1
|
Martínez-Cignoni MR, González-Vicens A, Morán-Costoya A, Amengual-Cladera E, Gianotti M, Valle A, Proenza AM, Lladó I. Diabesity alters the protective effects of estrogens on endothelial function through adipose tissue secretome. Free Radic Biol Med 2024; 224:574-587. [PMID: 39241985 DOI: 10.1016/j.freeradbiomed.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Estrogens have a well-known protective role in the development of the metabolic syndrome. Nevertheless, recent epidemiological data question the cardioprotective effect of estrogens in obese and diabetic women. In this context, white adipose tissue (WAT) becomes dysfunctional, which has an impact on the cardiovascular system. The aim of the study was to elucidate the role of 17β-estradiol (E2) in the interplay between adipose tissue and endothelial function in an animal model of diabesity. We used ZDF (fa/fa) female rats subjected to ovariectomy (OVA), OVA + E2 or sham operated, as well as non-obese non-diabetic ZDF (fa/+) rats. Endothelial function and vascular remodeling markers were assessed in the aorta, while mitochondrial function, oxidative stress, and adiponectin production were analyzed in gonadal WAT. Conditioned media from gonadal WAT explants were used to assess the effects of WAT secretome on HUVEC. Additionally, the adiponectin receptor agonist AdipoRON and E2 were utilized to examine potential interactions. Ovariectomy ameliorated the WAT dysfunction associated to the obese and diabetic state and promoted adiponectin secretion, effects that were linked to a reduction of endothelial dysfunction and inflammatory markers in the aorta of OVA rats and in HUVEC treated with OVA-conditioned media. Our findings provide evidence supporting the idea that in the context of obesity and diabetes, ovariectomy improves WAT secretome and positively impacts endothelial function, suggesting a detrimental role for E2. Additionally, our results point to adiponectin as the primary driver of the effects exerted by ovariectomy on the adipovascular axis.
Collapse
Affiliation(s)
- Melanie Raquel Martínez-Cignoni
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain
| | - Agustí González-Vicens
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain
| | - Andrea Morán-Costoya
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain; Institut d'Investigació Sanitària de les Illes Baleares (IdISBa), Hospital Universitari Son Espases, E-07120, Palma, Balearic Islands, Spain
| | - Emilia Amengual-Cladera
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain; Institut d'Investigació Sanitària de les Illes Baleares (IdISBa), Hospital Universitari Son Espases, E-07120, Palma, Balearic Islands, Spain
| | - Magdalena Gianotti
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain
| | - Adamo Valle
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain; Institut d'Investigació Sanitària de les Illes Baleares (IdISBa), Hospital Universitari Son Espases, E-07120, Palma, Balearic Islands, Spain; Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/0043), Instituto de Salud Carlos III, E- 28029, Madrid, Spain
| | - Ana María Proenza
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain; Institut d'Investigació Sanitària de les Illes Baleares (IdISBa), Hospital Universitari Son Espases, E-07120, Palma, Balearic Islands, Spain; Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/0043), Instituto de Salud Carlos III, E- 28029, Madrid, Spain.
| | - Isabel Lladó
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain; Institut d'Investigació Sanitària de les Illes Baleares (IdISBa), Hospital Universitari Son Espases, E-07120, Palma, Balearic Islands, Spain; Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/0043), Instituto de Salud Carlos III, E- 28029, Madrid, Spain
| |
Collapse
|
2
|
Bettiol A, Urban ML, Emmi G, Galora S, Argento FR, Fini E, Borghi S, Bagni G, Mattioli I, Prisco D, Fiorillo C, Becatti M. SIRT1 and thrombosis. Front Mol Biosci 2024; 10:1325002. [PMID: 38304233 PMCID: PMC10833004 DOI: 10.3389/fmolb.2023.1325002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
Thrombosis is a major cause of morbidity and mortality worldwide, with a complex and multifactorial pathogenesis. Recent studies have shown that SIRT1, a member of the sirtuin family of NAD + -dependent deacetylases, plays a crucial role in regulating thrombosis, modulating key pathways including endothelial activation, platelet aggregation, and coagulation. Furthermore, SIRT1 displays anti-inflammatory activity both in vitro, in vivo and in clinical studies, particularly via the reduction of oxidative stress. On these bases, several studies have investigated the therapeutic potential of targeting SIRT1 for the prevention of thrombosis. This review provides a comprehensive and critical overview of the main preclinical and clinical studies and of the current understanding of the role of SIRT1 in thrombosis.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Silvia Galora
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| |
Collapse
|
3
|
Liu Y, Wang T, Zhou Q, Xin G, Niu H, Li F, Wang Y, Li S, Dong Y, Zhang K, Feng L, Fu W, Zhang B, Huang W. Endogenous SIRT6 in platelets negatively regulates platelet activation and thrombosis. Front Pharmacol 2023; 14:1268708. [PMID: 38186648 PMCID: PMC10766690 DOI: 10.3389/fphar.2023.1268708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Thromboembolism resulting from platelet dysfunction constitutes a significant contributor to the development of cardiovascular disease. Sirtuin 6 (SIRT6), an essential NAD+-dependent enzyme, has been linked to arterial thrombosis when absent in endothelial cells. In the present study, we have confirmed the presence of SIRT6 protein in anucleated platelets. However, the precise regulatory role of platelet endogenous SIRT6 in platelet activation and thrombotic processes has remained uncertain. Herein, we present compelling evidence demonstrating that platelets isolated from SIRT6-knockout mice (SIRT6-/-) exhibit a notable augmentation in thrombin-induced platelet activation, aggregation, and clot retraction. In contrast, activation of SIRT6 through specific agonist treatment (UBCS039) confers a pronounced protective effect on platelet activation and arterial thrombosis. Moreover, in platelet adoptive transfer experiments between wild-type (WT) and SIRT6-/- mice, the loss of SIRT6 in platelets significantly prolongs the mean thrombus occlusion time in a FeCl3-induced arterial thrombosis mouse model. Mechanistically, we have identified that SIRT6 deficiency in platelets leads to the enhanced expression and release of proprotein convertase subtilisin/kexin type 9 (PCSK9), subsequently activating the platelet activation-associated mitogen-activated protein kinase (MAPK) signaling pathway. These findings collectively unveil a novel protective role of platelet endogenous SIRT6 in platelet activation and thrombosis. This protective effect is, at least in part, attributed to the inhibition of platelet PCSK9 secretion and mitogen-activated protein kinase signaling transduction. Our study provides valuable insights into the intricate interplay between SIRT6 and platelet function, shedding light on potential therapeutic avenues for managing thrombotic disorders.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qilong Zhou
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Guang Xin
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Niu
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Li
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yilan Wang
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyi Li
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuman Dong
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zhang
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lijuan Feng
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Fu
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Boli Zhang
- Innovative Chinese Medicine Academician Workstation, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Huang
- Department of Neurosurgery, Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Tang P, Wang Y, Yang X, Wu Z, Chen W, Ye Y, Jiang Y, Lin L, Lin B, Lin B. Protective Role of Endothelial SIRT1 in Deep Vein Thrombosis and Hypoxia-induced Endothelial Dysfunction Mediated by NF-κB Deacetylation. Inflammation 2023; 46:1887-1900. [PMID: 37354359 DOI: 10.1007/s10753-023-01848-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023]
Abstract
Venous hypoxia is considered as the major pathogenetic mechanism linking blood flow stagnancy with deep vein thrombosis (DVT). Our previous study showed that activating SIRT1 may attenuate inferior vena cava (IVC) stenosis-induced DVT in rats. This study was aimed to investigate the role of endothelial SIRT1 in DVT and hypoxia-induced endothelial dysfunction as well as the underlying mechanism. Protein profiling of IVCs and blood plasma of DVT rats induced by IVC stenosis was analysed by 4D Label free proteomics analysis. To verify the independent role of SIRT1 in DVT and oxygen-glucose deprivation (OGD)-induced endothelial dysfunction, SIRT1 specific activator SRT1720 and SIRT1 knockdown in both local IVCs and endothelial cells were employed. Moreover, the role of the NF-κB were investigated using NF-κB inhibitor caffeic acid phenethyl ester (CAPE). SRT1720 significantly inhibited thrombus burden, leukocytes infiltration, protein expressions of cell adhesion molecules and chemokines, as well as acetylation level of NF-κB/p65 in wild DVT rats, while these protective effects of SRT1720 were abolished in rats with SIRT1 knockdown in local IVCs. In vitro, SRT1720 protected endothelial cells against OGD-induced dysfunction characterized with enhanced adhesion of monocytes as well as the protein expressions of cell adhesion molecules and chemokines, whereas these protective effects of SRT1720 were vanished by SIRT1 stable knockdown. Furthermore, CAPE attenuated endothelial cell dysfunction and abolished these effects of SIRT1 knockdown. Collectively, these data suggested that endothelial SIRT1 plays an independent role in ameliorating hypoxia-induced endothelial dysfunction and thrombotic inflammation in DVT, and this effect is mediated by NF-κB deacetylation.
Collapse
Affiliation(s)
- Ping Tang
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yiting Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xinrong Yang
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhongrui Wu
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenpei Chen
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuxin Ye
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yong Jiang
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Liuqing Lin
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bingqing Lin
- College of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060, China.
| | - Baoqin Lin
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
5
|
Liu YP, Wen R, Liu CF, Zhang TN, Yang N. Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed Pharmacother 2023; 164:114931. [PMID: 37263163 DOI: 10.1016/j.biopha.2023.114931] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
Sirtuins (SIRTs) are a nicotinic adenine dinucleotide (+) -dependent histone deacetylase that regulates critical signaling pathways in prokaryotes and eukaryotes. Studies have identified seven mammalian homologs of the yeast SIRT silencing message regulator 2, namely, SIRT1-SIRT7. Recent in vivo and in vitro studies have successfully demonstrated the involvement of SIRTs in key pathways for cell biological function in physiological and pathological processes of the cardiovascular system, including processes including cellular senescence, oxidative stress, apoptosis, DNA damage, and cellular metabolism. Emerging evidence has stimulated a significant evolution in preventing and treating cardiovascular disease (CVD). Here, we review the important roles of SIRTs for the regulatory pathways involved in the pathogenesis of cardiovascular diseases and their molecular targets, including novel protein post-translational modifications of succinylation. In addition, we summarize the agonists and inhibitors currently identified to target novel specific small molecules of SIRTs. A better understanding of the role of SIRTs in the biology of CVD opens new avenues for therapeutic intervention with great potential for preventing and treating CVD.
Collapse
Affiliation(s)
- Yong-Ping Liu
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Ri Wen
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Chun-Feng Liu
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Tie-Ning Zhang
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Ni Yang
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
6
|
Gaul DS, Calatayud N, Pahla J, Bonetti NR, Wang YJ, Weber J, Ambrosini S, Liberale L, Costantino S, Mohammed SA, Kraler S, Van Tits LJ, Pasterk L, Vdovenko D, Akhmedov A, Ruschitzka F, Paneni F, Lüscher TF, Camici GG, Matter CM. Endothelial SIRT6 deficiency promotes arterial thrombosis in mice. J Mol Cell Cardiol 2023; 174:56-62. [PMID: 36414111 DOI: 10.1016/j.yjmcc.2022.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Arterial thrombosis may be initiated by endothelial inflammation or denudation, activation of blood-borne elements or the coagulation system. Tissue factor (TF), a central trigger of the coagulation cascade, is regulated by the pro-inflammatory NF-κB-dependent pathways. Sirtuin 6 (SIRT6) is a nuclear member of the sirtuin family of NAD+-dependent deacetylases and is known to inhibit NF-κB signaling. Its constitutive deletion in mice shows early lethality with hypoglycemia and accelerated aging. Of note, the role of SIRT6 in arterial thrombosis remains unknown. Thus, we hypothesized that endothelial SIRT6 protects from arterial thrombosis by modulating inhibition of NF-κB-associated pathways. APPROACH AND RESULTS Using a laser-induced carotid thrombosis model, in vivo arterial occlusion occurred 45% faster in 12-week-old male endothelial-specific Sirt6-/- mice as compared to Sirt6fl/fl controls (n ≥ 9 per group; p = 0.0012). Levels of procoagulant TF were increased in animals lacking endothelial SIRT6 as compared to control littermates. Similarly, in cultured human aortic endothelial cells, SIRT6 knockdown increased TF mRNA, protein and activity. Moreover, SIRT6 knockdown increased mRNA levels of NF-κB-associated genes tumor necrosis factor alpha (TNF-α), poly [ADP-ribose] polymerase 1 (PARP-1), vascular cell adhesion molecule 1 (VCAM-1), and cyclooxygenase-2 (COX-2); at the protein level, COX-2, VCAM-1, TNF-α, and cleaved PARP-1 remained increased after Sirt6 knockdown. CONCLUSIONS Endothelium-specific Sirt6 deletion promotes arterial thrombosis in mice. In cultured human aortic endothelial cells, SIRT6 silencing enhances TF expression and activates pro-inflammatory pathways including TNF-α, cleaved PARP-1, VCAM-1 and COX-2. Hence, endogenous endothelial SIRT6 exerts a protective role in experimental arterial thrombosis.
Collapse
Affiliation(s)
- Daniel S Gaul
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Natacha Calatayud
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Jürgen Pahla
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Nicole R Bonetti
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Yu-Jen Wang
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Julien Weber
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Samuele Ambrosini
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Shafeeq A Mohammed
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Lambertus J Van Tits
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Lisa Pasterk
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Daria Vdovenko
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland; Department of Cardiology, University Hospital Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland; Department of Cardiology, University Hospital Zurich, Switzerland; Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Christian M Matter
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland; Department of Cardiology, University Hospital Zurich, Switzerland.
| |
Collapse
|
7
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Abstract
Sirtuins are NAD+-dependent deacetylase and deacylase enzymes that control important cellular processes, including DNA damage repair, cellular metabolism, mitochondrial function and inflammation. Consequently, mammalian sirtuins are regarded as crucial regulators of cellular function and organism healthspan. Sirtuin activity and NAD+ levels decrease with age in many tissues, and reduced sirtuin expression is associated with several cardiovascular diseases. By contrast, increased sirtuin expression and activity slows disease progression and improves cardiovascular function in preclinical models and delays various features of cellular ageing. The potential cardiometabolic benefits of sirtuins have resulted in clinical trials with sirtuin-modulating agents; although expectations are high, these drugs have not yet been proven to improve healthspan. In this Review, we examine the role of sirtuins in atherosclerosis, summarize advances in the development of compounds that activate or inhibit sirtuin activity and critically evaluate the therapeutic potential of these agents.
Collapse
|
9
|
Xiao Y, Liang J, Witwer KW, Zhang Y, Wang Q, Yin H. Extracellular vesicle-associated microRNA-30b-5p activates macrophages through the SIRT1/ NF-κB pathway in cell senescence. Front Immunol 2022; 13:955175. [PMID: 36119099 PMCID: PMC9471260 DOI: 10.3389/fimmu.2022.955175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic inflammation is widely observed in aging, but it is unclear whether extracellular vesicles (EVs) play a role in chronic disease-associated senescence. In our study, LC/MS profiling revealed that senescent cell derived EVs (SEN EVs) activate the immune response pathways of macrophages. Significantly more EVs were found in the supernatant of SEN than of control (CON) cell cultures, and SEN EVs were enriched in miR-30b-5p, which directly target sirtuin1 (SIRT1). In vitro, we found that SEN EV treatment resulted in increased cellular levels of interleukin-1β (IL-1β) and IL-6 and decreased levels of SIRT1. Increased cytokine levels could be reversed by SIRT1 activation and miR-30b-5p inhibition. Furthermore, miR-30b-5p significantly increased with age in both mouse liver tissue and EVs harvested from the tissue, with differences in EVs observed both earlier and in the later magnitude of aging. Western blot and qPCR proved that miR-30b-5p downregulated the level of SIRT1 in mouse macrophages. Collectively, we propose that EVs carrying miR-30b-5p from SEN cells can induce chronic inflammation through macrophage activation. This occurs through the downregulation of SIRT1 and the corresponding activation of NF-κB pathways that enhance pro-inflammatory cytokine production. Collectively, these results demonstrate that EVs carrying pro-inflammatory signals are released by SEN cells and then activate immune cells in the SEN microenvironment, changing the inflammatory balance. Our results also explain why inflammation increases with age even though SEN cells can be immediately eliminated under rigorous immune surveillance.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi Liang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ying Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Qian Wang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Hang Yin, ; Qian Wang,
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- *Correspondence: Hang Yin, ; Qian Wang,
| |
Collapse
|
10
|
Ligustrazine prevents coronary microcirculation dysfunction in rats via suppression of miR-34a-5p and promotion of Sirt1. Eur J Pharmacol 2022; 929:175150. [PMID: 35835182 DOI: 10.1016/j.ejphar.2022.175150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The coronary microembolization contributes to coronary microvascular dysfunction (CMD), in which miR-34a-5p may play a critical role. Ligustrazine has been reported to improve CMD. The present study was designed to discuss the role of miR-34a-5p/Sirt1 pathway in CMD and explore the underlying mechanism of ligustrazine. METHODS Coronary microembolization (CME) was induced by left ventricle injection of sodium laurate in rats. CME formation and cardiac function were examined by HE staining and hemodynamic tests to evaluate CMD. The expressions of miR-34a-5p, Sirt1 and the downstream proteins were detected by RT-qPCR and western blot. Dual-luciferase reporter (DLR) assay was performed to confirm the connection between miR-34a-5p and Sirt1. The blood markers of endothelial dysfunction, platelet activation and inflammation were examined with ELISA. RESULTS Overt CME and cardiac dysfunction as well as up-regulated miR-34a-5p and down-regulated Sirt1 were observed in CME rats. Overexpressing miR-34a-5p aggravated while silencing miR-34a-5p inhibited CME formation. DLR assay confirmed that miR-34a-5p directly inhibited Sirt1 mRNA expression. Ligustrazine pretreatment suppressed miR-34a-5p and promoted Sirt1 expression, which alleviated endothelial dysfunction, inhibited platelet activation and inflammation, and in turn reduced CME. Overexpressing miR-34a-5p diminished the positive effects of ligustrazine; while after silencing miR-34a-5p, ligustrazine failed to further promote Sirt1 expression and inhibit CME formation. CONCLUSION MiR-34a-5p contributes to CMD by inhibiting Sirt1 expression. Ligustrazine exerts endothelial-protective, anti-platelet and anti-inflammatory effects to prevent CMD via suppressing miR-34a-5p and promoting Sirt1.
Collapse
|
11
|
Afzaal A, Rehman K, Kamal S, Akash MSH. Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions. J Biochem Mol Toxicol 2022; 36:e23047. [PMID: 35297126 DOI: 10.1002/jbt.23047] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Sirtuins (SIRT1-7) are distinct histone deacetylases (HDACs) whose activity is determined by cellular metabolic status andnicotinamide adenine dinucleotide (NAD+ ) levels. HDACs of class III are the members of the SIRT's protein family. SIRTs are the enzymes that modulate mitochondrial activity and energy metabolism. SIRTs have been linked to a number of clinical and physiological operations, such as energy responses to low-calorie availability, aging, stress resistance, inflammation, and apoptosis. Mammalian SIRT2 orthologs have been identified as SIRT1-7 that are found in several subcellular sections, including the cytoplasm (SIRT1, 2), mitochondrial matrix (SIRT3, 4, 5), and the core (SIRT1, 2, 6, 7). For their deacetylase or ADP-ribosyl transferase action, all SIRTs require NAD+ and are linked to cellular energy levels. Evolutionarily, SIRT1 is related to yeast's SIRT2 as well as received primary attention in the circulatory system. An endogenous protein, SIRT1 is involved in the development of heart failure and plays a key role in cell death and survival. SIRT2 downregulation protects against ischemic-reperfusion damage. Increase in human longevity is caused by an increase in SIRT3 expression. Cardiomyocytes are also protected by SIRT3 from oxidative damage and aging, as well as suppressing cardiac hypertrophy. SIRT4 and SIRT5 perform their roles in the heart. SIRT6 has also been linked to a reduction in heart hypertrophy. SIRT7 is known to be involved in the regulation of stress responses and apoptosis in the heart.
Collapse
Affiliation(s)
- Ammara Afzaal
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
12
|
Sandrini L, Amadio P, Ieraci A, Malara A, Werba JP, Soprano PM, Balduini A, Zarà M, Bonomi A, Veglia F, Colombo GI, Popoli M, Lee FS, Tremoli E, Barbieri SS. The α 2-adrenergic receptor pathway modulating depression influences the risk of arterial thrombosis associated with BDNFVal66Met polymorphism. Biomed Pharmacother 2021; 146:112557. [PMID: 34965503 DOI: 10.1016/j.biopha.2021.112557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Depression is associated with thrombotic risk and arterial events, its proper management is strongly recommended in coronary artery disease (CAD) patients. We have previously shown that the Brain-Derived Neurotrophic Factor (BDNF)Val66Met polymorphism, related to depression, is associated with arterial thrombosis in mice, and with an increased risk of acute myocardial infarction in humans. Herein, expanding the previous findings on BDNFVal66Met polymorphism, we show that desipramine, a norepinephrine reuptake-inhibitor, rescues behavioral impairments, reduces the arterial thrombosis risk, abolishes pathological coagulation and platelet hyper-reactivity, normalizes leukocyte, platelet, and bone marrow megakaryocyte number and restores physiological norepinephrine levels in homozygous knock-in BDNF Val66Met (BDNFMet/Met) mice. The in vitro data confirm the enhanced procoagulant activity and the alpha2A-adrenergic receptor (α2A-ADR) overexpression found in BDNFMet/Met mice and we provide evidence that, in presence of Met variant, norepinephrine is crucial to up-regulate procoagulant activity and to enhance platelet generation. The α2-ADR antagonist rauwolscine rescues the prothrombotic phenotype in BDNFMet/Met mice and reduces procoagulant activity and platelet generation in cells transfected with BDNFMet plasmid or exposed to pro-BDNFMet peptide. Finally, we show that homozygous BDNFMet/Met CAD patients have hyper-reactive platelets overexpressing abundant α2A-ADR. The great proplatelet release from their megakaryocytes well reflects their higher circulating platelet number compared to BDNFVal/Val patients. These data reveal an unprecedented described role of Met allele in the dysregulation of norepinephrine/α2A-ADR pathway that may explain the predisposition to arterial thrombosis. Overall, the development of α2A-ADR inhibitors might represent a pharmacological treatment for depression-associated thrombotic conditions in this specific subgroup of CAD patients.
Collapse
Affiliation(s)
| | | | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS San Matteo Foundation, Pavia, Italy
| | - José P Werba
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS San Matteo Foundation, Pavia, Italy
| | - Marta Zarà
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Alice Bonomi
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, USA
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Maria Cecilia Hospital, Cotignola, Italy
| | | |
Collapse
|
13
|
Sadia K, Ashraf MZ, Mishra A. Therapeutic Role of Sirtuins Targeting Unfolded Protein Response, Coagulation, and Inflammation in Hypoxia-Induced Thrombosis. Front Physiol 2021; 12:733453. [PMID: 34803727 PMCID: PMC8602789 DOI: 10.3389/fphys.2021.733453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Thrombosis remains one of the leading causes of morbidity and mortality across the world. Many pathological milieus in the body resulting from multiple risk factors escort thrombosis. Hypoxic condition is one such risk factor that disturbs the integrity of endothelial cells to cause an imbalance between anticoagulant and procoagulant proteins. Hypoxia generates reactive oxygen species (ROS) and triggers inflammatory pathways to augment the coagulation cascade. Hypoxia in cells also activates unfolded protein response (UPR) signaling pathways in the endoplasmic reticulum (ER), which tries to restore ER homeostasis and function. But the sustained UPR linked with inflammation, generation of ROS and apoptosis stimulates the severity of thrombosis in the body. Sirtuins, a group of seven proteins, play a vast role in bringing down inflammation, oxidative and ER stress and apoptosis. As a result, sirtuins might provide a therapeutic approach towards the treatment or prevention of hypoxia-induced thrombosis. Sirtuins modulate hypoxia-inducible factors (HIFs) and counteract ER stress-induced apoptosis by attenuating protein kinase RNA-like endoplasmic reticulum kinase (PERK)/Eukaryotic translation initiation factor 2α (eIF2α) pathway activation. It prevents ER-stress mediated inflammation by targeting X-Box Binding Protein 1 (XBP1) and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κβ) signaling through deacetylation. Sirtuins also obstruct nucleotide-binding domain, leucine-rich-containing family, pyrin domain containing 3 (NLRP3) inflammasome activation to reduce the expression of several pro-inflammatory molecules. It protects cells against oxidative stress by targeting nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione (GSH), forkhead box O3 (FOXO3), superoxide dismutase (SOD), catalase (CAT), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), glucose-6-phosphate dehydrogenase (G6PD), phosphoglucomutase-2 (PGAM2), and NF-κB, to name few. This review, thus, discusses the potential role of sirtuins as a new treatment for hypoxia-induced thrombosis that involves an intersection of UPR and inflammatory pathways in its pathological manifestation.
Collapse
Affiliation(s)
- Khan Sadia
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Aastha Mishra
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
14
|
Wang YJ, Paneni F, Stein S, Matter CM. Modulating Sirtuin Biology and Nicotinamide Adenine Diphosphate Metabolism in Cardiovascular Disease-From Bench to Bedside. Front Physiol 2021; 12:755060. [PMID: 34712151 PMCID: PMC8546231 DOI: 10.3389/fphys.2021.755060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
Sirtuins (SIRT1–7) comprise a family of highly conserved deacetylases with distribution in different subcellular compartments. Sirtuins deacetylate target proteins depending on one common substrate, nicotinamide adenine diphosphate (NAD+), thus linking their activities to the status of cellular energy metabolism. Sirtuins had been linked to extending life span and confer beneficial effects in a wide array of immune-metabolic and cardiovascular diseases. SIRT1, SIRT3, and SIRT6 have been shown to provide protective effects in various cardiovascular disease models, by decreasing inflammation, improving metabolic profiles or scavenging oxidative stress. Sirtuins may be activated collectively by increasing their co-substrate NAD+. By supplementing NAD+ precursors, NAD+ boosters confer pan-sirtuin activation with protective cardiometabolic effects in the experimental setting: they improve endothelial dysfunction, protect from experimental heart failure, hypertension and decrease progression of liver steatosis. Different precursor molecules were applied ranging from nicotinamide (NAM), nicotinamide mononucleotide (NMN) to nicotinamide riboside (NR). Notably, not all experimental results showed protective effects. Moreover, the results are not as striking in clinical studies as in the controlled experimental setting. Species differences, (lack of) genetic heterogeneity, different metabolic pathways, dosing, administration routes and disease contexts may account for these challenges in clinical translation. At the clinical scale, caloric restriction can reduce the risks of cardiovascular disease and raise NAD+ concentration and sirtuin expression. In addition, antidiabetic drugs such as metformin or SGLT2 inhibitors may confer cardiovascular protection, indirectly via sirtuin activation. Overall, additional mechanistic insight and clinical studies are needed to better understand the beneficial effects of sirtuin activation and NAD+ boosters from bench to bedside.
Collapse
Affiliation(s)
- Yu-Jen Wang
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital of Zurich, Zurich, Switzerland
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Hong JY, Lin H. Sirtuin Modulators in Cellular and Animal Models of Human Diseases. Front Pharmacol 2021; 12:735044. [PMID: 34650436 PMCID: PMC8505532 DOI: 10.3389/fphar.2021.735044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022] Open
Abstract
Sirtuins use NAD+ to remove various acyl groups from protein lysine residues. Through working on different substrate proteins, they display many biological functions, including regulation of cell proliferation, genome stability, metabolism, and cell migration. There are seven sirtuins in humans, SIRT1-7, each with unique enzymatic activities, regulatory mechanisms, subcellular localizations, and substrate scopes. They have been indicated in many human diseases, including cancer, neurodegeneration, microbial infection, metabolic and autoimmune diseases. Consequently, interests in development of sirtuin modulators have increased in the past decade. In this brief review, we specifically summarize genetic and pharmacological modulations of sirtuins in cancer, neurological, and cardiovascular diseases. We further anticipate this review will be helpful for scrutinizing the significance of sirtuins in the studied diseases.
Collapse
Affiliation(s)
- Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
Sun YL, Bai T, Zhou L, Zhu RT, Wang WJ, Liang RP, Li J, Zhang CX, Gou JJ. SOD3 deficiency induces liver fibrosis by promoting hepatic stellate cell activation and epithelial-mesenchymal transition. J Cell Physiol 2021; 236:4313-4329. [PMID: 33230845 DOI: 10.1002/jcp.30174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Hepatic stellate cell (HSC) activation plays an important role in the pathogenesis of liver fibrosis, and epithelial-mesenchymal transition (EMT) is suggested to potentially promote HSC activation. Superoxide dismutase 3 (SOD3) is an extracellular antioxidant defense against oxidative damage. Here, we found downregulation of SOD3 in a mouse model of liver fibrosis induced by carbon tetrachloride (CCl4 ). SOD3 deficiency induced spontaneous liver injury and fibrosis with increased collagen deposition, and further aggravated CCl4 -induced liver injury in mice. Depletion of SOD3 enhanced HSC activation marked by increased α-smooth muscle actin and subsequent collagen synthesis primarily collagen type I in vivo, and promoted transforming growth factor-β1 (TGF-β1)-induced HSC activation in vitro. SOD3 deficiency accelerated EMT process in the liver and TGF-β1-induced EMT of AML12 hepatocytes, as evidenced by loss of E-cadherin and gain of N-cadherin and vimentin. Notably, SOD3 expression and its pro-fibrogenic effect were positively associated with sirtuin 1 (SIRT1) expression. SOD3 deficiency inhibited adenosine monophosphate-activated protein kinase (AMPK) signaling to downregulate SIRT1 expression and thus involving in liver fibrosis. Enforced expression of SIRT1 inhibited SOD3 deficiency-induced HSC activation and EMT, whereas depletion of SIRT1 counteracted the inhibitory effect of SOD3 in vitro. These findings demonstrate that SOD3 deficiency contributes to liver fibrogenesis by promoting HSC activation and EMT process, and suggest a possibility that SOD3 may function through modulating SIRT1 via the AMPK pathway in liver fibrosis.
Collapse
Affiliation(s)
- Yu-Ling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Tao Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Zhou
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
- Department of Digestive, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong-Tao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Wei-Jie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Ruo-Peng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Chi-Xian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Jian-Jun Gou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| |
Collapse
|
17
|
Role of SIRT1 in Isoflurane Conditioning-Induced Neurovascular Protection against Delayed Cerebral Ischemia Secondary to Subarachnoid Hemorrhage. Int J Mol Sci 2021; 22:ijms22084291. [PMID: 33924243 PMCID: PMC8074752 DOI: 10.3390/ijms22084291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
We recently reported that isoflurane conditioning provided multifaceted protection against subarachnoid hemorrhage (SAH)-induced delayed cerebral ischemia (DCI), and this protection was through the upregulation of endothelial nitric oxide synthase (eNOS). SIRT1, an NAD-dependent deacetylase, was shown to be one of the critical regulators of eNOS. The aim of our current study is to examine the role of SIRT1 in isoflurane conditioning-induced neurovascular protection against SAH-induced DCI. Mice were divided into four groups: sham, SAH, or SAH with isoflurane conditioning (with and without EX-527). Experimental SAH via endovascular perforation was performed. Anesthetic conditioning was performed with isoflurane 2% for 1 h, 1 h after SAH. EX-527, a selective SIRT1 inhibitor, 10 mg/kg was injected intraperitoneally immediately after SAH in the EX-527 group. SIRT1 mRNA expression and activity levels were measured. Vasospasm, microvessel thrombosis, and neurological outcome were assessed. SIRT1 mRNA expression was downregulated, and no difference in SIRT1 activity was noted after isoflurane exposure. Isoflurane conditioning with and without EX-527 attenuated vasospasm, microvessel thrombosis and improved neurological outcomes. Our data validate our previous findings that isoflurane conditioning provides strong protection against both the macro and micro vascular deficits induced by SAH, but this protection is likely not mediated through the SIRT1 pathway.
Collapse
|
18
|
Sims CA, Labiner HE, Shah SS, Baur JA. Longevity pathways in stress resistance: targeting NAD and sirtuins to treat the pathophysiology of hemorrhagic shock. GeroScience 2021; 43:1217-1228. [PMID: 33462707 DOI: 10.1007/s11357-020-00311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/06/2020] [Indexed: 11/29/2022] Open
Abstract
Stress resistance correlates with longevity and this pattern has been exploited to help identify genes that can influence lifespan. Reciprocally, genes and pharmacological agents that have been studied primarily in the context of longevity may be an untapped resource for treating acute stresses. Here we summarize the evidence that targeting SIRT1, studied primarily in the context of longevity, can improve outcomes in hemorrhagic shock and resuscitation. Hemorrhagic shock is a potentially fatal condition that occurs when blood loss is so severe that tissues no longer receive adequate oxygen. While stabilizing the blood pressure and reperfusing tissues are necessary, re-introducing oxygen to ischemic tissues generates a burst of reactive oxygen species that can cause secondary tissue damage. Reactive oxygen species not only exacerbate the inflammatory cascade but also can directly damage mitochondria, leading to bioenergetic failure in the affected tissues. Treatments with polyphenol resveratrol and with nicotinamide adenine dinucleotide (NAD) precursors have both shown promising results in rodent models of hemorrhagic shock and resuscitation. Although a number of different mechanisms may be at play in each case, a common theme is that resveratrol and NAD both enhance the activity of SIRT1. Moreover, many of the physiologic improvements observed with resveratrol and NAD precursors are consistent with modulation of known SIRT1 targets. Because small blood vessels and limited blood volume make mice very challenging for the development of hemorrhagic shock models, there is a paucity of direct genetic evidence testing the role of SIRT1. However, the development of more robust methods in mice as well as genetic modifications in rats should allow the study of SIRT1 transgenic and KO rodents in the near future. The potential therapeutic effect of SIRT1 in hemorrhagic shock may serve as an important example supporting the value of considering "longevity" pathways in the mitigation of acute stresses.
Collapse
Affiliation(s)
- Carrie A Sims
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Faculty Office Tower, 395 12th Ave, Room 654, Columbus, OH, 43210, USA.
| | - Hanna E Labiner
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Faculty Office Tower, 395 12th Ave, Room 654, Columbus, OH, 43210, USA
| | - Sohini S Shah
- Institute for Diabetes, Obesity and Metabolism and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., SCTR 12-114, Philadelphia, PA, 19104, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity and Metabolism and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., SCTR 12-114, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Xue Y, Fu W, Liu Y, Yu P, Sun M, Li X, Yu X, Sui D. Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation. J Food Sci 2020; 85:4039-4049. [PMID: 33073372 DOI: 10.1111/1750-3841.15505] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/05/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
The cardioprotective effects of ginsenoside Rb2 on oxidative stress, which is induced by hydrogen peroxide and myocardial ischemia/reperfusion (MI/R) injury, have been studied. The mechanisms were associated with the inhibition of cardiomyocyte apoptosis, a high concentration of antioxidant defense enzymes, and scavenging oxidative stress products. Because of the association with oxidative reaction and cardioprotection, sirtuin-1 (SIRT1) was selected as a promising target for investigating whether MI/R injury can be alleviated by ginsenoside Rb2 pretreatment through SIRT1 activation. The rats were exposed to ginsenoside Rb2 with or without SIRT1 inhibitor EX527 before ligation of coronary artery. Ginsenoside Rb2 reduced myocardial superoxide generation; downregulated gp91phox expression; and decreased the mRNA expression levels and activities of interleukin-1β, interleukin-6, and tumor necrosis factor-α. The results demonstrated that ginsenoside Rb2 significantly attenuated oxidative stress and inflammation induced by MI/R injury. In addition, ginsenoside Rb2 upregulated SIRT1 expression and downregulated Ac-p53 expression. However, EX527 blocked the protective effects, indicating that the pharmacological action of ginsenoside Rb2 involves SIRT1. Our results thus revealed that ginsenoside Rb2 alleviated MI/R injury in rats by inhibiting oxidative stress and inflammatory response through SIRT1 activation. PRACTICAL APPLICATION: Ginsenoside Rb2 has a protective effect on MI/R injury by activating SIRT1 expression, reducing myocardium inflammation, and alleviating oxidative stress. Thus, ginsenoside Rb2 is a promising novel agent for ameliorating MI/R injury in ischemic heart diseases and cardiac surgery.
Collapse
Affiliation(s)
- Yan Xue
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China.,Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yanzhe Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Mingyang Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Xin Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| |
Collapse
|
20
|
Fang C, Schmaier AH. Novel anti-thrombotic mechanisms mediated by Mas receptor as result of balanced activities between the kallikrein/kinin and the renin-angiotensin systems. Pharmacol Res 2020; 160:105096. [PMID: 32712319 PMCID: PMC7378497 DOI: 10.1016/j.phrs.2020.105096] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
The risk of thrombosis, a globally growing challenge and a major cause of death, is influenced by various factors in the intravascular coagulation, vessel wall, and cellular systems. Among the contributors to thrombosis, the contact activation system and the kallikrein/kinin system, two overlapping plasma proteolytic systems that are often considered as synonymous, regulate thrombosis from different aspects. On one hand, components of the contact activation system such as factor XII initiates activation of the coagulation proteins promoting thrombus formation on artificial surfaces through factor XI- and possibly prekallikrein-mediated intrinsic coagulation. On the other hand, physiological activation of plasma prekallikrein in the kallikrein/kinin system on endothelial cells liberates bradykinin from associated high-molecular-weight kininogen to stimulate the constitutive bradykinin B2 receptor to generate nitric oxide and prostacyclin to induce vasodilation and counterbalance angiotensin II signaling from the renin-angiotensin system which stimulates vasoconstriction. In addition to vascular tone regulation, this interaction between the kallikrein/kinin and renin-angiotensin systems has a thrombo-regulatory role independent of the contact pathway. At the level of the G-protein coupled receptors of these systems, defective bradykinin signaling due to attenuated bradykinin formation and/or decreased B2 receptor expression, as seen in murine prekallikrein and B2 receptor null mice, respectively, leads to compensatory overexpressed Mas, the receptor for angiotensin-(1-7) of the renin-angiotensin system. Mas stimulation and/or its increased expression contributes to maintaining a healthy vascular homeostasis by generating graded elevation of plasma prostacyclin which reduces thrombosis through two independent pathways: (1) increasing the vasoprotective transcription factor Sirtuin 1 to suppress tissue factor expression, and (2) inhibiting platelet activation. This review will summarize the recent advances in this field that support these understandings. Appreciating these subtle mechanisms help to develop novel anti-thrombotic strategies by targeting the vascular receptors in the renin-angiotensin and the kallikrein/kinin systems to maintain healthy vascular homeostasis.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and the Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, 430030, China.
| | - Alvin H. Schmaier
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
21
|
Tang P, Liu H, Lin B, Yang W, Chen W, Lu Z, Li P, Gui S, Zhan Y, Lin B. Spatholobi Caulis dispensing granule reduces deep vein thrombus burden through antiinflammation via SIRT1 and Nrf2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153285. [PMID: 32707369 DOI: 10.1016/j.phymed.2020.153285] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Deep vein thrombosis (DVT) is a kind of blood stasis syndrome. Spatholobi Caulis (SC) has been widely used for the treatment of blood stasis syndrome in China, but the underlying mechanism remains poorly understood. PURPOSE The aim of present study was to investigate the anti-DVT mechanism of Spatholobi Caulis dispensing granule (SCDG). STUDY DESIGN/METHODS A rat model of inferior vena cava (IVC) stenosis-induced DVT and a cell model of oxygen-glucose deprivation (OGD) were performed. Rats were orally administered with SCDG solution once daily for seven consecutive days. IVC stenosis-induced DVT was operated on the sixth day. Thrombi were harvested and weighed on the seventh day. Pathological changes were observed by hematoxylin-eosin (HE) staining. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β of serum were analyzed by enzyme-linked immunosorbent assay. C-reactive protein (CRP) was measured with turbidimetric immunoassay. Protein expressions in thrombosed IVCs and/or OGD-stimulated EA. hy926 cells were evaluated by western blot and/or immunofluorescence analyses. RESULTS SCDG dramatically decreased thrombus weight. SCDG decreased tissue factor (TF) protein expression, inflammatory cells influxes in thrombosed vein wall and serum levels of inflammatory cytokines and CRP. Further, SCDG up-regulated Sirtuin 1 (SIRT1) protein expression and down-regulated acetylated-NF-κB p65 (Ace-p65) protein expression. Moreover, SCDG up-regulated nuclear factor-erythroid 2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expressions, and down-regulated phosphorylated-NF-κB p65 (p-p65) protein expression. In the OGD cell model, SCDG medicated serum decreased the protein expression of TF. SCDG medicated serum enhanced SIRT1 protein expression and reduced Ace-p65 nuclear protein expression. SCDG medicated serum promoted protein expressions of nuclear Nrf2 and total HO-1, and inhibited translocation of p65. Furthermore, inhibiting SIRT1 and Nrf2 reversed the protective effect of SCDG medicated serum on OGD-induced EA. hy926 cells. CONCLUSION SCDG may prevent DVT through antiinflammation via SIRT1 and Nrf2.
Collapse
Affiliation(s)
- Ping Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Han Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Bingqing Lin
- College of Mathematics and Statistics, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Drug Non-clinical Evaluation and Research, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangzhou, Guangdong, 510990, China
| | - Wenpei Chen
- Guangdong Provincial Key Laboratory of Drug Non-clinical Evaluation and Research, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangzhou, Guangdong, 510990, China
| | - Ziqi Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Peng Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shuhua Gui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yaxian Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Baoqin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
22
|
Martello A, Lauriola A, Mellis D, Parish E, Dawson JC, Imrie L, Vidmar M, Gammoh N, Mitić T, Brittan M, Mills NL, Carragher NO, D'Arca D, Caporali A. Trichoplein binds PCM1 and controls endothelial cell function by regulating autophagy. EMBO Rep 2020; 21:e48192. [PMID: 32337819 PMCID: PMC7332983 DOI: 10.15252/embr.201948192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 02/18/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an essential cellular quality control process that has emerged as a critical one for vascular homeostasis. Here, we show that trichoplein (TCHP) links autophagy with endothelial cell (EC) function. TCHP localizes to centriolar satellites, where it binds and stabilizes PCM1. Loss of TCHP leads to delocalization and proteasome-dependent degradation of PCM1, further resulting in degradation of PCM1's binding partner GABARAP. Autophagic flux under basal conditions is impaired in THCP-depleted ECs, and SQSTM1/p62 (p62) accumulates. We further show that TCHP promotes autophagosome maturation and efficient clearance of p62 within lysosomes, without affecting their degradative capacity. Reduced TCHP and high p62 levels are detected in primary ECs from patients with coronary artery disease. This phenotype correlates with impaired EC function and can be ameliorated by NF-κB inhibition. Moreover, Tchp knock-out mice accumulate of p62 in the heart and cardiac vessels correlating with reduced cardiac vascularization. Taken together, our data reveal that TCHP regulates endothelial cell function via an autophagy-mediated mechanism.
Collapse
Affiliation(s)
- Andrea Martello
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Angela Lauriola
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena & Reggio EmiliaModenaItaly
| | - David Mellis
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Elisa Parish
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - John C Dawson
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Lisa Imrie
- Centre for Synthetic and Systems Biology (SynthSys)University of EdinburghEdinburghUK
| | - Martina Vidmar
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Noor Gammoh
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tijana Mitić
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Mairi Brittan
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Nicholas L Mills
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
- Usher InstituteUniversity of EdinburghEdinburghUK
| | - Neil O Carragher
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena & Reggio EmiliaModenaItaly
| | - Andrea Caporali
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| |
Collapse
|
23
|
Oduro PK, Fang J, Niu L, Li Y, Li L, Zhao X, Wang Q. Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and western medicine compared based on biomarkers and biochemical parameters. Pharmacol Res 2020; 158:104893. [PMID: 32434053 DOI: 10.1016/j.phrs.2020.104893] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Diabetes, a worldwide health concern while burdening significant populace of countries with time due to a hefty increase in both incidence and prevalence rates. Hyperglycemia has been buttressed both in clinical and experimental studies to modulate widespread molecular actions that effect macro and microvascular dysfunctions. Endothelial dysfunction, activation, inflammation, and endothelial barrier leakage are key factors contributing to vascular complications in diabetes, plus the development of diabetes-induced cardiovascular diseases. The recent increase in molecular, transcriptional, and clinical studies has brought a new scope to the understanding of molecular mechanisms and the therapeutic targets for endothelial dysfunction in diabetes. In this review, an attempt made to discuss up to date critical and emerging molecular signaling pathways involved in the pathophysiology of endothelial dysfunction and viable pharmacological management targets. Importantly, we exploit some Traditional Chinese Medicines (TCM)/TCM isolated bioactive compounds modulating effects on endothelial dysfunction in diabetes. Finally, clinical studies data on biomarkers and biochemical parameters involved in the assessment of the efficacy of treatment in vascular endothelial dysfunction in diabetes was compared between clinically used western hypoglycemic drugs and TCM formulas.
Collapse
Affiliation(s)
- Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
24
|
Rodriguez-Miguelez P, Looney J, Thomas J, Harshfield G, Pollock JS, Harris RA. Sirt1 during childhood is associated with microvascular function later in life. Am J Physiol Heart Circ Physiol 2020; 318:H1371-H1378. [PMID: 32330091 DOI: 10.1152/ajpheart.00024.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microvascular dysfunction often precedes other age-related macrovascular conditions and predicts future cardiovascular risk. Sirtuin 1 (Sirt1) has recently emerged as a protein that protects the vasculature and reduces the risk of cardiovascular diseases. We tested the hypothesis that lower Sirt1 during childhood is associated with a reduced microvascular function during adulthood. Thirty-four adults (34 ± 3 yr) from the Augusta Heart Study returned to participate in the present clinical observational study. Sirt1 was assessed in samples collected during both adulthood and participants' childhood (16 ± 3 yr), and data were divided based on childhood Sirt1 concentrations: <3 ng/dL (LowCS; n = 16) and ≥3 ng/dL (HighCS; n = 18). MVF was evaluated in all of the adults using laser-Doppler flowmetry coupled with three vascular reactivity tests: 1) local thermal hyperemia (LTH), 2) post-occlusive reactive hyperemia (PORH), and 3) iontophoresis of acetylcholine (ACh). The hyperemic response to LTH was significantly (P ≤ 0.044) lower in the LowCS than in the HighCS group. Similarly, the LowCS also exhibited an ameliorated (P ≤ 0.045) response to the PORH test and lower (P ≤ 0.008) vasodilation in response to iontophoresis of ACh when compared with the HighCS. Positive relationships were identified between childhood Sirt1 and all MVF reactivity tests (r≥0.367, P ≤ 0.004). Novel observations suggest that lower Sirt1 during childhood is associated with premature microvascular dysfunction in adulthood. These findings provide evidence that Sirt1 may play a critical role in microvascular function and have therapeutic potential for the prevention of age-associated vascular dysfunction in humans.NEW & NOTEWORTHY With a longitudinal cohort, novel observations from the present study demonstrate that individuals who had lower Sirt1 early in life exhibit premature microvascular dysfunction during adulthood and may be at higher risk to develop CVD. These results provide experimental evidence that Sirt1 may play an important role in microvascular function with age and represent a potential therapeutic target to prevent premature vascular dysfunction.
Collapse
Affiliation(s)
- Paula Rodriguez-Miguelez
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia.,Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Jacob Looney
- Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Jeffrey Thomas
- Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | | | - Jennifer S Pollock
- Georgia Prevention Institute, Augusta University, Augusta, Georgia.,Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ryan A Harris
- Georgia Prevention Institute, Augusta University, Augusta, Georgia.,Sport and Exercise Science Research Institute, University of Ulster, Jordanstown, United Kingdom
| |
Collapse
|
25
|
Arsiwala T, Pahla J, van Tits LJ, Bisceglie L, Gaul DS, Costantino S, Miranda MX, Nussbaum K, Stivala S, Blyszczuk P, Weber J, Tailleux A, Stein S, Paneni F, Beer JH, Greter M, Becher B, Mostoslavsky R, Eriksson U, Staels B, Auwerx J, Hottiger MO, Lüscher TF, Matter CM. Sirt6 deletion in bone marrow-derived cells increases atherosclerosis - Central role of macrophage scavenger receptor 1. J Mol Cell Cardiol 2020; 139:24-32. [PMID: 31972266 DOI: 10.1016/j.yjmcc.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/19/2022]
Abstract
AIMS Sirtuin 6 (Sirt6) is a NAD+-dependent deacetylase that plays a key role in DNA repair, inflammation and lipid regulation. Sirt6-null mice show severe metabolic defects and accelerated aging. Macrophage-foam cell formation via scavenger receptors is a key step in atherogenesis. We determined the effects of bone marrow-restricted Sirt6 deletion on foam cell formation and atherogenesis using a mouse model. METHODS AND RESULTS Sirt6 deletion in bone marrow-derived cells increased aortic plaques, lipid content and macrophage numbers in recipient Apoe-/- mice fed a high-cholesterol diet for 12 weeks (n = 12-14, p < .001). In RAW macrophages, Sirt6 overexpression reduced oxidized low-density lipoprotein (oxLDL) uptake, Sirt6 knockdown enhanced it and increased mRNA and protein levels of macrophage scavenger receptor 1 (Msr1), whereas levels of other oxLDL uptake and efflux transporters remained unchanged. Similarly, in human primary macrophages, Sirt6 knockdown increased MSR1 protein levels and oxLDL uptake. Double knockdown of Sirt6 and Msr1 abolished the increase in oxLDL uptake observed upon Sirt6 single knockdown. FACS analyses of macrophages from aortic plaques of Sirt6-deficient bone marrow-transplanted mice showed increased MSR1 protein expression. Double knockdown of Sirt6 and the transcription factor c-Myc in RAW cells abolished the increase in Msr1 mRNA and protein levels; c-Myc overexpression increased Msr1 mRNA and protein levels. CONCLUSIONS Loss of Sirt6 in bone marrow-derived cells is proatherogenic; hereby macrophages play an important role given a c-Myc-dependent increase in MSR1 protein expression and an enhanced oxLDL uptake in human and murine macrophages. These findings assign endogenous SIRT6 in macrophages an important atheroprotective role.
Collapse
Affiliation(s)
- Tasneem Arsiwala
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Jürgen Pahla
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Lambertus J van Tits
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Lavinia Bisceglie
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Daniel S Gaul
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Melroy X Miranda
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Kathrin Nussbaum
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Simona Stivala
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Internal Medicine Cantonal Hospital Baden, Baden, Switzerland
| | - Przemyslaw Blyszczuk
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Julien Weber
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Anne Tailleux
- Univ. Lille - EGID; Inserm UMR1011; CHU Lille, Institut Pasteur de Lille, France
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Internal Medicine Cantonal Hospital Baden, Baden, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Raul Mostoslavsky
- Massachusetts General Hospital, Cancer Center, Harvard Medical School, Boston, USA
| | - Urs Eriksson
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Bart Staels
- Univ. Lille - EGID; Inserm UMR1011; CHU Lille, Institut Pasteur de Lille, France
| | - Johan Auwerx
- Laboratory of Integrative & Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Cardiology, Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland.
| |
Collapse
|
26
|
Zhang Y, Li L, Zhou Q, Li W, Li M, Guo G, Yu B, Kou J. An inhibitor of myosin II, blebbistatin, suppresses development of arterial thrombosis. Biomed Pharmacother 2019; 122:109775. [PMID: 31918291 DOI: 10.1016/j.biopha.2019.109775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022] Open
Abstract
Arterial thrombosis (AT) causes various ischemia-related diseases, which impose a serious medical burden worldwide. As an inhibitor of myosin II, blebbistatin has an important role in thrombosis development. We investigated the effect of blebbistatin on carotid artery ligation (CAL)-induced carotid AT and its potential underlying mechanism. A model of carotid AT in mice was generated by CAL. Mice were divided into three groups: CAL model, blebbistatin-treated, and sham-operation. After 7 days, blood vessels were harvested from mice in each group. The procoagulant activity of tissue factor (TF) was tested by a chromogenic assay, and thrombus severity assessed by histopathology scores. Expression of non-muscle myosin heavy chain II A (NMMHCIIA), TF, glycogen synthase kinase 3β (GSK3β), and nuclear factor-kappa B (NF-κB) was detected by immunohistochemical and immunofluorescence staining. mRNA expression was measured by quantitative polymerase chain reaction. Blebbistatin (1 mg/kg) inhibited development of carotid AT, reduced infiltration of inflammatory cells, and prevented vascular-tissue damage, relative to the model group. Furthermore, blebbistatin also reduced the procoagulant activity of TF. Immunohistochemical and immunofluorescence data demonstrated that, compared with the model group, blebbistatin intervention reduced expression of NMMHCIIA, TF, GSK3β, p65, and p-p65 in carotid-artery endothelia in the CAL-induced AT model, but it increased levels of p-GSK3β. Blebbistatin could inhibit expression of NMMHCIIA mRNA in the CAL model. Overall, our data demonstrated that blebbistatin could inhibit TF expression and AT development in arterial endothelia (at least in part) via GSK3β/NF-κB signaling.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Long Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Qianliu Zhou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Wang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Min Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Gengshuo Guo
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China.
| |
Collapse
|
27
|
Abstract
The sirtuin family of nicotinamide adenine dinucleotide-dependent deacylases (SIRT1-7) are thought to be responsible, in large part, for the cardiometabolic benefits of lean diets and exercise and when upregulated can delay key aspects of aging. SIRT1, for example, protects against a decline in vascular endothelial function, metabolic syndrome, ischemia-reperfusion injury, obesity, and cardiomyopathy, and SIRT3 is protective against dyslipidemia and ischemia-reperfusion injury. With increasing age, however, nicotinamide adenine dinucleotide levels and sirtuin activity steadily decrease, and the decline is further exacerbated by obesity and sedentary lifestyles. Activation of sirtuins or nicotinamide adenine dinucleotide repletion induces angiogenesis, insulin sensitivity, and other health benefits in a wide range of age-related cardiovascular and metabolic disease models. Human clinical trials testing agents that activate SIRT1 or boost nicotinamide adenine dinucleotide levels are in progress and show promise in their ability to improve the health of cardiovascular and metabolic disease patients.
Collapse
Affiliation(s)
- Alice E Kane
- From the Department of Genetics, Harvard Medical School, Boston, MA (A.E.K., D.A.S.)
| | - David A Sinclair
- From the Department of Genetics, Harvard Medical School, Boston, MA (A.E.K., D.A.S.).,Department of Pharmacology, The University of New South Wales, Sydney, Australia (D.A.S.)
| |
Collapse
|
28
|
Liu H, Li P, Lin J, Chen W, Guo H, Lin J, Liu J, Lu Z, Yao X, Chen Y, Lin B. Danhong Huayu Koufuye prevents venous thrombosis through antiinflammation via Sirtuin 1/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111975. [PMID: 31141719 DOI: 10.1016/j.jep.2019.111975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhong Huayu Koufuye (DHK), a compound traditional Chinese medicine, is composed of Salvia miltiorrhiza radix (Salvia miltiorrhiza Bge.), Angelicae Sinensis radix (Angelicae Sinensis (Oliv.) Diels.), Chuanxiong rhizoma (Ligusticum chuanxiong Hort.), Persicae semen (Prunus persica (L.) Batsch), Carthami flos (Carthamus tinctorius L.), Bupleuri radix (Bupleurum chinense DC.) and Aurantii fructus (Citrus aurantium L.). DHK prevents deep vein thrombosis (DVT) through antiinflammation. However, the antiinflammatory mechanism of DHK is still unknown. OBJECTIVE The aim of this study was to evaluate whether DHK prevented venous thrombosis through antiinflammation via Sirtuin 1 (SIRT1)/NF-κB signaling pathway. METHODS Inferior vena cava (IVC) stenosis-induced DVT rat model was established. Rats were administered with DHK (1.6, 3.2 or 6.4 mL/kg/d, p.o.), heparin (200 U/kg/d, i.v.), clopidogrel (25 mg/kg/d, p.o.), resveratrol (50 mg/kg/d, p.o.) or vehicle (p.o.) once daily for two days. Blood coagulation, blood fibrinolysis, blood viscosity, blood cell counts and platelet activity were evaluated. Serum levels of inflammatory cytokines were analyzed by enzyme-linked immunosorbent assay. Pathological changes were observed by hematoxylin-eosin (HE) staining. Protein expressions in thrombosed IVCs were evaluated by Western blot and/or immunofluorescence analyses. SIRT1 mRNA expression was analyzed by real-time quantitative polymerase chain reaction. Besides, SIRT1-specific inhibitor EX527 was pretreated to confirm the role of SIRT1/NF-κB signaling pathway in the antithrombotic effect of DHK. RESULTS DHK remarkably prevented DVT. DHK had no effects on blood coagulation, blood fibrinolysis, blood viscosity, blood cell counts or platelet activity. But DHK significantly up-regulated protein and mRNA expressions of SIRT1, and reduced leukocytes infiltration into thrombus and vein wall, serum levels of inflammatory cytokines, and protein expressions of acetylated p65 (Ace-p65), phosphorylated p65 (p-p65) and tissue factor (TF). Moreover, the antithrombotic effect of DHK was significantly abolished by EX527. CONCLUSION DHK may prevent DVT by inhibiting inflammation via SIRT1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Han Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Peng Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Juan Lin
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd., Guangzhou, Guangdong, 510515, China
| | - Wenpei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Haibiao Guo
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd., Guangzhou, Guangdong, 510515, China
| | - Jianyun Lin
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd., Guangzhou, Guangdong, 510515, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ziqi Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaolan Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yang Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Baoqin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
29
|
Yao XL, Liu H, Li P, Chen WP, Guan SX, Chen Y, Wu YN, Lin BQ. Aqueous Extract of Whitmania Pigra Whitman Alleviates Thrombus Burden Via Sirtuin 1/NF-κB Pathway. J Surg Res 2019; 245:441-452. [PMID: 31445496 DOI: 10.1016/j.jss.2019.07.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Whitmania pigra Whitman (W pigra), a traditional Chinese medicine, has functions of breaking stagnant and eliminating blood stasis. The aim of this study was to investigate the underlying mechanism of W pigra against deep vein thrombosis (DVT). METHODS A rat model of DVT induced by inferior vena cava stenosis was successfully established. Rats were administered vehicle (saline solution, p.o.), three doses of W pigra aqueous extract (34.7, 104.2, or 312.5 mg crude W pigra/kg, p.o.), heparin (200 U/kg, i.v.), or clopidogrel (25 mg/kg, p.o.) once daily for 2 d. Thrombus weight and histopathological changes were examined. Blood samples were collected to determine blood cell counts, blood viscosity, blood coagulation, blood fibrinolysis, serum levels of interleukin-1β, and tumor necrosis factor-α. Protein expressions of Sirtuin1 (SIRT1), acetylated p65 (Ace-p65), and phosphorylated p65 (p-p65) were determined by Western blot. Furthermore, SIRT1-specific inhibitor EX527 was applied to confirm the role of SIRT1 in the antithrombotic effect of W pigra. RESULTS W pigra significantly decreased thrombus weight. W pigra had no effects on blood cell counts, whole blood viscosity, blood coagulation, blood fibrinolysis. However, it reduced tissue factor protein expression in the vein wall and thrombus. Moreover, it sharply increased SIRT1 protein expression and decreased leukocytes recruitment in the thrombus and vein wall, serum levels of interleukin-1β and tumor necrosis factor-α, and protein expressions of Ace-p65 and p-p65. Furthermore, the antithrombotic effect of W pigra was significantly abolished by EX527. CONCLUSIONS Aqueous extract of W pigra effectively reduced DVT burden by inhibiting inflammation via SIRT1/nuclear factor-kappa B signaling pathway.
Collapse
Affiliation(s)
- Xiao-Lan Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Pei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Xia Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Na Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bao-Qin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
30
|
D'Onofrio N, Sardu C, Paolisso P, Minicucci F, Gragnano F, Ferraraccio F, Panarese I, Scisciola L, Mauro C, Rizzo MR, Mansueto G, Varavallo F, Brunitto G, Caserta R, Tirino V, Papaccio G, Barbieri M, Paolisso G, Balestrieri ML, Marfella R. MicroRNA-33 and SIRT1 influence the coronary thrombus burden in hyperglycemic STEMI patients. J Cell Physiol 2019; 235:1438-1452. [PMID: 31294459 DOI: 10.1002/jcp.29064] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023]
Abstract
Primary percutaneous coronary intervention (PPCI) is a pivotal treatment in ST-segment elevation myocardial infarction (STEMI) patients. However, in hyperglycemic-STEMI patients, the incidence of death is still significant. Here, the involvement of sirtuin 1 (SIRT1) and miR33 on the pro-inflammatory/pro-coagulable state of the coronary thrombus was investigated. Moreover, 1-year outcomes in hyperglycemic STEMI in patients subjected to thrombus aspiration before PPCI were evaluated. Results showed that hyperglycemic thrombi displayed higher size and increased miR33, reactive oxygen species, and pro-inflammatory/pro-coagulable markers. Conversely, the hyperglycemic thrombi showed a lower endothelial SIRT1 expression. Moreover, in vitro experiments on endothelial cells showed a causal effect of SIRT1 modulation on the pro-inflammatory/pro-coagulative state via hyperglycemia-induced miR33 expression. Finally, SIRT1 expression negatively correlated with STEMI outcomes. These observations demonstrate the involvement of the miR33/SIRT1 pathway in the increased pro-inflammatory and pro-coagulable state of coronary thrombi in hyperglycemic STEMI patients.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Pasquale Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Fabio Minicucci
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Franca Ferraraccio
- Department of Mental Health and Public Medicine, Section of Statistic, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Iacopo Panarese
- Department of Mental Health and Public Medicine, Section of Statistic, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Ciro Mauro
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Gelsomina Mansueto
- Department of Advanced Biomedical Sciences, Legal Medicine Unit, University of Naples Federico II, Naples, Italy
| | | | | | - Rosanna Caserta
- Unit of Pathological Anatomy, Aversa Hospital, Caserta, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | | | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli,", Naples, Italy
| |
Collapse
|
31
|
Stein S, Winnik S, Matter CM. Brain-derived neurotrophic factor Val66Met polymorphism in depression and thrombosis: SIRT1 as a possible mediator. Eur Heart J 2019; 38:1436-1438. [PMID: 26715164 DOI: 10.1093/eurheartj/ehv692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Sokrates Stein
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for Molecular Cardiology, University of Zurich and University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Stephan Winnik
- Center for Molecular Cardiology, University of Zurich and University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich and University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Du C, Lin X, Xu W, Zheng F, Cai J, Yang J, Cui Q, Tang C, Cai J, Xu G, Geng B. Sulfhydrated Sirtuin-1 Increasing Its Deacetylation Activity Is an Essential Epigenetics Mechanism of Anti-Atherogenesis by Hydrogen Sulfide. Antioxid Redox Signal 2019; 30:184-197. [PMID: 29343087 DOI: 10.1089/ars.2017.7195] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aims: Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 (SIRT1) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether SIRT1 is involved in protecting H2S in atherosclerosis and its mechanism remains unclear. Results: In ApoE-knockout atherosclerosis mice, treatment with an H2S donor (NaHS or GYY4137) reduced atherosclerotic plaque area, macrophage infiltration, aortic inflammation, and plasma lipid level. H2S treatment increased aorta and liver SIRT1 mRNA expression. Overexpression or slicing cystathionine gamma lyase (CSE) also changed intracellular SIRT1 expression. CSE/H2S treatment increased SIRT1 deacetylation in endothelium and hepatocytes and macrophages, then induced deacetylation of its target proteins (P53, P65, and sterol response element binding protein), thereby reducing endothelial and macrophage inflammation and inhibiting macrophage cholesterol uptake and cholesterol de novo synthesis of liver. Also, CSE/H2S induced SIRT1 sulfhydration at its two zinc finger domains, increased its zinc ion binding activity to stabilize the alpha-helix structure, lowered its ubiquitination, and reduced its degradation. Innovation: H2S is a novel SIRT1 activator by direct sulfhydration. Because SIRT1 has a role in longevity, H2S may be a protector for aging-related diseases. Conclusion: Endogenous CSE/H2S directly sulfhydrated SIRT1, enhanced SIRT1 binding to zinc ion, then promoted its deacetylation activity, and increased SIRT1 stability, thus reducing atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Congkuo Du
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Xianjuan Lin
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Wenjing Xu
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Fengjiao Zheng
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Junyan Cai
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Jichun Yang
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Qinghua Cui
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Chaoshu Tang
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Jun Cai
- 2 State Key Laboratory of Cardiovascular Disease, Hypertension Center , Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Guoheng Xu
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Bin Geng
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China .,2 State Key Laboratory of Cardiovascular Disease, Hypertension Center , Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
33
|
Cheang WS, Wong WT, Wang L, Cheng CK, Lau CW, Ma RCW, Xu A, Wang N, Huang Y, Tian XY. Resveratrol ameliorates endothelial dysfunction in diabetic and obese mice through sirtuin 1 and peroxisome proliferator-activated receptor δ. Pharmacol Res 2019; 139:384-394. [DOI: 10.1016/j.phrs.2018.11.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/30/2018] [Accepted: 11/28/2018] [Indexed: 12/30/2022]
|
34
|
Karbowska M, Kaminski TW, Znorko B, Domaniewski T, Misztal T, Rusak T, Pryczynicz A, Guzinska-Ustymowicz K, Pawlak K, Pawlak D. Indoxyl Sulfate Promotes Arterial Thrombosis in Rat Model via Increased Levels of Complex TF/VII, PAI-1, Platelet Activation as Well as Decreased Contents of SIRT1 and SIRT3. Front Physiol 2018; 9:1623. [PMID: 30546314 PMCID: PMC6279869 DOI: 10.3389/fphys.2018.01623] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
Patients suffering from chronic kidney disease (CKD) are at a 20-fold higher risk of dying due to cardiovascular diseases (CVDs), primarily thrombosis following vascular injury. CKD is connected with retention of uremic toxins, especially indoxyl sulfate (IS), which are currently considered as a non-classical CKD-specific risk factor for CVDs. The present study aimed to examine the effect of chronic exposure to IS on the hemostatic system and arterial thrombosis in a model without greater interferences from the uremic milieu consisting of additional uremic toxins. Forty-eight male Wistar Crl:WI (cmdb) rats were divided into three groups: one control group and two experimental groups, which were exposed to 100 or 200 mg/kg of b.w./day of IS in drinking water for a period of 28 days. The control group received water without IS. At the end of the experiment, the induction of arterial thrombosis was performed. We investigated the impact of IS on thrombosis incidence, kinetics and strength of clot formation, platelet activity, aortic contents of sirtuin (SIRT) 1 and sirtuin 3 (SIRT3), hemostatic system, cardiorespiratory parameters, biochemistry of plasma and urine as well as histology of the thrombus, kidney, and liver. Obtained data revealed that chronic exposure to IS promotes arterial thrombosis via increased levels of complex tissue factor/factor VII, plasminogen activator inhibitor-1 (PAI-1), platelet activation, as well as decreased aortic levels of SIRT1 and SIRT3. Therefore, we hypothesize that IS enhances primary hemostasis leading to augmented formation of platelet plug with increased amounts of fibrin and affects secondary hemostasis through the influence on plasma coagulation and fibrinolysis factors, which results in the increased kinetics and strength of clot formation. The findings described may contribute to a better understanding of the mechanisms leading to increased thrombotic events in patients with CKD with elevated levels of IS.
Collapse
Affiliation(s)
- Malgorzata Karbowska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz W Kaminski
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Beata Znorko
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Misztal
- Department of Physical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Rusak
- Department of Physical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | | | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
35
|
Sub-Chronic Stress Exacerbates the Pro-Thrombotic Phenotype in BDNF Val/Met Mice: Gene-Environment Interaction in the Modulation of Arterial Thrombosis. Int J Mol Sci 2018; 19:ijms19103235. [PMID: 30347685 PMCID: PMC6214083 DOI: 10.3390/ijms19103235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism has been associated with increased susceptibility to develop mood disorders and recently it has been also linked with cardiovascular disease (CVD). Interestingly, stressful conditions unveil the anxious/depressive-like behavioral phenotype in heterozygous BDNFVal66Met (BDNFVal/Met) mice, suggesting an important relationship in terms of gene-environment interaction (GxE). However, the interplay between stress and BDNFVal/Met in relation to CVD is completely unknown. Here, we showed that BDNFVal/Met mice display a greater propensity to arterial thrombosis than wild type BDNFVal/Val mice after 7 days of restraint stress (RS). RS markedly increased the number of leukocytes and platelets, and induced hyper-responsive platelets as showed by increased circulating platelet/leukocyte aggregates and enhanced expression of P-selectin and GPIIbIIIa in heterozygous mutant mice. In addition, stressed BDNFVal/Met mice had a greater number of large and reticulated platelets but comparable number and maturation profile of bone marrow megakaryocytes compared to BDNFVal/Val mice. Interestingly, RS led to a significant reduction of BDNF expression accompanied by an increased activity of tissue factor in the aorta of both BDNFVal/Val and BDNFVal/Met mice. In conclusion, we provide evidence that sub-chronic stress unveils prothrombotic phenotype in heterozygous BDNF Val66Met mice affecting both the number and functionality of blood circulating cells, and the expression of key thrombotic molecules in aorta. Human studies will be crucial to understand whether this GxE interaction need to be taken into account in risk stratification of coronary artery disease (CAD) patients.
Collapse
|
36
|
Vellimana AK, Diwan D, Clarke J, Gidday JM, Zipfel GJ. SIRT1 Activation: A Potential Strategy for Harnessing Endogenous Protection Against Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Neurosurgery 2018; 65:1-5. [PMID: 31076789 DOI: 10.1093/neuros/nyy201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Julian Clarke
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Jeffrey M Gidday
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| |
Collapse
|
37
|
Gaul DS, Weber J, van Tits LJ, Sluka S, Pasterk L, Reiner MF, Calatayud N, Lohmann C, Klingenberg R, Pahla J, Vdovenko D, Tanner FC, Camici GG, Eriksson U, Auwerx J, Mach F, Windecker S, Rodondi N, Lüscher TF, Winnik S, Matter CM. Loss of Sirt3 accelerates arterial thrombosis by increasing formation of neutrophil extracellular traps and plasma tissue factor activity. Cardiovasc Res 2018; 114:1178-1188. [PMID: 29444200 PMCID: PMC6014146 DOI: 10.1093/cvr/cvy036] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 02/07/2023] Open
Abstract
Aims Sirtuin 3 (Sirt3) is a mitochondrial, nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that reduces oxidative stress by activation of superoxide dismutase 2 (SOD2). Oxidative stress enhances arterial thrombosis. This study investigated the effects of genetic Sirt3 deletion on arterial thrombosis in mice in an inflammatory setting and assessed the clinical relevance of these findings in patients with ST-elevation myocardial infarction (STEMI). Methods and results Using a laser-induced carotid thrombosis model with lipopolysaccharide (LPS) challenge, in vivo time to thrombotic occlusion in Sirt3-/- mice (n = 6) was reduced by half compared to Sirt3+/+ wild-type (n = 8, P < 0.01) controls. Ex vivo analyses of whole blood using rotational thromboelastometry revealed accelerated clot formation and increased clot stability in Sirt3-/- compared to wild-type blood. rotational thromboelastometry of cell-depleted plasma showed accelerated clotting initiation in Sirt3-/- mice, whereas overall clot formation and firmness remained unaffected. Ex vivo LPS-induced neutrophil extracellular trap formation was increased in Sirt3-/- bone marrow-derived neutrophils. Plasma tissue factor (TF) levels and activity were elevated in Sirt3-/- mice, whereas plasma levels of other coagulation factors and TF expression in arterial walls remained unchanged. SOD2 expression in bone marrow -derived Sirt3-/- neutrophils was reduced. In STEMI patients, transcriptional levels of Sirt3 and its target SOD2 were lower in CD14+ leukocytes compared with healthy donors (n = 10 each, P < 0.01). Conclusions Sirt3 loss-of-function enhances experimental thrombosis in vivo via an increase of neutrophil extracellular traps and elevation of TF suggesting thrombo-protective effects of endogenous Sirt3. Acute coronary thrombosis in STEMI patients is associated with lower expression levels of SIRT3 and SOD2 in CD14+ leukocytes. Therefore, enhancing SIRT3 activity by pan-sirtuin activating NAD+-boosters may provide a novel therapeutic target to prevent or treat thrombotic arterial occlusion in myocardial infarction or stroke.
Collapse
Affiliation(s)
- Daniel S Gaul
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Julien Weber
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Lambertus J van Tits
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Susanna Sluka
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Lisa Pasterk
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Martin F Reiner
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Natacha Calatayud
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Christine Lohmann
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Roland Klingenberg
- Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Jürgen Pahla
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Daria Vdovenko
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Felix C Tanner
- Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Urs Eriksson
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - François Mach
- Cardiology Division, Geneva University Hospitals, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Swiss Cardiovascular Center Bern, University of Bern, Inselspital Bern, Switzerland
| | - Nicolas Rodondi
- Department of General Internal Medicine, University Hospital Bern
- Institute of Primary Health Care (BIHAM), University of Bern, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Stephan Winnik
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
38
|
Amadio P, Colombo GI, Tarantino E, Gianellini S, Ieraci A, Brioschi M, Banfi C, Werba JP, Parolari A, Lee FS, Tremoli E, Barbieri SS. BDNFVal66met polymorphism: a potential bridge between depression and thrombosis. Eur Heart J 2018; 38:1426-1435. [PMID: 26705390 DOI: 10.1093/eurheartj/ehv655] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/09/2015] [Indexed: 12/19/2022] Open
Abstract
Aims Epidemiological studies strongly suggest a link between stress, depression, and cardiovascular diseases (CVDs); the mechanistic correlation, however, is poorly understood. A single-nucleotide polymorphism in the BDNF gene (BDNFVal66Met), associated with depression and anxiety, has been proposed as a genetic risk factor for CVD. Using a knock-in mouse carrying the BDNFVal66Met human polymorphism, which phenocopies psychiatric-related symptoms found in humans, we investigated the impact of this SNP on thrombosis. Methods and results BDNFMet/Met mice displayed a depressive-like phenotype concomitantly with hypercoagulable state and platelet hyperreactivity. Proteomic analysis of aorta secretome from BDNFMet/Met and wild-type (WT) mice showed differential expression of proteins involved in the coagulation and inflammatory cascades. The BDNF Met allele predisposed to carotid artery thrombosis FeCl3-induced and to death after collagen/epinephrine injection. Interestingly, transfection with BDNFMet construct induced a prothrombotic/proinflammatory phenotype in WT cells. SIRT1 activation, using resveratrol and/or CAY10591, prevented thrombus formation and restored the physiological levels of coagulation and of platelet markers in BDNFMet/Met mice and/or cells transfected with the Met allele. Conversely, inhibition of SIRT1 by sirtinol and/or by specific siRNA induced the prothrombotic/proinflammatory phenotype in WT mice and cells. Finally, we found that BDNF Met homozygosity is associated with increased risk of acute myocardial infarction (AMI) in humans. Conclusion Activation of platelets, alteration in coagulation pathways, and changes in vessel wall protein expression in BDNFMet/Met mice recapitulate well the features occurring in the anxiety/depression condition. Furthermore, our data suggest that the BDNFVal66Met polymorphism contribute to the individual propensity for arterial thrombosis related to AMI.
Collapse
Affiliation(s)
- Patrizia Amadio
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, Milan 20138, Italy
| | | | - Eva Tarantino
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Sara Gianellini
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, Milan 20138, Italy
| | - Alessandro Ieraci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Maura Brioschi
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, Milan 20138, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, Milan 20138, Italy
| | - José P Werba
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, Milan 20138, Italy
| | - Alessandro Parolari
- Department of Cardiac Surgery, Operative Unit of Cardiac Surgery and Translational Research, Policlinico San Donato IRCCS, Milan, Italy
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, Milan 20138, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
39
|
Piao S, Lee JW, Nagar H, Jung SB, Choi S, Kim S, Lee I, Kim SM, Shin N, Lee YR, Lee SD, Park JB, Irani K, Won M, Hur GM, Jeon BH, Kim DW, Kim CS. CR6 interacting factor 1 deficiency promotes endothelial inflammation by SIRT1 downregulation. PLoS One 2018; 13:e0192693. [PMID: 29474366 PMCID: PMC5825004 DOI: 10.1371/journal.pone.0192693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/29/2018] [Indexed: 11/29/2022] Open
Abstract
Aims CR6 interacting factor 1 (CRIF1) deficiency impairs mitochondrial oxidative phosphorylation complexes, contributing to increased mitochondrial and cellular reactive oxygen species (ROS) production. CRIF1 downregulation has also been revealed to decrease sirtuin 1 (SIRT1) expression and impair vascular function. Inhibition of SIRT1 disturbs oxidative energy metabolism and stimulates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-induced inflammation. Therefore, we hypothesized that both CRIF1 deficiency-induced mitochondrial ROS production and SIRT1 reduction play stimulatory roles in vascular inflammation. Methods and results Plasma levels and mRNA expression of proinflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6) were markedly elevated in endothelium-specific CRIF1-knockout mice and CRIF1-silenced endothelial cells, respectively. Moreover, CRIF1 deficiency-induced vascular adhesion molecule-1 (VCAM-1) expression was consistently attenuated by the antioxidant N-acetyl-cysteine and NF-κB inhibitor (BAY11). We next showed that siRNA-mediated CRIF1 downregulation markedly activated NF-κB. SIRT1 overexpression not only rescued CRIF1 deficiency-induced NF-κB activation but also decreased inflammatory cytokines (TNF-α, IL-1β, and IL-6) and VCAM-1 expression levels in endothelial cells. Conclusions These results strongly suggest that CRIF1 deficiency promotes endothelial cell inflammation by increasing VCAM-1 expression, elevating inflammatory cytokines levels, and activating the transcription factor NF-κB, all of which were inhibited by SIRT1 overexpression.
Collapse
Affiliation(s)
- Shuyu Piao
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jun Wan Lee
- Emergency ICU, Regional Emergency Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Harsha Nagar
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Saet-byel Jung
- Department of Endocrinology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Sujeong Choi
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonhee Kim
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung-min Kim
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Anatomy & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yu Ran Lee
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Do Lee
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Bong Park
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA United States of America
| | - Minho Won
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Cuk-Seong Kim
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
40
|
Bai B, Man AWC, Yang K, Guo Y, Xu C, Tse HF, Han W, Bloksgaard M, De Mey JGR, Vanhoutte PM, Xu A, Wang Y. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. Oncotarget 2018; 7:39065-39081. [PMID: 27259994 PMCID: PMC5129914 DOI: 10.18632/oncotarget.9687] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
Aims-SIRT1 exerts potent activity against cellular senescence and vascular ageing. By decreasing LKB1 protein levels, it promotes the survival and regeneration of endothelial cells. The present study aims to investigate the molecular mechanisms underlying SIRT1-mediated LKB1 degradation for the prevention of vascular ageing. Methods and Results-Co-immunoprecipitation assay demonstrated that SIRT1, via its amino-terminus, binds to the DOC domain of HERC2 [HECT and RLD domain containing E3 ubiquitin protein ligase 2], which then ubiquitinates LKB1 in the nuclear compartment of endothelial cells. Site-directed mutagenesis revealed that acetylation at lysine (K) 64 of LKB1 triggers the formation of SIRT1/HERC2/LKB1 protein complex and subsequent proteasomal degradation. In vitro cellular studies suggested that accumulation of acetylated LKB1 in the nucleus leads to endothelial activation, in turn stimulating the proliferation of vascular smooth muscle cells and the production of extracellular matrix proteins. Chromatin immunoprecipitation quantitative PCR confirmed that acetylated LKB1 interacts with and activates TGFβ1 promoter, which is inhibited by SIRT1. Knocking down either SIRT1 or HERC2 results in an increased association of LKB1 with the positive regulatory elements of TGFβ1 promoter. In mice without endothelial nitric oxide synthase, selective overexpression of human SIRT1 in endothelium prevents hypertension and age-related adverse arterial remodeling. Lentiviral-mediated knockdown of HERC2 abolishes the beneficial effects of endothelial SIRT1 on both arterial remodeling and arterial blood pressure control. Conclusion-By downregulating acetylated LKB1 protein via HERC2, SIRT1 fine-tunes the crosstalk between endothelial and vascular smooth muscle cells to prevent adverse arterial remodeling and maintain vascular homeostasis.
Collapse
Affiliation(s)
- Bo Bai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.,Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Andy W C Man
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Kangmin Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yumeng Guo
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Cheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jo G R De Mey
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
Jing T, Ya-Shu K, Xue-Jun W, Han-Jing H, Yan L, Yi-An Y, Fei C, Xue-Bo L. Sirt6 mRNA-incorporated endothelial microparticles (EMPs) attenuates DM patient-derived EMP-induced endothelial dysfunction. Oncotarget 2017; 8:114300-114313. [PMID: 29371988 PMCID: PMC5768405 DOI: 10.18632/oncotarget.23259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022] Open
Abstract
Background Endothelial microparticles (EMPs) are small vesicles released by endothelial cells (ECs); they are considered biomarkers for endothelial dysfunction and therapeutic targets in diabetes-related vascular disease. Sirtuins have also been shown to play important roles in diabetes by regulating endothelial dysfunction. However, the effect of sirtuin-incorporated EMPs on their parental ECs remains unknown. Aim The present study aims to investigate the diagnostic value of EMPs in diabetes and detect the protective effects of sirtuin 6 (Sirt6) mRNA -incorporated EMPs on endothelial dysfunction. Methods EMPs were prepared from cultured HUVECs and venous blood from patients with diabetes (n=10) and from healthy volunteers (n=6) after sequential centrifugation. Adv-Sirt6 or Sirt6 siRNA was used to alter Sirt6 expression. EC angiogenesis, inflammatory phenotypes, nitric oxide (NO) formation and eNOS phosphorylation were used to evaluate endothelial dysfunction. Results The levels of EMPs in diabetic patients and high glucose-cultured HUVECs are high, whereas Sirt6 expression in plasma and EMPs is low. EMPs generated from diabetic patients or high glucose-cultured HUVECs increase inflammatory chemokine release and blunt EC angiogenesis. Furthermore, EMPs enriched with Sirt6 mRNA induces EC angiogenesis, increases eNOS phosphorylation and impedes inflammatory chemokine release. Inhibition of Sirt6 mRNA expression in EMPs by siRNA hinders angiogenesis and eNOS phosphorylation but increases cellular inflammation. Conclusion The Sirt6 mRNA-carrying EMPs may ameliorate endothelial dysfunction in diabetic patients.
Collapse
Affiliation(s)
- Tong Jing
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Kuang Ya-Shu
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Wang Xue-Jun
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Hou Han-Jing
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Lai Yan
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Yao Yi-An
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Chen Fei
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Liu Xue-Bo
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
42
|
Xu S, Yin M, Koroleva M, Mastrangelo MA, Zhang W, Bai P, Little PJ, Jin ZG. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging (Albany NY) 2017; 8:1064-82. [PMID: 27249230 PMCID: PMC4931854 DOI: 10.18632/aging.100975] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022]
Abstract
SIRT6 is an important member of sirtuin family that represses inflammation, aging and DNA damage, three of which are causing factors for endothelial dysfunction. SIRT6 expression is decreased in atherosclerotic lesions from ApoE−/− mice and human patients. However, the role of SIRT6 in regulating vascular endothelial function and atherosclerosis is not well understood. Here we show that SIRT6 protects against endothelial dysfunction and atherosclerosis. Global and endothelium-specific SIRT6 knockout mice exhibited impaired endothelium-dependent vasorelaxation. Moreover, SIRT6+/− haploinsufficient mice fed a high-fat diet (HFD) also displayed impaired endothelium-dependent vasorelaxation. Importantly, SIRT6+/−;ApoE−/− mice after HFD feeding exhibited exacerbated atherosclerotic lesion development, concurrent with increased expression of the proinflammatory cytokine VCAM-1. Loss- and gain-of-SIRT6 function studies in cultured human endothelial cells (ECs) showed that SIRT6 attenuated monocyte adhesion to ECs. RNA-sequencing profiling revealed that SIRT6 overexpression decreased the expression of multiple atherosclerosis-related genes, including proatherogenic gene TNFSF4 (tumor necrosis factor superfamily member 4). Chromatin immunoprecipitation assays showed that SIRT6 decreased TNFSF4 gene expression by binding to and deacetylating H3K9 at TNFSF4 gene promoter. Collectively, these findings demonstrate that SIRT6 play a pivotal role in maintaining endothelial function and increased SIRT6 activity could be a new therapeutic strategy to combat atherosclerotic disease.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| | - Meimei Yin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| | - Marina Koroleva
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| | - Michael A Mastrangelo
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Peter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism Research Group, Debrecen, Hungary.,Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence (PACE), Woolloongabba QLD 4102, Australia
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| |
Collapse
|
43
|
Noh RM, Venkatasubramanian S, Daga S, Langrish J, Mills NL, Lang NN, Hoffmann E, Waterhouse B, Newby DE, Frier BM. Cardiometabolic effects of a novel SIRT1 activator, SRT2104, in people with type 2 diabetes mellitus. Open Heart 2017; 4:e000647. [PMID: 28912956 PMCID: PMC5588958 DOI: 10.1136/openhrt-2017-000647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 01/04/2023] Open
Abstract
Background The cardiometabolic effects of SRT2104, a novel SIRT1 activator, were investigated in people with type 2 diabetes mellitus (T2DM). Methods Fifteen adults with T2DM underwent a randomised, double-blind, placebo-controlled cross-over trial and received 28 days of oral SRT2104 (2.0 g/day) or placebo. Forearm vasodilatation (measured during intrabrachial bradykinin, acetylcholine and sodium nitroprusside infusions) as well as markers of glycaemic control, lipid profile, plasma fibrinolytic factors, and markers of platelet-monocyte activation, were measured at baseline and at the end of each treatment period. Results Lipid profile and platelet-monocyte activation were similar in both treatment arms (p>0.05 for all). Forearm vasodilatation was similar on exposure to acetylcholine and sodium nitroprusside (p>0.05, respectively). Bradykinin-induced vasodilatation was less during treatment with SRT2104 versus placebo (7.753vs9.044, respectively, mean difference=−1.291,(95% CI −2.296 to −0.285, p=0.012)). Estimated net plasminogen activator inhibitor type 1 antigen release was reduced in the SRT2104 arm versus placebo (mean difference=−38.89 ng/100 mL tissue/min, (95% CI −75.47, to –2.305, p=0.038)). There were no differences in other plasma fibrinolytic factors (p>0.05 for all). After 28 days, SRT2104 exposure was associated with weight reduction (−0.93 kg (95% CI −1.72 to −0.15), p=0.0236), and a rise in glycated haemoglobin (5 mmol/mol or 0.48% (0.26 to 0.70), p=0.004) Conclusions In people with T2DM, SRT2104 had inconsistent, predominantly neutral effects on endothelial and fibrinolytic function, and no discernible effect on lipids or platelet function. In contrast, weight loss was induced along with deterioration in glycaemic control, suggestive of potentially important metabolic effects. Clinical trial registration NCT01031108; Results.
Collapse
Affiliation(s)
- Radzi M Noh
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | - Jeremy Langrish
- Department of Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Nicholas L Mills
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Ninian N Lang
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Ethan Hoffmann
- Research and Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Brian Waterhouse
- Research and Development, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - David E Newby
- Division of Health Sciences, Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, Edinburgh, UK
| | - Brian M Frier
- Department of Diabetes, Royal Infirmary Edinburgh, NHS Lothian, Edinburgh, UK
| |
Collapse
|
44
|
Attenuation of Multiple Organ Damage by Continuous Low-Dose Solvent-Free Infusions of Resveratrol after Severe Hemorrhagic Shock in Rats. Nutrients 2017; 9:nu9080889. [PMID: 28817064 PMCID: PMC5579682 DOI: 10.3390/nu9080889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 01/05/2023] Open
Abstract
Therapeutic effects of continuous intravenous infusions of solvent-free low doses of resveratrol on organ injury and systemic consequences resulting from severe hemorrhagic shock in rats were studied. Hemorrhagic shock was induced by withdrawing arterial blood until a mean arterial blood pressure (MAP) of 25-30 mmHg was reached. Following a shock phase of 60 min, rats were resuscitated with the withdrawn blood plus lactated Ringer's. Resveratrol (20 or 60 μg/kg × h) was continuously infused intravenously starting with the resuscitation phase (30 min) and continued until the end of the experiment (total treatment time 180 min). Animals of the shock control group received 0.9% NaCl solution. After the observation phase (150 min), rats were sacrificed. Resveratrol significantly stabilized the MAP and peripheral oxygen saturation after hemorrhagic shock, decreased the macroscopic injury of the small intestine, significantly attenuated the shock-induced increase in tissue myeloperoxidase activity in the small intestine, liver, kidney and lung, and diminished tissue hemorrhages (particularly in the small intestine and liver) as well as the rate of hemolysis. Already very low doses of resveratrol, continuously infused during resuscitation after severe hemorrhagic shock, can significantly improve impaired systemic parameters and attenuate multiple organ damage in rats.
Collapse
|
45
|
Potential mechanisms linking SIRT activity and hypoxic 2-hydroxyglutarate generation: no role for direct enzyme (de)acetylation. Biochem J 2017; 474:2829-2839. [PMID: 28673962 DOI: 10.1042/bcj20170389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 01/11/2023]
Abstract
2-Hydroxyglutarate (2-HG) is a hypoxic metabolite with potentially important epigenetic signaling roles. The mechanisms underlying 2-HG generation are poorly understood, but evidence suggests a potential regulatory role for the sirtuin family of lysine deacetylases. Thus, we hypothesized that the acetylation status of the major 2-HG-generating enzymes [lactate dehydrogenase (LDH), isocitrate dehydrogenase (IDH) and malate dehydrogenase (MDH)] may govern their 2-HG-generating activity. In vitro acetylation of these enzymes, with confirmation by western blotting, mass spectrometry, reversibility by recombinant sirtuins and an assay for global lysine occupancy, yielded no effect on 2-HG-generating activity. In addition, while elevated 2-HG in hypoxia is associated with the activation of lysine deacetylases, we found that mice lacking mitochondrial SIRT3 exhibited hyperacetylation and elevated 2-HG. These data suggest that there is no direct link between enzyme acetylation and 2-HG production. Furthermore, our observed effects of in vitro acetylation on the canonical activities of IDH, MDH and LDH appeared to contrast with previous findings wherein acetyl-mimetic lysine mutations resulted in the inhibition of these enzymes. Overall, these data suggest that a causal relationship should not be assumed between acetylation of metabolic enzymes and their activities, canonical or otherwise.
Collapse
|
46
|
Abstract
Epidemiological studies have shown that ageing is a major non-reversible risk factor for cardiovascular disease. Vascular ageing starts early in life and is characterized by a gradual change of vascular structure and function resulting in increased arterial stiffening. At the present review we discuss the role of the most important molecular pathways involved in vascular ageing, their association with arterial stiffening and possible novel therapeutic targets that may delay this otherwise irreversible degenerating process. Specifically, we discuss the role of oxidative stress, telomere shortening, and ubiquitin proteasome system in endothelial cell senescence and dysfunction in vascular inflammation and in arterial stiffening. Further, we summarize the most important molecular mechanisms regulating vascular ageing including sirtuin 1, telomerase, klotho, JunD, and amyloid beta 1-40 peptide.
Collapse
Affiliation(s)
- Ageliki Laina
- Department of Clinical Therapeutics, Alexandra Hospital, University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany; German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, University of Athens, Athens, Greece.
| |
Collapse
|
47
|
Akhmedov A, Camici GG, Reiner MF, Bonetti NR, Costantino S, Holy EW, Spescha RD, Stivala S, Schaub Clerigué A, Speer T, Breitenstein A, Manz J, Lohmann C, Paneni F, Beer JH, Lüscher TF. Endothelial LOX-1 activation differentially regulates arterial thrombus formation depending on oxLDL levels: role of the Oct-1/SIRT1 and ERK1/2 pathways. Cardiovasc Res 2017; 113:498-507. [DOI: 10.1093/cvr/cvx015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
|
48
|
Sirtuins Expression and Their Role in Retinal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3187594. [PMID: 28197299 PMCID: PMC5288547 DOI: 10.1155/2017/3187594] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023]
Abstract
Sirtuins have received considerable attention since the discovery that silent information regulator 2 (Sir2) extends the lifespan of yeast. Sir2, a nicotinamide adenine dinucleotide- (NAD-) dependent histone deacetylase, serves as both a transcriptional effector and energy sensor. Oxidative stress and apoptosis are implicated in the pathogenesis of neurodegenerative eye diseases. Sirtuins confer protection against oxidative stress and retinal degeneration. In mammals, the sirtuin (SIRT) family consists of seven proteins (SIRT1–SIRT7). These vary in tissue specificity, subcellular localization, and enzymatic activity and targets. In this review, we present the current knowledge of the sirtuin family and discuss their structure, cellular location, and biological function with a primary focus on their role in different neuroophthalmic diseases including glaucoma, optic neuritis, and age-related macular degeneration. The potential role of certain therapeutic targets is also described.
Collapse
|
49
|
Ji L, Liu Y, Zhang Y, Chang W, Gong J, Wei S, Li X, Qin L. The antioxidant edaravone prevents cardiac dysfunction by suppressing oxidative stress in type 1 diabetic rats and in high-glucose-induced injured H9c2 cardiomyoblasts. Can J Physiol Pharmacol 2016; 94:996-1006. [PMID: 27376621 DOI: 10.1139/cjpp-2015-0587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Edaravone, a radical scavenger, has been recognized as a potential protective agent for cardiovascular diseases. However, little is known about the effect of edaravone in cardiac complications associated with diabetes. Here, we have demonstrated that edaravone prevents cardiac dysfunction and apoptosis in the streptozotocin-induced type 1 diabetic rat heart. Mechanistic studies revealed that edaravone treatment improved cardiac function and restored superoxide dismutase levels. In addition, treatment of diabetic animals by edaravone increased protein expressions of sirtuin-1 (SIRT-1), peroxisome proliferator activated receptor γ coactivator α (PGC-1α), nuclear factor like-2 (NRF-2), and B cell lymphoma 2 (Bcl-2), and reduced protein expressions of Bax and Caspase-3 compared to the control group. High glucose incubation resulted in the production of reactive oxygen species (ROS) and cell death. Treatment of high-glucose-incubated H9c2 cells by edaravone reduced ROS production and cell death. In addition, the treatment of high-glucose-incubated H9c2 cells by edaravone increased the activity of antioxidative stress by increasing SIRT-1, PGC-1α, and NRF-2, and this treatment also reduced apoptosis by increasing Bcl-2 expression and reducing Bax and Caspase-3 expressions. Knockdown SIRT-1 with small interferer RNA abolished the effects of edaravone. Overall, our data demonstrated that edaravone may be an effective agent against the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lei Ji
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China
- Department of Cardiology, Changchun Central Hospital, Changchun 130051, China
| | - Yingying Liu
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Ying Zhang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, China
| | - Wenguang Chang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Junli Gong
- Department of Cardiology, Changchun Central Hospital, Changchun 130051, China
| | - Shengnan Wei
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xudong Li
- Department of Cardiology, Changchun Central Hospital, Changchun 130051, China
| | - Ling Qin
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
50
|
Park EJ, Kim YM, Kim HJ, Jang SY, Oh MH, Lee DH, Chang KC. (S)YS-51, a novel isoquinoline alkaloid, attenuates obesity-associated non-alcoholic fatty liver disease in mice by suppressing lipogenesis, inflammation and coagulation. Eur J Pharmacol 2016; 788:200-209. [PMID: 27343380 DOI: 10.1016/j.ejphar.2016.06.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 02/06/2023]
Abstract
Obesity-associated non-alcoholic fatty liver disease (NAFLD) increases coagulation and inflammation. We hypothesized that (S)YS-51, an agent found to be beneficial in animal models of sepsis, may reduce NAFLD in high-fat diet (HFD) mice by reducing coagulation and inflammation. C57BL/6 mice were fed either a chow diet or HFD and each was supplemented with or without (S)YS-51 (10mg/kg, daily, i.p.) for 16 weeks. The results showed that HFD caused significant increases in lipogenesis [CD36, fatty acid synthase (FAS) and sterol response element binding protein (SREBP)-1c mRNA and protein], inflammation [monocyte chemotactic protein (MCP)-1, tumor necrosis factor (TNF)-α, intercellular cell adhesion molecule-1 (ICAM-1), TGF-β, and procollagen type 1 mRNA, macrophage infiltration] and coagulation [tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) mRNA and thrombin antithrombin complex (TAT)] in the liver, adipose tissue and serum, which were significantly reduced by (S)YS-51. These results of (S)YS-51 were accompanied by significant reduction of weight gain, liver size, hepatic steatosis and fibrosis, blood cholesterol, hepatic triglyceride, and macrophage infiltration and inflammatory cytokines in adipose tissue without affecting food intake in HFD mice. Interestingly, (S)YS-51 increased SIRT1 mRNA and protein and AMPK expression in the liver of HFD mice by increasing both NAD(+)/NADH ratio and LKB1 phosphorylation. In HepG2 cells, (S)YS-51 activated SIRT1 followed by AMPK. Finally, (S)YS-51 improved glucose tolerance and insulin resistance in HFD mice. We concluded that (S)YS-51 attenuates NAFLD and insulin resistance in HFD mice by, at least, activation of SIRT1/AMPK signals. Thus, (S)YS-51 may be beneficial in NAFLD treatment.
Collapse
Affiliation(s)
- Eun Jung Park
- Department of Pharmacology and Institute of Health Sciences, School of Medicine Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 PLUS program), Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Young Min Kim
- Department of Pharmacology and Institute of Health Sciences, School of Medicine Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology and Institute of Health Sciences, School of Medicine Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 PLUS program), Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Se-Yun Jang
- Department of Chemistry, School of Natural Sciences, Sogang University, Seoul 121-742, Republic of Korea
| | - Moo Hyun Oh
- Department of Chemistry, School of Natural Sciences, Sogang University, Seoul 121-742, Republic of Korea
| | - Duck-Hyung Lee
- Department of Chemistry, School of Natural Sciences, Sogang University, Seoul 121-742, Republic of Korea.
| | - Ki Churl Chang
- Department of Pharmacology and Institute of Health Sciences, School of Medicine Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 PLUS program), Gyeongsang National University, Jinju 660-751, Republic of Korea.
| |
Collapse
|