1
|
Tsai YH, Hong JJ, Cheng CM, Cheng MH, Chen CH, Hsieh ML, Hsieh KS, Shen CF. Case report: Cytokine and miRNA profiling in multisystem inflammatory syndrome in children. Front Med (Lausanne) 2024; 11:1422588. [PMID: 39149604 PMCID: PMC11324540 DOI: 10.3389/fmed.2024.1422588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is an imperative pediatric inflammatory condition closely linked to COVID-19, which garners substantial attention since the onset of the pandemic. Like Kawasaki illness, this condition is characterized by an overactive immune response, leading to symptoms including pyrexia, cardiac and renal complications. To elucidate the pathogenesis of MIS-C and identify potential biomarkers, we conducted an extensive examination of specific cytokines (IL-6, IL-1β, IL-6R, IL-10, and TNF-α) and microRNA (miRNA) expression profiles at various intervals (ranging from 3 to 20 days) in the peripheral blood sample of a severely affected MIS-C patient. Our investigation revealed a gradual decline in circulating levels of IL-6, IL-1β, IL-10, and TNF-α following intravenous immune globulin (IVIG) therapy. Notably, IL-6 exhibited a significant reduction from 74.30 to 1.49 pg./mL, while IL-6R levels remained consistently stable throughout the disease course. Furthermore, we observed an inverse correlation between the expression of hsa-miR-596 and hsa-miR-224-5p and the aforementioned cytokines. Our findings underscore a robust association between blood cytokine and miRNA concentrations and the severity of MIS-C. These insights enhance our understanding of the genetic regulatory mechanisms implicated in MIS-C pathogenesis, offering potential avenues for early biomarker detection and therapy monitoring through miRNA analysis.
Collapse
Affiliation(s)
- Yun-Hao Tsai
- School of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jun-Jie Hong
- Department of Taiwan Business Development, Inti Taiwan, Inc., Hsinchu, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, College of Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Hsiu Cheng
- Department of Taiwan Business Development, Inti Taiwan, Inc., Hsinchu, Taiwan
| | - Cheng-Han Chen
- Institute of Biomedical Engineering, College of Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Ling Hsieh
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Kai-Sheng Hsieh
- Department of Pediatrics and Structural, Congenital Heart and Echocardiography Center, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Chen C, Zhang J, Yu T, Feng H, Liao J, Jia Y. LRG1 Contributes to the Pathogenesis of Multiple Kidney Diseases: A Comprehensive Review. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:237-248. [PMID: 38799248 PMCID: PMC11126829 DOI: 10.1159/000538443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/08/2024] [Indexed: 05/29/2024]
Abstract
Background The increasing prevalence of kidney diseases has become a significant public health issue, with a global prevalence exceeding 10%. In order to accurately identify biochemical changes and treatment outcomes associated with kidney diseases, novel methods targeting specific genes have been discovered. Among these genes, leucine-rich α-2 glycoprotein 1 (LRG1) has been identified to function as a multifunctional pathogenic signaling molecule in multiple diseases, including kidney diseases. This study aims to provide a comprehensive overview of the current evidence regarding the roles of LRG1 in different types of kidney diseases. Summary Based on a comprehensive review, it was found that LRG1 was upregulated in the urine, serum, or renal tissues of patients or experimental animal models with multiple kidney diseases, such as diabetic nephropathy, kidney injury, IgA nephropathy, chronic kidney diseases, clear cell renal cell carcinoma, end-stage renal disease, canine leishmaniosis-induced kidney disease, kidney fibrosis, and aristolochic acid nephropathy. Mechanistically, the role of LRG1 in kidney diseases is believed to be detrimental, potentially through its regulation of various genes and signaling cascades, i.e., fibronectin 1, GPR56, vascular endothelial growth factor (VEGF), VEGFR-2, death receptor 5, GDF15, HIF-1α, SPP1, activin receptor-like kinase 1-Smad1/5/8, NLRP3-IL-1b, and transforming growth factor β pathway. Key Messages Further research is needed to fully comprehend the molecular mechanisms by which LRG1 contributes to the pathogenesis and pathophysiology of kidney diseases. It is anticipated that targeted treatments focusing on LRG1 will be utilized in clinical trials and implemented in clinical practice in the future.
Collapse
Affiliation(s)
- Chunyan Chen
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Jingwei Zhang
- Department of Urology, Guangzhou First People’s Hospital, Guangzhou, China
| | - Tao Yu
- Department of Emergency Medicine, Dean People’s Hospital, Jiujiang, China
| | - Haiya Feng
- Department of Burn Surgery, Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Yifei Jia
- Department of Burn Surgery, Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
3
|
Hussein R, Abou-Shanab AM, Badr E. A multi-omics approach for biomarker discovery in neuroblastoma: a network-based framework. NPJ Syst Biol Appl 2024; 10:52. [PMID: 38760476 PMCID: PMC11101461 DOI: 10.1038/s41540-024-00371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neuroblastoma (NB) is one of the leading causes of cancer-associated death in children. MYCN amplification is a prominent genetic marker for NB, and its targeting to halt NB progression is difficult to achieve. Therefore, an in-depth understanding of the molecular interactome of NB is needed to improve treatment outcomes. Analysis of NB multi-omics unravels valuable insight into the interplay between MYCN transcriptional and miRNA post-transcriptional modulation. Moreover, it aids in the identification of various miRNAs that participate in NB development and progression. This study proposes an integrated computational framework with three levels of high-throughput NB data (mRNA-seq, miRNA-seq, and methylation array). Similarity Network Fusion (SNF) and ranked SNF methods were utilized to identify essential genes and miRNAs. The specified genes included both miRNA-target genes and transcription factors (TFs). The interactions between TFs and miRNAs and between miRNAs and their target genes were retrieved where a regulatory network was developed. Finally, an interaction network-based analysis was performed to identify candidate biomarkers. The candidate biomarkers were further analyzed for their potential use in prognosis and diagnosis. The candidate biomarkers included three TFs and seven miRNAs. Four biomarkers have been previously studied and tested in NB, while the remaining identified biomarkers have known roles in other types of cancer. Although the specific molecular role is yet to be addressed, most identified biomarkers possess evidence of involvement in NB tumorigenesis. Analyzing cellular interactome to identify potential biomarkers is a promising approach that can contribute to optimizing efficient therapeutic regimens to target NB vulnerabilities.
Collapse
Affiliation(s)
- Rahma Hussein
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ahmed M Abou-Shanab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Eman Badr
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
4
|
Nakanishi S, Goya M, Suda T, Yonamine T, Sugawa A, Saito S. Increased level of serum leucine-rich-alpha-2-glycoprotein 1 in patients with clear cell renal cell carcinoma. BMC Urol 2024; 24:94. [PMID: 38658967 PMCID: PMC11040933 DOI: 10.1186/s12894-024-01481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Currently, no useful serum markers exist for clear cell renal cell carcinoma (ccRCC), making early detection challenging as diagnosis relies solely on imaging tests. Radiation exposure is also a concern due to multiple required CT examinations during treatment. Renal cell carcinoma (RCC) histological types include ccRCC and non-clear cell RCC (non-ccRCC); however, treatment response to medications varies which necessitates accurate differentiation between the two. Therefore, we aimed to identify a novel serum marker of RCC. Increased LRG1 expression in the serum has been demonstrated in multiple cancer types. However, the expression of LRG1 expression in the serum and cancer tissues of patients with RCC has not been reported. Since ccRCC is a hypervascular tumor and LRG1 is capable of accelerating angiogenesis, we hypothesized that the LRG1 levels may be related to ccRCC. Therefore, we examined LRG1 expression in sera from patients with RCC. METHODS Using an enzyme-linked immunosorbent assay, serum levels of leucine-rich-alpha-2-glycoprotein 1 (LRG1) were measured in 64 patients with ccRCC and 22 patients non-ccRCC who underwent radical or partial nephrectomy, as well as in 63 patients without cancer. RESULTS Median values of serum LRG1 and their inter-quartile ranges were 63.2 (42.8-94.2) µg/mL in ccRCC, 23.4 (17.7-29.6) µg/mL in non-ccRCC, and 36.0 (23.7-56.7) µg/mL in patients without cancer, respectively (ccRCC vs. non-ccRCC or patients without cancer: P < 0.001). C-reactive protein (CRP) levels (P = 0.002), anemia (P = 0.037), hypercalcemia (P = 0.023), and grade (P = 0.031) were independent predictors of serum LRG1 levels in ccRCC. To assess diagnostic performance, the area under the receiver operating characteristic curve of serum LRG1 was utilized to differentiate ccRCC from non-cancer and non-ccRCC, with values of 0.73 (95% CI, 0.64-0.82) and 0.91 (95% CI, 0.82-0.96), respectively. CONCLUSIONS LRG1 served as a serum marker associated with inflammation, indicated by CRP, anemia, hypercalcemia, and malignant potential in ccRCC. Clinically, serum LRG1 levels may assist in differentiating ccRCC from non-ccRCC with excellent diagnostic accuracy.
Collapse
Affiliation(s)
- Shotaro Nakanishi
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, 903-0215, Okinawa, Japan.
| | - Masato Goya
- Chubu Tokusyukai Hospital, Kitanakagusuku, 801 higa, 901-2392, Okinawa, Japan
| | - Tetsuji Suda
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, 903-0215, Okinawa, Japan
| | - Tomoko Yonamine
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, 903-0215, Okinawa, Japan
| | - Ai Sugawa
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, 903-0215, Okinawa, Japan
| | - Seiichi Saito
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, 903-0215, Okinawa, Japan
| |
Collapse
|
5
|
Epp S, Chuah SM, Halasz M. Epigenetic Dysregulation in MYCN-Amplified Neuroblastoma. Int J Mol Sci 2023; 24:17085. [PMID: 38069407 PMCID: PMC10707345 DOI: 10.3390/ijms242317085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroblastoma (NB), a childhood cancer arising from the neural crest, poses significant clinical challenges, particularly in cases featuring amplification of the MYCN oncogene. Epigenetic factors play a pivotal role in normal neural crest and NB development, influencing gene expression patterns critical for tumorigenesis. This review delves into the multifaceted interplay between MYCN and known epigenetic modifications during NB genesis, shedding light on the intricate regulatory networks underlying the disease. We provide an extensive survey of known epigenetic mechanisms, encompassing DNA methylation, histone modifications, non-coding RNAs, super-enhancers (SEs), bromodomains (BET), and chromatin modifiers in MYCN-amplified (MNA) NB. These epigenetic changes collectively contribute to the dysregulated gene expression landscape observed in MNA NB. Furthermore, we review emerging therapeutic strategies targeting epigenetic regulators, including histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi), and DNA methyltransferase inhibitors (DNMTi). We also discuss and summarize current drugs in preclinical and clinical trials, offering insights into their potential for improving outcomes for MNA NB patients.
Collapse
Affiliation(s)
- Soraya Epp
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Shin Mei Chuah
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Melinda Halasz
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
6
|
Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes (Basel) 2023; 14:1375. [PMID: 37510280 PMCID: PMC10378777 DOI: 10.3390/genes14071375] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that regulate gene expression post-transcriptionally by binding to messenger RNAs. miRNAs are important regulators of gene expression, and their dysregulation is implicated in many human and canine diseases. Most cancers tested to date have been shown to express altered miRNA levels, which indicates their potential importance in the oncogenic process. Based on this evidence, numerous miRNAs have been suggested as potential cancer biomarkers for both diagnosis and prognosis. miRNA-based therapies have also been tested in different cancers and have provided measurable clinical benefits to patients. In addition, understanding miRNA biogenesis and regulatory mechanisms in cancer can provide important knowledge about resistance to chemotherapies, leading to more personalized cancer treatment. In this review, we comprehensively summarized the importance of miRNA in human and canine cancer research. We discussed the current state of development and potential for the miRNA as both a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Atonu Chakrabortty
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Daniel J Patton
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Bruce F Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
8
|
MicroRNAs as prospective biomarkers, therapeutic targets and pharmaceuticals in neuroblastoma. Mol Biol Rep 2023; 50:1895-1912. [PMID: 36520359 DOI: 10.1007/s11033-022-08137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Neuroblastomas, the most prevalent malignant solid neoplasms of childhood, originate from progenitor cells of the sympathetic nervous system. Their genetic causation is diverse and involves multiple molecular mechanisms. This review highlights multiple roles of microRNA in neuroblastoma pathogenesis and discusses the prospects of harnessing these important natural regulator molecules as biomarkers, therapeutic targets and pharmaceuticals in neuroblastoma.
Collapse
|
9
|
LRG1 mediated by ATF3 promotes growth and angiogenesis of gastric cancer by regulating the SRC/STAT3/VEGFA pathway. Gastric Cancer 2022; 25:527-541. [PMID: 35094168 DOI: 10.1007/s10120-022-01279-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/15/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increasing evidence indicates that leucine-rich-alpha-2-glycoprotein 1 (LRG1) is associated with multiple malignancies, but whether it participates in gastric cancer (GC) angiogenesis remains unclear. METHODS The expression levels of LRG1 were assessed in GC samples. Endothelial tube formation analysis, HUVEC migration assay, chorioallantoic membrane assay (CAM), and xenograft tumor model were used to investigate the effect of LRG1 on angiogenesis in gastric cancer. The involvement of activating transcription factor 3 (ATF3) was analyzed by chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assay. Western blot and enzyme-linked immunosorbent assay were performed to measure the SRC/STAT3/VEGFA pathway. RESULTS LRG1 was overexpressed in GC tissues and associated with cancer angiogenesis. In addition, LRG1 markedly promoted GC cell proliferation in vitro and in vivo. Moreover, overexpression of LRG1 could stimulate GC angiogenesis in vitro and in vivo. Then, we identified ATF3 promotes the transcription of LRG1 and is a positive regulator of angiogenesis. Additionally, LRG1 could activate VEGFA expression via the SRC/STAT3/ VEGFA pathway in GC cells, thus contributing to the angiogenesis of GC. CONCLUSIONS The present study suggests LRG1 plays a crucial role in the regulation of angiogenesis in GC and could be a potential therapeutic target for GC.
Collapse
|
10
|
Huang S, Gong N, Li J, Hong M, Li L, Zhang L, Zhang H. The role of ncRNAs in neuroblastoma: mechanisms, biomarkers and therapeutic targets. Biomark Res 2022; 10:18. [PMID: 35392988 PMCID: PMC8991791 DOI: 10.1186/s40364-022-00368-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma (NB) is a malignant tumor in young children that originates from the neural crest of the sympathetic nervous system. Generally, NB occurs in the adrenal glands, but it can also affect the nerve tissues of the neck, chest, abdomen, and pelvis. Understanding the pathophysiology of NB and developing novel therapeutic approaches are critical. Noncoding RNAs (ncRNAs) are associated with crucial aspects of pathology, metastasis and drug resistance in NB. Here, we summarized the pretranscriptional, transcriptional and posttranscriptional regulatory mechanisms of ncRNAs involved in NB, especially focusing on regulatory pathways. Furthermore, ncRNAs with the potential to serve as biomarkers for risk stratification, drug resistance and therapeutic targets are also discussed, highlighting the clinical application of ncRNAs in NB.
Collapse
Affiliation(s)
- Shaohui Huang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Naying Gong
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Jiangbin Li
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Mingye Hong
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Li Li
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Ling Zhang
- Health Science Center, University of Texas, Houston, 77030, USA.
| | - Hua Zhang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
11
|
Ho CK, Zheng D, Sun J, Wen D, Wu S, Yu L, Gao Y, Zhang Y, Li Q. LRG-1 promotes fat graft survival through the RAB31-mediated inhibition of hypoxia-induced apoptosis. J Cell Mol Med 2022; 26:3153-3168. [PMID: 35322540 PMCID: PMC9170820 DOI: 10.1111/jcmm.17280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 11/29/2022] Open
Abstract
Autologous adipose tissue is an ideal soft tissue filling material, and its biocompatibility is better than that of artificial tissue substitutes, foreign bodies and heterogeneous materials. Although autologous fat transplantation has many advantages, the low retention rate of adipose tissue limits its clinical application. Here, we identified a secretory glycoprotein, leucine‐rich‐alpha‐2‐glycoprotein 1 (LRG‐1), that could promote fat graft survival through RAB31‐mediated inhibition of hypoxia‐induced apoptosis. We showed that LRG‐1 injection significantly increased the maintenance of fat volume and weight compared with the control. In addition, higher fat integrity, more viable adipocytes and fewer apoptotic cells were observed in the LRG‐1‐treated groups. Furthermore, we discovered that LRG‐1 could reduce the ADSC apoptosis induced by hypoxic conditions. The mechanism underlying the LRG‐1‐mediated suppression of the ADSC apoptosis induced by hypoxia was mediated by the upregulation of RAB31 expression. Using LRG‐1 for fat grafts may prove to be clinically successful for increasing the retention rate of transplanted fat.
Collapse
Affiliation(s)
- Chia-Kang Ho
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Danning Zheng
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaming Sun
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dongsheng Wen
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Wu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Gao
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Zhang
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Zou Y, Xu Y, Chen X, Wu Y, Fu L, Lv Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front Pharmacol 2022; 12:809225. [PMID: 35095520 PMCID: PMC8797156 DOI: 10.3389/fphar.2021.809225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich alpha⁃2 glycoprotein 1 (LRG1) is an important member of the leucine-rich repetitive sequence protein family. LRG1 was mainly involved in normal physiological activities of the nervous system, such as synapse formation, synapse growth, the development of nerve processes, neurotransmitter transfer and release, and cell adhesion molecules or ligand-binding proteins. Also, LRG1 affected the development of respiratory diseases, hematological diseases, endocrine diseases, tumor diseases, eye diseases, cardiovascular diseases, rheumatic immune diseases, infectious diseases, etc. LRG1 was a newly discovered important upstream signaling molecule of transforming growth factor⁃β (TGF⁃β) that affected various pathological processes through the TGF⁃β signaling pathway. However, research on LRG1 and its involvement in the occurrence and development of diseases was still in its infancy and the current studies were mainly focused on proteomic detection and basic animal experimental reports. We could reasonably predict that LRG1 might act as a new direction and strategy for the treatment of many diseases.
Collapse
Affiliation(s)
- Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xiaofeng Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,College of Pharmacy, Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Camilli C, Hoeh AE, De Rossi G, Moss SE, Greenwood J. LRG1: an emerging player in disease pathogenesis. J Biomed Sci 2022; 29:6. [PMID: 35062948 PMCID: PMC8781713 DOI: 10.1186/s12929-022-00790-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
The secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1) was first described as a key player in pathogenic ocular neovascularization almost a decade ago. Since then, an increasing number of publications have reported the involvement of LRG1 in multiple human conditions including cancer, diabetes, cardiovascular disease, neurological disease, and inflammatory disorders. The purpose of this review is to provide, for the first time, a comprehensive overview of the LRG1 literature considering its role in health and disease. Although LRG1 is constitutively expressed by hepatocytes and neutrophils, Lrg1-/- mice show no overt phenotypic abnormality suggesting that LRG1 is essentially redundant in development and homeostasis. However, emerging data are challenging this view by suggesting a novel role for LRG1 in innate immunity and preservation of tissue integrity. While our understanding of beneficial LRG1 functions in physiology remains limited, a consistent body of evidence shows that, in response to various inflammatory stimuli, LRG1 expression is induced and directly contributes to disease pathogenesis. Its potential role as a biomarker for the diagnosis, prognosis and monitoring of multiple conditions is widely discussed while dissecting the mechanisms underlying LRG1 pathogenic functions. Emphasis is given to the role that LRG1 plays as a vasculopathic factor where it disrupts the cellular interactions normally required for the formation and maintenance of mature vessels, thereby indirectly contributing to the establishment of a highly hypoxic and immunosuppressive microenvironment. In addition, LRG1 has also been reported to affect other cell types (including epithelial, immune, mesenchymal and cancer cells) mostly by modulating the TGFβ signalling pathway in a context-dependent manner. Crucially, animal studies have shown that LRG1 inhibition, through gene deletion or a function-blocking antibody, is sufficient to attenuate disease progression. In view of this, and taking into consideration its role as an upstream modifier of TGFβ signalling, LRG1 is suggested as a potentially important therapeutic target. While further investigations are needed to fill gaps in our current understanding of LRG1 function, the studies reviewed here confirm LRG1 as a pleiotropic and pathogenic signalling molecule providing a strong rationale for its use in the clinic as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Carlotta Camilli
- Institute of Ophthalmology, University College London, London, UK.
| | - Alexandra E Hoeh
- Institute of Ophthalmology, University College London, London, UK
| | - Giulia De Rossi
- Institute of Ophthalmology, University College London, London, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, UK
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
14
|
Braoudaki M, Hatziagapiou K, Zaravinos A, Lambrou GI. MYCN in Neuroblastoma: "Old Wine into New Wineskins". Diseases 2021; 9:78. [PMID: 34842635 PMCID: PMC8628738 DOI: 10.3390/diseases9040078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
MYCN Proto-Oncogene, BHLH Transcription Factor (MYCN) has been one of the most studied genes in neuroblastoma. It is known for its oncogenetic mechanisms, as well as its role in the prognosis of the disease and it is considered one of the prominent targets for neuroblastoma therapy. In the present work, we attempted to review the literature, on the relation between MYCN and neuroblastoma from all possible mechanistic sites. We have searched the literature for the role of MYCN in neuroblastoma based on the following topics: the references of MYCN in the literature, the gene's anatomy, along with its transcripts, the protein's anatomy, the epigenetic mechanisms regulating MYCN expression and function, as well as MYCN amplification. MYCN plays a significant role in neuroblastoma biology. Its functions and properties range from the forming of G-quadraplexes, to the interaction with miRNAs, as well as the regulation of gene methylation and histone acetylation and deacetylation. Although MYCN is one of the most primary genes studied in neuroblastoma, there is still a lot to be learned. Our knowledge on the exact mechanisms of MYCN amplification, etiology and potential interventions is still limited. The knowledge on the molecular mechanisms of MYCN in neuroblastoma, could have potential prognostic and therapeutic advantages.
Collapse
Affiliation(s)
- Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordshire, UK;
| | - Kyriaki Hatziagapiou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center, European University Cyprus, Nicosia 1516, Cyprus
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| |
Collapse
|
15
|
Jemmerson R. Paradoxical Roles of Leucine-Rich α 2-Glycoprotein-1 in Cell Death and Survival Modulated by Transforming Growth Factor-Beta 1 and Cytochrome c. Front Cell Dev Biol 2021; 9:744908. [PMID: 34692699 PMCID: PMC8531642 DOI: 10.3389/fcell.2021.744908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Leucine-rich α2-glycoprotein-1 (LRG1) has been shown to impact both apoptosis and cell survival, pleiotropic effects similar to one of its known ligands, transforming growth factor-beta 1 (TGF-β1). Recent studies have given insight into the TGF-β1 signaling pathways involved in LRG1-mediated death versus survival signaling, i.e., canonical or non-canonical. Interaction of LRG1 with another ligand, extracellular cytochrome c (Cyt c), promotes cell survival, at least for lymphocytes. LRG1 has been shown to bind Cyt c with high affinity, higher than it binds TGF-β1, making it sensitive to small changes in the level of extracellular Cyt c within a microenvironment that may arise from cell death. Evidence is presented here that LRG1 can bind TGF-β1 and Cyt c simultaneously, raising the possibility that the ternary complex may present a signaling module with the net effect of signaling, cell death versus survival, determined by the relative extent to which the LRG1 binding sites are occupied by these two ligands. A possible role for LRG1 should be considered in studies where extracellular effects of TGF-β1 and Cyt c have been observed in media supplemented with LRG1-containing serum.
Collapse
Affiliation(s)
- Ronald Jemmerson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
Banik K, Khatoon E, Hegde M, Thakur KK, Puppala ER, Naidu VGM, Kunnumakkara AB. A novel bioavailable curcumin-galactomannan complex modulates the genes responsible for the development of chronic diseases in mice: A RNA sequence analysis. Life Sci 2021; 287:120074. [PMID: 34687757 DOI: 10.1016/j.lfs.2021.120074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic diseases or non-communicable diseases are a major burden worldwide due to the lack of highly efficacious treatment modalities and the serious side effects associated with the available therapies. PURPOSE/STUDY DESIGN A novel self-emulsifying formulation of curcumin with fenugreek galactomannan hydrogel scaffold as a water-dispersible non-covalent curcumin-galactomannan molecular complex (curcumagalactomannosides, CGM) has shown better bioavailability than curcumin and can be used for the prevention and treatment of chronic diseases. However, the exact potential of this formulation has not been studied, which would pave the way for its use for the prevention and treatment of multiple chronic diseases. METHODS The whole transcriptome analysis (RNAseq) was used to identify differentially expressed genes (DEGs) in the liver tissues of mice treated with LPS to investigate the potential of CGM on the prevention and treatment of chronic diseases. Expression analysis using DESeq2 package, GO, and pathway analysis of the differentially expressed transcripts was performed using UniProtKB and KEGG-KAAS server. RESULTS The results showed that 559 genes differentially expressed between the liver tissue of control mice and CGM treated mice (100 mg/kg b.wt. for 14 days), with adjusted p-value below 0.05, of which 318 genes were significantly upregulated and 241 were downregulated. Further analysis showed that 33 genes which were upregulated (log2FC > 8) in the disease conditions were significantly downregulated, and 32 genes which were downregulated (log2FC < -8) in the disease conditions were significantly upregulated after the treatment with CGM. CONCLUSION Overall, our study showed CGM has high potential in the prevention and treatment of multiple chronic diseases.
Collapse
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
17
|
Feng J, Zhan J, Ma S. LRG1 promotes hypoxia-induced cardiomyocyte apoptosis and autophagy by regulating hypoxia-inducible factor-1α. Bioengineered 2021; 12:8897-8907. [PMID: 34643170 PMCID: PMC8806971 DOI: 10.1080/21655979.2021.1988368] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiomyocyte apoptosis and autophagy play important roles in acute myocardial infarction (AMI), but the effect of leucine-rich alpha-2-glycoprotein 1 (LRG1) on the apoptosis and autophagy of H9c2 has not yet been reported. It was found through differential gene analysis and LASSO analysis that LRG1 was the key gene in AMI. In this study, western blot was applied to detect the protein expression of Bax, Bcl2, LC3, p62, LRG1 and hypoxia-inducible factor-1α (HIF-1α); CCK-8 assay was employed to detect cell viability; Annexin V-FITC/PI staining was adopted to evaluate apoptosis, and immunofluorescence assay was applied to detect autophagy. Under hypoxia conditions in H9c2 cells, LRG1 protein levels were increased, the cell activity was decreased, and apoptosis and autophagy were promoted; the downregulated LRG1 significantly enhanced cell viability but inhibited apoptosis and autophagy. When knocking down HIF-1α in the overexpressed LRG1 cells, the effects of LRG1 were reversed under hypoxia condition. In conclusion, LRG1/HIF-1α promoted H9c2 cell apoptosis and autophagy in hypoxia, potentially providing new ideas for the determination and treatment of AMI. Abbreviation: LRG1: Leucine-rich alpha-2-glycoprotein 1; LRR: leucine-rich repeat; HIF-1α: Hypoxia-inducible factor-1α; AMI: acute myocardial infarction
Collapse
Affiliation(s)
- Jiajie Feng
- Department of Emergency, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Jiachen Zhan
- Department of Cardiology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Shuangshuang Ma
- Department of Emergency, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Guo S, Qin H, Liu K, Wang H, Bai S, Liu S, Shao Z, Zhang Y, Song B, Xu X, Shen J, Zeng P, Shi X, Chen H, Gao S, Xu J, Pan Y, Xiong L, Li F, Zhang D, Jiao X, Jin G. Blood small extracellular vesicles derived miRNAs to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Clin Transl Med 2021; 11:e520. [PMID: 34586739 PMCID: PMC8431442 DOI: 10.1002/ctm2.520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The differential diagnosis of pancreatic ductal adenocarcinoma (PDAC) from chronic pancreatitis (CP) is clinically challenging due to a lack of minimally invasive diagnosis methods. MicroRNAs (miRNAs) derived from small extracellular vesicles (EVs) in the blood have been reported as a promising diagnosis biomarker for various types of cancer. However, blood small EV miRNA signatures and their diagnostic value to differentiate between PDAC and CP remain to be determined. METHODS In this study, 107 patients with PDAC or CP were recruited, and 90 patients were finally enrolled for a training cohort (n = 48) and test cohort (n = 42). Small RNA sequencing was used to assess the expression of blood small EV miRNAs in these patients. RESULTS The linear model from the differentially expressed blood small EV miR-95-3p divided by miR-26b-5p showed an average sensitivity of 84.1% and an average specificity of 96.6% to identify PDAC from CP in the training cohort and the test cohort, respectively. When the model was combined with serum carbohydrate antigen 19-9 (CA19-9), the average sensitivity increased to 96.5%, and the average specificity remained at 96.4% of both cohorts, which demonstrated the best performance of all the published biomarkers for distinguishing between PDAC and CP. The causal analysis performed using the Bayesian network demonstrated that miR-95-3p was associated with a "consequence" of "cancer" and miR-26b-5p as a "cause" of "pancreatitis." A subgroup analysis revealed that blood small EV miR-335-5p/miR-340-5p could predict metastases in both cohorts and was associated with an overall survival (p = 0.020). CONCLUSIONS This study indicated that blood small EV miR-95-3p/miR-26b-5p and its combination with serum levels of CA19-9 could separate PDAC from CP, and miR-335-5p/miR-340-5p was identified to associate with PDAC metastasis and poor prognosis. These results suggested the potentiality of blood small EV miRNAs as differential diagnosis and metastases biomarkers of PDAC.
Collapse
Affiliation(s)
- Shiwei Guo
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Hao Qin
- 3D Medicines Inc.ShanghaiChina
| | - Ke Liu
- Department of Medical OncologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Huan Wang
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Sijia Bai
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Zhuo Shao
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Bin Song
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Jing Shen
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Suizhi Gao
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Yaqi Pan
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | | | | | - Xiaodong Jiao
- Department of Medical OncologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Gang Jin
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
19
|
Safaric Tepes P, Pal D, Lindsted T, Ibarra I, Lujambio A, Jimenez Sabinina V, Senturk S, Miller M, Korimerla N, Huang J, Glassman L, Lee P, Zeltsman D, Hyman K, Esposito M, Hannon GJ, Sordella R. An epigenetic switch regulates the ontogeny of AXL-positive/EGFR-TKi-resistant cells by modulating miR-335 expression. eLife 2021; 10:e66109. [PMID: 34254585 PMCID: PMC8285107 DOI: 10.7554/elife.66109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/10/2021] [Indexed: 01/15/2023] Open
Abstract
Despite current advancements in research and therapeutics, lung cancer remains the leading cause of cancer-related mortality worldwide. This is mainly due to the resistance that patients develop against chemotherapeutic agents over the course of treatment. In the context of non-small cell lung cancers (NSCLC) harboring EGFR-oncogenic mutations, augmented levels of AXL and GAS6 have been found to drive resistance to EGFR tyrosine kinase inhibitors such as Erlotinib and Osimertinib in certain tumors with mesenchymal-like features. By studying the ontogeny of AXL-positive cells, we have identified a novel non-genetic mechanism of drug resistance based on cell-state transition. We demonstrate that AXL-positive cells are already present as a subpopulation of cancer cells in Erlotinib-naïve tumors and tumor-derived cell lines and that the expression of AXL is regulated through a stochastic mechanism centered on the epigenetic regulation of miR-335. The existence of a cell-intrinsic program through which AXL-positive/Erlotinib-resistant cells emerge infers the need of treating tumors harboring EGFR-oncogenic mutations upfront with combinatorial treatments targeting both AXL-negative and AXL-positive cancer cells.
Collapse
Affiliation(s)
- Polona Safaric Tepes
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Faculty of Pharmacy University of LjubljanaLjubljanaSlovenia
| | - Debjani Pal
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Graduate Program in Molecular and Cellular Biology, Stony Brook UniversityStony Brook, New YorkUnited States
| | - Trine Lindsted
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Ingrid Ibarra
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Amaia Lujambio
- Icahn School of Medicine at Mount Sinai, Hess Center for Science and MedicineNew YorkUnited States
| | | | - Serif Senturk
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Madison Miller
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Navya Korimerla
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Graduate Program in Biomedical Engineering, Stony Brook UniversityNew YorkUnited States
| | - Jiahao Huang
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Lawrence Glassman
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Paul Lee
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - David Zeltsman
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Kevin Hyman
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Michael Esposito
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Gregory J Hannon
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Cancer Research UK – Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| | - Raffaella Sordella
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Watson School of Biological Sciences, Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| |
Collapse
|
20
|
Serine-Threonine Kinase Receptor-Associated Protein (STRAP) Knockout Decreases the Malignant Phenotype in Neuroblastoma Cell Lines. Cancers (Basel) 2021; 13:cancers13133201. [PMID: 34206917 PMCID: PMC8268080 DOI: 10.3390/cancers13133201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Serine-threonine kinase receptor-associated protein (STRAP) plays an important role in neural development but also in tumor growth. Neuroblastoma, a tumor of neural crest origin, is the most common extracranial solid malignancy of childhood and it continues to carry a poor prognosis. The recent discovery of the role of STRAP in another pediatric solid tumor, osteosarcoma, and the known function of STRAP in neural development, led us to investigate the role of STRAP in neuroblastoma tumorigenesis. Methods: STRAP protein expression was abrogated in two human neuroblastoma cell lines, SK-N-AS and SK-N-BE(2), using transient knockdown with siRNA, stable knockdown with shRNA lentiviral transfection, and CRISPR-Cas9 genetic knockout. STRAP knockdown and knockout cells were examined for phenotypic alterations in vitro and tumor growth in vivo. Results: Cell proliferation, motility, and growth were significantly decreased in STRAP knockout compared to wild-type cells. Indicators of stemness, including mRNA abundance of common stem cell markers Oct4, Nanog, and Nestin, the percentage of cells expressing CD133 on their surface, and the ability to form tumorspheres were significantly decreased in the STRAP KO cells. In vivo, STRAP knockout cells formed tumors less readily than wild-type tumor cells. Conclusion: These novel findings demonstrated that STRAP plays a role in tumorigenesis and maintenance of neuroblastoma stemness.
Collapse
|
21
|
Meng Q, Wang N, Duan G. Long non-coding RNA XIST regulates ovarian cancer progression via modulating miR-335/BCL2L2 axis. World J Surg Oncol 2021; 19:165. [PMID: 34090463 PMCID: PMC8180121 DOI: 10.1186/s12957-021-02274-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
Background X inactivation-specific transcript (XIST) is the long non-coding RNA (lncRNA) related to cancer, which is involved in the development and progression of various types of tumor. However, up to now, the exact role and molecular mechanism of XIST in the progression of ovarian cancer are not clear. We studied the function of XIST in ovarian cancer cells and clinical tumor specimens. Methods RT-qPCR was performed to detect the expression levels of miR-335 and BCL2L2 in ovarian cancer cells and tissues. MTT and transwell assays were carried out to detect cell proliferation, migration, and invasion abilities. Western blot was performed to analyze the expression level of BCL2L2. The interaction between miR-335 and XIST/BCL2L2 was confirmed using a luciferase reporter assay. Results The inhibition of XIST can inhibit the proliferation invasion and migration of human ovarian cancer cells. In addition, the miR-335/BCL2L2 axis was involved in the functions of XIST in ovarian cancer cells. These results suggested that XIST could regulate tumor proliferation and invasion and migration via modulating miR-335/BCL2L2. Conclusion XIST might be a carcinogenic lncRNA in ovarian cancer by regulating miR-335, and it can serve as a therapeutic target in human ovarian cancer.
Collapse
Affiliation(s)
- Qingjuan Meng
- Medical Examination Center, The Third Hospital of Jinan, Jinan, 250132, China
| | - Ningning Wang
- Department of Obstetrics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shandong, China
| | - Guanglan Duan
- Department of Urology Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shandong, China.
| |
Collapse
|
22
|
de Sá Pereira BM, Montalvão de Azevedo R, da Silva Guerra JV, Faria PA, Soares-Lima SC, De Camargo B, Maschietto M. Non-coding RNAs in Wilms' tumor: biological function, mechanism, and clinical implications. J Mol Med (Berl) 2021; 99:1043-1055. [PMID: 33950291 DOI: 10.1007/s00109-021-02075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Non-coding RNAs are involved with maintenance and regulation of physiological mechanisms and are involved in pathological processes, such as cancer. Among the small ncRNAs, miRNAs are the most explored in tumorigenesis, metastasis development, and resistance to chemotherapy. These small molecules of ~ 22 nucleotides are modulated during early renal development, involved in the regulation of gene expression and Wilms' tumor progression. Wilms' tumors are embryonic tumors with few mutations and complex epigenetic dysregulation. In recent years, the small ncRNAs have been explored as potentially related both in physiological development and in the tumorigenesis of several types of cancer. Besides, genes regulated by miRNAs are related to biological pathways as PI3K, Wnt, TGF-β, and Hippo signaling pathways, among others, which may be involved with the underlying mechanisms of resistance to chemotherapy, and in this way, it has emerged as potential targets for cancer therapies, including for Wilms' tumors.
Collapse
Affiliation(s)
| | - Rafaela Montalvão de Azevedo
- Brazilian National Cancer Institute (INCa), Rio de Janeiro, RJ, Brazil.,Current institution: Molecular Bases of Genetic Risk and Genetic Testing Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - João Victor da Silva Guerra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutic Sciences, University of Campinas, Campinas, SP, Brazil
| | - Paulo A Faria
- Brazilian National Cancer Institute (INCa), Rio de Janeiro, RJ, Brazil
| | | | | | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil. .,Current: Research Institute, Boldrini Children's Hospital, Rua Dr. Gabriel Porto, 1270 - Cidade Universitária, Campinas, SP, 13083-210, Brazil.
| |
Collapse
|
23
|
Wu ZJ, Sun Q, Gu DL, Wang LQ, Li JY, Jin H. [Expression of circ-KEL in acute myeloid leukemia and its regulatory mechanisms in leukemic cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:230-237. [PMID: 33910309 PMCID: PMC8081935 DOI: 10.3760/cma.j.issn.0253-2727.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Indexed: 11/05/2022]
Abstract
Objective: To explore the expression of circ-KEL in patients with acute myeloid leukemia (AML) and the effect and mechanism of circ-KEL on leukemic cells. Methods: The expression of circ-KEL was detected by quantitative real-time polymerase chain reaction in bone marrow mononuclear cells collected from 116 patients with AML and 40 healthy donors. The correlation of circ-KEL expression with the clinical characteristics of patients with AML was further systematically analyzed. The modulations among circ-KEL, miR-335-5p, and LRG1 were predicted through bioinformatics analysis and validated by dual luciferase assay. Cell proliferation and apoptosis were detected using CCK8 and flow cytometry. Results: The expression of circ-KEL was significantly elevated in patients with AML compared with the healthy controls (Relative expression level, -Δct, AML: -7.117±1.831; control: -8.669±1.771, P<0.001) . Moreover, patients with high circ-KEL expression have significantly worse overall survival. The level of circ-KEL in patients with AML was downregulated after chemo-treatment. In addition, circ-KEL could serve as the sponge of miR-335-5p and regulate LRG1. Bioinformatics analysis showed that miR-335-5p correlates with good prognosis and was negatively associated with LRG1. LRG1 could promote cell proliferation and inhibit cell apoptosis. Our results also exhibited the higher expression of LRG1 in patients with AML. Moreover, circ-KEL exerted functional effects via sponging miR-335-5p and regulating LRG1. Conclusion: circ-KEL expresses highly in patients with AML and correlates with poor prognosis, suggesting its important role in the genesis and progress of AML.
Collapse
Affiliation(s)
- Z J Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People Hospital), Nanjing 210029, China
| | - Q Sun
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People Hospital), Nanjing 210029, China
| | - D L Gu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People Hospital), Nanjing 210029, China
| | - L Q Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People Hospital), Nanjing 210029, China
| | - J Y Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People Hospital), Nanjing 210029, China
| | - H Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People Hospital), Nanjing 210029, China
| |
Collapse
|
24
|
Furuta T, Sugita Y, Komaki S, Ohshima K, Morioka M, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T, Nakada M. The Multipotential of Leucine-Rich α-2 Glycoprotein 1 as a Clinicopathological Biomarker of Glioblastoma. J Neuropathol Exp Neurol 2021; 79:873-879. [PMID: 32647893 DOI: 10.1093/jnen/nlaa058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/02/2020] [Indexed: 01/14/2023] Open
Abstract
Leucine-rich α-2 glycoprotein 1 (LRG1) is a diagnostic marker candidate for glioblastoma. Although LRG1 has been associated with angiogenesis, it has been suggested that its biomarker role differs depending on the type of tumor. In this study, a clinicopathological examination of LRG1's role as a biomarker for glioblastoma was performed. We used tumor tissues of 155 cases with diffuse gliomas (27 astrocytomas, 14 oligodendrogliomas, 114 glioblastomas). The immunohistochemical LRG1 intensity scoring was classified into 2 groups: low expression and high expression. Mutations of IDH1, IDH2, and TERT promoter were analyzed through the Sanger method. We examined the relationship between LRG1 expression level in glioblastoma and clinical parameters, such as age, preoperative Karnofsky performance status, tumor location, extent of resection, O6-methylguanine DNA methyltransferase promoter, and prognosis. LRG1 high expression rate was 41.2% in glioblastoma, 3.7% in astrocytoma, and 21.4% in oligodendroglioma. Glioblastoma showed a significantly higher LRG1 expression than lower-grade glioma (p = 0.0003). High expression of LRG1 was an independent favorable prognostic factor (p = 0.019) in IDH-wildtype glioblastoma and correlated with gross total resection (p = 0.002) and the tumor location on nonsubventricular zone (p = 0.00007). LRG1 demonstrated multiple potential as a diagnostic, prognostic, and regional biomarker for glioblastoma.
Collapse
Affiliation(s)
- Takuya Furuta
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yasuo Sugita
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Department of Neurosurgery; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Kurume University School of Medicine; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan
| | - Satoru Komaki
- Department of Neurosurgery; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan
| | - Koichi Ohshima
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan
| | - Motohiro Morioka
- Department of Neurosurgery; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai.,Graduate School of Biomedical Sciences, Tokushima University, Tokushima
| | - Sumio Ohtsuki
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai
| | - Mitsutoshi Nakada
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
25
|
Pottoo FH, Barkat MA, Harshita, Ansari MA, Javed MN, Sajid Jamal QM, Kamal MA. Nanotechnological based miRNA intervention in the therapeutic management of neuroblastoma. Semin Cancer Biol 2021; 69:100-108. [PMID: 31562954 DOI: 10.1016/j.semcancer.2019.09.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/29/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023]
Abstract
Neuroblastoma (NB) is a widely diagnosed cancer in children, characterized by amplification of the gene encoding the MYCN transcription factor, which is highly predictive of poor clinical outcome and metastatic disease. microRNAs (a class of small non-coding RNAs) are regulated by MYCN transcription factor in neuroblastoma cells. The current research is focussed on identifying differential role of miRNAs and their interactions with signalling proteins, which are intricately linked with cellular processes like apoptosis, proliferation or metastasis. However, the therapeutic success of miRNAs is limited by pharmaco-technical issues which are well counteracted by nanotechnological advancements. The nanoformulated miRNAs unload anti-cancer drugs in a controlled and prespecified manner at target sites, to influence the activity of target protein in amelioration of NB. Recent advances and developments in the field of miRNAs-based systems for clinical management of NBs and the role of nanotechnology to overcome challenges with drug delivery of miRNAs have been reviewed in this paper.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Harshita
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India; School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India.
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
26
|
Campos Cogo S, Gradowski Farias da Costa do Nascimento T, de Almeida Brehm Pinhatti F, de França Junior N, Santos Rodrigues B, Regina Cavalli L, Elifio-Esposito S. An overview of neuroblastoma cell lineage phenotypes and in vitro models. Exp Biol Med (Maywood) 2020; 245:1637-1647. [PMID: 32787463 PMCID: PMC7802384 DOI: 10.1177/1535370220949237] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This review was conducted to present the main neuroblastoma (NB) clinical characteristics and the most common genetic alterations present in these pediatric tumors, highlighting their impact in tumor cell aggressiveness behavior, including metastatic development and treatment resistance, and patients' prognosis. The distinct three NB cell lineage phenotypes, S-type, N-type, and I-type, which are characterized by unique cell surface markers and gene expression patterns, are also reviewed. Finally, an overview of the most used NB cell lines currently available for in vitro studies and their unique cellular and molecular characteristics, which should be taken into account for the selection of the most appropriate model for NB pre-clinical studies, is presented. These valuable models can be complemented by the generation of NB reprogrammed tumor cells or organoids, derived directly from patients' tumor specimens, in the direction toward personalized medicine.
Collapse
Affiliation(s)
- Sheron Campos Cogo
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | | | | | - Nilton de França Junior
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Bruna Santos Rodrigues
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Luciane Regina Cavalli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Selene Elifio-Esposito
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| |
Collapse
|
27
|
Nolan JC, Salvucci M, Carberry S, Barat A, Segura MF, Fenn J, Prehn JHM, Stallings RL, Piskareva O. A Context-Dependent Role for MiR-124-3p on Cell Phenotype, Viability and Chemosensitivity in Neuroblastoma in vitro. Front Cell Dev Biol 2020; 8:559553. [PMID: 33330445 PMCID: PMC7714770 DOI: 10.3389/fcell.2020.559553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) is a neural crest-derived tumor, which develops before birth or in early childhood, with metastatic dissemination typically preceding diagnosis. Tumors are characterized by a highly heterogeneous combination of cellular phenotypes demonstrating varying degrees of differentiation along different lineage pathways, and possessing distinct super-enhancers and core regulatory circuits, thereby leading to highly varied malignant potential and divergent clinical outcomes. Cytoskeletal reorganization is fundamental to cellular transformations, including the processes of cellular differentiation and epithelial to mesenchymal transition (EMT), previously reported by our lab and others to coincide with chemotherapy resistance and enhanced metastatic ability of tumor cells. This study set out to investigate the ability of the neuronal miR-124-3p to reverse the cellular transformation associated with drug resistance development and assess the anti-oncogenic role of this miRNA in in vitro models of drug-resistant adrenergic (ADRN) and mesenchymal (MES) neuroblastoma cell lines. Low expression of miR-124-3p in a cohort of neuroblastomas was significantly associated with poor overall and progression-free patient survival. Over-expression of miR-124-3p in vitro inhibited cell viability through the promotion of cell cycle arrest and induction of apoptosis in addition to sensitizing drug-resistant cells to chemotherapeutics in a panel of morphologically distinct neuroblastoma cell lines. Finally, we describe miR-124-3p direct targeting and repression of key up-regulated cytoskeletal genes including MYH9, ACTN4 and PLEC and the reversal of the resistance-associated EMT and enhanced invasive capacity previously reported in our in vitro model (SK-N-ASCis24).
Collapse
Affiliation(s)
- John C Nolan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Steven Carberry
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ana Barat
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Justine Fenn
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Raymond L Stallings
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Olga Piskareva
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
28
|
Mi J, Han Y, Zhang J, Hao X, Xing M, Shang C. Long noncoding RNA LINC01410 promotes the tumorigenesis of neuroblastoma cells by sponging microRNA-506-3p and modulating WEE1. Cancer Med 2020; 9:8133-8143. [PMID: 32886453 PMCID: PMC7643657 DOI: 10.1002/cam4.3398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Neuroblastoma (NBL) is an extra-cranial solid tumor in children. This study was attempted to investigate the regulatory mechanism of long noncoding RNA LINC01410 (LINC01410) on NBL. METHODS The expression of LINC01410, miR-506-3p, and WEE1 in NBL was evaluated by quantitative real time polymerase chain reaction. The proliferation and colony formation ability of NBL cells were analyzed by MTT and colony formation assay. Flow cytometry assay was executed to measure the apoptosis and cell cycle. Dual-luciferase reporter assay was used to detect the targeted relationships among LINC01410, miR-506-3p, and WEE1. Additionally, the role of LINC01410 on NBL in vivo was evaluated according to a tumor xenograft model. RESULTS The expression of LINC01410 and WEE1 was enhanced and miR-506-3p was inhibited in NBL. LINC01410 knockdown attenuated the cell proliferation, colony formation ability, and inhibited tumor growth. Moreover, LINC01410 silencing facilitated the apoptosis and arrested the cell cycle. LINC01410 interacted with miR-506-3p to elevate the WEE1 expression in NBL. Additionally, miR-506-3p inhibition or WEE1 overexpression weakened the reduction effects of sh-LINC01410 on cell proliferation, colony formation ability, apoptosis, and cell cycle. CONCLUSIONS Knockdown of LINC01410 inhibited the development of NBL by miR-506-3p/WEE1 axis in vitro, which could serve as a potential therapeutic target for NBL therapy.
Collapse
Affiliation(s)
- Jie Mi
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdao CityShandong ProvinceChina
| | - Yang Han
- Department of Pediatric StomatologicalStomatological Hospital of Qingdao CityQingdao CityShandong ProvinceChina
| | - Jin Zhang
- Department of RespiratoryQingdao Women and Children's HospitalQingdao CityShandong ProvinceChina
| | - Xiwei Hao
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdao CityShandong ProvinceChina
| | - Maoqing Xing
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdao CityShandong ProvinceChina
| | - Cong Shang
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdao CityShandong ProvinceChina
| |
Collapse
|
29
|
Muk T, Jiang PP, Stensballe A, Skovgaard K, Sangild PT, Nguyen DN. Prenatal Endotoxin Exposure Induces Fetal and Neonatal Renal Inflammation via Innate and Th1 Immune Activation in Preterm Pigs. Front Immunol 2020; 11:565484. [PMID: 33193334 PMCID: PMC7643587 DOI: 10.3389/fimmu.2020.565484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
Chorioamnionitis (CA) predisposes to preterm birth and affects the fetal mucosal surfaces (i.e., gut, lungs, and skin) via intra-amniotic (IA) inflammation, thereby accentuating the proinflammatory status in newborn preterm infants. It is not known if CA may affect more distant organs, such as the kidneys, before and after preterm birth. Using preterm pigs as a model for preterm infants, we investigated the impact of CA on fetal and neonatal renal status and underlying mechanisms. Fetal pigs received an IA dose of lipopolysaccharide (LPS), were delivered preterm by cesarean section 3 days later (90% gestation), and compared with controls (CON) at birth and at postnatal day 5. Plasma proteome and inflammatory targets in kidney tissues were evaluated. IA LPS-exposed pigs showed inflammation of fetal membranes, higher fetal plasma creatinine, and neonatal urinary microalbumin levels, indicating renal dysfunction. At birth, plasma proteomics revealed LPS effects on proteins associated with renal inflammation (up-regulated LRG1, down-regulated ICA, and ACE). Kidney tissues of LPS pigs at birth also showed increased levels of kidney injury markers (LRG1, KIM1, NGLA, HIF1A, and CASP3), elevated molecular traits related to innate immune activation (infiltrated MPO+ cells, complement molecules, oxidative stress, TLR2, TLR4, S100A9, LTF, and LYZ), and Th1 responses (CD3+ cells, ratios of IFNG/IL4, and TBET/GATA3). Unlike in plasma, innate and adaptive immune responses in kidney tissues of LPS pigs persisted to postnatal day 5. We conclude that prenatal endotoxin exposure induces fetal and postnatal renal inflammation in preterm pigs with both innate and adaptive immune activation, partly explaining the potential increased risks of kidney injury in preterm infants born with CA.
Collapse
Affiliation(s)
- Tik Muk
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ping-Ping Jiang
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | - Per Torp Sangild
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Paediatrics, Odense University Hospital, Odense, Denmark
| | - Duc Ninh Nguyen
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Wang Y, Xing Q, Chen X, Wang J, Guan S, Chen X, Sun P, Wang M, Cheng Y. The Clinical Prognostic Value of LRG1 in Esophageal Squamous Cell Carcinoma. Curr Cancer Drug Targets 2020; 19:756-763. [PMID: 30714525 DOI: 10.2174/1568009619666190204095942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/22/2018] [Accepted: 01/20/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Leucine-rich-alpha-2-glycoprotein1 (LRG1) is a new oncogene-related gene, which has been proven important for the development and poor prognosis of human cancers. However, whether it participates in esophageal squamous cell carcinoma (ESCC) progression remains unclear. OBJECTIVE To investigate the expression level and functional influence of LRG1 in ESCC. METHODS The expression of LRG1 was evaluated on the mRNA and protein level in ESCC patients. Then, correlation of LRG1 expression with clinicpathological variables was analyzed in ESCC. Besides, to clarify the biological function of LRG1, Eca109 and KYSE150 cells were transfected with LRG1 shRNA, the cell viability, clonal efficiency, apoptosis and invasion assays in vitro were performed. RESULTS LRG1 was significantly over-expressed in ESCC and related to deeper invasion depth (T stage) and distal metastasis (M stage). Kaplan-Meier analysis indicated that LRG1 up-regulation in ESCC was closely correlated to worse clinical survival (overall survival and progression-free survival), all P<0.001. LRG1 was confirmed to be an independent poor premonitory indicator for clinical outcomes in ESCC through the univariate and multivariate analyses. Down-regulation of LRG1 in ESCC cells markedly suppressed cell proliferation and invasion, stimulated apoptosis (all p <0.01). CONCLUSION LRG1 might play a significant role in the progression of ESCC, and could be served as a promising prognostic prediction for ESCC patients.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Oncology, Linyi People's Hospital, Dezhou, Shandong, China
| | - Qian Xing
- Department of Oncology, Linyi People's Hospital, Dezhou, Shandong, China
| | - Xue Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Sun
- Thoracic Surgery, Linyi People's Hospital, Dezhou, Shandong, China
| | - Mingxia Wang
- Pathology, Linyi People's Hospital, Dezhou, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
31
|
Chiricosta L, Silvestro S, Gugliandolo A, Marconi GD, Pizzicannella J, Bramanti P, Trubiani O, Mazzon E. Extracellular Vesicles of Human Periodontal Ligament Stem Cells Contain MicroRNAs Associated to Proto-Oncogenes: Implications in Cytokinesis. Front Genet 2020; 11:582. [PMID: 32582296 PMCID: PMC7287171 DOI: 10.3389/fgene.2020.00582] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
The human Periodontal Ligament Stem Cells (hPDLSCs) exhibit self-renewal capacity and clonogenicity potential. The Extracellular Vesicles (EVs) secreted by hPDLSCs are particles containing lipids, proteins, mRNAs, and non-coding RNAs, among which microRNAs, that are important in intercellular communication. The purpose of this study was the analysis of the non-coding RNAs contained in the EVs derived from hPDLSCs using Next Generation Sequencing. Moreover, our data were enriched using bioinformatic tools. The analysis highlighted the presence of non-coding RNAs and five microRNAs: MIR24-2, MIR142, MIR335, MIR490, and MIR296. Our results show that these miRNAs target the genes classified in two terms of the Gene Ontology: "Ras protein signal transduction" and "Actin/microtubule cytoskeleton organization." Noteworthy, the in-deep analysis of our EVs highlights that the miRNAs could be implicated in the silencing of proto-oncogenes involved in 12 different types of tumors.
Collapse
Affiliation(s)
| | | | | | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti and Pescara, Chieti, Italy
| | | | | | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti and Pescara, Chieti, Italy
| | | |
Collapse
|
32
|
Yang F, Tang Z, Duan A, Yi B, Shen N, Bo Z, Yin L, Zhu B, Qiu Y, Li J. Long Noncoding RNA NEAT1 Upregulates Survivin and Facilitates Gallbladder Cancer Progression by Sponging microRNA-335. Onco Targets Ther 2020; 13:2357-2367. [PMID: 32256086 PMCID: PMC7093099 DOI: 10.2147/ott.s236350] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gallbladder cancer (GBC) is the most common cancer of the biliary tract, but molecularly targeted therapies are not available for GBC. Loss of microRNA (miR)-335 expression may be a useful predictor of clinical outcomes and the reversal of its loss of expression may be a useful treatment strategy for GBC. In this study, we investigated whether a long noncoding RNA, nuclear paraspeckle assembly transcript 1 (NEAT1) sponges miR-335 in GBC cells. Materials and Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry were used to determine the expression of miR-335; NEAT1; survivin; and Ki67 in GBC cell lines (GBC-SD and SGC-996) and tissue samples from patients (n = 25). Cell Counting Kit-8, colony-formation, and Transwell migration and invasion assays were performed to measure cell proliferation, migration, and invasion. Bioinformatic analysis and dual-luciferase reporter assays were utilized to analyze correlativity. Results miR-335 overexpression resulted in inhibition of GBC cell proliferation and invasion. In addition, knockdown of NEAT1 resulted in downregulation of survivin expression. As NEAT1 competitively “sponges” miR-335, NEAT1 knockdown resulted in inhibited GBC cell proliferation and invasion in vitro and GBC tumor growth in vivo. Furthermore, NEAT1 was found to be upregulated in GBC samples, and its expression was inversely correlated with miR-335 levels, but positively correlated with survivin levels. Conclusion These findings indicate that NEAT1 promotes survivin expression by functioning as a competitive endogenous RNA for miR-335 in GBC cells; thus, we have identified a potential biomarker and target for GBC diagnosis and therapy.
Collapse
Affiliation(s)
- Facai Yang
- Department of General Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, People's Republic of China
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Anqi Duan
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Bin Yi
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Ningjia Shen
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Zhiyuan Bo
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Lei Yin
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Bin Zhu
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Yinghe Qiu
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Jingdong Li
- Department of General Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, People's Republic of China
| |
Collapse
|
33
|
Cheng Y, Shen P. miR-335 Acts as a Tumor Suppressor and Enhances Ionizing Radiation-Induced Tumor Regression by Targeting ROCK1. Front Oncol 2020; 10:278. [PMID: 32219065 PMCID: PMC7078682 DOI: 10.3389/fonc.2020.00278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
Recent development of integrative therapy against melanoma combines surgery, radiotherapy, targeted therapy, and immunotherapy; however, the clinical outcomes of advanced stage and recurrent melanoma are poor. As a skin cancer, melanoma is generally resistant to radiotherapy. Hence, there is an urgent need for evaluation of the mechanisms of radioresistance. The present study identified miR-335 as one of the differential expression of miRNAs in recurrent melanoma biopsies post-radiotherapy. The expression of miR-335 declined in melanoma tissues compared to the adjacent tissues. Moreover, miR-335 expression correlated with advanced stages of melanoma negatively. Consistent with the prediction of STARBASE and miRDB database, miR-335 targeted ROCK1 via binding with 3′-UTR of ROCK1 directly, resulting in attenuation of proliferation, migration, and radioresistance of melanoma cells. The authors validated that overexpression of miR-335 enhanced X-ray-induced tumor regression by B16 mouse models. Briefly, the present findings gained insights into miR-335/ROCK1-mediated radiosensitivity and provided a promising therapeutic strategy for improving radiotherapy against melanoma.
Collapse
Affiliation(s)
- Yanfeng Cheng
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Shen
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Aravindan N, Subramanian K, Somasundaram DB, Herman TS, Aravindan S. MicroRNAs in neuroblastoma tumorigenesis, therapy resistance, and disease evolution. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1086-1105. [PMID: 31867575 PMCID: PMC6924638 DOI: 10.20517/cdr.2019.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) deriving from neural crest cells is the most common extra-cranial solid cancer at infancy. NB originates within the peripheral sympathetic ganglia in adrenal medulla and along the midline of the body. Clinically, NB exhibits significant heterogeneity stretching from spontaneous regression to rapid progression to therapy resistance. MicroRNAs (miRNAs, miRs) are small (19-22 nt in length) non-coding RNAs that regulate human gene expression at the post-transcriptional level and are known to regulate cellular signaling, growth, differentiation, death, stemness, and maintenance. Consequently, the function of miRs in tumorigenesis, progression and resistance is of utmost importance for the understanding of dysfunctional cellular pathways that lead to disease evolution, therapy resistance, and poor clinical outcomes. Over the last two decades, much attention has been devoted to understanding the functional roles of miRs in NB biology. This review focuses on highlighting the important implications of miRs within the context of NB disease progression, particularly miRs’ influences on NB disease evolution and therapy resistance. In this review, we discuss the functions of both the “oncomiRs” and “tumor suppressor miRs” in NB progression/therapy resistance. These are the critical components to be considered during the development of novel miR-based therapeutic strategies to counter therapy resistance.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karthikeyan Subramanian
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Terence S Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
35
|
Su Q, Lv XW, Sun YH, Ye ZL, Kong BH, Qin ZB. MicroRNA-494 Inhibits the LRG1 Expression to Induce Proliferation and Migration of VECs in Rats following Myocardial Infarction. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:110-122. [PMID: 31541797 PMCID: PMC6796686 DOI: 10.1016/j.omtn.2019.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/15/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Myocardial infarction (MI) is a life-threatening cardiac event that results in extreme damage to the heart muscle. The Wnt signaling pathway has been implicated in the development of heart diseases. Hence, the current study aimed to investigate the role of microRNA (miRNA) in association with the Wnt signaling pathway to identify potential candidates for MI therapy. Differentially expressed miRNAs associated with MI occurrence were screened, and miR-494 was selected for subsequent experiments. Sprague-Dawley rats were included to establish a MI model via intraperitoneal injection of 0.1 mg/kg atropine sulfate and 40 mg/kg pentobarbital sodium. Then, the interaction between miR-494 and LRG1 was identified. The effect of miR-494 on expression of the Wnt signaling pathway-related genes, proliferation, migration, and invasion ability of fibroblasts and vascular endothelial cells (VECs) was subsequently evaluated through a series of gain- and loss-of-function experiments. The results revealed that miR-494 was poorly expressed and LRG1 was highly expressed in MI rats. miR-494 targets and downregulates LRG1, which resulted in the inactivation of the Wnt signaling pathway and promoted proliferation, migration, and invasion ability of fibroblasts and VECs. In conclusion, this study provided evidence suggesting that overexpressed miR-494 could potentially promote the proliferation, migration, and invasion of fibroblasts and VECs in MI through the inactivation of the Wnt signaling pathway by binding to LRG1.
Collapse
Affiliation(s)
- Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin 541001, P.R. China.
| | - Xiang-Wei Lv
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin 541001, P.R. China
| | - Yu-Han Sun
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Zi-Liang Ye
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Bing-Hui Kong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Zhen-Bai Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| |
Collapse
|
36
|
Du W, Tang H, Lei Z, Zhu J, Zeng Y, Liu Z, Huang JA. miR-335-5p inhibits TGF-β1-induced epithelial-mesenchymal transition in non-small cell lung cancer via ROCK1. Respir Res 2019; 20:225. [PMID: 31638991 PMCID: PMC6805547 DOI: 10.1186/s12931-019-1184-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Significant evidence has shown that the miRNA pathway is an important component in the downstream signaling cascades of TGF-β1 pathway. Our previous study has indicated that miR-335-5p expression was significantly down-regulated and acted as a vital player in the metastasis of non-small cell lung cancer (NSCLC), however the underlying mechanism remained unclear. METHODS The differential expression level of miR-335-5p and ROCK1 were determined by qRT-PCR and IHC analysis in human tissue samples with or without lymph node metastasis. Transwell assay was conducted to determine cell ability of migration and invasion. SiRNA interference, microRNA transfection and western blot analysis were utilized to clarify the underlying regulatory mechanism. RESULTS We showed that down-regulated expression of miR-335-5p and up-regulated expression of ROCK1 in NSCLC tissues were associated with lymph node metastasis. Over-expresion of miR-335-5p significantly inhibited TGF-β1-mediated NSCLC migration and invasion. Furthermore, luciferase reporter assays proved that miR-335-5p can bind to 3'-UTR of ROCK1 directly. Moreover, we confirmed that siRNA-mediated silencing of ROCK1 significantly diminished TGF-β1-mediated EMT and migratory and invasive capabilities of A549 and SPC-A1 cells. CONCLUSION This is the first time to report that miR-335-5p regulates ROCK1 and impairs its functions, thereby playing a key role in TGF-β1-induced EMT and cell migration and invasion in NSCLC.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Haicheng Tang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Department of Respiratory Medicine, The First People's Hospital of Yancheng City, Yancheng, 224001, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jianjie Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Zeyi Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| | - Jian-An Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
37
|
Ong J, van den Berg A, Faiz A, Boudewijn IM, Timens W, Vermeulen CJ, Oliver BG, Kok K, Terpstra MM, van den Berge M, Brandsma CA, Kluiver J. Current Smoking is Associated with Decreased Expression of miR-335-5p in Parenchymal Lung Fibroblasts. Int J Mol Sci 2019; 20:ijms20205176. [PMID: 31635387 PMCID: PMC6829537 DOI: 10.3390/ijms20205176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/22/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoking causes lung inflammation and tissue damage. Lung fibroblasts play a major role in tissue repair. Previous studies have reported smoking-associated changes in fibroblast responses and methylation patterns. Our aim was to identify the effect of current smoking on miRNA expression in primary lung fibroblasts. Small RNA sequencing was performed on lung fibroblasts from nine current and six ex-smokers with normal lung function. MiR-335-5p and miR-335-3p were significantly downregulated in lung fibroblasts from current compared to ex-smokers (false discovery rate (FDR) <0.05). Differential miR-335-5p expression was validated with RT-qPCR (p-value = 0.01). The results were validated in lung tissue from current and ex-smokers and in bronchial biopsies from non-diseased smokers and never-smokers (p-value <0.05). The methylation pattern of the miR-335 host gene, determined by methylation-specific qPCR, did not differ between current and ex-smokers. To obtain insights into the genes regulated by miR-335-5p in fibroblasts, we overlapped all proven miR-335-5p targets with our previously published miRNA targetome data in lung fibroblasts. This revealed Rb1, CARF, and SGK3 as likely targets of miR-335-5p in lung fibroblasts. Our study indicates that miR-335-5p downregulation due to current smoking may affect its function in lung fibroblasts by targeting Rb1, CARF and SGK3.
Collapse
Affiliation(s)
- Jennie Ong
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Anke van den Berg
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB) Faculty of Science, Ultimo, NSW 2007, Australia.
| | - Ilse M Boudewijn
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Cornelis J Vermeulen
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Respiratory Cellular and Molecular Biology, The University of Sydney, New South Wales 2037, Australia.
- University of Technology Sydney, School of Life Sciences, Sydney, New South Wales 2007, Australia.
| | - Klaas Kok
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9713 GZ Groningen, The Netherlands.
| | - Martijn M Terpstra
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9713 GZ Groningen, The Netherlands.
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Joost Kluiver
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
38
|
Xie Y, Deng H, Wei R, Sun W, Qi Y, Yao S, Cai L, Wang Y, Deng Z. Overexpression of miR-335 inhibits the migration and invasion of osteosarcoma by targeting SNIP1. Int J Biol Macromol 2019; 133:137-147. [DOI: 10.1016/j.ijbiomac.2019.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/14/2023]
|
39
|
Tang H, Du W, Jiang Y, Li H, Bo H, Song S. Upregulated expression of ROCK1 promotes cell proliferation by functioning as a target of miR-335-5p in non-small cell lung cancer. J Cell Physiol 2019. [PMID: 31140617 DOI: 10.1002/jcp.28886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
Abstract
Lung cancer is regarded as one of the dominant causes in cancer patients among men and women all over the world. Rho-associated coiled-coil forming protein kinase l (ROCK1) is characterized as pivotal downstream effectors of the small GTPase RhoA and reported to participate in tumor metastasis. miR-335-5p acts as tumor suppressor microRNA and is identified to be downregulated in tumor tissues. miR-335-5p/ROCK1 axis has been demonstrated to promote cell proliferation and metastasis in gastric cancer, hepatocellular carcinoma and so on. However, the role it plays in promoting cell proliferation in non-small cell lung cancer (NSCLC) is poorly understood. Here, we demonstrated that the upregulated expression of ROCK1 was highly correlated with downregulated expression of miR-335-5p in NSCLC tissues and cell lines. Mechanistically, Knockdown of ROCK1 inhibited cell proliferation in vitro, accompanied by cell cycle change confirmed by flow analysis. Furthermore, miR-335-5p can downregulate the ROCK1 expression by directly binding to the 3'-untranslated region in posttranscriptional level. In vivo animal model showed similar results. Our findings highlighted the crucial role that miR-335-5p acted as a tumor suppressor to modulate cell proliferation and cell cycle progression via downregulating ROCK1 expression. And this miR-335-5p/ROCK1 axis contributed to NSCLC pathogenesis and might be promising targets for NSCLC therapy.
Collapse
Affiliation(s)
- Haicheng Tang
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Yancheng, China
- The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Wenwen Du
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongqian Jiang
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Yancheng, China
- The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Hongmiao Li
- Department of Respiratory Medicine, Jianhu Hospital Affiliated to Nantong University, Yancheng, China
| | - Hongjian Bo
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Yancheng, China
- The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Shu Song
- The Fourth Affiliated Hospital of Nantong University, Yancheng, China
- Department of Pathology, The First People's Hospital of Yancheng, Yancheng, China
| |
Collapse
|
40
|
Hong Q, Zhang L, Fu J, Verghese DA, Chauhan K, Nadkarni GN, Li Z, Ju W, Kretzler M, Cai GY, Chen XM, D'Agati VD, Coca SG, Schlondorff D, He JC, Lee K. LRG1 Promotes Diabetic Kidney Disease Progression by Enhancing TGF- β-Induced Angiogenesis. J Am Soc Nephrol 2019; 30:546-562. [PMID: 30858225 DOI: 10.1681/asn.2018060599] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glomerular endothelial dysfunction and neoangiogenesis have long been implicated in the pathogenesis of diabetic kidney disease (DKD). However, the specific molecular pathways contributing to these processes in the early stages of DKD are not well understood. Our recent transcriptomic profiling of glomerular endothelial cells identified a number of proangiogenic genes that were upregulated in diabetic mice, including leucine-rich α-2-glycoprotein 1 (LRG1). LRG1 was previously shown to promote neovascularization in mouse models of ocular disease by potentiating endothelial TGF-β/activin receptor-like kinase 1 (ALK1) signaling. However, LRG1's role in the kidney, particularly in the setting of DKD, has been unclear. METHODS We analyzed expression of LRG1 mRNA in glomeruli of diabetic kidneys and assessed its localization by RNA in situ hybridization. We examined the effects of genetic ablation of Lrg1 on DKD progression in unilaterally nephrectomized, streptozotocin-induced diabetic mice at 12 and 20 weeks after diabetes induction. We also assessed whether plasma LRG1 was associated with renal outcome in patients with type 2 diabetes. RESULTS LRG1 localized predominantly to glomerular endothelial cells, and its expression was elevated in the diabetic kidneys. LRG1 ablation markedly attenuated diabetes-induced glomerular angiogenesis, podocyte loss, and the development of diabetic glomerulopathy. These improvements were associated with reduced ALK1-Smad1/5/8 activation in glomeruli of diabetic mice. Moreover, increased plasma LRG1 was associated with worse renal outcome in patients with type 2 diabetes. CONCLUSIONS These findings identify LRG1 as a potential novel pathogenic mediator of diabetic glomerular neoangiogenesis and a risk factor in DKD progression.
Collapse
Affiliation(s)
- Quan Hong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Lu Zhang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Divya A Verghese
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Girish N Nadkarni
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wenjun Ju
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | | | - Guang-Yan Cai
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Xiang-Mei Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Vivette D D'Agati
- Department of Pathology, Columbia University Medical Center, New York, New York; and
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Detlef Schlondorff
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; .,Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York;
| |
Collapse
|
41
|
Liu J, Liu B, Guo Y, Chen Z, Sun W, Gao W, Wu H, Wang Y. Key miRNAs and target genes played roles in the development of clear cell renal cell carcinoma. Cancer Biomark 2019; 23:279-290. [PMID: 30198869 DOI: 10.3233/cbm-181558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clear cell renal cell carcinoma (CCRCC) is the most aggressive form of renal cell carcinoma (RCC). OBJECTIVE This study was aimed to identify the differentially expressed miRNAs and target genes in CCRCC. METHODS The miRNA and mRNA next-generation sequencing data were downloaded from The Cancer Genome Atlas (TCGA) dataset. Differential expression analysis was performed, followed by correlation analysis of miRNA-mRNA. Functional enrichment and survival analysis was also performed. RESULTS Seven hundred and eighty-seven patients with CCRCC from TCGA data portal were included in this study. A total of 52 differentially expressed miRNAs were identified in CCRCC. Then 2361 differentially expressed genes (DEGs) were identified. Prediction analysis and correlation analysis revealed that 89 miRNA-mRNA pairs were not only predicted by algorithms but also had a significant inverse relationship. Several differentially expressed miRNAs such as hsa-mir-501 and their target genes including AK1, SLC25A15 and PCDHGC3 had a significant prognostic value for CCRCC patients. CONCLUSIONS Alterations of differentially expressed miRNAs and target genes may be involved in the development of CCRCC and can be considered as the prognostic markers for CCRCC.
Collapse
|
42
|
Zaheer U, Faheem M, Qadri I, Begum N, Yassine HM, Al Thani AA, Mathew S. Expression profile of MicroRNA: An Emerging Hallmark of Cancer. Curr Pharm Des 2019; 25:642-653. [PMID: 30914015 DOI: 10.2174/1386207322666190325122821] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Abstract
MicroRNA (miRNAs), a class of small, endogenous non-coding RNA molecules of about 21-24 nucleotides in length, have unraveled a new modulatory network of RNAs that form an additional level of posttranscriptional gene regulation by targeting messenger RNAs (mRNAs). These miRNAs possess the ability to regulate gene expression by modulating the stability of mRNAs, controlling their translation rates, and consequently regulating protein synthesis. Substantial experimental evidence established the involvement of miRNAs in most biological processes like growth, differentiation, development, and metabolism in mammals including humans. An aberrant expression of miRNAs has been implicated in several pathologies, including cancer. The association of miRNAs with tumor growth, development, and metastasis depicts their potential as effective diagnostic and prognostic biomarkers. Furthermore, exploitation of the role of different miRNAs as oncogenes or tumor suppressors has aided in designing several miRNA-based therapeutic approaches for treating cancer patients whose clinical trials are underway. In this review, we aim to summarize the biogenesis of miRNAs and the dysregulations in these pathways that result in various pathologies and in some cases, resistance to drug treatment. We provide a detailed review of the miRNA expression signatures in different cancers along with their diagnostic and prognostic utility. Furthermore, we elaborate on the potential employment of miRNAs to enhance cancer cell apoptosis, regress tumor progression and even overcome miRNA-induced drug resistance.
Collapse
Affiliation(s)
- Uzma Zaheer
- Postgraduate Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Muhammed Faheem
- Department of Biology, King Abdul Aziz University, 80216 Jeddah, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biology, King Abdul Aziz University, 80216 Jeddah, Saudi Arabia
| | - Nargis Begum
- Postgraduate Department of Biotechnology, Jamal Mohamed College, Trichy, India
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Science, Qatar University, Doha, Qatar
| | - Shilu Mathew
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
43
|
Neviani P, Wise PM, Murtadha M, Liu CW, Wu CH, Jong AY, Seeger RC, Fabbri M. Natural Killer-Derived Exosomal miR-186 Inhibits Neuroblastoma Growth and Immune Escape Mechanisms. Cancer Res 2018; 79:1151-1164. [PMID: 30541743 DOI: 10.1158/0008-5472.can-18-0779] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/24/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022]
Abstract
In neuroblastoma, the interplay between immune cells of the tumor microenvironment and cancer cells contributes to immune escape mechanisms and drug resistance. In this study, we show that natural killer (NK) cell-derived exosomes carrying the tumor suppressor microRNA (miR)-186 exhibit cytotoxicity against MYCN-amplified neuroblastoma cell lines. The cytotoxic potential of these exosomes was partly dependent upon expression of miR-186. miR-186 was downregulated in high-risk neuroblastoma patients, and its low expression represented a poor prognostic factor that directly correlated with NK activation markers (i.e., NKG2D and DNAM-1). Expression of MYCN, AURKA, TGFBR1, and TGFBR2 was directly inhibited by miR-186. Targeted delivery of miR-186 to MYCN-amplified neuroblastoma or NK cells resulted in inhibition of neuroblastoma tumorigenic potential and prevented the TGFβ1-dependent inhibition of NK cells. Altogether, these data support the investigation of a miR-186-containing nanoparticle formulation to prevent tumor growth and TGFβ1-dependent immune escape in high-risk neuroblastoma patients as well as the inclusion of ex vivo-derived NK exosomes as a potential therapeutic option alongside NK cell-based immunotherapy.Significance: These findings highlight the therapeutic potential of NK cell-derived exosomes containing the tumor suppressor miR-186 that inhibits growth, spreading, and TGFβ-dependent immune escape mechanisms in neuroblastoma.
Collapse
Affiliation(s)
- Paolo Neviani
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Petra M Wise
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mariam Murtadha
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Cathy W Liu
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chun-Hua Wu
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ambrose Y Jong
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert C Seeger
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Muller Fabbri
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
44
|
Mikovic J, Sadler K, Butchart L, Voisin S, Gerlinger-Romero F, Della Gatta P, Grounds MD, Lamon S. MicroRNA and Long Non-coding RNA Regulation in Skeletal Muscle From Growth to Old Age Shows Striking Dysregulation of the Callipyge Locus. Front Genet 2018; 9:548. [PMID: 30505320 PMCID: PMC6250799 DOI: 10.3389/fgene.2018.00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) undergo high levels of regulation in skeletal muscle development and control skeletal muscle mass, function and metabolism over the lifespan. More recently, the role of long non-coding RNAs (lncRNAs) in skeletal muscle regulation has started to emerge. Following up on our recent study describing the expression pattern and putative roles of 768 miRNAs in the quadriceps muscle of mice at early life stages, we used a high-throughput miRNA qPCR-based array to assess the expression of the same miRNAs in 28-month old male mouse quadriceps muscle. In addition, we report the expression patterns of lncRNAs playing a putative role in muscle development and adaptation from growth to old age. Twelve miRNAs were significantly downregulated in 28-month old muscle when compared with 12-week old muscle. Ten of them clustered at the Dlk1-Dio3 locus, known as ‘Callipyge,’ which is associated with muscle development and hypertrophy. This collective downregulation was paralleled by decreases in the expression levels of the maternally expressed imprinted LncRNA coding genes Meg3 and Rian stemming from the same chromosomal region. In contrast, the paternally expressed imprinted Dlk1-Dio3 locus members Rtl1, Dio3, and Dlk1 and the muscle related lncRNAs lncMyoD1, Neat_v1, Neat_v2, and Malat1 underwent significant changes during growth, but their expression levels were not altered past the age of 12 weeks, suggesting roles limited to hyperplasia and early hypertrophy. In conclusion, collective muscle miRNA expression gradually decreases over the lifespan and a cluster of miRNAs and maternally expressed lncRNAs stemming from the Callipyge locus is significantly dysregulated in aging muscle. The Dlk1-Dio3 locus therefore represents a potential new mechanism for age-related muscle decline.
Collapse
Affiliation(s)
- Jasmine Mikovic
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Kate Sadler
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Lauren Butchart
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Sarah Voisin
- Institute of Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Frederico Gerlinger-Romero
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Paul Della Gatta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Miranda D Grounds
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
45
|
Liu R, Guo H, Lu S. MiR-335-5p restores cisplatin sensitivity in ovarian cancer cells through targeting BCL2L2. Cancer Med 2018; 7:4598-4609. [PMID: 30019389 PMCID: PMC6143943 DOI: 10.1002/cam4.1682] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/07/2018] [Accepted: 06/22/2018] [Indexed: 11/11/2022] Open
Abstract
Objective Our study was designed to explore the association miR‐335‐5p and BCL2L2 and to investigate the influence of miR‐335‐5p/BCL2L2 axis on cisplatin‐resistant ovarian cancer cells. Methods Microarray analysis was used to determine differentially expressed microRNAs in primary and cisplatin‐resistant A2780 cells. Cell function experiments were conducted to investigate the effect of miR‐335‐5p on the cisplatin sensitivity of A2780 cells. The targeted relationship between BCL2L2 mRNA and miR‐335‐5p was validated through luciferase assay. Tumor xenograft was performed to confirm the function of miR‐335‐5p in restoring the cisplatin sensitivity of the ovarian cancer cells. Results MiR‐335‐5p was lowly expressed in cisplatin‐resistant A2780 cells. Overexpression of miR‐335‐5p reduced cell survival and enhanced cisplatin‐induced cell apoptosis. BCL2L2 mRNA was a target of miR‐335‐5p, and silencing of BCL2L2 showed the similar results on the cell viability as miR‐335‐5p overexpression. Conclusion Upregulation of miR‐335‐5p expression enhanced the cisplatin sensitivity of ovarian cancer cells through suppressing BCL2L2, suggesting the potential of miR‐335‐5p/BCL2L2 axis as a therapeutic target for the cisplatin resistance of patients with ovarian cancer.
Collapse
Affiliation(s)
- Ruonan Liu
- Department of Gynecological, Affiliated Tumor Hospital of Zhengzhou University, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Hailong Guo
- Department of Gynecological Ward 2, People's Hospital of Rizhao, Rizhao, China
| | - Shifen Lu
- Department of Gynecological, People's Hospital of Shandong Linyi Economic and Technological Development Zone, Linyi, China
| |
Collapse
|
46
|
Li SH, Li JP, Chen L, Liu JL. miR-146a induces apoptosis in neuroblastoma cells by targeting BCL11A. Med Hypotheses 2018; 117:21-27. [PMID: 30077189 DOI: 10.1016/j.mehy.2018.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Abstract
Aberrant expression of miR-146a has been reported to be involved in the progression and metastasis of various types of human cancers; however, its potential role in human neuroblastoma is still poorly understood. The purpose of our study was to investigate the molecular mechanism and possible role of miR-146a in human neuroblastoma. In this study, targeted genes were predicted by bioinformatic analysis and confirmed by dual-Luciferase reporter assay. The expression level of miR-146a in the human neuroblastoma SK-N-SH cell line was detected by quantitative RT-PCR. We used flow cytometric analysis to determine apoptosis and necrosis of SK-N-SH cells after transfection with miR-146a inhibitor, miR-146a mimic, and negative controls. The expression level of target genes was detected by RT-PCR and Western blotting. We identified BCL11A as a target of miR-146a. Thus, miR-146a targets the 3'UTR of BCL11A and inhibits its mRNA and protein expression. Overexpression of miR-146a can inhibit the growth and promote the apoptosis of human neuroblastoma SK-N-SH cells through inhibiting the expression of BCL11A. Furthermore, we found that upregulation of BCL11A by miR-146a inhibitor can promote SK-N-SH cells growth and protect SK-N-SH cells against apoptosis. Our results showed that miR-146a is a potential tumor suppressor gene in human neuroblastoma via directly targeting BCL11A. These findings suggest that miR-146a might be a new candidate target for treatment of human neuroblastoma.
Collapse
Affiliation(s)
- Sheng-Hua Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jin-Pin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Lan Chen
- Department of Internal Medicine, The Second Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jing-Li Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China.
| |
Collapse
|
47
|
Ram Kumar RM, Schor NF. Methylation of DNA and chromatin as a mechanism of oncogenesis and therapeutic target in neuroblastoma. Oncotarget 2018; 9:22184-22193. [PMID: 29774131 PMCID: PMC5955135 DOI: 10.18632/oncotarget.25084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB), a developmental cancer, is often fatal, emphasizing the need to understand its pathogenesis and identify new therapeutic targets. The heterogeneous pathological and clinical phenotype of NB underscores the cryptic biological and genetic features of this tumor that result in outcomes ranging from rapid progression to spontaneous regression. Despite recent genome-wide mutation analyses, most primary NBs do not harbor driver mutations, implicating epigenetically-mediated gene regulatory mechanisms in the initiation and maintenance of NB. Aberrant epigenomic mechanisms, as demonstrated by global changes in DNA methylation signatures, acetylation, re-distribution of histone marks, and change in the chromatin architecture, are hypothesized to play a role in NB oncogenesis. This paper reviews the evidence for, putative mechanisms underlying, and prospects for therapeutic targeting of NB oncogenesis related to DNA methylation.
Collapse
Affiliation(s)
- Ram Mohan Ram Kumar
- Department of Pediatrics and Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nina Felice Schor
- Department of Pediatrics and Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Current affiliation: National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Abstract
Neuroblastoma (NB) is the most common solid childhood tumor outside the brain and causes 15% of childhood cancer-related mortality. The main drivers of NB formation are neural crest cell-derived sympathoadrenal cells that undergo abnormal genetic arrangements. Moreover, NB is a complex disease that has high heterogeneity and is therefore difficult to target for successful therapy. Thus, a better understanding of NB development helps to improve treatment and increase the survival rate. One of the major causes of sporadic NB is known to be MYCN amplification and mutations in ALK (anaplastic lymphoma kinase) are responsible for familial NB. Many other genetic abnormalities can be found; however, they are not considered as driver mutations, rather they support tumor aggressiveness. Tumor cell elimination via cell death is widely accepted as a successful technique. Therefore, in this review, we provide a thorough overview of how different modes of cell death and treatment strategies, such as immunotherapy or spontaneous regression, are or can be applied for NB elimination. In addition, several currently used and innovative approaches and their suitability for clinical testing and usage will be discussed. Moreover, significant attention will be given to combined therapies that show more effective results with fewer side effects than drugs targeting only one specific protein or pathway.
Collapse
|
49
|
Zammit V, Baron B, Ayers D. MiRNA Influences in Neuroblast Modulation: An Introspective Analysis. Genes (Basel) 2018; 9:genes9010026. [PMID: 29315268 PMCID: PMC5793179 DOI: 10.3390/genes9010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common occurring solid paediatric cancer in children under the age of five years. Whether of familial or sporadic origin, chromosome abnormalities contribute to the development of NB and cause dysregulation of microRNAs (miRNAs). MiRNAs are small non-coding, single stranded RNAs that target messenger RNAs at the post-transcriptional levels by repressing translation within all facets of human physiology. Such gene 'silencing' activities by miRNAs allows the development of regulatory feedback loops affecting multiple functions within the cell, including the possible differentiation of neural stem cell (NSC) lineage selection. Neurogenesis includes stages of self-renewal and fate specification of NSCs, migration and maturation of young neurones, and functional integration of new neurones into the neural circuitry, all of which are regulated by miRNAs. The role of miRNAs and their interaction in cellular processes are recognised aspects of cancer genetics, and miRNAs are currently employed as biomarkers for prognosis and tumour characterisation in multiple cancer models. Consequently, thorough understanding of the mechanisms of how these miRNAs interplay at the transcriptomic level will definitely lead to the development of novel, bespoke and efficient therapeutic measures, with this review focusing on the influences of miRNAs on neuroblast modulations leading to neuroblastoma.
Collapse
Affiliation(s)
- Vanessa Zammit
- National Blood Transfusion Service, St. Luke's Hospital, PTA1010 G'Mangia, Malta.
- School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
50
|
Zhang H, Liu R, Deng T, Wang X, Lang H, Qu Y, Duan J, Huang D, Ying G, Ba Y. The microRNA-124-iGluR2/3 pathway regulates glucagon release from alpha cells. Oncotarget 2017; 7:24734-43. [PMID: 27013590 PMCID: PMC5029737 DOI: 10.18632/oncotarget.8270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/07/2016] [Indexed: 01/30/2023] Open
Abstract
Glucagon, secreted from islet alpha cells, plays an important role in regulating glucose homeostasis; however, the molecular mechanism underlying this process is not fully understood. Previous studies have demonstrated that miRNAs are involved in the function of alpha cells. Glutamate promotes glucagon secretion by mediating the opening of Ca2+ channels. In this present, iGluR2 and iGluR3 levels were significantly increased in fasting-treated mouse islets. Additional studies showed that miR-124-3p simultaneously regulates the expression of iGluR2 and iGluR3 through the direct targeting of mRNA 3’UTR of these two genes. The miR-124-iGluRs pathway also contributed to the high level of glucagon secretion through long-term high glucose levels. Thus, a novel pathway comprising miRNA, glutamate and iGluRs has been demonstrated to regulate the biological process of glucagon release.
Collapse
Affiliation(s)
- Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xia Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Hongmei Lang
- Department of Endocrinology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, China
| | - Yanjun Qu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jingjing Duan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|