1
|
Fang J, Xu H, Zhou Y, Zou F, Zuo J, Wu J, Wu Q, Qi X, Wang H. Altered brain texture features in end-stage renal disease patients: a voxel-based 3D brain texture analysis study. Front Neurosci 2024; 18:1471286. [PMID: 39464423 PMCID: PMC11502495 DOI: 10.3389/fnins.2024.1471286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Cognitive impairment in patients with end-stage renal disease (ESRD) is associated with brain structural damage. However, no prior studies have investigated the relationship between brain texture features and the cognitive function in ESRD patients. This study aimed to investigate changes in brain texture features in ESRD patients and their relationships with cognitive function using voxel-based 3D brain texture analysis (TA), and further predict individual cognitive-related brain damage in ESRD patients. Methods Forty-seven ESRD patients and 45 control subjects underwent whole-brain high-resolution 3D T1-weighted imaging scans and neuropsychological assessments. The voxel-based 3D brain TA was performed to examine inter-group differences in brain texture features. Additionally, within the ESRD group, the relationships of altered texture features with neuropsychological function and clinical indicators were analyzed. Finally, receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive ability of brain texture features for cognitive-related brain damage in ESRD patients. Results Compared to the control group, the ESRD group exhibited altered texture features in several brain regions, including the insula, temporal lobe, striatum, cerebellum, and fusiform gyrus (p < 0.05, Gaussian random-field correction). Some of these altered texture features were associated with scores from the Digit Symbol Substitution Test and the Trail Making Test Parts A (p < 0.05), and showed significant correlations with serum creatinine and calcium levels within the ESRD group (p < 0.05). Notably, ROC curve analysis revealed that the texture features in the right insula and left middle temporal gyrus could accurately predict cognitive-related brain damage in ESRD patients, with the area under the curve values exceeding 0.90. Conclusion Aberrant brain texture features may be involved in the neuropathological mechanism of cognitive decline, and have high accuracy in predicting cognitive-related brain damage in ESRD patients. TA offers a novel neuroimaging marker to explore the neuropathological mechanisms of cognitive impairment in ESRD patients, and may be a valuable tool to predict cognitive decline.
Collapse
Affiliation(s)
- Jie Fang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongting Xu
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Zhou
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Zou
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiangle Zuo
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinmin Wu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi Wu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangming Qi
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haibao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Hickman LJ, Sowden-Carvalho SL, Fraser DS, Schuster BA, Rybicki AJ, Galea JM, Cook JL. Dopaminergic manipulations affect the modulation and meta-modulation of movement speed: Evidence from two pharmacological interventions. Behav Brain Res 2024; 474:115213. [PMID: 39182625 DOI: 10.1016/j.bbr.2024.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
A body of research implicates dopamine in the average speed of simple movements. However, naturalistic movements span a range of different shaped trajectories and rarely proceed at a single constant speed. Instead, speed is reduced when drawing "corners" compared to "straights" (i.e., speed modulation), and the extent of this slowing down is dependent upon the global shape of the movement trajectory (i.e., speed meta-modulation) - for example whether the shape is an ellipse or a rounded square. At present, it is not known how (or whether) dopaminergic function controls continuous changes in speed during movement execution. The current paper reports effects on these kinematic features of movement following two forms of dopamine manipulation: Study One highlights movement differences in individuals with PD both ON and OFF their dopaminergic medication (N = 32); Study Two highlights movement differences in individuals from the general population on haloperidol (a dopamine receptor blocker, or "antagonist") and placebo (N = 43). Evidence is presented implicating dopamine in speed, speed modulation and speed meta-modulation, whereby low dopamine conditions are associated with reductions in these variables. These findings move beyond vigour models implicating dopamine in average movement speed, and towards a conceptualisation that involves the modulation of speed as a function of contextual information.
Collapse
Affiliation(s)
- Lydia J Hickman
- Centre for Human Brain Health, School of Psychology, University of Birmingham, B15 2TT, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, CB2 7EF, United Kingdom.
| | - Sophie L Sowden-Carvalho
- Centre for Human Brain Health, School of Psychology, University of Birmingham, B15 2TT, United Kingdom
| | - Dagmar S Fraser
- Centre for Human Brain Health, School of Psychology, University of Birmingham, B15 2TT, United Kingdom
| | - Bianca A Schuster
- Centre for Human Brain Health, School of Psychology, University of Birmingham, B15 2TT, United Kingdom; Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Austria
| | - Alicia J Rybicki
- Centre for Human Brain Health, School of Psychology, University of Birmingham, B15 2TT, United Kingdom
| | - Joseph M Galea
- Centre for Human Brain Health, School of Psychology, University of Birmingham, B15 2TT, United Kingdom
| | - Jennifer L Cook
- Centre for Human Brain Health, School of Psychology, University of Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
3
|
Ballard IC, Furman DJ, Berry AS, White RL, Jagust WJ, Kayser AS, D'Esposito M. A dopaminergic basis of behavioral control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613524. [PMID: 39345422 PMCID: PMC11429830 DOI: 10.1101/2024.09.17.613524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Both goal-directed and automatic processes shape human behavior, but these processes often conflict. Behavioral control is the decision about which process guides behavior. Despite the importance of behavioral control for adaptive decision-making, its neural mechanisms remain unclear. Critically, it is unknown if there are mechanisms for behavioral control that are distinct from those supporting the formation of goal-relevant knowledge. We performed deep phenotyping of individual dopamine system function by combining multiple PET scans, fMRI, and dopaminergic drug administration in a within-subject, double-blind, placebo-controlled design. Subjects performed a rule-based response time task, with goal-directed and automatic decision-making operationalized as model-based and model-free influences on behavior. We found a double dissociation between two aspects of ventral striatal dopamine physiology: D2/3 receptor availability and dopamine synthesis capacity. Convergent and causal evidence indicated that D2/3 receptors regulate behavioral control by enhancing model-based and blunting model-free influences on behavior but do not affect model-based knowledge formation. In contrast, dopamine synthesis capacity was linked to the formation of model-based knowledge but not behavioral control. D2/3 receptors also modulated frontostriatal functional connectivity, suggesting they regulate behavioral control by gating prefrontal inputs to the striatum. These results identify central mechanisms underlying individual and state differences in behavioral control and point to striatal D2/3 receptors as targets for interventions for improving goal-directed behavior.
Collapse
Affiliation(s)
- Ian C Ballard
- Psychology Department, University of California, Riverside
| | | | | | - Robert L White
- Neurology Department, Washington University School of Medicine in St. Louis
| | | | - Andrew S Kayser
- Neurology Department, University of California, San Francisco
- Helen Wills Neuroscience Institute, University of California, Berkeley
- San Francisco VA Health Care System
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley
- Psychology Department, University of California, Berkeley
| |
Collapse
|
4
|
Kiyonaga A, Miller JA, D'Esposito M. Lateral prefrontal cortex controls interplay between working memory and actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613601. [PMID: 39345454 PMCID: PMC11429898 DOI: 10.1101/2024.09.17.613601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Humans must often keep multiple task goals in mind, at different levels of priority and immediacy, while also interacting with the environment. We might need to remember information for an upcoming task while engaged in more immediate actions. Consequently, actively maintained working memory (WM) content may bleed into ongoing but unrelated motor behavior. Here, we experimentally test the impact of WM maintenance on action execution, and we transcranially stimulate lateral prefrontal cortex (PFC) to parse its functional contributions to WM-motor interactions. We first created a task scenario wherein human participants (both sexes) executed cued hand movements during WM maintenance. We manipulated the compatibility between WM and movement goals at the trial level and the statistical likelihood that the two would be compatible at the block level. We found that remembering directional words (e.g., 'left', 'down') biased the trajectory and speed of hand movements that occurred during the WM delay, but the bias was dampened in blocks when WM content predictably conflicted with movement goals. Then we targeted left lateral PFC with two different transcranial magnetic stimulation (TMS) protocols before participants completed the task. We found that an intermittent theta-burst protocol, which is thought to be excitatory, dampened sensitivity to block-level control demands (i.e., proactive control), while a continuous theta-burst protocol, which is thought to be inhibitory, dampened adaptation to trial-by-trial conflict (i.e., reactive control). Therefore, lateral PFC is involved in controlling the interplay between WM content and manual action, but different PFC mechanisms may support different time-scales of adaptive control.
Collapse
|
5
|
Bègue I, Elandaloussi Y, Delavari F, Cao H, Moussa-Tooks A, Roser M, Coupé P, Leboyer M, Kaiser S, Houenou J, Brady R, Laidi C. The Cerebellum and Cognitive Function: Anatomical Evidence from a Transdiagnostic Sample. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1399-1410. [PMID: 38151675 PMCID: PMC11269336 DOI: 10.1007/s12311-023-01645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
Multiple lines of evidence across human functional, lesion, and animal data point to a cerebellar role, in particular of crus I, crus II, and lobule VIIB, in cognitive function. However, a mapping of distinct facets of cognitive function to cerebellar structure is missing. We analyzed structural neuroimaging data from the Healthy Brain Network (HBN). Cerebellar parcellation was performed with a validated automated segmentation pipeline (CERES) and stringent visual quality check (n = 662 subjects retained from initial n = 1452). Canonical correlation analyses (CCA) examined regional gray matter volumetric (GMV) differences in association to cognitive function (quantified with NIH Toolbox Cognition domain, NIH-TB), accounting for psychopathology severity, age, sex, scan location, and intracranial volume. Multivariate CCA uncovered a significant correlation between two components entailing a latent cognitive canonical (NIH-TB subscales) and a brain canonical variate (cerebellar GMV and intracranial volume, ICV), surviving bootstrapping and permutation procedures. The components correspond to partly shared cerebellar-cognitive function relationship with a first map encompassing cognitive flexibility (r = 0.89), speed of processing (r = 0.65), and working memory (r = 0.52) associated with regional GMV in crus II (r = 0.57) and lobule X (r = 0.59) and a second map including the crus I (r = 0.49) and lobule VI (r = 0.49) associated with working memory (r = 0.51). We show evidence for a structural subspecialization of the cerebellum topography for cognitive function in a transdiagnostic sample.
Collapse
Affiliation(s)
- Indrit Bègue
- Department of Psychiatry, Beth Israel Deaconess Medical School & Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, McLean Hospital & Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, University Hospitals of Geneva & University of Geneva, Geneva, Switzerland.
| | - Yannis Elandaloussi
- INSERM U955, Institut Mondor de La Recherche Biomédicale (IRMB), Univ. Paris Est Créteil, Equipe 15 Neuropsychiatrie Translationnelle, Créteil, France
- La Fondation Fondamental, Créteil, France
- NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France
| | - Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Hengyi Cao
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, Queens, NY, USA
| | - Alexandra Moussa-Tooks
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mathilde Roser
- INSERM U955, Institut Mondor de La Recherche Biomédicale (IRMB), Univ. Paris Est Créteil, Equipe 15 Neuropsychiatrie Translationnelle, Créteil, France
- La Fondation Fondamental, Créteil, France
- NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France
| | - Pierrick Coupé
- LABRI UMR 5800, CNRS, Univ. Bordeaux, Bordeaux INPTalence, France
| | - Marion Leboyer
- INSERM U955, Institut Mondor de La Recherche Biomédicale (IRMB), Univ. Paris Est Créteil, Equipe 15 Neuropsychiatrie Translationnelle, Créteil, France
- La Fondation Fondamental, Créteil, France
| | - Stefan Kaiser
- Department of Psychiatry, University Hospitals of Geneva & University of Geneva, Geneva, Switzerland
| | - Josselin Houenou
- INSERM U955, Institut Mondor de La Recherche Biomédicale (IRMB), Univ. Paris Est Créteil, Equipe 15 Neuropsychiatrie Translationnelle, Créteil, France
- La Fondation Fondamental, Créteil, France
- NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France
| | - Roscoe Brady
- Department of Psychiatry, Beth Israel Deaconess Medical School & Harvard Medical School, Boston, MA, USA
| | - Charles Laidi
- INSERM U955, Institut Mondor de La Recherche Biomédicale (IRMB), Univ. Paris Est Créteil, Equipe 15 Neuropsychiatrie Translationnelle, Créteil, France.
- La Fondation Fondamental, Créteil, France.
- NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France.
| |
Collapse
|
6
|
Chang CL, Lin TK, Pan CY, Wang TC, Tseng YT, Chien CY, Tsai CL. Distinct effects of long-term Tai Chi Chuan and aerobic exercise interventions on motor and neurocognitive performance in early-stage Parkinson's disease: a randomized controlled trial. Eur J Phys Rehabil Med 2024; 60:621-633. [PMID: 38888734 PMCID: PMC11403633 DOI: 10.23736/s1973-9087.24.08166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative condition characterized by movement disorders and probable cognitive impairment. Exercise plays an important role in PD management, and recent studies have reported improvement in motor symptoms and cognitive function following aerobic and Tai Chi Chuan exercise. AIM To explore the different effects of Tai Chi Chuan and aerobic exercise on the clinical motor status and neurocognitive performance of patients with early-stage PD. DESIGN A randomized controlled trial. SETTING Parkinson's Disease Center at Kaohsiung Chang Gung Memorial Hospital and National Cheng Kung University Hospital. POPULATION Patients with idiopathic PD. METHODS Fifty-six patients with PD were recruited and divided into three groups: aerobic exercise (AE, N.=14), Tai Chi Chuan exercise (TE, N.=16), and control (CG, N.=13). Before and after a 12-week intervention period, we used unified Parkinson's disease rating scale Part III (UPDRS-III) scores and neuropsychological (e.g., accuracy rates [ARs] and reaction times [RTs]) and neurophysiological (e.g., event-related potential [ERP] N2 and P3 latencies and amplitudes) parameters to respectively assess the patients' clinical motor symptoms and neurocognitive performance when performing a working memory (WM) task. RESULTS Compared to baseline, UPDRS-III scores were significantly lower in the AE and TE groups after the intervention period, whereas those for the CG group were higher. In terms of the neurocognitive parameters, when performing the WM task after the intervention period, the AE group exhibited significantly faster RTs and larger ERP P3 amplitudes, the TE group exhibited an improvement only in ERP P3 amplitude, and the CG group exhibited a significantly reduced ERP P3 amplitude. However, neither the TE nor the AE group exhibited improved ARs and ERP N2 performance. CONCLUSIONS The present study supported the distinct effectiveness of Tai Chi Chuan and aerobic exercise for improving motor symptoms and providing neurocognitive benefits in PD patients. CLINICAL REHABILITATION IMPACT These results have important implications regarding the use of these exercise interventions for managing PD, particularly in the early stages.
Collapse
Affiliation(s)
- Cheng-Liang Chang
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan (ROC)
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (ROC)
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (ROC)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (ROC)
| | - Chien-Yu Pan
- Department of Physical Education, National Kaohsiung Normal University, Kaohsiung, Taiwan (ROC)
| | - Tsai-Chiao Wang
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan (ROC)
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, Taiwan (ROC)
| | - Yu-Ting Tseng
- Department of Kinesiology, National Tsing Hua University, Hsinchu, Taiwan (ROC)
| | - Chung-Yao Chien
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan (ROC)
| | - Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan (ROC) -
| |
Collapse
|
7
|
Cheung F, Calakos KC, Gueorguieva R, Hillmer AT, Cosgrove KP, Zakiniaeiz Y. Lower Dorsal Putamen D2/3 Receptor Availability and Amphetamine-Induced Dopamine Release are Related to Poorer Cognitive Function in Recently Abstinent People Who Smoke and Healthy Controls. Nicotine Tob Res 2024; 26:1038-1044. [PMID: 38367211 PMCID: PMC11260895 DOI: 10.1093/ntr/ntae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
INTRODUCTION In the dopamine system, the mesolimbic pathway, including the dorsal striatum, underlies the reinforcing properties of tobacco smoking, and the mesocortical pathway, including the dorsolateral prefrontal cortex (dlPFC), is critical for cognitive functioning. Dysregulated dopamine signaling has been linked to drug-seeking behaviors and cognitive deficits. The dorsal striatum and dlPFC are structurally and functionally connected and are key regions for cognitive functioning. We recently showed that people who smoke have lower dlPFC dopamine (D2/3R) receptor availability than people who do not, which is related to poorer cognitive function. AIMS AND METHODS The goal of this study was to examine the same brain-behavior relationship in the dorsal striatum. Twenty-nine (18 males) recently abstinent people who smoke and 29 sex-matched healthy controls participated in 2 same-day [11C]-(+)-PHNO positron emission tomography scans before and after amphetamine administration to provoke dopamine release. D2/3R availability (binding potential; BPND) and amphetamine-induced dopamine release (%ΔBPND) were calculated. Cognition (verbal learning and memory) was assessed with the CogState computerized battery. RESULTS There were no group differences in baseline BPND. People who smoke have a smaller magnitude %ΔBPND in dorsal putamen than healthy controls (p = .022). People who smoke perform worse on immediate (p = .035) and delayed (p = .011) recall than healthy controls. In all people, lower dorsal putamen BPND was associated with worse immediate (p = .006) and delayed recall (p = .049), and lower %ΔBPND was related to worse delayed recall (p = .022). CONCLUSIONS Lower dorsal putamen D2/3R availability and function are associated with disruptions in cognitive function that may underlie difficulty with resisting smoking. IMPLICATIONS This study directly relates dopamine imaging outcomes in the dorsal striatum to cognitive function in recently abstinent people who smoke cigarettes and healthy controls. The current work included a well-characterized subject sample in terms of demographics, smoking characteristics, and a validated neurocognitive test of verbal learning and memory. The findings of this study extend previous literature relating dopamine imaging outcomes to cognition in recently abstinent people who smoke and people who do not smoke, expanding our understanding of brain-behavior relationships.
Collapse
Affiliation(s)
| | - Katina C Calakos
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| | - Ralitza Gueorguieva
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Ansel T Hillmer
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- Yale Positron Emission Tomography (PET) Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, USA
| | - Kelly P Cosgrove
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- Yale Positron Emission Tomography (PET) Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, USA
| | - Yasmin Zakiniaeiz
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
de Souza Souto JJ, Edite Casé de Oliveira M, Silva GM, Nascimento de Sousa JM, Fernandes Franco CI, Dos Santos NA. Transcranial direct current stimulation and cognitive changes in Parkinson's disease, a systematic review with meta-analysis and meta-regression. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-11. [PMID: 38967481 DOI: 10.1080/23279095.2024.2367108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Parkinson's disease is the second most common neurodegenerative disease, but therapeutic options such as neuromodulation continue to show variable effects, making clinical management of the disease difficult. This systematic review with meta-analysis and meta-regression aimed to analyze the isolated effect of cortical modulation with transcranial direct current stimulation (tDCS) compared to sham stimulation on cognitive changes in people with Parkinson's disease. The databases used were: Web of Science, Scopus, PsycINFO, PubMed, and Cochrane. The results showed that tDCS can influence the improvement of cognition in PD (Inverse Variance:0.24 [95% Confidence Interval: 0.09 to -0.40], p < 0.00). The meta-analysis showed that active tDCS can influence cognitive function by improving aspects related to memory (Inverse Variance:0.34 [95% Confidence Interval: 0.07 to 0.61], p < 0.01) and reducing reaction time in cognitive tasks (Inverse Variance:0.42 [95% Confidence Interval: 0.07 to 0.76], p < 0.02). Innovative meta-regression analyses showed that variables such as age (Q = 2.54, df = 1, p < 0.11), education level (Q = 2.62, df = 1, p < 0.10), disease duration (Q = 0.01, df = 1, p < 0.92), and Unified PD Rating Scale stage (Q = 0.01, df = 1, p < 0.92) did not influence the results. Thus, tDCS may be a therapeutic option for cognitive changes in people with PD, and we suggest further studies to identify protocols that can be replicated.
Collapse
|
9
|
Forde NJ, Llera A, Beckmann C. Linking functional and structural brain organisation with behaviour in healthy adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602076. [PMID: 39005426 PMCID: PMC11245078 DOI: 10.1101/2024.07.04.602076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Multimodal data integration approaches, such as Linked Independent Component Analysis (LICA), increase sensitivity to brain-behaviour relationships and allow us to probe the relationship between modalities. Here we focus on inter-regional functional and structural organisation to determine if organisational patterns persist across modalities and if investigating multi-modality organisations provides increased sensitivity to brain-behaviour associations. We utilised multimodal magnetic resonance imaging (MRI; T1w, resting-state functional [fMRI] and diffusion weighted [DWI]) and behavioural data from the Human Connectome Project (HCP, n=676; 51% female). Unimodal features were extracted to produce individual grey matter density maps, probabilistic tractography connectivity matrices and connectopic maps from the T1w, DWI and fMRI data, respectively. DWI and fMRI analyses were restricted to subcortical regions for computational reasons. LICA was then used to integrate features, generating 100 novel independent components. Associations between these components and demographic/behavioural (n=308) variables were examined. 15 components were significantly associated with various demographic/behavioural measures. 2 components were strongly related to various measures of intoxication, driven by DWI and resemble components previously identified. Another component was driven by striatal functional data and related to working memory. A small number of components showed shared variance between structure and function but none of these displayed any significant behavioural associations. Our working memory findings provide support for the use of fMRI connectopic mapping in future research of working memory. Given the lack of behaviourally relevant shared variance between functional and structural organisation, as indexed here, we question the utility of integrating connectopic maps and tractography data.
Collapse
Affiliation(s)
- Natalie J Forde
- Radboud University Medical Centre, Donders Centre for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Alberto Llera
- Radboud University Medical Centre, Donders Centre for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Christian Beckmann
- Radboud University Medical Centre, Donders Centre for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| |
Collapse
|
10
|
Elmers J, Colzato LS, Ziemssen F, Ziemssen T, Beste C. Optical coherence tomography as a potential surrogate marker of dopaminergic modulation across the life span. Ageing Res Rev 2024; 96:102280. [PMID: 38518921 DOI: 10.1016/j.arr.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
The retina has been considered a "window to the brain" and shares similar innervation by the dopaminergic system with the cortex in terms of an unequal distribution of D1 and D2 receptors. Here, we provide a comprehensive overview that Optical Coherence Tomography (OCT), a non-invasive imaging technique, which provides an "in vivo" representation of the retina, shows promise to be used as a surrogate marker of dopaminergic neuromodulation in cognition. Overall, most evidence supports reduced retinal thickness in individuals with dopaminergic dysregulation (e.g., patients with Parkinson's Disease, non-demented older adults) and with poor cognitive functioning. By using the theoretical framework of metacontrol, we derive hypotheses that retinal thinning associated to decreased dopamine (DA) levels affecting D1 families, might lead to a decrease in the signal-to-noise ratio (SNR) affecting cognitive persistence (depending on D1-modulated DA activity) but not cognitive flexibility (depending on D2-modulated DA activity). We argue that the use of OCT parameters might not only be an insightful for cognitive neuroscience research, but also a potentially effective tool for individualized medicine with a focus on cognition. As our society progressively ages in the forthcoming years and decades, the preservation of cognitive abilities and promoting healthy aging will hold of crucial significance. OCT has the potential to function as a swift, non-invasive, and economical method for promptly recognizing individuals with a heightened vulnerability to cognitive deterioration throughout all stages of life.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Focke Ziemssen
- Ophthalmological Clinic, University Clinic Leipzig, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
11
|
Benítez-Castañeda A, Anaya-Martínez V, Espadas-Alvarez ADJ, Gutierrez-Váldez AL, Razgado-Hernández LF, Reyna-Velazquez PE, Quintero-Macias L, Martínez-Fong D, Florán-Garduño B, Aceves J. Transfection of the BDNF Gene in the Surviving Dopamine Neurons in Conjunction with Continuous Administration of Pramipexole Restores Normal Motor Behavior in a Bilateral Rat Model of Parkinson's Disease. PARKINSON'S DISEASE 2024; 2024:3885451. [PMID: 38419644 PMCID: PMC10901579 DOI: 10.1155/2024/3885451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
In Parkinson's disease (PD), progressive degeneration of nigrostriatal innervation leads to atrophy and loss of dendritic spines of striatal medium spiny neurons (MSNs). The loss disrupts corticostriatal transmission, impairs motor behavior, and produces nonmotor symptoms. Nigral neurons express brain-derived neurotropic factor (BDNF) and dopamine D3 receptors, both protecting the dopamine neurons and the spines of MSNs. To restore motor and nonmotor symptoms to normality, we assessed a combined therapy in a bilateral rat Parkinson's model, with only 30% of surviving neurons. The preferential D3 agonist pramipexole (PPX) was infused for four ½ months via mini-osmotic pumps and one month after PPX initiation; the BDNF-gene was transfected into the surviving nigral cells using the nonviral transfection NTS-polyplex vector. Overexpression of the BDNF-gene associated with continuous PPX infusion restored motor coordination, balance, normal gait, and working memory. Recovery was also related to the restoration of the average number of dendritic spines of the striatal projection neurons and the number of TH-positive neurons of the substantia nigra and ventral tegmental area. These positive results could pave the way for further clinical research into this promising therapy.
Collapse
Affiliation(s)
- Alina Benítez-Castañeda
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | | | | | | | | | | | - Liz Quintero-Macias
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Daniel Martínez-Fong
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Benjamín Florán-Garduño
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Jorge Aceves
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
12
|
Belden A, Quinci MA, Geddes M, Donovan NJ, Hanser SB, Loui P. Functional Organization of Auditory and Reward Systems in Aging. J Cogn Neurosci 2023; 35:1570-1592. [PMID: 37432735 PMCID: PMC10513766 DOI: 10.1162/jocn_a_02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The intrinsic organization of functional brain networks is known to change with age, and is affected by perceptual input and task conditions. Here, we compare functional activity and connectivity during music listening and rest between younger (n = 24) and older (n = 24) adults, using whole-brain regression, seed-based connectivity, and ROI-ROI connectivity analyses. As expected, activity and connectivity of auditory and reward networks scaled with liking during music listening in both groups. Younger adults show higher within-network connectivity of auditory and reward regions as compared with older adults, both at rest and during music listening, but this age-related difference at rest was reduced during music listening, especially in individuals who self-report high musical reward. Furthermore, younger adults showed higher functional connectivity between auditory network and medial prefrontal cortex that was specific to music listening, whereas older adults showed a more globally diffuse pattern of connectivity, including higher connectivity between auditory regions and bilateral lingual and inferior frontal gyri. Finally, connectivity between auditory and reward regions was higher when listening to music selected by the participant. These results highlight the roles of aging and reward sensitivity on auditory and reward networks. Results may inform the design of music-based interventions for older adults and improve our understanding of functional network dynamics of the brain at rest and during a cognitively engaging task.
Collapse
Affiliation(s)
| | | | | | - Nancy J Donovan
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
13
|
Gustavsson J, Johansson J, Falahati F, Andersson M, Papenberg G, Avelar-Pereira B, Bäckman L, Kalpouzos G, Salami A. The iron-dopamine D1 coupling modulates neural signatures of working memory across adult lifespan. Neuroimage 2023; 279:120323. [PMID: 37582419 DOI: 10.1016/j.neuroimage.2023.120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Brain iron overload and decreased integrity of the dopaminergic system have been independently reported as brain substrates of cognitive decline in aging. Dopamine (DA), and iron are co-localized in high concentrations in the striatum and prefrontal cortex (PFC), but follow opposing age-related trajectories across the lifespan. DA contributes to cellular iron homeostasis and the activation of D1-like DA receptors (D1DR) alleviates oxidative stress-induced inflammatory responses, suggesting a mutual interaction between these two fundamental components. Still, a direct in-vivo study testing the iron-D1DR relationship and their interactions on brain function and cognition across the lifespan is rare. Using PET and MRI data from the DyNAMiC study (n=180, age=20-79, %50 female), we showed that elevated iron content was related to lower D1DRs in DLPFC, but not in striatum, suggesting that dopamine-rich regions are less susceptible to elevated iron. Critically, older individuals with elevated iron and lower D1DR exhibited less frontoparietal activations during the most demanding task, which in turn was related to poorer working-memory performance. Together, our findings suggest that the combination of elevated iron load and reduced D1DR contribute to disturbed PFC-related circuits in older age, and thus may be targeted as two modifiable factors for future intervention.
Collapse
Affiliation(s)
- Jonatan Gustavsson
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
| | - Jarkko Johansson
- Faculty of Medicine, Department of Radiation Sciences, Umeå University, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Farshad Falahati
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Bárbara Avelar-Pereira
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Department of Psychiatry and Behavioural Sciences, School of Medicine, Stanford University, Stanford, California 94304, USA
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Sweden
| |
Collapse
|
14
|
Malik H, Usman M, Arif M, Ahmed Z, Ali G, Rauf K, Sewell RDE. Diosgenin normalization of disrupted behavioral and central neurochemical activity after single prolonged stress. Front Pharmacol 2023; 14:1232088. [PMID: 37663254 PMCID: PMC10468593 DOI: 10.3389/fphar.2023.1232088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Post-traumatic stress disorder (PTSD) is a chronic mental illness triggered by traumatic experiences such as wars, natural disasters, or catastrophes, and it is characterized by anxiety, depression and cognitive impairment. Diosgenin is a steroidal sapogenin with known neuroprotective and antioxidant properties. This study aimed to assess the pharmacological potential of diosgenin in a single prolonged stress (SPS) model of PTSD, plus other behavioral models along with any consequent alterations in brain neurochemistry in male mice. Methodology: SPS was induced by restraining animals for 2 h, followed by 20 min of forced swim, recuperation for 15 min, and finally, exposure to ether to induce anesthesia. The SPS-exposed animals were treated with diosgenin (20, 40, and 60 mg/kg) and compared with the positive controls, fluoxetine or donepezil, then they were observed for any changes in anxiety/depression-like behaviors, and cognitive impairment. After behavioral screening, postmortem serotonin, noradrenaline, dopamine, vitamin C, adenosine and its metabolites inosine and hypoxanthine were quantified in the frontal cortex, hippocampus, and striatum by high-performance liquid chromatography. Additionally, animal serum was screened for changes in corticosterone levels. Results: The results showed that diosgenin reversed anxiety- and depression-like behaviors, and ameliorated cognitive impairment in a dose-dependent manner. Additionally, diosgenin restored monoamine and vitamin C levels dose-dependently and modulated adenosine and its metabolites in the brain regions. Diosgenin also reinstated otherwise increased serum corticosterone levels in SPS mice. Conclusion: The findings suggest that diosgenin may be a potential candidate for improving symptoms of PTSD.
Collapse
Affiliation(s)
- Hurmat Malik
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Usman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
15
|
Belden A, Loui P. Graph Theoretical Network Structures Underlie Age-Related Differences in the Functional Connectome During Rest and Music Listening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552499. [PMID: 37609323 PMCID: PMC10441364 DOI: 10.1101/2023.08.08.552499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Aging is associated with decreased functional connectivity within the default mode network, as well as auditory and reward systems which are involved in music listening. Understanding how music listening affects network organization of the aging brain, both globally and specific to the brain networks, will have implications for designing lifestyle interventions that tap into distinct networks in the brain. Here we apply graph-theory metrics of modularity, global efficiency, clustering coefficients, degrees, and betweenness centrality to compare younger and older adults (YA/OA, N=24 per group) in fMRI connectivity during rest and a music listening task. Results show a less modular but more globally efficient connectome in OAs, especially during music listening, resulting in main effects of group and task, as well as group-by-task interactions. ROI analyses indicated that the posterior cingulate is more centrally located than the medial prefrontal cortex in OAs. Overall, reduced modularity and increased global efficiency with age is in keeping with previously-observed functional reorganizations, and interaction effects show that age-related differences in baseline network organization are reflected in, potentially magnified by, music listening.
Collapse
|
16
|
Taylor CM, Furman DJ, Berry AS, White RL, Jagust WJ, D’Esposito M, Jacobs EG. Striatal dopamine synthesis and cognitive flexibility differ between hormonal contraceptive users and nonusers. Cereb Cortex 2023; 33:8485-8495. [PMID: 37160338 PMCID: PMC10321119 DOI: 10.1093/cercor/bhad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/11/2023] Open
Abstract
In rodents and nonhuman primates, sex hormones are powerful modulators of dopamine (DA) neurotransmission. Yet less is known about hormonal regulation of the DA system in the human brain. Using positron emission tomography (PET), we address this gap by comparing hormonal contraceptive users and nonusers across multiple aspects of DA function: DA synthesis capacity via the PET radioligand 6-[18F]fluoro-m-tyrosine ([18F]FMT), baseline D2/3 receptor binding potential using [11C]raclopride, and DA release using methylphenidate-paired [11C]raclopride. Participants consisted of 36 healthy women (n = 15 hormonal contraceptive users; n = 21 naturally cycling/non users of hormonal contraception), and men (n = 20) as a comparison group. A behavioral index of cognitive flexibility was assessed prior to PET imaging. Hormonal contraceptive users exhibited greater DA synthesis capacity than NC participants, particularly in dorsal caudate, and greater cognitive flexibility. Furthermore, across individuals, the magnitude of striatal DA synthesis capacity was associated with cognitive flexibility. No group differences were observed in D2/3 receptor binding or DA release. Analyses by sex alone may obscure underlying differences in DA synthesis tied to women's hormone status. Hormonal contraception (in the form of pill, shot, implant, ring, or intrauterine device) is used by ~400 million women worldwide, yet few studies have examined whether chronic hormonal manipulations impact basic properties of the DA system. Findings from this study begin to address this critical gap in women's health.
Collapse
Affiliation(s)
- Caitlin M Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
| | - Daniella J Furman
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, United States
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, United States
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63112, United States
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Department of Psychology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
17
|
Lansdell TA, Xu H, Galligan JJ, Dorrance AM. Effects of Striatal Amyloidosis on the Dopaminergic System and Behavior: A Comparative Study in Male and Female 5XFAD Mice. J Alzheimers Dis 2023; 94:1361-1375. [PMID: 37424461 DOI: 10.3233/jad-220905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Nearly two-thirds of patients diagnosed with Alzheimer's disease (AD) are female. In addition, female patients with AD have more significant cognitive impairment than males at the same disease stage. This disparity suggests there are sex differences in AD progression. While females appear to be more affected by AD, most published behavioral studies utilize male mice. In humans, there is an association between antecedent attention-deficit/hyperactivity disorder and increased risk of dementia. Functional connectivity studies indicate that dysfunctional cortico-striatal networks contribute to hyperactivity in attention deficit hyperactivity disorder. Higher plaque density in the striatum accurately predicts the presence of clinical AD pathology. In addition, there is a link between AD-related memory dysfunction and dysfunctional dopamine signaling. OBJECTIVE With the need to consider sex as a biological variable, we investigated the influence of sex on striatal plaque burden, dopaminergic signaling, and behavior in prodromal 5XFAD mice. METHODS Six-month-old male and female 5XFAD and C57BL/6J mice were evaluated for striatal amyloid plaque burden, locomotive behavior, and changes in dopaminergic machinery in the striatum. RESULTS 5XFAD female mice had a higher striatal amyloid plaque burden than male 5XFAD mice. 5XFAD females, but not males, were hyperactive. Hyperactivity in female 5XFAD mice was associated with increased striatal plaque burden and changes in dopamine signaling in the dorsal striatum. CONCLUSION Our results indicate that the progression of amyloidosis involves the striatum in females to a greater extent than in males. These studies have significant implications for using male-only cohorts in the study of AD progression.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Hui Xu
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
18
|
Cai W, Young CB, Yuan R, Lee B, Ryman S, Kim J, Yang L, Henderson VW, Poston KL, Menon V. Dopaminergic medication normalizes aberrant cognitive control circuit signalling in Parkinson's disease. Brain 2022; 145:4042-4055. [PMID: 35357463 PMCID: PMC10200291 DOI: 10.1093/brain/awac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 08/21/2023] Open
Abstract
Dopaminergic medication is widely used to alleviate motor symptoms of Parkinson's disease, but these medications also impact cognition with significant variability across patients. It is hypothesized that dopaminergic medication impacts cognition and working memory in Parkinson's disease by modulating frontoparietal-basal ganglia cognitive control circuits, but little is known about the underlying causal signalling mechanisms and their relation to individual differences in response to dopaminergic medication. Here we use a novel state-space computational model with ultra-fast (490 ms resolution) functional MRI to investigate dynamic causal signalling in frontoparietal-basal ganglia circuits associated with working memory in 44 Parkinson's disease patients ON and OFF dopaminergic medication, as well as matched 36 healthy controls. Our analysis revealed aberrant causal signalling in frontoparietal-basal ganglia circuits in Parkinson's disease patients OFF medication. Importantly, aberrant signalling was normalized by dopaminergic medication and a novel quantitative distance measure predicted individual differences in cognitive change associated with medication in Parkinson's disease patients. These findings were specific to causal signalling measures, as no such effects were detected with conventional non-causal connectivity measures. Our analysis also identified a specific frontoparietal causal signalling pathway from right middle frontal gyrus to right posterior parietal cortex that is impaired in Parkinson's disease. Unlike in healthy controls, the strength of causal interactions in this pathway did not increase with working memory load and the strength of load-dependent causal weights was not related to individual differences in working memory task performance in Parkinson's disease patients OFF medication. However, dopaminergic medication in Parkinson's disease patients reinstated the relation with working memory performance. Our findings provide new insights into aberrant causal brain circuit dynamics during working memory and identify mechanisms by which dopaminergic medication normalizes cognitive control circuits.
Collapse
Affiliation(s)
- Weidong Cai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rui Yuan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Byeongwook Lee
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sephira Ryman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeehyun Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laurice Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Victor W Henderson
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen L Poston
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Kim S, Kwon J, Park MG, Lee CJ. Dopamine-induced astrocytic Ca 2+ signaling in mPFC is mediated by MAO-B in young mice, but by dopamine receptors in adult mice. Mol Brain 2022; 15:90. [PMID: 36397051 PMCID: PMC9670619 DOI: 10.1186/s13041-022-00977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Dopamine (DA) plays a vital role in brain physiology and pathology such as learning and memory, motor control, neurological diseases, and psychiatric diseases. In neurons, it has been well established that DA increases or decreases intracellular cyclic AMP (cAMP) through D1-like or D2-like dopamine receptors, respectively. In contrast, it has been elusive how astrocytes respond to DA via Ca2+ signaling and regulate synaptic transmission and reward systems. Previous studies suggest various molecular targets such as MAO-B, D1R, or D1R-D2R heteromer to modulate astrocytic Ca2+ signaling. However, which molecular target is utilized under what physiological condition remains unclear. Here, we show that DA-induced astrocytic Ca2+ signaling pathway switches during development: MAO-B is the major player at a young age (5-6 weeks), whereas DA receptors (DARs) are responsible for the adult period (8-12 weeks). DA-mediated Ca2+ response in the adult period was decreased by either D1R or D2R blockers, which are primarily known for cyclic AMP signaling (Gs and Gi pathway, respectively), suggesting that this Ca2+ response might be mediated through Gq pathway by D1R-D2R heterodimer. Moreover, DAR-mediated Ca2+ response was not blocked by TTX, implying that this response is not a secondary response caused by neuronal activation. Our study proposes an age-specific molecular target of DA-induced astrocytic Ca2+ signaling: MAO-B in young mice and DAR in adult mice.
Collapse
Affiliation(s)
- Sunpil Kim
- grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea ,grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science (IBS), 55 Expo-Ro, Yusung-Gu, Daejeon, 34126 Republic of Korea
| | - Jea Kwon
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science (IBS), 55 Expo-Ro, Yusung-Gu, Daejeon, 34126 Republic of Korea
| | - Mingu Gordon Park
- grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea ,grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science (IBS), 55 Expo-Ro, Yusung-Gu, Daejeon, 34126 Republic of Korea
| | - C. Justin Lee
- grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea ,grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science (IBS), 55 Expo-Ro, Yusung-Gu, Daejeon, 34126 Republic of Korea
| |
Collapse
|
20
|
Frankle WG, Himes M, Mason NS, Mathis CA, Narendran R. Prefrontal and Striatal Dopamine Release Are Inversely Correlated in Schizophrenia. Biol Psychiatry 2022; 92:791-799. [PMID: 35791965 DOI: 10.1016/j.biopsych.2022.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The dopamine (DA) hypothesis postulates hyperactivity of subcortical DA transmission and hypoactivity of cortical DA in schizophrenia (SCH). Positron emission tomography provides the ability to assess this hypothesis in humans. However, no studies have examined the relationship between cortical DA and striatal DA in this illness. METHODS D2/3 receptor radiotracer [11C]FLB457 BPND (binding potential relative to nondisplaceable uptake) was measured in 14 off-medication subjects with SCH and 14 healthy control (HC) subjects at baseline and after the administration of 0.5 mg/kg oral d-amphetamine. The amphetamine-induced change in BPND (ΔBPND) was calculated as the difference between BPND in the postamphetamine condition and BPND in the baseline condition and expressed as a percentage of BPND at baseline. DA release in the striatum using the radiotracer [11C]NPA was also measured in these subjects. RESULTS [11C]FLB457 ΔBPND was greater in the HC group compared with the SCH group (F1,26 = 5.7; p = .02) with significant differences in [11C]FLB457 ΔBPND seen across cortical brain regions. Only in the SCH group was a significant negative correlation observed between [11C]FLB457 ΔBPND in the dorsolateral prefrontal cortex and [11C]NPA ΔBPND in the dorsal caudate (r = -0.71, p = .005). CONCLUSIONS Subjects with SCH demonstrated deficits of DA release in cortical brain regions relative to HC subjects. Examining both cortical and striatal DA release in the same subjects demonstrated an inverse relationship between cortical DA release and striatal DA release in SCH not present in HC subjects, providing support for the current DA hypothesis of SCH.
Collapse
Affiliation(s)
- W Gordon Frankle
- Department of Psychiatry, NYU Langone Medical Center, New York, New York.
| | - Michael Himes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajesh Narendran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Sun Y, Wang H, Ku Y. Intermittent Theta-Burst Stimulation Increases the Working Memory Capacity of Methamphetamine Addicts. Brain Sci 2022; 12:1212. [PMID: 36138948 PMCID: PMC9496808 DOI: 10.3390/brainsci12091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to explore the effect of intermittent theta-burst stimulation (iTBS) on visual working memory for people suffering from methamphetamine use disorder (MUD). Five sessions of iTBS were carried over the left dorsolateral prefrontal cortex (DLPFC) or the vertex as a sham control, with each session in one day. Orientation free-recall tasks were conducted before the iTBS stimulation, after the first and fifth sessions of stimulation. Results showed that when compared with the sham group, a single session of iTBS over the left DLPFC improved participants' working memory performance. Specifically, iTBS over the left DLPFC increased the working memory capacity and such effects enlarged with multiple sessions. The present finding suggested that iTBS over DLPFC could be a promising intervention method to enhance the cognitive function of addicts with MUD.
Collapse
Affiliation(s)
- Yurong Sun
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Huimin Wang
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yixuan Ku
- Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou 510275, China
- Peng Cheng Laboratory, Shenzhen 518066, China
| |
Collapse
|
22
|
Zubov AS, Ivleva IS, Pestereva NS, Tiutiunnik TV, Traktirov DS, Karpenko MN. Glibenclamide alters serotonin and dopamine levels in the rat striatum and hippocampus, reducing cognitive impairment. Psychopharmacology (Berl) 2022; 239:2787-2798. [PMID: 35545702 DOI: 10.1007/s00213-022-06159-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 05/01/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE Glibenclamide (GD) is a widely used medical drug; therefore, identifying the mechanisms underlying its pleiotropic effects in the central nervous system is urgent. OBJECTIVES The aim of this work was to determine the ability of GD to modulate serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA) transmission and to assess the dose-dependent effect of GD on cognitive function in rats during natural ageing. METHODS In Experiment 1, rats received 10, 25, or 50 μg/kg GD intraperitoneally for 10 days. In Experiment 2, rats received 50 μg/kg GD intraperitoneally for 30 days. Spatial and working memory was assessed in the MWM and Y-maze tests, respectively. In both experiments, the levels of DA and 5-HT, their metabolites, and turnover rate were analysed by HPLC-ED in the rat hippocampus and striatum. RESULTS Changes in DA and 5-HT levels occurred only with a dose of 50 μg/kg GD. Therefore, in the second experiment, we administered a dose of 50 μg/kg GD. At this dose, GD prevented the development of impairments in spatial and working memory. The hippocampal concentrations of DA and DOPAC decreased, and the striatal concentrations of DA, DOPAC, 5-HT, and 5-HIAA increased. CONCLUSION One of the possible mechanisms of the precognitive effect of GD is its ability to modulate monoamine transmission. Thus, in translating our results to humans, GD can be recommended as a prophylactic agent for natural ageing to reduce the risk of developing cognitive impairments.
Collapse
Affiliation(s)
- Alexander S Zubov
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Irina S Ivleva
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Nina S Pestereva
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Tatiana V Tiutiunnik
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Dmitrtii S Traktirov
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia.
| | - Marina N Karpenko
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
23
|
D'Ambrosio E, Pergola G, Pardiñas AF, Dahoun T, Veronese M, Sportelli L, Taurisano P, Griffiths K, Jauhar S, Rogdaki M, Bloomfield MAP, Froudist-Walsh S, Bonoldi I, Walters JTR, Blasi G, Bertolino A, Howes OD. A polygenic score indexing a DRD2-related co-expression network is associated with striatal dopamine function. Sci Rep 2022; 12:12610. [PMID: 35871219 PMCID: PMC9308811 DOI: 10.1038/s41598-022-16442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
The D2 dopamine receptor (D2R) is the primary site of the therapeutic action of antipsychotics and is involved in essential brain functions relevant to schizophrenia, such as attention, memory, motivation, and emotion processing. Moreover, the gene coding for D2R (DRD2) has been associated with schizophrenia at a genome-wide level. Recent studies have shown that a polygenic co-expression index (PCI) predicting the brain-specific expression of a network of genes co-expressed with DRD2 was associated with response to antipsychotics, brain function during working memory in patients with schizophrenia, and with the modulation of prefrontal cortex activity after pharmacological stimulation of D2 receptors. We aimed to investigate the relationship between the DRD2 gene network and in vivo striatal dopaminergic function, which is a phenotype robustly associated with psychosis and schizophrenia. To this aim, a sample of 92 healthy subjects underwent 18F-DOPA PET and was genotyped for genetic variations indexing the co-expression of the DRD2-related genetic network in order to calculate the PCI for each subject. The PCI was significantly associated with whole striatal dopamine synthesis capacity (p = 0.038). Exploratory analyses on the striatal subdivisions revealed a numerically larger effect size of the PCI on dopamine function for the associative striatum, although this was not significantly different than effects in other sub-divisions. These results are in line with a possible relationship between the DRD2-related co-expression network and schizophrenia and extend it by identifying a potential mechanism involving the regulation of dopamine synthesis. Future studies are needed to clarify the molecular mechanisms implicated in this relationship.
Collapse
Affiliation(s)
- Enrico D'Ambrosio
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Tarik Dahoun
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Leonardo Sportelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Sameer Jauhar
- Centre for Affective Disorders, Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Michael A P Bloomfield
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, W1T 7NF, UK
| | | | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Giuseppe Blasi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK.
- H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark.
| |
Collapse
|
24
|
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: A systematic review and meta-analysis. Neurosci Biobehav Rev 2022; 140:104792. [PMID: 35872230 DOI: 10.1016/j.neubiorev.2022.104792] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
Memory and motor deficits are commonly identified in Parkinson's disease (PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is transformed to MPP+ via monoamine oxidase B (MAOB), which causes oxidative stress and destroys dopaminergic (DA) neurons in substantia nigra pars compacta (SNc) and is widely used to create animal models of PD. However, to-date, a comprehensive analysis of the MPTP effects on various aspects of PD does not exist. Here, we provide a systematic review and meta-analysis on the MPTP effects on memory and motor functions by analyzing 51 studies on more than one thousand animals mainly including rats and mice. The results showed that in addition to motor functions such as coordination, balance and locomotor activity, MPTP significantly affects various mnemonic processes including spatial memory, working memory, recognition memory, and associative memory compared with the control group with some differences between systemic and intra-nigral injections on spatial memory, familiar object recognition, and anxiety-like behaviors. Nevertheless, our analysis failed to find systematic relationship between MPTP injection protocol parameters reported and the extent of the induced PD symptoms that can be a cause of concern for replicability of MPTP studies.
Collapse
|
25
|
Wu Y, Wu X, Gao L, Yan Y, Geng Z, Zhou S, Zhu W, Tian Y, Yu Y, Wei L, Wang K. Abnormal Functional Connectivity of Thalamic Subdivisions in Alzheimer's Disease: A Functional Magnetic Resonance Imaging Study. Neuroscience 2022; 496:73-82. [PMID: 35690336 DOI: 10.1016/j.neuroscience.2022.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/23/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is characterized by global cognitive impairment in multiple cognitive domains. Thalamic dysfunction during AD progression has been reported. However, there are limited studies regarding dysfunction in the functional connectivity (FC) of thalamic subdivisions and the relationship between such dysfunction and clinical assessments. This study examined dysfunction in the FC of thalamic subdivisions and determined the relationship between such dysfunction and clinical assessments. Forty-eight patients with AD and 47 matched healthy controls were recruited and assessed with scales for multiple cognitive domains. Group-wise comparisons of FC with thalamic subdivisions as seed points were conducted to identify abnormal cerebral regions. Moreover, correlation analysis was conducted to evaluate the relationship between abnormal FC and cognitive performance. Decreased FC of the intralaminar and medial nuclei with the left precuneus was observed in patients but not in heathy controls. The abnormal FC of the medial nuclei with the left precuneus was correlated with the Mini Mental State Examination score in the patient group. Using the FC values showing between-group differences, the linear support vector machine classifier achieved quite good in accuracy, sensitivity, specificity and area under the curve. Dysfunction in the FC of the intralaminar and medial thalamus with the precuneus may comprise a potential neural substrate for cognitive impairment during AD progression, which in turn may provide new treatment targets.
Collapse
Affiliation(s)
- Yue Wu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China
| | - Xingqi Wu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China
| | - Liying Gao
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China
| | - Yibing Yan
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China
| | - Zhi Geng
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China; Department of Neurology, Second People's Hospital of Hefei City, The Hefei Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Shanshan Zhou
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province 230022, China
| | - Wanqiu Zhu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230088, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province 230022, China
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| | - Ling Wei
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province 230022, China.
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230088, China; The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province 230022, China.
| |
Collapse
|
26
|
Schuster BA, Sowden S, Rybicki AJ, Fraser DS, Press C, Holland P, Cook JL. Dopaminergic Modulation of Dynamic Emotion Perception. J Neurosci 2022; 42:4394-4400. [PMID: 35501156 PMCID: PMC9145228 DOI: 10.1523/jneurosci.2364-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
Emotion recognition abilities are fundamental to our everyday social interaction. A large number of clinical populations show impairments in this domain, with emotion recognition atypicalities being particularly prevalent among disorders exhibiting a dopamine system disruption (e.g., Parkinson's disease). Although this suggests a role for dopamine in emotion recognition, studies employing dopamine manipulation in healthy volunteers have exhibited mixed neural findings and no behavioral modulation. Interestingly, while a dependence of dopaminergic drug effects on individual baseline dopamine function has been well established in other cognitive domains, the emotion recognition literature so far has failed to account for these possible interindividual differences. The present within-subjects study therefore tested the effects of the dopamine D2 antagonist haloperidol on emotion recognition from dynamic, whole-body stimuli while accounting for interindividual differences in baseline dopamine. A total of 33 healthy male and female adults rated emotional point-light walkers (PLWs) once after ingestion of 2.5 mg haloperidol and once after placebo. To evaluate potential mechanistic pathways of the dopaminergic modulation of emotion recognition, participants also performed motoric and counting-based indices of temporal processing. Confirming our hypotheses, effects of haloperidol on emotion recognition depended on baseline dopamine function, where individuals with low baseline dopamine showed enhanced, and those with high baseline dopamine decreased emotion recognition. Drug effects on emotion recognition were related to drug effects on movement-based and explicit timing mechanisms, indicating possible mediating effects of temporal processing. Results highlight the need for future studies to account for baseline dopamine and suggest putative mechanisms underlying the dopaminergic modulation of emotion recognition.SIGNIFICANCE STATEMENT A high prevalence of emotion recognition difficulties among clinical conditions where the dopamine system is affected suggests an involvement of dopamine in emotion recognition processes. However, previous psychopharmacological studies seeking to confirm this role in healthy volunteers thus far have failed to establish whether dopamine affects emotion recognition and lack mechanistic insights. The present study uncovered effects of dopamine on emotion recognition in healthy individuals by controlling for interindividual differences in baseline dopamine function and investigated potential mechanistic pathways via which dopamine may modulate emotion recognition. Our findings suggest that dopamine may influence emotion recognition via its effects on temporal processing, providing new directions for future research on typical and atypical emotion recognition.
Collapse
Affiliation(s)
- B A Schuster
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - S Sowden
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - A J Rybicki
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - D S Fraser
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - C Press
- Department of Psychological Sciences, Birkbeck University of London, London, WC1E 7HX, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3AR, United Kingdom
| | - P Holland
- Department of Psychology, Goldsmiths University of London, London, SE14 6NW, United Kingdom
| | - J L Cook
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
27
|
Kawashima S, Matsukawa N. Memantine for the patients with mild cognitive impairment in Parkinson's disease: a pharmacological fMRI study. BMC Neurol 2022; 22:175. [PMID: 35562711 PMCID: PMC9103297 DOI: 10.1186/s12883-022-02699-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mild cognitive impairment in Parkinson's disease (PD-MCI) is associated with an increased risk of cognitive decline. PD-MCI is characterized by impairments in executive function and visuospatial recognition. The visuospatial n-back test is useful for assessing both domains. The 0-back test reflects visuospatial recognition, while the 1-back and 2-back tests reflect working memory. Cholinesterase inhibitors are effective in the treatment of PD-MCI and dementia in PD (PDD). Although some studies have reported the efficacy of memantine for PDD, the therapeutic efficacy of memantine in patients with PD-MCI remains uncertain. METHODS This study aimed to investigate the effects of memantine on brain function in patients with PD-MCI, using a randomized double-blinded crossover protocol and functional MRI (fMRI). Ten patients who completed 16 weeks of follow-up were included. They were randomly assigned to either the memantine or placebo. Patients in the memantine group received 5 mg/day of memantine in the first week. The memantine dose was increased by 5 mg/day per week, until a final dose of 20 mg/day. Patients in the placebo group received the placebo following the same regimen as memantine. After the intervention, they underwent a 4 weeks washout period. Following the crossover protocol, a second intervention was conducted after the washout period. In each intervention, fMRI and neuropsychological tests were performed at the maximum dose period. Comparing the memantine and placebo groups, we investigated difference in the brain regions using the visuospatial n-back test. RESULTS There were no significant regions enhanced by memantine comparing with placebo at any load of n-back tests. In contrast, exploring regions reduced by memantine, we found significant reduction of activations within right lingual gyrus and left superior frontal gyrus in comparison between 2-back and 0-back test. A number of correct answers of the 2-back test and time to complete Trail Making Test-A were worse during memantine intervention. CONCLUSIONS Memantine did not improve visuospatial working memory of the patients with PD-MCI. Treatment for PD should be planned carefully considering the impact on cognitive function. Further study is needed to establish new therapeutic strategy. TRIAL REGISTRATION UMIN000046104. Retrospectively registered. First registration date: 28 Sept 2017.
Collapse
Affiliation(s)
- Shoji Kawashima
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan.
| | | | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
28
|
Affective disorders and сognitive impairment in the early stages of Parkinson's disease. КЛИНИЧЕСКАЯ ПРАКТИКА 2022. [DOI: 10.17816/clinpract100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Parkinson's disease (BP) is the second most important age-related neurodegenerative disease in developed societies after Alzheimer's disease with a prevalence of 41 per 100,000 in the fourth decade of life to more than 1900 per 100,000 people over 80 years old.
Parkinson's disease (BP) is the second most important age-related neidgenerative disease in developed societies after Alzheimer's disease with a prevalence of 41 per 100,000 in the fourth decade of life to more than 1900 per 100,000 people over 80 years old.
Neurodegeneration associated with Parkinson's disease is likely to occur over several decades before the appearance of motor symptoms.
Affective and cognitive some of the most frequent non-engine manifestations of BP diseases that can lead to a variety of adverse outcomes
Collapse
|
29
|
Parr AC, Calabro F, Tervo-Clemmens B, Larsen B, Foran W, Luna B. Contributions of dopamine-related basal ganglia neurophysiology to the developmental effects of incentives on inhibitory control. Dev Cogn Neurosci 2022; 54:101100. [PMID: 35344773 PMCID: PMC8961188 DOI: 10.1016/j.dcn.2022.101100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/23/2022] [Accepted: 03/16/2022] [Indexed: 01/19/2023] Open
Abstract
Inhibitory control can be less reliable in adolescence, however, in the presence of rewards, adolescents' performance often improves to adult levels. Dopamine is known to play a role in signaling rewards and supporting cognition, but its role in the enhancing effects of reward on adolescent cognition and inhibitory control remains unknown. Here, we assessed the contribution of basal ganglia dopamine-related neurophysiology using longitudinal MR-based assessments of tissue iron in rewarded inhibitory control, using an antisaccade task. In line with prior work, we show that neutral performance improves with age, and incentives enhance performance in adolescents to that of adults. We find that basal ganglia tissue iron is associated with individual differences in the magnitude of this reward boost, which is strongest in those with high levels of tissue iron, predominantly in adolescence. Our results provide novel evidence that basal ganglia neurophysiology supports developmental effects of rewards on cognition, which can inform neurodevelopmental models of the role of dopamine in reward processing during adolescence.
Collapse
Affiliation(s)
- Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States.
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 14213, United States
| | | | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States.
| |
Collapse
|
30
|
Ortega J, Plaska CR, Gomes BA, Ellmore TM. Spontaneous Eye Blink Rate During the Working Memory Delay Period Predicts Task Accuracy. Front Psychol 2022; 13:788231. [PMID: 35242077 PMCID: PMC8886217 DOI: 10.3389/fpsyg.2022.788231] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Spontaneous eye blink rate (sEBR) has been linked to attention and memory, specifically working memory (WM). sEBR is also related to striatal dopamine (DA) activity with schizophrenia and Parkinson’s disease showing increases and decreases, respectively, in sEBR. A weakness of past studies of sEBR and WM is that correlations have been reported using blink rates taken at baseline either before or after performance of the tasks used to assess WM. The goal of the present study was to understand how fluctuations in sEBR during different phases of a visual WM task predict task accuracy. In two experiments, with recordings of sEBR collected inside and outside of a magnetic resonance imaging bore, we observed sEBR to be positively correlated with WM task accuracy during the WM delay period. We also found task-related modulation of sEBR, including higher sEBR during the delay period compared to rest, and lower sEBR during task phases (e.g., stimulus encoding) that place demands on visual attention. These results provide further evidence that sEBR could be an important predictor of WM task performance with the changes during the delay period suggesting a role in WM maintenance. The relationship of sEBR to DA activity and WM maintenance is discussed.
Collapse
Affiliation(s)
- Jefferson Ortega
- Department of Psychology, The City College of the City University of New York, New York, NY, United States
| | - Chelsea Reichert Plaska
- Department of Psychology, The City College of the City University of New York, New York, NY, United States.,Behavioral and Cognitive Neuroscience Program, The Graduate Center of the City University of New York, New York, NY, United States
| | - Bernard A Gomes
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy M Ellmore
- Department of Psychology, The City College of the City University of New York, New York, NY, United States.,Behavioral and Cognitive Neuroscience Program, The Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
31
|
White-Matter Integrity and Working Memory: Links to Aging and Dopamine-Related Genes. eNeuro 2022; 9:ENEURO.0413-21.2022. [PMID: 35346961 PMCID: PMC9014983 DOI: 10.1523/eneuro.0413-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Working memory, a core function underlying many higher-level cognitive processes, requires cooperation of multiple brain regions. White matter refers to myelinated axons, which are critical to interregional brain communication. Past studies on the association between white-matter integrity and working memory have yielded mixed findings. Using voxelwise tract-based spatial statistics analysis, we investigated this relationship in a sample of 328 healthy adults from 25 to 80 years of age. Given the important role of dopamine (DA) in working-memory functioning and white matter, we also analyzed the effects of dopamine-related genes on them. There were associations between white-matter integrity and working memory in multiple tracts, indicating that working-memory functioning relies on global connections between different brain areas across the adult life span. Moreover, a mediation analysis suggested that white-matter integrity contributes to age-related differences in working memory. Finally, there was an effect of the COMT Val158Met polymorphism on white-matter integrity, such that Val/Val carriers had lower fractional anisotropy values than any Met carriers in the internal capsule, corona radiata, and posterior thalamic radiation. As this polymorphism has been associated with dopaminergic tone in the prefrontal cortex, this result provides evidence for a link between DA neurotransmission and white matter. Together, the results support a link between white-matter integrity and working memory, and provide evidence for its interplay with age- and DA-related genes.
Collapse
|
32
|
More Flexible Brain Activation Underlies Cognitive Reserve in Older Adults. Neurobiol Aging 2022; 113:63-72. [DOI: 10.1016/j.neurobiolaging.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/19/2022]
|
33
|
Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 2022; 47:309-328. [PMID: 34312496 PMCID: PMC8617291 DOI: 10.1038/s41386-021-01100-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
The primate prefrontal cortex (PFC) subserves our highest order cognitive operations, and yet is tremendously dependent on a precise neurochemical environment for proper functioning. Depletion of noradrenaline and dopamine, or of acetylcholine from the dorsolateral PFC (dlPFC), is as devastating as removing the cortex itself, and serotonergic influences are also critical to proper functioning of the orbital and medial PFC. Most neuromodulators have a narrow inverted U dose response, which coordinates arousal state with cognitive state, and contributes to cognitive deficits with fatigue or uncontrollable stress. Studies in monkeys have revealed the molecular signaling mechanisms that govern the generation and modulation of mental representations by the dlPFC, allowing dynamic regulation of network strength, a process that requires tight regulation to prevent toxic actions, e.g., as occurs with advanced age. Brain imaging studies in humans have observed drug and genotype influences on a range of cognitive tasks and on PFC circuit functional connectivity, e.g., showing that catecholamines stabilize representations in a baseline-dependent manner. Research in monkeys has already led to new treatments for cognitive disorders in humans, encouraging future research in this important field.
Collapse
Affiliation(s)
- Roshan Cools
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
34
|
Riedel P, Domachowska IM, Lee Y, Neukam PT, Tönges L, Li SC, Goschke T, Smolka MN. L-DOPA administration shifts the stability-flexibility balance towards attentional capture by distractors during a visual search task. Psychopharmacology (Berl) 2022; 239:867-885. [PMID: 35147724 PMCID: PMC8891202 DOI: 10.1007/s00213-022-06077-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
RATIONALE The cognitive control dilemma describes the necessity to balance two antagonistic modes of attention: stability and flexibility. Stability refers to goal-directed thought, feeling, or action and flexibility refers to the complementary ability to adapt to an ever-changing environment. Their balance is thought to be maintained by neurotransmitters such as dopamine, most likely in a U-shaped rather than linear manner. However, in humans, studies on the stability-flexibility balance using a dopaminergic agent and/or measurement of brain dopamine are scarce. OBJECTIVE The study aimed to investigate the causal involvement of dopamine in the stability-flexibility balance and the nature of this relationship in humans. METHODS Distractibility was assessed as the difference in reaction time (RT) between distractor and non-distractor trials in a visual search task. In a randomized, placebo-controlled, double-blind, crossover study, 65 healthy participants performed the task under placebo and a dopamine precursor (L-DOPA). Using 18F-DOPA-PET, dopamine availability in the striatum was examined at baseline to investigate its relationship to the RT distractor effect and to the L-DOPA-induced change of the RT distractor effect. RESULTS There was a pronounced RT distractor effect in the placebo session that increased under L-DOPA. Neither the RT distractor effect in the placebo session nor the magnitude of its L-DOPA-induced increase were related to baseline striatal dopamine. CONCLUSIONS L-DOPA administration shifted the stability-flexibility balance towards attentional capture by distractors, suggesting causal involvement of dopamine. This finding is consistent with current theories of prefrontal cortex dopamine function. Current data can neither confirm nor falsify the inverted U-shaped function hypothesis with regard to cognitive control.
Collapse
Affiliation(s)
- P. Riedel
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - I. M. Domachowska
- Department of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| | - Y. Lee
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - P. T. Neukam
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - L. Tönges
- Department of Neurology, Ruhr University Bochum, St. Josef-Hospital, Gudrunstraße 56, 44791 Bochum, Germany
| | - S. C. Li
- Department of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany ,Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Georg-Schumman-Str. 9, 01187 Dresden, Germany
| | - T. Goschke
- Department of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| | - M. N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
35
|
Karalija N, Köhncke Y, Düzel S, Bertram L, Papenberg G, Demuth I, Lill CM, Johansson J, Riklund K, Lövdén M, Bäckman L, Nyberg L, Lindenberger U, Brandmaier AM. A common polymorphism in the dopamine transporter gene predicts working memory performance and in vivo dopamine integrity in aging. Neuroimage 2021; 245:118707. [PMID: 34742942 DOI: 10.1016/j.neuroimage.2021.118707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Dopamine (DA) integrity is suggested as a potential cause of individual differences in working memory (WM) performance among older adults. Still, the principal dopaminergic mechanisms giving rise to WM differences remain unspecified. Here, 61 single-nucleotide polymorphisms, located in or adjacent to various dopamine-related genes, were assessed for their links to WM performance in a sample of 1313 adults aged 61-80 years from the Berlin Aging Study II. Least Absolute Shrinkage and Selection Operator (LASSO) regression was conducted to estimate associations between polymorphisms and WM. Rs40184 in the DA transporter gene, SLC6A3, showed allelic group differences in WM, with T-carriers performing better than C homozygotes (p<0.01). This finding was replicated in an independent sample from the Cognition, Brain, and Aging study (COBRA; baseline: n = 181, ages: 64-68 years; 5-year follow up: n = 129). In COBRA, in vivo DA integrity was measured with 11C-raclopride and positron emission tomography. Notably, WM as well as in vivo DA integrity was higher for rs40184 T-carriers at baseline (p<0.05 for WM and caudate and hippocampal D2-receptor availability) and at the 5-year follow-up (p<0.05 for WM and hippocampal D2 availability). Our findings indicate that individual differences in DA transporter function contribute to differences in WM performance in old age, presumably by regulating DA availability.
Collapse
Affiliation(s)
- Nina Karalija
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden.
| | - Ylva Köhncke
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany; Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet & Stockholm University, Solna, Sweden
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany; Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany; Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Jarkko Johansson
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Martin Lövdén
- Department of psychology, University of Gothenburg, Gothenburg, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet & Stockholm University, Solna, Sweden
| | - Lars Nyberg
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| |
Collapse
|
36
|
Ciampa CJ, Parent JH, Lapoint MR, Swinnerton KN, Taylor MM, Tennant VR, Whitman AJ, Jagust WJ, Berry AS. Elevated Dopamine Synthesis as a Mechanism of Cognitive Resilience in Aging. Cereb Cortex 2021; 32:2762-2772. [PMID: 34718454 DOI: 10.1093/cercor/bhab379] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Aging is associated with declines in multiple components of the dopamine system including loss of dopamine-producing neurons, atrophy of the dopamine system's cortical targets, and reductions in the density of dopamine receptors. Countering these patterns, dopamine synthesis appears to be stable or elevated in older age. We tested the hypothesis that elevation in dopamine synthesis in aging reflects a compensatory response to neuronal loss rather than a nonspecific monotonic shift in older age. We measured individual differences in striatal dopamine synthesis capacity in cognitively normal older adults using [18F]Fluoro-l-m-tyrosine positron emission tomography cross-sectionally and tested relationships with longitudinal reductions in cortical thickness and working memory decline beginning up to 13 years earlier. Consistent with a compensation account, older adults with the highest dopamine synthesis capacity were those with greatest atrophy in posterior parietal cortex. Elevated dopamine synthesis capacity was not associated with successful maintenance of working memory performance overall, but had a moderating effect such that higher levels of dopamine synthesis capacity reduced the impact of atrophy on cognitive decline. Together, these findings support a model by which upregulation of dopamine synthesis represents a mechanism of cognitive resilience in aging.
Collapse
Affiliation(s)
- Claire J Ciampa
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Jourdan H Parent
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Molly R Lapoint
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kaitlin N Swinnerton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Morgan M Taylor
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Victoria R Tennant
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - A J Whitman
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
37
|
Korkki SM, Papenberg G, Karalija N, Garrett DD, Riklund K, Lövdén M, Lindenberger U, Nyberg L, Bäckman L. Fronto-striatal dopamine D2 receptor availability is associated with cognitive variability in older individuals with low dopamine integrity. Sci Rep 2021; 11:21089. [PMID: 34702857 PMCID: PMC8548594 DOI: 10.1038/s41598-021-00106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Within-person, moment-to-moment, variability in behavior increases with advancing adult age, potentially reflecting the influence of reduced structural and neurochemical brain integrity, especially that of the dopaminergic system. We examined the role of dopamine D2 receptor (D2DR) availability, grey-, and white-matter integrity, for between-person differences in cognitive variability in a large sample of healthy older adults (n = 181; 64-68 years) from the Cognition, Brain, and Aging (COBRA) study. Intra-individual variability (IIV) in cognition was measured as across-trial variability in participants' response times for tasks assessing perceptual speed and working memory, as well as for a control task of motor speed. Across the whole sample, no associations of D2DR availability, or grey- and white-matter integrity, to IIV were observed. However, within-person variability in cognition was increased in two subgroups of individuals displaying low mean-level cognitive performance, one of which was characterized by low subcortical and cortical D2DR availability. In this latter group, fronto-striatal D2DR availability correlated negatively with within-person variability in cognition. This finding suggests that the influence of D2DR availability on cognitive variability may be more easily disclosed among individuals with low dopamine-system integrity, highlighting the benefits of large-scale studies for delineating heterogeneity in brain-behavior associations in older age.
Collapse
Affiliation(s)
- Saana M. Korkki
- grid.10548.380000 0004 1936 9377Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Goran Papenberg
- grid.10548.380000 0004 1936 9377Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Nina Karalija
- grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Douglas D. Garrett
- grid.419526.d0000 0000 9859 7917Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany ,grid.4372.20000 0001 2105 1091Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Katrine Riklund
- grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Martin Lövdén
- grid.8761.80000 0000 9919 9582Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Ulman Lindenberger
- grid.419526.d0000 0000 9859 7917Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany ,grid.4372.20000 0001 2105 1091Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Lars Nyberg
- grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Lars Bäckman
- grid.10548.380000 0004 1936 9377Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|
38
|
Kawashima S, Shimizu Y, Ueki Y, Matsukawa N. Impairment of the visuospatial working memory in the patients with Parkinson's Disease: an fMRI study. BMC Neurol 2021; 21:335. [PMID: 34479502 PMCID: PMC8414685 DOI: 10.1186/s12883-021-02366-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a common symptom in the patients with Parkinson's disease (PD). The characteristics of cognitive impairment in PD are executive function (including working memory) and visuo-perceptual processing. The visuospatial n-back test has the merit of minimizing the influence of educational biases involved in the verbal n-back test. Furthermore, it can assess both visuospatial recognition and working memory in a single test. METHODS We aimed to clarify the advantage of the visuospatial n-back test as a tool for detecting impairments of working memory in PD. We enrolled 28 right-handed patients with PD (18 males, 10 females) and 12 age-matched healthy controls (HC; 7 males, 5 females). Thirteen patients were classified as MCI (PD-MCI), and 15 as cognitively normal PD (PD-CN). Using functional MRI (fMRI), we explored the specific brain regions associated with the performance of the n-back test in the PD-MCI, PD-CN, and HC groups. The 0-back test assesses visuospatial recognition, while the 1-back and 2-back tests assess visuospatial working memory. Group comparisons were performed for three loads of this test. RESULTS Patients with PD performed significantly worse in terms of the correct answer rates of all n-back tests compared with HC. fMRI analyses performed during the 2-back test revealed reduced activation in the bilateral dorsolateral prefrontal cortex, middle frontal gyrus (MFG), and parietal lobule in the PD group compared with the HC group. In contrast, the fMRI result during the 0-back test showed only a marginal difference in the frontal lobe. On comparisons of task performance between the PD-MCI and PD-CN groups, we found that the correct answer rate in the 2-back test was lower in the PD-MCI group than in the PD-CN group. However, scores of the 0-back and 1-back tests were not significantly different between the two groups. The fMRI findings revealed that activations within the middle frontal gyrus (MFG) and inferior parietal lobule (IPL) during the 2-back test were reduced in the patients with PD-MCI when compared to those with PD-CN. CONCLUSIONS This study reports reduced activation of the MFG and IPL in patients with PD-MCI. These regions may be associated with the pathophysiology of working memory impairment in patients with PD, which involves fronto-striatal network dysfunction.
Collapse
Affiliation(s)
- Shoji Kawashima
- Department of Neurology and Neuroscience, Graduate School of Medical Science, Nagoya City University, 1 Kawasumi, Mizuho-ku, 467-8601, Nagoya, Japan.
| | - Yoko Shimizu
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Nagoya City University, 1 Kawasumi, Mizuho-ku, 467-8601, Nagoya, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Nagoya City University, 1 Kawasumi, Mizuho-ku, 467-8601, Nagoya, Japan
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Graduate School of Medical Science, Nagoya City University, 1 Kawasumi, Mizuho-ku, 467-8601, Nagoya, Japan
| |
Collapse
|
39
|
Glöckner F, Schuck NW, Li SC. Differential prioritization of intramaze cue and boundary information during spatial navigation across the human lifespan. Sci Rep 2021; 11:15257. [PMID: 34315933 PMCID: PMC8316315 DOI: 10.1038/s41598-021-94530-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Spatial learning can be based on intramaze cues and environmental boundaries. These processes are predominantly subserved by striatal- and hippocampal-dependent circuitries, respectively. Maturation and aging processes in these brain regions may affect lifespan differences in their contributions to spatial learning. We independently manipulated an intramaze cue or the environment's boundary in a navigation task in 27 younger children (6-8 years), 30 older children (10-13 years), 29 adolescents (15-17 years), 29 younger adults (20-35 years) and 26 older adults (65-80 years) to investigate lifespan age differences in the relative prioritization of either information. Whereas learning based on an intramaze cue showed earlier maturation during the progression from younger to later childhood and remained relatively stable across adulthood, maturation of boundary-based learning was more protracted towards peri-adolescence and showed strong aging-related decline. Furthermore, individual differences in prioritizing intramaze cue- over computationally more demanding boundary-based learning was positively associated with cognitive processing fluctuations and this association was partially mediated by spatial working memory capacity during adult, but not during child development. This evidence reveals different age gradients of two modes of spatial learning across the lifespan, which seem further influenced by individual differences in cognitive processing fluctuations and working memory, particularly during aging.
Collapse
Affiliation(s)
- Franka Glöckner
- grid.4488.00000 0001 2111 7257Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| | - Nicolas W. Schuck
- grid.419526.d0000 0000 9859 7917Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195 Berlin, Germany ,grid.4372.20000 0001 2105 1091Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Shu-Chen Li
- grid.4488.00000 0001 2111 7257Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany ,grid.4488.00000 0001 2111 7257CeTI - Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
40
|
Safron A. The Radically Embodied Conscious Cybernetic Bayesian Brain: From Free Energy to Free Will and Back Again. ENTROPY (BASEL, SWITZERLAND) 2021; 23:783. [PMID: 34202965 PMCID: PMC8234656 DOI: 10.3390/e23060783] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Drawing from both enactivist and cognitivist perspectives on mind, I propose that explaining teleological phenomena may require reappraising both "Cartesian theaters" and mental homunculi in terms of embodied self-models (ESMs), understood as body maps with agentic properties, functioning as predictive-memory systems and cybernetic controllers. Quasi-homuncular ESMs are suggested to constitute a major organizing principle for neural architectures due to their initial and ongoing significance for solutions to inference problems in cognitive (and affective) development. Embodied experiences provide foundational lessons in learning curriculums in which agents explore increasingly challenging problem spaces, so answering an unresolved question in Bayesian cognitive science: what are biologically plausible mechanisms for equipping learners with sufficiently powerful inductive biases to adequately constrain inference spaces? Drawing on models from neurophysiology, psychology, and developmental robotics, I describe how embodiment provides fundamental sources of empirical priors (as reliably learnable posterior expectations). If ESMs play this kind of foundational role in cognitive development, then bidirectional linkages will be found between all sensory modalities and frontal-parietal control hierarchies, so infusing all senses with somatic-motoric properties, thereby structuring all perception by relevant affordances, so solving frame problems for embodied agents. Drawing upon the Free Energy Principle and Active Inference framework, I describe a particular mechanism for intentional action selection via consciously imagined (and explicitly represented) goal realization, where contrasts between desired and present states influence ongoing policy selection via predictive coding mechanisms and backward-chained imaginings (as self-realizing predictions). This embodied developmental legacy suggests a mechanism by which imaginings can be intentionally shaped by (internalized) partially-expressed motor acts, so providing means of agentic control for attention, working memory, imagination, and behavior. I further describe the nature(s) of mental causation and self-control, and also provide an account of readiness potentials in Libet paradigms wherein conscious intentions shape causal streams leading to enaction. Finally, I provide neurophenomenological handlings of prototypical qualia including pleasure, pain, and desire in terms of self-annihilating free energy gradients via quasi-synesthetic interoceptive active inference. In brief, this manuscript is intended to illustrate how radically embodied minds may create foundations for intelligence (as capacity for learning and inference), consciousness (as somatically-grounded self-world modeling), and will (as deployment of predictive models for enacting valued goals).
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
41
|
Ocular measures during associative learning predict recall accuracy. Int J Psychophysiol 2021; 166:103-115. [PMID: 34052234 DOI: 10.1016/j.ijpsycho.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022]
Abstract
The ability to form associations between stimuli and commit those associations to memory is a cornerstone of human cognition. Dopamine and noradrenaline are critical neuromodulators implicated in a range of cognitive functions, including learning and memory. Eye blink rate (EBR) and pupil diameter have been shown to index dopaminergic and noradrenergic activity. Here, we examined how these ocular measures relate to accuracy in a paired-associate learning task where participants (N = 73) learned consistent object-location associations over eight trials consisting of pre-trial fixation, encoding, delay, and retrieval epochs. In order to examine how within-subject changes and between-subject changes in ocular metrics related to accuracy, we mean centered individual metric values on each trial based on within-person and across-subject means for each epoch. Within-participant variation in EBR was positively related to accuracy in both encoding and delay epochs: faster EBR within the individual predicted better retrieval. Differences in EBR across participants was negatively related to accuracy in the encoding epoch and in early trials of the pre-trial fixation: faster EBR, relative to other subjects, predicted poorer retrieval. Visual scanning behavior in pre-trial fixation and delay epochs was also positively related to accuracy in early trials: more scanning predicted better retrieval. We found no relationship between pupil diameter and accuracy. These results provide novel evidence supporting the utility of ocular metrics in illuminating cognitive and neurobiological mechanisms of paired-associate learning.
Collapse
|
42
|
Blest-Hopley G, O'Neill A, Wilson R, Giampietro V, Bhattacharyya S. Disrupted parahippocampal and midbrain function underlie slower verbal learning in adolescent-onset regular cannabis use. Psychopharmacology (Berl) 2021; 238:1315-1331. [PMID: 31814047 PMCID: PMC8062355 DOI: 10.1007/s00213-019-05407-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/18/2019] [Indexed: 11/18/2022]
Abstract
RATIONALE Prolonged use of cannabis, the most widely used illicit drug worldwide, has been consistently associated with impairment in memory and verbal learning. Although the neurophysiological underpinnings of these impairments have been investigated previously using functional magnetic resonance imaging (fMRI), while performing memory tasks, the results of these studies have been inconsistent and no clear picture has emerged yet. Furthermore, no previous studies have investigated trial-by-trial learning. OBJECTIVES We aimed to investigate the neural underpinnings of impaired verbal learning in cannabis users as estimated over repeated learning trials. METHODS We studied 21 adolescent-onset regular cannabis users and 21 non-users using fMRI performed at least 12 h after last cannabis use, while they performed a paired associate verbal learning task that allowed us to examine trial-by-trial learning. Brain activation during repeated verbal encoding and recall conditions of the task was indexed using the blood oxygen level-dependent haemodynamic response fMRI signal. RESULTS There was a significant improvement in recall score over repeated trials indicating learning occurring across the two groups of participants. However, learning was significantly slower in cannabis users compared to non-users (p = 0.032, partial eta-squared = 0.108). While learning verbal stimuli over repeated encoding blocks, non-users displayed progressive increase in recruitment of the midbrain, parahippocampal gyrus and thalamus (p = 0.00939, partial eta-squared = 0.180). In contrast, cannabis users displayed a greater but disrupted activation pattern in these regions, which showed a stronger correlation with new word-pairs learnt over the same blocks in cannabis users than in non-users. CONCLUSIONS These results suggest that disrupted medial temporal and midbrain function underlie slower learning in adolescent-onset cannabis users.
Collapse
Affiliation(s)
- Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Aisling O'Neill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
- South London and Maudsley NHS Foundation Trust, Denmark Hill, Camberwell, London, UK.
| |
Collapse
|
43
|
Gray matter networks associated with attention and working memory deficit in ADHD across adolescence and adulthood. Transl Psychiatry 2021; 11:184. [PMID: 33767139 PMCID: PMC7994833 DOI: 10.1038/s41398-021-01301-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 02/14/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neuropsychiatric disorder and may persist into adulthood. Working memory and attention deficits have been reported to persist from childhood to adulthood. How neuronal underpinnings of deficits differ across adolescence and adulthood is not clear. In this study, we investigated gray matter of two cohorts, 486 adults and 508 adolescents, each including participants from ADHD and healthy controls families. Two cohorts both presented significant attention and working memory deficits in individuals with ADHD. Independent component analysis was applied to the gray matter of each cohort, separately, to extract cohort-inherent networks. Then, we identified gray matter networks associated with inattention or working memory in each cohort, and projected them onto the other cohort for comparison. Two components in the inferior, middle/superior frontal regions identified in adults and one component in the insula and inferior frontal region identified in adolescents were significantly associated with working memory in both cohorts. One component in bilateral cerebellar tonsil and culmen identified in adults and one component in left cerebellar region identified in adolescents were significantly associated with inattention in both cohorts. All these components presented a significant or nominal level of gray matter reduction for ADHD participants in adolescents, but only one showed nominal reduction in adults. Our findings suggest although the gray matter reduction of these regions may not be indicative of persistency of ADHD, their persistent associations with inattention or working memory indicate an important role of these regions in the mechanism of persistence or remission of the disorder.
Collapse
|
44
|
O'Neill A, Wilson R, Blest-Hopley G, Annibale L, Colizzi M, Brammer M, Giampietro V, Bhattacharyya S. Normalization of mediotemporal and prefrontal activity, and mediotemporal-striatal connectivity, may underlie antipsychotic effects of cannabidiol in psychosis. Psychol Med 2021; 51:596-606. [PMID: 31994476 DOI: 10.1017/s0033291719003519] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recent evidence suggests that cannabidiol (CBD), a non-intoxicating ingredient present in cannabis extract, has an antipsychotic effect in people with established psychosis. However, the effect of CBD on the neurocognitive mechanisms underlying psychosis is unknown. METHODS Patients with established psychosis on standard antipsychotic treatment were studied on separate days at least one week apart, to investigate the effects of a single dose of orally administered CBD (600 mg) compared to a matched placebo (PLB), using a double-blind, randomized, PLB-controlled, repeated-measures, within-subject cross-over design. Three hours after taking the study drug participants were scanned using a block design functional magnetic resonance imaging (fMRI) paradigm, while performing a verbal paired associate learning task. Fifteen psychosis patients completed both study days, 13 completed both scanning sessions. Nineteen healthy controls (HC) were also scanned using the same fMRI paradigm under identical conditions, but without any drug administration. Effects of CBD on brain activation measured using the blood oxygen level-dependent hemodynamic response fMRI signal were studied in the mediotemporal, prefrontal, and striatal regions of interest. RESULTS Compared to HC, psychosis patients under PLB had altered prefrontal activation during verbal encoding, as well as altered mediotemporal and prefrontal activation and greater mediotemporal-striatal functional connectivity during verbal recall. CBD attenuated dysfunction in these regions such that activation under its influence was intermediate between the PLB condition and HC. CBD also attenuated hippocampal-striatal functional connectivity and caused trend-level symptom reduction in psychosis patients. CONCLUSIONS This suggests that normalization of mediotemporal and prefrontal dysfunction and mediotemporal-striatal functional connectivity may underlie the antipsychotic effects of CBD.
Collapse
Affiliation(s)
- Aisling O'Neill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Luciano Annibale
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marco Colizzi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mick Brammer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
45
|
Dissociating direct and indirect effects: a theoretical framework of how latent toxoplasmosis affects cognitive profile across the lifespan. Neurobiol Aging 2021; 102:119-128. [PMID: 33765425 DOI: 10.1016/j.neurobiolaging.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022]
Abstract
About one-third of the world's population has latent toxoplasmosis, which is typically most prevalent in old age due to its lifelong persistence. Most infected people do not reveal clinically relevant symptoms, but T. gondii might trigger cognitive changes in otherwise asymptomatic individuals. As intact cognitive processes are essential for various achievements and successful aging, this review focuses on the cognitive profile associated with latent toxoplasmosis across the lifespan. It could be explained by a shift in balance between direct effects (increased dopamine synthesis) and indirect effects (neurodegeneration and chronic inflammation, which can decrease dopamine levels). Based thereon, we provide a possibly comprehensive framework of how T. gondii can differently affect cognitive performance across the lifespan (i.e., from increased catecholaminergic signaling in young age to decreased signaling in old age). We outline how future studies may inform our knowledge on the role of individual differences in response to T. gondii and how longitudinal studies can help trace the temporal dynamics in the shift of the balance between direct and indirect effects.
Collapse
|
46
|
The cognitive and behavioral effects of D-amphetamine and nicotine sensitization in adult zebrafish. Psychopharmacology (Berl) 2021; 238:2191-2200. [PMID: 33963883 PMCID: PMC8292302 DOI: 10.1007/s00213-021-05844-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Zebrafish are growing in use as a model for understanding drug dependence and addiction. Sensitization paradigms have been a useful tool in identifying mechanisms involved in drug-induced behavioral and neurological changes, but in zebrafish have tended to focus on locomotor, rather than cognitive, endpoints. METHODS Here, we used a novel method, the FMP Y-maze, which measures continuous performance through a series of repeated binary choices (L vs R), to establish a model for assessing parameters associated with psychostimulant-induced behavioral and cognitive sensitization in adult zebrafish. RESULTS Repeat, intermittent exposure to d-amphetamine (AMPH) for 14 days increased alternations (LRLR) in the maze, suggesting improved working memory, which was enhanced further following drug challenge after a short withdrawal period, suggesting behavioral sensitization. However, this cognitive enhancement coincided with a reduction in the use of other exploration strategies, hypolocomotion, and inhibition of cognitive flexibility. Like AMPH, exposure to nicotine (NIC) increased alternations following drug challenge after chronic treatment. Repeat NIC exposure appeared to induce both cognitive and psychomotor sensitization, as evidenced by increased working memory performance (alternations) and locomotor activity, without negatively impacting other search strategies or cognitive flexibility. CONCLUSION Chronic treatment with AMPH or NIC boosts cognitive performance in adult zebrafish. Cognitive sensitization occurred with both drugs, resulting in enhanced working memory; however, repeat AMPH exposure, following a withdrawal period, resulted in inhibited cognitive flexibility, an effect not evident with repeat NIC exposure. Cognitive and behavioral sensitization paradigms in zebrafish could serve as a useful tool for assessing cognitive states which result in cognitive enhancing or impairing effects of drugs.
Collapse
|
47
|
Effects of methylphenidate on reinforcement learning depend on working memory capacity. Psychopharmacology (Berl) 2021; 238:3569-3584. [PMID: 34676440 PMCID: PMC8629893 DOI: 10.1007/s00213-021-05974-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022]
Abstract
RATIONALE Brain catecholamines have long been implicated in reinforcement learning, exemplified by catecholamine drug and genetic effects on probabilistic reversal learning. However, the mechanisms underlying such effects are unclear. OBJECTIVES AND METHODS Here we investigated effects of an acute catecholamine challenge with methylphenidate (20 mg, oral) on a novel probabilistic reversal learning paradigm in a within-subject, double-blind randomised design. The paradigm was designed to disentangle effects on punishment avoidance from effects on reward perseveration. Given the known large individual variability in methylphenidate's effects, we stratified our effects by working memory capacity and trait impulsivity, putatively modulating the effects of methylphenidate, in a large sample (n = 102) of healthy volunteers. RESULTS Contrary to our prediction, methylphenidate did not alter performance in the reversal phase of the task. Our key finding is that methylphenidate altered learning of choice-outcome contingencies in a manner that depended on individual variability in working memory span. Specifically, methylphenidate improved performance by adaptively reducing the effective learning rate in participants with higher working memory capacity. CONCLUSIONS This finding emphasises the important role of working memory in reinforcement learning, as reported in influential recent computational modelling and behavioural work, and highlights the dependence of this interplay on catecholaminergic function.
Collapse
|
48
|
Bunai T, Hirosawa T, Kikuchi M, Fukai M, Yokokura M, Ito S, Takata Y, Terada T, Ouchi Y. tDCS-induced modulation of GABA concentration and dopamine release in the human brain: A combination study of magnetic resonance spectroscopy and positron emission tomography. Brain Stimul 2020; 14:154-160. [PMID: 33359603 DOI: 10.1016/j.brs.2020.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex (DLPFC) hypothetically modulates cognitive functions by facilitating or inhibiting neuronal activities chiefly in the cerebral cortex. The effect of tDCS in the deeper brain region, the basal ganglia-cortical circuit, remains unknown. OBJECTIVE To investigate the interaction between γ-aminobutyric acid (GABA) concentrations and dopamine release following tDCS. METHOD This study used a randomized, placebo-controlled, double-blind, crossover design. Seventeen healthy male subjects underwent active and sham tDCS (13 min twice at an interval of 20 min) with the anode placed at the left DLPFC and the cathode at the right DLPFC, followed by examinations with [11C]-raclopride positron emission topography (PET) and GABA-magnetic resonance spectroscopy (MRS). MRS voxels were set in the left DLPFC and bilateral striata. Paired t-tests and regression analyses were performed for PET and MRS parameters. RESULTS MRS data analyses showed elevations in GABA in the left striatum along with moderate reductions in the right striatum and the left DLPFC after active tDCS. PET data analyses showed that reductions in [11C]-raclopride binding potentials (increase in dopamine release) in the right striatum were inversely correlated with those in the left striatum after active tDCS. GABA reductions in the left DLPFC positively correlated with elevations in GABA in the left striatum and with increases in right striatal dopamine release and negatively correlated with increases in left striatal dopamine release. CONCLUSION The present results suggest that tDCS to the DLPFC modulates dopamine-GABA functions in the basal ganglia-cortical circuit.
Collapse
Affiliation(s)
- Tomoyasu Bunai
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Kanazawa University, Kanazawa, Japan
| | - Mina Fukai
- Department of Psychiatry and Neurobiology, Kanazawa University, Kanazawa, Japan
| | - Masamichi Yokokura
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shigeru Ito
- Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan; Global Strategic Challenge Center, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Yohei Takata
- Global Strategic Challenge Center, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Tatsuhiro Terada
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan; Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan.
| |
Collapse
|
49
|
Noh S, Na E, Park SJ, Kim SH, Evins AE, Roh S. Effects of various antipsychotics on driving-related cognitive performance in adults with schizophrenia. J Psychiatr Res 2020; 131:152-159. [PMID: 32971359 DOI: 10.1016/j.jpsychires.2020.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 01/13/2023]
Abstract
The aim of this study was to determine whether the driving-related cognitive performance differs among adults with schizophrenia taking different types of antipsychotics. Neurocognitive performance was assessed using the Cognitive Perceptual Assessment for Driving (CPAD), a computerized battery of tests of visual perception, attention, working memory, reaction time, and inhibitory control for driving ability. One hundred and two adults with schizophrenia who were on antipsychotic monotherapy participated in the study. Of these, 15 were on haloperidol, 28 on risperidone, 14 on olanzapine, 28 on aripiprazole, and 17 on paliperidone. Sixty-four (63%) of the 102 subjects were regarded as competent to drive. Of the subjects taking haloperidol, 33% passed the CPAD, while the passing rates of subjects taking risperidone, olanzapine, aripiprazole, and paliperidone were 57%, 57%, 75%, and 82%, respectively, with a significant difference between the haloperidol and aripiprazole groups (p = 0.005) and between the haloperidol and paliperidone groups (p = 0.001). Additionally, scores on CPAD depth perception (number of correct responses), divided attention, digit span test, and trail-making test B subtests were significantly better for the aripiprazole and paliperidone groups than for the haloperidol and risperidone groups. In this cross-sectional design study, adults with schizophrenia treated with aripiprazole or paliperidone antipsychotic monotherapy demonstrated superior driving-related cognitive performance than those treated with haloperidol or risperidone antipsychotic monotherapy.
Collapse
Affiliation(s)
- Seokmin Noh
- Department of Psychiatry, Hanyang University Hospital, Seoul, Republic of Korea
| | - Euihyeon Na
- Department of Neuropsychiatry, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Se Jin Park
- Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Seok Hyeon Kim
- Department of Psychiatry, Hanyang University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - A Eden Evins
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sungwon Roh
- Department of Psychiatry, Hanyang University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Hanyang University College of Medicine, Seoul, Republic of Korea; Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Using pharmacological manipulations to study the role of dopamine in human reward functioning: A review of studies in healthy adults. Neurosci Biobehav Rev 2020; 120:123-158. [PMID: 33202256 DOI: 10.1016/j.neubiorev.2020.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/08/2023]
Abstract
Dopamine (DA) plays a key role in reward processing and is implicated in psychological disorders such as depression, substance use, and schizophrenia. The role of DA in reward processing is an area of highly active research. One approach to this question is drug challenge studies with drugs known to alter DA function. These studies provide good experimental control and can be performed in parallel in laboratory animals and humans. This review aimed to summarize results of studies using pharmacological manipulations of DA in healthy adults. 'Reward' is a complex process, so we separated 'phases' of reward, including anticipation, evaluation of cost and benefits of upcoming reward, execution of actions to obtain reward, pleasure in response to receiving a reward, and reward learning. Results indicated that i) DAergic drugs have different effects on different phases of reward; ii) the relationship between DA and reward functioning appears unlikely to be linear; iii) our ability to detect the effects of DAergic drugs varies depending on whether subjective, behavioral, imaging measures are used.
Collapse
|