1
|
Bennis K, Eustache F, Collette F, Vandewalle G, Hinault T. Daily Dynamics of Resting-State Electroencephalographic Theta and Gamma Fluctuations Are Associated With Cognitive Performance in Healthy Aging. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae152. [PMID: 39243136 DOI: 10.1093/geronb/gbae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 09/09/2024] Open
Abstract
OBJECTIVES Healthy age-related cognitive changes are highly heterogeneous across individuals. This variability is increasingly explained through the lens of spontaneous fluctuations of brain activity, now considered a powerful index of age-related changes. However, brain activity is a biological process modulated by circadian rhythms, and how these fluctuations evolve throughout the day is under investigation. METHODS We analyzed data from 101 healthy late middle-aged participants from the Cognitive Fitness in Aging study (68 women and 33 men; aged 50-69 years). Participants completed 5 electroencephalographic (EEG) recordings of spontaneous resting-state activity on the same day. We used weighted phase-lag index (wPLI) analyses as an index of the functional synchrony between brain regions couplings, and we computed daily global PLI fluctuation rates of the 5 recordings to assess the association with cognitive performance and β-amyloid and tau/neuroinflammation pathological markers. RESULTS We found that theta and gamma daily fluctuations in the salience-control executive internetwork (SN-CEN) are associated with distinct mechanisms underlying cognitive heterogeneity in aging. Higher levels of SN-CEN theta daily fluctuations appear to be deleterious for memory performance and were associated with higher tau/neuroinflammation rates. In contrast, higher levels of gamma daily fluctuations are positively associated with executive performance and were associated with lower rate of β-amyloid deposition. DISCUSSION Thus, accounting for daily EEG fluctuations of brain activity contributes to a better understanding of subtle brain changes underlying individuals' cognitive performance in healthy aging. Results also provide arguments for considering the time of day when assessing cognition for old adults in a clinical context.
Collapse
Affiliation(s)
- Kenza Bennis
- Université de Caen Normandie, Inserm, EPHE-PSL, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000 Caen, France
| | - Francis Eustache
- Université de Caen Normandie, Inserm, EPHE-PSL, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000 Caen, France
| | - Fabienne Collette
- GIGA-CRC-In Vivo Imaging, Université de Liège and Belgian National Fund for Scientific Research, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-CRC-In Vivo Imaging, Université de Liège and Belgian National Fund for Scientific Research, Liège, Belgium
| | - Thomas Hinault
- Université de Caen Normandie, Inserm, EPHE-PSL, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000 Caen, France
| |
Collapse
|
2
|
Chetty CA, Bhardwaj H, Kumar GP, Devanand T, Sekhar CSA, Aktürk T, Kiyi I, Yener G, Güntekin B, Joseph J, Adaikkan C. EEG biomarkers in Alzheimer's and prodromal Alzheimer's: a comprehensive analysis of spectral and connectivity features. Alzheimers Res Ther 2024; 16:236. [PMID: 39449097 PMCID: PMC11515355 DOI: 10.1186/s13195-024-01582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Biomarkers of Alzheimer's disease (AD) and mild cognitive impairment (MCI, or prodromal AD) are highly significant for early diagnosis, clinical trials and treatment outcome evaluations. Electroencephalography (EEG), being noninvasive and easily accessible, has recently been the center of focus. However, a comprehensive understanding of EEG in dementia is still needed. A primary objective of this study is to investigate which of the many EEG characteristics could effectively differentiate between individuals with AD or prodromal AD and healthy individuals. METHODS We collected resting state EEG data from individuals with AD, prodromal AD, and normal cognition. Two distinct preprocessing pipelines were employed to study the reliability of the extracted measures across different datasets. We extracted 41 different EEG features. We have also developed a stand-alone software application package, Feature Analyzer, as a comprehensive toolbox for EEG analysis. This tool allows users to extract 41 EEG features spanning various domains, including complexity measures, wavelet features, spectral power ratios, and entropy measures. We performed statistical tests to investigate the differences in AD or prodromal AD from age-matched cognitively normal individuals based on the extracted EEG features, power spectral density (PSD), and EEG functional connectivity. RESULTS Spectral power ratio measures such as theta/alpha and theta/beta power ratios showed significant differences between cognitively normal and AD individuals. Theta power was higher in AD, suggesting a slowing of oscillations in AD; however, the functional connectivity of the theta band was decreased in AD individuals. In contrast, we observed increased gamma/alpha power ratio, gamma power, and gamma functional connectivity in prodromal AD. Entropy and complexity measures after correcting for multiple electrode comparisons did not show differences in AD or prodromal AD groups. We thus catalogued AD and prodromal AD-specific EEG features. CONCLUSIONS Our findings reveal that the changes in power and connectivity in certain frequency bands of EEG differ in prodromal AD and AD. The spectral power, power ratios, and the functional connectivity of theta and gamma could be biomarkers for diagnosis of AD and prodromal AD, measure the treatment outcome, and possibly a target for brain stimulation.
Collapse
Affiliation(s)
| | - Harsha Bhardwaj
- Centre for Brain Research, Indian Institute of Science, CV Raman Avenue, Bangalore, 560 012, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - G Pradeep Kumar
- Centre for Brain Research, Indian Institute of Science, CV Raman Avenue, Bangalore, 560 012, India
| | - T Devanand
- Centre for Brain Research, Indian Institute of Science, CV Raman Avenue, Bangalore, 560 012, India
| | - C S Aswin Sekhar
- Centre for Brain Research, Indian Institute of Science, CV Raman Avenue, Bangalore, 560 012, India
| | - Tuba Aktürk
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Ilayda Kiyi
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylül University, Izmir, 35330, Turkey
| | - Görsev Yener
- Faculty of Medicine, Izmir University of Economics, Izmir, 35330, Turkey
- Brain Dynamics Research Center, Dokuz Eylül University, Izmir, 35330, Turkey
- Biomedicine and Genome Center, Izmir, 35340, Turkey
| | - Bahar Güntekin
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Justin Joseph
- Centre for Brain Research, Indian Institute of Science, CV Raman Avenue, Bangalore, 560 012, India
| | - Chinnakkaruppan Adaikkan
- Centre for Brain Research, Indian Institute of Science, CV Raman Avenue, Bangalore, 560 012, India.
| |
Collapse
|
3
|
Simmatis LER, Russo EE, Altug Y, Murugathas V, Janevski J, Oh D, Chiu Q, Harmsen IE, Samuel N. Towards discovery and implementation of neurophysiologic biomarkers of Alzheimer's disease using entropy methods. Neuroscience 2024; 558:105-113. [PMID: 39163898 DOI: 10.1016/j.neuroscience.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/23/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disease that leads to substantial loss of quality of life. Therapies currently available for AD do not modify the disease course and have limited efficacy in symptom control. As such, novel and precise therapies tailored to individual patients' neurophysiologic profiles are needed. Functional neuroimaging tools have demonstrated substantial potential to provide quantifiable insight into brain function in various neurologic disorders, particularly AD. Entropy, a novel analysis for better understanding the nonlinear nature of neurophysiological data, has demonstrated consistent accuracy in disease detection. This literature review characterizes the use of entropy-based analyses from functional neuroimaging tools, including electroencephalography (EEG) and magnetoencephalography (MEG), in patients with AD for disease detection, therapeutic response measurement, and providing clinical insights.
Collapse
Affiliation(s)
- Leif E R Simmatis
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Cove Neurosciences Inc., Toronto, Ontario, Canada
| | - Emma E Russo
- Cove Neurosciences Inc., Toronto, Ontario, Canada
| | | | - Vijairam Murugathas
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Cove Neurosciences Inc., Toronto, Ontario, Canada
| | - Josh Janevski
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Cove Neurosciences Inc., Toronto, Ontario, Canada
| | - Donghun Oh
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Cove Neurosciences Inc., Toronto, Ontario, Canada
| | - Queenny Chiu
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Cove Neurosciences Inc., Toronto, Ontario, Canada
| | - Irene E Harmsen
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Cove Neurosciences Inc., Toronto, Ontario, Canada
| | - Nardin Samuel
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Cove Neurosciences Inc., Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Baez S, Hernandez H, Moguilner S, Cuadros J, Santamaria‐Garcia H, Medel V, Migeot J, Cruzat J, Valdes‐Sosa PA, Lopera F, González‐Hernández A, Bonilla‐Santos J, Gonzalez‐Montealegre RA, Aktürk T, Legaz A, Altschuler F, Fittipaldi S, Yener GG, Escudero J, Babiloni C, Lopez S, Whelan R, Lucas AAF, Huepe D, Soto‐Añari M, Coronel‐Oliveros C, Herrera E, Abasolo D, Clark RA, Güntekin B, Duran‐Aniotz C, Parra MA, Lawlor B, Tagliazucchi E, Prado P, Ibanez A. Structural inequality and temporal brain dynamics across diverse samples. Clin Transl Med 2024; 14:e70032. [PMID: 39360669 PMCID: PMC11447638 DOI: 10.1002/ctm2.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Structural income inequality - the uneven income distribution across regions or countries - could affect brain structure and function, beyond individual differences. However, the impact of structural income inequality on the brain dynamics and the roles of demographics and cognition in these associations remains unexplored. METHODS Here, we assessed the impact of structural income inequality, as measured by the Gini coefficient on multiple EEG metrics, while considering the subject-level effects of demographic (age, sex, education) and cognitive factors. Resting-state EEG signals were collected from a diverse sample (countries = 10; healthy individuals = 1394 from Argentina, Brazil, Colombia, Chile, Cuba, Greece, Ireland, Italy, Turkey and United Kingdom). Complexity (fractal dimension, permutation entropy, Wiener entropy, spectral structure variability), power spectral and aperiodic components (1/f slope, knee, offset), as well as graph-theoretic measures were analysed. FINDINGS Despite variability in samples, data collection methods, and EEG acquisition parameters, structural inequality systematically predicted electrophysiological brain dynamics, proving to be a more crucial determinant of brain dynamics than individual-level factors. Complexity and aperiodic activity metrics captured better the effects of structural inequality on brain function. Following inequality, age and cognition emerged as the most influential predictors. The overall results provided convergent multimodal metrics of biologic embedding of structural income inequality characterised by less complex signals, increased random asynchronous neural activity, and reduced alpha and beta power, particularly over temporoposterior regions. CONCLUSION These findings might challenge conventional neuroscience approaches that tend to overemphasise the influence of individual-level factors, while neglecting structural factors. Results pave the way for neuroscience-informed public policies aimed at tackling structural inequalities in diverse populations.
Collapse
Affiliation(s)
- Sandra Baez
- Departamento de PsicologíaUniversidad de los AndesBogotaColombia
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
| | - Hernan Hernandez
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Sebastian Moguilner
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUSA
| | - Jhosmary Cuadros
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa MaríaValparaísoChile
- Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del TáchiraSan CristóbalVenezuela
| | - Hernando Santamaria‐Garcia
- PhD Program in NeurosciencePontificia Universidad JaverianaBogotaColombia
- Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio BogotáSan IgnacioColombia
| | - Vicente Medel
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Joaquín Migeot
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Josephine Cruzat
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | | | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, University of AntioquiaMedellínColombia
| | | | | | | | - Tuba Aktürk
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Agustina Legaz
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Cognitive Neuroscience Center, Universidad de San AndrésBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Facultad de Psicología, Universidad Nacional de CórdobaCórdobaArgentina
| | - Florencia Altschuler
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Cognitive Neuroscience Center, Universidad de San AndrésBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Sol Fittipaldi
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- School of Psychology, Trinity College DublinDublinIreland
| | - Görsev G. Yener
- Faculty of Medicine, Izmir University of EconomicsIzmirTurkey
- Brain Dynamics Multidisciplinary Research CenterDokuz Eylul UniversityIzmirTurkey
- Izmir Biomedicine and Genome CenterIzmirTurkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of EdinburghScotlandUK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology ‘V. Erspamer’Sapienza University of RomeRomeItaly
- Hospital San Raffaele CassinoCassinoFrosinoneItaly
| | - Susanna Lopez
- Department of Physiology and Pharmacology ‘V. Erspamer’Sapienza University of RomeRomeItaly
| | - Robert Whelan
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- School of Psychology, Trinity College DublinDublinIreland
| | - Alberto A Fernández Lucas
- Department of Legal MedicinePsychiatry and Pathology at the Complutense University of MadridMadridSpain
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo IbáñezPenalolenChile
| | | | - Carlos Coronel‐Oliveros
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de ValparaísoValparaísoChile
| | - Eduar Herrera
- Departamento de Estudios PsicológicosUniversidad IcesiCaliColombia
| | - Daniel Abasolo
- Faculty of Engineering and Physical Sciences, Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of SurreyGuildfordUK
| | - Ruaridh A. Clark
- Department of Electronic and Electrical EngineeringUniversity of StrathclydeGlasgowUK
- Department of Electronic and Electrical EngineeringCentre for Signal and Image ProcessingUniversity of StrathclydeGlasgowUK
| | - Bahar Güntekin
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
- Health Sciences and Technology Research Institute (SABITA)Istanbul Medipol UniversityIstanbulTurkey
| | - Claudia Duran‐Aniotz
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Mario A. Parra
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Department of Psychological Sciences and HealthUniversity of StrathclydeGlasgowUK
| | - Brian Lawlor
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Department of Psychological Sciences and HealthUniversity of StrathclydeGlasgowUK
| | - Enzo Tagliazucchi
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- University of Buenos AiresBuenos AiresArgentina
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San SebastiánSantiagoChile
| | - Agustin Ibanez
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Cognitive Neuroscience Center, Universidad de San AndrésBuenos AiresArgentina
- Trinity College Dublin, The University of DublinDublinIreland
| |
Collapse
|
5
|
McGlinchey E, Duran-Aniotz C, Akinyemi R, Arshad F, Zimmer ER, Cho H, Adewale BA, Ibanez A. Biomarkers of neurodegeneration across the Global South. THE LANCET. HEALTHY LONGEVITY 2024; 5:100616. [PMID: 39369726 PMCID: PMC11540104 DOI: 10.1016/s2666-7568(24)00132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 10/08/2024] Open
Abstract
Research on neurodegenerative diseases has predominantly focused on high-income countries in the Global North. This Series paper describes the state of biomarker evidence for neurodegeneration in the Global South, including Latin America, Africa, and countries in south, east, and southeast Asia. Latin America shows growth in fluid biomarker and neuroimaging research, with notable advancements in genetics. Research in Africa focuses on genetics and cognition but there is a paucity of data on fluid and neuroimaging biomarkers. South and east Asia, particularly India and China, has achieved substantial progress in plasma, neuroimaging, and genetic studies. However, all three regions face several challenges in the form of a lack of harmonisation, insufficient funding, and few comparative studies both within the Global South, and between the Global North and Global South. Other barriers include scarce infrastructure, lack of knowledge centralisation, genetic and cultural diversity, sociocultural stigmas, and restricted access to tools such as PET scans. However, the diverse ethnic, genetic, economic, and cultural backgrounds in the Global South present unique opportunities for bidirectional learning, underscoring the need for global collaboration to enhance the understanding of dementia and brain health.
Collapse
Affiliation(s)
- Eimear McGlinchey
- Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| | - Claudia Duran-Aniotz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile
| | - Rufus Akinyemi
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria; Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Faheem Arshad
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Eduardo R Zimmer
- Department of Pharmacology, Graduate Program in Biological Sciences: Pharmacology and Therapeutics (PPGFT) and Biochemistry (PPGBioq), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil; McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Hanna Cho
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Boluwatife Adeleye Adewale
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Agustin Ibanez
- Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile.
| |
Collapse
|
6
|
Angerbauer R, Stefani A, Zitser J, Ibrahim A, Anselmi V, Süzgün MA, Egger K, Brandauer E, Högl B, Cesari M. Temporal progression of sleep electroencephalography features in isolated rapid eye movement sleep behaviour disorder. J Sleep Res 2024:e14351. [PMID: 39322419 DOI: 10.1111/jsr.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
Previous studies indicated that patients with isolated rapid eye movement (REM) sleep behaviour disorder (iRBD) exhibit alterations in spectral electroencephalographic (EEG), spindle, and slow-wave features. As it is currently unknown how these EEG features evolve over time, this study aimed to evaluate their temporal progression in patients with iRBD in comparison to controls. We included 23 patients with iRBD and 23 controls. Two polysomnographies (baseline and follow-up) were recorded with a mean (standard deviation) interval of 4.0 (2.5) years and were automatically analysed for sleep stages, spectral bandpower, spindles, and slow waves. We used linear models to evaluate differences at each time point, and linear mixed-effects models to analyse differences in temporal progression between the groups. At baseline, patients with iRBD presented EEG slowing both in REM (expressed as significantly reduced α-bandpower and increased δ-bandpower in frontal channels) and in non-REM (NREM) sleep (significantly increased slow-to-fast ratio in central channels). These differences vanished at follow-up. In both REM and NREM sleep, γ-bandpower was increased at follow-up in patients with iRBD, resulting in significantly different temporal progression between groups (in occipital channels during REM sleep and frontal channels during NREM sleep). Relative power of sleep spindles was significantly higher at baseline in patients with iRBD in frontal channels, but we observed a significant reduction over time in central channels. Finally, slow waves were significantly shorter in patients with iRBD at both time-points. Our results underscore the need of considering longitudinal data when analysing sleep EEG features in patients with iRBD. The observed temporal changes as markers of progression of neurodegeneration require further investigations.
Collapse
Affiliation(s)
- Raphael Angerbauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jennifer Zitser
- Sleep Center and Movement Disorders Unit, Neurology Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Abubaker Ibrahim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Victoria Anselmi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Merve Aktan Süzgün
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kristin Egger
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Brandauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matteo Cesari
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Perez V, Duque A, Hidalgo V, Salvador A. EEG frequency bands in subjective cognitive decline: A systematic review of resting state studies. Biol Psychol 2024; 191:108823. [PMID: 38815895 DOI: 10.1016/j.biopsycho.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
As the older population continues to expand, there is a growing prevalence of individuals who experience subjective cognitive decline (SCD), characterized by self-reported failures in cognitive function and an increased risk of cognitive impairment. Recognizing that preventive interventions are typically more effective in preclinical stages, current research endeavors to focus on identifying early biological markers of SCD using resting-state electroencephalogram (rsEEG) methods. To do so, a systematic literature review covering the past 20 years was conducted following PRISMA guidelines, in order to consolidate findings on rsEEG frequency bands in individuals with SCD. Pubmed and Web of Science databases were searched for rsEEG studies of people with SCD. Quality assessments were completed using a modified Newcastle-Ottawa scale. A total of 564 articles published from December 2003 to December 2023 were reviewed, and significant aspects of these papers were analyzed to provide a general overview of the research on this technique. After removing unrelated articles, nine articles were selected for the present study. The review emphasizes patterns in frequency band activity, revealing that individuals classified as SCD exhibited increased theta power than healthy controls, but decreased than MCI. However, findings for the alpha, delta, and beta bands were inconsistent, demonstrating variability across studies and highlighting the need for further research. Although the rsEEG of frequency bands emerges as a promising early biomarker, there is a noteworthy need to establish uniform standards and consistent measurement approaches in order to ensure the reliability and comparability of the results obtained in the research.
Collapse
Affiliation(s)
- Vanesa Perez
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain; Valencian International University, Valencia, Spain
| | | | - Vanesa Hidalgo
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain; Department of Psychology and Sociology, Area of Psychobiology, University of Zaragoza, Teruel, Spain.
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain
| |
Collapse
|
8
|
Buchanan RA, Wang Y, May JM, Harrison FE. Ascorbate insufficiency disrupts glutamatergic signaling and alters electroencephalogram phenotypes in a mouse model of Alzheimer's disease. Neurobiol Dis 2024; 199:106602. [PMID: 39004234 DOI: 10.1016/j.nbd.2024.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Clinical studies have reported that increased epileptiform and subclinical epileptiform activity can be detected in many patients with an Alzheimer's disease (AD) diagnosis using electroencephalogram (EEG) and this may correlate with poorer cognition. Ascorbate may have a specific role as a neuromodulator in AD as it is released concomitantly with glutamate reuptake following excitatory neurotransmission. Insufficiency may therefore result in an exacerbated excitatory/inhibitory imbalance in neuronal signaling. Using a mouse model of AD that requires dietary ascorbate (Gulo-/-APPswe/PSEN1dE9), EEG was recorded at baseline and during 4 weeks of ascorbate depletion in young (5-month-old) and aged (20-month-old) animals. Data were scored for changes in quantity of spike trains, individual spikes, sleep-wake rhythms, sleep fragmentation, and brainwave power bands during light periods each week. We found an early increase in neuronal spike discharges with age and following ascorbate depletion in AD model mice and not controls, which did not correlate with brain amyloid load. Our data also show more sleep fragmentation with age and with ascorbate depletion. Additionally, changes in brain wave activity were observed within different vigilance states in both young and aged mice, where Gulo-/-APPswe/PSEN1dE9 mice had shifts towards higher frequency bands (alpha, beta, and gamma) and ascorbate depletion resulted in shifts towards lower frequency bands (delta and theta). Microarray data supported ascorbate insufficiency altering glutamatergic transmission through the decreased expression of glutamate related genes, however no changes in protein expression of glutamate reuptake transporters were observed. These data suggest that maintaining optimal brain ascorbate levels may support normal brain electrical activity and sleep patterns, particularly in AD patient populations where disruptions are observed.
Collapse
Affiliation(s)
- Rebecca A Buchanan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Yuhan Wang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James M May
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fiona E Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
9
|
Xue C, Zheng D, Ruan Y, Guo W, Hu J. Alteration in temporal-cerebellar effective connectivity can effectively distinguish stable and progressive mild cognitive impairment. Front Aging Neurosci 2024; 16:1442721. [PMID: 39267723 PMCID: PMC11390694 DOI: 10.3389/fnagi.2024.1442721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Background Stable mild cognitive impairment (sMCI) and progressive mild cognitive impairment (pMCI) represent two distinct subtypes of mild cognitive impairment (MCI). Early and effective diagnosis and accurate differentiation between sMCI and pMCI are crucial for administering targeted early intervention and preventing cognitive decline. This study investigated the intrinsic dysconnectivity patterns in sMCI and pMCI based on degree centrality (DC) and effective connectivity (EC) analyses, with the goal of uncovering shared and distinct neuroimaging mechanisms between subtypes. Methods Resting-state functional magnetic resonance imaging combined with DC analysis was used to explore the functional connectivity density in 42 patients with sMCI, 31 patients with pMCI, and 82 healthy control (HC) participants. Granger causality analysis was used to assess changes in EC based on the significant clusters found in DC. Furthermore, correlation analysis was conducted to examine the associations between altered DC/EC values and cognitive function. Receiver operating characteristic curve analysis was performed to determine the accuracy of abnormal DC and EC values in distinguishing sMCI from pMCI. Results Compared with the HC group, both pMCI and sMCI groups exhibited increased DC in the left inferior temporal gyrus (ITG), left posterior cerebellum lobe (CPL), and right cerebellum anterior lobe (CAL), along with decreased DC in the left medial frontal gyrus. Moreover, the sMCI group displayed reduced EC from the right CAL to bilateral CPL, left superior temporal gyrus, and bilateral caudate compared with HC. pMCI demonstrated elevated EC from the right CAL to left ITG, which was linked to episodic memory and executive function. Notably, the EC from the right CAL to the right ITG effectively distinguished sMCI from pMCI, with sensitivity, specificity, and accuracy of 0.5806, 0.9512, and 0.828, respectively. Conclusion This study uncovered shared and distinct alterations in DC and EC between sMCI and pMCI, highlighting their involvement in cognitive function. Of particular significance are the unidirectional EC disruptions from the cerebellum to the temporal lobe, which serve as a discriminating factor between sMCI and pMCI and provide a new perspective for understanding the temporal-cerebellum. These findings offer novel insights into the neural circuit mechanisms involving the temporal-cerebellum connection in MCI.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Darui Zheng
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yiming Ruan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxuan Guo
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Hu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Al-Ezzi A, Arechavala RJ, Butler R, Nolty A, Kang JJ, Shimojo S, Wu DA, Fonteh AN, Kleinman MT, Kloner RA, Arakaki X. Disrupted brain functional connectivity as early signature in cognitively healthy individuals with pathological CSF amyloid/tau. Commun Biol 2024; 7:1037. [PMID: 39179782 PMCID: PMC11344156 DOI: 10.1038/s42003-024-06673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Alterations in functional connectivity (FC) have been observed in individuals with Alzheimer's disease (AD) with elevated amyloid (Aβ) and tau. However, it is not yet known whether directed FC is already influenced by Aβ and tau load in cognitively healthy (CH) individuals. A 21-channel electroencephalogram (EEG) was used from 46 CHs classified based on cerebrospinal fluid (CSF) Aβ tau ratio: pathological (CH-PAT) or normal (CH-NAT). Directed FC was estimated with Partial Directed Coherence in frontal, temporal, parietal, central, and occipital regions. We also examined the correlations between directed FC and various functional metrics, including neuropsychology, cognitive reserve, MRI volumetrics, and heart rate variability between both groups. Compared to CH-NATs, the CH-PATs showed decreased FC from the temporal regions, indicating a loss of relative functional importance of the temporal regions. In addition, frontal regions showed enhanced FC in the CH-PATs compared to CH-NATs, suggesting neural compensation for the damage caused by the pathology. Moreover, CH-PATs showed greater FC in the frontal and occipital regions than CH-NATs. Our findings provide a useful and non-invasive method for EEG-based analysis to identify alterations in brain connectivity in CHs with a pathological versus normal CSF Aβ/tau.
Collapse
Affiliation(s)
- Abdulhakim Al-Ezzi
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Ryan Butler
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Anne Nolty
- Fuller Theological Seminary, Pasadena, CA, USA
| | | | - Shinsuke Shimojo
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Daw-An Wu
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Robert A Kloner
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
- Department of Cardiovascular Research, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Xianghong Arakaki
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.
| |
Collapse
|
11
|
Lim L. Modifying Alzheimer's disease pathophysiology with photobiomodulation: model, evidence, and future with EEG-guided intervention. Front Neurol 2024; 15:1407785. [PMID: 39246604 PMCID: PMC11377238 DOI: 10.3389/fneur.2024.1407785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
This manuscript outlines a model of Alzheimer's Disease (AD) pathophysiology in progressive layers, from its genesis to the development of biomarkers and then to symptom expression. Genetic predispositions are the major factor that leads to mitochondrial dysfunction and subsequent amyloid and tau protein accumulation, which have been identified as hallmarks of AD. Extending beyond these accumulations, we explore a broader spectrum of pathophysiological aspects, including the blood-brain barrier, blood flow, vascular health, gut-brain microbiodata, glymphatic flow, metabolic syndrome, energy deficit, oxidative stress, calcium overload, inflammation, neuronal and synaptic loss, brain matter atrophy, and reduced growth factors. Photobiomodulation (PBM), which delivers near-infrared light to selected brain regions using portable devices, is introduced as a therapeutic approach. PBM has the potential to address each of these pathophysiological aspects, with data provided by various studies. They provide mechanistic support for largely small published clinical studies that demonstrate improvements in memory and cognition. They inform of PBM's potential to treat AD pending validation by large randomized controlled studies. The presentation of brain network and waveform changes on electroencephalography (EEG) provide the opportunity to use these data as a guide for the application of various PBM parameters to improve outcomes. These parameters include wavelength, power density, treatment duration, LED positioning, and pulse frequency. Pulsing at specific frequencies has been found to influence the expression of waveforms and modifications of brain networks. The expression stems from the modulation of cellular and protein structures as revealed in recent studies. These findings provide an EEG-based guide for the use of artificial intelligence to personalize AD treatment through EEG data feedback.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON, Canada
| |
Collapse
|
12
|
Hernandez H, Baez S, Medel V, Moguilner S, Cuadros J, Santamaria-Garcia H, Tagliazucchi E, Valdes-Sosa PA, Lopera F, OchoaGómez JF, González-Hernández A, Bonilla-Santos J, Gonzalez-Montealegre RA, Aktürk T, Yıldırım E, Anghinah R, Legaz A, Fittipaldi S, Yener GG, Escudero J, Babiloni C, Lopez S, Whelan R, Lucas AAF, García AM, Huepe D, Caterina GD, Soto-Añari M, Birba A, Sainz-Ballesteros A, Coronel C, Herrera E, Abasolo D, Kilborn K, Rubido N, Clark R, Herzog R, Yerlikaya D, Güntekin B, Parra MA, Prado P, Ibanez A. Brain health in diverse settings: How age, demographics and cognition shape brain function. Neuroimage 2024; 295:120636. [PMID: 38777219 DOI: 10.1016/j.neuroimage.2024.120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.
Collapse
Affiliation(s)
- Hernan Hernandez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland
| | - Vicente Medel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Harvard Medical School, Boston, MA, USA
| | - Jhosmary Cuadros
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal 5001, Venezuela
| | - Hernando Santamaria-Garcia
- Pontificia Universidad Javeriana (PhD Program in Neuroscience) Bogotá, San Ignacio, Colombia; Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; University of Buenos Aires, Argentina
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Sciences Technology of China, Chengdu, China; Cuban Neuroscience Center, La Habana, Cuba
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia
| | | | | | | | | | - Tuba Aktürk
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Ebru Yıldırım
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Renato Anghinah
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Traumatic Brain Injury Cognitive Rehabilitation Out-Patient Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Agustina Legaz
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Görsev G Yener
- Faculty of Medicine, Izmir University of Economics, 35330, Izmir, Turkey; Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of Edinburgh, Scotland, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, (FR), Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Robert Whelan
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Alberto A Fernández Lucas
- Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Adolfo M García
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Cognitive Neuroscience Center, Universidad de San Andréss, Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez
| | - Gaetano Di Caterina
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Agustina Birba
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | | | - Carlos Coronel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Daniel Abasolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Kerry Kilborn
- School of Psychology, University of Glasgow, Glasgow, Scotland, UK
| | - Nicolás Rubido
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ruaridh Clark
- Centre for Signal and Image Processing, Department of Electronic and Electrical Engineering, University of Strathclyde, UK
| | - Ruben Herzog
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris 75013, France
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Bahar Güntekin
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Biophysics, School of Medicine, Istanbul Medipol University, Turkey
| | - Mario A Parra
- Department of Psychological Sciences and Health, University of Strathclyde, United Kingdom and Associate Researcher of the Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Agustin Ibanez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA; Cognitive Neuroscience Center, Universidad de San Andrés and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
13
|
Park Y, Yoon E, Park J, Kim JS, Han JW, Bae JB, Kim SS, Kim DW, Woo SJ, Park J, Lee W, Yoo S, Kim KW. White matter microstructural integrity as a key to effective propagation of gamma entrainment in humans. GeroScience 2024:10.1007/s11357-024-01281-2. [PMID: 39004653 DOI: 10.1007/s11357-024-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Gamma entrainment through sensory stimulation has the potential to reduce the pathology of Alzheimer's disease in mouse models. However, clinical trials in Alzheimer's disease (AD) patients have yielded inconsistent results, necessitating further investigation. This single-center pre-post intervention study aims to explore the influence of white matter microstructural integrity on gamma rhythm propagation from the visual cortex to AD-affected regions in 31 cognitively normal volunteers aged ≥ 65. Gamma rhythm propagation induced by optimal FLS was measured. Diffusion tensor imaging was employed to assess the integrity of white matter tracts of interest. After excluding 5 participants with a deficit in steady-state visually evoked potentials, 26 participants were included in the final analysis. In the linear regression analyses, gamma entrainment was identified as a significant predictor of gamma propagation (p < 0.001). Furthermore, the study identified white matter microstructural integrity as a significant predictor of gamma propagation by flickering light stimulation (p < 0.05), which was specific to tracts that connect occipital and temporal or frontal regions. These findings indicate that, despite robust entrainment of gamma rhythms in the visual cortex, their propagation to other regions may be impaired if the microstructural integrity of the white matter tracts connecting the visual cortex to other areas is compromised. Consequently, our findings have expanded our understanding of the prerequisites for effective gamma entrainment and suggest that future clinical trials utilizing visual stimulation for gamma entrainment should consider white matter tract microstructural integrity for candidate selection and outcome analysis.
Collapse
Affiliation(s)
- Yeseung Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Euisuk Yoon
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Jieun Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Jun Sung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang-Su Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jaehyeok Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wheesung Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Seunghyup Yoo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea.
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea.
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Korea.
- Department of Health Science and Technology, Seoul National University Graduate School of Convergence Science and Technology, Suwon, Korea.
- Department of Neuropsychiatry, College of Medicine, Seoul National University, Seoul, Korea.
- Seoul National University Bundang Hospital, 82, Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
14
|
Jiang D, Yan L, Mayrand F. Emotion expressions and cognitive impairments in the elderly: review of the contactless detection approach. Front Digit Health 2024; 6:1335289. [PMID: 39040877 PMCID: PMC11260803 DOI: 10.3389/fdgth.2024.1335289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
The aging population in Canada has been increasing continuously throughout the past decades. Amongst this demographic, around 11% suffer from some form of cognitive decline. While diagnosis through traditional means (i.e., Magnetic Resonance Imagings (MRIs), positron emission tomography (PET) scans, cognitive assessments, etc.) has been successful at detecting this decline, there remains unexplored measures of cognitive health that could reduce stress and cost for the elderly population, including approaches for early detection and preventive methods. Such efforts could additionally contribute to reducing the pressure and stress on the Canadian healthcare system, as well as improve the quality of life of the elderly population. Previous evidence has demonstrated emotional facial expressions being altered in individuals with various cognitive conditions such as dementias, mild cognitive impairment, and geriatric depression. This review highlights the commonalities among these cognitive health conditions, and research behind the contactless assessment methods to monitor the health and cognitive well-being of the elderly population through emotion expression. The contactless detection approach covered by this review includes automated facial expression analysis (AFEA), electroencephalogram (EEG) technologies and heart rate variability (HRV). In conclusion, a discussion of the potentials of the existing technologies and future direction of a novel assessment design through fusion of AFEA, EEG and HRV measures to increase detection of cognitive decline in a contactless and remote manner will be presented.
Collapse
Affiliation(s)
- Di Jiang
- Medical Devices Research Centre, National Research Council of Canada, Boucherville, QC, Canada
| | - Luowei Yan
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Florence Mayrand
- Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Nencha U, Rigoni I, Ribaldi F, Altomare D, Seeck M, Garibotto V, Vulliémoz S, Frisoni GB. Alterations in gamma frequency oscillations correlate with cortical tau deposition in Alzheimer's disease. Neurobiol Aging 2024; 139:1-4. [PMID: 38574424 DOI: 10.1016/j.neurobiolaging.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
We assessed the relationship of gamma oscillations with tau deposition in Alzheimer's disease (AD) and other cognitive diseases, as both are altered during the disease course and relate to neurodegeneration. We retrospectively analyzed data from 7 AD, tau positive patients and 9 tau negative patients, who underwent cerebral amyloid PET and tau PET, and EEG within 12 months. Relative gamma power was higher in tau positive (AD) patients than in tau negative patients (p < .05). In tau positive AD patients, tau burden was associated with a linear increase in gamma power (p < .05), while no association was present in the tau negative group nor with amyloid-β burden in either group. Thus, increase in the gamma power might represent a novel biomarker for tau driven neurodegeneration.
Collapse
Affiliation(s)
- Umberto Nencha
- Geneva Memory Center, Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland; Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.
| | - Isotta Rigoni
- EEG and Epilepsy Unit, Division of Neurology, Department of Clinical Neurosciences, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Federica Ribaldi
- Geneva Memory Center, Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland; Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Daniele Altomare
- Geneva Memory Center, Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland; Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland; Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, ASST Spedali Civili, Brescia, Italy
| | - Margitta Seeck
- EEG and Epilepsy Unit, Division of Neurology, Department of Clinical Neurosciences, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland; NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland, Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, Division of Neurology, Department of Clinical Neurosciences, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Giovanni B Frisoni
- Geneva Memory Center, Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland; Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
17
|
Yu WY, Sun TH, Hsu KC, Wang CC, Chien SY, Tsai CH, Yang YW. Comparative analysis of machine learning algorithms for Alzheimer's disease classification using EEG signals and genetic information. Comput Biol Med 2024; 176:108621. [PMID: 38763067 DOI: 10.1016/j.compbiomed.2024.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairments, and behavioral changes. The presence of abnormal beta-amyloid plaques and tau protein tangles in the brain is known to be associated with AD. However, current limitations of imaging technology hinder the direct detection of these substances. Consequently, researchers are exploring alternative approaches, such as indirect assessments involving monitoring brain signals, cognitive decline levels, and blood biomarkers. Recent studies have highlighted the potential of integrating genetic information into these approaches to enhance early detection and diagnosis, offering a more comprehensive understanding of AD pathology beyond the constraints of existing imaging methods. Our study utilized electroencephalography (EEG) signals, genotypes, and polygenic risk scores (PRSs) as features for machine learning models. We compared the performance of gradient boosting (XGB), random forest (RF), and support vector machine (SVM) to determine the optimal model. Statistical analysis revealed significant correlations between EEG signals and clinical manifestations, demonstrating the ability to distinguish the complexity of AD from other diseases by using genetic information. By integrating EEG with genetic data in an SVM model, we achieved exceptional classification performance, with an accuracy of 0.920 and an area under the curve of 0.916. This study presents a novel approach of utilizing real-time EEG data and genetic background information for multimodal machine learning. The experimental results validate the effectiveness of this concept, providing deeper insights into the actual condition of patients with AD and overcoming the limitations associated with single-oriented data.
Collapse
Affiliation(s)
- Wei-Yang Yu
- Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Ting-Hsuan Sun
- Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Kai-Cheng Hsu
- Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan; Department of Neurology, China Medical University Hospital, Taichung, 40447, Taiwan; Department of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chia-Chun Wang
- Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Shang-Yu Chien
- Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chon-Haw Tsai
- Department of Neurology, China Medical University Hospital, Taichung, 40447, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan; Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, 40447, Taiwan; Neuroscience and Brain Disease Center, College of Medicine, China Medical University, 40402, Taichung, Taiwan
| | - Yu-Wan Yang
- Department of Neurology, China Medical University Hospital, Taichung, 40447, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
18
|
Biačková N, Adamová A, Klírová M. Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review. Eur Arch Psychiatry Clin Neurosci 2024; 274:803-826. [PMID: 37682331 PMCID: PMC11127835 DOI: 10.1007/s00406-023-01687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.
Collapse
Affiliation(s)
- Nina Biačková
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Adamová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Klírová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
19
|
Wan W, Gu Z, Peng CK, Cui X. Beyond Frequency Bands: Complementary-Ensemble-Empirical-Mode-Decomposition-Enhanced Microstate Sequence Non-Randomness Analysis for Aiding Diagnosis and Cognitive Prediction of Dementia. Brain Sci 2024; 14:487. [PMID: 38790465 PMCID: PMC11118442 DOI: 10.3390/brainsci14050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Exploring the spatiotemporal dynamic patterns of multi-channel electroencephalography (EEG) is crucial for interpreting dementia and related cognitive decline. Spatiotemporal patterns of EEG can be described through microstate analysis, which provides a discrete approximation of the continuous electric field patterns generated by the brain cortex. Here, we propose a novel microstate spatiotemporal dynamic indicator, termed the microstate sequence non-randomness index (MSNRI). The essence of the method lies in initially generating a sequence of microstate transition patterns through state space compression of EEG data using microstate analysis. Following this, we assess the non-randomness of these microstate patterns using information-based similarity analysis. The results suggest that this MSNRI metric is a potential marker for distinguishing between health control (HC) and frontotemporal dementia (FTD) (HC vs. FTD: 6.958 vs. 5.756, p < 0.01), as well as between HC and populations with Alzheimer's disease (AD) (HC vs. AD: 6.958 vs. 5.462, p < 0.001). Healthy individuals exhibit more complex macroscopic structures and non-random spatiotemporal patterns of microstates, whereas dementia disorders lead to more random spatiotemporal patterns. Additionally, we extend the proposed method by integrating the Complementary Ensemble Empirical Mode Decomposition (CEEMD) method to explore spatiotemporal dynamic patterns of microstates at specific frequency scales. Moreover, we assessed the effectiveness of this innovative method in predicting cognitive scores. The results demonstrate that the incorporation of CEEMD-enhanced microstate dynamic indicators significantly improved the prediction accuracy of Mini-Mental State Examination (MMSE) scores (R2 = 0.940). The CEEMD-enhanced MSNRI method not only aids in the exploration of large-scale neural changes in populations with dementia but also offers a robust tool for characterizing the dynamics of EEG microstate transitions and their impact on cognitive function.
Collapse
Affiliation(s)
- Wang Wan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (W.W.); (Z.G.)
- Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing 210096, China;
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (W.W.); (Z.G.)
| | - Chung-Kang Peng
- Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing 210096, China;
- Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xingran Cui
- Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing 210096, China;
- Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
20
|
L'esperance OJ, McGhee J, Davidson G, Niraula S, Smith AS, Sosunov A, Yan SS, Subramanian J. Functional connectivity favors aberrant visual network c-Fos expression accompanied by cortical synapse loss in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.05.522900. [PMID: 36712054 PMCID: PMC9881957 DOI: 10.1101/2023.01.05.522900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, sensory network dysfunction has received comparatively less attention despite compelling evidence of its significance in both Alzheimer's disease patients and mouse models. We recently found that neurons in the primary visual cortex of an AD mouse model expressing human amyloid protein precursor with the Swedish and Indiana mutations (hAPP mutations) exhibit aberrant c-Fos expression and altered synaptic structures at a pre-amyloid plaque stage. However, it is unclear whether aberrant c-Fos expression and synaptic pathology vary across the broader visual network and to what extent c-Fos abnormality in the cortex is inherited through functional connectivity. Using both sexes of 4-6-month AD model mice with hAPP mutations (J20[PDGF-APPSw, Ind]), we found that cortical regions of the visual network show aberrant c-Fos expression and impaired experience-dependent modulation while subcortical regions do not. Interestingly, the average network-wide functional connectivity strength of a brain region in wild type (WT) mice significantly predicts its aberrant c-Fos expression, which in turn correlates with impaired experience-dependent modulation in the AD model. Using in vivo two-photon and ex vivo imaging of presynaptic termini, we observed a subtle yet selective weakening of excitatory cortical synapses in the visual cortex. Intriguingly, the change in the size distribution of cortical boutons in the AD model is downscaled relative to those in WT mice, suggesting that synaptic weakening may reflect an adaptation to aberrant activity. Our observations suggest that cellular and synaptic abnormalities in the AD model represent a maladaptive transformation of the baseline physiological state seen in WT conditions rather than entirely novel and unrelated manifestations.
Collapse
|
21
|
Coronel‐Oliveros C, Gómez RG, Ranasinghe K, Sainz‐Ballesteros A, Legaz A, Fittipaldi S, Cruzat J, Herzog R, Yener G, Parra M, Aguillon D, Lopera F, Santamaria‐Garcia H, Moguilner S, Medel V, Orio P, Whelan R, Tagliazucchi E, Prado P, Ibañez A. Viscous dynamics associated with hypoexcitation and structural disintegration in neurodegeneration via generative whole-brain modeling. Alzheimers Dement 2024; 20:3228-3250. [PMID: 38501336 PMCID: PMC11095480 DOI: 10.1002/alz.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepresented populations. Electroencephalography (EEG) is a high temporal resolution, cost-effective technique for studying dementia globally, but lacks mechanistic models and produces non-replicable results. METHODS We developed a generative whole-brain model that combines EEG source-level metaconnectivity, anatomical priors, and a perturbational approach. This model was applied to Global South participants (AD, bvFTD, and healthy controls). RESULTS Metaconnectivity outperformed pairwise connectivity and revealed more viscous dynamics in patients, with altered metaconnectivity patterns associated with multimodal disease presentation. The biophysical model showed that connectome disintegration and hypoexcitability triggered altered metaconnectivity dynamics and identified critical regions for brain stimulation. We replicated the main results in a second subset of participants for validation with unharmonized, heterogeneous recording settings. DISCUSSION The results provide a novel agenda for developing mechanistic model-inspired characterization and therapies in clinical, translational, and computational neuroscience settings.
Collapse
Affiliation(s)
- Carlos Coronel‐Oliveros
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV)Universidad de ValparaísoValparaísoChile
| | - Raúl Gónzalez Gómez
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Center for Social and Cognitive NeuroscienceSchool of Psychology, Universidad Adolfo IbáñezSantiagoChile
| | - Kamalini Ranasinghe
- Memory and Aging CenterDepartment of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
| | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
| | - Gorsev Yener
- Izmir University of Economics, Faculty of Medicine, Fevzi Çakmak, Balçova/İzmirSakaryaTurkey
- Dokuz Eylül University, Brain Dynamics Multidisciplinary Research Center, KonakAlsancakTurkey
| | - Mario Parra
- School of Psychological Sciences and HealthUniversity of StrathclydeGlasgowScotland
| | - David Aguillon
- Neuroscience Research Group, University of AntioquiaBogotáColombia
| | - Francisco Lopera
- Neuroscience Research Group, University of AntioquiaBogotáColombia
| | - Hernando Santamaria‐Garcia
- Pontificia Universidad Javeriana, PhD Program of NeuroscienceBogotáColombia
- Hospital Universitario San Ignacio, Center for Memory and Cognition IntellectusBogotáColombia
| | - Sebastián Moguilner
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Brain and Mind Centre, The University of SydneySydneyNew South WalesAustralia
- Department of NeuroscienceUniversidad de Chile, IndependenciaSantiagoChile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV)Universidad de ValparaísoValparaísoChile
- Instituto de NeurocienciaFacultad de Ciencias, Universidad de Valparaíso, Playa AnchaValparaísoChile
| | - Robert Whelan
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Buenos Aires Physics Institute and Physics DepartmentUniversity of Buenos Aires, Intendente Güiraldes 2160 – Ciudad UniversitariaBuenos AiresArgentina
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la RehabilitaciónUniversidad San Sebastián, Región MetropolitanaSantiagoChile
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| |
Collapse
|
22
|
van Nifterick AM, Scheijbeler EP, Gouw AA, de Haan W, Stam CJ. Local signal variability and functional connectivity: Sensitive measures of the excitation-inhibition ratio? Cogn Neurodyn 2024; 18:519-537. [PMID: 38699618 PMCID: PMC11061092 DOI: 10.1007/s11571-023-10003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/08/2023] [Accepted: 08/13/2023] [Indexed: 05/05/2024] Open
Abstract
A novel network version of permutation entropy, the inverted joint permutation entropy (JPEinv), holds potential as non-invasive biomarker of abnormal excitation-inhibition (E-I) ratio in Alzheimer's disease (AD). In this computational modelling study, we test the hypotheses that this metric, and related measures of signal variability and functional connectivity, are sensitive to altered E-I ratios. The E-I ratio in each neural mass of a whole-brain computational network model was systematically varied. We evaluated whether JPEinv, local signal variability (by permutation entropy) and functional connectivity (by weighted symbolic mutual information (wsMI)) were related to E-I ratio, on whole-brain and regional level. The hub disruption index can identify regions primarily affected in terms of functional connectivity strength (or: degree) by the altered E-I ratios. Analyses were performed for a range of coupling strengths, filter and time-delay settings. On whole-brain level, higher E-I ratios were associated with higher functional connectivity (by JPEinv and wsMI) and lower local signal variability. These relationships were nonlinear and depended on the coupling strength, filter and time-delay settings. On regional level, hub-like regions showed a selective decrease in functional degree (by JPEinv and wsMI) upon a lower E-I ratio, and non-hub-like regions showed a selective increase in degree upon a higher E-I ratio. These results suggest that abnormal functional connectivity and signal variability, as previously reported in patients across the AD continuum, can inform us about altered E-I ratios. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-10003-x.
Collapse
Affiliation(s)
- Anne M. van Nifterick
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Elliz P. Scheijbeler
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Alida A. Gouw
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Yang L, Xu C, Qin Y, Chen K, Xie Y, Zhou X, Liu T, Tan S, Liu J, Yao D. Exploring resting-state EEG oscillations in patients with Neuromyelitis Optica Spectrum Disorder. Brain Res Bull 2024; 208:110900. [PMID: 38364986 DOI: 10.1016/j.brainresbull.2024.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Quantitative resting-state electroencephalography (rs-EEG) is a convenient method for characterizing the functional impairments and adaptations of the brain that has been shown to be valuable for assessing many neurological and psychiatric disorders, especially in monitoring disease status and assisting neuromodulation treatment. However, it has not yet been explored in patients with neuromyelitis optica spectrum disorder (NMOSD). This study aimed to investigate the rs-EEG features of NMOSD patients and explore the rs-EEG features related to disease characteristics and complications (such as anxiety, depression, and fatigue). METHODS A total of 32 NMOSD patients and 20 healthy controls (HCs) were recruited; their demographic and disease information were collected, and their anxiety, depression, and fatigue symptoms were evaluated. The rs-EEG power spectra of all the participants were obtained. After excluding the participants with low-quality rs-EEG data during processing, statistical analysis was conducted based on the clinical information and rs-EEG data of 29 patients and 19 HCs. The rs-EEG power (the mean spectral energy (MSE) of absolute power and relative power in all frequency bands, as well as the specific power for all electrode sites) of NMOSD patients and HCs was compared. Furthermore, correlation analyses were performed between rs-EEG power and other variables for NMOSD patients (including the disease characteristics and complications). RESULTS The distribution of the rs-EEG power spectra in NMOSD patients was similar to that in HCs. The dominant alpha-peaks shifted significantly towards a lower frequency for patients when compared to HCs. The delta and theta power was significantly increased in the NMOSD group compared to that in the HC group. The alpha oscillation power was found to be significantly negatively associated with the degree of anxiety (reflected by the anxiety subscore of hospital anxiety and depression scale (HADS)) and the degree of depression (reflected by the depression subscore of HADS). The gamma oscillation power was revealed to be significantly positively correlated with the fatigue severity scale (FSS) score, while further analysis indicated that the electrode sites of almost the whole brain region showing correlations with fatigue. Regarding the disease variables, no statistically significant rs-EEG features were related to the main disease features in NMOSD patients. CONCLUSION The results of this study suggest that the rs-EEG power spectra of NMOSD patients show increased slow oscillations and are potential biomarkers of widespread white matter microstructural damage in NMOSD. Moreover, this study revealed the rs-EEG features associated with anxiety, depression, and fatigue in NMOSD patients, which might help in the evaluation of these complications and the development of neuromodulation treatment. Quantitative rs-EEG analysis may play an important role in the management of NMOSD patients, and future studies are warranted to more comprehensively understand its application value.
Collapse
Affiliation(s)
- Lili Yang
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Congyu Xu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yun Qin
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kai Chen
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Xie
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Zhou
- Department of Psychosomatic, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tiejun Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, Chengdu, China.
| | - Jie Liu
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
24
|
Chmiel J, Rybakowski F, Leszek J. EEG in Down Syndrome-A Review and Insights into Potential Neural Mechanisms. Brain Sci 2024; 14:136. [PMID: 38391711 PMCID: PMC10886507 DOI: 10.3390/brainsci14020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction: Down syndrome (DS) stands out as one of the most prevalent genetic disorders, imposing a significant burden on both society and the healthcare system. Scientists are making efforts to understand the neural mechanisms behind the pathophysiology of this disorder. Among the valuable methods for studying these mechanisms is electroencephalography (EEG), a non-invasive technique that measures the brain's electrical activity, characterised by its excellent temporal resolution. This review aims to consolidate studies examining EEG usage in individuals with DS. The objective was to identify shared elements of disrupted EEG activity and, crucially, to elucidate the neural mechanisms underpinning these deviations. Searches were conducted on Pubmed/Medline, Research Gate, and Cochrane databases. Results: The literature search yielded 17 relevant articles. Despite the significant time span, small sample size, and overall heterogeneity of the included studies, three common features of aberrant EEG activity in people with DS were found. Potential mechanisms for this altered activity were delineated. Conclusions: The studies included in this review show altered EEG activity in people with DS compared to the control group. To bolster these current findings, future investigations with larger sample sizes are imperative.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | - Filip Rybakowski
- Department and Clinic of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
25
|
Steele AG, Faraji AH, Contreras-Vidal JL. Electrospinography for non-invasively recording spinal sensorimotor networks in humans. J Neural Eng 2024; 20:066043. [PMID: 38118169 DOI: 10.1088/1741-2552/ad1782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Objective. Currently, few non-invasive measures exist for directly measuring spinal sensorimotor networks. Electrospinography (ESG) is one non-invasive method but is primarily used to measure evoked responses or for monitoring the spinal cord during surgery. Our objectives were to evaluate the feasibility of ESG to measure spinal sensorimotor networks by determining spatiotemporal and functional connectivity changes during single-joint movements at the spinal and cortical levels.Approach. We synchronously recorded electroencephalography (EEG), electromyography, and ESG in ten neurologically intact adults while performing one of three lower-limb tasks (no movement, plantar-flexion and knee flexion) in the prone position. A multi-pronged approach was applied for removing artifacts usingH∞filtering, artifact subspace reconstruction and independent component (IC) analysis. Next, data were segmented by task and ICs of EEG were clustered across participants. Within-participant analysis of ICs and ESG data was conducted, and ESG was characterized in the time and frequency domains. Generalized partial directed coherence analysis was performed within ICs and between ICs and ESG data by participant and task.Results.K-means clustering resulted in five clusters of ICs at Brodmann areas (BAs) 9, BA 8, BA 39, BA 4, and BA 22. Areas associated with motor planning, working memory, visual processing, movement, and attention, respectively. Time-frequency analysis of ESG data found localized changes during movement execution when compared to no movement. Lastly, we found bi-directional changes in functional connectivity (p < 0.05, adjusted for multiple comparisons) within IC's and between IC's and ESG sensors during movement when compared to the no movement condition.Significance. To our knowledge this is the first report using high density ESG for characterizing single joint lower limb movements. Our findings provide support that ESG contains information about efferent and afferent signaling in neurologically intact adults and suggests that we can utilize ESG to directly study the spinal cord.
Collapse
Affiliation(s)
- Alexander G Steele
- Laboratory for Noninvasive Brain-Machine Interfaces, IUCRC BRAIN, University of Houston, N308 Engineering Building I, Houston, TX 77204, United States of America
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Amir H Faraji
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Center for Translational Neural Prosthetics and Interfaces, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | - Jose L Contreras-Vidal
- Laboratory for Noninvasive Brain-Machine Interfaces, IUCRC BRAIN, University of Houston, N308 Engineering Building I, Houston, TX 77204, United States of America
| |
Collapse
|
26
|
García-Carlos CA, Basurto-Islas G, Perry G, Mondragón-Rodríguez S. Meta-Analysis in Transgenic Alzheimer's Disease Mouse Models Reveals Opposite Brain Network Effects of Amyloid-β and Phosphorylated Tau Proteins. J Alzheimers Dis 2024; 99:595-607. [PMID: 38669540 DOI: 10.3233/jad-231365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Cognitive deficits observed in Alzheimer's disease (AD) patients have been correlated with altered hippocampal activity. Although the mechanism remains under extensive study, neurofibrillary tangles and amyloid plaques have been proposed as responsible for brain activity alterations. Aiming to unveil the mechanism, researchers have developed several transgenic models of AD. Nevertheless, the variability in hippocampal oscillatory alterations found in different genetic backgrounds and ages remains unclear. Objective To assess the oscillatory alterations in relation to animal developmental age and protein inclusion, amyloid-β (Aβ) load, and abnormally phosphorylated tau (pTau), we reviewed and analyzed the published data on peak power, frequency, and quantification of theta-gamma cross-frequency coupling (modulation index values). Methods To ensure that the search was as current as possible, a systematic review was conducted to locate and abstract all studies published from January 2000 to February 2023 that involved in vivo hippocampal local field potential recording in transgenic mouse models of AD. Results The presence of Aβ was associated with electrophysiological alterations that are mainly reflected in power increases, frequency decreases, and lower modulation index values. Concomitantly, pTau accumulation was associated with electrophysiological alterations that are mainly reflected in power decreases, frequency decreases, and no significant alterations in modulation index values. Conclusions In this study, we showed that electrophysiological parameters are altered from prodromal stages to the late stages of pathology. Thus, we found that Aβ deposition is associated with brain network hyperexcitability, whereas pTau deposition mainly leads to brain network hypoexcitability in transgenic models.
Collapse
Affiliation(s)
- Carlos Antonio García-Carlos
- UNAM Division of Neurosciences, Institute of Cellular Physiology, National Autonomous University of México, México City, México
| | | | - George Perry
- UTSA Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Siddhartha Mondragón-Rodríguez
- UAQ Centre for Applied Biomedical Research - CIBA, School of Medicine, Autonomous University of Querétaro, Querétaro, México
- CONAHCYT National Council for Science and Technology, México City, México
| |
Collapse
|
27
|
Zhang C, Lei X, Ma W, Long J, Long S, Chen X, Luo J, Tao Q. Diagnosis Framework for Probable Alzheimer's Disease and Mild Cognitive Impairment Based on Multi-Dimensional Emotion Features. J Alzheimers Dis 2024; 97:1125-1137. [PMID: 38189751 DOI: 10.3233/jad-230703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND Emotion and cognition are intercorrelated. Impaired emotion is common in populations with Alzheimer's disease (AD) and mild cognitive impairment (MCI), showing promises as an early detection approach. OBJECTIVE We aim to develop a novel automatic classification tool based on emotion features and machine learning. METHODS Older adults aged 60 years or over were recruited among residents in the long-term care facilities and the community. Participants included healthy control participants with normal cognition (HC, n = 26), patients with MCI (n = 23), and patients with probable AD (n = 30). Participants watched emotional film clips while multi-dimensional emotion data were collected, including mental features of Self-Assessment Manikin (SAM), physiological features of electrodermal activity (EDA), and facial expressions. Emotional features of EDA and facial expression were abstracted by using continuous decomposition analysis and EomNet, respectively. Bidirectional long short-term memory (Bi-LSTM) was used to train classification model. Hybrid fusion was used, including early feature fusion and late decision fusion. Data from 79 participants were utilized into deep machine learning analysis and hybrid fusion method. RESULTS By combining multiple emotion features, the model's performance of AUC value was highest in classification between HC and probable AD (AUC = 0.92), intermediate between MCI and probable AD (AUC = 0.88), and lowest between HC and MCI (AUC = 0.82). CONCLUSIONS Our method demonstrated an excellent predictive power to differentiate HC/MCI/AD by fusion of multiple emotion features. The proposed model provides a cost-effective and automated method that can assist in detecting probable AD and MCI from normal aging.
Collapse
Affiliation(s)
- Chunchao Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Division of Medical Psychology and Behaviour Science, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaolin Lei
- College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Wenhao Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Division of Medical Psychology and Behaviour Science, School of Medicine, Jinan University, Guangzhou, China
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Shun Long
- College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Xiang Chen
- Rehabilitation Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Luo
- Rehabilitation Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Tao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Division of Medical Psychology and Behaviour Science, School of Medicine, Jinan University, Guangzhou, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Science, Qingdao, China
| |
Collapse
|
28
|
Amato LG, Vergani AA, Lassi M, Fabbiani C, Mazzeo S, Burali R, Nacmias B, Sorbi S, Mannella R, Grippo A, Bessi V, Mazzoni A. Personalized modeling of Alzheimer's disease progression estimates neurodegeneration severity from EEG recordings. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12526. [PMID: 38371358 PMCID: PMC10870085 DOI: 10.1002/dad2.12526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Early identification of Alzheimer's disease (AD) is necessary for a timely onset of therapeutic care. However, cortical structural alterations associated with AD are difficult to discern. METHODS We developed a cortical model of AD-related neurodegeneration accounting for slowing of local dynamics and global connectivity degradation. In a monocentric study we collected electroencephalography (EEG) recordings at rest from participants in healthy (HC, n = 17), subjective cognitive decline (SCD, n = 58), and mild cognitive impairment (MCI, n = 44) conditions. For each patient, we estimated neurodegeneration model parameters based on individual EEG recordings. RESULTS Our model outperformed standard EEG analysis not only in discriminating between HC and MCI conditions (F1 score 0.95 vs 0.75) but also in identifying SCD patients with biological hallmarks of AD in the cerebrospinal fluid (recall 0.87 vs 0.50). DISCUSSION Personalized models could (1) support classification of MCI, (2) assess the presence of AD pathology, and (3) estimate the risk of cognitive decline progression, based only on economical and non-invasive EEG recordings. Highlights Personalized cortical model estimating structural alterations from EEG recordings.Discrimination of Mild Cognitive Impairment (MCI) and Healthy (HC) subjects (95%)Prediction of biological markers of Alzheimer's in Subjective Decline (SCD) Subjects (87%)Transition correctly predicted for 3/3 subjects that converted from SCD to MCI after 1y.
Collapse
Affiliation(s)
- Lorenzo Gaetano Amato
- The BioRobotics InstituteSant'Anna School of Advanced StudiesPisaItaly
- Department of Excellence in Robotics and AISant'Anna School of Advanced StudiesPisaItaly
| | - Alberto Arturo Vergani
- The BioRobotics InstituteSant'Anna School of Advanced StudiesPisaItaly
- Department of Excellence in Robotics and AISant'Anna School of Advanced StudiesPisaItaly
| | - Michael Lassi
- The BioRobotics InstituteSant'Anna School of Advanced StudiesPisaItaly
- Department of Excellence in Robotics and AISant'Anna School of Advanced StudiesPisaItaly
| | - Carlo Fabbiani
- IRCSS Fondazione Don Carlo GnocchiFlorenceItaly
- Department of NeurosciencePsychology, Drug Research and Child HealthCareggi University HospitalFlorenceItaly
| | - Salvatore Mazzeo
- IRCSS Fondazione Don Carlo GnocchiFlorenceItaly
- Department of NeurosciencePsychology, Drug Research and Child HealthCareggi University HospitalFlorenceItaly
| | | | - Benedetta Nacmias
- IRCSS Fondazione Don Carlo GnocchiFlorenceItaly
- Department of NeurosciencePsychology, Drug Research and Child HealthCareggi University HospitalFlorenceItaly
| | - Sandro Sorbi
- IRCSS Fondazione Don Carlo GnocchiFlorenceItaly
- Department of NeurosciencePsychology, Drug Research and Child HealthCareggi University HospitalFlorenceItaly
| | | | | | - Valentina Bessi
- Department of NeurosciencePsychology, Drug Research and Child HealthCareggi University HospitalFlorenceItaly
| | - Alberto Mazzoni
- The BioRobotics InstituteSant'Anna School of Advanced StudiesPisaItaly
- Department of Excellence in Robotics and AISant'Anna School of Advanced StudiesPisaItaly
| |
Collapse
|
29
|
Ji X, Peng X, Tang H, Pan H, Wang W, Wu J, Chen J, Wei N. Alzheimer's disease phenotype based upon the carrier status of the apolipoprotein E ɛ4 allele. Brain Pathol 2024; 34:e13208. [PMID: 37646624 PMCID: PMC10711266 DOI: 10.1111/bpa.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/05/2023] [Indexed: 09/01/2023] Open
Abstract
The apolipoprotein E ɛ4 allele (APOE4) is universally acknowledged as the most potent genetic risk factor for Alzheimer's disease (AD). APOE4 promotes the initiation and progression of AD. Although the underlying mechanisms are unclearly understood, differences in lipid-bound affinity among the three APOE isoforms may constitute the basis. The protein APOE4 isoform has a high affinity with triglycerides and cholesterol. A distinction in lipid metabolism extensively impacts neurons, microglia, and astrocytes. APOE4 carriers exhibit phenotypic differences from non-carriers in clinical examinations and respond differently to multiple treatments. Therefore, we hypothesized that phenotypic classification of AD patients according to the status of APOE4 carrier will help specify research and promote its use in diagnosing and treating AD. Recent reviews have mainly evaluated the differences between APOE4 allele carriers and non-carriers from gene to protein structures, clinical features, neuroimaging, pathology, the neural network, and the response to various treatments, and have provided the feasibility of phenotypic group classification based on APOE4 carrier status. This review will facilitate the application of APOE phenomics concept in clinical practice and promote further medical research on AD.
Collapse
Affiliation(s)
- Xiao‐Yu Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Xin‐Yuan Peng
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Hai‐Liang Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical NeurobiologyInstitutes of Brain Science, Shanghai Medical College‐Fudan UniversityShanghaiChina
| | - Hui Pan
- Shantou Longhu People's HospitalShantouGuangdongChina
| | - Wei‐Tang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Jie Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Jian Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Nai‐Li Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| |
Collapse
|
30
|
Paban V, Mheich A, Spieser L, Sacher M. A multidimensional model of memory complaints in older individuals and the associated hub regions. Front Aging Neurosci 2023; 15:1324309. [PMID: 38187362 PMCID: PMC10771290 DOI: 10.3389/fnagi.2023.1324309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Memory complaints are highly prevalent among middle-aged and older adults, and they are frequently reported in individuals experiencing subjective cognitive decline (SCD). SCD has received increasing attention due to its implications for the early detection of dementia. This study aims to advance our comprehension of individuals with SCD by elucidating potential cognitive/psychologic-contributing factors and characterizing cerebral hubs within the brain network. To identify these potential contributing factors, a structural equation modeling approach was employed to investigate the relationships between various factors, such as metacognitive beliefs, personality, anxiety, depression, self-esteem, and resilience, and memory complaints. Our findings revealed that self-esteem and conscientiousness significantly influenced memory complaints. At the cerebral level, analysis of delta and theta electroencephalographic frequency bands recorded during rest was conducted to identify hub regions using a local centrality metric known as betweenness centrality. Notably, our study demonstrated that certain brain regions undergo changes in their hub roles in response to the pathology of SCD. Specifically, the inferior temporal gyrus and the left orbitofrontal area transition into hubs, while the dorsolateral prefrontal cortex and the middle temporal gyrus lose their hub function in the presence of SCD. This rewiring of the neural network may be interpreted as a compensatory response employed by the brain in response to SCD, wherein functional connectivity is maintained or restored by reallocating resources to other regions.
Collapse
Affiliation(s)
- Véronique Paban
- Aix-Marseille Université, CNRS, LNC (Laboratoire de Neurosciences Cognitives–UMR 7291), Marseille, France
| | - A. Mheich
- CHUV-Centre Hospitalier Universitaire Vaudois, Service des Troubles du Spectre de l’Autisme et Apparentés, Lausanne University Hospital, Lausanne, Switzerland
| | - L. Spieser
- Aix-Marseille Université, CNRS, LNC (Laboratoire de Neurosciences Cognitives–UMR 7291), Marseille, France
| | - M. Sacher
- University of Toulouse Jean-Jaurès, CNRS, LCLLE (Laboratoire Cognition, Langues, Langage, Ergonomie–UMR 5263), Toulouse, France
| |
Collapse
|
31
|
Buzi G, Fornari C, Perinelli A, Mazza V. Functional connectivity changes in mild cognitive impairment: A meta-analysis of M/EEG studies. Clin Neurophysiol 2023; 156:183-195. [PMID: 37967512 DOI: 10.1016/j.clinph.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 10/22/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Early synchrony alterations have been observed through electrophysiological techniques in Mild Cognitive Impairment (MCI), which is considered the intermediate phase between healthy aging (HC) and Alzheimer's disease (AD). However, the documented direction (hyper/hypo-synchronization), regions and frequency bands affected are inconsistent. This meta-analysis intended to elucidate existing evidence linked to potential neurophysiological biomarkers of AD. METHODS We conducted a random-effects meta-analysis that entailed the unbiased inclusion of Non-statistically Significant Unreported Effect Sizes ("MetaNSUE") of electroencephalogram (EEG) and magnetoencephalogram (MEG) studies investigating functional connectivity changes at rest along the healthy-pathological aging continuum, searched through PubMed, Scopus, Web of Science and PsycINFO databases until June 2023. RESULTS Of the 3852 articles extracted, we analyzed 12 papers, and we found an alpha synchrony decrease in MCI compared to HC, specifically between temporal-parietal (d = -0.26) and frontal-parietal areas (d = -0.25). CONCLUSIONS Alterations of alpha synchrony are present even at MCI stage. SIGNIFICANCE Synchrony measures may be promising for the detection of the first hallmarks of connectivity alterations, even at the prodromal stages of the AD, before clinical symptoms occur.
Collapse
Affiliation(s)
- Giulia Buzi
- U1077 INSERM-EPHE-UNICAEN, Caen 14000, France
| | - Chiara Fornari
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy.
| | - Alessio Perinelli
- Department of Physics, University of Trento, Trento, Italy; INFN-TIFPA, Trento, Italy
| | - Veronica Mazza
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy.
| |
Collapse
|
32
|
Ciliento R, Gjini K, Dabbs K, Hermann B, Riedner B, Jones S, Fatima S, Johnson S, Bendlin B, Lam AD, Boly M, Struck AF. Prevalence and localization of nocturnal epileptiform discharges in mild cognitive impairment. Brain Commun 2023; 5:fcad302. [PMID: 37965047 PMCID: PMC10642616 DOI: 10.1093/braincomms/fcad302] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Recent evidence shows that identifying and treating epileptiform abnormalities in patients with Alzheimer's disease could represent a potential avenue to improve clinical outcome. Specifically, animal and human studies have revealed that in the early phase of Alzheimer's disease, there is an increased risk of seizures. It has also been demonstrated that the administration of anti-seizure medications can slow the functional progression of the disease only in patients with EEG signs of cortical hyperexcitability. In addition, although it is not known at what disease stage hyperexcitability emerges, there remains no consensus regarding the imaging and diagnostic methods best able to detect interictal events to further distinguish different phenotypes of Alzheimer's disease. In this exploratory work, we studied 13 subjects with amnestic mild cognitive impairment and 20 healthy controls using overnight high-density EEG with 256 channels. All participants also underwent MRI and neuropsychological assessment. Electronic source reconstruction was also used to better select and localize spikes. We found spikes in six of 13 (46%) amnestic mild cognitive impairment compared with two of 20 (10%) healthy control participants (P = 0.035), representing a spike prevalence similar to that detected in previous studies of patients with early-stage Alzheimer's disease. The interictal events were low-amplitude temporal spikes more prevalent during non-rapid eye movement sleep. No statistically significant differences were found in cognitive performance between amnestic mild cognitive impairment patients with and without spikes, but a trend in immediate and delayed memory was observed. Moreover, no imaging findings of cortical and subcortical atrophy were found between amnestic mild cognitive impairment participants with and without epileptiform spikes. In summary, our exploratory study shows that patients with amnestic mild cognitive impairment reveal EEG signs of hyperexcitability early in the disease course, while no other significant differences in neuropsychological or imaging features were observed among the subgroups. If confirmed with longitudinal data, these exploratory findings could represent one of the first signatures of a preclinical epileptiform phenotype of amnestic mild cognitive impairment and its progression.
Collapse
Affiliation(s)
- Rosario Ciliento
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Klevest Gjini
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Kevin Dabbs
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Bruce Hermann
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Brady Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Stephanie Jones
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Safoora Fatima
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Sterling Johnson
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Barbara Bendlin
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Alice D Lam
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Melanie Boly
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Aaron F Struck
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Neurology, William S. Middleton Veterans Administration Hospital, Madison, WI 53705, USA
| |
Collapse
|
33
|
Sklenarova B, Chladek J, Macek M, Brazdil M, Chrastina J, Jurkova T, Burilova P, Plesinger F, Zatloukalova E, Dolezalova I. Entropy in scalp EEG can be used as a preimplantation marker for VNS efficacy. Sci Rep 2023; 13:18849. [PMID: 37914788 PMCID: PMC10620210 DOI: 10.1038/s41598-023-46113-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Vagus nerve stimulation (VNS) is a therapeutic option in drug-resistant epilepsy. VNS leads to ≥ 50% seizure reduction in 50 to 60% of patients, termed "responders". The remaining 40 to 50% of patients, "non-responders", exhibit seizure reduction < 50%. Our work aims to differentiate between these two patient groups in preimplantation EEG analysis by employing several Entropy methods. We identified 59 drug-resistant epilepsy patients treated with VNS. We established their response to VNS in terms of responders and non-responders. A preimplantation EEG with eyes open/closed, photic stimulation, and hyperventilation was found for each patient. The EEG was segmented into eight time intervals within four standard frequency bands. In all, 32 EEG segments were obtained. Seven Entropy methods were calculated for all segments. Subsequently, VNS responders and non-responders were compared using individual Entropy methods. VNS responders and non-responders differed significantly in all Entropy methods except Approximate Entropy. Spectral Entropy revealed the highest number of EEG segments differentiating between responders and non-responders. The most useful frequency band distinguishing responders and non-responders was the alpha frequency, and the most helpful time interval was hyperventilation and rest 4 (the end of EEG recording).
Collapse
Affiliation(s)
- B Sklenarova
- Brno Epilepsy Center, First Department of Neurology, Member of ERN-Epicar, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 602 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - J Chladek
- Brno Epilepsy Center, First Department of Neurology, Member of ERN-Epicar, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 602 00, Brno, Czech Republic
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
- Behavioral and Social Neuroscience Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - M Macek
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
| | - M Brazdil
- Brno Epilepsy Center, First Department of Neurology, Member of ERN-Epicar, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 602 00, Brno, Czech Republic
- Behavioral and Social Neuroscience Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - J Chrastina
- Brno Epilepsy Center, Department of Neurosurgery, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - T Jurkova
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - P Burilova
- Department of Health Sciences, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - F Plesinger
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
| | - E Zatloukalova
- Brno Epilepsy Center, First Department of Neurology, Member of ERN-Epicar, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 602 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - I Dolezalova
- Brno Epilepsy Center, First Department of Neurology, Member of ERN-Epicar, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 602 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
34
|
Andrade SM, da Silva-Sauer L, de Carvalho CD, de Araújo ELM, Lima EDO, Fernandes FML, Moreira KLDAF, Camilo ME, Andrade LMMDS, Borges DT, da Silva Filho EM, Lindquist AR, Pegado R, Morya E, Yamauti SY, Alves NT, Fernández-Calvo B, de Souza Neto JMR. Identifying biomarkers for tDCS treatment response in Alzheimer's disease patients: a machine learning approach using resting-state EEG classification. Front Hum Neurosci 2023; 17:1234168. [PMID: 37859768 PMCID: PMC10582524 DOI: 10.3389/fnhum.2023.1234168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a promising treatment for Alzheimer's Disease (AD). However, identifying objective biomarkers that can predict brain stimulation efficacy, remains a challenge. The primary aim of this investigation is to delineate the cerebral regions implicated in AD, taking into account the existing lacuna in comprehension of these regions. In pursuit of this objective, we have employed a supervised machine learning algorithm to prognosticate the neurophysiological outcomes resultant from the confluence of tDCS therapy plus cognitive intervention within both the cohort of responders and non-responders to antecedent tDCS treatment, stratified on the basis of antecedent cognitive outcomes. Methods The data were obtained through an interventional trial. The study recorded high-resolution electroencephalography (EEG) in 70 AD patients and analyzed spectral power density during a 6 min resting period with eyes open focusing on a fixed point. The cognitive response was assessed using the AD Assessment Scale-Cognitive Subscale. The training process was carried out through a Random Forest classifier, and the dataset was partitioned into K equally-partitioned subsamples. The model was iterated k times using K-1 subsamples as the training bench and the remaining subsample as validation data for testing the model. Results A clinical discriminating EEG biomarkers (features) was found. The ML model identified four brain regions that best predict the response to tDCS associated with cognitive intervention in AD patients. These regions included the channels: FC1, F8, CP5, Oz, and F7. Conclusion These findings suggest that resting-state EEG features can provide valuable information on the likelihood of cognitive response to tDCS plus cognitive intervention in AD patients. The identified brain regions may serve as potential biomarkers for predicting treatment response and maybe guide a patient-centered strategy. Clinical Trial Registration https://classic.clinicaltrials.gov/ct2/show/NCT02772185?term=NCT02772185&draw=2&rank=1, identifier ID: NCT02772185.
Collapse
Affiliation(s)
- Suellen Marinho Andrade
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Leandro da Silva-Sauer
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | - Eloise de Oliveira Lima
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Fernanda Maria Lima Fernandes
- Center for Alternative and Renewable Energies (CEAR), Department of Electrical Engineering, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Maria Eduarda Camilo
- Laboratory of Ergonomics and Health, Department of Physiotherapy, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Daniel Tezoni Borges
- Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Ana Raquel Lindquist
- Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rodrigo Pegado
- Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neurosciences (IIN-ELS), Macaíba, Rio Grande do Norte, Brazil
| | - Seidi Yonamine Yamauti
- Edmond and Lily Safra International Institute of Neurosciences (IIN-ELS), Macaíba, Rio Grande do Norte, Brazil
| | - Nelson Torro Alves
- Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Bernardino Fernández-Calvo
- Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Cordoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - José Maurício Ramos de Souza Neto
- Center for Alternative and Renewable Energies (CEAR), Department of Electrical Engineering, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
35
|
Kim NN, Tan C, Ma E, Kutlu S, Carrazana E, Vimala V, Viereck J, Liow K. Abnormal Temporal Slowing on EEG Findings in Preclinical Alzheimer's Disease Patients With the ApoE4 Allele: A Pilot Study. Cureus 2023; 15:e47852. [PMID: 38021568 PMCID: PMC10679961 DOI: 10.7759/cureus.47852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION Currently, there are limited accessible and cost-effective biomarkers for preclinical Alzheimer's disease (AD) patients. However, the apolipoprotein E (ApoE) polymorphic alleles can predict if someone is at high (e4), neutral (e3), or low (e2) genetic risk for developing AD. This study analyzed electroencephalogram (EEG) reports from individuals with various ApoE genotypes, aiming to identify EEG changes and patterns that could potentially serve as predictive markers for preclinical AD progression. METHODS Participants aged 64-78 were selected from the patient database at an outpatient neurology clinic. Genotype studies were performed to determine ApoE status, followed by EEG analysis to identify any apparent trends. A case-control design was used, categorizing participants into cases (e2e3, e2e4, e3e4, e4e4) and controls (e3e3). EEG recordings were compared between the groups to identify potential differences in EEG characteristics, including abnormal temporal slowing, frequency, and ApoE genotype association. RESULTS Among 43 participants, 49% demonstrated evidence of abnormal temporal slowing on EEG. Of these, 48% displayed focal left temporal slowing, and 52% displayed bilateral temporal slowing. The right-sided temporal slowing was not observed. Among participants with abnormal slowing, 95% exhibited theta frequency (4-8 Hz) slowing, while only 4.8% displayed delta frequency (0-4 Hz) slowing. Among participants with the ApoE4 allele, 61.5% demonstrated evidence of abnormal slowing, compared to 43.3% without it. Furthermore, the presence of an ApoE4 allele was associated with a significantly higher proportion of males (54%) compared to those without it (13%) (p=0.009). CONCLUSIONS Although we did not find a statistically significant difference in temporal EEG slowing among different ApoE genotypes, our findings suggest a potential association between temporal slowing on EEG and the presence of an ApoE4 allele in individuals with preclinical AD. These observations highlight the need for further exploration into the potential influence of the ApoE4 allele on EEG findings and the utility of EEG as a complementary diagnostic tool for AD. Longitudinal studies with large sample sizes are needed to establish the precise relationship between EEG patterns, ApoE genotypes, and AD progression.
Collapse
Affiliation(s)
- Nathan N Kim
- Neurology, John A. Burns School of Medicine (JABSOM), University of Hawaii, Honolulu, USA
| | - Charissa Tan
- Neurology, John A. Burns School of Medicine (JABSOM), University of Hawaii, Honolulu, USA
| | - Enze Ma
- Neurology, John A. Burns School of Medicine (JABSOM), University of Hawaii, Honolulu, USA
| | - Selin Kutlu
- Neurology, John A. Burns School of Medicine (JABSOM), University of Hawaii, Honolulu, USA
| | - Enrique Carrazana
- Brain Research, Innovation, & Translation Laboratory, Comprehensive Epilepsy Center & Video-EEG Epilepsy Monitoring Unit, Hawaii Pacific Neuroscience, Honolulu, USA
| | | | - Jason Viereck
- Brain Research, Innovation, & Translation Laboratory, Hawaii Pacific Neuroscience, Honolulu, USA
| | - Kore Liow
- Neurology, Hawaii Pacific Neuroscience, Honolulu, USA
| |
Collapse
|
36
|
Sabbagh D, Cartailler J, Touchard C, Joachim J, Mebazaa A, Vallée F, Gayat É, Gramfort A, Engemann DA. Repurposing electroencephalogram monitoring of general anaesthesia for building biomarkers of brain ageing: an exploratory study. BJA OPEN 2023; 7:100145. [PMID: 37638087 PMCID: PMC10457469 DOI: 10.1016/j.bjao.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/16/2023] [Indexed: 08/29/2023]
Abstract
Background Electroencephalography (EEG) is increasingly used for monitoring the depth of general anaesthesia, but EEG data from general anaesthesia monitoring are rarely reused for research. Here, we explored repurposing EEG monitoring from general anaesthesia for brain-age modelling using machine learning. We hypothesised that brain age estimated from EEG during general anaesthesia is associated with perioperative risk. Methods We reanalysed four-electrode EEGs of 323 patients under stable propofol or sevoflurane anaesthesia to study four EEG signatures (95% of EEG power <8-13 Hz) for age prediction: total power, alpha-band power (8-13 Hz), power spectrum, and spatial patterns in frequency bands. We constructed age-prediction models from EEGs of a healthy reference group (ASA 1 or 2) during propofol anaesthesia. Although all signatures were informative, state-of-the-art age-prediction performance was unlocked by parsing spatial patterns across electrodes along the entire power spectrum (mean absolute error=8.2 yr; R2=0.65). Results Clinical exploration in ASA 1 or 2 patients revealed that brain age was positively correlated with intraoperative burst suppression, a risk factor for general anaesthesia complications. Surprisingly, brain age was negatively correlated with burst suppression in patients with higher ASA scores, suggesting hidden confounders. Secondary analyses revealed that age-related EEG signatures were specific to propofol anaesthesia, reflected by limited model generalisation to anaesthesia maintained with sevoflurane. Conclusions Although EEG from general anaesthesia may enable state-of-the-art age prediction, differences between anaesthetic drugs can impact the effectiveness and validity of brain-age models. To unleash the dormant potential of EEG monitoring for clinical research, larger datasets from heterogeneous populations with precisely documented drug dosage will be essential.
Collapse
Affiliation(s)
- David Sabbagh
- INSERM, Université de Paris, Paris, France
- Inria, CEA, Université Paris-Saclay, Palaiseau, France
| | - Jérôme Cartailler
- INSERM, Université de Paris, Paris, France
- Department of Anesthesia and Critical Care Medicine, AP-HP, Hôpital Lariboisière, Paris, France
| | - Cyril Touchard
- Department of Anesthesia and Critical Care Medicine, AP-HP, Hôpital Lariboisière, Paris, France
| | - Jona Joachim
- Department of Anesthesia and Critical Care Medicine, AP-HP, Hôpital Lariboisière, Paris, France
| | - Alexandre Mebazaa
- INSERM, Université de Paris, Paris, France
- Department of Anesthesia and Critical Care Medicine, AP-HP, Hôpital Lariboisière, Paris, France
| | - Fabrice Vallée
- INSERM, Université de Paris, Paris, France
- Inria, CEA, Université Paris-Saclay, Palaiseau, France
- Department of Anesthesia and Critical Care Medicine, AP-HP, Hôpital Lariboisière, Paris, France
| | - Étienne Gayat
- INSERM, Université de Paris, Paris, France
- Department of Anesthesia and Critical Care Medicine, AP-HP, Hôpital Lariboisière, Paris, France
| | | | - Denis A. Engemann
- Inria, CEA, Université Paris-Saclay, Palaiseau, France
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
37
|
Chen X, Li Y, Li R, Yuan X, Liu M, Zhang W, Li Y. Multiple cross-frequency coupling analysis of resting-state EEG in patients with mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2023; 15:1142085. [PMID: 37600515 PMCID: PMC10436577 DOI: 10.3389/fnagi.2023.1142085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Electroencephalographic (EEG) abnormalities are seen in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) with characteristic features of cognitive impairment. The most common findings of EEG features in AD and MCI patients are increased relative power of slow oscillations (delta and theta rhythms) and decreased relative power of fast oscillations (alpha, beta and gamma rhythms). However, impairments in cognitive processes in AD and MCI are not sufficiently reflected by brain oscillatory activity in a particular frequency band. MCI patients are at high risk of progressing to AD. Cross-frequency coupling (CFC), which refers to coupling between different frequency bands, is a crucial tool for comprehending changes in brain oscillations and cognitive performance. CFC features exhibit some specificity in patients with AD and MCI, but a comparison between CFC features in individuals with these disorders is still lacking. The aim of this study was to explore changes in CFC properties in MCI and AD and to explore the relationship between CFC properties and multiple types of cognitive functional performance. Methods We recorded resting-state EEG (rsEEG) signals in 46 MCI patients, 43 AD patients, and 43 cognitively healthy controls (HCs) and analyzed the changes in CFC as well as the relationship between CFC and scores on clinical tests of cognitive function. Results and discussion Multiple couplings between low-frequency oscillations and high-frequency oscillations were found to be significantly enhanced in AD patients compared to those of HCs and MCI, while delta-gamma as well as theta-gamma couplings in the right temporal and parietal lobes were significantly enhanced in MCI patients compared to HCs. Moreover, theta-gamma coupling in the right temporal lobe tended to be stronger in MCI patients than in HCs, and it was stronger in AD than in MCI. Multiple CFC properties were found to correlate significantly with various cognitive domains, especially the memory function domain. Overall, these findings suggest that AD and MCI patients must use more neural resources to maintain a resting brain state and that alterations in theta-gamma coupling in the temporal lobe become progressively obvious during disease progression and are likely to be a valuable indicator of MCI and AD pathology.
Collapse
Affiliation(s)
- Xi Chen
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Yingjie Li
- College of International Education, Shanghai University, Shanghai, China
- School of Life Science, Institute of Biomedical Engineering, Shanghai University, Shanghai, China
| | - Renren Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao Yuan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
38
|
Sendi MS, Zendehrouh E, Fu Z, Liu J, Du Y, Mormino E, Salat DH, Calhoun VD, Miller RL. Disrupted Dynamic Functional Network Connectivity Among Cognitive Control Networks in the Progression of Alzheimer's Disease. Brain Connect 2023; 13:334-343. [PMID: 34102870 PMCID: PMC10442683 DOI: 10.1089/brain.2020.0847] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the most common age-related dementia that promotes a decline in memory, thinking, and social skills. The initial stages of dementia can be associated with mild symptoms, and symptom progression to a more severe state is heterogeneous across patients. Recent work has demonstrated the potential for functional network mapping to assist in the prediction of symptomatic progression. However, this work has primarily used static functional connectivity (sFC) from resting-state functional magnetic resonance imaging. Recently, dynamic functional connectivity (dFC) has been recognized as a powerful advance in functional connectivity methodology to differentiate brain network dynamics between healthy and diseased populations. Methods: Group independent component analysis was applied to extract 17 components within the cognitive control network (CCN) from 1385 individuals across varying stages of AD symptomology. We estimated dFC among 17 components within the CCN, followed by clustering the dFCs into 3 recurring brain states, and then estimated a hidden Markov model and the occupancy rate for each subject. Then, we investigated the link between CCN dFC features and AD progression. Also, we investigated the link between sFC and AD progression and compared its results with dFC results. Results: Progression of AD symptoms was associated with increases in connectivity within the middle frontal gyrus. Also, the very mild AD (vmAD) showed less connectivity within the inferior parietal lobule (in both sFC and dFC) and between this region and the rest of CCN (in dFC analysis). Also, we found that within-middle frontal gyrus connectivity increases with AD progression in both sFC and dFC results. Finally, comparing with vmAD, we found that the normal brain spends significantly more time in a state with lower within-middle frontal gyrus connectivity and higher connectivity between the hippocampus and the rest of CCN, highlighting the importance of assessing the dynamics of brain connectivity in this disease. Conclusion: Our results suggest that AD progress not only alters the CCN connectivity strength but also changes the temporal properties in this brain network. This suggests the temporal and spatial pattern of CCN as a biomarker that differentiates different stages of AD.
Collapse
Affiliation(s)
- Mohammad S.E. Sendi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Elaheh Zendehrouh
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Yuhui Du
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | | | - David H. Salat
- Harvard Medical School, Cambridge, Massachusetts, USA
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Vince D. Calhoun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Robyn L. Miller
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Güntekin B, Erdal F, Bölükbaş B, Hanoğlu L, Yener G, Duygun R. Alterations of resting-state Gamma frequency characteristics in aging and Alzheimer's disease. Cogn Neurodyn 2023; 17:829-844. [PMID: 37522051 PMCID: PMC10374515 DOI: 10.1007/s11571-022-09873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer's disease (AD) is an important brain disease associated with aging. It involves various functional and structural changes which alter the EEG characteristics. Although numerous studies have found changes in delta, theta, alpha, and beta power, fewer studies have looked at the changes in the resting state EEG gamma activity characteristics in AD. This study aimed to investigate the alterations in the frequency and power values of AD patients' resting-state EEG gamma oscillations compared with healthy elderly and young subjects. We performed Fast Fourier Transform (FFT) on the resting state EEG data from 179 participants, including 59 early stage AD patients, 60 healthy elderly, and 60 healthy young subjects. We averaged FFT performed epochs to investigate the power values in the gamma frequency range (28-48 Hz). We then sorted the peaks of power values in the gamma frequency range, and the average of the identified highest three values was named as the gamma dominant peak frequency. The gamma dominant peak frequency of AD patients (Meyes-opened = 33.4 Hz, Meyes-closed = 32.7 Hz) was lower than healthy elderly (Meyes-opened = 35.5 Hz, Meyes-closed = 35.0 Hz) and healthy young subjects (Meyes-opened = 37.2 Hz, Meyes-closed = 37.0 Hz). These results could be related to AD progression and therefore critical for the recent findings regarding the 40 Hz gamma entrainment because it seems they entrain the gamma frequency of AD towards that of healthy young. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09873-4.
Collapse
Affiliation(s)
- Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Furkan Erdal
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neuroscience, Graduate School of Health Science, Istanbul Medipol University, Istanbul, Turkey
- Department of Psychology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Burcu Bölükbaş
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neuroscience, Graduate School of Health Science, Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Medical Faculty, Izmir University of Economics, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Dokuz Eylül University Brain Dynamics Multidisciplinary Research Center, Izmir, Turkey
| | - Rümeysa Duygun
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neuroscience, Graduate School of Health Science, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
40
|
Liu Z, Shu K, Geng Y, Cai C, Kang H. Deep brain stimulation of fornix in Alzheimer's disease: From basic research to clinical practice. Eur J Clin Invest 2023; 53:e13995. [PMID: 37004153 DOI: 10.1111/eci.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Alzheimer's disease (AD) is one of the most common progressive neurodegenerative diseases associated with the degradation of memory and cognitive ability. Current pharmacotherapies show little therapeutic effect in AD treatment and still cannot prevent the pathological progression of AD. Deep brain stimulation (DBS) has shown to enhance memory in morbid obese, epilepsy and traumatic brain injury patients, and cognition in Parkinson's disease (PD) patients deteriorates during DBS off. Some relevant animal studies and clinical trials have been carried out to discuss the DBS treatment for AD. Reviewing the fornix trials, no unified conclusion has been reached about the clinical benefits of DBS in AD, and the dementia ratings scale has not been effectively improved in the long term. However, some patients have presented promising results, such as improved glucose metabolism, increased connectivity in cognition-related brain regions and even elevated cognitive function rating scale scores. The fornix plays an important regulatory role in memory, attention, and emotion through its complex fibre projection to cognition-related structures, making it a promising target for DBS for AD treatment. Moreover, the current stereotaxic technique and various evaluation methods have provided references for the operator to select accurate stimulation points. Related adverse events and relatively higher costs in DBS have been emphasized. In this article, we summarize and update the research progression on fornix DBS in AD and seek to provide a reliable reference for subsequent experimental studies on DBS treatment of AD.
Collapse
Affiliation(s)
- Zhikun Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yumei Geng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chang Cai
- National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, Hubei Province, China
| | - Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
41
|
Ramírez-Carrillo E, G-Santoyo I, López-Corona O, Rojas-Ramos OA, Falcón LI, Gaona O, de la Fuente Rodríguez RM, Hernández Castillo A, Cerqueda-García D, Sánchez-Quinto A, Hernández-Muciño D, Nieto J. Similar connectivity of gut microbiota and brain activity networks is mediated by animal protein and lipid intake in children from a Mexican indigenous population. PLoS One 2023; 18:e0281385. [PMID: 37384745 PMCID: PMC10310019 DOI: 10.1371/journal.pone.0281385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/22/2023] [Indexed: 07/01/2023] Open
Abstract
The gut microbiota-brain axis is a complex communication network essential for host health. Any long-term disruption can affect higher cognitive functions, or it may even result in several chronic neurological diseases. The type and diversity of nutrients an individual consumes are essential for developing the gut microbiota (GM) and the brain. Hence, dietary patterns might influence networks communication of this axis, especially at the age that both systems go through maturation processes. By implementing Mutual Information and Minimum Spanning Tree (MST); we proposed a novel combination of Machine Learning and Network Theory techniques to study the effect of animal protein and lipid intake on the connectivity of GM and brain cortex activity (BCA) networks in children from 5-to 10 years old from an indigenous community in the southwest of México. Socio-ecological conditions in this nonwestern lifestyle community are very homogeneous among its inhabitants but it shows high individual heterogeneity in the consumption of animal products. Results suggest that MST, the critical backbone of information flow, diminishes under low protein and lipid intake. So, under these nonwestern regimens, deficient animal protein and lipid consumption diets may significantly affect the GM-BCA connectivity in crucial development stages. Finally, MST offers us a metric that unifies biological systems of different nature to evaluate the change in their complexity in the face of environmental pressures or disturbances. Effect of Diet on gut microbiota and brain networks connectivity.
Collapse
Affiliation(s)
- Elvia Ramírez-Carrillo
- NeuroEcology Lab, Department of Psychology, UNAM, CDMX, México
- Investigadoras por México, Posdoc-CONACyT, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| | - Isaac G-Santoyo
- NeuroEcology Lab, Department of Psychology, UNAM, CDMX, México
- Unidad de Investigación en Psicobiología y Neurociencias, Department of Psychology, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| | - Oliver López-Corona
- Cátedras CONACyT, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), CDMX, México
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, CDMX, México
| | - Olga A. Rojas-Ramos
- NeuroEcology Lab, Department of Psychology, UNAM, CDMX, México
- Coordinación de Psciobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| | - Luisa I. Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, Parque Científico y Tecnológico de Yucatán, Mérida, México
| | - Osiris Gaona
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, Parque Científico y Tecnológico de Yucatán, Mérida, México
| | | | | | - Daniel Cerqueda-García
- Consorcio de Investigación del Golfo de México (CIGoM), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Mérida, Yucatán, México
| | - Andrés Sánchez-Quinto
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, Parque Científico y Tecnológico de Yucatán, Mérida, México
| | - Diego Hernández-Muciño
- Laboratorio de Agroecología Instituto de Investigaciones en Ecosistema y Sustentabilidad, UNAM, Morelia, México
| | - Javier Nieto
- Laboratorio de Aprendizaje y Adaptación, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| |
Collapse
|
42
|
Ulbl J, Rakusa M. The Importance of Subjective Cognitive Decline Recognition and the Potential of Molecular and Neurophysiological Biomarkers-A Systematic Review. Int J Mol Sci 2023; 24:10158. [PMID: 37373304 DOI: 10.3390/ijms241210158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are early stages of Alzheimer's disease (AD). Neurophysiological markers such as electroencephalography (EEG) and event-related potential (ERP) are emerging as alternatives to traditional molecular and imaging markers. This paper aimed to review the literature on EEG and ERP markers in individuals with SCD. We analysed 30 studies that met our criteria, with 17 focusing on resting-state or cognitive task EEG, 11 on ERPs, and two on both EEG and ERP parameters. Typical spectral changes were indicative of EEG rhythm slowing and were associated with faster clinical progression, lower education levels, and abnormal cerebrospinal fluid biomarkers profiles. Some studies found no difference in ERP components between SCD subjects, controls, or MCI, while others reported lower amplitudes in the SCD group compared to controls. Further research is needed to explore the prognostic value of EEG and ERP in relation to molecular markers in individuals with SCD.
Collapse
Affiliation(s)
- Janina Ulbl
- Division of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Martin Rakusa
- Division of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
43
|
Yu H, Wang M, Yang Q, Xu X, Zhang R, Chen X, Le W. The electrophysiological and neuropathological profiles of cerebellum in APP swe /PS1 ΔE9 mice: A hypothesis on the role of cerebellum in Alzheimer's disease. Alzheimers Dement 2023; 19:2365-2375. [PMID: 36469008 DOI: 10.1002/alz.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 12/11/2022]
Abstract
We propose the hypothesis that the cerebellar electrophysiology and sleep-wake cycles may be altered at the early stage of Alzheimer's disease (AD), proceeding the amyloid-β neuropathological hallmarks. The electrophysiologic characteristics of cerebellum thereby might be served as a biomarker in the prepathological detection of AD. Sleep disturbances are common in preclinical AD patients, and the cerebellum has been implicated in sleep-wake regulation by several pioneer studies. Additionally, recent studies suggest that the structure and function of the cerebellum may be altered at the early stages of AD, indicating that the cerebellum may be involved in the disease's progression. We used APPswe /PS1ΔE9 mice as a model of AD, monitored and analyzed electroencephalogram data, and assessed neuropathological profiles in the cerebellum of AD mice. Our hypothesis may establish a linkage between the cerebellum and AD, thereby potentially providing new perspectives on the pathogenesis of the disease.
Collapse
Affiliation(s)
- Hang Yu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Manli Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qiu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaojiao Xu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Rong Zhang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
44
|
Falcicchia C, Tozzi F, Gabrielli M, Amoretti S, Masini G, Nardi G, Guglielmo S, Ratto GM, Arancio O, Verderio C, Origlia N. Microglial extracellular vesicles induce Alzheimer's disease-related cortico-hippocampal network dysfunction. Brain Commun 2023; 5:fcad170. [PMID: 37288314 PMCID: PMC10243901 DOI: 10.1093/braincomms/fcad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
β-Amyloid is one of the main pathological hallmarks of Alzheimer's disease and plays a major role in synaptic dysfunction. It has been demonstrated that β-amyloid can elicit aberrant excitatory activity in cortical-hippocampal networks, which is associated with behavioural abnormalities. However, the mechanism of the spreading of β-amyloid action within a specific circuitry has not been elucidated yet. We have previously demonstrated that the motion of microglia-derived large extracellular vesicles carrying β-amyloid, at the neuronal surface, is crucial for the initiation and propagation of synaptic dysfunction along the entorhinal-hippocampal circuit. Here, using chronic EEG recordings, we show that a single injection of extracellular vesicles carrying β-amyloid into the mouse entorhinal cortex could trigger alterations in the cortical and hippocampal activity that are reminiscent of those found in Alzheimer's disease mouse models and human patients. The development of EEG abnormalities was associated with progressive memory impairment as assessed by an associative (object-place context recognition) and non-associative (object recognition) task. Importantly, when the motility of extracellular vesicles, carrying β-amyloid, was inhibited, the effect on network stability and memory function was significantly reduced. Our model proposes a new biological mechanism based on the extracellular vesicles-mediated progression of β-amyloid pathology and offers the opportunity to test pharmacological treatments targeting the early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Chiara Falcicchia
- National Research Council (CNR) Institute of Neuroscience, Pisa 56124, Italy
| | - Francesca Tozzi
- National Research Council (CNR) Institute of Neuroscience, Pisa 56124, Italy
- Bio@SNS laboratory, Scuola Normale Superiore, Pisa 56124, Italy
| | - Martina Gabrielli
- National Research Council (CNR) Institute of Neuroscience, Vedano al Lambro, Monza (MB) 20854, Italy
| | - Stefano Amoretti
- National Research Council (CNR) Institute of Neuroscience, Pisa 56124, Italy
| | - Greta Masini
- National Research Council (CNR) Institute of Neuroscience, Pisa 56124, Italy
| | - Gabriele Nardi
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, Pisa 56127, Italy
| | - Stefano Guglielmo
- National Research Council (CNR) Institute of Neuroscience, Pisa 56124, Italy
- Bio@SNS laboratory, Scuola Normale Superiore, Pisa 56124, Italy
| | - Gian Michele Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, Pisa 56127, Italy
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain and Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Claudia Verderio
- National Research Council (CNR) Institute of Neuroscience, Vedano al Lambro, Monza (MB) 20854, Italy
| | - Nicola Origlia
- National Research Council (CNR) Institute of Neuroscience, Pisa 56124, Italy
| |
Collapse
|
45
|
Tăuƫan AM, Casula EP, Pellicciari MC, Borghi I, Maiella M, Bonni S, Minei M, Assogna M, Palmisano A, Smeralda C, Romanella SM, Ionescu B, Koch G, Santarnecchi E. TMS-EEG perturbation biomarkers for Alzheimer's disease patients classification. Sci Rep 2023; 13:7667. [PMID: 37169900 PMCID: PMC10175269 DOI: 10.1038/s41598-022-22978-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/21/2022] [Indexed: 05/13/2023] Open
Abstract
The combination of TMS and EEG has the potential to capture relevant features of Alzheimer's disease (AD) pathophysiology. We used a machine learning framework to explore time-domain features characterizing AD patients compared to age-matched healthy controls (HC). More than 150 time-domain features including some related to local and distributed evoked activity were extracted from TMS-EEG data and fed into a Random Forest (RF) classifier using a leave-one-subject out validation approach. The best classification accuracy, sensitivity, specificity and F1 score were of 92.95%, 96.15%, 87.94% and 92.03% respectively when using a balanced dataset of features computed globally across the brain. The feature importance and statistical analysis revealed that the maximum amplitude of the post-TMS signal, its Hjorth complexity and the amplitude of the TEP calculated in the window 45-80 ms after the TMS-pulse were the most relevant features differentiating AD patients from HC. TMS-EEG metrics can be used as a non-invasive tool to further understand the AD pathophysiology and possibly contribute to patients' classification as well as longitudinal disease tracking.
Collapse
Affiliation(s)
- Alexandra-Maria Tăuƫan
- Precision Neuroscience and Neuromodulation Program & Network Control Laboratory, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- AI Multimedia Lab, Research Center CAMPUS, University Politehnica of Bucharest, 061344, Bucharest, Romania
| | - Elias P Casula
- Santa Lucia Foundation, 00179, Rome, Italy
- Department of Psychology, La Sapienza University, Via dei Marsi 78, 00185, Rome, Italy
| | | | | | | | | | | | | | - Annalisa Palmisano
- Precision Neuroscience and Neuromodulation Program & Network Control Laboratory, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Carmelo Smeralda
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Sara M Romanella
- Precision Neuroscience and Neuromodulation Program & Network Control Laboratory, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Bogdan Ionescu
- AI Multimedia Lab, Research Center CAMPUS, University Politehnica of Bucharest, 061344, Bucharest, Romania
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, Section of Human Physiology, University of Ferrara, 44121, Ferrara, Italy
- Santa Lucia Foundation, 00179, Rome, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program & Network Control Laboratory, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Touchard C, Guimard P, Guessous K, Aubin OS, Levé C, Joachim J, Elayeb K, Mebazaa A, Gayat É, Mateo J, Vallée F, Cartailler J. Association of sleep and anaesthesia EEG biomarkers with preoperative MoCA score: A pilot study. Acta Anaesthesiol Scand 2023. [PMID: 37096645 DOI: 10.1111/aas.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/15/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Preoperative cognitive impairments increase the risk of postoperative complications. The electroencephalogram (EEG) could provide information on cognitive vulnerability. The feasibility and clinical relevance of sleep EEG (EEGsleep ) compared to intraoperative EEG (EEGintraop ) in cognitive risk stratification remains to be explored. We investigated similarities between EEGsleep and EEGintraop vis-a-vis preoperative cognitive impairments. METHODS Pilot study including 27 patients (63 year old [53.5, 70.0]) to whom Montreal cognitive assessment (MoCA) and EEGsleep were administered 1 day before a propofol-based general anaesthesia, in addition to EEGintraop acquisition from depth-of-anaesthesia monitors. Sleep spindles on EEGsleep and intraoperative alpha-band power on EEGintraop were particularly explored. RESULTS In total, 11 (41%) patients had a MoCA <25 points. These patients had a significantly lower sleep spindle power on EEGsleep (25 vs. 40 μv2 /Hz, p = .035) and had a weaker intraoperative alpha-band power on EEGintraop (85 vs. 150 μv2 /Hz, p = .001) compared to patients with normal MoCA. Correlation between sleep spindle and intraoperative alpha-band power was positive and significant (r = 0.544, p = .003). CONCLUSION Preoperative cognitive impairment appears to be detectable by both EEGsleep and EEGintraop . Preoperative sleep EEG to assess perioperative cognitive risk is feasible but more data are needed to demonstrate its benefit compared to intraoperative EEG.
Collapse
Affiliation(s)
- Cyril Touchard
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Pauline Guimard
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Karim Guessous
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Sorbonne Université, Paris, France
| | - Oriane Saint Aubin
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Charlotte Levé
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Jona Joachim
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Kenza Elayeb
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Alexandre Mebazaa
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
| | - Étienne Gayat
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
| | - Joaquim Mateo
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
| | - Fabrice Vallée
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
- Université Paris-Saclay, Palaiseau, France
| | - Jérôme Cartailler
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
| |
Collapse
|
47
|
Prado P, Moguilner S, Mejía JA, Sainz-Ballesteros A, Otero M, Birba A, Santamaria-Garcia H, Legaz A, Fittipaldi S, Cruzat J, Tagliazucchi E, Parra M, Herzog R, Ibáñez A. Source space connectomics of neurodegeneration: One-metric approach does not fit all. Neurobiol Dis 2023; 179:106047. [PMID: 36841423 PMCID: PMC11170467 DOI: 10.1016/j.nbd.2023.106047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.
Collapse
Affiliation(s)
- Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Jhony A Mejía
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Departamento de Ingeniería Biomédica, Universidad de Los Andes, Bogotá, Colombia
| | | | - Mónica Otero
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile; Centro BASAL Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Agustina Birba
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Hernando Santamaria-Garcia
- PhD Neuroscience Program, Physiology and Psychiatry Departments, Pontificia Universidad Javeriana, Bogotá, Colombia; Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia; Global Brain Health Institute, University of California San Francisco, San Francisco, California; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA -CONICET), Buenos Aires, Argentina
| | - Mario Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Fundación para el Estudio de la Conciencia Humana (EcoH), Chile
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; PhD Neuroscience Program, Physiology and Psychiatry Departments, Pontificia Universidad Javeriana, Bogotá, Colombia; Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia; Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
48
|
Jiao B, Li R, Zhou H, Qing K, Liu H, Pan H, Lei Y, Fu W, Wang X, Xiao X, Liu X, Yang Q, Liao X, Zhou Y, Fang L, Dong Y, Yang Y, Jiang H, Huang S, Shen L. Neural biomarker diagnosis and prediction to mild cognitive impairment and Alzheimer's disease using EEG technology. Alzheimers Res Ther 2023; 15:32. [PMID: 36765411 PMCID: PMC9912534 DOI: 10.1186/s13195-023-01181-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Electroencephalogram (EEG) has emerged as a non-invasive tool to detect the aberrant neuronal activity related to different stages of Alzheimer's disease (AD). However, the effectiveness of EEG in the precise diagnosis and assessment of AD and its preclinical stage, amnestic mild cognitive impairment (MCI), has yet to be fully elucidated. In this study, we aimed to identify key EEG biomarkers that are effective in distinguishing patients at the early stage of AD and monitoring the progression of AD. METHODS A total of 890 participants, including 189 patients with MCI, 330 patients with AD, 125 patients with other dementias (frontotemporal dementia, dementia with Lewy bodies, and vascular cognitive impairment), and 246 healthy controls (HC) were enrolled. Biomarkers were extracted from resting-state EEG recordings for a three-level classification of HC, MCI, and AD. The optimal EEG biomarkers were then identified based on the classification performance. Random forest regression was used to train a series of models by combining participants' EEG biomarkers, demographic information (i.e., sex, age), CSF biomarkers, and APOE phenotype for assessing the disease progression and individual's cognitive function. RESULTS The identified EEG biomarkers achieved over 70% accuracy in the three-level classification of HC, MCI, and AD. Among all six groups, the most prominent effects of AD-linked neurodegeneration on EEG metrics were localized at parieto-occipital regions. In the cross-validation predictive analyses, the optimal EEG features were more effective than the CSF + APOE biomarkers in predicting the age of onset and disease course, whereas the combination of EEG + CSF + APOE measures achieved the best performance for all targets of prediction. CONCLUSIONS Our study indicates that EEG can be used as a useful screening tool for the diagnosis and disease progression evaluation of MCI and AD.
Collapse
Affiliation(s)
- Bin Jiao
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China ,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China ,grid.216417.70000 0001 0379 7164Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Rihui Li
- grid.168010.e0000000419368956Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA USA ,Brainup Institute of Science and Technology, Chongqing, China
| | - Hui Zhou
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kunqiang Qing
- Brainup Institute of Science and Technology, Chongqing, China
| | - Hui Liu
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hefu Pan
- Brainup Institute of Science and Technology, Chongqing, China
| | - Yanqin Lei
- Brainup Institute of Science and Technology, Chongqing, China
| | - Wenjin Fu
- Brainup Institute of Science and Technology, Chongqing, China
| | - Xiaoan Wang
- Brainup Institute of Science and Technology, Chongqing, China
| | - Xuewen Xiao
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- grid.216417.70000 0001 0379 7164Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- grid.216417.70000 0001 0379 7164Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liangjuan Fang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanbin Dong
- Brainup Institute of Science and Technology, Chongqing, China
| | - Yuanhao Yang
- grid.1003.20000 0000 9320 7537Mater Research Institute, The University of Queensland, Woolloongabba, Queensland 4102 Australia
| | - Haiyan Jiang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sha Huang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China. .,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China. .,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China. .,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China. .,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
| |
Collapse
|
49
|
Morrone CD, Tsang AA, Giorshev SM, Craig EE, Yu WH. Concurrent behavioral and electrophysiological longitudinal recordings for in vivo assessment of aging. Front Aging Neurosci 2023; 14:952101. [PMID: 36742209 PMCID: PMC9891465 DOI: 10.3389/fnagi.2022.952101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
Electrophysiological and behavioral alterations, including sleep and cognitive impairments, are critical components of age-related decline and neurodegenerative diseases. In preclinical investigation, many refined techniques are employed to probe these phenotypes, but they are often conducted separately. Herein, we provide a protocol for one-time surgical implantation of EMG wires in the nuchal muscle and a skull-surface EEG headcap in mice, capable of 9-to-12-month recording longevity. All data acquisitions are wireless, making them compatible with simultaneous EEG recording coupled to multiple behavioral tasks, as we demonstrate with locomotion/sleep staging during home-cage video assessments, cognitive testing in the Barnes maze, and sleep disruption. Time-course EEG and EMG data can be accurately mapped to the behavioral phenotype and synchronized with neuronal frequencies for movement and the location to target in the Barnes maze. We discuss critical steps for optimizing headcap surgery and alternative approaches, including increasing the number of EEG channels or utilizing depth electrodes with the system. Combining electrophysiological and behavioral measurements in preclinical models of aging and neurodegeneration has great potential for improving mechanistic and therapeutic assessments and determining early markers of brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,*Correspondence: Christopher Daniel Morrone,
| | - Arielle A. Tsang
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Sarah M. Giorshev
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Emily E. Craig
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada,Wai Haung Yu,
| |
Collapse
|
50
|
Parreño Torres A, Roncero-Parra C, Borja AL, Mateo-Sotos J. Inter-Hospital Advanced and Mild Alzheimer's Disease Classification Based on Electroencephalogram Measurements via Classical Machine Learning Algorithms. J Alzheimers Dis 2023; 95:1667-1683. [PMID: 37718814 DOI: 10.3233/jad-230525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND In pursuit of diagnostic tools capable of targeting distinct stages of Alzheimer's disease (AD), this study explores the potential of electroencephalography (EEG) combined with machine learning (ML) algorithms to identify patients with mild or moderate AD (ADM) and advanced AD (ADA). OBJECTIVE This study aims to assess the classification accuracy of six classical ML algorithms using a dataset of 668 patients from multiple hospitals. METHODS The dataset comprised measurements obtained from 668 patients, distributed among control, ADM, and ADA groups, collected from five distinct hospitals between 2011 and 2022. For classification purposes, six classical ML algorithms were employed: support vector machine, Bayesian linear discriminant analysis, decision tree, Gaussian Naïve Bayes, K-nearest neighbor and random forest. RESULTS The RF algorithm exhibited outstanding performance, achieving a remarkable balanced accuracy of 93.55% for ADA classification and 93.25% for ADM classification. The consistent reliability in distinguishing ADA and ADM patients underscores the potential of the EEG-based approach for AD diagnosis. CONCLUSIONS By leveraging a dataset sourced from multiple hospitals and encompassing a substantial patient cohort, coupled with the straightforwardness of the implemented models, it is feasible to attain notably robust results in AD classification.
Collapse
Affiliation(s)
| | | | - Alejandro L Borja
- School of Industrial Engineering, University of Castilla-La Mancha, Albacete, Spain
| | | |
Collapse
|