1
|
Wein S, Riebel M, Seidel P, Brunner LM, Wagner V, Nothdurfter C, Rupprecht R, Schwarzbach JV. Local and global effects of sedation in resting-state fMRI: a randomized, placebo-controlled comparison between etifoxine and alprazolam. Neuropsychopharmacology 2024; 49:1738-1748. [PMID: 38822128 PMCID: PMC11399242 DOI: 10.1038/s41386-024-01884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024]
Abstract
TSPO ligands are promising alternatives to benzodiazepines in the treatment of anxiety, as they display less pronounced side effects such as sedation, cognitive impairment, tolerance development and abuse potential. In a randomized double-blind repeated-measures study we compare a benzodiazepine (alprazolam) to a TSPO ligand (etifoxine) by assessing side effects and acquiring resting-state fMRI data from 34 healthy participants after 5 days of taking alprazolam, etifoxine or a placebo. To study the effects of the pharmacological interventions in fMRI in detail and across different scales, we combine in our study complementary analysis strategies related to whole-brain functional network connectivity, local connectivity analysis expressed in regional homogeneity, fluctuations in low-frequency BOLD amplitudes and coherency of independent resting-state networks. Participants reported considerable adverse effects such as fatigue, sleepiness and concentration impairments, related to the administration of alprazolam compared to placebo. In resting-state fMRI we found a significant decrease in functional connection density, network efficiency and a decrease in the networks rich-club coefficient related to alprazolam. While observing a general decrease in regional homogeneity in high-level brain networks in the alprazolam condition, we simultaneously could detect an increase in regional homogeneity and resting-state network coherence in low-level sensory regions. Further we found a general increase in the low-frequency compartment of the BOLD signal. In the etifoxine condition, participants did not report any significant side effects compared to the placebo, and we did not observe any corresponding modulations in our fMRI metrics. Our results are consistent with the idea that sedation globally disconnects low-level functional networks, but simultaneously increases their within-connectivity. Further, our results point towards the potential of TSPO ligands in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Simon Wein
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Marco Riebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Philipp Seidel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Lisa-Marie Brunner
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Viola Wagner
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Jens V Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany.
| |
Collapse
|
2
|
Van den Bergh BRH, Antonelli MC, Stein DJ. Current perspectives on perinatal mental health and neurobehavioral development: focus on regulation, coregulation and self-regulation. Curr Opin Psychiatry 2024; 37:237-250. [PMID: 38415742 DOI: 10.1097/yco.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW Perinatal mental health research provides an important perspective on neurobehavioral development. Here, we aim to review the association of maternal perinatal health with offspring neurodevelopment, providing an update on (self-)regulation problems, hypothesized mechanistic pathways, progress and challenges, and implications for mental health. RECENT FINDINGS (1) Meta-analyses confirm that maternal perinatal mental distress is associated with (self-)regulation problems which constitute cognitive, behavioral, and affective social-emotional problems, while exposure to positive parental mental health has a positive impact. However, effect sizes are small. (2) Hypothesized mechanistic pathways underlying this association are complex. Interactive and compensatory mechanisms across developmental time are neglected topics. (3) Progress has been made in multiexposure studies. However, challenges remain and these are shared by clinical, translational and public health sciences. (4) From a mental healthcare perspective, a multidisciplinary and system level approach employing developmentally-sensitive measures and timely treatment of (self-)regulation and coregulation problems in a dyadic caregiver-child and family level approach seems needed. The existing evidence-base is sparse. SUMMARY During the perinatal period, addressing vulnerable contexts and building resilient systems may promote neurobehavioral development. A pluralistic approach to research, taking a multidisciplinary approach to theoretical models and empirical investigation needs to be fostered.
Collapse
Affiliation(s)
| | - Marta C Antonelli
- Laboratorio de Programación Perinatal del Neurodesarrollo, Instituto de Biología Celular y Neurociencias "Prof.E. De Robertis", Facultad de Medicina. Universidad de Buenos Aires, Buenos Aires, Argentina
- Frauenklinik und Poliklinik, Klinikum rechts der Isar, Munich, Germany
| | - Dan J Stein
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
França LGS, Ciarrusta J, Gale-Grant O, Fenn-Moltu S, Fitzgibbon S, Chew A, Falconer S, Dimitrova R, Cordero-Grande L, Price AN, Hughes E, O'Muircheartaigh J, Duff E, Tuulari JJ, Deco G, Counsell SJ, Hajnal JV, Nosarti C, Arichi T, Edwards AD, McAlonan G, Batalle D. Neonatal brain dynamic functional connectivity in term and preterm infants and its association with early childhood neurodevelopment. Nat Commun 2024; 15:16. [PMID: 38331941 PMCID: PMC10853532 DOI: 10.1038/s41467-023-44050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024] Open
Abstract
Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.
Collapse
Affiliation(s)
- Lucas G S França
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Computer and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Judit Ciarrusta
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Oliver Gale-Grant
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Sunniva Fenn-Moltu
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Sean Fitzgibbon
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Ralica Dimitrova
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Jonathan O'Muircheartaigh
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Eugene Duff
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
- Department of Brain Sciences, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500, Turku, Finland
- Turku Collegium for Science and Medicine and Technology, University of Turku, 20500, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, 20500, Turku, Finland
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Pompeu Fabra University, 08002, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3010, Australia
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
- Department of Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Dafnis Batalle
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
4
|
Horowitz-Kraus T, Randell K, Morag I. Neurobiological perspective on the development of executive functions. Acta Paediatr 2023; 112:1860-1864. [PMID: 37338188 DOI: 10.1111/apa.16883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Executive functions are a set of top-down cognitive processes necessary for emotional self-regulation and goal-directed behaviour supporting, among others, academic abilities. Premature infants are at high risk for subsequent cognitive, psychosocial, or behavioural problems even in the absence of medical complications and in spite of normal brain imaging. Given that this is a sensitive period of brain growth and maturation, these factors may place preterm infants at high risk for executive function dysfunction, disrupted long-term development, and lower academic achievements. Therefore, careful attention to interventions at this age is essential for intact executive functions and academic development.
Collapse
Affiliation(s)
- Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology and Faculty of Biomedical Engineering, The Technion, Haifa, Israel
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Iris Morag
- Department of Pediatrics, Shamir Medical Center affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Kelly CE, Shaul M, Thompson DK, Mainzer RM, Yang JY, Dhollander T, Cheong JL, Inder TE, Doyle LW, Anderson PJ. Long-lasting effects of very preterm birth on brain structure in adulthood: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 147:105082. [PMID: 36775083 DOI: 10.1016/j.neubiorev.2023.105082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/01/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Early life experiences, such as very preterm (VP) birth, can affect brain and cognitive development. Several prior studies investigated brain structure in adults born VP; synthesising these studies may help to provide a clearer understanding of long-term effects of VP birth on the brain. We systematically searched Medline and Embase for articles that investigated brain structure using MRI in adulthood in individuals born VP (<32 weeks' gestation) or with very low birth weight (VLBW; <1500 g), and controls born at term or with normal birth weight. In total, 77 studies met the review inclusion criteria, of which 28 studies were eligible for meta-analyses, including data from up to 797 VP/VLBW participants and 518 controls, aged 18-33 years. VP/VLBW adults exhibited volumetric, morphologic and microstructural alterations in subcortical and temporal cortical regions compared with controls, with pooled standardised mean differences up to - 1.0 (95% confidence interval: -1.2, -0.8). This study suggests there is a persisting neurological impact of VP birth, which may provide developmental neurobiological insights for adult cognition in high-risk populations.
Collapse
Affiliation(s)
- Claire E Kelly
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Michelle Shaul
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Deakin University, Melbourne, Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Rheanna M Mainzer
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Clinical Epidemiology and Biostatistics Unit, Population Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Joseph Ym Yang
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jeanie Ly Cheong
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Terrie E Inder
- Department of Pediatrics, Children's Hospital of Orange County, University of California Irvine, CA, USA
| | - Lex W Doyle
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
6
|
Jang YH, Kim H, Lee JY, Ahn JH, Chung AW, Lee HJ. Altered development of structural MRI connectome hubs at near-term age in very and moderately preterm infants. Cereb Cortex 2022; 33:5507-5523. [PMID: 36408630 DOI: 10.1093/cercor/bhac438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract
Preterm infants may exhibit altered developmental patterns of the brain structural network by endogenous and exogenous stimuli, which are quantifiable through hub and modular network topologies that develop in the third trimester. Although preterm brain networks can compensate for white matter microstructural abnormalities of core connections, less is known about how the network developmental characteristics of preterm infants differ from those of full-term infants. We identified 13 hubs and 4 modules and revealed subtle differences in edgewise connectivity and local network properties between 134 preterm and 76 full-term infants, identifying specific developmental patterns of the brain structural network in preterm infants. The modules of preterm infants showed an imbalanced composition. The edgewise connectivity in preterm infants showed significantly decreased long- and short-range connections and local network properties in the dorsal superior frontal gyrus. In contrast, the fusiform gyrus and several nonhub regions showed significantly increased wiring of short-range connections and local network properties. Our results suggested that decreased local network in the frontal lobe and excessive development in the occipital lobe may contribute to the understanding of brain developmental deviances in preterm infants.
Collapse
Affiliation(s)
- Yong Hun Jang
- Hanyang University Graduate School of Biomedical Science and Engineering Department of Translational Medicine, , Seoul 04763 , Republic of Korea
| | - Hyuna Kim
- Hanyang University Graduate School of Biomedical Science and Engineering Department of Translational Medicine, , Seoul 04763 , Republic of Korea
| | - Joo Young Lee
- Hanyang University Graduate School of Biomedical Science and Engineering Department of Translational Medicine, , Seoul 04763 , Republic of Korea
| | - Ja-Hye Ahn
- Hanyang University College of Medicine Department of Pediatrics, Hanyang University Hospital, , Seoul 04763 , Republic of Korea
| | - Ai Wern Chung
- Harvard Medical School Fetal Neonatal-Neuroimaging and Developmental Science Center, Boston Children’s Hospital, , Boston, MA 02115 , USA
- Harvard Medical School Department of Pediatrics, Boston Children’s Hospital, , Boston, MA 02115 , USA
| | - Hyun Ju Lee
- Hanyang University College of Medicine Department of Pediatrics, Hanyang University Hospital, , Seoul 04763 , Republic of Korea
| |
Collapse
|
7
|
Brain Development and Maternal Behavior in Relation to Cognitive and Language Outcomes in Preterm-Born Children. Biol Psychiatry 2022; 92:663-673. [PMID: 35599181 DOI: 10.1016/j.biopsych.2022.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Children born very preterm (≤32 weeks gestational age) show poorer cognitive and language development compared with their term-born peers. The importance of supportive maternal responses to the child's cues for promoting neurodevelopment is well established. However, little is known about whether supportive maternal behavior can buffer the association of early brain dysmaturation with cognitive and language performance. METHODS Infants born very preterm (N = 226) were recruited from the neonatal intensive care unit for a prospective, observational cohort study. Chart review (e.g., size at birth, postnatal infection) was conducted from birth to discharge. Magnetic resonance imaging, including diffusion tensor imaging, was acquired at approximately 32 weeks postmenstrual age and again at term-equivalent age. Fractional anisotropy, a quantitative measure of brain maturation, was obtained from 11 bilateral regions of interest in the cortical gray matter. At 3 years (n = 187), neurodevelopmental testing (Bayley Scales of Infant and Toddler Development-III) was administered, and parent-child interaction was filmed. Maternal behavior was scored using the Emotional Availability Scale-IV. A total of 146 infants with neonatal brain imaging and follow-up data were included for analysis. Generalized estimating equations were used to examine whether maternal support interacted with mean fractional anisotropy values to predict Cognitive and Language scores at 3 years, accounting for confounding neonatal and maternal factors. RESULTS Higher maternal support significantly moderated cortical fractional anisotropy values at term-equivalent age to predict higher Cognitive (interaction term β = 2.01, p = .05) and Language (interaction term β = 1.85, p = .04) scores. CONCLUSIONS Findings suggest that supportive maternal behavior following early brain dysmaturation may provide an opportunity to promote optimal neurodevelopment in children born very preterm.
Collapse
|
8
|
Vanes LD, Murray RM, Nosarti C. Adult outcome of preterm birth: Implications for neurodevelopmental theories of psychosis. Schizophr Res 2022; 247:41-54. [PMID: 34006427 DOI: 10.1016/j.schres.2021.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Preterm birth is associated with an elevated risk of developmental and adult psychiatric disorders, including psychosis. In this review, we evaluate the implications of neurodevelopmental, cognitive, motor, and social sequelae of preterm birth for developing psychosis, with an emphasis on outcomes observed in adulthood. Abnormal brain development precipitated by early exposure to the extra-uterine environment, and exacerbated by neuroinflammation, neonatal brain injury, and genetic vulnerability, can result in alterations of brain structure and function persisting into adulthood. These alterations, including abnormal regional brain volumes and white matter macro- and micro-structure, can critically impair functional (e.g. frontoparietal and thalamocortical) network connectivity in a manner characteristic of psychotic illness. The resulting executive, social, and motor dysfunctions may constitute the basis for behavioural vulnerability ultimately giving rise to psychotic symptomatology. There are many pathways to psychosis, but elucidating more precisely the mechanisms whereby preterm birth increases risk may shed light on that route consequent upon early neurodevelopmental insult.
Collapse
Affiliation(s)
- Lucy D Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
9
|
Vanes L, Nosarti C. Network Topology and Psychopathology Following Very Preterm Birth. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:349-351. [PMID: 35396021 DOI: 10.1016/j.bpsc.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Lucy Vanes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
10
|
The structural connectome and internalizing and externalizing symptoms at 7 and 13 years in individuals born very preterm and full-term. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:424-434. [PMID: 34655805 DOI: 10.1016/j.bpsc.2021.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Children born very preterm (VP) are at higher risk of emotional and behavioral problems compared with full-term (FT) children. We investigated the neurobiological basis of internalizing and externalizing symptoms in individuals born VP and FT by applying a graph theory approach. METHODS Structural and diffusion MRI data were combined to generate structural connectomes and calculate measures of network integration and segregation at 7 (VP:72; FT:17) and 13 years (VP:125; FT:44). Internalizing and externalizing were assessed at 7 and 13 years using the Strengths and Difficulties Questionnaire. Linear regression models were used to relate network measures and internalizing and externalizing symptoms concurrently at 7 and 13 years. RESULTS Lower network integration (characteristic path length and global efficiency) was associated with higher internalizing symptoms in VP and FT children at 7 years, but not at 13 years. The association between network integration (characteristic path length) and externalizing symptoms at 7 years was weaker, but there was some evidence for differential associations between groups, with lower integration in the VP and higher integration in the FT group associated with higher externalizing symptoms. At 13 years, there was some evidence that associations between network segregation (average clustering coefficient, transitivity, local efficiency) and externalizing differed between the VP and FT groups, with stronger positive associations in the VP group. CONCLUSIONS This study provides insights into the neurobiological basis of emotional and behavioral problems following preterm birth, highlighting the role of the structural connectome in internalizing and externalizing symptoms in childhood and adolescence.
Collapse
|
11
|
Zhang S, He Z, Du L, Zhang Y, Yu S, Wang R, Hu X, Jiang X, Zhang T. Joint Analysis of Functional and Structural Connectomes Between Preterm and Term Infant Brains via Canonical Correlation Analysis With Locality Preserving Projection. Front Neurosci 2021; 15:724391. [PMID: 34690672 PMCID: PMC8526737 DOI: 10.3389/fnins.2021.724391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Preterm is a worldwide problem that affects infants' lives significantly. Moreover, the early impairment is more than limited to isolated brain regions but also to global and profound negative outcomes later, such as cognitive disorder. Therefore, seeking the differences of brain connectome between preterm and term infant brains is a vital step for understanding the developmental impairment caused by preterm. Existing studies revealed that studying the relationship between brain function and structure, and further investigating their differentiable connectomes between preterm and term infant brains is a way to comprehend and unveil the differences that occur in the preterm infant brains. Therefore, in this article, we proposed a novel canonical correlation analysis (CCA) with locality preserving projection (LPP) approach to investigate the relationship between brain functional and structural connectomes and how such a relationship differs between preterm and term infant brains. CCA is proposed to study the relationship between functional and structural connections, while LPP is adopted to identify the distinguishing features from the connections which can differentiate the preterm and term brains. After investigating the whole brain connections on a fine-scale connectome approach, we successfully identified 89 functional and 97 structural connections, which mostly contributed to differentiate preterm and term infant brains from the functional MRI (fMRI) and diffusion MRI (dMRI) of the public developing Human Connectome Project (dHCP) dataset. By further exploring those identified connections, the results innovatively revealed that the identified functional connections are short-range and within the functional network. On the contrary, the identified structural connections are usually remote connections across different functional networks. In addition, these connectome-level results show the new insights that longitudinal functional changes could deviate from longitudinal structural changes in the preterm infant brains, which help us better understand the brain-behavior changes in preterm infant brains.
Collapse
Affiliation(s)
- Shu Zhang
- Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Zhibin He
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Lei Du
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Yin Zhang
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Sigang Yu
- Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Ruoyang Wang
- Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Xi Jiang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
12
|
Padilla N, Saenger VM, van Hartevelt TJ, Fernandes HM, Lennartsson F, Andersson JLR, Kringelbach M, Deco G, Åden U. Breakdown of Whole-brain Dynamics in Preterm-born Children. Cereb Cortex 2021; 30:1159-1170. [PMID: 31504269 PMCID: PMC7132942 DOI: 10.1093/cercor/bhz156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023] Open
Abstract
The brain operates at a critical point that is balanced between order and disorder. Even during rest, unstable periods of random behavior are interspersed with stable periods of balanced activity patterns that support optimal information processing. Being born preterm may cause deviations from this normal pattern of development. We compared 33 extremely preterm (EPT) children born at < 27 weeks of gestation and 28 full-term controls. Two approaches were adopted in both groups, when they were 10 years of age, using structural and functional brain magnetic resonance imaging data. The first was using a novel intrinsic ignition analysis to study the ability of the areas of the brain to propagate neural activity. The second was a whole-brain Hopf model, to define the level of stability, desynchronization, or criticality of the brain. EPT-born children exhibited fewer intrinsic ignition events than controls; nodes were related to less sophisticated aspects of cognitive control, and there was a different hierarchy pattern in the propagation of information and suboptimal synchronicity and criticality. The largest differences were found in brain nodes belonging to the rich-club architecture. These results provide important insights into the neural substrates underlying brain reorganization and neurodevelopmental impairments related to prematurity.
Collapse
Affiliation(s)
- Nelly Padilla
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Victor M Saenger
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain
| | - Tim J van Hartevelt
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Oxford OX3 7JX, Storbritannien, United Kingdom.,Center for Music in the Brain, Aarhus University Hospital Nørrebrogade 44, Building 10G, 4th and 5th floor, Aarhus C, Denmark
| | - Henrique M Fernandes
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Oxford OX3 7JX, Storbritannien, United Kingdom.,Center for Music in the Brain, Aarhus University Hospital Nørrebrogade 44, Building 10G, 4th and 5th floor, Aarhus C, Denmark
| | - Finn Lennartsson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Sciences Lund, Lund University, Skånes universitetssjukhus Lund, Barngatan, Sweden
| | - Jesper L R Andersson
- FMRIB-Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, West Wing, John Radcliffe Hospital, Oxford, United Kingdom
| | - Morten Kringelbach
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Oxford OX3 7JX, Storbritannien, United Kingdom.,Center for Music in the Brain, Aarhus University Hospital Nørrebrogade 44, Building 10G, 4th and 5th floor, Aarhus C, Denmark
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,School of Psychological Sciences, Monash University, Melbourne, Clayton VIC, Australia
| | - Ulrika Åden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Neonatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Irzan H, Molteni E, Hütel M, Ourselin S, Marlow N, Melbourne A. White matter analysis of the extremely preterm born adult brain. Neuroimage 2021; 237:118112. [PMID: 33940145 PMCID: PMC8285592 DOI: 10.1016/j.neuroimage.2021.118112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
The preterm brain has been analysed after birth by a large body of neuroimaging studies; however, few studies have focused on white matter alterations in preterm subjects beyond infancy, especially in individuals born at extremely low gestation age - before 28 completed weeks. Neuroimaging data of extremely preterm young adults are now available to investigate the long-term structural alterations of disrupted neurodevelopment. We examined white matter hierarchical organisation and microstructure in extremely preterm young adults. Specifically, we first identified the putative hubs and peripheral regions in 85 extremely preterm young adults and compared them with 53 socio-economically matched and full-term born peers. Moreover, we analysed Fractional Anisotropy (FA), Mean Diffusivity (MD), Neurite Density Index (NDI), and Orientation Dispersion Index (ODI) of white matter in hubs, peripheral regions, and over the whole brain. Our results suggest that the hierarchical organisation of the extremely preterm adult brain remains intact. However, there is evidence of significant alteration of white matter connectivity at both the macro- and microstructural level, with overall diminished connectivity, reduced FA and NDI, increased MD, and comparable ODI; suggesting that, although the spatial configuration of WM fibres is comparable, there are less WM fibres per voxel. These alterations are found throughout the brain and are more prevalent along the pathways between deep grey matter regions, frontal regions and cerebellum. This work provides evidence that white matter abnormalities associated with the premature exposure to the extrauterine environment not only are present at term equivalent age but persist into early adulthood.
Collapse
Affiliation(s)
- Hassna Irzan
- Dept. Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom.
| | - Erika Molteni
- School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom
| | - Michael Hütel
- School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom
| | - Sebastien Ourselin
- Dept. Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom
| | - Neil Marlow
- Institute for Women's Health, University College London, United Kingdom
| | - Andrew Melbourne
- Dept. Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom
| |
Collapse
|
14
|
Advances in functional and diffusion neuroimaging research into the long-term consequences of very preterm birth. J Perinatol 2021; 41:689-706. [PMID: 33099576 DOI: 10.1038/s41372-020-00865-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
Very preterm birth (<32 weeks of gestation) has been associated with lifelong difficulties in a variety of neurocognitive functions. Magnetic resonance imaging (MRI) combined with advanced analytical approaches have been employed in order to increase our understanding of the neurodevelopmental problems that many very preterm born individuals face as they grow up. In this review, we will focus on two novel imaging techniques that have explored relationships between specific brain mechanisms and behavioural outcomes. These are functional MRI, which maps regional, time-varying changes in brain metabolism and diffusion-weighted MRI, which measures the displacement of water molecules in tissue and provides quantitative information about tissue microstructure. Identifying the neurobiological underpinning of the long-term sequelae associated with very preterm birth could inform the development and implementation of preventative interventions (before any cognitive problem emerges) and could facilitate the identification of behavioural targets for improving the life course outcomes of very preterm individuals.
Collapse
|
15
|
Eyre M, Fitzgibbon SP, Ciarrusta J, Cordero-Grande L, Price AN, Poppe T, Schuh A, Hughes E, O'Keeffe C, Brandon J, Cromb D, Vecchiato K, Andersson J, Duff EP, Counsell SJ, Smith SM, Rueckert D, Hajnal JV, Arichi T, O'Muircheartaigh J, Batalle D, Edwards AD. The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity. Brain 2021; 144:2199-2213. [PMID: 33734321 PMCID: PMC8370420 DOI: 10.1093/brain/awab118] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
The Developing Human Connectome Project is an Open Science project that provides the
first large sample of neonatal functional MRI data with high temporal and spatial
resolution. These data enable mapping of intrinsic functional connectivity between
spatially distributed brain regions under normal and adverse perinatal circumstances,
offering a framework to study the ontogeny of large-scale brain organization in humans.
Here, we characterize in unprecedented detail the maturation and integrity of resting
state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm).
First, we applied group independent component analysis to define 11 RSNs in term-born
infants scanned at 43.5–44.5 weeks postmenstrual age (PMA). Adult-like topography was
observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among
six higher-order, association RSNs, analogues of the adult networks for language and
ocular control were identified, but a complete default mode network precursor was not.
Next, we regressed the subject-level datasets from an independent cohort of infants
scanned at 37–43.5 weeks PMA against the group-level RSNs to test for the effects of age,
sex and preterm birth. Brain mapping in term-born infants revealed areas of positive
association with age across four of six association RSNs, indicating active maturation in
functional connectivity from 37 to 43.5 weeks PMA. Female infants showed increased
connectivity in inferotemporal regions of the visual association network. Preterm birth
was associated with striking impairments of functional connectivity across all RSNs in a
dose-dependent manner; conversely, connectivity of the superior parietal lobules within
the lateral motor network was abnormally increased in preterm infants, suggesting a
possible mechanism for specific difficulties such as developmental coordination disorder,
which occur frequently in preterm children. Overall, we found a robust, modular,
symmetrical functional brain organization at normal term age. A complete set of
adult-equivalent primary RSNs is already instated, alongside emerging connectivity in
immature association RSNs, consistent with a primary-to-higher order ontogenetic sequence
of brain development. The early developmental disruption imposed by preterm birth is
associated with extensive alterations in functional connectivity.
Collapse
Affiliation(s)
- Michael Eyre
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Tanya Poppe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Andreas Schuh
- Biomedical Image Analysis Group, Imperial College London, London SW7 2AZ, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Camilla O'Keeffe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Jakki Brandon
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK.,Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Imperial College London, London SW7 2AZ, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| |
Collapse
|
16
|
Sa de Almeida J, Meskaldji DE, Loukas S, Lordier L, Gui L, Lazeyras F, Hüppi PS. Preterm birth leads to impaired rich-club organization and fronto-paralimbic/limbic structural connectivity in newborns. Neuroimage 2020; 225:117440. [PMID: 33039621 DOI: 10.1016/j.neuroimage.2020.117440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Prematurity disrupts brain development during a critical period of brain growth and organization and is known to be associated with an increased risk of neurodevelopmental impairments. Investigating whole-brain structural connectivity alterations accompanying preterm birth may provide a better comprehension of the neurobiological mechanisms related to the later neurocognitive deficits observed in this population. Using a connectome approach, we aimed to study the impact of prematurity on neonatal whole-brain structural network organization at term-equivalent age. In this cohort study, twenty-four very preterm infants at term-equivalent age (VPT-TEA) and fourteen full-term (FT) newborns underwent a brain MRI exam at term age, comprising T2-weighted imaging and diffusion MRI, used to reconstruct brain connectomes by applying probabilistic constrained spherical deconvolution whole-brain tractography. The topological properties of brain networks were quantified through a graph-theoretical approach. Furthermore, edge-wise connectivity strength was compared between groups. Overall, VPT-TEA infants' brain networks evidenced increased segregation and decreased integration capacity, revealed by an increased clustering coefficient, increased modularity, increased characteristic path length, decreased global efficiency and diminished rich-club coefficient. Furthermore, in comparison to FT, VPT-TEA infants had decreased connectivity strength in various cortico-cortical, cortico-subcortical and intra-subcortical networks, the majority of them being intra-hemispheric fronto-paralimbic and fronto-limbic. Inter-hemispheric connectivity was also decreased in VPT-TEA infants, namely through connections linking to the left precuneus or left dorsal cingulate gyrus - two regions that were found to be hubs in FT but not in VPT-TEA infants. Moreover, posterior regions from Default-Mode-Network (DMN), namely precuneus and posterior cingulate gyrus, had decreased structural connectivity in VPT-TEA group. Our finding that VPT-TEA infants' brain networks displayed increased modularity, weakened rich-club connectivity and diminished global efficiency compared to FT infants suggests a delayed transition from a local architecture, focused on short-range connections, to a more distributed architecture with efficient long-range connections in those infants. The disruption of connectivity in fronto-paralimbic/limbic and posterior DMN regions might underlie the behavioral and social cognition difficulties previously reported in the preterm population.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Djalel-Eddine Meskaldji
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland; Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Serafeim Loukas
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Laura Gui
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
17
|
Ní Bhroin M, Abo Seada S, Bonthrone AF, Kelly CJ, Christiaens D, Schuh A, Pietsch M, Hutter J, Tournier JD, Cordero-Grande L, Rueckert D, Hajnal JV, Pushparajah K, Simpson J, Edwards AD, Rutherford MA, Counsell SJ, Batalle D. Reduced structural connectivity in cortico-striatal-thalamic network in neonates with congenital heart disease. Neuroimage Clin 2020; 28:102423. [PMID: 32987301 PMCID: PMC7520425 DOI: 10.1016/j.nicl.2020.102423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
Impaired brain development has been observed in newborns with congenital heart disease (CHD). We performed graph theoretical analyses and network-based statistics (NBS) to assess global brain network topology and identify subnetworks of altered connectivity in infants with CHD prior to cardiac surgery. Fifty-eight infants with critical/serious CHD prior to surgery and 116 matched healthy controls as part of the developing Human Connectome Project (dHCP) underwent MRI on a 3T system and high angular resolution diffusion MRI (HARDI) was obtained. Multi-tissue constrained spherical deconvolution, anatomically constrained probabilistic tractography (ACT) and spherical-deconvolution informed filtering of tractograms (SIFT2) was used to construct weighted structural networks. Network topology was assessed and NBS was used to identify structural connectivity differences between CHD and control groups. Structural networks were partitioned into core and peripheral nodes, and edges classed as core, peripheral, or feeder. NBS identified one subnetwork with reduced structural connectivity in CHD infants involving basal ganglia, amygdala, hippocampus, cerebellum, vermis, and temporal and parieto-occipital lobe, primarily affecting core nodes and edges. However, we did not find significantly different global network characteristics in CHD neonates. This locally affected sub-network with reduced connectivity could explain, at least in part, the neurodevelopmental impairments associated with CHD.
Collapse
Affiliation(s)
- Megan Ní Bhroin
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Trinity College Institute of Neuroscience and Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Ireland
| | - Samy Abo Seada
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Christopher J Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Electrical Engineering (ESAT/PSI), KU Leuven, Leuven, Belgium
| | - Andreas Schuh
- Department of Computing, Imperial College London, London, UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Lucillio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Kuberan Pushparajah
- Paediatric Cardiology Department, Evelina London Children's Healthcare, London, UK
| | - John Simpson
- Congenital Heart Disease, Evelina London Children's Hospital, London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
18
|
Fleiss B, Gressens P, Stolp HB. Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders. Front Neurol 2020; 11:575. [PMID: 32765390 PMCID: PMC7381224 DOI: 10.3389/fneur.2020.00575] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Preterm-born infants frequently suffer from an array of neurological damage, collectively termed encephalopathy of prematurity (EoP). They also have an increased risk of presenting with a neurodevelopmental disorder (e.g., autism spectrum disorder; attention deficit hyperactivity disorder) later in life. It is hypothesized that it is the gray matter injury to the cortex, in addition to white matter injury, in EoP that is responsible for the altered behavior and cognition in these individuals. However, although it is established that gray matter injury occurs in infants following preterm birth, the exact nature of these changes is not fully elucidated. Here we will review the current state of knowledge in this field, amalgamating data from both clinical and preclinical studies. This will be placed in the context of normal processes of developmental biology and the known pathophysiology of neurodevelopmental disorders. Novel diagnostic and therapeutic tactics required integration of this information so that in the future we can combine mechanism-based approaches with patient stratification to ensure the most efficacious and cost-effective clinical practice.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Helen B. Stolp
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
19
|
Kostović I. The enigmatic fetal subplate compartment forms an early tangential cortical nexus and provides the framework for construction of cortical connectivity. Prog Neurobiol 2020; 194:101883. [PMID: 32659318 DOI: 10.1016/j.pneurobio.2020.101883] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
The most prominent transient compartment of the primate fetal cortex is the deep, cell-sparse, synapse-containing subplate compartment (SPC). The developmental role of the SPC and its extraordinary size in humans remain enigmatic. This paper evaluates evidence on the development and connectivity of the SPC and discusses its role in the pathogenesis of neurodevelopmental disorders. A synthesis of data shows that the subplate becomes a prominent compartment by its expansion from the deep cortical plate (CP), appearing well-delineated on MR scans and forming a tangential nexus across the hemisphere, consisting of an extracellular matrix, randomly distributed postmigratory neurons, multiple branches of thalamic and long corticocortical axons. The SPC generates early spontaneous non-synaptic and synaptic activity and mediates cortical response upon thalamic stimulation. The subplate nexus provides large-scale interareal connectivity possibly underlying fMR resting-state activity, before corticocortical pathways are established. In late fetal phase, when synapses appear within the CP, transient the SPC coexists with permanent circuitry. The histogenetic role of the SPC is to provide interactive milieu and capacity for guidance, sorting, "waiting" and target selection of thalamocortical and corticocortical pathways. The new evolutionary role of the SPC and its remnant white matter neurons is linked to the increasing number of associative pathways in the human neocortex. These roles attributed to the SPC are regulated using a spatiotemporal gene expression during critical periods, when pathogenic factors may disturb vulnerable circuitry of the SPC, causing neurodevelopmental cognitive circuitry disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Salata 12, 10000 Zagreb, Croatia.
| |
Collapse
|
20
|
Kim DJ, Min BK. Rich-club in the brain's macrostructure: Insights from graph theoretical analysis. Comput Struct Biotechnol J 2020; 18:1761-1773. [PMID: 32695269 PMCID: PMC7355726 DOI: 10.1016/j.csbj.2020.06.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is a complex network. Growing evidence supports the critical roles of a set of brain regions within the brain network, known as the brain’s cores or hubs. These regions require high energy cost but possess highly efficient neural information transfer in the brain’s network and are termed the rich-club. The rich-club of the brain network is essential as it directly regulates functional integration across multiple segregated regions and helps to optimize cognitive processes. Here, we review the recent advances in rich-club organization to address the fundamental roles of the rich-club in the brain and discuss how these core brain regions affect brain development and disorders. We describe the concepts of the rich-club behind network construction in the brain using graph theoretical analysis. We also highlight novel insights based on animal studies related to the rich-club and illustrate how human studies using neuroimaging techniques for brain development and psychiatric/neurological disorders may be relevant to the rich-club phenomenon in the brain network.
Collapse
Key Words
- AD, Alzheimer’s disease
- ADHD, attention deficit hyperactivity disorder
- ASD, autism spectrum disorder
- BD, bipolar disorder
- Brain connectivity
- Brain network
- DTI, diffusion tensor imaging
- EEG, electroencephalography
- Graph theory
- MDD, major depressive disorder
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- Neuroimaging
- Rich-club
- TBI, traumatic brain injury
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
De Asis-Cruz J, Kapse K, Basu SK, Said M, Scheinost D, Murnick J, Chang T, du Plessis A, Limperopoulos C. Functional brain connectivity in ex utero premature infants compared to in utero fetuses. Neuroimage 2020; 219:117043. [PMID: 32534962 PMCID: PMC7493786 DOI: 10.1016/j.neuroimage.2020.117043] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 11/26/2022] Open
Abstract
Brain structural changes in premature infants appear before term age. Functional differences between premature infants and healthy fetuses during this period have yet to be explored. Here, we examined brain connectivity using resting state functional MRI in 25 very premature infants (VPT; gestational age at birth <32 weeks) and 25 healthy fetuses with structurally normal brain MRIs. Resting state data were evaluated using seed-based correlation analysis and network-based statistics using 23 regions of interest (ROIs) per hemisphere. Functional connectivity strength, the Pearson correlation between blood oxygenation level dependent signals over time across all ROIs, was compared between groups. In both cohorts, connectivity between homotopic ROIs showed a decreasing medial to lateral gradient. The cingulate cortex, medial temporal lobe and the basal ganglia shared the strongest connections. In premature infants, connections involving superior temporal, hippocampal, and occipital areas, among others, were stronger compared to fetuses. Premature infants showed stronger connectivity in sensory input and stress-related areas suggesting that extra-uterine environment exposure alters the development of select neural networks in the absence of structural brain injury.
Collapse
Affiliation(s)
| | - Kushal Kapse
- Diagnostic Imaging and Radiology, Children's National, Washington, DC, USA
| | | | - Mariam Said
- Neonatology, Children's National, Washington, DC, USA
| | - Dustin Scheinost
- Radiology and Biomedical Imaging, Statistics and Data Science, and Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Jonathan Murnick
- Diagnostic Imaging and Radiology, Children's National, Washington, DC, USA
| | - Taeun Chang
- Neurology, Children's National, Washington, DC, USA
| | - Adre du Plessis
- Fetal Medicine Institute, Children's National, Washington, DC, USA
| | - Catherine Limperopoulos
- Diagnostic Imaging and Radiology, Children's National, Washington, DC, USA; Pediatrics, The George Washington University School of Medicine, Washington, DC, USA.
| |
Collapse
|
22
|
Hadaya L, Nosarti C. The neurobiological correlates of cognitive outcomes in adolescence and adulthood following very preterm birth. Semin Fetal Neonatal Med 2020; 25:101117. [PMID: 32451305 DOI: 10.1016/j.siny.2020.101117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Very preterm birth (<33 weeks of gestation) has been associated with alterations in structural and functional brain development in regions that are believed to underlie a variety of cognitive processes. While such alterations have been often studied in the context of cognitive vulnerability, early disruption to programmed developmental processes may also lead to neuroplastic and functional adaptations, which support cognitive performance. In this review, we will focus on executive function and intelligence as the main cognitive outcomes following very preterm birth in adolescence and adulthood in relation to their structural and functional neurobiological correlates. The neuroimaging modalities we review provide quantitative assessments of brain morphology, white matter macro and micro-structure, structural and functional connectivity and haemodynamic responses associated with specific cognitive operations. Identifying the neurobiological underpinning of the long-term sequelae associated with very preterm birth may guide the development and implementation of targeted neurobehaviourally-informed interventions for those at high risk.
Collapse
Affiliation(s)
- Laila Hadaya
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Science and Medicine, King's College London, London, United Kingdom; Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Chiara Nosarti
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
23
|
Inhibition is associated with whole-brain structural brain connectivity on network level in school-aged children born very preterm and at term. Neuroimage 2020; 218:116937. [PMID: 32416228 DOI: 10.1016/j.neuroimage.2020.116937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/31/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Inhibition abilities are often impaired in children born very preterm. In typically-developing individuals, inhibition has been associated with structural brain connectivity (SC). As SC is frequently altered following preterm birth, this study investigated whether aberrant SC underlies inhibition deficits in school-aged children born very preterm. In a group of 67 very preterm participants aged 8-13 years and 69 term-born peers, inhibition abilities were assessed with two tasks. In a subgroup of 50 very preterm and 62 term-born participants, diffusion tensor imaging (DTI) data were collected. Using network-based statistics (NBS), mean fractional anisotropy (FAmean) was compared between groups. Associations of FAmean and inhibition abilities were explored through linear regression. The composite score of inhibition abilities was lower in the very preterm group (M = -0.4, SD = 0.8) than in the term-born group (M = 0.0, SD = 0.8) but group differences were not significant when adjusting for age, sex and socio-economic status (β = -0.13, 95%-CI [-0.30, 0.04], p = 0.13). In the very preterm group, FAmean was significantly lower in a network comprising thalamo-frontal, thalamo-temporal, frontal, cerebellar and intra-hemispheric connections than in the term-born group (t = 5.21, lowest p-value = 0.001). Irrespective of birth status, a network comprising parietal, cerebellar and subcortical connections was positively associated with inhibition abilities (t = 4.23, lowest p-value = 0.02). Very preterm birth results in long-term alterations of SC at network-level. As networks underlying inhibition abilities do not overlap with those differing between the groups, FAmean may not be adequate to explain inhibition problems in very preterm children. Future studies should combine complementary measures of brain connectivity to address neural correlates of inhibition abilities.
Collapse
|
24
|
Abstract
The developing visual brain is an integrated system, linking analysis of the visual input to visuomotor control, visual cognition, and attention. Major points in human visual development are the presence of rudimentary pathways present at birth which can control fixation behavior, with subsequent development of specific functions. These functions include the emergence of cortical selectivity; the integration of local signals to provide global representations of motion, shape, and space; the development of visuomotor modules for eye movements, manual reaching, and locomotion; and the development of distinct attentional systems. Measures of these processes in infancy and early childhood can provide indicators of broader brain development in the at-risk child. A key system in development is the dorsal cortical stream. Measures of global motion processing, visuomotor actions, and attention suggest that this system is particularly vulnerable in children with a wide range of neurodevelopmental disorders. Early disorders of the eye (strabismus, cataract) reveal the level of plasticity in the developing visual system and the ways in which early experience can affect the course of functional development.
Collapse
Affiliation(s)
- Janette Atkinson
- Faculty of Brain Sciences, University College London, London, United Kingdom.
| | - Oliver Braddick
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Kroll J, Karolis V, Brittain PJ, Tseng CEJ, Froudist-Walsh S, Murray RM, Nosarti C. Systematic assessment of perinatal and socio-demographic factors associated with IQ from childhood to adult life following very preterm birth. INTELLIGENCE 2019. [DOI: 10.1016/j.intell.2019.101401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Kozhemiako N, Nunes AS, Vakorin VA, Chau CMY, Moiseev A, Ribary U, Grunau RE, Doesburg SM. Sex differences in brain connectivity and male vulnerability in very preterm children. Hum Brain Mapp 2019; 41:388-400. [PMID: 31587465 PMCID: PMC7267928 DOI: 10.1002/hbm.24809] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Evidence indicates better cognitive and behavioral outcomes for females born very preterm (≤32 weeks gestation) compared to males, but the neurophysiology underlying this apparent resiliency of the female brain remains poorly understood. Here we test the hypothesis that very preterm males express more pronounced connectivity alterations as a reflection of higher male vulnerability. Resting state MEG recordings, neonatal and psychometric data were collected from 100 children at age 8 years: very preterm boys (n = 27), very preterm girls (n = 34), full‐term boys (n = 15) and full‐term girls (n = 24). Neuromagnetic source dynamics were reconstructed from 76 cortical brain regions. Functional connectivity was estimated using inter‐regional phase‐synchronization. We performed a series of multivariate analyses to test for differences across groups as well as to explore relationships between deviations in functional connectivity and psychometric scores and neonatal factors for very preterm children. Very preterm boys displayed significantly higher (p < .001) absolute deviation from average connectivity of same‐sex full‐term group, compared to very preterm girls versus full‐term girls. In the connectivity comparison between very preterm and full‐term groups separately for boys and girls, significant group differences (p < .05) were observed for boys, but not girls. Sex differences in connectivity (p < .01) were observed in very preterm children but not in full‐term groups. Our findings indicate that very preterm boys have greater alterations in resting neurophysiological network communication than girls. Such uneven brain communication disruption in very preterm boys and girls suggests that stronger connectivity alterations might contribute to male vulnerability in long‐term behavioral and cognitive outcome.
Collapse
Affiliation(s)
- Nataliia Kozhemiako
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Adonay S Nunes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Vasily A Vakorin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, British Columbia, Canada.,Fraser Health, British Columbia Health Authority, Surrey, British Columbia, Canada
| | - Cecil M Y Chau
- Pediatrics Department, University of British Columbia, Vancouver, British Columbia, Canada.,B.C. Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Alexander Moiseev
- Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Urs Ribary
- Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, British Columbia, Canada.,B.C. Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Psychology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ruth E Grunau
- Pediatrics Department, University of British Columbia, Vancouver, British Columbia, Canada.,B.C. Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
27
|
Kozhemiako N, Nunes A, Vakorin VA, Chau CMY, Moiseev A, Ribary U, Grunau RE, Doesburg SM. Atypical resting state neuromagnetic connectivity and spectral power in very preterm children. J Child Psychol Psychiatry 2019; 60:975-987. [PMID: 30805942 DOI: 10.1111/jcpp.13026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Children born very preterm often display selective cognitive difficulties at school age even in the absence of major brain injury. Alterations in neurophysiological activity underpinning such difficulties, as well as their relation to specific aspects of adverse neonatal experience, remain poorly understood. In the present study, we examined interregional connectivity and spectral power in very preterm children at school age, and their relationship with clinical neonatal variables and long-term outcomes (IQ, executive functions, externalizing/internalizing behavior, visual-motor integration). METHODS We collected resting state magnetoencephalographic (MEG) and psychometric data from a cohort at the age of 8 years followed prospectively since birth, which included three groups: Extremely Low Gestational Age (ELGA, 24-28 weeks GA n = 24, age 7.7 ± 0.38, 10 girls), Very Low Gestational Age (VLGA, 29-32 weeks GA n = 37, age 7.7 ± 0.39, 24 girls), and full-term children (38-41 weeks GA n = 39, age 7.9 ± 1.02, 24 girls). Interregional phase synchrony and spectral power were tested for group differences, and associations with neonatal and outcome variables were examined using mean-centered and behavioral Partial Least Squares (PLS) analyses, respectively. RESULTS We found greater connectivity in the theta band in the ELGA group compared to VLGA and full-term groups, primarily involving frontal connections. Spectral power analysis demonstrated overall lower power in the ELGA and VLGA compared to full-term group. PLS indicated strong associations between neurophysiological connectivity at school age, adverse neonatal experience and cognitive performance, and behavior. Resting spectral power was associated only with behavioral scores. CONCLUSIONS Our findings indicate significant atypicalities of neuromagnetic brain activity and connectivity in very preterm children at school age, with alterations in connectivity mainly observed only in the ELGA group. We demonstrate a significant relationship between connectivity, adverse neonatal experience, and long-term outcome, indicating that the disruption of developing neurophysiological networks may mediate relationships between neonatal events and cognitive and behavioral difficulties at school age.
Collapse
Affiliation(s)
- Nataliia Kozhemiako
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Adonay Nunes
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Vasily A Vakorin
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada.,Fraser Health, British Columbia Health Authority, Surrey, BC, Canada
| | - Cecil M Y Chau
- Pediatrics Department, University of British Columbia, Vancouver, BC, Canada.,B.C. Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Alexander Moiseev
- Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada
| | - Urs Ribary
- Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada.,Pediatrics Department, University of British Columbia, Vancouver, BC, Canada.,B.C. Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Ruth E Grunau
- Pediatrics Department, University of British Columbia, Vancouver, BC, Canada.,B.C. Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sam M Doesburg
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
28
|
Zhang R, Shao R, Xu G, Lu W, Zheng W, Miao Q, Chen K, Gao Y, Bi Y, Guan L, McIntyre RS, Deng Y, Huang X, So KF, Lin K. Aberrant brain structural-functional connectivity coupling in euthymic bipolar disorder. Hum Brain Mapp 2019; 40:3452-3463. [PMID: 31282606 DOI: 10.1002/hbm.24608] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/28/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Aberrant structural (diffusion tensor imaging [DTI]) and resting-state functional magnetic resonance imagining connectivity are core features of bipolar disorder. However, few studies have explored the integrity agreement between structural and functional connectivity (SC-FC) in bipolar disorder. We examine SC connectivity coupling index whether could potentially provide additional clinical predictive value for bipolar disorder spectrum disorders besides the intramodality network measures. By examining the structural (DTI) and resting-state functional network properties, as well as their coupling index, among 57 euthymic bipolar disorder patients (age 13-28 years, 18 females) and 42 age- and gender-matched healthy controls (age 13-28 years, 16 females), we found that compared to controls, bipolar disorder patients showed increased structural rich-club connectivity as well as decreased functional modularity. Importantly, the coupling strength between structural and functional connectome was decreased in patients compared to controls, which emerged as the most powerful feature discriminating the two groups. Our findings suggest that structural-functional coupling strength could serve as a valuable biological trait-like feature for bipolar disorder over and above the intramodality network measures. Such measure can have important clinical implications for early identification of bipolar disorder individuals, and inform strategies for prevention of bipolar disorder onset and relapse.
Collapse
Affiliation(s)
- Ruibin Zhang
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Neuropsychology, Laboratory of Social Cognitive Affective Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China.,Department of Psychology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China
| | - Robin Shao
- Laboratory of Neuropsychology, Laboratory of Social Cognitive Affective Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Guiyun Xu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Academician workstation of Mood and Brain Sciences, Guangzhou Medical University, Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weicong Lu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjing Zheng
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingzhe Miao
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Kun Chen
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanling Gao
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanan Bi
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijie Guan
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Roger S McIntyre
- Academician workstation of Mood and Brain Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Yue Deng
- Department of Psychology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejun Huang
- Department of Psychology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kwok-Fai So
- Academician workstation of Mood and Brain Sciences, Guangzhou Medical University, Guangzhou, China.,GMH Institute of CNS Regeneration, Jinan University, Guangzhou, China.,The State Key Laboratory of Brain and Cognitive Sciences and Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Neuropsychology, Laboratory of Social Cognitive Affective Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China.,Academician workstation of Mood and Brain Sciences, Guangzhou Medical University, Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.,GMH Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Verbal Fluency Is Affected by Altered Brain Lateralization in Adults Who Were Born Very Preterm. eNeuro 2019; 6:eN-NWR-0274-18. [PMID: 31001576 PMCID: PMC6469882 DOI: 10.1523/eneuro.0274-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 02/01/2023] Open
Abstract
Language difficulties have been reported in children and adolescents who were born very preterm (<32 weeks’ gestation) and associated with an atypical lateralization of language processing, i.e., increased right-hemispheric engagement. This study used functional magnetic resonance imaging (fMRI) and spherical deconvolution tractography to study the hemodynamic responses associated with verbal fluency processing (easy and hard letter trials) and verbal fluency-related white matter fiber tracts in 64 very preterm born adults and 36 adult controls (mean age: 30 years). Tractography of the arcuate fasciculus (AF) and frontal aslant tract (FAT) was performed. Tracts were quantified in terms of mean volume, hindrance modulated orientational anisotropy, and lateralization, assessed using a laterality index (LI) to indicate hemispheric dominance. During verbal fluency fMRI, very preterm participants displayed decreased hemodynamic response suppression in both the Easy > Rest and Hard > Rest conditions, compared to controls, in superior temporal gyrus (STG), insula, thalamus, and sensorimotor cortex, particularly in the right hemisphere. At the whole-group level, decreased hemodynamic response suppression in the right sensorimotor cortex was associated with worse on-line performance on the hard letter trials. Increased left-laterality in the AF was present alongside increased right hemispheric hemodynamic response suppression in controls. When only right-handed participants were considered, decreased hemodynamic response suppression in the right STG during hard letter trials was related to weaker left and right FAT white matter integrity in the preterm group only. These results show that verbal fluency is affected by altered functional lateralization in adults who were born very preterm.
Collapse
|
30
|
Jakab A, Ruegger C, Bucher HU, Makki M, Huppi PS, Tuura R, Hagmann C. Network based statistics reveals trophic and neuroprotective effect of early high dose erythropoetin on brain connectivity in very preterm infants. NEUROIMAGE-CLINICAL 2019; 22:101806. [PMID: 30991614 PMCID: PMC6451173 DOI: 10.1016/j.nicl.2019.101806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 01/17/2023]
Abstract
Periventricular white matter injury is common in very preterm infants and it is associated with long term neurodevelopmental impairments. While evidence supports the protective effects of erythropoetin (EPO) in preventing injury, we currently lack the complete understanding of how EPO affects the emergence and maturation of anatomical brain connectivity and function. In this case-control study, connectomic analysis based on diffusion MRI tractography was applied to evaluate the effect of early high-dose EPO in preterm infants. A whole brain, network-level analysis revealed a sub-network of anatomical brain connections in which connectivity strengths were significantly stronger in the EPO group. This distributed network comprised connections predominantly in the frontal and temporal lobe bilaterally, and the effect of EPO was focused on peripheral and feeder connections of the core structural connectivity network. EPO resulted in a globally increased clustering coefficient, higher global and average local efficiency, while higher strength and increased clustering was found for regions in the frontal lobe and cingulate gyrus. The connectivity network most affected by the EPO treatment showed a steeper increase graph theoretical measures with age compared to the placebo group. Our results demonstrate a weak but widespread effect of EPO on the structural connectivity network and a possible trophic effect of EPO reflected by increasing network segregation, predominantly in local connections. Erythropoietin (EPO) is a potential neuroprotective agent in very preterm infants. EPO leads to increased structural brain connectivity in fronto-temporal regions. Clustering coefficient, local and global efficiency increases after EPO treatment.
Collapse
Affiliation(s)
- A Jakab
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland.
| | - C Ruegger
- Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - H U Bucher
- Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Malek Makki
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - P S Huppi
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - R Tuura
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - C Hagmann
- Department of Neonatology, University Hospital Zurich, Zurich, Switzerland; Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
31
|
Serati M, Delvecchio G, Orsenigo G, Mandolini GM, Lazzaretti M, Scola E, Triulzi F, Brambilla P. The Role of the Subplate in Schizophrenia and Autism: A Systematic Review. Neuroscience 2019; 408:58-67. [PMID: 30930130 DOI: 10.1016/j.neuroscience.2019.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
The subplate (SP) represents a transitory cytoarchitectural fetal compartment containing most subcortical and cortico-cortical afferents, and has a fundamental role in the structural development of the healthy adult brain. There is evidence that schizophrenia and autism may be determined by developmental defects in the cortex or cortical circuitry during the earliest stages of pregnancy. This article provides an overview on fetal SP development, considering its role in schizophrenia and autism, as supported by a systematic review of the main databases. The SP has been described as a cortical amplifier with a role in the coordination of cortical activity, and sensitive growth and migration windows have crucial consequences with respect to cognitive functioning. Although there are not enough studies to draw final conclusions, improved knowledge of the SP's role in schizophrenia and autism spectrum disorders may help to elucidate and possibly prevent the onset of these two severe disorders.
Collapse
Affiliation(s)
- Marta Serati
- Department of Mental Health, ASST Rhodense, Rho, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulia Orsenigo
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Gian Mario Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Matteo Lazzaretti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Elisa Scola
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA
| |
Collapse
|
32
|
Karolis VR, Corbetta M, Thiebaut de Schotten M. The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nat Commun 2019; 10:1417. [PMID: 30926845 PMCID: PMC6441088 DOI: 10.1038/s41467-019-09344-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/05/2019] [Indexed: 12/25/2022] Open
Abstract
Functional lateralisation is a fundamental principle of the human brain. However, a comprehensive taxonomy of functional lateralisation and its organisation in the brain is missing. Here, we report the first complete map of functional hemispheric asymmetries in the human brain, reveal its low dimensional structure, and its relationship with structural inter-hemispheric connectivity. Our results suggest that the lateralisation of brain functions is distributed along four functional axes: symbolic communication, perception/action, emotion, and decision-making. The similarity between this finding and recent work on neurological symptoms give rise to new hypotheses on the mechanisms that support brain recovery after a brain lesion. We also report that cortical regions showing asymmetries in task-evoked activity have reduced connections with the opposite hemisphere. This latter result suggests that during evolution, brain size expansion led to functional lateralisation to avoid excessive conduction delays between the hemispheres.
Collapse
Affiliation(s)
- Vyacheslav R Karolis
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universities, Inserm U 1127, CNRS UMR 7225, Paris, France.
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Fondazione Biomedica, Padova, Italy
- Department of Neurology, Washington University, Saint Louis, MO, USA
- Department of Radiology, Washington University, Saint Louis, MO, USA
- Department of Neuroscience, Washington University, Saint Louis, MO, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universities, Inserm U 1127, CNRS UMR 7225, Paris, France.
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| |
Collapse
|
33
|
Smyser CD, Wheelock MD, Limbrick DD, Neil JJ. Neonatal brain injury and aberrant connectivity. Neuroimage 2019; 185:609-623. [PMID: 30059733 PMCID: PMC6289815 DOI: 10.1016/j.neuroimage.2018.07.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Brain injury sustained during the neonatal period may disrupt development of critical structural and functional connectivity networks leading to subsequent neurodevelopmental impairment in affected children. These networks can be characterized using structural (via diffusion MRI) and functional (via resting state-functional MRI) neuroimaging techniques. Advances in neuroimaging have led to expanded application of these approaches to study term- and prematurely-born infants, providing improved understanding of cerebral development and the deleterious effects of early brain injury. Across both modalities, neuroimaging data are conducive to analyses ranging from characterization of individual white matter tracts and/or resting state networks through advanced 'connectome-style' approaches capable of identifying highly connected network hubs and investigating metrics of network topology such as modularity and small-worldness. We begin this review by summarizing the literature detailing structural and functional connectivity findings in healthy term and preterm infants without brain injury during the postnatal period, including discussion of early connectome development. We then detail common forms of brain injury in term- and prematurely-born infants. In this context, we next review the emerging body of literature detailing studies employing diffusion MRI, resting state-functional MRI and other complementary neuroimaging modalities to characterize structural and functional connectivity development in infants with brain injury. We conclude by reviewing technical challenges associated with neonatal neuroimaging, highlighting those most relevant to studying infants with brain injury and emphasizing the need for further targeted study in this high-risk population.
Collapse
Affiliation(s)
- Christopher D Smyser
- Departments of Neurology, Pediatrics and Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA.
| | - Muriah D Wheelock
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8134, St. Louis, MO, 63110, USA.
| | - David D Limbrick
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine, One Children's Place, Suite S20, St. Louis, MO, 63110, USA.
| | - Jeffrey J Neil
- Department of Pediatric Neurology, Boston Children's Hospital, 300 Longwood Avenue, BCH3443, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
Graph theoretical modeling of baby brain networks. Neuroimage 2019; 185:711-727. [DOI: 10.1016/j.neuroimage.2018.06.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022] Open
|
35
|
Nist MD, Harrison TM, Steward DK. The biological embedding of neonatal stress exposure: A conceptual model describing the mechanisms of stress-induced neurodevelopmental impairment in preterm infants. Res Nurs Health 2018; 42:61-71. [PMID: 30499161 DOI: 10.1002/nur.21923] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/27/2018] [Indexed: 12/15/2022]
Abstract
The biological embedding of early life stress exposure may result in life-long neurodevelopmental impairment in preterm infants. Infants hospitalized in the neonatal intensive care unit are exposed to significant experiential, environmental, and physiologic stressors over the course of their extended hospitalization. Stress exposure during the sensitive period of brain development may alter biological processes, including functioning of the immune system, the autonomic nervous system, and the hypothalamic-pituitary-adrenal axis as well as gene expression. These alterations may subsequently affect brain structure and function. Changes to these processes may mediate the relationship between neonatal stress exposure and neurodevelopment in preterm infants and represent potential therapeutic targets to improve long-term outcomes. The purpose of this paper is to introduce a conceptual model, based on published research, that describes the mechanisms mediating stress exposure and neurodevelopment impairment in preterm infants and to provide the theoretical foundation on which to base future descriptive research, intervention studies, and clinical care.
Collapse
|
36
|
Quezada S, Castillo-Melendez M, Walker DW, Tolcos M. Development of the cerebral cortex and the effect of the intrauterine environment. J Physiol 2018; 596:5665-5674. [PMID: 30325048 DOI: 10.1113/jp277151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The human brain is one of the most complex structures currently under study. Its external shape is highly convoluted, with folds and valleys over the entire surface of the cortex. Disruption of the normal pattern of folding is associated with a number of abnormal neurological outcomes, some serious for the individual. Most of our knowledge of the normal development and folding of the cerebral cortex (gyrification) focuses on the internal, biological (i.e. genetically driven) mechanisms of the brain that drive gyrification. However, the impact of an adverse intrauterine and maternal physiological environment on cortical folding during fetal development has been understudied. Accumulating evidence suggests that the state of the intrauterine and maternal environment can have a significant impact on gyrification of the fetal cerebral cortex. This review summarises our current knowledge of how development in a suboptimal intrauterine and maternal environment can affect the normal development of the folded cerebral cortex.
Collapse
Affiliation(s)
- Sebastian Quezada
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - Margie Castillo-Melendez
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| |
Collapse
|
37
|
Kroll J, Froudist-Walsh S, Brittain PJ, Tseng CEJ, Karolis V, Murray RM, Nosarti C. A dimensional approach to assessing psychiatric risk in adults born very preterm. Psychol Med 2018; 48:1738-1744. [PMID: 29350124 DOI: 10.1017/s0033291717003804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Individuals who were born very preterm have higher rates of psychiatric diagnoses compared with term-born controls; however, it remains unclear whether they also display increased sub-clinical psychiatric symptomatology. Hence, our objective was to utilize a dimensional approach to assess psychiatric symptomatology in adult life following very preterm birth. METHODS We studied 152 adults who were born very preterm (before 33 weeks' gestation; gestational range 24-32 weeks) and 96 term-born controls. Participants' clinical profile was examined using the Comprehensive Assessment of At-Risk Mental States (CAARMS), a measure of sub-clinical symptomatology that yields seven subscales including general psychopathology, positive, negative, cognitive, behavioural, motor and emotional symptoms, in addition to a total psychopathology score. Intellectual abilities were examined using the Wechsler Abbreviated Scale of Intelligence. RESULTS Between-group differences on the CAARMS showed elevated symptomatology in very preterm participants compared with controls in positive, negative, cognitive and behavioural symptoms. Total psychopathology scores were significantly correlated with IQ in the very preterm group only. In order to examine the characteristics of participants' clinical profile, a principal component analysis was conducted. This revealed two components, one reflecting a non-specific psychopathology dimension, and the other indicating a variance in symptomatology along a positive-to-negative symptom axis. K-means (k = 4) were used to further separate the study sample into clusters. Very preterm adults were more likely to belong to a high non-specific psychopathology cluster compared with controls.Conclusion and RelevanceVery preterm individuals demonstrated elevated psychopathology compared with full-term controls. Their psychiatric risk was characterized by a non-specific clinical profile and was associated with lower IQ.
Collapse
Affiliation(s)
- Jasmin Kroll
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Sean Froudist-Walsh
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Philip J Brittain
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Chieh-En J Tseng
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Vyacheslav Karolis
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Robin M Murray
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Chiara Nosarti
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| |
Collapse
|
38
|
Pascoe L, Thompson D, Spencer-Smith M, Beare R, Adamson C, Lee KJ, Kelly C, Georgiou-Karistianis N, Nosarti C, Josev E, Roberts G, Doyle LW, Seal ML, Anderson PJ. Efficiency of structural connectivity networks relates to intrinsic motivation in children born extremely preterm. Brain Imaging Behav 2018; 13:995-1008. [DOI: 10.1007/s11682-018-9918-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Zhao T, Mishra V, Jeon T, Ouyang M, Peng Q, Chalak L, Wisnowski JL, Heyne R, Rollins N, Shu N, Huang H. Structural network maturation of the preterm human brain. Neuroimage 2018; 185:699-710. [PMID: 29913282 DOI: 10.1016/j.neuroimage.2018.06.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/16/2022] Open
Abstract
During the 3rd trimester, large-scale neural circuits are formed in the human brain, resulting in a highly efficient and segregated connectome at birth. Despite recent findings identifying important preterm human brain network properties such as rich-club organization, how the structural network develops differentially across brain regions and among different types of connections in this period is not yet known. Here, using high resolution diffusion MRI of 77 preterm-born and full-term neonates scanned at 31.9-41.7 postmenstrual weeks (PMW), we constructed structural connectivity matrices and performed graph-theory-based analyses. Faster increases of nodal efficiency were mainly located at the brain hubs distributed in primary sensorimotor regions, superior-middle frontal, and precuneus regions during 31.9-41.7PMW. Higher rates of edge strength increases were found in the rich-club and within-module connections, compared to other connections. The edge strength of short-range connections increased faster than that of long-range connections. Nodal efficiencies of the hubs predicted individual postmenstrual ages more accurately than those of non-hubs. Collectively, these findings revealed more rapid efficiency increases of the hub and rich-club connections as well as higher developmental rates of edge strength in short-range and within-module connections. These jointly underlie network segregation and differentiated emergence of brain functions.
Collapse
Affiliation(s)
- Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Virendra Mishra
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Tina Jeon
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Qinmu Peng
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Lina Chalak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jessica Lee Wisnowski
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States; Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, Chile
| | - Roy Heyne
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Nancy Rollins
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, 19104, United States
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
| | - Hao Huang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States; Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, 19104, United States.
| |
Collapse
|
40
|
Barbeito-Andrés J, Gleiser PM, Bernal V, Hallgrímsson B, Gonzalez PN. Brain Structural Networks in Mouse Exposed to Chronic Maternal Undernutrition. Neuroscience 2018; 380:14-26. [DOI: 10.1016/j.neuroscience.2018.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/27/2022]
|
41
|
Batalle D, Edwards AD, O'Muircheartaigh J. Annual Research Review: Not just a small adult brain: understanding later neurodevelopment through imaging the neonatal brain. J Child Psychol Psychiatry 2018; 59:350-371. [PMID: 29105061 PMCID: PMC5900873 DOI: 10.1111/jcpp.12838] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND There has been a recent proliferation in neuroimaging research focusing on brain development in the prenatal, neonatal and very early childhood brain. Early brain injury and preterm birth are associated with increased risk of neurodevelopmental disorders, indicating the importance of this early period for later outcome. SCOPE AND METHODOLOGY Although using a wide range of different methodologies and investigating diverse samples, the common aim of many of these studies has been to both track normative development and investigate deviations in this development to predict behavioural, cognitive and neurological function in childhood. Here we review structural and functional neuroimaging studies investigating the developing brain. We focus on practical and technical complexities of studying this early age range and discuss how neuroimaging techniques have been successfully applied to investigate later neurodevelopmental outcome. CONCLUSIONS Neuroimaging markers of later outcome still have surprisingly low predictive power and their specificity to individual neurodevelopmental disorders is still under question. However, the field is still young, and substantial challenges to both acquiring and modeling neonatal data are being met.
Collapse
Affiliation(s)
- Dafnis Batalle
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - A. David Edwards
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
- Department of NeuroimagingInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
42
|
Tokariev A, Stjerna S, Lano A, Metsäranta M, Palva JM, Vanhatalo S. Preterm Birth Changes Networks of Newborn Cortical Activity. Cereb Cortex 2018; 29:814-826. [DOI: 10.1093/cercor/bhy012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/07/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Anton Tokariev
- Department of Clinical Neurophysiology, University of Helsinki, HUS, Helsinki, Finland
| | - Susanna Stjerna
- Department of Clinical Neurophysiology, University of Helsinki, HUS, Helsinki, Finland
| | - Aulikki Lano
- Department of Child Neurology, Children’s Hospital, University of Helsinki and HUH, Helsinki, Finland
| | - Marjo Metsäranta
- Department of Neonatology, Children’s Hospital, University of Helsinki and HUH, Helsinki, Finland
| | - J Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, University of Helsinki, HUS, Helsinki, Finland
| |
Collapse
|
43
|
Froudist-Walsh S, Bloomfield MA, Veronese M, Kroll J, Karolis VR, Jauhar S, Bonoldi I, McGuire PK, Kapur S, Murray RM, Nosarti C, Howes O. The effect of perinatal brain injury on dopaminergic function and hippocampal volume in adult life. eLife 2017; 6. [PMID: 29179814 PMCID: PMC5705207 DOI: 10.7554/elife.29088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/02/2017] [Indexed: 11/21/2022] Open
Abstract
Perinatal brain injuries, including hippocampal lesions, cause lasting changes in dopamine function in rodents, but it is not known if this occurs in humans. We compared adults who were born very preterm with perinatal brain injury to those born very preterm without perinatal brain injury, and age-matched controls born at full term using [18F]-DOPA PET and structural MRI. Dopamine synthesis capacity was reduced in the perinatal brain injury group relative to those without brain injury (Cohen’s d = 1.36, p=0.02) and the control group (Cohen’s d = 1.07, p=0.01). Hippocampal volume was reduced in the perinatal brain injury group relative to controls (Cohen’s d = 1.17, p=0.01) and was positively correlated with striatal dopamine synthesis capacity (r = 0.344, p=0.03). This is the first evidence in humans linking neonatal hippocampal injury to adult dopamine dysfunction, and provides a potential mechanism linking early life risk factors to adult mental illness. Thirteen million infants are born too early every year. Improved care allows many to survive, but these “preterm infants” still face an increased risk of death and many other complications. Infants born very early, before 32 weeks, are at risk of brain injury because the brain is normally still developing in the later stages of pregnancy. They also have an increased risk of developing mental health problems later in life. Early-life brain injuries in rats cause changes in the production of a chemical called dopamine. Dopamine is a chemical messenger in the brain that reinforces rewarding behaviour. People with schizophrenia and attention deficit hyperactivity disorder (ADHD) have abnormal levels of dopamine. Changes in brain dopamine levels may explain why early-life brain injury is linked to later mental illness. But first scientists must study whether similar changes occur in humans with an early-life brain injury. Now, Froudist-Walsh et al. use brain imaging to show that people born very early who suffered a brain injury have lower dopamine levels than other adults. Imaging techniques were used to scan the brains of 13 adults who were born before 32 weeks and who had a brain injury around birth, 13 adults born before 32 weeks without a brain injury, and 13 adults born at “full term” (around 39 to 40 weeks). Individuals with low dopamine levels reported difficulty concentrating and a lack of motivation and enjoyment in their lives. Both can be warning signs of mental health problems. People born prematurely without a brain injury had normal dopamine levels and did not report such symptoms. More studies may help scientists understand how early brain injuries may cause brain chemical differences later in life, and how these brain changes affect individual’s mental health. They may also help scientists develop treatments to prevent or treat mental illness in people who experienced a brain injury after a very early birth.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Friedman Brain Institute, Fishberg Department of Neuroscience, Icahn School of Medicine, New York, United States
| | - Michael Ap Bloomfield
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Division of Psychiatry, University College London, London, United Kingdom.,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Jasmin Kroll
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Vyacheslav R Karolis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Philip K McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Shitij Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
44
|
Murray RM, Bhavsar V, Tripoli G, Howes O. 30 Years on: How the Neurodevelopmental Hypothesis of Schizophrenia Morphed Into the Developmental Risk Factor Model of Psychosis. Schizophr Bull 2017; 43:1190-1196. [PMID: 28981842 PMCID: PMC5737804 DOI: 10.1093/schbul/sbx121] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
At its re-birth 30 years ago, the neurodevelopment hypothesis of schizophrenia focussed on aberrant genes and early neural hazards, but then it grew to include ideas concerning aberrant synaptic pruning in adolescence. The hypothesis had its own stormy development and it endured some difficult teenage years when a resurgence of interest in neurodegeneration threatened its survival. In early adult life, it over-reached itself with some reductionists claiming that schizophrenia was simply a neurodevelopmental disease. However, by age 30, the hypothesis has matured sufficiently to incorporated childhood and adult adversity, urban living and migration, as well as heavy cannabis use, as important risk factors. Thus, it morphed into the developmental risk factor model of psychosis and integrated new evidence concerning dysregulated striatal dopamine as the final step on the pathway linking risk factors to psychotic symptoms.
Collapse
Affiliation(s)
- Robin M Murray
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK,National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King’s College, London, UK,To whom correspondence should be addressed;
| | - Vishal Bhavsar
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Giada Tripoli
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK,Psychiatric Imaging Group, Clinical Science Centre, Imperial College, London, UK
| |
Collapse
|
45
|
Karolis VR, Froudist-Walsh S, Kroll J, Brittain PJ, Tseng CEJ, Nam KW, Reinders AATS, Murray RM, Williams SCR, Thompson PM, Nosarti C. Volumetric grey matter alterations in adolescents and adults born very preterm suggest accelerated brain maturation. Neuroimage 2017; 163:379-389. [PMID: 28942062 PMCID: PMC5725310 DOI: 10.1016/j.neuroimage.2017.09.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 09/19/2017] [Indexed: 11/18/2022] Open
Abstract
Previous research investigating structural neurodevelopmental alterations in individuals who were born very preterm demonstrated a complex pattern of grey matter changes that defy straightforward summary. Here we addressed this problem by characterising volumetric brain alterations in individuals who were born very preterm from adolescence to adulthood at three hierarchically related levels - global, modular and regional. We demarcated structural components that were either particularly resilient or vulnerable to the impact of very preterm birth. We showed that individuals who were born very preterm had smaller global grey matter volume compared to controls, with subcortical and medial temporal regions being particularly affected. Conversely, frontal and lateral parieto-temporal cortices were relatively resilient to the effects of very preterm birth, possibly indicating compensatory mechanisms. Exploratory analyses supported this hypothesis by showing a stronger association between lateral parieto-temporal volume and IQ in the very preterm group compared to controls. We then related these alterations to brain maturation processes. Very preterm individuals exhibited a higher maturation index compared to controls, indicating accelerated brain maturation and this was specifically associated with younger gestational age. We discuss how the findings of accelerated maturation might be reconciled with evidence of delayed maturation at earlier stages of development. Hierarchically related structural brain alterations in very preterm individuals span adolescence and adulthood. Structural volumetric components that showed resiliency in very preterm individuals were associated with higher IQ. Very preterm individuals showed accelerated brain maturation compared to a large dataset of term-born controls.
Collapse
Affiliation(s)
- Vyacheslav R Karolis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Sean Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jasmin Kroll
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip J Brittain
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Chieh-En Jane Tseng
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kie-Woo Nam
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Antje A T S Reinders
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Steven C R Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
46
|
Froudist-Walsh S, López-Barroso D, José Torres-Prioris M, Croxson PL, Berthier ML. Plasticity in the Working Memory System: Life Span Changes and Response to Injury. Neuroscientist 2017; 24:261-276. [PMID: 28691573 DOI: 10.1177/1073858417717210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Working memory acts as a key bridge between perception, long-term memory, and action. The brain regions, connections, and neurotransmitters that underlie working memory undergo dramatic plastic changes during the life span, and in response to injury. Early life reliance on deep gray matter structures fades during adolescence as increasing reliance on prefrontal and parietal cortex accompanies the development of executive aspects of working memory. The rise and fall of working memory capacity and executive functions parallels the development and loss of neurotransmitter function in frontal cortical areas. Of the affected neurotransmitters, dopamine and acetylcholine modulate excitatory-inhibitory circuits that underlie working memory, are important for plasticity in the system, and are affected following preterm birth and adult brain injury. Pharmacological interventions to promote recovery of working memory abilities have had limited success, but hold promise if used in combination with behavioral training and brain stimulation. The intense study of working memory in a range of species, ages and following injuries has led to better understanding of the intrinsic plasticity mechanisms in the working memory system. The challenge now is to guide these mechanisms to better improve or restore working memory function.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana López-Barroso
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain.,3 Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain.,3 Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Paula L Croxson
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,4 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcelo L Berthier
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain
| |
Collapse
|
47
|
Kaiser M. Mechanisms of Connectome Development. Trends Cogn Sci 2017; 21:703-717. [PMID: 28610804 DOI: 10.1016/j.tics.2017.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
At the centenary of D'Arcy Thompson's seminal work 'On Growth and Form', pioneering the description of principles of morphological changes during development and evolution, recent experimental advances allow us to study change in anatomical brain networks. Here, we outline potential principles for connectome development. We will describe recent results on how spatial and temporal factors shape connectome development in health and disease. Understanding the developmental origins of brain diseases in individuals will be crucial for deciding on personalized treatment options. We argue that longitudinal studies, experimentally derived parameters for connection formation, and biologically realistic computational models are needed to better understand the link between brain network development, network structure, and network function.
Collapse
Affiliation(s)
- Marcus Kaiser
- ICOS Research Group, School of Computing Science, Newcastle University, Newcastle upon Tyne, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
48
|
Johnson MH. Autism as an adaptive common variant pathway for human brain development. Dev Cogn Neurosci 2017; 25:5-11. [PMID: 28233663 PMCID: PMC6987822 DOI: 10.1016/j.dcn.2017.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 02/05/2023] Open
Abstract
While research on focal perinatal lesions has provided evidence for recovery of function, much less is known about processes of brain adaptation resulting from mild but widespread disturbances to neural processing over the early years (such as alterations in synaptic efficiency). Rather than being viewed as a direct behavioral consequence of life-long neural dysfunction, I propose that autism is best viewed as the end result of engaging adaptive processes during a sensitive period. From this perspective, autism is not appropriately described as a disorder of neurodevelopment, but rather as an adaptive common variant pathway of human functional brain development.
Collapse
Affiliation(s)
- Mark H Johnson
- Centre for Brain and Cognitive Development, Department of Psychological Science, Birkbeck, University of London, Henry Wellcome Building, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
49
|
Abstract
OBJECTIVES Children and adolescents who were born very preterm (≤32 weeks' gestation) are vulnerable to experiencing cognitive problems, including in executive function. However, it remains to be established whether cognitive deficits are evident in adulthood and whether these exert a significant effect on an individual's real-lifeachievement. METHODS Using a cross-sectional design, we tested a range of neurocognitive abilities, with a focus on executive function, in a sample of 122 very preterm individuals and 89 term-born controls born between 1979 and 1984. Associations between executive function and a range of achievement measures, indicative of a successful transition to adulthood, were examined. RESULTS Very preterm adults performed worse compared to controls on measures of intellectual ability and executive function with moderate to large effect sizes. They also demonstrated significantly lower achievement levels in terms of years spent in education, employment status, and on a measure of functioning in work and social domains. Results of regression analysis indicated a stronger positive association between executive function and real-life achievement in the very preterm group compared to controls. CONCLUSIONS Very preterm born adults demonstrate executive function impairments compared to full-term controls, and these are associated with lower achievement in several real-life domains. (JINS, 2017, 23, 381-389).
Collapse
|
50
|
Menegaux A, Meng C, Neitzel J, Bäuml JG, Müller HJ, Bartmann P, Wolke D, Wohlschläger AM, Finke K, Sorg C. Impaired visual short-term memory capacity is distinctively associated with structural connectivity of the posterior thalamic radiation and the splenium of the corpus callosum in preterm-born adults. Neuroimage 2017; 150:68-76. [DOI: 10.1016/j.neuroimage.2017.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 11/28/2022] Open
|