1
|
Huang F, Jiang P, Chen Y, Wang W, Han Y, Chen C, Xiang G, Ye S, Zheng L. A label-free and naked-eye fluorescence turn-on assay for one-pot LAMP detection of foodborne pathogens using AuNCs-Cu 2+ complex. Food Chem 2025; 488:144877. [PMID: 40413949 DOI: 10.1016/j.foodchem.2025.144877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Loop-mediated isothermal amplification (LAMP) is a rapid and sensitive approach for foodborne pathogen detection; however, a simple, user-friendly, and naked-eye readable readout method remains a challenge. Herein, we synthesized bovine serum albumin stabilized gold nanoclusters (BSA-AuNCs), which exhibit fluorescence quenching upon copper ions (Cu2+) binding and fluorescence recovery in the presence of phosphate ions (PPi). Leveraging this property, we developed a label-free fluorescence turn-on assay for naked-eye LAMP detection by monitoring PPi accumulation under UV light. To mitigate potential cross-contamination risks inherent in LAMP workflows, we integrated the BSA-AuNCs-Cu2+ complex into the reaction lid, enabling a closed, one-pot detection system. This method demonstrated high sensitivity, detecting Salmonella enterica at concentrations as low as 101 CFU/mL within 40 min (excluding nucleic acid extraction process). With its customizable primers and naked-eye visual detection capability, this assay offers a versatile and practical tool for rapid pathogen screening in diverse applications.
Collapse
Affiliation(s)
- Fuyuan Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Paner Jiang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiliang Chen
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weiwei Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yaxin Han
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chenlu Chen
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guangxin Xiang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sheng Ye
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Laibao Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
2
|
Kramer A, Lexow F, Bludau A, Köster AM, Misailovski M, Seifert U, Eggers M, Rutala W, Dancer SJ, Scheithauer S. How long do bacteria, fungi, protozoa, and viruses retain their replication capacity on inanimate surfaces? A systematic review examining environmental resilience versus healthcare-associated infection risk by "fomite-borne risk assessment". Clin Microbiol Rev 2024; 37:e0018623. [PMID: 39388143 PMCID: PMC11640306 DOI: 10.1128/cmr.00186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYIn healthcare settings, contaminated surfaces play an important role in the transmission of nosocomial pathogens potentially resulting in healthcare-associated infections (HAI). Pathogens can be transmitted directly from frequent hand-touch surfaces close to patients or indirectly by staff and visitors. HAI risk depends on exposure, extent of contamination, infectious dose (ID), virulence, hygiene practices, and patient vulnerability. This review attempts to close a gap in previous reviews on persistence/tenacity by only including articles (n = 171) providing quantitative data on re-cultivable pathogens from fomites for a better translation into clinical settings. We have therefore introduced the new term "replication capacity" (RC). The RC is affected by the degree of contamination, surface material, temperature, relative humidity, protein load, organic soil, UV-light (sunlight) exposure, and pH value. In general, investigations into surface RC are mainly performed in vitro using reference strains with high inocula. In vitro data from studies on 14 Gram-positive, 26 Gram-negative bacteria, 18 fungi, 4 protozoa, and 37 viruses. It should be regarded as a worst-case scenario indicating the upper bounds of risks when using such data for clinical decision-making. Information on RC after surface contamination could be seen as an opportunity to choose the most appropriate infection prevention and control (IPC) strategies. To help with decision-making, pathogens characterized by an increased nosocomial risk for transmission from inanimate surfaces ("fomite-borne") are presented and discussed in this systematic review. Thus, the review offers a theoretical basis to support local risk assessments and IPC recommendations.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene
and Environmental Medicine, University Medicine
Greifswald, Greifswald,
Germany
| | - Franziska Lexow
- Department for
Infectious Diseases, Unit 14: Hospital Hygiene, Infection Prevention and
Control, Robert Koch Institute,
Berlin, Germany
| | - Anna Bludau
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| | - Antonia Milena Köster
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| | - Martin Misailovski
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
- Department of
Geriatrics, University of Göttingen Medical
Center, Göttingen,
Germany
| | - Ulrike Seifert
- Friedrich
Loeffler-Institute of Medical Microbiology – Virology, University
Medicine Greifswald,
Greifswald, Germany
| | - Maren Eggers
- Labor Prof. Dr. G.
Enders MVZ GbR, Stuttgart,
Germany
| | - William Rutala
- Division of Infectious
Diseases, University of North Carolina School of
Medicine, Chapel Hill,
North Carolina, USA
| | - Stephanie J. Dancer
- Department of
Microbiology, University Hospital
Hairmyres, Glasgow,
United Kingdom
- School of Applied
Sciences, Edinburgh Napier University,
Edinburgh, United Kingdom
| | - Simone Scheithauer
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| |
Collapse
|
3
|
Konstantinou L, Varda E, Apostolou T, Loizou K, Dougiakis L, Inglezakis A, Hadjilouka A. A Novel Application of B.EL.D™ Technology: Biosensor-Based Detection of Salmonella spp. in Food. BIOSENSORS 2024; 14:582. [PMID: 39727847 DOI: 10.3390/bios14120582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
The prevalence of foodborne diseases is continuously increasing, causing numerous hospitalizations and deaths, as well as money loss in the agri-food sector and food supply chain worldwide. The standard analyses currently used for bacteria detection have significant limitations with the most important being their long procedural time that can be crucial for foodborne outbreaks. In this study, a biosensor system able to perform robust and accurate detection of Salmonella spp. in meat products was developed. To achieve this, a portable device developed by EMBIO Diagnostics called B.EL.DTM (Bio Electric Diagnostics) and cell-based biosensor technology (BERA) were used. Results indicated that the new method could detect the pathogen within 24 h after a 3-min analysis and discriminate samples with and without Salmonella with high accuracy. Achieving an accuracy of 86.1% and a detection limit (LOD) of 1 log CFU g-1, this innovative technology enables rapid and sensitive identification of Salmonella spp. in meat and meat products, making it an excellent tool for pathogen screening.
Collapse
Affiliation(s)
- Lazaros Konstantinou
- EMBIO Diagnostics Ltd., Athalassas, 2018 Nicosia, Cyprus
- Department of Life Sciences, School of Sciences, European University of Cyprus, 2404 Nicosia, Cyprus
| | - Eleni Varda
- EMBIO Diagnostics Ltd., Athalassas, 2018 Nicosia, Cyprus
| | | | | | | | | | - Agni Hadjilouka
- EMBIO Diagnostics Ltd., Athalassas, 2018 Nicosia, Cyprus
- Department of Life Sciences, School of Sciences, European University of Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
4
|
Richardson D, Savary-Trathen A, Fitzpatrick C, Williams D. Estimated prevalence and associations of sexually transmissible bacterial enteric pathogens in asymptomatic men who have sex with men: a systematic review and meta-analysis. Sex Transm Infect 2024; 100:532-537. [PMID: 38902026 DOI: 10.1136/sextrans-2024-056183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE The reservoir of sexually transmissible bacterial enteric pathogens in asymptomatic men who have sex with men (MSM) may impact future outbreaks, and the evolution of antimicrobial resistance. We aimed to estimate the pooled prevalence and explore any factors associated with Shigella spp, Campylobacter spp, diarrhoeagenic Escherichia coli and Salmonella spp in asymptomatic MSM using the random effects model. METHODS We searched Embase, MEDLINE, CINAHL and Web of Science Core Collections for manuscripts published up to February 2024. One author screened citations and abstracts; two authors independently conducted a full-text review. We included manuscripts which measured the prevalence of Shigella spp, Campylobacter spp, diarrhoeagenic E. coli and Salmonella spp in asymptomatic MSM. Quality and risk of bias was assessed independently by two authors using the Joanna Briggs Institute critical appraisal tools. We calculated pooled prevalence and CIs using the random effects model. RESULTS Six manuscripts were included in the final review. The manuscripts were from Australia (n=2), the UK (n=2), the Netherlands (n=1) and the USA (n=1) and included data from 3766 asymptomatic MSM tested for bacterial enteric pathogens. The prevalence of Shigella spp was 1.1% (95% CI 0.7% to 1.7%), Campylobacter spp 1.9% (95% CI 1.5% to 2.5%), diarrhoeagenic E. coli 3.8% (95% CI 2.1% to 6.7%) and Salmonella spp 0.3% (95% CI 0.1% to 0.6%). Two manuscripts demonstrated that the detection of bacterial enteric pathogen was more frequent in asymptomatic MSM using HIV-pre-exposure prophylaxis (PrEP), living with HIV, reporting <5 new sexual partners in the past 3 months, reporting insertive oral-anal sex and group sex compared with MSM testing negative. CONCLUSION Despite a small number of manuscripts, this review has estimated the pooled prevalence, and highlighted some possible associations with sexually transmissible bacterial enteric pathogens in asymptomatic MSM, which can inform future clinical guidelines, public health control strategies and research to increase our understanding of transmission and the evolution of antimicrobial resistance. PROSPERO REGISTRATION NUMBER CRD42024518700.
Collapse
Affiliation(s)
- Daniel Richardson
- Sexual Health & HIV medicine, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
- Global Health & Infection, Brighton and Sussex Medical School, Brighton, UK
| | - Amber Savary-Trathen
- Sexual Health & HIV medicine, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Colin Fitzpatrick
- Sexual Health & HIV medicine, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Deborah Williams
- Sexual Health & HIV medicine, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| |
Collapse
|
5
|
Schmidt JW, Carlson A, Bosilevac JM, Harhay D, Arthur TM, Brown T, Wheeler TL, Vipham JL. Evaluation of Methods for Identifying Poultry Wing Rinses With Salmonella Concentrations Greater Than or Equal to 10 CFU/mL. J Food Prot 2024; 87:100362. [PMID: 39299469 DOI: 10.1016/j.jfp.2024.100362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
In the United States, the Proposed Regulatory Framework to Reduce Salmonella Illnesses Attributable to Poultry published by the Food Safety and Inspection Service (FSIS) has highlighted the need for simple, rapid methods that identify poultry wing rinse samples harboring Salmonella concentrations ≥10 CFU/mL. One of eight cold-stressed and nutrient-starved Salmonella strains was inoculated into post-chill two-joint poultry wing rinses (48 turkey and 72 chicken) at levels from 0.22 to 3.79 log CFU/mL, and then measured by 3-tube Most Probable Number (MPN), BioMerieux GENE-UP QUANT, Hygiena BAX SalQuant, and novel threshold methods. The MPN lower limit of quantification (LLQ) for Salmonella was -0.96 log CFU/mL. MPN overestimated the inoculated Salmonella level by 0.05 ± 0.35 log CFU/mL. The GENE-UP QUANT Salmonella method (LLQ = 1.00 log CFU/mL) underestimated the inoculated Salmonella level by 0.05 ± 0.51 log CFU/mL. The BAX SalQuant method (LLQ = 0.00 log CFU/mL) underestimated the inoculated Salmonella level by 1.21 ± 0.78 log CFU/mL. Threshold test methods with Poisson probabilities of 0.95 (PiLOT-95), 0.86 (PiLOT-86), 0.63 (PiLOT-63), and 0.50 (PiLOT-50) were developed to identify poultry wing rinses harboring Salmonella levels ≥10 CFU. MPN was 93.1%, accurate for determining if Salmonella levels in poultry wing rinses were ≥10 CFU/mL, but MPN costs and time requirements can be prohibitive for most laboratories. GENE-UP quantification was 86.1% accurate, but the GENE-UP method requires equipment and technical expertise that some food safety laboratories may not possess. BAX quantification had the lowest accuracy; 58.4%. PiLOT threshold test accuracies ranged from 83.2% for PiLOT-50 to 93.1% for PiLOT-86. The PiLOT threshold tests are simple and can be adapted to identify many environmental or food samples containing Salmonella exceeding any user-defined concentration threshold.
Collapse
Affiliation(s)
- John W Schmidt
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, PO Box 165, State Spur 18D, Clay Center, NE 68933, United States.
| | - Anna Carlson
- Cargill Inc, 825 E Douglas Ave, Wichita, KS 67202, United States
| | - Joseph M Bosilevac
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, PO Box 165, State Spur 18D, Clay Center, NE 68933, United States
| | - Dayna Harhay
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, PO Box 165, State Spur 18D, Clay Center, NE 68933, United States
| | - Terrance M Arthur
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, PO Box 165, State Spur 18D, Clay Center, NE 68933, United States; Present address: Fremonta Corp., 1945 Kyle Park Ct., San Jose, CA 95125, United states
| | - Ted Brown
- Cargill Inc, 825 E Douglas Ave, Wichita, KS 67202, United States
| | - Tommy L Wheeler
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, PO Box 165, State Spur 18D, Clay Center, NE 68933, United States
| | - Jessie L Vipham
- Kansas State University, Department of Animal Sciences and Industry, 232 Weber Hall, 2900 College Ave, Manhattan, KS 66502, United States
| |
Collapse
|
6
|
Sun Y, Ferreira F, Reid B, Zhu K, Ma L, Young BM, Hagan CE, Tsolis RM, Mogilner A, Zhao M. Gut epithelial electrical cues drive differential localization of enterobacteria. Nat Microbiol 2024; 9:2653-2665. [PMID: 39164392 PMCID: PMC11445056 DOI: 10.1038/s41564-024-01778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/09/2024] [Indexed: 08/22/2024]
Abstract
Salmonella translocate to the gut epithelium via microfold cells lining the follicle-associated epithelium (FAE). How Salmonella localize to the FAE is not well characterized. Here we use live imaging and competitive assays between wild-type and chemotaxis-deficient mutants to show that Salmonella enterica serotype Typhimurium (S. Typhimurium) localize to the FAE independently of chemotaxis in an ex vivo mouse caecum infection model. Electrical recordings revealed polarized FAE with sustained outward current and small transepithelial potential, while the surrounding villus is depolarized with inward current and large transepithelial potential. The distinct electrical potentials attracted S. Typhimurium to the FAE while Escherichia coli (E. coli) localized to the villi, through a process called galvanotaxis. Chloride flux involving the cystic fibrosis transmembrane conductance regulator (CFTR) generated the ionic currents around the FAE. Pharmacological inhibition of CFTR decreased S. Typhimurium FAE localization but increased E. coli recruitment. Altogether, our findings demonstrate that bioelectric cues contribute to S. Typhimurium targeting of specific gut epithelial locations, with potential implications for other enteric bacterial infections.
Collapse
Affiliation(s)
- Yaohui Sun
- Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA.
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA.
| | - Fernando Ferreira
- Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Braga, Portugal
| | - Brian Reid
- Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Kan Zhu
- Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Li Ma
- Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Coty R&D Technology and Innovation, Shanghai, P. R. China
| | - Briana M Young
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Catherine E Hagan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY, USA.
| | - Min Zhao
- Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
7
|
Rana YS, Chen L, Jiao Y, Johnson LM, Snyder AB. A meta-analysis of microbial thermal inactivation in low moisture foods. Food Microbiol 2024; 121:104515. [PMID: 38637077 DOI: 10.1016/j.fm.2024.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Microbial thermal inactivation in low moisture foods is challenging due to enhanced thermal resistance of microbes and low thermal conductivity of food matrices. In this study, we leveraged the body of previous work on this topic to model key experimental features that determine microbial thermal inactivation in low moisture foods. We identified 27 studies which contained 782 mean D-values and developed linear mixed-effect models to assess the effect of microorganism type, matrix structure and composition, water activity, temperature, and inoculation and recovery methods on cell death kinetics. Intraclass correlation statistics (I2) and conditional R2 values of the linear mixed effects models were: E. coli (R2-0.91, I2-83%), fungi (R2-0.88, I2-85%), L. monocytogenes (R2-0.84, I2-75%), Salmonella (R2-0.69, I2-46%). Finally, global response surface models (RSM) were developed to further study the non-linear effect of aw and temperature on inactivation. The fit of these models varied by organisms from R2 0.88 (E. coli) to 0.35 (fungi). Further dividing the Salmonella data into individual RSM models based on matrix structure improved model fit to R2 0.90 (paste-like products) and 0.48 (powder-like products). This indicates a negative relationship between data diversity and model performance.
Collapse
Affiliation(s)
| | - Long Chen
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA; College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yang Jiao
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lynn M Johnson
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, 14853, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Patà Z, Faré PB, Lava SAG, Milani GP, Bianchetti MG, Janett S, Hunjan I, Kottanattu L. Nontyphoidal Salmonella Outbreaks Associated With Chocolate Consumption: A Systematic Review. Pediatr Infect Dis J 2024; 43:420-424. [PMID: 38285510 PMCID: PMC11003406 DOI: 10.1097/inf.0000000000004252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND A large, cross-border outbreak of nontyphoidal salmonellosis connected to chocolate product consumption was recently reported. This occurrence motivated us to conduct a comprehensive review of existing literature concerning outbreaks of nontyphoidal salmonellosis associated with chocolate consumption. METHODS We performed a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (PROSPERO CRD42022369023) in 3 databases: U.S. National Library of Medicine, Web of Science and Excerpta Medica. Google Scholar and the bibliography of each identified report were also screened. Eligible were articles published after 1970, describing outbreaks of more than 10 patients with a nontyphoidal salmonellosis associated with chocolate consumption. RESULTS Twenty-three articles were included, which described 12 outbreaks involving a total of 3266 patients. All outbreaks occurred in high-income countries: 1 was limited to 1 city, 6 involved 1 country and the remaining 5 involved 2 or more countries. Six outbreaks peaked in winter, 3 in autumn, 2 in spring and 1 in summer. Children were mainly affected. No predominant serotype was identified. CONCLUSIONS Our data documents that chocolate is an optimal medium for the transmission of nontyphoidal salmonellosis. A connected worldwide reporting system including high-income, middle-income and low-income countries is crucial to detect infectious diseases outbreaks in an early phase and avoid their spread.
Collapse
Affiliation(s)
- Zacharie Patà
- From the Family Medicine Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana
| | - Pietro B. Faré
- Department of Internal Medicine, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of infectious diseases, University Hospital Zurich, Zurich, Switzerland
| | - Sebastiano A. G. Lava
- Pediatric Cardiology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
- ¶Clinical Pharmacology and Therapeutics Group, University College London, London, United Kingdom
| | - Gregorio P. Milani
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Mario G. Bianchetti
- From the Family Medicine Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana
| | - Simone Janett
- Sleep Center, Neurocenter of the Southern Switzerland, Ente Ospedaliero Cantonale
| | - Isabella Hunjan
- From the Family Medicine Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana
| | - Lisa Kottanattu
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
- Pediatric Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| |
Collapse
|
9
|
Sandrasaigaran P, Mohan S, Segaran NS, Lee TY, Radu S, Hasan H. Prevalence of multi-antimicrobial resistant non-typhoidal Salmonella isolated from filth flies at wet markets in Klang, Malaysia, and their survival in the simulated gastric fluid. Int J Food Microbiol 2023; 407:110390. [PMID: 37722349 DOI: 10.1016/j.ijfoodmicro.2023.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/20/2023]
Abstract
Filth flies at wet markets can be a vector harbouring multiple antimicrobial-resistant (MAR) nontyphoidal Salmonella (NTS), and such strains are a significant threat to public health as they may cause severe infections in humans. This study aims to investigate the prevalence of antimicrobial-resistant NTS, especially Salmonella Enteritidis and S. Typhimurium harboured by filth flies at wet markets, and investigate their survival in the simulated gastric fluid (SGF). Filth flies (n = 90) were captured from wet markets in Klang, Malaysia, and processed to isolate Salmonella spp. The isolates (n = 16) were identified using the multiplex-touchdown PCR and assessed their antimicrobial susceptibility against 11 antimicrobial agents. Finally, three isolates with the highest MAR index were subjected to SGF survival tests. It was observed that 17.8 % of flies (n = 16/90) harbouring Salmonella, out of which 10 % (n = 9/90) was S. Enteritidis, 2.2 % (n = 2/90) was S. Typhimurium, and 5.6 % was unidentified serotypes of Salmonella enterica subsp. I. 43.8 % (n = 7/16) were confirmed as MAR, and they were observed to be resistant against ampicillin, chloramphenicol, kanamycin, streptomycin, and nalidixic acid. Three strains, F35, F75, and F85 demonstrated the highest MAR index and were able to survive (>6-log10) in the SGF (180 min), indicating their potential virulence and invasiveness. This study provides significant insights into the prevalence and severity of MAR nontyphoidal Salmonella harboured by filth flies in wet markets, which may help inform strategies for controlling the spread and outbreak of foodborne disease.
Collapse
Affiliation(s)
- Pratheep Sandrasaigaran
- Department of Biotechnology, School of Biotechnology, Manipal International University, Nilai, Negeri Sembilan, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Shuvarnah Mohan
- Department of Biotechnology, School of Biotechnology, Manipal International University, Nilai, Negeri Sembilan, Malaysia
| | - Nithiyha Sandara Segaran
- Department of Biotechnology, School of Biotechnology, Manipal International University, Nilai, Negeri Sembilan, Malaysia
| | - Tze Yan Lee
- School of Liberal Arts, Science and Technology (PUScLST), Perdana University, Wisma Chase Perdana, Changkat Semantan Damansara Heights, 50490 Kuala Lumpur, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hanan Hasan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
Muthumbi EM, Mwanzu A, Mbae C, Bigogo G, Karani A, Mwarumba S, Verani JR, Kariuki S, Scott JAG. The epidemiology of fecal carriage of nontyphoidal Salmonella among healthy children and adults in three sites in Kenya. PLoS Negl Trop Dis 2023; 17:e0011716. [PMID: 37883602 PMCID: PMC10629669 DOI: 10.1371/journal.pntd.0011716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Despite the importance of non-Typhoidal Salmonella (NTS) disease in Africa, epidemiologic data on carriage and transmission are few. These data are important to understand the transmission of NTS in Africa and to design control strategies. METHOD To estimate the prevalence of stool carriage of NTS in Kenya, we conducted a cross-sectional study in Kilifi, Nairobi, and Siaya, sites with a low, moderate and high incidence of invasive NTS disease, respectively. At each site, we randomly selected 100 participants in each age-group of 0-11 months, 12-59 months, 5-14 years, 15-54 years and ≥55 years. We collected stool, venous blood (for hemoglobin and malaria rapid tests), anthropometric measurements, and administered a questionnaire on Water Access Sanitation and Hygiene (WASH) practices. Stool samples were cultured on selective agar for Salmonella; suspect isolates underwent serotyping and antimicrobial susceptibility testing. RESULT Overall, 53 (3.5%) isolates of NTS were cultured from 1497 samples. Age-adjusted prevalence was 13.1% (95%CI 8.8-17.4) in Kilifi, 0.4% (95%CI 0-1.3) in Nairobi, and 0.9% (95%CI 0-2.0) in Siaya. Prevalence was highest among those aged 15-54 years (6.2%). Of 53 isolates; 5 were S. Enteritidis, 1 was S. Typhimurium. No S. Typhi was isolated. None of the risk factors were associated with carriage of NTS. All isolates were susceptible to all antibiotics tested, including ampicillin, chloramphenicol, ciprofloxacin and co-trimoxazole. CONCLUSION Prevalence of fecal carriage was high in Kilifi, an area of low incidence of invasive NTS disease and was low in areas of higher incidence in Nairobi and Siaya. The age-prevalence, risk factors, geographical and serotype distribution of NTS in carriage differs from invasive disease.
Collapse
Affiliation(s)
- Esther M. Muthumbi
- Kenya Medical Research Institute–Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alfred Mwanzu
- Kenya Medical Research Institute–Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | - Cecilia Mbae
- Kenya Medical Research Institute–Centre for Microbiology Research, Nairobi, Kenya
| | - Godfrey Bigogo
- Kenya Medical Research Institute–Centre for Global Health Research, Kisumu, Kenya
| | - Angela Karani
- Kenya Medical Research Institute–Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | - Salim Mwarumba
- Kenya Medical Research Institute–Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | - Jennifer R. Verani
- U.S. Centers for Disease Control and Prevention, Division of Global Health Protection, Nairobi, Kenya
| | - Samuel Kariuki
- Kenya Medical Research Institute–Centre for Microbiology Research, Nairobi, Kenya
| | - J. Anthony G. Scott
- Kenya Medical Research Institute–Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
11
|
Lindberg SK, Willsey GG, Mantis NJ. Flagellar-based motility accelerates IgA-mediated agglutination of Salmonella Typhimurium at high bacterial cell densities. Front Immunol 2023; 14:1193855. [PMID: 37275888 PMCID: PMC10232770 DOI: 10.3389/fimmu.2023.1193855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Secretory IgA (SIgA) protects the intestinal epithelium from enteric pathogens such as Salmonella enterica serovar Typhimurium (STm) through a process known as immune exclusion, where invading bacteria are aggregated via antibody cross-linking, encased in mucus, and then cleared from the intestinal tract via peristalsis. At high cell densities, the STm aggregates form a tightly packed network that is reminiscent of early bacterial biofilms. However, the underlying mechanism of how SIgA mediates this transition from a motile and invasive state to an avirulent sessile state in STm is currently unknown. Methods In this report, we developed and validated a methodology known as the "snow globe" assay to enable real-time imaging and quantification of STm agglutination by the mouse monoclonal IgA Sal4. Results We observed that agglutination in the snow globe assay was dose-dependent, antigen-specific, and influenced by antibody isotype. We determined that flagellar-based motility was a prerequisite for rapid onset of agglutination, even at high cell densities where cell-cell contacts are expected to be frequent. We also investigated the roles of individual cyclic-di-GMP metabolizing enzymes previously implicated in motility and biofilm formation in Sal4 IgA-mediated agglutination. Discussion Taken together, our results demonstrate that IgA-mediated agglutination is a dynamic process influenced by bacterial motility and cell-cell collisions. We conclude that the snow globe assay is a viable platform to further decipher the molecular and genetic determinants that drive this interaction.
Collapse
Affiliation(s)
- Samantha K. Lindberg
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, United States
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Graham G. Willsey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Nicholas J. Mantis
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, United States
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| |
Collapse
|
12
|
Teunis PFM. Dose response for Salmonella Typhimurium and Enteritidis and other nontyphoid enteric salmonellae. Epidemics 2022; 41:100653. [PMID: 36436317 DOI: 10.1016/j.epidem.2022.100653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
This dose response assessment combines data from 6 human challenge studies and 44 outbreaks to determine infectivity and pathogenicity of several serotypes of nontyphoid Salmonella. Outcomes focus on the major serotypes Salmonella Enteritidis and Typhimurium, showing that Typhimurium is less infectious and has a lower probability of causing acute illness in infected subjects. The dose response relation of Salmonella Enteritidis is less steep than that of Typhimurium, indicating greater heterogeneity in infectivity and pathogenicity. This study revisits an older study with less flexible methods that could not combine the widely different outcomes of challenge studies and outbreaks, and had limited capability for dealing with missing information. Reported outcomes are in a format that allows use in calculations of uncertainty for quantitative risk assessment.
Collapse
Affiliation(s)
- Peter F M Teunis
- Center for Global Safe WASH, Rollins School of Public Health, Emory University, 1518 Clifton Rd, CNR Bldg. 6050 Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Multiple antibiotic-resistant Salmonella enterica serovars Enteritidis and Typhimurium in ready-to-eat battered street foods, and their survival under simulated gastric fluid and microwave heating. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Microbiological safety of traditionally processed fermented foods based on raw milk, the case of Mabisi from Zambia. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Smith CIE, Bergman P, Hagey DW. Estimating the number of diseases - the concept of rare, ultra-rare, and hyper-rare. iScience 2022; 25:104698. [PMID: 35856030 PMCID: PMC9287598 DOI: 10.1016/j.isci.2022.104698] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
At the dawn of the personalized medicine era, the number of rare diseases has been estimated at 10,000. By considering the influence of environmental factors together with genetic variations and our improved diagnostic capabilities, an assessment suggests a considerably larger number. The majority would be extremely rare, and hence, we introduce the term "hyper-rare," defined as affecting <1/108 individuals. Such disorders would potentially outnumber all currently known rare diseases. Because autosomal recessive disorders are likely concentrated in consanguineous populations, and rare toxicities in rural areas, establishing their existence necessitates a greater reach than is currently viable. Moreover, the randomness of X-linked and gain-of-function mutations greatly compound this challenge. However, whether concurrent diseases actually cause a distinct illness will depend on if their pathological mechanisms interact (phenotype conversion) or not (phenotype maintenance). The hyper-rare disease concept will be important in precision medicine with improved diagnosis and treatment of rare disease patients.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine and Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel W. Hagey
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine and Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Alves Â, Santos-Ferreira N, Magalhães R, Ferreira V, Teixeira P. From chicken to salad: Cooking salt as a potential vehicle of Salmonella spp. and Listeria monocytogenes cross-contamination. Food Control 2022; 137:108959. [PMID: 35783559 PMCID: PMC9025383 DOI: 10.1016/j.foodcont.2022.108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Epidemiological studies show that improper food handling practices at home account for a significant portion of foodborne illness cases. Mishandling of raw meat during meal preparation is one of the most frequent hazardous behaviours reported in observational research studies that potentially contributes to illness occurrence, particularly through the transfer of microbial pathogens from the raw meat to ready-to-eat (RTE) foods. This study evaluated the transfer of two major foodborne pathogens, Salmonella enterica and Listeria monocytogenes, from artificially contaminated chicken meat to lettuce via cooking salt (used for seasoning) during simulated domestic handling practices. Pieces of chicken breast fillets were spiked with five different loads (from ca. 1 to 5 Log CFU/g) of a multi-strain cocktail of either S. enterica or L. monocytogenes. Hands of volunteers (gloved) contaminated by handling the chicken, stirred the cooking salt that was further used to season lettuce leaves. A total of 15 events of cross-contamination (three volunteers and five bacterial loads) were tested for each pathogen. Immediately after the events, S. enterica was isolated from all the cooking salt samples (n = 15) and from 12 samples of seasoned lettuce; whereas L. monocytogenes was isolated from 13 salt samples and from all the seasoned lettuce samples (n = 15). In addition, S. enterica and L. monocytogenes were able to survive in artificially contaminated salt (with a water activity of 0.49) for, at least, 146 days and 126 days, respectively. The ability of these foodborne pathogens to survive for a long time in cooking salt, make it a good vehicle for transmission and cross-contamination if consumers do not adopt good hygiene practices when preparing meals.
Collapse
Affiliation(s)
- Ângela Alves
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Nânci Santos-Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Vânia Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
17
|
Zhao X, Wan Q, Zhang J, Duan Y, Li Y, Ma J, Shi C, Ma C. Single-tube analysis for ultra-fast and visual detection of Salmonella. Anal Bioanal Chem 2022; 414:2333-2341. [PMID: 35079852 PMCID: PMC8788404 DOI: 10.1007/s00216-022-03904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022]
Abstract
Herein, we developed an ultra-fast and visual single-tube nucleic acid detection approach, which combined the advantages of self-settling characteristics of chitosan-functionalized diatomaceous earth (CDE) and accelerated PCR (AC-PCR). DNA was rapidly extracted by CDE within 3 min for the next nucleic acid amplification based on the nucleic acid attached on the chitosan in pH = 5.0. Under the action of gravity, the DNA-enriched CDE self-sediments to the bottom of the tube could be directly used for AC-PCR to achieve single-tube extraction and amplification. Our method detected Salmonella culture fluids with a detection limit of 1 CFU/mL, which was 100-fold more sensitive than conventional method that have not undergone nucleic acid enrichment. Furthermore, it also displayed high specificity and sensitivity for a variety of spiked samples. The entire process could be completed within 17 min in a single tube, and in particular, the result was visualized by the naked eyes. Overall, it is an all-in-one detection strategy without the requirement of redundant procedure, which greatly improved the detection efficiency, and saved the time and the cost. With these advantages, the approach will supply a promising tool in the field of point-of-care testing for Salmonella and other foodborne pathogens.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Qianyi Wan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Yake Duan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Jingrong Ma
- Department of Gastroenterology, Ordos Central Hospital, Kangbashi, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China.
| |
Collapse
|
18
|
Gong B, Li H, Feng Y, Zeng S, Zhuo Z, Luo J, Chen X, Li X. Prevalence, Serotype Distribution and Antimicrobial Resistance of Non-Typhoidal Salmonella in Hospitalized Patients in Conghua District of Guangzhou, China. Front Cell Infect Microbiol 2022; 12:805384. [PMID: 35186792 PMCID: PMC8847451 DOI: 10.3389/fcimb.2022.805384] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella infection is a major public health concern worldwide, has contributed to an increased economic burden on the health systems. Non-typhoidal Salmonella (NTS) is a common cause of bacterial enteritis in humans, causing 93.8 million cases of gastroenteritis globally each year, with 155,000 deaths. Guangzhou city is situated in the south of China and has a sub-tropical climate, the heat and heavy rainfall helps the spread of NTS. However, no information of NTS infection is available in humans in Conghua District, the largest administrative district of Guangzhou. To understand the prevalence, serotype distribution, risk factors and drug resistance of NTS infection in humans in the survey area, an epidemiological investigation was conducted in hospitalized patients in Conghua District in Guangzhou, China. A total of 255 fecal specimens were collected from hospitalized patients (one each), with a questionnaire for each participant, and NTS infection was identified by culture, as well as serotypes confirmed by slide agglutination tests. An average prevalence of 20.39% (52/255) was observed and three serogroups were identified—serogroup B (n = 46), serogroup C1 (n = 4) and serogroup D1 (n = 2). Among them, Salmonella Typhimurium (n = 39) was the most common serotype. Children aged <3 years were observed to have a statistically higher prevalence of NTS infection than adults (25.15% versus 4.65%, P = 0.006); children with artificial feeding had a statistically higher prevalence than those with breastfeeding (30.77% versus 8.33%, P = 0.044). Antimicrobial resistance testing revealed that the majority of strains were resistant to ampicillin (92.16%), as well as 47.06% of all strains were multi-drug resistant. Therefore, it is necessary to continuous monitoring and rational use of antibiotics, which will be helpful to reduce the prevalence of resistant strains. These data will aid in making efficient control strategies to intervene with and prevent occurrence of salmonellosis.
Collapse
Affiliation(s)
- Baiyan Gong
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Hong Li
- Obstetrics Department, Second People’s Hospital of Yibin, Yibin, China
| | - Yulian Feng
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Shihan Zeng
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
- KingMed School of Laboratory Medicine of Guangzhou Medical University, Guangzhou, China
| | - Zhenxu Zhuo
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Jiajun Luo
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Xiankai Chen
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Xiaoyan Li
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
- *Correspondence: Xiaoyan Li,
| |
Collapse
|
19
|
Black Z, Balta I, Black L, Naughton PJ, Dooley JSG, Corcionivoschi N. The Fate of Foodborne Pathogens in Manure Treated Soil. Front Microbiol 2021; 12:781357. [PMID: 34956145 PMCID: PMC8702830 DOI: 10.3389/fmicb.2021.781357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this review was to provide an update on the complex relationship between manure application, altered pathogen levels and antibiotic resistance. This is necessary to protect health and improve the sustainability of this major farming practice in agricultural systems based on high levels of manure production. It is important to consider soil health in relation to environment and land management practices in the context of the soil microflora and the introduction of pathogens on the health of the soil microbiome. Viable pathogens in manure spread on agricultural land may be distributed by leaching, surface run-off, water source contamination and contaminated crop removal. Thus it is important to understand how multiple pathogens can persist in manures and on soil at farm-scale and how crops produced under these conditions could be a potential transfer route for zoonotic pathogens. The management of pathogen load within livestock manure is a potential mechanism for the reduction and prevention of outbreaks infection with Escherichia coli, Listeria Salmonella, and Campylobacter. The ability of Campylobacter, E. coli, Listeria and Salmonella to combat environmental stress coupled with their survival on food crops and vegetables post-harvest emphasizes the need for further study of these pathogens along with the emerging pathogen Providencia given its link to disease in the immunocompromised and its’ high levels of antibiotic resistance. The management of pathogen load within livestock manure has been widely recognized as a potential mechanism for the reduction and prevention of outbreaks infection but any studies undertaken should be considered as region specific due to the variable nature of the factors influencing pathogen content and survival in manures and soil. Mediocre soils that require nutrients could be one template for research on manure inputs and their influence on soil health and on pathogen survival on grassland and in food crops.
Collapse
Affiliation(s)
- Zoe Black
- Grassland and Plant Sciences Branch, AFBI Crossnacreevy, Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| | - Lisa Black
- Grassland and Plant Sciences Branch, AFBI Crossnacreevy, Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Patrick J Naughton
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - James S G Dooley
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| |
Collapse
|
20
|
New insight into the relationship between Salmonella Typhimurium and the German cockroach suggests active mechanisms of vector-borne transmission. Res Microbiol 2021; 173:103920. [PMID: 34954364 DOI: 10.1016/j.resmic.2021.103920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023]
Abstract
Diarrheal diseases are among the most common illnesses in the world and the bacterium Salmonella enterica serovar Typhimurium is a leading cause of morbidity and mortality from diarrhea globally. The German cockroach (Blattella germanica) frequently harbors and has been linked to human outbreaks of Salmonella, but the mechanisms of vector-borne transmission are not fully clear. Transmission of S. Typhimurium by cockroaches has been previously described as mechanical. Mechanical transmission is a wholly passive process that involves physical transfer of a pathogen from one location or host to another but lacks bacterial replication in the vector and active bacterial processes that promote vector colonization or transmission. Towards the goal of obtaining novel insight into the mechanisms of S. Typhimurium transmission by cockroaches, here we orally provisioned wild type and mutant strains of the bacteria to adult B. germanica and examined several aspects of colonization and shedding. Our results provide evidence of three previously unappreciated phenomena with significant implications. First, we demonstrate that S. Typhimurium undergoes replication at multiple phases during colonization of the cockroach gut. Second, we show the formation of biofilm-like aggregates by S. Typhimurium in the cockroach foregut. Lastly, we identify two mutant strains of S. Typhimurium that are deficient in colonization and shedding relative to isogenic controls, implicating type III secretion and the formation of fimbriae as two processes that are necessary for interaction with the cockroach vector. Together, our data indicate that transmission of S. Typhimurium by cockroaches is not solely mechanical but may resemble biological transmission by other insect vectors that intake human pathogenic bacteria from infected hosts and are subsequently colonized, enabling active dissemination. Thus, these findings suggest that cockroaches and their control may be more important for infection prevention than is currently appreciated. Additional studies to better understand the cycle and biological mechanisms of vector-borne transmission are warranted.
Collapse
|
21
|
Abstract
Several human intestinal microbiota studies suggest that bacteriophages, viruses infecting bacteria, play a role in gut homeostasis. Currently, bacteriophages are considered a tool to precisely engineer the intestinal microbiota, but they have also attracted considerable attention as a possible solution to fight against bacterial pathogens resistant to antibiotics. These two applications necessitate bacteriophages to reach and kill their bacterial target within the gut environment. Unfortunately, exploitable clinical data in this field are scarce. Here, we review the administration of bacteriophages to target intestinal bacteria in mammalian experimental models. While bacteriophage amplification in the gut was often confirmed, we found that in most studies, it had no significant impact on the load of the targeted bacteria. In particular, we observed that the outcome of bacteriophage treatments is linked to the behavior of the target bacteria toward each animal model. Treatment efficacy ranges from poor in asymptomatic intestinal carriage to high in intestinal disease. This broad range of efficacy underlines the difficulties to reach a consensus on the impact of bacteriophages in the gut and calls for deeper investigations of key parameters that influence the success of such interventions before launching clinical trials.
Collapse
|
22
|
Majee S, Chowdhury AR, Pinto R, Chattopadhyay A, Agharkar AN, Chakravortty D, Basu S. Spatiotemporal evaporating droplet dynamics on fomites enhances long term bacterial pathogenesis. Commun Biol 2021; 4:1173. [PMID: 34625643 PMCID: PMC8501104 DOI: 10.1038/s42003-021-02711-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023] Open
Abstract
Naturally drying bacterial droplets on inanimate surfaces representing fomites are the most consequential mode for transmitting infection through oro-fecal route. We provide a multiscale holistic approach to understand flow dynamics induced bacterial pattern formation on fomites leading to pathogenesis. The most virulent gut pathogen, Salmonella Typhimurium (STM), typically found in contaminated food and water, is used as model system in the current study. Evaporation-induced flow in sessile droplets facilitates the transport of STM, forming spatio-temporally varying bacterial deposition patterns based on droplet medium's nutrient scale. Mechanical and low moisture stress in the drying process reduced bacterial viability but interestingly induced hyper-proliferation of STM in macrophages, thereby augmenting virulence in fomites. In vivo studies of fomites in mice confirm that STM maintains enhanced virulence. This work demonstrates that stressed bacterial deposit morphologies formed over small timescale (minutes) on organic and inorganic surfaces, plays a significant role in enhancing fomite's pathogenesis over hours and days.
Collapse
Affiliation(s)
- Sreeparna Majee
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Roven Pinto
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Ankur Chattopadhyay
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Amey Nitin Agharkar
- Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science, Bangalore, 560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| | - Saptarshi Basu
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India.
- Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
23
|
A RETROSPECTIVE REVIEW OF THE CLINICAL UTILITY OF FECAL BACTERIAL ENTERIC PATHOGEN CULTURES IN MAMMALS WITHIN A ZOOLOGICAL COLLECTION AND THE USE OF FECAL CYTOLOGY FOR OPTIMIZATION OF DIAGNOSTIC TESTING. J Zoo Wildl Med 2021; 52:638-647. [PMID: 34130407 DOI: 10.1638/2019-0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 11/21/2022] Open
Abstract
To determine the diagnostic value of fecal bacterial enteric pathogen cultures (FBEPC) as part of routine preventive medicine protocols in terrestrial mammals housed in a zoological collection, this study investigated the clinical utility of FBEPC results in context of subsequent clinical actions and how its use was rationalized after adjunct use of fecal cytology as a first-line diagnostic tool. Retrospective results (n = 692) that included a routine FBEPC panel of a commercial diagnostic laboratory, including Aeromonas, Salmonella, Campylobacter, Plesiomonas, Shigella, Yersinia, and Edwardsiella, of 417 mammals were organized into preventive (P; n = 485), diagnostic (D; n = 177), or recheck (R; n = 30) samples; for P and D samples, findings were assigned a "clinical significance factor" of 1 to 5 according to culture results and subsequent clinical actions. A score of 3 or higher indicated positive growth of potentially pathogenic bacterial organisms, of which there were 50 FBEPC (P n = 27, D n = 20, R n = 3). The difference in mean clinical significance factor for P versus D samples was significant. Aeromonas spp. were most frequently isolated (n = 32), followed by Salmonella spp. (n = 8) and Plesiomonas shigelloides (n = 8), then Campylobacter spp. (n = 5). There was no growth of Yersinia enterocolitica, Shigella spp., or Edwardsiella spp. In the absence of clinical evidence of gastrointestinal disease, treatment was initiated in only two cases with isolated Campylobacter spp. Implementation of fecal cytology as an initial step in fecal evaluation resulted in a prompt, substantial reduction in number of ordered FBEPC (mean n = 12/month before and n = 5/month after implementation). The findings in this study suggest that FBEPC for these bacterial species has limited value as a screening tool in preventive medicine protocols for the mammalian orders best represented in this study. The use of fecal cytology led to a more targeted and cost-effective use of FBEPC. Fecal cytology as an initial step in preventative and diagnostic testing protocols is recommended.
Collapse
|
24
|
Kuhn KG, Hvass AK, Christiansen AH, Ethelberg S, Cowan SA. Sexual Contact as Risk Factor for Campylobacter Infection, Denmark. Emerg Infect Dis 2021; 27:1133-1140. [PMID: 33754996 PMCID: PMC8007285 DOI: 10.3201/eid2704.202337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Campylobacteriosis is a disease of worldwide importance, but aspects of its transmission dynamics, particularly risk factors, are still poorly understood. We used data from a matched case-control study of 4,269 men who have sex with men (MSM) and 26,215 controls, combined with national surveillance data on Campylobacter spp., Salmonella spp., and Shigella spp., to calculate matched odds ratios (mORs) for infection among MSM and controls. MSM had higher odds of Campylobacter (mOR 14, 95% CI 10–21) and Shigella (mOR 74, 95% CI 27–203) infections, but not Salmonella (mOR 0.2, 95% CI 0–13), and were less likely than controls to have acquired Campylobacter infection abroad (χ2 = 21; p<0.001). Our results confirm that sexual contact is a risk factor for campylobacteriosis and also suggest explanations for unique features of Campylobacter epidemiology. These findings provide a baseline for updating infection risk guidelines to the general population.
Collapse
|
25
|
Zarkani AA, Schikora A. Mechanisms adopted by Salmonella to colonize plant hosts. Food Microbiol 2021; 99:103833. [PMID: 34119117 DOI: 10.1016/j.fm.2021.103833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Fruits and vegetables consumed fresh or as minimally-processed produce, have multiple benefits for our diet. Unfortunately, they bring a risk of food-borne diseases, for example salmonellosis. Interactions between Salmonella and crop plants are indeed a raising concern for the global health. Salmonella uses multiple strategies to manipulate the host defense system, including plant's defense responses. The main focus of this review are strategies used by this bacterium during the interaction with crop plants. Emphasis was put on how Salmonella avoids the plant defense responses and successfully colonizes plants. In addition, several factors were reviewed assessing their impact on Salmonella persistence and physiological adaptation to plants and plant-related environment. The understanding of those mechanisms, their regulation and use by the pathogen, while in contact with plants, has significant implication on the growth, harvest and processing steps in plant production system. Consequently, it requires both the authorities and science to advance and definite methods aiming at prevention of crop plants contamination. Thus, minimizing and/or eliminating the potential of human diseases.
Collapse
Affiliation(s)
- Azhar A Zarkani
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany; University of Baghdad, Department of Biotechnology, 10071, Baghdad, Iraq.
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany.
| |
Collapse
|
26
|
Andrews JR, Yu AT, Saha S, Shakya J, Aiemjoy K, Horng L, Qamar F, Garrett D, Baker S, Saha S, Luby SP. Environmental Surveillance as a Tool for Identifying High-risk Settings for Typhoid Transmission. Clin Infect Dis 2021; 71:S71-S78. [PMID: 32725227 PMCID: PMC7446943 DOI: 10.1093/cid/ciaa513] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Enteric fever remains a major cause of morbidity in developing countries with poor sanitation conditions that enable fecal contamination of water distribution systems. Historical evidence has shown that contamination of water systems used for household consumption or agriculture are key transmission routes for Salmonella Typhi and Salmonella Paratyphi A. The World Health Organization now recommends that typhoid conjugate vaccines (TCV) be used in settings with high typhoid incidence; consequently, governments face a challenge regarding how to prioritize typhoid against other emerging diseases. A key issue is the lack of typhoid burden data in many low- and middle-income countries where TCV could be deployed. Here we present an argument for utilizing environmental sampling for the surveillance of enteric fever organisms to provide data on community-level typhoid risk. Such an approach could complement traditional blood culture-based surveillance or even replace it in settings where population-based clinical surveillance is not feasible. We review historical studies characterizing the transmission of enteric fever organisms through sewage and water, discuss recent advances in the molecular detection of typhoidal Salmonella in the environment, and outline challenges and knowledge gaps that need to be addressed to establish environmental sampling as a tool for generating actionable data that can inform public health responses to enteric fever.
Collapse
Affiliation(s)
- Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Alexander T Yu
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Senjuti Saha
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Jivan Shakya
- Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
| | - Kristen Aiemjoy
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Lily Horng
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Farah Qamar
- Department of Pediatrics and Child Health, Aga Khan University Hospital Karachi, Karachi, Pakistan
| | | | - Stephen Baker
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) University of Cambridge, Cambridge, United Kingdom
| | - Samir Saha
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
27
|
Ecological niche adaptation of Salmonella Typhimurium U288 is associated with altered pathogenicity and reduced zoonotic potential. Commun Biol 2021; 4:498. [PMID: 33893390 PMCID: PMC8065163 DOI: 10.1038/s42003-021-02013-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
The emergence of new bacterial pathogens is a continuing challenge for agriculture and food safety. Salmonella Typhimurium is a major cause of foodborne illness worldwide, with pigs a major zoonotic reservoir. Two phylogenetically distinct variants, U288 and ST34, emerged in UK pigs around the same time but present different risk to food safety. Here we show using genomic epidemiology that ST34 accounts for over half of all S. Typhimurium infections in people while U288 less than 2%. That the U288 clade evolved in the recent past by acquiring AMR genes, indels in the virulence plasmid pU288-1, and accumulation of loss-of-function polymorphisms in coding sequences. U288 replicates more slowly and is more sensitive to desiccation than ST34 isolates and exhibited distinct pathogenicity in the murine model of colitis and in pigs. U288 infection was more disseminated in the lymph nodes while ST34 were recovered in greater numbers in the intestinal contents. These data are consistent with the evolution of S. Typhimurium U288 adaptation to pigs that may determine their reduced zoonotic potential.
Collapse
|
28
|
Igo MJ, Schaffner DW. Models for factors influencing pathogen survival in low water activity foods from literature data are highly significant but show large unexplained variance. Food Microbiol 2021; 98:103783. [PMID: 33875211 DOI: 10.1016/j.fm.2021.103783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022]
Abstract
Factors that control pathogen survival in low water activity foods are not well understood and vary greatly from food to food. A literature search was performed to locate data on the survival of foodborne pathogens in low-water activity (<0.70) foods held at temperatures <37 °C. Data were extracted from 67 publications and simple linear regression models were fit to each data set to estimate log linear rates of change. Multiple linear stepwise regression models for factors influencing survival rate were developed. Subset regression modeling gave relatively low adjusted R2 values of 0.33, 0.37, and 0.48 for Salmonella, E. coli and L. monocytogenes respectively, but all subset models were highly significant (p < 1.0e-9). Subset regression models showed that Salmonella survival was significantly (p < 0.05) influenced by temperature, serovar and strain type, water activity, inoculum preparation method, and inoculation method. E. coli survival was significantly influenced by temperature, water activity, and inoculum preparation. L. monocytogenes survival was significantly influenced by temperature, serovar and strain type, and inoculum preparation method. While many factors were highly significant (p < 0.001), the high degrees of variability show that there is still much to learn about the factors which govern pathogen survival in low water activity foods.
Collapse
Affiliation(s)
- Matthew J Igo
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Donald W Schaffner
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
29
|
Kiprotich S, Mendonça A, Dickson J, Shaw A, Thomas-Popo E, White S, Moutiq R, Ibrahim SA. Thyme Oil Enhances the Inactivation of Salmonella enterica on Raw Chicken Breast Meat During Marination in Lemon Juice With Added Yucca schidigera Extract. Front Nutr 2021; 7:619023. [PMID: 33644106 PMCID: PMC7904691 DOI: 10.3389/fnut.2020.619023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Enteric pathogens such as Salmonella enterica can survive in low pH conditions and pose a food safety threat during marinating of raw poultry meat. A study was conducted to investigate the effectiveness of thyme oil for killing S. enterica on raw chicken during marination in lemon juice containing yucca extract. Samples of raw chicken breast were inoculated with a five-serovar mixture of S. enterica (~108 CFU/mL) and immersed for 2, 4, 6, and 8 h in four lemon-based marinades at 22°C: lemon juice alone (L), L with added 0.5% yucca extract (L + Y), L + Y and 0.5% thyme oil (L + Y + 0.5% TO) and L + Y + 1.0% TO. The L and L + Y served as controls. Survivors were determined by surface plating chicken homogenates on xylose-lysine tergitol-4 (XLT4) agar and XLT4 agar overlaid with non-selective agar (TAL) and counting bacterial colonies after 48 h of incubation (35°C). Marinades containing Y and TO significantly reduced initial viable populations of S. enterica compared to control (L and L + Y) solutions (P < 0.05). Based on S. enterica survivors on TAL medium, the L and L + Y reduced initial populations by 1.12 and 1.42 Log CFU/sample, respectively, after 8 h whereas, Log reductions caused by L + Y + 0.5% TO and L + Y + 1.0% TO, respectively, were 2.62 and 3.91 (P < 0.05). Numbers of survivors were higher on TAL compared to XLT4 agar (P < 0.05); however, the extent of sub-lethal injury caused by the marinades was not statistically significant (P > 0.05). The death rate of S. enterica increased significantly (P < 0.05) in the marinades containing TO (0.5 or 1.0%) compared to control (L + Y). Based on these results, thyme oil has good potential to increase the antimicrobial efficacy of lemon juice marinade against Salmonella on raw chicken breast and enhance the microbial safety of this popular poultry product.
Collapse
Affiliation(s)
- Samuel Kiprotich
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Aubrey Mendonça
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Interdepartment Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - James Dickson
- Interdepartment Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Angela Shaw
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Emalie Thomas-Popo
- Interdepartment Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Shecoya White
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS, United States
| | - Rkia Moutiq
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Sciences Program, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, United States
| |
Collapse
|
30
|
Kwon J, Kim SG, Kim HJ, Giri SS, Kim SW, Lee SB, Park SC. Bacteriophage as an alternative to prevent reptile-associated Salmonella transmission. Zoonoses Public Health 2021; 68:131-143. [PMID: 33455089 DOI: 10.1111/zph.12804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 01/21/2023]
Abstract
Salmonellosis is a major global public health issue; its most common infection, gastroenteritis, accounts for approximately 90 million illnesses and 150,000 mortalities per year. Eradicating salmonellosis requires surveillance, prevention and treatment, entailing large expenditures. However, it is difficult to control Salmonella transmission because it occurs via multiple routes; exotic reptiles are a reservoir of Salmonella and comprise one such route. As the popularity of exotic pets and animal exhibition has increased, human encounters with reptiles have also increased. As a result, reptile-associated salmonellosis (RAS) has been recognized as an emerging disease. The development of antimicrobial resistance in RAS-causing Salmonella sp. requires alternatives to antibiotics. In this study, bacteriophages have been established as an alternative to antibiotics because only target bacteria are lysed; thus, they are promising biocontrol agents. Here, bacteriophage pSal-SNUABM-02, which infects and lyses reptile Salmonella isolates, was isolated and characterized. The morphology, host range, growth traits and stability of the phage were investigated. The phage was assigned to Myoviridae and was stable in the following conditions: pH 5-9, 4-37°C, and ultravioletA/ultravioletB (UVA/UVB) exposure. Salmonella clearance efficacy was tested using planktonic cell lysis activity and biofilm degradation on polystyrene 96-well plates and reptile skin fragments. The phage exhibited vigorous lysis activity against planktonic cells. In in vitro biofilm degradation tests on reptile skin and polystyrene plates, both low- and high-concentration phage treatments lowered bacterial cell viability by approximately 2.5-3 log colony-forming units and also decreased biomass. Thus, bacteriophages are a promising alternative to antibiotics for the prevention and eradication of RAS.
Collapse
Affiliation(s)
- Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sang Geun Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
31
|
Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: Pathogenicity factors and prevention methods-new molecular targets for innovative antivirulence drugs? Appl Microbiol Biotechnol 2020; 104:10409-10436. [PMID: 33185702 PMCID: PMC7662028 DOI: 10.1007/s00253-020-10974-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
Infections caused by bacterial species from the genus Campylobacter are one of the four main causes of strong diarrheal enteritis worldwide. Campylobacteriosis, a typical food-borne disease, can range from mild symptoms to fatal illness. About 550 million people worldwide suffer from campylobacteriosis and lethality is about 33 million p.a. This review summarizes the state of the current knowledge on Campylobacter with focus on its specific virulence factors. Using this knowledge, multifactorial prevention strategies can be implemented to reduce the prevalence of Campylobacter in the food chain. In particular, antiadhesive strategies with specific adhesion inhibitors seem to be a promising concept for reducing Campylobacter bacterial load in poultry production. Antivirulence compounds against bacterial adhesion to and/or invasion into the host cells can open new fields for innovative antibacterial agents. Influencing chemotaxis, biofilm formation, quorum sensing, secretion systems, or toxins by specific inhibitors can help to reduce virulence of the bacterium. In addition, the unusual glycosylation of the bacterium, being a prerequisite for effective phase variation and adaption to different hosts, is yet an unexplored target for combating Campylobacter sp. Plant extracts are widely used remedies in developing countries to combat infections with Campylobacter. Therefore, the present review summarizes the use of natural products against the bacterium in an attempt to stimulate innovative research concepts on the manifold still open questions behind Campylobacter towards improved treatment and sanitation of animal vectors, treatment of infected patients, and new strategies for prevention. KEY POINTS: • Campylobacter sp. is a main cause of strong enteritis worldwide. • Main virulence factors: cytolethal distending toxin, adhesion proteins, invasion machinery. • Strong need for development of antivirulence compounds.
Collapse
Affiliation(s)
- Vanessa Kreling
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Franco H Falcone
- Institute of Parasitology, University of Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Corinna Kehrenberg
- Institute of Veterinary Food Science, University of Gießen, Frankfurterstraße 81, 35392, Gießen, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
32
|
Campioni F, Gomes CN, Rodrigues DDP, Bergamini AMM, Falcão JP. Phenotypic analyses of Salmonella enterica serovar Enteritidis strains isolated in the pre- and post-epidemic period in Brazil. Braz J Microbiol 2020; 52:173-183. [PMID: 33107010 DOI: 10.1007/s42770-020-00392-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/17/2020] [Indexed: 11/26/2022] Open
Abstract
Salmonella Enteritidis has caused, since the 1980s, a sustained epidemic of human infections in many countries. This study analyzed S. Enteritidis strains isolated before and after the epidemic period in Brazil regarding their capacities to survive to acid, oxidative, and high-temperature stresses, and capacity to grow in egg albumen. Moreover, the ability to invade human epithelial cells (Caco-2) and to survive inside human (U937) and chicken (HD11) macrophages was checked. Post-epidemic strains showed a better ability to survive after 10 min under acid stress at 37 °C (P ≤ 0.05). However, both groups of strains showed similar ability to survive after 1 h under acid stress at 37 °C and at 42 °C independently of the time of exposure. Similar ability was verified in both groups of strains regarding oxidative stress, growth in egg albumen, high-temperature stress, invasion to Caco-2 cells, and invasion and survival in macrophages. In conclusion, post-epidemic S. Enteritidis strains showed a better ability to survive under the acid stress found in the stomach, which might be an advantage to reach the intestine and colonize chickens and humans. However, both groups of strains did not differ significantly in the majority of the phenotypic tests analyzed in this study.
Collapse
Affiliation(s)
- Fábio Campioni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Carolina Nogueira Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Dália Dos Prazeres Rodrigues
- Laboratório de Enterobactérias, Fundação Oswaldo Cruz - FIOCRUZ, Av. Brasil, 4365, Pavilhão Rocha Lima, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Alzira Maria Morato Bergamini
- Laboratório de Microbiologia de Alimentos, Instituto Adolfo Lutz - Centro de Laboratórios Regionais - Ribeirão Preto VI, Rua Minas 877, Ribeirão Preto, SP, 14085-410, Brazil
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
33
|
Choi IY, Park DH, Chin BA, Lee C, Lee J, Park MK. Exploring the feasibility of Salmonella Typhimurium-specific phage as a novel bio-receptor. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:668-681. [PMID: 33089232 PMCID: PMC7553841 DOI: 10.5187/jast.2020.62.5.668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/23/2022]
Abstract
The purpose of this study was aimed to isolate a Salmonella
Typhimurium-specific phage (KFS-ST) from washing water in a poultry processing
facility and to investigate the feasibility of the KFS-ST as a novel
bio-receptor for the magnetoelastic (ME) biosensor method. KFS-ST against
S. Typhimurium was isolated, propagated, and purified using
a CsCl-gradient ultracentrifugation. Morphological characteristics of KFS-ST
were analyzed using transmission electron microscopy (TEM). Its specificity and
efficiency of plating analysis were conducted against 39 foodborne pathogens.
The temperature and pH stabilities of KFS-ST were investigated by the exposure
of the phage to various temperatures (−70°C–70°C)
and pHs (1–12) for 1 h. A one-step growth curve analysis was performed to
determine the eclipse time, latent time and burst size of phage. The storage
stability of KFS-ST was studied by exposing KFS-ST to various storage
temperatures (−70°C, −20°C, 4°C, and
22°C) for 12 weeks. KFS-ST was isolated and purified with a high
concentration of (11.47 ± 0.25) Log PFU/mL. It had an icosahedral head
(56.91 ± 2.90 nm) and a non-contractile tail (225.49 ± 2.67 nm),
which was classified into the family of Siphoviridae in the
order of Caudovirales. KFS-ST exhibited an excellent
specificity against only S. Typhimurium and S.
Enteritidis, which are considered two of the most problematic
Salmonella strains in the meat and poultry. However, KFS-ST
did not exhibit any specificity against six other Salmonella
and 27 non-Salmonella strains. KFS-ST was stable at temperature
of 4°C to 50°C and at pH of 4 to 12. The eclipse time, latent
time, and burst size of KFS-ST were determined to be 10 min, 25 min and 26 PFU/
infected cell, respectively. KFS-ST was relatively stable during the 12-week
storage period at all tested temperatures. Therefore, this study demonstrated
the feasibility of KFS-ST as a novel bio-receptor for the detection of
S. Typhimurium and S. Enteritidis in meat
and poultry products using the ME biosensor method.
Collapse
Affiliation(s)
- In Young Choi
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Do Hyeon Park
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Brayan A Chin
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Cheonghoon Lee
- Graduate School of Public Health, and Institute of Health and Environment, Seoul National University, Seoul 08826, Korea
| | - Jinyoung Lee
- Gyedong General Education Institute, Sangmyung University, Cheonan 31066, Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
34
|
Harhay DM, Weinroth MD, Bono JL, Harhay GP, Bosilevac JM. Rapid estimation of Salmonella enterica contamination level in ground beef - Application of the time-to-positivity method using a combination of molecular detection and direct plating. Food Microbiol 2020; 93:103615. [PMID: 32912587 DOI: 10.1016/j.fm.2020.103615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 11/28/2022]
Abstract
Little progress has been made in decreasing the incidence rate of salmonellosis in the US over the past decade. Mitigating the contribution of contaminated raw meat to the salmonellosis incidence rate requires rapid methods for quantifying Salmonella, so that highly contaminated products can be removed before entering the food chain. Here we evaluated the use of Time-to-Positivity (TTP) as a rapid, semi-quantitative approach for estimating Salmonella contamination levels in ground beef. Growth rates of 14 Salmonella strains (inoculated at log 1 to -2 CFU/g) were characterized in lean ground beef mTSB enrichments and time-to-detection was determined using culture and molecular detection methods. Enrichments were sampled at five timepoints and results were used to construct a prediction model of estimated contamination level by TTP (superscript indicates time in hours) defined as TTP4: ≥5 CFU/g; TTP6: ≤5, ≥1 CFU/g; TTP8: ≤1, ≥0.01 CFU/g; with samples negative at 8 h estimated ≤0.01 CFU/g. Model performance measures showed high sensitivity (100%) and specificity (83% and 93% for two detection methods) for samples with a TTP4, with false negative rates of 0%.
Collapse
Affiliation(s)
- Dayna M Harhay
- United States Department of Agriculture, Roman L. Hruska U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, Clay Center, NE, 68933, USA.
| | - Margaret D Weinroth
- United States Department of Agriculture, Roman L. Hruska U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, Clay Center, NE, 68933, USA
| | - James L Bono
- United States Department of Agriculture, Roman L. Hruska U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, Clay Center, NE, 68933, USA
| | - Gregory P Harhay
- United States Department of Agriculture, Roman L. Hruska U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, Clay Center, NE, 68933, USA
| | - Joseph M Bosilevac
- United States Department of Agriculture, Roman L. Hruska U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, Clay Center, NE, 68933, USA
| |
Collapse
|
35
|
Schierstaedt J, Grosch R, Schikora A. Agricultural production systems can serve as reservoir for human pathogens. FEMS Microbiol Lett 2020; 366:5715908. [PMID: 31981360 DOI: 10.1093/femsle/fnaa016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Food-borne diseases are a threat to human health and can cause severe economic losses. Nowadays, in a growing and increasingly interconnected world, food-borne diseases need to be dealt with in a global manner. In order to tackle this issue, it is essential to consider all possible entry routes of human pathogens into the production chain. Besides the post-harvest handling of the fresh produce itself, also the prevention of contamination in livestock and agricultural soils are of particular importance. While the monitoring of human pathogens and intervening measures are relatively easy to apply in livestock and post-harvest, the investigation of the prevention strategies in crop fields is a challenging task. Furthermore, crop fields are interconnected with livestock via fertilizers and feed; therefore, a poor hygiene management can cause cross-contamination. In this review, we highlight the possible contamination of crop plants by bacterial human pathogens via the rhizosphere, their interaction with the plant and possible intervention strategies. Furthermore, we discuss critical issues and questions that are still open.
Collapse
Affiliation(s)
- Jasper Schierstaedt
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Rita Grosch
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| |
Collapse
|
36
|
Wang B, Liu S, Sui Z, Wang J, Wang Y, Gu S. Rapid Flow Cytometric Detection of Single Viable Salmonella Cells in Milk Powder. Foodborne Pathog Dis 2020; 17:447-458. [PMID: 32004087 DOI: 10.1089/fpd.2019.2748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salmonella, a highly virulent food-borne pathogen transmitted through food, can cause severe infectious diseases in a large number of people through a single outbreak, due to its low infective doses. In this study, a flow cytometry (FCM)-based method was developed for the rapid detection of single viable Salmonella cells with dual staining of fluorescein isothiocyanate (FITC)-labeled anti-Salmonella antibody and propidium iodide (PI) dyes. The FCM-based method includes 6 h of pre-enrichment, 40 min of target cell isolation, and 20 min of dual staining and FCM analysis. The developed method demonstrated high specificity for the detection of 23 Salmonella strains and 22 food-borne pathogenic non-Salmonella strains. Furthermore, the analyses of 30 samples of milk powder artificially contaminated with single Salmonella cells, 123 samples of retail milk powder, and 6 samples of Salmonella-positive milk powder were performed by the FCM-based as well as traditional plate-based methods for testing the efficiency of the methods. The two methods yielded similar results for the detection of pathogens in all milk powder samples. In conclusion, the developed FCM-based method was found to be efficient in detecting single viable Salmonella cells in milk powder within 7 h. The proposed dual-color FITC assay combined with pre-enrichment offers a great potential for the rapid and sensitive detection of other pathogens in dairy products.
Collapse
Affiliation(s)
- Bin Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.,Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, China
| | - Siyuan Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Jing Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yi Wang
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, China
| | - Shaopeng Gu
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
37
|
Smith OM, Snyder WE, Owen JP. Are we overestimating risk of enteric pathogen spillover from wild birds to humans? Biol Rev Camb Philos Soc 2020; 95:652-679. [PMID: 32003106 PMCID: PMC7317827 DOI: 10.1111/brv.12581] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
Enteric illnesses remain the second largest source of communicable diseases worldwide, and wild birds are suspected sources for human infection. This has led to efforts to reduce pathogen spillover through deterrence of wildlife and removal of wildlife habitat, particularly within farming systems, which can compromise conservation efforts and the ecosystem services wild birds provide. Further, Salmonella spp. are a significant cause of avian mortality, leading to additional conservation concerns. Despite numerous studies of enteric bacteria in wild birds and policies to discourage birds from food systems, we lack a comprehensive understanding of wild bird involvement in transmission of enteric bacteria to humans. Here, we propose a framework for understanding spillover of enteric pathogens from wild birds to humans, which includes pathogen acquisition, reservoir competence and bacterial shedding, contact with people and food, and pathogen survival in the environment. We place the literature into this framework to identify important knowledge gaps. Second, we conduct a meta‐analysis of prevalence data for three human enteric pathogens, Campylobacter spp., E. coli, and Salmonella spp., in 431 North American breeding bird species. Our literature review revealed that only 3% of studies addressed the complete system of pathogen transmission. In our meta‐analysis, we found a Campylobacter spp. prevalence of 27% across wild birds, while prevalence estimates of pathogenic E. coli (20%) and Salmonella spp. (6.4%) were lower. There was significant bias in which bird species have been tested, with most studies focusing on a small number of taxa that are common near people (e.g. European starlings Sturnus vulgaris and rock pigeons Columba livia) or commonly in contact with human waste (e.g. gulls). No pathogen prevalence data were available for 65% of North American breeding bird species, including many commonly in contact with humans (e.g. black‐billed magpie Pica hudsonia and great blue heron Ardea herodias), and our metadata suggest that some under‐studied species, taxonomic groups, and guilds may represent equivalent or greater risk to human infection than heavily studied species. We conclude that current data do not provide sufficient information to determine the likelihood of enteric pathogen spillover from wild birds to humans and thus preclude management solutions. The primary focus in the literature on pathogen prevalence likely overestimates the probability of enteric pathogen spillover from wild birds to humans because a pathogen must survive long enough at an infectious dose and be a strain that is able to colonize humans to cause infection. We propose that future research should focus on the large number of under‐studied species commonly in contact with people and food production and demonstrate shedding of bacterial strains pathogenic to humans into the environment where people may contact them. Finally, studies assessing the duration and intensity of bacterial shedding and survival of bacteria in the environment in bird faeces will help provide crucial missing information necessary to calculate spillover probability. Addressing these essential knowledge gaps will support policy to reduce enteric pathogen spillover to humans and enhance bird conservation efforts that are currently undermined by unsupported fears of pathogen spillover from wild birds.
Collapse
Affiliation(s)
- Olivia M Smith
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA, 99164, U.S.A
| | - William E Snyder
- Department of Entomology, Washington State University, 100 Dairy Road, P.O. Box 646382, Pullman, WA, 99164, U.S.A
| | - Jeb P Owen
- Department of Entomology, Washington State University, 100 Dairy Road, P.O. Box 646382, Pullman, WA, 99164, U.S.A
| |
Collapse
|
38
|
Tamber S, Montgomery A, Eloranta K, Buenaventura E. Enumeration and Survival of Salmonella enterica in Live Oyster Shellstock Harvested from Canadian Waters. J Food Prot 2020; 83:6-12. [PMID: 31799879 DOI: 10.4315/0362-028x.jfp-19-318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Since 2015, 11 recalls of live oyster shellstock have been issued in Canada due to the presence of Salmonella enterica. Six of those recalls took place in 2018. To understand this increase, fundamental information is needed on the relationship between S. enterica and oysters. The aims of this study were to address important data gaps concerning the levels of Salmonella in naturally contaminated oysters and the ability of this pathogen to survive in live oyster shellstock. Enumeration data were evaluated for five oyster and clam samples collected from the east coast of Canada from 2015 to 2018. The reported levels were <0.0015 to 0.064 most probable number per g of oyster tissue. The S. enterica isolates recovered from these animals belonged to serovars Typhimurium, Infantis, Enteritidis, and I 4,5:i:-. Filter feeding by the oysters was exploited to assess the Salmonella accumulation that would occur following a natural contamination event. Detectable levels of the pathogen were observed after 30 min of exposure and began to plateau at 60 min. A survival study in live oyster shellstock indicated that after 4 days of storage at ambient temperatures, the Salmonella level declined slightly from 4.3 to 3.7 log CFU/g. These data indicate that the levels of Salmonella found in naturally contaminated oysters are low and are not expected to increase between the point of harvest and the point of consumption. The changing ecology of shellfish environments requires continued monitoring and testing to safeguard public health. The data presented here will be useful for the evaluation and design of sampling plans and risk management approaches for the control of Salmonella in live oyster shellstock.
Collapse
Affiliation(s)
- Sandeep Tamber
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada K1A 0K9
| | - Alex Montgomery
- Science Branch, Canadian Food Inspection Agency, 3155 Willingdon Green, Burnaby, British Columbia, Canada V5G 4P2
| | - Katie Eloranta
- Science Branch, Canadian Food Inspection Agency, 3155 Willingdon Green, Burnaby, British Columbia, Canada V5G 4P2
| | - Enrico Buenaventura
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada K1A 0K9
| |
Collapse
|
39
|
Abstract
Early in a foodborne disease outbreak investigation, illness incubation periods can help focus case interviews, case definitions, clinical and environmental evaluations and predict an aetiology. Data describing incubation periods are limited. We examined foodborne disease outbreaks from laboratory-confirmed, single aetiology, enteric bacterial and viral pathogens reported to United States foodborne disease outbreak surveillance from 1998–2013. We grouped pathogens by clinical presentation and analysed the reported median incubation period among all illnesses from the implicated pathogen for each outbreak as the outbreak incubation period. Outbreaks from preformed bacterial toxins (Staphylococcus aureus, Bacillus cereus and Clostridium perfringens) had the shortest outbreak incubation periods (4–10 h medians), distinct from that of Vibrio parahaemolyticus (17 h median). Norovirus, salmonella and shigella had longer but similar outbreak incubation periods (32–45 h medians); campylobacter and Shiga toxin-producing Escherichia coli had the longest among bacteria (62–87 h medians); hepatitis A had the longest overall (672 h median). Our results can help guide diagnostic and investigative strategies early in an outbreak investigation to suggest or rule out specific etiologies or, when the pathogen is known, the likely timeframe for exposure. They also point to possible differences in pathogenesis among pathogens causing broadly similar syndromes.
Collapse
|
40
|
Carrell CS, Wydallis RM, Bontha M, Boehle KE, Beveridge JR, Geiss BJ, Henry CS. Rotary manifold for automating a paper-based Salmonella immunoassay. RSC Adv 2019; 9:29078-29086. [PMID: 35528425 PMCID: PMC9071810 DOI: 10.1039/c9ra07106g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
Foodborne pathogens are responsible for hundreds of thousands of deaths around the world each year. Rapid screening of agricultural products for these pathogens is essential to reduce and/or prevent outbreaks and pinpoint contamination sources. Unfortunately, current detection methods are laborious, expensive, time-consuming and require a central laboratory. Therefore, a rapid, sensitive, and field-deployable pathogen-detection assay is needed. We previously developed a colorimetric sandwich immunoassay utilizing immuno-magnetic separation (IMS) and chlorophenol red-β-d-galactopyranoside for Salmonella detection on a paper-based analytical device (μPAD); however, the assay required many sample preparation steps prior to the μPAD as well as laboratory equipment, which decreased user-friendliness for future end-users. As a step towards overcoming these limitations in resource-limited settings, we demonstrate a reusable 3D-printed rotational manifold that couples with disposable μPAD layers for semi-automated reagent delivery, washing, and detection in 65 minutes. After IMS to clean the sample, the manifold performs pipette-free reagent delivery and washing steps in a sequential order with controlled volumes, followed by enzymatic amplification and colorimetric detection using automated image processing to quantify color change. Salmonella was used as the target pathogen in this project and was detected with the manifold in growth media and milk with detection limits of 4.4 × 102 and 6.4 × 102 CFU mL-1 respectively. The manifold increases user friendliness and simplifies immunoassays resulting in a practical product for in-field use and commercialization.
Collapse
Affiliation(s)
| | | | - Mridula Bontha
- Department of Computer Science, Colorado State University USA
| | | | | | - Brian J Geiss
- Department of Microbiology, Immunology & Pathology, Colorado State University USA
| | | |
Collapse
|
41
|
Awofisayo-Okuyelu A, Pratt A, McCarthy N, Hall I. Within-host mathematical modelling of the incubation period of Salmonella Typhi. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182143. [PMID: 31598273 PMCID: PMC6774937 DOI: 10.1098/rsos.182143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Mechanistic mathematical models are often employed to understand the dynamics of infectious diseases within a population or within a host. They provide estimates that may not be otherwise available. We have developed a within-host mathematical model in order to understand how the pathophysiology of Salmonella Typhi contributes to its incubation period. The model describes the process of infection from ingestion to the onset of clinical illness using a set of ordinary differential equations. The model was parametrized using estimated values from human and mouse experimental studies and the incubation period was estimated as 9.6 days. A sensitivity analysis was also conducted to identify the parameters that most affect the derived incubation period. The migration of bacteria to the caecal lymph node was observed as a major bottle neck for infection. The sensitivity analysis indicated the growth rate of bacteria in late phase systemic infection and the net population of bacteria in the colon as parameters that most influence the incubation period. We have shown in this study how mathematical models aid in the understanding of biological processes and can be used in estimating parameters of infectious diseases.
Collapse
Affiliation(s)
- Adedoyin Awofisayo-Okuyelu
- National Institute of Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Adrian Pratt
- Emergency Response Department Science and Technology (ERD S&T), Health Protection Directorate, Public Health England, Porton Down, UK
| | - Noel McCarthy
- National Institute of Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, Oxford, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Ian Hall
- School of Mathematics, University of Manchester, Manchester, UK
| |
Collapse
|
42
|
Trinetta V, McDaniel A, Magossi G, Yucel U, Jones C. Effects of different moisture and temperature levels on Salmonella survival in poultry fat. Transl Anim Sci 2019; 3:1369-1374. [PMID: 32704899 PMCID: PMC7200420 DOI: 10.1093/tas/txz090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
Fat products have been historically thought to have too low water activity to harbor pathogens. However, it has been recently reported that high moisture levels in fats may lead to Salmonella presence and growth. Limited research on strategies to eliminate pathogens in these environments is available, and the mechanisms contributing to microbial presence and growth are not yet well understood. The purpose of this research was to evaluate the effects of moisture levels and storage temperatures on the growth and survival of Salmonella in poultry fat. Samples were stored for 7 d at 48°C or 76°C and remaining Salmonella was evaluated. When poultry fat was challenged with a wet high inoculum, more than a 4 log CFU/mL difference in Salmonella population was observed with 1% and 3% moisture levels at 48°C after 5 d (P < 0.05). No differences between moisture levels (P > 0.05) were observed when samples were tested with a wet low inoculum. Counts below detectable limits were observed after 24 h in samples challenged at 76°C, regardless of inoculum level. When poultry fat was stored at 48°C and inoculated with low levels of Salmonella spp., bacterial growth was influenced only by time (P < 0.05) and not affected (P > 0.05) by moisture level. However, when poultry fat was stored at 48°C and inoculated with high levels of Salmonella spp., bacterial decrease was easier (P < 0.05) in samples containing greater moisture. This research suggests that residual moisture in containers during transportation of poultry fat largely does not affect Salmonella spp. growth.
Collapse
Affiliation(s)
| | - Austin McDaniel
- Food Science Institute, Kansas State University, Manhattan, KS
| | | | - Umut Yucel
- Food Science Institute, Kansas State University, Manhattan, KS
| | - Cassandra Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS
| |
Collapse
|
43
|
D'Souza C, Prabhakar Alva P, Karanth Padyana A, Karunasagar I, Karunasagar I, Kumar BK. Unveiling the acid stress response of clinical genotype Vibrio vulnificus isolated from the marine environments of Mangaluru coast, India. Can J Microbiol 2019; 65:681-690. [PMID: 31075207 DOI: 10.1139/cjm-2018-0700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gastric acidity is one of the earliest host defences faced by ingested organisms, and successful pathogens need to overcome this hurdle. The objective of this study was the systematic assessment of acid-stress response of Vibrio vulnificus isolated from coastal regions of Mangaluru. Acid-shock experiments were carried out at pH 4.0 and pH 4.5, with different experimental conditions expected to produce a varied acid response. Exposure to mild acid before the acid shock was favourable to the bacteria but was dependent on cell population and pH of the media and was independent of the strains tested. Lysine-dependent acid response was demonstrated with reference to the previously identified lysine decarboxylase system. Additionally, the results showed that inoculation into oysters provided some level of protection against acid stress. Increased expression of lysine/cadaverine genes was observed upon the addition of ground oyster and was confirmed by quantitative real-time PCR. The potential role of ornithine was analyzed with regard to acid stress, but no change in the survival pattern was observed. These findings highlight the physiology of bacteria in acid stress.
Collapse
Affiliation(s)
- Caroline D'Souza
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Prathiksha Prabhakar Alva
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Anupama Karanth Padyana
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Indrani Karunasagar
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Ballamoole Krishna Kumar
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| |
Collapse
|
44
|
Clinically Unreported Salmonellosis Outbreak Detected via Comparative Genomic Analysis of Municipal Wastewater Salmonella Isolates. Appl Environ Microbiol 2019; 85:AEM.00139-19. [PMID: 30902850 DOI: 10.1128/aem.00139-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Municipal wastewater includes human waste that contains both commensal and pathogenic enteric microorganisms, and this collective community microbiome can be monitored for community diseases. In a previous study, we assessed the salmonellosis disease burden using municipal wastewater from Honolulu, Hawaii, which was monitored over a 54-week period. During that time, a strain of Salmonella enterica serovar Paratyphi B variant L(+) tartrate(+) (also known as Salmonella enterica serovar Paratyphi B variant Java) was identified; this strain was detected simultaneously with a clinically reported outbreak, and pulsed-field gel electrophoresis patterns were identical for clinical and municipal wastewater isolates. Months after the outbreak subsided, the same pulsotype was detected as the dominant pulsotype in municipal wastewater samples, with no corresponding clinical cases reported. Using genomic characterization (including core single-nucleotide polymorphism alignment, core genome multilocus sequence typing, and screening for virulence and antibiotic resistance genes), all S Java municipal wastewater isolates were determined to be clonal, indicating a resurgence of the original outbreak strain. This demonstrates the feasibility and utility of municipal wastewater surveillance for determining enteric disease outbreaks that may be missed by traditional clinical surveillance methods.IMPORTANCE Underdetection of microbial infectious disease outbreaks in human communities carries enormous health costs and is an ongoing problem in public health monitoring (which relies almost exclusively on data from health clinics). Surveillance of municipal wastewater for community-level monitoring of infectious disease burdens has the potential to fill this information gap, due to its easy access to the mixed community microbiome. In the present study, the genomes of 21 S Java isolates (collected from municipal wastewater in Honolulu) were analyzed; results showed that the same Salmonella strain that caused a known salmonellosis clinical outbreak in spring 2010 remerged as the most dominant strain in municipal wastewater in spring 2011, indicating a new outbreak that was not detected by health clinics. Our results show that wastewater monitoring holds great promise to inform the field of public health regarding outbreak status within communities.
Collapse
|
45
|
Foods NACOMCF. Response to Questions Posed by the Food Safety and Inspection Service Regarding Salmonella Control Strategies in Poultry †. J Food Prot 2019; 82:645-668. [PMID: 30917043 DOI: 10.4315/0362-028x.jfp-18-500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Eun Y, Jeong H, Kim S, Park W, Ahn B, Kim D, Kim E, Park E, Park S, Hwang I, Son H. A large outbreak of Salmonella enterica serovar Thompson infections associated with chocolate cake in Busan, Korea. Epidemiol Health 2019; 41:e2019002. [PMID: 30754961 PMCID: PMC6391592 DOI: 10.4178/epih.e2019002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/05/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study aimed to reveal the epidemiologic characteristics of the outbreak of gastroenteritis caused by Salmonella enterica serovar Thompson in Busan Metropolitan City and to identify points for improvement to prevent of food-borne disease outbreak. METHODS This was a case-control study. The control group comprised asymptomatic students in the same classes of the cases. The presence or absence of symptoms, ingestion of each food provided by school meal service, and commonly ingested foods in addition to those foods in meal service were investigated. Moreover, specimens collected from rectal swab, preserved foods, and environmental surface were tested. RESULTS Of the 6,092 subjects, 1,111 (1,083 students, 22 school personnel, and 6 foodservice employees) were included in the case group; this corresponded to an 18.4% attack rate. Symptoms included diarrhea (n=1,051, 94.6%), abdominal pain (n=931, 83.8%), febrile sensation (n=502, 45.2%), and vomiting (n=275, 24.8%). The epidemic curves of each 10 schools were unimodal. Investigation of food intake showed a significantly high odds ratio for chocolate cake in 5 out of the 10 schools. Laboratory test detected Salmonella enterica serovar Thompson both in rectal swab specimens of 9 schools and in collected preserved chocolate cakes of 9 schools. Pulsed-field gel electrophoresis test result showed that Salmonella enterica seorvar Thompson isolated from human and foods were the same. CONCLUSIONS The source of infection for the Salmonella enterica serovar Thompson outbreak in the 10 schools of Busan Metropolitan City is chocolate cake. Traceback investigation for origin of contaminated food in food-borne disease outbreak and safety control during food production should be more enhanced.
Collapse
Affiliation(s)
- Youngduck Eun
- Busan Center for Infectious Disease Control and Prevention, Busan National University Hospital, Busan, Korea.,Epidemic Investigation Team of Busan Metropolitan City, Busan, Korea
| | - Hyesun Jeong
- Busan Center for Infectious Disease Control and Prevention, Busan National University Hospital, Busan, Korea.,Epidemic Investigation Team of Busan Metropolitan City, Busan, Korea
| | - Seungjin Kim
- Busan Center for Infectious Disease Control and Prevention, Busan National University Hospital, Busan, Korea.,Epidemic Investigation Team of Busan Metropolitan City, Busan, Korea
| | - Wonseo Park
- Busan Center for Infectious Disease Control and Prevention, Busan National University Hospital, Busan, Korea
| | - Byoungseon Ahn
- Epidemic Investigation Team of Busan Metropolitan City, Busan, Korea.,Division of Health Promotion, Busan Metropolitan City, Busan, Korea
| | - Dongkeun Kim
- Epidemic Investigation Team of Busan Metropolitan City, Busan, Korea.,Division of Health Promotion, Busan Metropolitan City, Busan, Korea
| | - Eunhee Kim
- Epidemic Investigation Team of Busan Metropolitan City, Busan, Korea.,Division of Health Promotion, Busan Metropolitan City, Busan, Korea
| | - Eunhee Park
- Epidemic Investigation Team of Busan Metropolitan City, Busan, Korea.,Division of Microbiology, Busan Institute of Health and Environment, Busan, Korea
| | - Sunhee Park
- Division of Microbiology, Busan Institute of Health and Environment, Busan, Korea
| | - Inyeong Hwang
- Division of Microbiology, Busan Institute of Health and Environment, Busan, Korea
| | - Hyunjin Son
- Busan Center for Infectious Disease Control and Prevention, Busan National University Hospital, Busan, Korea.,Epidemic Investigation Team of Busan Metropolitan City, Busan, Korea
| |
Collapse
|
47
|
Bacteriophages Synergize with the Gut Microbial Community To Combat Salmonella. mSystems 2018; 3:mSystems00119-18. [PMID: 30320220 PMCID: PMC6172775 DOI: 10.1128/msystems.00119-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Antibiotic-resistant bacteria are a global threat. Therefore, alternative approaches for combatting bacteria, especially antibiotic-resistant bacteria, are urgently needed. Using a human gut microbiota model, we demonstrate that bacteriophages (phages) are able to substantially decrease pathogenic Salmonella without perturbing the microbiota. Conversely, antibiotic treatment leads to the eradication of close to all commensal bacteria, leaving only antibiotic-resistant bacteria. An unbalanced microbiota has been linked to many diseases both in the gastrointestinal tract or “nonintestinal” diseases. In our study, we show that the microbiota provides a protective effect against Salmonella. Since phage treatment preserves the healthy gut microbiota, it is a feasible superior alternative to antibiotic treatment. Furthermore, when combating infections caused by pathogenic bacteria, gut microbiota should be considered. Salmonella infection is one of the main causes of food-borne diarrheal diseases worldwide. Although most Salmonella infections can be cleared without treatment, some cause serious illnesses that require antibiotic treatment. In view of the growing emergence of antibiotic-resistant Salmonella strains, novel treatments are increasingly required. Furthermore, there is a striking paucity of data on how a balanced human gut microbiota responds to Salmonella infection. This study aimed to evaluate whether a balanced gut microbiota protects against Salmonella growth and to compare two antimicrobial approaches for managing Salmonella infection: bacteriophage (phage) treatment and antibiotic treatment. Anaerobically cultivated human intestinal microflora (ACHIM) is a feasible model for the human gut microbiota and naturally inhibits Salmonella infection. By mimicking Salmonella infection in vitro using ACHIM, we observed a large reduction of Salmonella growth by the ACHIM itself. Treatments with phage and antibiotic further inhibited Salmonella growth. However, phage treatment had less impact on the nontargeted bacteria in ACHIM than the antibiotic treatment did. Phage treatment has high specificity when combating Salmonella infection and offers a noninvasive alternative to antibiotic treatment. IMPORTANCE Antibiotic-resistant bacteria are a global threat. Therefore, alternative approaches for combatting bacteria, especially antibiotic-resistant bacteria, are urgently needed. Using a human gut microbiota model, we demonstrate that bacteriophages (phages) are able to substantially decrease pathogenic Salmonella without perturbing the microbiota. Conversely, antibiotic treatment leads to the eradication of close to all commensal bacteria, leaving only antibiotic-resistant bacteria. An unbalanced microbiota has been linked to many diseases both in the gastrointestinal tract or “nonintestinal” diseases. In our study, we show that the microbiota provides a protective effect against Salmonella. Since phage treatment preserves the healthy gut microbiota, it is a feasible superior alternative to antibiotic treatment. Furthermore, when combating infections caused by pathogenic bacteria, gut microbiota should be considered. Author Video: An author video summary of this article is available.
Collapse
|
48
|
Use of exogenous volatile organic compounds to detect Salmonella in milk. Anal Chim Acta 2018; 1028:121-130. [DOI: 10.1016/j.aca.2018.03.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 01/10/2023]
|
49
|
Awofisayo-Okuyelu A, McCarthy N, Mgbakor I, Hall I. Incubation period of typhoidal salmonellosis: a systematic review and meta-analysis of outbreaks and experimental studies occurring over the last century. BMC Infect Dis 2018; 18:483. [PMID: 30261843 PMCID: PMC6161394 DOI: 10.1186/s12879-018-3391-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Salmonella Typhi is a human pathogen that causes typhoid fever. It is a major cause of morbidity and mortality in developing countries and is responsible for several outbreaks in developed countries. Studying certain parameters of the pathogen, such as the incubation period, provides a better understanding of its pathophysiology and its characteristics within a population. Outbreak investigations and human experimental studies provide an avenue to study these relevant parameters. METHODS In this study, the authors have undertaken a systematic review of outbreak investigation reports and experimental studies, extracted reported data, tested for heterogeneity, identified subgroups of studies with limited evidence of heterogeneity between them and identified factors that may contribute to the distribution of incubation period. Following identification of relevant studies, we extracted both raw and summary incubation data. We tested for heterogeneity by deriving the value of I2 and conducting a KS-test to compare the distribution between studies. We performed a linear regression analysis to identify the factors associated with incubation period and using the resulting p-values from the KS-test, we conducted a hierarchical cluster analysis to classify studies with limited evidence of heterogeneity into subgroups. RESULTS We identified thirteen studies to be included in the review and extracted raw incubation period data from eleven. The value of I2 was 84% and the proportion of KS test p-values that were less than 0.05 was 63.6% indicating high heterogeneity not due to chance. We identified vaccine history and attack rates as factors that may be associated with incubation period, although these were not significant in the multivariable analysis (p-value: 0.1). From the hierarchical clustering analysis, we classified the studies into five subgroups. The mean incubation period of the subgroups ranged from 9.7 days to 21.2 days. Outbreaks reporting cases with previous vaccination history were clustered in a single subgroup and reported the longest incubation period. CONCLUSIONS We identified attack rate and previous vaccination as possible associating factors, however further work involving analyses of individual patient data and developing mathematical models is needed to confirm these as well as examine additional factors that have not been included in our study.
Collapse
Affiliation(s)
- Adedoyin Awofisayo-Okuyelu
- NIHR Health Protection Research Unit in Gastrointestinal Infection, University of Liverpool, Liverpool, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Noel McCarthy
- NIHR Health Protection Research Unit in Gastrointestinal Infection, University of Liverpool, Liverpool, UK
- Department of Zoology, University of Oxford, Oxford, UK
- Warwick Medical School, University of Warwick, Warwick, UK
| | - Ifunanya Mgbakor
- Warwick Medical School, University of Warwick, Warwick, UK
- Epidemiology, Strategic Information and Health Systems Strengthening Branch, Nigeria Office, Lagos, Nigeria
| | - Ian Hall
- School of Mathematics, University of Manchester, Manchester, UK
| |
Collapse
|
50
|
Venkat H, Matthews J, Lumadao P, Caballero B, Collins J, Fowle N, Kellis M, Tewell M, White S, Hassan R, Classon A, Joung Y, Komatsu K, Weiss J, Zusy S, Sunenshine R. Salmonella enterica Serotype Javiana Infections Linked to a Seafood Restaurant in Maricopa County, Arizona, 2016. J Food Prot 2018; 81:1283-1292. [PMID: 29985066 PMCID: PMC6309180 DOI: 10.4315/0362-028x.jfp-17-494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
On 10 August 2016, the Maricopa County Department of Public Health identified culture-confirmed Salmonella enterica serotype Javiana isolates from two persons who reported eating at a seafood restaurant; seven additional cases were reported by 15 August. We investigated to identify a source and prevent further illness. We interviewed persons with laboratory-reported Salmonella Javiana infection. Pulsed-field gel electrophoresis (PFGE) and whole genome sequencing of isolates were performed. A case was defined as diarrheal illness in a person during July to September 2016; confirmed cases had Salmonella Javiana isolate yielding outbreak-related PFGE patterns; probable cases had diarrheal illness and an epidemiologic link to a confirmed case. Case finding was performed (passive surveillance and identification of ill meal companions). A case-control study assessed risk factors for Salmonella Javiana infection among restaurant diners; control subjects were chosen among meal companions. No restaurant workers reported illness. Foods were reportedly cooked according to the Food Code. Food and environmental samples were collected and cultured; Salmonella Javiana with an indistinguishable PFGE pattern was isolated from portioned repackaged raw shrimp, halibut, and a freezer door handle. We identified 50 Salmonella Javiana cases (40 confirmed and 10 probable); illness onset range was from 22 July to 17 September 2016. Isolates from 40 patients had highly related PFGE patterns. Thirty-three (73%) of 45 patients interviewed reported eating at the restaurant. Among 21 case patients and 31 control subjects, unfried cooked shrimp was associated with illness (odds ratio, 6.7; 95% confidence interval, 1.8 to 24.9; P = 0.004). Among restaurant diners, laboratory and case-control evidence indicated shrimp as the possible outbreak source; poor thermal inactivation of Salmonella on shrimp is theorized as a possible cause. Cross-contamination might have prolonged this outbreak; however, the source was not identified and highlights limitations that can arise during these types of investigations.
Collapse
Affiliation(s)
- Heather Venkat
- 1 Centers for Disease Control and Prevention (CDC) Epidemic Intelligence Service Program, Division of Scientific Education and Professional Development, 1600 Clifton Road, Atlanta, Georgia 30333.,2 Maricopa County Department of Public Health, 4041 North Central Avenue, Phoenix, Arizona 85012.,3 Arizona Department of Health Services, 150 North 18th Avenue, Phoenix, Arizona 85007
| | - James Matthews
- 2 Maricopa County Department of Public Health, 4041 North Central Avenue, Phoenix, Arizona 85012
| | - Paolo Lumadao
- 4 Maricopa County Environmental Services, 1001 North Central Avenue, Phoenix, Arizona 85004
| | - Blanca Caballero
- 3 Arizona Department of Health Services, 150 North 18th Avenue, Phoenix, Arizona 85007
| | - Jennifer Collins
- 2 Maricopa County Department of Public Health, 4041 North Central Avenue, Phoenix, Arizona 85012
| | - Nicole Fowle
- 2 Maricopa County Department of Public Health, 4041 North Central Avenue, Phoenix, Arizona 85012
| | - Marilee Kellis
- 3 Arizona Department of Health Services, 150 North 18th Avenue, Phoenix, Arizona 85007
| | - Mackenzie Tewell
- 3 Arizona Department of Health Services, 150 North 18th Avenue, Phoenix, Arizona 85007
| | - Stacy White
- 5 Arizona State Public Health Laboratory, 250 North 17th Avenue, Phoenix, Arizona 85007
| | - Rashida Hassan
- 6 CDC Division of Foodborne, Waterborne, and Environmental Diseases, 1600 Clifton Road, Atlanta, Georgia 30333; and
| | - Andrew Classon
- 6 CDC Division of Foodborne, Waterborne, and Environmental Diseases, 1600 Clifton Road, Atlanta, Georgia 30333; and
| | - Yoo Joung
- 6 CDC Division of Foodborne, Waterborne, and Environmental Diseases, 1600 Clifton Road, Atlanta, Georgia 30333; and
| | - Kenneth Komatsu
- 3 Arizona Department of Health Services, 150 North 18th Avenue, Phoenix, Arizona 85007
| | - Joli Weiss
- 3 Arizona Department of Health Services, 150 North 18th Avenue, Phoenix, Arizona 85007
| | - Scott Zusy
- 4 Maricopa County Environmental Services, 1001 North Central Avenue, Phoenix, Arizona 85004
| | - Rebecca Sunenshine
- 2 Maricopa County Department of Public Health, 4041 North Central Avenue, Phoenix, Arizona 85012.,7 CDC Office of Public Health Preparedness and Response, Career Epidemiology Field Officer Program, Division of State and Local Readiness, 1600 Clifton Road, Atlanta, Georgia 30333, USA
| |
Collapse
|