1
|
Carvour HM, Roemer CAEG, Underwood DP, Padilla ES, Sandoval O, Robertson M, Miller M, Parsadanyan N, Perry TW, Radke AK. Mu-opioid receptor knockout on Foxp2-expressing neurons reduces aversion-resistant alcohol drinking. Pharmacol Biochem Behav 2024; 247:173932. [PMID: 39647667 DOI: 10.1016/j.pbb.2024.173932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/23/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Mu-opioid receptors (MORs) in the amygdala and striatum are important in addictive and rewarding behaviors. The transcription factor Foxp2 is a genetic marker of intercalated (ITC) cells in the amygdala and a subset of striatal medium spiny neurons (MSNs), both of which express MORs in wild-type mice and are neuronal subpopulations of potential relevance to alcohol-drinking behaviors. For the current series of studies, we characterized the behavior of mice with genetic deletion of the MOR gene Oprm1 in Foxp2-expressing neurons (Foxp2-Cre/Oprm1fl/fl). Male and female Foxp2-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and homozygous Cre- (control) animals were tested for aversion-resistant alcohol consumption using an intermittent access (IA) task, operant responding for a sucrose reward, conditioned place aversion (CPA) to morphine withdrawal, and locomotor sensitization to morphine. The results demonstrate that deletion of MOR on Foxp2-expressing neurons renders mice more sensitive to quinine-adulterated alcohol. Mice with the deletion (vs. Cre- controls) also consumed less alcohol during the final sessions of the IA task, were less active at baseline and following morphine injection, and there was a trend toward less responding for sucrose under an FR3 schedule. Foxp2-MOR deletion did not impair the ability to learn to respond for reward or develop a conditioned aversion to morphine withdrawal. Together, these investigations demonstrate that Foxp2-expressing neurons may be involved in escalation of alcohol consumption and the development of compulsive-like alcohol drinking.
Collapse
Affiliation(s)
- Harrison M Carvour
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Charlotte A E G Roemer
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - D'Erick P Underwood
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Edith S Padilla
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Oscar Sandoval
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Megan Robertson
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Mallory Miller
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Natella Parsadanyan
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Thomas W Perry
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA.
| |
Collapse
|
2
|
Valle-Bautista R, Olivera-Acevedo M, Horta-Brussolo VR, Díaz NF, Ávila-González D, Molina-Hernández A. From songbird to humans: The multifaceted roles of FOXP2 in speech and motor learning. Neurosci Biobehav Rev 2024; 167:105936. [PMID: 39510218 DOI: 10.1016/j.neubiorev.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Motor learning involves a complex network of brain structures and is crucial for tasks like speech. The cerebral cortex, subcortical nuclei, and cerebellum are involved in motor learning and vocalization. Vocal learning has been demonstrated across species. However, it is a task that should be further studied and reevaluated, particularly in species considered non-vocal learners, to potentially uncover new insights. FOXP2, a transcription factor, has been implicated in speech learning and execution. Several variants have been involved in speech and cognitive impairments; the most studied is the R553H, found in the KE family, where more than half of the members show verbal dyspraxia. Brain FOXP2 expression shows consistent patterns across species in regions associated with motor learning and execution. Animal models expressing mutated FOXP2 showed impaired motor learning and vocalization. Genes regulated by FOXP2 are related to neural differentiation, connectivity, and synaptic plasticity, indicating its role in brain development and function. This review explores the intricate relationship between FOXP2, motor learning, and speech in an anatomical and functional context.
Collapse
Affiliation(s)
- Rocío Valle-Bautista
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Monserrath Olivera-Acevedo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Instituto Tecnológico de Monterrey Campus Ciudad de México, Escuela de Medicina y Ciencias de la Salud, Colombia
| | - Victoria Regina Horta-Brussolo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV-IPN, Ciudad de México, México
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Daniela Ávila-González
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico.
| |
Collapse
|
3
|
Wang S, Dan YL, Yang Y, Tian Y. The shared genetic etiology of antisocial behavior and psychiatric disorders: Insights from pleiotropy and causality analysis. J Affect Disord 2024; 365:534-541. [PMID: 39187189 DOI: 10.1016/j.jad.2024.08.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Antisocial behavior (ASB) infringes on the rights of others and significantly disrupts social order. Studies have shown that ASB is phenotypically associated with various psychiatric disorders. However, these studies often neglected the importance of genetic foundations. METHODS This study utilized genome-wide association studies and pleiotropy analysis to explore the genetic correlation between ASB and psychiatric disorders. Linkage disequilibrium score regression (LDSC) and high-definition likelihood (HDL) methods were employed to assess genetic correlations, and the PLACO method was used for pleiotropy analysis. Functional annotation and biological pathway analysis of identified pleiotropic genes were performed using enrichment analysis. Furthermore, Mendelian randomization (MR) analysis was conducted to validate these causal relationships. RESULTS LDSC and HDL analysis showed that significant positive genetic correlations were between ASB and attention deficit hyperactivity disorder (ADHD), schizophrenia (SCZ), major depressive disorder (MDD), and post-traumatic stress disorder (PTSD). Multiple potential pleiotropic genetic loci were identified, particularly the FOXP2 and MDFIC genes located at the 7q31.1 locus. Enrichment analysis showed that these pleiotropic genes are highly expressed in several brain regions (such as the hypothalamus, cerebellar hemisphere, cortex, and amygdala) and immune-related cells. MR analysis further confirmed the causal effects ADHD, SCZ, and MDD on ASB risk. CONCLUSION This study reveals significant genetic correlations and potential causal mechanisms between ASB and various psychiatric disorders. The MR analysis confirmed the causal effects of psychiatric disorders on ASB. These findings deepen our understanding of the genetic architecture of psychiatric disorders and ASB.
Collapse
Affiliation(s)
- Shaoyang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University. Hefei, Anhui, 230001, China
| | - Yi-Lin Dan
- Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu, China
| | - Yiqun Yang
- Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University. Hefei, Anhui, 230001, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, 230022, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center. Hefei, Anhui, 230088, China; Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| |
Collapse
|
4
|
Li Q, Yu ZP, Li YG, Tang ZH, Hu YF, Wang MJ, Shen HW. Single-nucleus RNA-sequencing of orbitofrontal cortex in rat model of methamphetamine-induced sensitization. Neurosci Lett 2024; 841:137953. [PMID: 39214331 DOI: 10.1016/j.neulet.2024.137953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The behavioral sensitization, characterized by escalated behavioral responses triggered by recurrent exposure to psychostimulants, involves neurobiological mechanisms that are brain-region and cell-type specific. Enduring neuroadaptive changes have been observed in response to methamphetamine (METH) within the orbitofrontal cortex (OFC), the cell-type specific transcriptional alterations in response to METH sensitization remain understudied. In this study, we utilized Single-nucleus RNA-sequencing (snRNA-seq) to profile the gene expression changes in the OFC of a rat METH sensitization model. The analyses of differentially expressed genes (DEGs) unveiled cell-type specific transcriptional reactions associated with METH sensitization, with the most significant alterations documented in microglial cells. Bioinformatic investigations revealed that distinct functional and signaling pathways enriched in microglia-specific DEGs majorly involved in macroautophagy processes and the activation of N-methyl-D-aspartate ionotropic glutamate receptors (NMDAR). To validate the translational relevance of our findings, we analyzed our snRNA-seq data in conjunction with a transcriptomic study of individuals with opioid use disorder (OUD) and a large-scale Genome-Wide Association Studies (GWAS) from multiple externalizing phenotypes related to drug addiction. The validation analysis confirmed the consistent expression changes of key microglial DEGs in human METH addiction. Moreover, the integration with GWAS data revealed associations between addiction risk genes and the DEGs observed in specific cell types, particularly microglia and excitatory neurons. Our study highlights the importance of cell-type specific transcriptional alterations in the OFC in the context of METH sensitization and their potential translational relevance to human drug addiction.
Collapse
Affiliation(s)
- Qiong Li
- Department of Pharmacology, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Zhi-Peng Yu
- Department of Pharmacology, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Faculty of Electrical Engineering and Computer Science, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Yan-Guo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zi-Hang Tang
- Department of Pharmacology, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Yong-Feng Hu
- Department of Pharmacology, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Ma-Jie Wang
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang 315201, China
| | - Hao-Wei Shen
- Department of Pharmacology, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang 315201, China.
| |
Collapse
|
5
|
Carvour HM, Roemer CA, Underwood DP, Padilla ES, Sandoval O, Robertson M, Miller M, Parsadanyan N, Perry TW, Radke AK. Mu-opioid receptor knockout on Foxp2-expressing neurons reduces aversion-resistant alcohol drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569252. [PMID: 38077082 PMCID: PMC10705460 DOI: 10.1101/2023.11.29.569252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Mu-opioid receptors (MORs) in the amygdala and striatum are important in addictive and rewarding behaviors. The transcription factor Foxp2 is a genetic marker of intercalated (ITC) cells in the amygdala and a subset of striatal medium spiny neurons (MSNs), both of which express MORs in wild-type mice and are neuronal subpopulations of potential relevance to alcohol-drinking behaviors. For the current series of studies, we characterized the behavior of mice with genetic deletion of the MOR gene Oprm1 in Foxp2-expressing neurons (Foxp2-Cre/Oprm1fl/fl). Male and female Foxp2-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and homozygous Cre- (control) animals were tested for aversion-resistant alcohol consumption using an intermittent access (IA) task, operant responding for a sucrose reward, conditioned place aversion (CPA) to morphine withdrawal, and locomotor sensitization to morphine. The results demonstrate that deletion of MOR on Foxp2-expressing neurons renders mice more sensitive to quinine-adulterated ethanol (EtOH). Mice with the deletion (vs. Cre- controls) also consumed less alcohol during the final sessions of the IA task, responded less for sucrose under an FR3 schedule, and were less active at baseline and following morphine injection. Foxp2-MOR deletion did not impair the ability to learn to respond for reward or develop a conditioned aversion to morphine withdrawal. Together, these investigations demonstrate that Foxp2-expressing neurons may be involved in escalation of alcohol consumption and the development of compulsive-like alcohol drinking.
Collapse
|
6
|
Ahmed NI, Khandelwal N, Anderson AG, Oh E, Vollmer RM, Kulkarni A, Gibson JR, Konopka G. Compensation between FOXP transcription factors maintains proper striatal function. Cell Rep 2024; 43:114257. [PMID: 38761373 PMCID: PMC11234887 DOI: 10.1016/j.celrep.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/05/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
Spiny projection neurons (SPNs) of the striatum are critical in integrating neurochemical information to coordinate motor and reward-based behavior. Mutations in the regulatory transcription factors expressed in SPNs can result in neurodevelopmental disorders (NDDs). Paralogous transcription factors Foxp1 and Foxp2, which are both expressed in the dopamine receptor 1 (D1) expressing SPNs, are known to have variants implicated in NDDs. Utilizing mice with a D1-SPN-specific loss of Foxp1, Foxp2, or both and a combination of behavior, electrophysiology, and cell-type-specific genomic analysis, loss of both genes results in impaired motor and social behavior as well as increased firing of the D1-SPNs. Differential gene expression analysis implicates genes involved in autism risk, electrophysiological properties, and neuronal development and function. Viral-mediated re-expression of Foxp1 into the double knockouts is sufficient to restore electrophysiological and behavioral deficits. These data indicate complementary roles between Foxp1 and Foxp2 in the D1-SPNs.
Collapse
Affiliation(s)
- Newaz I Ahmed
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Nitin Khandelwal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashley G Anderson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Emily Oh
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Rachael M Vollmer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Jay R Gibson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
7
|
He BH, Yang YH, Hsiao BW, Lin WT, Chuang YF, Chen SY, Liu FC. Foxp2 Is Required for Nucleus Accumbens-mediated Multifaceted Limbic Function. Neuroscience 2024; 542:33-46. [PMID: 38354901 DOI: 10.1016/j.neuroscience.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The forkhead box protein P2 (Foxp2), initially identified for its role in speech and language development, plays an important role in neural development. Previous studies investigated the function of the Foxp2 gene by deleting or mutating Foxp2 from developmental stages. Little is known about its physiological function in adult brains. Although Foxp2 has been well studied in the dorsal striatum, its function in the nucleus accumbens (NAc) of the ventral striatum remains elusive. Here, we examine the physiological function of Foxp2 in NAc of mouse brains. We conditionally knocked out Foxp2 by microinjections of AAV-EGFP-Cre viruses into the medial shell of NAc of Foxp2 floxed (cKO) mice. Immunostaining showed increased c-Fos positive cells in cKO NAc at basal levels, suggesting an abnormality in Foxp2-deficient NAc cells. Unbiased behavioral profiling of Foxp2 cKO mice showed abnormalities in limbic-associated function. Foxp2 cKO mice exhibited abnormal social novelty without preference for interaction with strangers and familiar mice. In appetitive reward learning, Foxp2 cKO mice failed to learn the time expectancy of food delivery. In fear learning, Foxp2 cKO mice exhibited abnormal increases in freezing levels in response to tone paired with foot shock during fear conditioning. The extinction of the fear response was also altered in Foxp2 cKO mice. In contrast, conditional knockout of Foxp2 in NAc did not affect locomotion, motor coordination, thermal pain sensation, anxiety- and depression-like behaviors. Collectively, our study suggests that Foxp2 has a multifaceted physiological role in NAc in the regulation of limbic function in the adult brain.
Collapse
Affiliation(s)
- Bo-Han He
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ya-Hui Yang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Bo-Wen Hsiao
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wan-Ting Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Fang Chuang
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
8
|
Guo X, Ning J, Chen Y, Liu G, Zhao L, Fan Y, Sun S. Recent advances in differential expression analysis for single-cell RNA-seq and spatially resolved transcriptomic studies. Brief Funct Genomics 2024; 23:95-109. [PMID: 37022699 DOI: 10.1093/bfgp/elad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Differential expression (DE) analysis is a necessary step in the analysis of single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) data. Unlike traditional bulk RNA-seq, DE analysis for scRNA-seq or SRT data has unique characteristics that may contribute to the difficulty of detecting DE genes. However, the plethora of DE tools that work with various assumptions makes it difficult to choose an appropriate one. Furthermore, a comprehensive review on detecting DE genes for scRNA-seq data or SRT data from multi-condition, multi-sample experimental designs is lacking. To bridge such a gap, here, we first focus on the challenges of DE detection, then highlight potential opportunities that facilitate further progress in scRNA-seq or SRT analysis, and finally provide insights and guidance in selecting appropriate DE tools or developing new computational DE methods.
Collapse
Affiliation(s)
- Xiya Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Ning
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuanze Chen
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guoliang Liu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liyan Zhao
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yue Fan
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shiquan Sun
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
9
|
Choi TY, Jeon H, Jeong S, Kim EJ, Kim J, Jeong YH, Kang B, Choi M, Koo JW. Distinct prefrontal projection activity and transcriptional state conversely orchestrate social competition and hierarchy. Neuron 2024; 112:611-627.e8. [PMID: 38086372 DOI: 10.1016/j.neuron.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 02/24/2024]
Abstract
Social animals compete for limited resources, resulting in a social hierarchy. Although different neuronal subpopulations in the medial prefrontal cortex (mPFC), which has been mechanistically implicated in social dominance behavior, encode distinct social competition behaviors, their identities and associated molecular underpinnings have not yet been identified. In this study, we found that mPFC neurons projecting to the nucleus accumbens (mPFC-NAc) encode social winning behavior, whereas mPFC neurons projecting to the ventral tegmental area (mPFC-VTA) encode social losing behavior. High-throughput single-cell transcriptomic analysis and projection-specific genetic manipulation revealed that the expression level of POU domain, class 3, transcription factor 1 (Pou3f1) in mPFC-VTA neurons controls social hierarchy. Optogenetic activation of mPFC-VTA neurons increases Pou3f1 expression and lowers social rank. Together, these data demonstrate that discrete activity and gene expression in separate mPFC projections oppositely orchestrate social competition and hierarchy.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hyoungseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eum Ji Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jeongseop Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea
| | - Yun Ha Jeong
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Byungsoo Kang
- Sysoft R&D Center, Daegu 41065, Republic of Korea; Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea.
| |
Collapse
|
10
|
Prakash N, Matos HY, Sebaoui S, Tsai L, Tran T, Aromolaran A, Atrachji I, Campbell N, Goodrich M, Hernandez-Pineda D, Jesus Herrero M, Hirata T, Lischinsky J, Martinez W, Torii S, Yamashita S, Hosseini H, Sokolowski K, Esumi S, Kawasawa YI, Hashimoto-Torii K, Jones KS, Corbin JG. Connectivity and molecular profiles of Foxp2- and Dbx1-lineage neurons in the accessory olfactory bulb and medial amygdala. J Comp Neurol 2024; 532:e25545. [PMID: 37849047 PMCID: PMC10922300 DOI: 10.1002/cne.25545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
In terrestrial vertebrates, the olfactory system is divided into main (MOS) and accessory (AOS) components that process both volatile and nonvolatile cues to generate appropriate behavioral responses. While much is known regarding the molecular diversity of neurons that comprise the MOS, less is known about the AOS. Here, focusing on the vomeronasal organ (VNO), the accessory olfactory bulb (AOB), and the medial amygdala (MeA), we reveal that populations of neurons in the AOS can be molecularly subdivided based on their ongoing or prior expression of the transcription factors Foxp2 or Dbx1, which delineate separate populations of GABAergic output neurons in the MeA. We show that a majority of AOB neurons that project directly to the MeA are of the Foxp2 lineage. Using single-neuron patch-clamp electrophysiology, we further reveal that in addition to sex-specific differences across lineage, the frequency of excitatory input to MeA Dbx1- and Foxp2-lineage neurons differs between sexes. Together, this work uncovers a novel molecular diversity of AOS neurons, and lineage and sex differences in patterns of connectivity.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Heidi Y Matos
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Sonia Sebaoui
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Luke Tsai
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Tuyen Tran
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Adejimi Aromolaran
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Isabella Atrachji
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Nya Campbell
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Meredith Goodrich
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - David Hernandez-Pineda
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Maria Jesus Herrero
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Tsutomu Hirata
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Julieta Lischinsky
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Wendolin Martinez
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Shisui Torii
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Hassan Hosseini
- Department of Pharmacology, University of Michigan Medical
School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan
Medical School, Ann Arbor, MI 48109, USA
| | - Katie Sokolowski
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Shigeyuki Esumi
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, PA, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Kevin S Jones
- Department of Pharmacology, University of Michigan Medical
School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan
Medical School, Ann Arbor, MI 48109, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| |
Collapse
|
11
|
Usui N. Possible roles of deep cortical neurons and oligodendrocytes in the neural basis of human sociality. Anat Sci Int 2024; 99:34-47. [PMID: 38010534 PMCID: PMC10771383 DOI: 10.1007/s12565-023-00747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Sociality is an instinctive property of organisms that live in relation to others and is a complex characteristic of higher order brain functions. However, the evolution of the human brain to acquire higher order brain functions, such as sociality, and the neural basis for executing these functions and their control mechanisms are largely unknown. Several studies have attempted to evaluate how human sociality was acquired during the course of evolution and the mechanisms controlling sociality from a neurodevelopment viewpoint. This review discusses these findings in the context of human brain evolution and the pathophysiology of autism spectrum disorder (ASD). Comparative genomic studies of postmortem primate brains have demonstrated human-specific regulatory mechanisms underlying higher order brain functions, providing evidence for the contribution of oligodendrocytes to human brain function. Functional analyses of the causative genes of ASD in animal models have demonstrated that the neural basis of social behavior is associated with layer 6 (L6) of the neocortex and oligodendrocytes. These findings demonstrate that both neurons and oligodendrocytes contribute to the neural basis and molecular mechanisms underlying human brain evolution and social functioning. This review provides novel insights into sociability and the corresponding neural bases of brain disorders and evolution.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan.
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
| |
Collapse
|
12
|
Lin LC, Cole RC, Greenlee JDW, Narayanan NS. A Pilot Study of Ex Vivo Human Prefrontal RNA Transcriptomics in Parkinson's Disease. Cell Mol Neurobiol 2023; 43:3037-3046. [PMID: 36952070 PMCID: PMC10566549 DOI: 10.1007/s10571-023-01334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
Parkinson's disease (PD) can dramatically change cortical neurophysiology. The molecular basis for PD-related cortical changes is unclear because gene expression data are usually derived from postmortem tissue collected at the end of a complex disease and they profoundly change in the minutes after death. Here, we studied cortical changes in tissue from the prefrontal cortex of living PD patients undergoing deep-brain stimulation implantation surgery. We examined 780 genes using the NanoString nCounter platform and found that 40 genes were differentially expressed between PD (n = 12) and essential tremor (ET; n = 9) patients. One of these 40 genes, STAT1, correlated with intraoperative 4-Hz rhythms and intraoperative performance of an oddball reaction-time task. Using a pre-designed custom panel of 780 targets, we compared these intraoperative data with those from a separate cohort of fresh-frozen tissue from the same frontal region in postmortem human PD donors (n = 6) and age-matched neurotypical controls (n = 6). This cohort revealed 279 differentially expressed genes. Fifteen of the 40 intraoperative PD-specific genes overlapped with postmortem PD-specific genes, including CALB2 and FOXP2. Transcriptomic analyses identified pathway changes in PD that had not been previously observed in postmortem cases. These molecular signatures of cortical function and dysfunction may help us better understand cognitive and neuropsychiatric aspects of PD.
Collapse
Affiliation(s)
- Li-Chun Lin
- Iowa Neuroscience Institute, Iowa City, IA, 52242, USA
- Department of Neuroscience and Pharmacology, Iowa City, IA, 52242, USA
- Department of Neurology, Iowa City, IA, 52242, USA
| | | | - Jeremy D W Greenlee
- Iowa Neuroscience Institute, Iowa City, IA, 52242, USA
- Department of Neurosurgery, Iowa City, IA, 52242, USA
| | - Nandakumar S Narayanan
- Iowa Neuroscience Institute, Iowa City, IA, 52242, USA.
- Department of Neurology, Iowa City, IA, 52242, USA.
| |
Collapse
|
13
|
Ahmed NI, Khandelwal N, Anderson AG, Kulkarni A, Gibson J, Konopka G. Compensation between FOXP transcription factors maintains proper striatal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546567. [PMID: 37425820 PMCID: PMC10327074 DOI: 10.1101/2023.06.26.546567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Spiny projection neurons (SPNs) of the striatum are critical in integrating neurochemical information to coordinate motor and reward-based behavior. Mutations in the regulatory transcription factors expressed in SPNs can result in neurodevelopmental disorders (NDDs). Paralogous transcription factors Foxp1 and Foxp2, which are both expressed in the dopamine receptor 1 (D1) expressing SPNs, are known to have variants implicated in NDDs. Utilizing mice with a D1-SPN specific loss of Foxp1, Foxp2, or both and a combination of behavior, electrophysiology, and cell-type specific genomic analysis, loss of both genes results in impaired motor and social behavior as well as increased firing of the D1-SPNs. Differential gene expression analysis implicates genes involved in autism risk, electrophysiological properties, and neuronal development and function. Viral mediated re-expression of Foxp1 into the double knockouts was sufficient to restore electrophysiological and behavioral deficits. These data indicate complementary roles between Foxp1 and Foxp2 in the D1-SPNs.
Collapse
Affiliation(s)
- Newaz I. Ahmed
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Nitin Khandelwal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashley G. Anderson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Jay Gibson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Lead Contact
| |
Collapse
|
14
|
Meyer GP, da Silva BS, Bandeira CE, Tavares MEA, Cupertino RB, Oliveira EP, Müller D, Kappel DB, Teche SP, Vitola ES, Rohde LA, Rovaris DL, Grevet EH, Bau CHD. Dissecting the cross-trait effects of the FOXP2 GWAS hit on clinical and brain phenotypes in adults with ADHD. Eur Arch Psychiatry Clin Neurosci 2023; 273:15-24. [PMID: 35279744 DOI: 10.1007/s00406-022-01388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
Abstract
The Forkhead box P2 (FOXP2) encodes for a transcription factor with a broad role in embryonic development. It is especially represented among GWAS hits for neurodevelopmental disorders and related traits, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, neuroticism, and risk-taking behaviors. While several functional studies are underway to understand the consequences of FOXP2 variation, this study aims to expand previous findings to clinically and genetically related phenotypes and neuroanatomical features among subjects with ADHD. The sample included 407 adults with ADHD and 463 controls. Genotyping was performed on the Infinium PsychArray-24 BeadChip, and the FOXP2 gene region was extracted. A gene-wide approach was adopted to evaluate the combined effects of FOXP2 variants (n = 311) on ADHD status, severity, comorbidities, and personality traits. Independent risk variants presenting potential functional effects were further tested for association with cortical surface areas in a subsample of cases (n = 87). The gene-wide analyses within the ADHD sample showed a significant association of the FOXP2 gene with harm avoidance (P = 0.001; PFDR = 0.015) and nominal associations with hyperactivity symptoms (P = 0.026; PFDR = 0.130) and antisocial personality disorder (P = 0.026; PFDR = 0.130). An insertion/deletion variant (rs79622555) located downstream of FOXP2 was associated with the three outcomes and nominally with the surface area of superior parietal and anterior cingulate cortices. Our results extend and refine previous GWAS findings pointing to a role of FOXP2 in several neurodevelopment-related phenotypes, mainly those involving underlying symptomatic domains of self-regulation and inhibitory control. Taken together, the available evidence may constitute promising insights into the puzzle of the FOXP2-related pathophysiology.
Collapse
Affiliation(s)
- Gabriela Pessin Meyer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Santos da Silva
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cibele Edom Bandeira
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Eduarda Araujo Tavares
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eduarda Pereira Oliveira
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diana Müller
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Djenifer B Kappel
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales
| | - Stefania Pigatto Teche
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Schneider Vitola
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis Augusto Rohde
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diego Luiz Rovaris
- Departamento de Fisiologia e Biofisica, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Eugenio Horacio Grevet
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton Henrique Dotto Bau
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil. .,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil. .,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
15
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
16
|
Obray JD, Landin JD, Vaughan DT, Scofield MD, Chandler LJ. Adolescent alcohol exposure reduces dopamine 1 receptor modulation of prelimbic neurons projecting to the nucleus accumbens and basolateral amygdala. ADDICTION NEUROSCIENCE 2022; 4:100044. [PMID: 36643604 PMCID: PMC9836047 DOI: 10.1016/j.addicn.2022.100044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Binge drinking during adolescence is highly prevalent despite increasing evidence of its long-term impact on behaviors associated with modulation of behavioral flexibility by the medial prefrontal cortex (mPFC). In the present study, male and female rats underwent adolescent intermittent ethanol (AIE) exposure by vapor inhalation. After aging to adulthood, retrograde bead labelling and viral tagging were used to identify populations of neurons in the prelimbic region (PrL) of the mPFC that project to specific subcortical targets. Electrophysiological recording from bead-labelled neurons in PrL slices revealed that AIE did not alter the intrinsic excitability of PrL neurons that projected to either the NAc or the BLA. Similarly, recordings of spontaneous inhibitory and excitatory post-synaptic currents revealed no AIE-induced changes in synaptic drive onto either population of projection neurons. In contrast, AIE exposure was associated with a loss of dopamine receptor 1 (D1), but no change in dopamine receptor 2 (D2), modulation of evoked firing of both populations of projection neurons. Lastly, confocal imaging of proximal and apical dendritic tufts of viral-labelled PrL neurons that projected to the nucleus accumbens (NAc) revealed AIE did not alter the density of dendritic spines. Together, these observations provide evidence that AIE exposure results in disruption of D1 receptor modulation of PrL inputs to at least two major subcortical target regions that have been implicated in AIE-induced long-term changes in behavioral control.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Justine D. Landin
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Dylan T. Vaughan
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Michael D. Scofield
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA,Department of Anesthesiology, Medical University of South Carolina, Charleston SC, USA
| | - L. Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA,Corresponding author. (L.J. Chandler)
| |
Collapse
|
17
|
Doi M, Li M, Usui N, Shimada S. Genomic Strategies for Understanding the Pathophysiology of Autism Spectrum Disorder. Front Mol Neurosci 2022; 15:930941. [PMID: 35813066 PMCID: PMC9263364 DOI: 10.3389/fnmol.2022.930941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Recent breakthroughs in sequencing technology and technological developments have made it easier to analyze the entire human genome than ever before. In addition to disease-specific genetic mutations and chromosomal aberrations, epigenetic alterations in individuals can also be analyzed using genomics. Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) caused by genetic and/or environmental factors. More than a thousand genes associated with ASD have been identified which are known to be involved in brain development. However, it is difficult to decode the roles of ASD-associated genes without in vitro and in vivo validations, particularly in the process of brain development. In this review, we discuss genomic strategies for understanding the pathological mechanisms underlying ASD. For this purpose, we discuss ASD-associated genes and their functions, as well as analytical strategies and their strengths and weaknesses in cellular and animal models from a basic research perspective.
Collapse
Affiliation(s)
- Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Mengwei Li
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- *Correspondence: Noriyoshi Usui
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
18
|
Wong PCM, Kang X, So HC, Choy KW. Contributions of common genetic variants to specific languages and to when a language is learned. Sci Rep 2022; 12:580. [PMID: 35022429 PMCID: PMC8755716 DOI: 10.1038/s41598-021-04163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Research over the past two decades has identified a group of common genetic variants explaining a portion of variance in native language ability. The present study investigates whether the same group of genetic variants are associated with different languages and languages learned at different times in life. We recruited 940 young adults who spoke from childhood Chinese and English as their first (native) (L1) and second (L2) language, respectively, who were learners of a new, third (L3) language. For the variants examined, we found a general decrease of contribution of genes to language functions from native to foreign (L2 and L3) languages, with variance in foreign languages explained largely by non-genetic factors such as musical training and motivation. Furthermore, genetic variants that were found to contribute to traits specific to Chinese and English respectively exerted the strongest effects on L1 and L2. These results seem to speak against the hypothesis of a language- and time-universal genetic core of linguistic functions. Instead, they provide preliminary evidence that genetic contribution to language may depend at least partly on the intricate language-specific features. Future research including a larger sample size, more languages and more genetic variants is required to further explore these hypotheses.
Collapse
Affiliation(s)
- Patrick C M Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Xin Kang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Research Centre for Language, Cognition and Language Application, Chongqing University, Chongqing, China. .,School of Foreign Languages and Cultures, Chongqing University, Chongqing, China.
| | - Hon-Cheong So
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obsterics and Gynecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
19
|
Haghighatfard A, Yaghoubi asl E, Bahadori RA, Aliabadian R, Farhadi M, Mohammadpour F, Tabrizi Z. FOXP2 down expression is associated with executive dysfunctions and electrophysiological abnormalities of brain in Autism spectrum disorder; a neuroimaging genetic study. AUTISM & DEVELOPMENTAL LANGUAGE IMPAIRMENTS 2022; 7:23969415221126391. [PMID: 36382065 PMCID: PMC9620679 DOI: 10.1177/23969415221126391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by language impairment, and challenges with social interaction, communication, and repetitive behaviors. Although genetics are a primary cause of ASD, the exact genes and molecular mechanisms involved in its pathogenesis are not completely clear. The FOXP2 gene encodes a transcription factor that is known for its major role in language development and severe speech problems. The present study aimed to evaluate the role of FOXP2 in ASD etiology, executive functions, and brain activities. METHODS In the present study, we recruited 450 children with ASD and 490 neurotypical control children. Three domains of executive functions (working memory, response inhibition, and vigilance) were assessed. In addition, five-minute eyes closed electroencephalography was obtained from some of the children with ASD and neurotypical children. DNA sequence and expression level of FOXP2 in blood samples of children with ASD and the control group were evaluated by using sequencing and Real-time PCR, respectively. RESULTS The results showed no mutations but a significant down expression of FOXP2 genes in children with ASD vs. neurotypical children. Several cognitive and executive function deficiencies were detected in children with ASD. Low alpha and gamma bands in the frontal lobe and high theta bands in the occipital lobe were revealed in children with ASD. We also found several correlations between FOXP2 expression levels and clinical assessments. CONCLUSIONS Our finding revealed the down expression of FOXP2, which could be considered as a biomarker for ASD as well as cognitive and executive dysfunction. Based on brain mapping data, FOXP2 may be related to the theta wave abnormality of children with ASD. FOXP2 may be considered a target of novel treatment to improve memory and executive functions. IMPLICATIONS Our findings highlight the role of FOXP2 mRNA level in ASD etiology, executive functions, and brain wave frequencies.
Collapse
Affiliation(s)
- Arvin Haghighatfard
- Arvin Haghighatfard, Department of Biology,
North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Elham Yaghoubi asl
- Department of neuroscience, Iran University of medical
sciences, Tehran, Iran
| | | | - Rojina Aliabadian
- Department of Genetics, Faculty of Advanced
Science and Technology, Tehran Medical Sciences, Islamic Azad
University, Tehran, Iran
| | - Mahdi Farhadi
- Department of biology, science and research
Branch, Islamic Azad
University, Tehran, Iran
| | - Fatemeh Mohammadpour
- Neuroimaging genetic laboratory, Arvin Gene
Company, Tehran, Iran
- Department of biology, university of
Guilan, Rasht, Iran
| | - Zeinab Tabrizi
- Neuroimaging genetic laboratory, Arvin Gene
Company, Tehran, Iran
| |
Collapse
|
20
|
Increased locomotor activity via regulation of GABAergic signalling in foxp2 mutant zebrafish-implications for neurodevelopmental disorders. Transl Psychiatry 2021; 11:529. [PMID: 34650032 PMCID: PMC8517032 DOI: 10.1038/s41398-021-01651-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the genetics of neurodevelopmental disorders (NDDs) have identified the transcription factor FOXP2 as one of numerous risk genes, e.g. in autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). FOXP2 function is suggested to be involved in GABAergic signalling and numerous studies demonstrate that GABAergic function is altered in NDDs, thus disrupting the excitation/inhibition balance. Interestingly, GABAergic signalling components, including glutamate-decarboxylase 1 (Gad1) and GABA receptors, are putative transcriptional targets of FOXP2. However, the specific role of FOXP2 in the pathomechanism of NDDs remains elusive. Here we test the hypothesis that Foxp2 affects behavioural dimensions via GABAergic signalling using zebrafish as model organism. We demonstrate that foxp2 is expressed by a subset of GABAergic neurons located in brain regions involved in motor functions, including the subpallium, posterior tuberculum, thalamus and medulla oblongata. Using CRISPR/Cas9 gene-editing we generated a novel foxp2 zebrafish loss-of-function mutant that exhibits increased locomotor activity. Further, genetic and/or pharmacological disruption of Gad1 or GABA-A receptors causes increased locomotor activity, resembling the phenotype of foxp2 mutants. Application of muscimol, a GABA-A receptor agonist, rescues the hyperactive phenotype induced by the foxp2 loss-of-function. By reverse translation of the therapeutic effect on hyperactive behaviour exerted by methylphenidate, we note that application of methylphenidate evokes different responses in wildtype compared to foxp2 or gad1b loss-of-function animals. Together, our findings support the hypothesis that foxp2 regulates locomotor activity via GABAergic signalling. This provides one targetable mechanism, which may contribute to behavioural phenotypes commonly observed in NDDs.
Collapse
|
21
|
Squair JW, Gautier M, Kathe C, Anderson MA, James ND, Hutson TH, Hudelle R, Qaiser T, Matson KJE, Barraud Q, Levine AJ, La Manno G, Skinnider MA, Courtine G. Confronting false discoveries in single-cell differential expression. Nat Commun 2021; 12:5692. [PMID: 34584091 PMCID: PMC8479118 DOI: 10.1038/s41467-021-25960-2] [Citation(s) in RCA: 363] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Differential expression analysis in single-cell transcriptomics enables the dissection of cell-type-specific responses to perturbations such as disease, trauma, or experimental manipulations. While many statistical methods are available to identify differentially expressed genes, the principles that distinguish these methods and their performance remain unclear. Here, we show that the relative performance of these methods is contingent on their ability to account for variation between biological replicates. Methods that ignore this inevitable variation are biased and prone to false discoveries. Indeed, the most widely used methods can discover hundreds of differentially expressed genes in the absence of biological differences. To exemplify these principles, we exposed true and false discoveries of differentially expressed genes in the injured mouse spinal cord.
Collapse
Affiliation(s)
- Jordan W Squair
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Matthieu Gautier
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Claudia Kathe
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Mark A Anderson
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicholas D James
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Thomas H Hutson
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Rémi Hudelle
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Taha Qaiser
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gioele La Manno
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael A Skinnider
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
22
|
Palaniyappan L. Dissecting the neurobiology of linguistic disorganisation and impoverishment in schizophrenia. Semin Cell Dev Biol 2021; 129:47-60. [PMID: 34507903 DOI: 10.1016/j.semcdb.2021.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/13/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Schizophrenia provides a quintessential disease model of how disturbances in the molecular mechanisms of neurodevelopment lead to disruptions in the emergence of cognition. The central and often persistent feature of this illness is the disorganisation and impoverishment of language and related expressive behaviours. Though clinically more prominent, the periodic perceptual distortions characterised as psychosis are non-specific and often episodic. While several insights into psychosis have been gained based on study of the dopaminergic system, the mechanistic basis of linguistic disorganisation and impoverishment is still elusive. Key findings from cellular to systems-level studies highlight the role of ubiquitous, inhibitory processes in language production. Dysregulation of these processes at critical time periods, in key brain areas, provides a surprisingly parsimonious account of linguistic disorganisation and impoverishment in schizophrenia. This review links the notion of excitatory/inhibitory (E/I) imbalance at cortical microcircuits to the expression of language behaviour characteristic of schizophrenia, through the building blocks of neurochemistry, neurophysiology, and neurocognition.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry,University of Western Ontario, London, Ontario, Canada; Robarts Research Institute,University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
23
|
den Hoed J, Devaraju K, Fisher SE. Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep 2021; 22:e52803. [PMID: 34260143 PMCID: PMC8339667 DOI: 10.15252/embr.202152803] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
The discovery of the FOXP2 transcription factor, and its implication in a rare severe human speech and language disorder, has led to two decades of empirical studies focused on uncovering its roles in the brain using a range of in vitro and in vivo methods. Here, we discuss what we have learned about the regulation of FOXP2, its downstream effectors, and its modes of action as a transcription factor in brain development and function, providing an integrated overview of what is currently known about the critical molecular networks.
Collapse
Affiliation(s)
- Joery den Hoed
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- International Max Planck Research School for Language SciencesMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Karthikeyan Devaraju
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Simon E Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
24
|
Salem NA, Mahnke AH, Konganti K, Hillhouse AE, Miranda RC. Cell-type and fetal-sex-specific targets of prenatal alcohol exposure in developing mouse cerebral cortex. iScience 2021; 24:102439. [PMID: 33997709 PMCID: PMC8105653 DOI: 10.1016/j.isci.2021.102439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Prenatal alcohol exposure (PAE) results in cerebral cortical dysgenesis. Single-cell RNA sequencing was performed on murine fetal cerebral cortical cells from six timed pregnancies, to decipher persistent cell- and sex-specific effects of an episode of PAE during early neurogenesis. We found, in an analysis of 38 distinct neural subpopulations across 8 lineage subtypes, that PAE altered neural maturation and cell cycle and disrupted gene co-expression networks. Whereas most differentially regulated genes were inhibited, particularly in females, PAE also induced sex-independent neural expression of fetal hemoglobin, a presumptive epigenetic stress adaptation. PAE inhibited Bcl11a, Htt, Ctnnb1, and other upstream regulators of differentially expressed genes and inhibited several autism-linked genes, suggesting that neurodevelopmental disorders share underlying mechanisms. PAE females exhibited neural loss of X-inactivation, with correlated activation of autosomal genes and evidence for spliceosome dysfunction. Thus, episodic PAE persistently alters the developing neural transcriptome, contributing to sex- and cell-type-specific teratology. The neurogenic murine fetal cortex contains about 33 distinct cell subtypes Prenatal Alcohol Exposure (PAE) resulted in sex-specific alterations in developmental trajectory and cell cycle PAE females exhibited neural loss of X-inactivation and spliceosomal dysfunction PAE induced sex-independent neural expression of fetal hemoglobin gene transcripts
Collapse
Affiliation(s)
- Nihal A. Salem
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Andrew E. Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
- Corresponding author
| |
Collapse
|
25
|
Urbanus BHA, Peter S, Fisher SE, De Zeeuw CI. Region-specific Foxp2 deletions in cortex, striatum or cerebellum cannot explain vocalization deficits observed in spontaneous global knockouts. Sci Rep 2020; 10:21631. [PMID: 33303861 PMCID: PMC7730140 DOI: 10.1038/s41598-020-78531-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
FOXP2 has been identified as a gene related to speech in humans, based on rare mutations that yield significant impairments in speech at the level of both motor performance and language comprehension. Disruptions of the murine orthologue Foxp2 in mouse pups have been shown to interfere with production of ultrasonic vocalizations (USVs). However, it remains unclear which structures are responsible for these deficits. Here, we show that conditional knockout mice with selective Foxp2 deletions targeting the cerebral cortex, striatum or cerebellum, three key sites of motor control with robust neural gene expression, do not recapture the profile of pup USV deficits observed in mice with global disruptions of this gene. Moreover, we observed that global Foxp2 knockout pups show substantive reductions in USV production as well as an overproduction of short broadband noise “clicks”, which was not present in the brain region-specific knockouts. These data indicate that deficits of Foxp2 expression in the cortex, striatum or cerebellum cannot solely explain the disrupted vocalization behaviours in global Foxp2 knockouts. Our findings raise the possibility that the impact of Foxp2 disruption on USV is mediated at least in part by effects of this gene on the anatomical prerequisites for vocalizing.
Collapse
Affiliation(s)
| | - Saša Peter
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands. .,Netherlands Institute for Neuroscience, KNAW, 1105 CA, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Arzua T, Yan Y, Jiang C, Logan S, Allison RL, Wells C, Kumar SN, Schäfer R, Bai X. Modeling alcohol-induced neurotoxicity using human induced pluripotent stem cell-derived three-dimensional cerebral organoids. Transl Psychiatry 2020; 10:347. [PMID: 33051447 PMCID: PMC7553959 DOI: 10.1038/s41398-020-01029-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Maternal alcohol exposure during pregnancy can substantially impact the development of the fetus, causing a range of symptoms, known as fetal alcohol spectrum disorders (FASDs), such as cognitive dysfunction and psychiatric disorders, with the pathophysiology and mechanisms largely unknown. Recently developed human cerebral organoids from induced pluripotent stem cells are similar to fetal brains in the aspects of development and structure. These models allow more relevant in vitro systems to be developed for studying FASDs than animal models. Modeling binge drinking using human cerebral organoids, we sought to quantify the downstream toxic effects of alcohol (ethanol) on neural pathology phenotypes and signaling pathways within the organoids. The results revealed that alcohol exposure resulted in unhealthy organoids at cellular, subcellular, bioenergetic metabolism, and gene expression levels. Alcohol induced apoptosis on organoids. The apoptotic effects of alcohol on the organoids depended on the alcohol concentration and varied between cell types. Specifically, neurons were more vulnerable to alcohol-induced apoptosis than astrocytes. The alcohol-treated organoids exhibit ultrastructural changes such as disruption of mitochondria cristae, decreased intensity of mitochondrial matrix, and disorganized cytoskeleton. Alcohol exposure also resulted in mitochondrial dysfunction and metabolic stress in the organoids as evidenced by (1) decreased mitochondrial oxygen consumption rates being linked to basal respiration, ATP production, proton leak, maximal respiration and spare respiratory capacity, and (2) increase of non-mitochondrial respiration in alcohol-treated organoids compared with control groups. Furthermore, we found that alcohol treatment affected the expression of 199 genes out of 17,195 genes analyzed. Bioinformatic analyses showed the association of these dysregulated genes with 37 pathways related to clinically relevant pathologies such as psychiatric disorders, behavior, nervous system development and function, organismal injury and abnormalities, and cellular development. Notably, 187 of these genes are critically involved in neurodevelopment, and/or implicated in nervous system physiology and neurodegeneration. Furthermore, the identified genes are key regulators of multiple pathways linked in networks. This study extends for the first time animal models of binge drinking-related FASDs to a human model, allowing in-depth analyses of neurotoxicity at tissue, cellular, subcellular, metabolism, and gene levels. Hereby, we provide novel insights into alcohol-induced pathologic phenotypes, cell type-specific vulnerability, and affected signaling pathways and molecular networks, that can contribute to a better understanding of the developmental neurotoxic effects of binge drinking during pregnancy.
Collapse
Affiliation(s)
- Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Congshan Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Reilly L Allison
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Clive Wells
- Department of Microbiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Suresh N Kumar
- Department of Pathology, Children's Research Institute Imaging Core, Neuroscience Imaging Facility, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, 60438, Frankfurt am Main, Germany
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA.
| |
Collapse
|
27
|
Sinha S, Jones BM, Traniello IM, Bukhari SA, Halfon MS, Hofmann HA, Huang S, Katz PS, Keagy J, Lynch VJ, Sokolowski MB, Stubbs LJ, Tabe-Bordbar S, Wolfner MF, Robinson GE. Behavior-related gene regulatory networks: A new level of organization in the brain. Proc Natl Acad Sci U S A 2020; 117:23270-23279. [PMID: 32661177 PMCID: PMC7519311 DOI: 10.1073/pnas.1921625117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuronal networks are the standard heuristic model today for describing brain activity associated with animal behavior. Recent studies have revealed an extensive role for a completely distinct layer of networked activities in the brain-the gene regulatory network (GRN)-that orchestrates expression levels of hundreds to thousands of genes in a behavior-related manner. We examine emerging insights into the relationships between these two types of networks and discuss their interplay in spatial as well as temporal dimensions, across multiple scales of organization. We discuss properties expected of behavior-related GRNs by drawing inspiration from the rich literature on GRNs related to animal development, comparing and contrasting these two broad classes of GRNs as they relate to their respective phenotypic manifestations. Developmental GRNs also represent a third layer of network biology, playing out over a third timescale, which is believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We end with a special emphasis on social behavior, discuss whether unique GRN organization and cis-regulatory architecture underlies this special class of behavior, and review literature that suggests an affirmative answer.
Collapse
Affiliation(s)
- Saurabh Sinha
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801;
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Beryl M Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Ian M Traniello
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL 61801
| | - Syed A Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Informatics Program, University of Illinois, Urbana-Champaign, IL 61820
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109
| | - Paul S Katz
- Department of Biology, University of Massachusetts, Amherst, MA 01003
| | - Jason Keagy
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14260
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Lisa J Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Shayan Tabe-Bordbar
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801;
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL 61801
- Department of Entomology, University of Illinois, Urbana-Champaign, IL 61801
| |
Collapse
|
28
|
Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2020; 9:e375. [PMID: 31999079 PMCID: PMC8286808 DOI: 10.1002/wdev.375] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
FOXP transcription factors are an evolutionarily ancient protein subfamily coordinating the development of several organ systems in the vertebrate body. Association of their genes with neurodevelopmental disorders has sparked particular interest in their expression patterns and functions in the brain. Here, FOXP1, FOXP2, and FOXP4 are expressed in distinct cell type-specific spatiotemporal patterns in multiple regions, including the cortex, hippocampus, amygdala, basal ganglia, thalamus, and cerebellum. These varied sites and timepoints of expression have complicated efforts to link FOXP1 and FOXP2 mutations to their respective developmental disorders, the former affecting global neural functions and the latter specifically affecting speech and language. However, the use of animal models, particularly those with brain region- and cell type-specific manipulations, has greatly advanced our understanding of how FOXP expression patterns could underlie disorder-related phenotypes. While many questions remain regarding FOXP expression and function in the brain, studies to date have illuminated the roles of these transcription factors in vertebrate brain development and have greatly informed our understanding of human development and disorders. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Marissa Co
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Ashley G Anderson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
29
|
den Hoed J, Fisher SE. Genetic pathways involved in human speech disorders. Curr Opin Genet Dev 2020; 65:103-111. [PMID: 32622339 DOI: 10.1016/j.gde.2020.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Rare genetic variants that disrupt speech development provide entry points for deciphering the neurobiological foundations of key human capacities. The value of this approach is illustrated by FOXP2, a transcription factor gene that was implicated in speech apraxia, and subsequently investigated using human cell-based systems and animal models. Advances in next-generation sequencing, coupled to de novo paradigms, facilitated discovery of etiological variants in additional genes in speech disorder cohorts. As for other neurodevelopmental syndromes, gene-driven studies show blurring of boundaries between diagnostic categories, with some risk genes shared across speech disorders, intellectual disability and autism. Convergent evidence hints at involvement of regulatory genes co-expressed in early human brain development, suggesting that etiological pathways could be amenable for investigation in emerging neural models such as cerebral organoids.
Collapse
Affiliation(s)
- Joery den Hoed
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands.
| |
Collapse
|