding the genetic basis of neurological disease and pathogenic mechanisms and to therapy development. Here we consider the current state of mouse genetic models of Developmental and Epileptic Encephalopathy (DEE), representing a set of rare but devastating and largely intractable childhood epilepsies. By examining the range of mouse lines available in this rapidly moving field and by detailing both expected and unusual features in representative examples, we highlight lessons learned in an effort to maximize the full potential of this powerful resource for preclinical studies.
Collapse
Affiliation(s)
- Wanqi Wang
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America.
| | - Wayne N Frankel
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America.
| |
Collapse
|
50
|
Abstract
Voltage-gated sodium channels (VGSCs) are foundational to excitable cell function: Their coordinated passage of sodium ions into the cell is critical for the generation and propagation of action potentials throughout the nervous system. The classical paradigm of action potential physiology states that sodium passes through the membrane only transiently (1-2 milliseconds), before the channels inactivate and cease to conduct sodium ions. However, in reality, a small fraction of the total sodium current (1%-2%) remains at steady state despite prolonged depolarization. While this persistent sodium current (INaP) contributes to normal physiological functioning of neurons, accumulating evidence indicates a particularly pathogenic role for an elevated INaP in epilepsy (reviewed previously1). Due to significant advances over the past decade of epilepsy research concerning the importance of INaP in sodium channelopathies, this review seeks to summarize recent evidence and highlight promising novel anti-seizure medication strategies through preferentially targeting INaP.
Collapse
Affiliation(s)
- Eric R. Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Manoj K. Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|