1
|
Ko SH, Radecki P, Belinky F, Bhiman JN, Meiring S, Kleynhans J, Amoako D, Guerra Canedo V, Lucas M, Kekana D, Martinson N, Lebina L, Everatt J, Tempia S, Bylund T, Rawi R, Kwong PD, Wolter N, von Gottberg A, Cohen C, Boritz EA. Rapid intra-host diversification and evolution of SARS-CoV-2 in advanced HIV infection. Nat Commun 2024; 15:7240. [PMID: 39174553 PMCID: PMC11341811 DOI: 10.1038/s41467-024-51539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions, but the processes responsible for these observations are incompletely understood. Here we use high-throughput, single-genome amplification and sequencing (HT-SGS) to sequence SARS-CoV-2 spike genes from people with HIV (PWH, n = 22) and people without HIV (PWOH, n = 25). In PWOH and PWH with CD4 T cell counts (i.e., CD4 counts) ≥ 200 cells/μL, we find that most SARS-CoV-2 genomes sampled in each person share one spike sequence. By contrast, in people with advanced HIV infection (i.e., CD4 counts < 200 cells/μL), HT-SGS reveals a median of 46 distinct linked groupings of spike mutations per person. Elevated intra-host spike diversity in people with advanced HIV infection is detected immediately after COVID-19 symptom onset, and early intra-host spike diversity predicts SARS-CoV-2 shedding duration among PWH. Analysis of longitudinal timepoints reveals rapid fluctuations in spike sequence populations, replacement of founder sequences by groups of new haplotypes, and positive selection at functionally important residues. These findings demonstrate remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern.
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierce Radecki
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinal N Bhiman
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Amoako
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margaret Lucas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dikeledi Kekana
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Center for TB Research, Baltimore, MD, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Wolter
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eli A Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Motsoeneng BM, Bhiman JN, Richardson SI, Moore PL. SARS-CoV-2 humoral immunity in people living with HIV-1. Trends Immunol 2024; 45:511-522. [PMID: 38890026 DOI: 10.1016/j.it.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
The effect of COVID-19 on the high number of immunocompromised people living with HIV-1 (PLWH), particularly in Africa, remains a critical concern. Here, we identify key areas that still require further investigation, by examining COVID-19 vaccine effectiveness, and understanding antibody responses in SARS-CoV-2 infection and vaccination in comparison with people without HIV-1 (PWOH). We also assess the potential impact of pre-existing immunity against endemic human coronaviruses on SARS-CoV-2 responses in these individuals. Lastly, we discuss the consequences of persistent infection in PLWH (or other immunocompromised individuals), including prolonged shedding, increased viral diversity within the host, and the implications on SARS-CoV-2 evolution in Africa.
Collapse
Affiliation(s)
- Boitumelo M Motsoeneng
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Jinal N Bhiman
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Simone I Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Penny L Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa; Centre for the AIDS Program of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa.
| |
Collapse
|
3
|
Amegashie EA, Asamoah P, Ativi LEA, Adusei-Poku M, Bonney EY, Tagoe EA, Paintsil E, Torpey K, Quaye O. Clinical outcomes and immunological response to SARS-CoV-2 infection among people living with HIV. Exp Biol Med (Maywood) 2024; 249:10059. [PMID: 38628843 PMCID: PMC11020089 DOI: 10.3389/ebm.2024.10059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024] Open
Abstract
People living with HIV (PLWH) usually suffer from co-infections and co-morbidities including respiratory tract infections. SARS-CoV-2 has been reported to cause respiratory infections. There are uncertainties in the disease severity and immunological response among PLWH who are co-infected with COVID-19. This review outlines the current knowledge on the clinical outcomes and immunological response to SARS-CoV-2 among PLWH. Literature was searched in Google scholar, Scopus, PubMed, and Science Direct conforming with the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidelines from studies published from January 2020 to June 2023. A total of 81 studies from 25 countries were identified, and RT-PCR was used in confirming COVID-19 in 80 of the studies. Fifty-seven studies assessed risk factors and clinical outcomes in HIV patients co-infected with COVID-19. Thirty-nine of the studies indicated the following factors being associated with severe outcomes in HIV/SARS-CoV-2: older age, the male sex, African American race, smoking, obesity, cardiovascular diseases, low CD4+ count, high viral load, tuberculosis, high levels of inflammatory markers, chronic kidney disease, hypertension, diabetes, interruption, and delayed initiation of ART. The severe outcomes are patients' hospitalization, admission at intensive care unit, mechanical ventilation, and death. Twenty (20) studies, however, reported no difference in clinical presentation among co-infected compared to mono-infected individuals. Immune response to SARS-CoV-2 infection was investigated in 25 studies, with some of the studies reporting high levels of inflammatory markers, T cell exhaustion and lower positive conversion rate of IgG in PLWH. There is scanty information on the cytokines that predisposes to severity among HIV/SARS-CoV-2 co-infected individuals on combined ART. More research work should be carried out to validate co-infection-related cytokines and/or immune markers to SARS-CoV-2 among PLWH.
Collapse
Affiliation(s)
- Esimebia Adjovi Amegashie
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Prince Asamoah
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Lawrencia Emefa Ami Ativi
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Mildred Adusei-Poku
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Elijah Paintsil
- Department of Paediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Kwasi Torpey
- Department of Population, Family and Reproductive Health, School of Public Health, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Höft MA, Burgers WA, Riou C. The immune response to SARS-CoV-2 in people with HIV. Cell Mol Immunol 2024; 21:184-196. [PMID: 37821620 PMCID: PMC10806256 DOI: 10.1038/s41423-023-01087-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
This review examines the intersection of the HIV and SARS-CoV-2 pandemics. People with HIV (PWH) are a heterogeneous group that differ in their degree of immune suppression, immune reconstitution, and viral control. While COVID-19 in those with well-controlled HIV infection poses no greater risk than that for HIV-uninfected individuals, people with advanced HIV disease are more vulnerable to poor COVID-19 outcomes. COVID-19 vaccines are effective and well tolerated in the majority of PWH, though reduced vaccine efficacy, breakthrough infections and faster waning of vaccine effectiveness have been demonstrated in PWH. This is likely a result of suboptimal humoral and cellular immune responses after vaccination. People with advanced HIV may also experience prolonged infection that may give rise to new epidemiologically significant variants, but initiation or resumption of antiretroviral therapy (ART) can effectively clear persistent infection. COVID-19 vaccine guidelines reflect these increased risks and recommend prioritization for vaccination and additional booster doses for PWH who are moderately to severely immunocompromised. We recommend continued research and monitoring of PWH with SARS-CoV-2 infection, especially in areas with a high HIV burden.
Collapse
Affiliation(s)
- Maxine A Höft
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
5
|
Ng’uni TL, Musale V, Nkosi T, Mandolo J, Mvula M, Michelo C, Karim F, Moosa MYS, Khan K, Jambo KC, Hanekom W, Sigal A, Kilembe W, Ndhlovu ZM. Low pre-existing endemic human coronavirus (HCoV-NL63)-specific T cell frequencies are associated with impaired SARS-CoV-2-specific T cell responses in people living with HIV. Front Immunol 2024; 14:1291048. [PMID: 38343437 PMCID: PMC10853422 DOI: 10.3389/fimmu.2023.1291048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
Background Understanding how HIV affects SARS-CoV-2 immunity is crucial for managing COVID-19 in sub-Saharan populations due to frequent coinfections. Our previous research showed that unsuppressed HIV is associated with weaker immune responses to SARS-CoV-2, but the underlying mechanisms are unclear. We investigated how pre-existing T cell immunity against an endemic human coronavirus HCoV-NL63 impacts SARS-CoV-2 T cell responses in people living with HIV (PLWH) compared to uninfected individuals, and how HIV-related T cell dysfunction influences responses to SARS-CoV-2 variants. Methods We used flow cytometry to measure T cell responses following PBMC stimulation with peptide pools representing beta, delta, wild-type, and HCoV-NL63 spike proteins. Luminex bead assay was used to measure circulating plasma chemokine and cytokine levels. ELISA and MSD V-PLEX COVID-19 Serology and ACE2 Neutralization assays were used to measure humoral responses. Results Regardless of HIV status, we found a strong positive correlation between responses to HCoV-NL63 and SARS-CoV-2. However, PLWH exhibited weaker CD4+ T cell responses to both HCoV-NL63 and SARS-CoV-2 than HIV-uninfected individuals. PLWH also had higher proportions of functionally exhausted (PD-1high) CD4+ T cells producing fewer proinflammatory cytokines (IFNγ and TNFα) and had elevated plasma IL-2 and IL-12(p70) levels compared to HIV-uninfected individuals. HIV status didn't significantly affect IgG antibody levels against SARS-CoV-2 antigens or ACE2 binding inhibition activity. Conclusion Our results indicate that the decrease in SARS-CoV-2 specific T cell responses in PLWH may be attributable to reduced frequencies of pre-existing cross-reactive responses. However, HIV infection minimally affected the quality and magnitude of humoral responses, and this could explain why the risk of severe COVID-19 in PLWH is highly heterogeneous.
Collapse
Affiliation(s)
- Tiza L. Ng’uni
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Vernon Musale
- Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS), Lusaka, Zambia
- Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Jonathan Mandolo
- Infection and Immunity Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Memory Mvula
- Infection and Immunity Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Clive Michelo
- Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS), Lusaka, Zambia
- Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Farina Karim
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Mohomed Yunus S. Moosa
- Human Immunodeficiency Virus (HIV) Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Kondwani Charles Jambo
- Infection and Immunity Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Willem Hanekom
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Alex Sigal
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - William Kilembe
- Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS), Lusaka, Zambia
- Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Zaza M. Ndhlovu
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
- Human Immunodeficiency Virus (HIV) Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, United States
| |
Collapse
|
6
|
Augello M, Bono V, Rovito R, Tincati C, Bianchi S, Taramasso L, Di Biagio A, Callegaro A, Maggiolo F, Borghi E, Monforte AD, Marchetti G. Association between SARS-CoV-2 RNAemia, skewed T cell responses, inflammation, and severity in hospitalized COVID-19 people living with HIV. iScience 2024; 27:108673. [PMID: 38188525 PMCID: PMC10770729 DOI: 10.1016/j.isci.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Severe COVID-19 outcomes have been reported in people living with HIV (PLWH), yet the underlying pathogenetic factors are largely unknown. We therefore aimed to assess SARS-CoV-2 RNAemia and plasma cytokines in PLWH hospitalized for COVID-19 pneumonia, exploring associations with magnitude and functionality of SARS-CoV-2-specific immune responses. Eighteen unvaccinated PLWH (16/18 on cART; median CD4 T cell count 361.5/μL; HIV-RNA<50 cp/mL in 15/18) and 18 age/sex-matched people without HIV were consecutively recruited at a median time of 10 days from symptoms onset. PLWH showed greater SARS-CoV-2 RNAemia, a distinct plasma cytokine profile, and worse respiratory function (lower PaO2/FiO2nadir), all correlating with skewed T cell responses (higher perforin production by cytotoxic T cells as well as fewer and less polyfunctional SARS-CoV-2-specific T cells), despite preserved humoral immunity. In conclusion, these data suggest a link between HIV-related T cell dysfunction and poor control over SARS-CoV-2 replication/dissemination that may in turn influence COVID-19 severity in PLWH.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Silvia Bianchi
- Microbiology and Clinical Microbiology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Lucia Taramasso
- Infectious Diseases Unit, San Martino Policlinico Hospital, Genoa, Italy
| | - Antonio Di Biagio
- Infectious Diseases Unit, San Martino Policlinico Hospital, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Annapaola Callegaro
- Biobank Unit and Microbiology and Virology Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Franco Maggiolo
- Division of Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Elisa Borghi
- Microbiology and Clinical Microbiology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d’Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Ko SH, Radecki P, Belinky F, Bhiman JN, Meiring S, Kleynhans J, Amoako D, Guerra Canedo V, Lucas M, Kekana D, Martinson N, Lebina L, Everatt J, Tempia S, Bylund T, Rawi R, Kwong PD, Wolter N, von Gottberg A, Cohen C, Boritz EA. Rapid Emergence and Evolution of SARS-CoV-2 Variants in Advanced HIV Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574420. [PMID: 38313289 PMCID: PMC10836083 DOI: 10.1101/2024.01.05.574420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions1-4, but the evolutionary processes underlying these observations are incompletely understood. Here we used high-throughput, single-genome amplification and sequencing (HT-SGS) to obtain up to ~103 SARS-CoV-2 spike gene sequences in each of 184 respiratory samples from 22 people with HIV (PWH) and 25 people without HIV (PWOH). Twelve of 22 PWH had advanced HIV infection, defined by peripheral blood CD4 T cell counts (i.e., CD4 counts) <200 cells/μL. In PWOH and PWH with CD4 counts ≥200 cells/μL, most single-genome spike sequences in each person matched one haplotype that predominated throughout the infection. By contrast, people with advanced HIV showed elevated intra-host spike diversity with a median of 46 haplotypes per person (IQR 14-114). Higher intra-host spike diversity immediately after COVID-19 symptom onset predicted longer SARS-CoV-2 RNA shedding among PWH, and intra-host spike diversity at this timepoint was significantly higher in people with advanced HIV than in PWOH. Composition of spike sequence populations in people with advanced HIV fluctuated rapidly over time, with founder sequences often replaced by groups of new haplotypes. These population-level changes were associated with a high total burden of intra-host mutations and positive selection at functionally important residues. In several cases, delayed emergence of detectable serum binding to spike was associated with positive selection for presumptive antibody-escape mutations. Taken together, our findings show remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern (VOCs).
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pierce Radecki
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinal N. Bhiman
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Amoako
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret Lucas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dikeledi Kekana
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Center for TB Research, Baltimore, MD 21218, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Wolter
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Motsoeneng BM, Manamela NP, Kaldine H, Kgagudi P, Hermanus T, Ayres F, Makhado Z, Moyo-Gwete T, van der Mescht MA, Abdullah F, Boswell MT, Ueckermann V, Rossouw TM, Madhi SA, Moore PL, Richardson SI. Despite delayed kinetics, people living with HIV achieve equivalent antibody function after SARS-CoV-2 infection or vaccination. Front Immunol 2023; 14:1231276. [PMID: 37600825 PMCID: PMC10435738 DOI: 10.3389/fimmu.2023.1231276] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The kinetics of Fc-mediated functions following SARS-CoV-2 infection or vaccination in people living with HIV (PLWH) are not known. We compared SARS-CoV-2 spike-specific Fc functions, binding, and neutralization in PLWH and people without HIV (PWOH) during acute infection (without prior vaccination) with either the D614G or Beta variants of SARS-CoV-2, or vaccination with ChAdOx1 nCoV-19. Antiretroviral treatment (ART)-naïve PLWH had significantly lower levels of IgG binding, neutralization, and antibody-dependent cellular phagocytosis (ADCP) compared with PLWH on ART. The magnitude of antibody-dependent cellular cytotoxicity (ADCC), complement deposition (ADCD), and cellular trogocytosis (ADCT) was differentially triggered by D614G and Beta. The kinetics of spike IgG-binding antibodies, ADCC, and ADCD were similar, irrespective of the infecting variant between PWOH and PLWH overall. However, compared with PWOH, PLWH infected with D614G had delayed neutralization and ADCP. Furthermore, Beta infection resulted in delayed ADCT, regardless of HIV status. Despite these delays, we observed improved coordination between binding and neutralizing responses and Fc functions in PLWH. In contrast to D614G infection, binding responses in PLWH following ChAdOx-1 nCoV-19 vaccination were delayed, while neutralization and ADCP had similar timing of onset, but lower magnitude, and ADCC was significantly higher than in PWOH. Overall, despite delayed and differential kinetics, PLWH on ART develop comparable responses to PWOH, supporting the prioritization of ART rollout and SARS-CoV-2 vaccination in PLWH.
Collapse
Affiliation(s)
- Boitumelo M. Motsoeneng
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P. Manamela
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Haajira Kaldine
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Prudence Kgagudi
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Tandile Hermanus
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Frances Ayres
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Zanele Makhado
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Mieke A. van der Mescht
- Department of Immunology, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
- South African Medical Research Council Office of AIDS and TB Research, Pretoria, South Africa
| | - Michael T. Boswell
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Simone I. Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW It is now recognized that SARS-CoV-2 infection can have a long-term impact on health. This review summarizes the current state of knowledge regarding Long COVID in people living with HIV (PLWH). RECENT FINDINGS PLWH may be at elevated risk of experiencing Long COVID. Although the mechanisms contributing to Long COVID are incompletely understood, there are several demographic and clinical factors that might make PLWH vulnerable to developing Long COVID. SUMMARY PLWH should be aware that new or worsening symptoms following SARS-CoV-2 infection might represent Long COVID. HIV providers should be aware of this clinical entity and be mindful that their patients recovering from SARS-CoV-2 infection may be at higher risk.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA 94110
| | - Annukka A. R. Antar
- Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
10
|
Augello M, Bono V, Rovito R, Tincati C, Marchetti G. Immunologic Interplay Between HIV/AIDS and COVID-19: Adding Fuel to the Flames? Curr HIV/AIDS Rep 2023; 20:51-75. [PMID: 36680700 PMCID: PMC9860243 DOI: 10.1007/s11904-023-00647-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW HIV/AIDS and COVID-19 have been the major pandemics overwhelming our times. Given the enduring immune disfunction featuring people living with HIV (PLWH) despite combination antiretroviral therapy (cART), concerns for higher incidence and severity of SARS-CoV-2 infection as well as for suboptimal responses to the newly developed vaccines in this population arose early during the pandemics. Herein, we discuss the complex interplay between HIV and SARS-CoV-2, with a special focus on the immune responses to SARS-CoV-2 natural infection and vaccination in PLWH. RECENT FINDINGS Overall, current literature shows that COVID-19 severity and outcomes may be worse and immune responses to infection or vaccination lower in PLWH with poor CD4 + T-cell counts and/or uncontrolled HIV viremia. Data regarding the risk of post-acute sequelae of SARS-CoV-2 infection (PASC) among PLWH are extremely scarce, yet they seem to suggest a higher incidence of such condition. Scarce immunovirological control appears to be the major driver of weak immune responses to SARS-CoV-2 infection/vaccination and worse COVID-19 outcomes in PLWH. Therefore, such individuals should be prioritized for vaccination and should receive additional vaccine doses. Furthermore, given the potentially higher risk of developing long-term sequelae, PLWH who experienced COVID-19 should be ensured a more careful and prolonged follow-up.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy.
| |
Collapse
|
11
|
Venturas JP. HIV and COVID-19 Disease. Semin Respir Crit Care Med 2023; 44:35-49. [PMID: 36646084 DOI: 10.1055/s-0042-1758852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite effective antiretroviral therapy (ART), HIV infected individuals throughout the world remain at significant risk of respiratory infections and non-communicable disease. Severe disease from SARS-CoV-2 is associated with a hyperinflammatory phenotype which manifests in the lungs as pneumonia and in some cases can lead to acute respiratory failure. Progression to severe COVID-19 is associated with comorbid disease such as obesity, diabetes mellitus and cardiovascular disease, however data concerning the associated risks of HIV coinfection are still conflicting, with large population studies demonstrating poorer outcomes, whilst smaller, case-controlled studies showing better outcomes. Furthermore, underlying immunopathological processes within the lungs and elsewhere, including interactions with other opportunistic infections (OI), remain largely undefined. Nonetheless, new and repurposed anti-viral therapies and vaccines which have been developed are safe to use in this population, and anti-inflammatory agents are recommended with the caveat that the coexistence of opportunistic infections is considered and excluded. Finally, HIV infected patients remain reliant on good ART adherence practices to maintain HIV viral suppression, and some of these practices were disrupted during the COVID-19 pandemic, putting these patients at further risk for acute and long-term adverse outcomes.
Collapse
Affiliation(s)
- Jacqui P Venturas
- Department of Internal Medicine and Pulmonology, Charlotte Maxeke Johannesburg Academic Hospital and Universtity of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Boswell MT, Maimela T, Hameiri-Bowen D, Riley G, Malan A, Steyn N, Nolutshungu N, de Villiers TR, de Beer Z, Mathabathe J, Tshabalala K, Abdullah F, Ramlall R, Heystek M, Basu D, Rheeder P, Ueckermann V, van Hougenhouck-Tulleken W. COVID-19 severity and in-hospital mortality in an area with high HIV prevalence. South Afr J HIV Med 2023; 24:1412. [PMID: 36751479 PMCID: PMC9900246 DOI: 10.4102/sajhivmed.v24i1.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/10/2022] [Indexed: 02/04/2023] Open
Abstract
Background HIV infection causes immune dysregulation affecting T-cell and monocyte function, which may alter coronavirus disease 2019 (COVID-19) pathophysiology. Objectives We investigated the associations among clinical phenotypes, laboratory biomarkers, and hospitalisation outcomes in a cohort of people hospitalised with COVID-19 in a high HIV prevalence area. Method We conducted a prospective observational cohort study in Tshwane, South Africa. Respiratory disease severity was quantified using the respiratory oxygenation score. Analysed biomarkers included inflammatory and coagulation biomarkers, CD4 T-cell counts, and HIV-1 viral loads (HIVVL). Results The analysis included 558 patients, of whom 21.7% died during admission. The mean age was 54 years. A total of 82 participants were HIV-positive. People living with HIV (PLWH) were younger (mean age 46 years) than HIV-negative people; most were on antiretroviral treatment with a suppressed HIVVL (72%) and the median CD4 count was 159 (interquartile range: 66-397) cells/µL. After adjusting for age, HIV was not associated with increased risk of mortality during hospitalisation (age-adjusted hazard ratio = 1.1, 95% confidence interval: 0.6-2.0). Inflammatory biomarker levels were similar in PLWH and HIV-negative patients. Detectable HIVVL was associated with less severe respiratory disease. In PLWH, mortality was associated with higher levels of inflammatory biomarkers. Opportunistic infections, and other risk factors for severe COVID-19, were common in PLWH who died. Conclusion PLWH were not at increased risk of mortality and those with detectable HIVVL had less severe respiratory disease than those with suppressed HIVVL. What this study adds This study advances our understanding of severe COVID-19 in PLWH.
Collapse
Affiliation(s)
- Michael T. Boswell
- Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Tshegofatso Maimela
- Clinical Public Health Unit, Department of Public Health Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Dan Hameiri-Bowen
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - George Riley
- Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | | | - Nickietta Steyn
- Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Nomonde Nolutshungu
- Department of Medical Immunology, University of Pretoria, Pretoria, South Africa
| | | | | | - John Mathabathe
- Clinical Public Health Unit, Department of Public Health Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Khanyisile Tshabalala
- Clinical Public Health Unit, Department of Public Health Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Fareed Abdullah
- South African Medical Research Council, Pretoria, South Africa
| | | | | | - Debashis Basu
- Clinical Public Health Unit, Department of Public Health Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Paul Rheeder
- Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
13
|
Zhan H, Gao H, Liu Y, Zhang X, Li H, Li X, Wang L, Li C, Li B, Wang Y, Dai E, Li Y. Booster shot of inactivated SARS-CoV-2 vaccine induces potent immune responses in people living with HIV. J Med Virol 2023; 95:e28428. [PMID: 36571267 PMCID: PMC9880704 DOI: 10.1002/jmv.28428] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
This study aimed to investigate the immunogenicity to SARS-CoV-2 and evasive subvariants BA.4/5 in people living with HIV (PLWH) following a third booster shot of inactivated SARS-CoV-2 vaccine. We conducted a cross-sectional study in 318 PLWH and 241 healthy controls (HC) using SARS-CoV-2 immunoassays. Vaccine-induced immunological responses were compared before and after the third dose. Serum levels of IgG anti-RBD and inhibition rate of NAb were significantly elevated at the "post-third dose" sampling time compared with the pre-third dose in PLWH, but were relatively decreased in contrast with those of HCs. Induced humoral and cellular responses attenuated over time after triple-dose vaccination. The neutralizing capacity against BA.4/5 was also intensified but remained below the positive inhibition threshold. Seropositivity of SARS-CoV-2-specific antibodies in PLWH was prominently lower than that in HC. We also identified age, CD4 cell counts, time after the last vaccination, and WHO staging type of PLWH as independent factors associated with the seropositivity of antibodies. PLWH receiving booster shot of inactivated vaccines generate higher antibody responses than the second dose, but lower than that in HCs. Decreased anti-BA.4/5 responses than that of WT impede the protective effect of the third dose on Omicron prevalence.
Collapse
Affiliation(s)
- Haoting Zhan
- Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina
| | - Yongmei Liu
- Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Xihong Zhang
- Department of Laboratory Medicine, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina,School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Haolong Li
- Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Xiaomeng Li
- Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina,Department of Medical Research Center, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Lijing Wang
- Department of AIDS, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina
| | - Chen Li
- Department of AIDS, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina
| | - Beilei Li
- Department of AIDS, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina
| | - Yuling Wang
- Department of AIDS, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of ShijiazhuangNorth China University of Science and TechnologyTangshanChina
| | - Yongzhe Li
- Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
14
|
Schuster DJ, Karuna S, Brackett C, Wesley M, Li SS, Eisel N, Tenney D, Hilliard S, Yates NL, Heptinstall JR, Williams LD, Shen X, Rolfe R, Cabello R, Zhang L, Sawant S, Hu J, Randhawa AK, Hyrien O, Hural JA, Corey L, Frank I, Tomaras GD, Seaton KE. Lower SARS-CoV-2-specific humoral immunity in people living with HIV-1 recovered from nonhospitalized COVID-19. JCI Insight 2022; 7:e158402. [PMID: 36136590 PMCID: PMC9675463 DOI: 10.1172/jci.insight.158402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
People living with HIV-1 (PLWH) exhibit more rapid antibody decline following routine immunization and elevated baseline chronic inflammation than people without HIV-1 (PWOH), indicating potential for diminished humoral immunity during SARS-CoV-2 infection. Conflicting reports have emerged on the ability of PLWH to maintain humoral protection against SARS-CoV-2 coinfection during convalescence. It is unknown whether peak COVID-19 severity, along with HIV-1 infection status, associates with the quality and quantity of humoral immunity following recovery. Using a cross-sectional observational cohort from the United States and Peru, adults were enrolled 1-10 weeks after SARS-CoV-2 infection diagnosis or symptom resolution. Serum antibodies were analyzed for SARS-CoV-2-specific response rates, binding magnitudes, ACE2 receptor blocking, and antibody-dependent cellular phagocytosis. Overall, (a) PLWH exhibited a trend toward decreased magnitude of SARS-CoV-2-specific antibodies, despite modestly increased overall response rates when compared with PWOH; (b) PLWH recovered from symptomatic outpatient COVID-19 had comparatively diminished immune responses; and (c) PLWH lacked a corresponding increase in SARS-CoV-2 antibodies with increased COVID-19 severity when asymptomatic versus symptomatic outpatient disease was compared.
Collapse
Affiliation(s)
- Daniel J. Schuster
- Center for Human Systems Immunology
- Department of Surgery, and
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Martina Wesley
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Shuying S. Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nathan Eisel
- Center for Human Systems Immunology
- Department of Surgery, and
| | - DeAnna Tenney
- Center for Human Systems Immunology
- Department of Surgery, and
| | | | - Nicole L. Yates
- Center for Human Systems Immunology
- Department of Surgery, and
| | | | | | - Xiaoying Shen
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Robert Rolfe
- Center for Human Systems Immunology
- Department of Surgery, and
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Lu Zhang
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Sheetal Sawant
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Jiani Hu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - April Kaur Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John A. Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ian Frank
- Division of Infectious Disease, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Georgia D. Tomaras
- Center for Human Systems Immunology
- Department of Surgery, and
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kelly E. Seaton
- Center for Human Systems Immunology
- Department of Surgery, and
| | | |
Collapse
|
15
|
Baroncelli S, Galluzzo CM, Orlando S, Mphwere R, Kavalo T, Luhanga R, Amici R, Floridia M, Andreotti M, Scarcella P, Marazzi MC, Giuliano M. Dynamics of SARS-CoV-2 exposure in Malawian infants between February 2020 and May 2021. JOURNAL OF CLINICAL VIROLOGY PLUS 2022; 2:100110. [PMID: 36128323 PMCID: PMC9477783 DOI: 10.1016/j.jcvp.2022.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Background Very limited information is available on SARS-CoV-2 seroprevalence in infants in sub-Saharan countries. Objective In this study, we aimed to determine the rate and the temporal evolution of SARS CoV-2 seropositivity in breastfed Malawian infants. Study design Blood samples (n = 250) from 158 infants, born to HIV-negative women and women living with HIV, collected from February 2020 to May 2021, were first tested using an Anti-IgG/A/M SARS CoV 2 ELISA assay against trimeric spike protein, and then, if positive, confirmed using a second ELISA assay detecting IgG against Receptor Binding Domain. Results The confirmed prevalence of anti-SARS CoV-2 antibodies was 31.0% (95% CI: 23.7%-38.3%) with no significant difference between HIV-exposed and HIV-unexposed infants (29.3% and 37.1% respectively, P = 0.410). The presence of anti-SARS-CoV-2 IgG was not associated with maternal socioeconomic or demographic indices. Conclusions Our data underline the wide spread of the SARS-CoV-2 infection in the pediatric population in sub-Saharan Africa. Design of more specific serological tests for African samples and improvements in serosurveillance programs are needed for more rigorous monitoring of the dynamics of SARS-CoV-2 infection in Africa.
Collapse
Affiliation(s)
- Silvia Baroncelli
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Clementina Maria Galluzzo
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Stefano Orlando
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Robert Mphwere
- DREAM Program, Community of S. Egidio, P.O. Box 30355, Blantyre, Malawi
| | - Thom Kavalo
- DREAM Program, Community of S. Egidio, P.O. Box 30355, Blantyre, Malawi
| | - Richard Luhanga
- DREAM Program, Community of S. Egidio, P.O. Box 30355, Blantyre, Malawi
| | - Roberta Amici
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Floridia
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mauro Andreotti
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Scarcella
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Marina Giuliano
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
16
|
Krause R, Snyman J, Shi-Hsia H, Muema D, Karim F, Ganga Y, Ngoepe A, Zungu Y, Gazy I, Bernstein M, Khan K, Mazibuko M, Mthabela N, Ramjit D, Limbo O, Jardine J, Sok D, Wilson IA, Hanekom W, Sigal A, Kløverpris H, Ndung'u T, Leslie A. HIV skews the SARS-CoV-2 B cell response towards an extrafollicular maturation pathway. eLife 2022; 11:e79924. [PMID: 36300787 PMCID: PMC9643005 DOI: 10.7554/elife.79924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background HIV infection dysregulates the B cell compartment, affecting memory B cell formation and the antibody response to infection and vaccination. Understanding the B cell response to SARS-CoV-2 in people living with HIV (PLWH) may explain the increased morbidity, reduced vaccine efficacy, reduced clearance, and intra-host evolution of SARS-CoV-2 observed in some HIV-1 coinfections. Methods We compared B cell responses to COVID-19 in PLWH and HIV negative (HIV-ve) patients in a cohort recruited in Durban, South Africa, during the first pandemic wave in July 2020 using detailed flow cytometry phenotyping of longitudinal samples with markers of B cell maturation, homing, and regulatory features. Results This revealed a coordinated B cell response to COVID-19 that differed significantly between HIV-ve and PLWH. Memory B cells in PLWH displayed evidence of reduced germinal centre (GC) activity, homing capacity, and class-switching responses, with increased PD-L1 expression, and decreased Tfh frequency. This was mirrored by increased extrafollicular (EF) activity, with dynamic changes in activated double negative (DN2) and activated naïve B cells, which correlated with anti-RBD-titres in these individuals. An elevated SARS-CoV-2-specific EF response in PLWH was confirmed using viral spike and RBD bait proteins. Conclusions Despite similar disease severity, these trends were highest in participants with uncontrolled HIV, implicating HIV in driving these changes. EF B cell responses are rapid but give rise to lower affinity antibodies, less durable long-term memory, and reduced capacity to adapt to new variants. Further work is needed to determine the long-term effects of HIV on SARS-CoV-2 immunity, particularly as new variants emerge. Funding This work was supported by a grant from the Wellcome Trust to the Africa Health Research Institute (Wellcome Trust Strategic Core Award [grant number 201433/Z/16/Z]). Additional funding was received from the South African Department of Science and Innovation through the National Research Foundation (South African Research Chairs Initiative [grant number 64809]), and the Victor Daitz Foundation.
Collapse
Affiliation(s)
- Robert Krause
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
| | - Jumari Snyman
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu NatalDurbanSouth Africa
| | - Hwa Shi-Hsia
- Africa Health Research InstituteDurbanSouth Africa
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Daniel Muema
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu NatalDurbanSouth Africa
| | - Farina Karim
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
| | | | | | - Yenzekile Zungu
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
| | - Inbal Gazy
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
- KwaZulu-Natal Research Innovation and Sequencing PlatformDurbanSouth Africa
| | | | - Khadija Khan
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
| | | | | | | | - Oliver Limbo
- International AIDS Vaccine InitiativeNew YorkUnited States
| | - Joseph Jardine
- International AIDS Vaccine InitiativeNew YorkUnited States
| | - Devin Sok
- International AIDS Vaccine InitiativeNew YorkUnited States
| | - Ian A Wilson
- The Scripps Research InstituteLa JollaUnited States
| | - Willem Hanekom
- Africa Health Research InstituteDurbanSouth Africa
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Alex Sigal
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
- Max Planck Institute for Infection BiologyBerlinGermany
- Centre for the AIDS Programme of Research in South AfricaDurbanSouth Africa
| | - Henrik Kløverpris
- Africa Health Research InstituteDurbanSouth Africa
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
- Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
| | - Thumbi Ndung'u
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu NatalDurbanSouth Africa
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
- Max Planck Institute for Infection BiologyBerlinGermany
| | - Alasdair Leslie
- Africa Health Research InstituteDurbanSouth Africa
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| |
Collapse
|
17
|
Nomah DK, Llibre JM, Díaz Y, Moreno S, Aceiton J, Bruguera A, Gutiérrez-Macià M, Imaz A, Suanzes P, Navarro G, Orti A, Miro JM, Casabona J, Reyes-Urueña J. SARS-CoV-2 Vaccination Coverage and Factors Associated with Low Uptake in a Cohort of People Living with HIV. Microorganisms 2022; 10:microorganisms10081666. [PMID: 36014083 PMCID: PMC9412260 DOI: 10.3390/microorganisms10081666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 01/14/2023] Open
Abstract
People living with HIV (PLWH) are prioritised for SARS-CoV-2 vaccination due to their vulnerability to severe COVID-19. Therefore, the epidemiological surveillance of vaccination coverage and the timely identification of suboptimally vaccinated PLWH is vital. We assessed SARS-CoV-2 vaccination coverage and factors associated with under-vaccination among PLWH in Catalonia, Spain. As of 11.12.2021, 9945/14942 PLWH (66.6%) had received ≥1 dose of a SARS-CoV-2 vaccine. Non-Spanish origin (adjusted odds ratio (aOR) 0.64, 95% CI 0.59−0.70), CD4 count of 200−349 cells/μL (aOR 0.74, 95% CI 0.64−0.86) or 350−499 cells/μL (aOR 0.79, 95% CI 0.70−0.88), detectable plasma HIV-RNA (aOR 0.61 95% CI 0.53−0.70), and previous SARS-CoV-2 diagnosis (aOR 0.58 95% CI 0.51−0.65) were associated with under-vaccination. SARS-CoV-2 diagnosis (437 [9.5%] vs. 323 [3.5%], p < 0.001), associated hospitalisations (10 [2.3%] vs. 0 [0%], p < 0.001), intensive care unit admissions (6 [1.4%] vs. 0 [0%], p < 0.001), and deaths (10 [2.3%] vs. 0 [0%], p < 0.001) were higher among unvaccinated PLWH. Vaccination coverage was lower among PLWH with a CD4 count >200 cells/μL, detectable plasma HIV-RNA, previous SARS-CoV-2 diagnosis, and migrants. SARS-CoV-2 diagnosis, associated hospitalisations, and deaths among PLWH were lower among the vaccinated compared with the unvaccinated. SARS-CoV-2 vaccination prioritisation has not completely reached vulnerable PLWH with poorer prognosis. This information can be used to inform public health strategies.
Collapse
Affiliation(s)
- Daniel Kwakye Nomah
- Centre Estudis Epidemiològics Sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Dept Salut, Generalitat de Catalunya, 08916 Badalona, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia i de Medicina Preventiva i de Salut Publica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Institut d’Investigació Germans Trias i Pujol (IGTP), 08916 Barcelona, Spain
| | | | - Yesika Díaz
- Centre Estudis Epidemiològics Sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Dept Salut, Generalitat de Catalunya, 08916 Badalona, Spain
- Institut d’Investigació Germans Trias i Pujol (IGTP), 08916 Barcelona, Spain
| | - Sergio Moreno
- Centre Estudis Epidemiològics Sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Dept Salut, Generalitat de Catalunya, 08916 Badalona, Spain
- Institut d’Investigació Germans Trias i Pujol (IGTP), 08916 Barcelona, Spain
| | - Jordi Aceiton
- Centre Estudis Epidemiològics Sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Dept Salut, Generalitat de Catalunya, 08916 Badalona, Spain
- Institut d’Investigació Germans Trias i Pujol (IGTP), 08916 Barcelona, Spain
| | - Andreu Bruguera
- Centre Estudis Epidemiològics Sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Dept Salut, Generalitat de Catalunya, 08916 Badalona, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia i de Medicina Preventiva i de Salut Publica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Institut d’Investigació Germans Trias i Pujol (IGTP), 08916 Barcelona, Spain
| | | | - Arkaitz Imaz
- Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain
| | - Paula Suanzes
- Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, 08935 Barcelona, Spain
| | - Gemma Navarro
- Unitat de VIH/SIDA, Corporació Sanitària i Universitària Parc Taulí-Universitat Autònoma de Barcelona, 08208 Barcelona, Spain
| | - Amat Orti
- Hospital de Tortosa, Verge de la Cinta, 43500 Tortosa, Spain
| | - Jose Maria Miro
- Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 08036 Barcelona, Spain
| | - Jordi Casabona
- Centre Estudis Epidemiològics Sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Dept Salut, Generalitat de Catalunya, 08916 Badalona, Spain
- Departament de Pediatria, d’Obstetrícia i Ginecologia i de Medicina Preventiva i de Salut Publica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Institut d’Investigació Germans Trias i Pujol (IGTP), 08916 Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), 08036 Barcelona, Spain
| | - Juliana Reyes-Urueña
- Centre Estudis Epidemiològics Sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Dept Salut, Generalitat de Catalunya, 08916 Badalona, Spain
- Institut d’Investigació Germans Trias i Pujol (IGTP), 08916 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-497-8890
| | | |
Collapse
|
18
|
Hwa SH, Snyman J, Bernstein M, Ganga Y, Cele S, Muema D, Tan CW, Khan K, Karim F, Hanekom W, Bernstein L, Kaufmann SHE, Wang LF, Ndung’u T, Sigal A. Association Between Human Immunodeficiency Virus Viremia and Compromised Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 Beta Variant. J Infect Dis 2022; 227:211-220. [PMID: 35975942 PMCID: PMC9452105 DOI: 10.1093/infdis/jiac343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may be associated with worse clinical outcomes in people with human immunodeficiency virus (HIV) (PWH). We report anti-SARS-CoV-2 antibody responses in patients hospitalized with coronavirus disease 2019 in Durban, South Africa, during the second SARS-CoV-2 infection wave dominated by the Beta (B.1.351) variant. METHODS Thirty-four participants with confirmed SARS-CoV-2 infection were followed up with weekly blood sampling to examine antibody levels and neutralization potency against SARS-CoV-2 variants. Participants included 18 PWH, of whom 11 were HIV viremic. RESULTS SARS-CoV-2-specific antibody concentrations were generally lower in viremic PWH than in virologically suppressed PWH and HIV-negative participants, and neutralization of the Beta variant was 4.9-fold lower in viremic PWH. Most HIV-negative participants and antiretroviral therapy-suppressed PWH also neutralized the Delta (B.1.617.2) variant, whereas the majority of viremic PWH did not. CD4 cell counts <500/μL were associated with lower frequencies of immunoglobulin G and A seroconversion. In addition, there was a high correlation between a surrogate virus neutralization test and live virus neutralization against ancestral SARS-CoV-2 virus in both PWH and HIV-negative individuals, but correlation decreased for the Beta variant neutralization in PWH. CONCLUSIONS HIV viremia was associated with reduced Beta variant neutralization. This highlights the importance of HIV suppression in maintaining an effective SARS-CoV-2 neutralization response.
Collapse
Affiliation(s)
- Shi-Hsia Hwa
- Present affiliation: Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Jumari Snyman
- Present affiliation: Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | - Sandile Cele
- Africa Health Research Institute, Durban, South Africa,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Muema
- Africa Health Research Institute, Durban, South Africa,HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, South Africa,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Willem Hanekom
- Africa Health Research Institute, Durban, South Africa,Division of Infection and Immunity, University College London, London, United Kingdom
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany,Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany,Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore,SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - Thumbi Ndung’u
- Africa Health Research Institute, Durban, South Africa,Division of Infection and Immunity, University College London, London, United Kingdom,HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Alex Sigal
- Correspondence: Alex Sigal, Africa Health Research Institute, 719 Umbilo Rd, Congella, Durban 4001, South Africa ()
| | | |
Collapse
|
19
|
Mungmunpuntipantip R, Tin SS, Wiwanitkit V. CD4+ count change after COVID-19 vaccination: Observation on HIV-infected vaccine recipient. Indian J Sex Transm Dis AIDS 2022; 43:231. [PMID: 36743081 PMCID: PMC9891001 DOI: 10.4103/ijstd.ijstd_90_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
| | | | - Viroj Wiwanitkit
- Department of Community Medicine, Dr. D.Y. Patil University, Pune, India
| |
Collapse
|
20
|
Prasithsirikul W, Nopsopon T, Phutrakool P, Suwanwattana P, Kantagowit P, Pongpirul W, Jongkaewwattana A, Pongpirul K. ChAdOx1 nCoV-19 Immunogenicity and Immunological Response Following COVID-19 Infection in Patients Receiving Maintenance Hemodialysis. Vaccines (Basel) 2022; 10:vaccines10060959. [PMID: 35746567 PMCID: PMC9230560 DOI: 10.3390/vaccines10060959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/17/2022] Open
Abstract
Patients with end-stage renal disease (ESRD) receiving hemodialysis (HD) were found to have a decreased immune response following mRNA COVID-19 immunization. ChAdOx1 nCoV-19 was a promising COVID-19 vaccine that performed well in the general population, but the evidence on immunogenicity in ESRD with HD patients was limited. Moreover, the immunological response to COVID-19 infection was inconclusive in patients with ESRD and HD. The aim of this study was to investigate the immunogenicity of ChAdOx1 nCoV-19 vaccination and the immunological response after COVID-19 infection in ESRD patients with HD. The blood samples were obtained at baseline, 1-month, and 3-month follow-up after each shot or recovery. All participants were measured for anti-spike IgG by the ELISA method, using Euroimmun. This study found a significant increase in anti-spike IgG after 1 month of two-shot ChAdOx1 nCoV-19 vaccination, followed by a significant decrease after 3 months. On the other hand, the anti-spike IgG was maintained in the post-recovery group. There was no significant difference in the change of anti-spike IgG between the one-shot ChAdOx1 nCoV-19-vaccinated and post-recovery groups for both 1-month and 3-month follow-ups. The seroconversion rate for the vaccinated group was 60.32% at 1 month after one-shot vaccination and slightly dropped to 58.73% at the 3-month follow-up, then was 92.06% at 1 month after two-shot vaccination and reduced to 82.26% at the 3-month follow-up. For the recovered group, the seroconversion rate was 95.65% at 1 month post-recovery and 92.50% at 3-month follow-up. This study demonstrated the immunogenicity of two-dose ChAdOx1 nCoV-19 in ESRD patients with HD for humoral immunity. After COVID-19 infection, the humoral immune response was strong and could be maintained for at least three months.
Collapse
Affiliation(s)
- Wisit Prasithsirikul
- Bamrasnaradura Infectious Diseases Institute, Nonthaburi 11000, Thailand; (W.P.); (P.S.); (W.P.)
| | - Tanawin Nopsopon
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (P.K.)
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02215, USA
- Correspondence: (T.N.); (K.P.)
| | - Phanupong Phutrakool
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (P.K.)
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pawita Suwanwattana
- Bamrasnaradura Infectious Diseases Institute, Nonthaburi 11000, Thailand; (W.P.); (P.S.); (W.P.)
| | - Piyawat Kantagowit
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (P.K.)
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wannarat Pongpirul
- Bamrasnaradura Infectious Diseases Institute, Nonthaburi 11000, Thailand; (W.P.); (P.S.); (W.P.)
| | - Anan Jongkaewwattana
- National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (P.K.)
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Bumrungrad International Hospital, Bangkok 10110, Thailand
- Correspondence: (T.N.); (K.P.)
| |
Collapse
|
21
|
Lambarey H, Blumenthal MJ, Chetram A, Joyimbana W, Jennings L, Tincho MB, Burgers WA, Orrell C, Schäfer G. SARS-CoV-2 Infection Is Associated with Uncontrolled HIV Viral Load in Non-Hospitalized HIV-Infected Patients from Gugulethu, South Africa. Viruses 2022; 14:v14061222. [PMID: 35746693 PMCID: PMC9229655 DOI: 10.3390/v14061222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
In South Africa, high exposure to SARS-CoV-2 occurs primarily in densely populated, low-income communities, which are additionally burdened by highly prevalent Human Immunodeficiency Virus (HIV). With the aim to assess SARS-CoV-2 seroprevalence and its association with HIV-related clinical parameters in non-hospitalized patients likely to be highly exposed to SARS-CoV-2, this observational cross-sectional study was conducted at the Gugulethu Community Health Centre Antiretroviral clinic between October 2020 and June 2021, after the first COVID-19 wave in South Africa and during the second and beginning of the third wave. A total of 150 adult (median age 39 years [range 20−65 years]) HIV-infected patients (69% female; 31% male) were recruited. 95.3% of the cohort was on antiretroviral therapy (ART), had a median CD4 count of 220 cells/µL (range 17−604 cells/µL) and a median HIV viral load (VL) of 49 copies/mL (range 1−1,050,867 copies/mL). Furthermore, 106 patients (70.7%) were SARS-CoV-2 seropositive, and 0% were vaccinated. When stratified for HIV VL, patients with uncontrolled HIV viremia (HIV VL > 1000 copies/mL) had significantly higher odds of SARS-CoV-2 seropositivity than patients with HIV VL < 1000 copies/mL, after adjusting for age, sex and ART status (p = 0.035, adjusted OR 2.961 [95% CI: 1.078−8.133]). Although the cause−effect relationship could not be determined due to the cross-sectional study design, these results point towards a higher risk of SARS-CoV-2 susceptibility among viremic HIV patients, or impaired HIV viral control due to previous co-infection with SARS-CoV-2.
Collapse
Affiliation(s)
- Humaira Lambarey
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (H.L.); (M.J.B.); (A.C.)
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; (M.B.T.); (W.A.B.); (C.O.)
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry, University of Cape Town, Cape Town 7925, South Africa
| | - Melissa J. Blumenthal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (H.L.); (M.J.B.); (A.C.)
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; (M.B.T.); (W.A.B.); (C.O.)
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry, University of Cape Town, Cape Town 7925, South Africa
| | - Abeen Chetram
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (H.L.); (M.J.B.); (A.C.)
| | - Wendy Joyimbana
- Desmond Tutu Health Foundation, Cape Town 7925, South Africa; (W.J.); (L.J.)
| | - Lauren Jennings
- Desmond Tutu Health Foundation, Cape Town 7925, South Africa; (W.J.); (L.J.)
| | - Marius B. Tincho
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; (M.B.T.); (W.A.B.); (C.O.)
- Department of Pathology, Division of Medical Virology, University of Cape Town, Cape Town 7925, South Africa
| | - Wendy A. Burgers
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; (M.B.T.); (W.A.B.); (C.O.)
- Department of Pathology, Division of Medical Virology, University of Cape Town, Cape Town 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - Catherine Orrell
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; (M.B.T.); (W.A.B.); (C.O.)
- Desmond Tutu Health Foundation, Cape Town 7925, South Africa; (W.J.); (L.J.)
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (H.L.); (M.J.B.); (A.C.)
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; (M.B.T.); (W.A.B.); (C.O.)
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry, University of Cape Town, Cape Town 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: ; Tel.: +27-21-404-7688
| |
Collapse
|
22
|
Giannone D, Vecchione MB, Czernikier A, Polo ML, Gonzalez Polo V, Cruces L, Ghiglione Y, Balinotti S, Longueira Y, Turk G, Laufer N, Quiroga MF. SARS-CoV-2 humoral and cellular immune responses in COVID-19 convalescent individuals with HIV. J Infect 2022; 85:334-363. [PMID: 35636532 PMCID: PMC9135637 DOI: 10.1016/j.jinf.2022.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/21/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Denise Giannone
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - María Belén Vecchione
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - Alejandro Czernikier
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - María Laura Polo
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - Virginia Gonzalez Polo
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - Leonel Cruces
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - Yanina Ghiglione
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | | | | | - Yesica Longueira
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - Gabriela Turk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina; Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Laufer
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina; Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Florencia Quiroga
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina; Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Martín-Vicente M, Berenguer J, Muñoz-Gómez MJ, Díez C, Micán R, Pérez-Elías MJ, García-Fraile LJ, Peraire J, Suárez-García I, Jiménez-Sousa MÁ, Fernández-Rodríguez A, Vázquez M, Ryan P, González-García J, Jarrín I, Mas V, Martínez I, Resino S. Similar humoral immune responses against the SARS-CoV-2 spike protein in HIV and non-HIV individuals after COVID-19. J Infect 2022; 84:418-467. [PMID: 34752819 PMCID: PMC8574204 DOI: 10.1016/j.jinf.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022]
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain..
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.; Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain.
| | - María José Muñoz-Gómez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain..
| | - Cristina Díez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.; Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain.
| | - Rafael Micán
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.; Servicio de Medicina Interna, Hospital Universitario La Paz, IdiPaz, Madrid, Spain.
| | - María Jesús Pérez-Elías
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.; Servicio de Enfermedades Infecciosas, Hospital Ramón y Cajal, Universidad de Alcalá, IRYCIS, Madrid, Spain.
| | - Lucio Jesús García-Fraile
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.; Servicio de Medicina Interna, Hospital Universitario de La Princesa, Madrid, Spain.
| | - Joaquin Peraire
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.; Servicio de Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain..
| | - Inés Suárez-García
- Servicio de Medicina Interna, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Spain; Universidad Europea, Villaviciosa de Odón, Madrid, Spain..
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain..
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain..
| | - Mónica Vázquez
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.; Servicio de Medicina Interna, Hospital Infanta Leonor, IiSGM, Madrid, Spain.
| | - Juan González-García
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.; Servicio de Medicina Interna, Hospital Universitario La Paz, IdiPaz, Madrid, Spain.
| | - Inmaculada Jarrín
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.; Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain.
| | - Vicente Mas
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain..
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain..
| |
Collapse
|
24
|
Alcaide ML, Nogueira NF, Salazar AS, Montgomerie EK, Rodriguez VJ, Raccamarich PD, Barreto IT, McGaugh A, Sharkey ME, Mantero AM, Rodriguez AE, Beauchamps L, Jones DL. A Longitudinal Analysis of SARS-CoV-2 Antibody Responses Among People With HIV. Front Med (Lausanne) 2022; 9:768138. [PMID: 35330585 PMCID: PMC8940197 DOI: 10.3389/fmed.2022.768138] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background The concentration and duration of antibodies (Ab) to SARS-CoV-2 infection predicts the severity of the disease and the clinical outcomes. Older people and those with HIV have impaired immune responses, worse outcomes after SARS-CoV-2 infection, and lower antibody responses after viral infection and vaccination. This study evaluated an Ab response to SARS-CoV-2 in people with HIV (PWH) and without HIV (HIV-) and its association with age. Methods A total of 23 COVID+PWH and 21 COVID+HIV- participants were followed longitudinally for 6 months post-mild COVID-19. Immunoglobin G (IgG) and immunoglobin M (IgM) Ab responses were measured by an in-house developed ELISA. Time points and HIV status interaction were analyzed using Poisson generalized estimating equations, and correlations were analyzed using non-parametric tests. Results Median age in PWH was 55 years with 28.6% women, while in the HIV- group was 36 years with 60.9% women. The mean time from COVID-19 diagnosis to study enrollment was 16 days for PWH and 11 days for HIV-. The mean CD4+ T-cell count/μl for PWH was 772.10 (±365.21). SARS-CoV-2 IgM and IgG were detected at all time points and Ab response levels did not differ by HIV status (p > 0.05). At entry, age showed a weak direct association with IgG responses (ρ = 0.44, p < 0.05) in HIV- but did not show any association in PWH. Similar associations between age, IgG, and HIV status emerged at day 14 (T1; ρ = 0.50, p < 0.05), 3 months (T3; ρ = 0.50, p < 0.05), and 6 months visit (T4; ρ = 0.78, p < 0.05) in the HIV- group. Conclusion The Ab responses in the 6-month post-SARS-CoV-2 infection did not differ by HIV status, though a positive association was found between age and Ab response in older PWH. Results suggest that immune protection and vaccine responses are similar for PWH than for those without HIV infection.
Collapse
Affiliation(s)
- Maria L Alcaide
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nicholas F Nogueira
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ana S Salazar
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Emily K Montgomerie
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Violeta J Rodriguez
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Patricia D Raccamarich
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irma T Barreto
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Angela McGaugh
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mark E Sharkey
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alejandro M Mantero
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Allan E Rodriguez
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Laura Beauchamps
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Deborah L Jones
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
25
|
Snyman J, Sanders EJ, Ndung’u T. COVID-19 in Africa: preexisting immunity and HIV. AIDS 2021; 35:2391-2393. [PMID: 34723854 PMCID: PMC8567318 DOI: 10.1097/qad.0000000000003079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Jumari Snyman
- Africa Health Research Institute
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Eduard J. Sanders
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thumbi Ndung’u
- Africa Health Research Institute
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|