1
|
Lin Y, Zheng L, Bogdanov M. Advanced Method for the In Vivo Measurements of Lysophospholipid Translocation Across the Inner (Cytoplasmic) Membrane of Escherichia coli. Methods Mol Biol 2025; 2888:147-165. [PMID: 39699730 DOI: 10.1007/978-1-0716-4318-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Phospholipid translocation occurs ubiquitously in biological membranes and primarily is protein catalyzed. Lipid flippases mediate the net translocation of specific phospholipids from one leaflet of a membrane to the other. In the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria, lysophospholipid translocase (LplT) and cytosolic bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase (Aas) form a glycerophospholipid regeneration system, which is capable of facilitating rapid retrograde translocation of lyso forms of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) but not exogenous (host-derived) phosphatidylcholine (PC) across the IM of Gram-negative diderm (two-membraned) bacteria in consequential order lyso-PE = lyso-PG > > lysophosphatidic acid (lyso-PA) >> lyso-PC. Although several flippases that bind and move non-glycerophosphatidyl lipids across the IM are characterized in Gram-negative bacteria, LplT appears to be the first example of a bacterial protein capable of facilitating the rapid translocation of monoacylated glycerophospholipids. On the cytoplasmic surface, Aas restores the lysophospholipids to their diacyl forms with comparable efficiency but excludes any exogenous monoacylated lipid species. This coupled remodeling enzyme tandem provides an effective means to examine substrate specificity of lipid regeneration and lysophospholipid transport per se across the membrane. The current chapter describes two distinct but complementary methods for the measurement of lysophospholipid transport across membranes using Escherichia coli spheroplasts.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
2
|
Zhu J, Chen J, Chen J, Zou Y, Ye Z, Wei T, Lin J, Zheng Q. The fermentation of Cordyceps militaris polysaccharide influenced gut bacterial LPS structure formation and changed its antigenicity. J Food Sci 2024. [PMID: 39731716 DOI: 10.1111/1750-3841.17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024]
Abstract
Gut bacterial lipopolysaccharide (LPS) could be released into the circulatory system via the gut-liver axis and cause inflammatory immune response, while Cordyceps militaris polysaccharide (CMP40) has been reported to be effective in alleviating this inflammatory response. In this study, the effects of CMP40 gut fermentation on internal LPS structure formation and the subsequent immune response were explored. Results showed that CMP40 could change antigenicity of LPS of Vibrio parahaemolyticus, Salmonella enterica, and enterotoxigenic Escherichia coli, indicated by a reduced level of NO, IL-1β, IL-6, and TNF-α. The LPS structure of these three strains were further elucidated. ESI/MS results revealed that CMP40 fermentation could alter the LPS structure by removing phosphate group from a single Kdo sugar or removing additional sided fatty acid chain. The gene expressions of enzymes that are responsible for group transfer further confirmed this structure modification process. This study focused on the regulation of polysaccharide on gut bacteria LPS and provided a new insight into health effect of CMP40.
Collapse
Affiliation(s)
- Jiahui Zhu
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
| | - Jieming Chen
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
| | - Jiafeng Chen
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
| | - Yuan Zou
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
| | - Zhiwei Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
| | - Junfang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
| | - Qianwang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Tan WB, Chng SS. How Bacteria Establish and Maintain Outer Membrane Lipid Asymmetry. Annu Rev Microbiol 2024; 78:553-573. [PMID: 39270665 DOI: 10.1146/annurev-micro-032521-014507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Gram-negative bacteria build an asymmetric outer membrane (OM), with lipopolysaccharides (LPS) and phospholipids (PLs) occupying the outer and inner leaflets, respectively. This distinct lipid arrangement is widely conserved within the Bacteria domain and confers strong protection against physical and chemical insults. The OM is physically separated from the inner membrane and the cytoplasm, where most cellular resources are located; therefore, the cell faces unique challenges in the assembly and maintenance of this asymmetric bilayer. Here, we present a framework for how gram-negative bacteria initially establish and continuously maintain OM lipid asymmetry, discussing the state-of-the-art knowledge of specialized lipid transport machines that place LPS and PLs directly into their corresponding leaflets in the OM, prevent excess PL accumulation and mislocalization, and correct any lipid asymmetry defects. We critically assess current studies, or the lack thereof, and highlight important future directions for research on OM lipid transport, homeostasis, and asymmetry.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| | - Shu-Sin Chng
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| |
Collapse
|
4
|
Zhu D, Zhang Y, Wang Z, Dai J, Zhuge X. Exploiting membrane vesicles derived from avian pathogenic Escherichia coli as a cross-protective subunit vaccine candidate against avian colibacillosis. Poult Sci 2024; 103:104148. [PMID: 39142031 PMCID: PMC11379662 DOI: 10.1016/j.psj.2024.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/06/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a notable pathogen that frequently leads to avian colibacillosis, posing a substantial risk to both the poultry industry and public health. The commercial vaccines against avian colibacillosis are primarily inactivated vaccines, but their effectiveness is limited to specific serotypes. Recent advances have highlighted bacterial membrane vesicles (MV) as a promising candidate in vaccine research. How to produce bacterial MVs vaccines on a large scale is a significant challenge for the industrialization of MVs. The msbB gene encodes an acyltransferase and has been implicated in altering the acylation pattern of lipid A, leading to a decrease in lipid A content in lipopolysaccharides (LPS). Here, we evaluated the immunoprotective efficacy of MVs derived from the LPS low-expressed APEC strain FY26ΔmsbB, which was an APEC mutant strain with a deletion of the msbB gene. The nitrogen cavitation technique was employed to extract APEC MVs, with results indicating a significant increase in MVs yield compared to that obtained under natural culture. The immunization effectiveness was assessed, revealing that FY26ΔmsbB MVs elicited an antibody response of laying hens and facilitated bacterial clearance. Protective efficacy studies demonstrated that immunization with FY26ΔmsbB MVs conferred the immune protection in chickens challenged with the wild-type APEC strain FY26. Notably, LPS low-carried MVs recovered from the mutant FY26ΔmsbB also displayed cross-protective capabilities, and effectively safeguarding against infections caused by O1, O7, O45, O78, and O101 serotypes virulent APEC strains. These findings suggest that MVs generated from the LPS low-expressed APEC strain FY26ΔmsbB represent a novel and empirically validated subunit vaccine for the prevention and control of infections by various APEC serotypes.
Collapse
Affiliation(s)
- Dongyu Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Zhongxing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
5
|
Gartly SC, Barretto LAF, Côté ACMT, Kosowan ZA, Fowler CC. A novel phospholipase A2 is a core component of the typhoid toxin genetic islet. J Biol Chem 2024; 300:107758. [PMID: 39260696 PMCID: PMC11525133 DOI: 10.1016/j.jbc.2024.107758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Salmonella Typhi, the cause of typhoid fever, is a bacterial pathogen of substantial global importance. Typhoid toxin is a secreted AB-type toxin that is a key S. Typhi virulence factor encoded within a 5-gene genetic islet. Four genes in this islet have well-defined roles in typhoid toxin biology; however, the function of the fifth gene is unknown. Here, we investigate the function of this gene, which we name ttaP. We show that ttaP is cotranscribed with the typhoid toxin subunit cdtB, and we perform genomic analyses that indicate that TtaP is very highly conserved in typhoid toxin islets found in diverse salmonellae. We show that TtaP is a distant homolog of group XIV secreted phospholipase A2 (PLA2) enzymes, and experimentally demonstrate that TtaP is a bona fide PLA2. Sequence and structural analyses indicate that TtaP differs substantially from characterized PLA2s, and thus represents a novel class of PLA2. Secretion assays revealed that TtaP is neither cosecreted with typhoid toxin, nor is it required for toxin secretion. Although TtaP is a phospholipase that remains associated with the S. Typhi cell, assays that probed for altered cell envelope integrity failed to identify any differences between WT S. Typhi and a ttaP deletion strain. Collectively, this study identifies a biochemical activity for the lone uncharacterized typhoid toxin islet gene and lays the groundwork for exploring how this gene factors into S. Typhi pathogenesis. This study further identifies a novel class of PLA2, enzymes that have a wide range of industrial applications.
Collapse
Affiliation(s)
- Sarah C Gartly
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Luke A F Barretto
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Zach A Kosowan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Casey C Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
6
|
Fathy Mohamed Y, Fernandez RC. Programming Bordetella pertussis lipid A to promote adjuvanticity. Microb Cell Fact 2024; 23:250. [PMID: 39272136 PMCID: PMC11401268 DOI: 10.1186/s12934-024-02518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Bordetella pertussis is the causative agent of whooping cough or pertussis. Although both acellular (aP) and whole-cell pertussis (wP) vaccines protect against disease, the wP vaccine, which is highly reactogenic, is better at preventing colonization and transmission. Reactogenicity is mainly attributed to the lipid A moiety of B. pertussis lipooligosaccharide (LOS). Within LOS, lipid A acts as a hydrophobic anchor, engaging with TLR4-MD2 on host immune cells to initiate both MyD88-dependent and TRIF-dependent pathways, thereby influencing adaptive immune responses. Lipid A variants, such as monophosphoryl lipid A (MPLA) can also act as adjuvants. Adjuvants may overcome the shortcomings of aP vaccines. RESULTS This work used lipid A modifying enzymes from other bacteria to produce an MPLA-like adjuvant strain in B. pertussis. We created B. pertussis strains with distinct lipid A modifications, which were validated using MALDI-TOF. We engineered a hexa-acylated monophosphorylated lipid A that markedly decreased human TLR4 activation and activated the TRIF pathway. The modified lipooligosaccharide (LOS) promoted IRF3 phosphorylation and type I interferon production, similar to MPLA responses. We generated three other variants with increased adjuvanticity properties and reduced endotoxicity. Pyrogenicity studies using the Monocyte Activation Test (MAT) revealed that these four lipid A variants significantly decreased the IL-6, a marker for fever, response in peripheral blood mononuclear cells (PBMCs). CONCLUSION These findings pave the way for developing wP vaccines that are possibly less reactogenic and designing adaptable adjuvants for current vaccine formulations, advancing more effective immunization strategies against pertussis.
Collapse
Affiliation(s)
- Yasmine Fathy Mohamed
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
- Department of Microbiology & Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Rachel C Fernandez
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada.
| |
Collapse
|
7
|
Niu W, Vu T, Du G, Bogdanov M, Zheng L. Lysophospholipid remodeling mediated by the LplT and Aas protein complex in the bacterial envelope. J Biol Chem 2024; 300:107704. [PMID: 39173951 PMCID: PMC11416262 DOI: 10.1016/j.jbc.2024.107704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Lysophospholipid transporter LplT and acyltransferase Aas consist of a lysophospholipid-remodeling system ubiquitously found in gram-negative microorganisms. LplT flips lysophospholipid across the inner membrane which is subsequently acylated by Aas on the cytoplasmic membrane surface. Our previous study showed that the proper functioning of this system is important to protecting Escherichia coli from phospholipase-mediated host attack by maintaining the integrity of the bacterial cell envelope. However, the working mechanism of this system is still unclear. Herein, we report that LplT and Aas form a membrane protein complex in E. coli which allows these two enzymes to cooperate efficiently to move lysophospholipids across the bacterial membrane and catalyze their acylation. The direct interaction of LplT and Aas was demonstrated both in vivo and in vitro with a binding affinity of 2.3 μM. We found that a cytoplasmic loop of LplT adjacent to the exit of the substrate translocation pathway plays an important role in maintaining its interaction with Aas. Aas contains an acyl-acyl carrier protein synthase domain and an acyl-transferase domain. Its interaction with LplT is mediated exclusively by its transferase domain. Mutations within the three loops near the putative catalytic site of the transferase domain, respectively, disrupt its interaction with LplT and lysophospholipid acylation activity. These results support a hypothesis of the functional coupling mechanism, in which LplT directly interacts with the transferase domain of Aas for specific substrate membrane migration, providing synchronization of substrate translocation and biosynthetic events.
Collapse
Affiliation(s)
- Wei Niu
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Trung Vu
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
8
|
Dehinwal R, Gopinath T, Smith RD, Ernst RK, Schifferli DM, Waldor MK, Marassi FM. A pH-sensitive motif in an outer membrane protein activates bacterial membrane vesicle production. Nat Commun 2024; 15:6958. [PMID: 39138228 PMCID: PMC11322160 DOI: 10.1038/s41467-024-51364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have key roles in cell envelope homeostasis, secretion, interbacterial communication, and pathogenesis. The facultative intracellular pathogen Salmonella Typhimurium increases OMV production inside the acidic vacuoles of host cells by changing expression of its outer membrane proteins and modifying the composition of lipid A. However, the molecular mechanisms that translate pH changes into OMV production are not completely understood. Here, we show that the outer membrane protein PagC promotes OMV production through pH-dependent interactions between its extracellular loops and surrounding lipopolysaccharide (LPS). Structural comparisons and mutational studies indicate that a pH-responsive amino acid motif in PagC extracellular loops, containing PagC-specific histidine residues, is crucial for OMV formation. Molecular dynamics simulations suggest that protonation of histidine residues leads to changes in the structure and flexibility of PagC extracellular loops and their interactions with the surrounding LPS, altering membrane curvature. Consistent with that hypothesis, mimicking acidic pH by mutating those histidine residues to lysine increases OMV production. Thus, our findings reveal a mechanism for sensing and responding to environmental pH and for control of membrane dynamics by outer membrane proteins.
Collapse
Affiliation(s)
- Ruchika Dehinwal
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, USA
- Department of Microbiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - Tata Gopinath
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Dieter M Schifferli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, USA.
- Department of Microbiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| | | |
Collapse
|
9
|
Shen X, Yang YB, Gao Y, Wang S, Wang H, Sun M, Meng F, Tang YD, Tu Y, Kong Q, An TQ, Cai XH. Lipid A-modified Escherichia coli can produce porcine parvovirus virus-like particles with high immunogenicity and minimal endotoxin activity. Microb Cell Fact 2024; 23:222. [PMID: 39118114 PMCID: PMC11308658 DOI: 10.1186/s12934-024-02497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND A cost-effective Escherichia coli expression system has gained popularity for producing virus-like particle (VLP) vaccines. However, the challenge lies in balancing the endotoxin residue and removal costs, as residual endotoxins can cause inflammatory reactions in the body. RESULTS In this study, porcine parvovirus virus-like particles (PPV-VLPs) were successfully assembled from Decreased Endotoxic BL21 (BL21-DeE), and the effect of structural changes in the lipid A of BL21 on endotoxin activity, immunogenicity, and safety was investigated. The lipopolysaccharide purified from BL21-DeE produced lower IL-6 and TNF-α than that from wild-type BL21 (BL21-W) in both RAW264.7 cells and BALB/c mice. Additionally, mice immunized with PPV-VLP derived form BL21-DeE (BL21-DeE-VLP) showed significantly lower production of inflammatory factors and a smaller increase in body temperature within 3 h than those immunized with VLP from BL21-W (BL21-W-VLP) and endotoxin-removed VLP (ReE-VLP). Moreover, mice in the BL21-DeE-VLP immunized group had similar levels of serum antibodies as those in the BL21-W-VLP group but significantly higher levels than those in the ReE-VLP group. Furthermore, the liver, lungs, and kidneys showed no pathological damage compared with the BL21-W-VLP group. CONCLUSION Overall, this study proposes a method for producing VLP with high immunogenicity and minimal endotoxin activity without chemical or physical endotoxin removal methods. This method could address the issue of endotoxin residues in the VLP and provide production benefits.
Collapse
Affiliation(s)
- Xuegang Shen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Yong-Bo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
- Heilongjiang Veterinary Biopharmaceutical Engineering Technology Research Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yanfei Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Mingxia Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Fandan Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Yabin Tu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China.
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China.
- Heilongjiang Veterinary Biopharmaceutical Engineering Technology Research Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
10
|
Maybin M, Ranade AM, Schombel U, Gisch N, Mamat U, Meredith TC. IS 1-mediated chromosomal amplification of the arn operon leads to polymyxin B resistance in Escherichia coli B strains. mBio 2024; 15:e0063424. [PMID: 38904391 PMCID: PMC11253626 DOI: 10.1128/mbio.00634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Polymyxins [colistin and polymyxin B (PMB)] comprise an important class of natural product lipopeptide antibiotics used to treat multidrug-resistant Gram-negative bacterial infections. These positively charged lipopeptides interact with lipopolysaccharide (LPS) located in the outer membrane and disrupt the permeability barrier, leading to increased uptake and bacterial cell death. Many bacteria counter polymyxins by upregulating genes involved in the biosynthesis and transfer of amine-containing moieties to increase positively charged residues on LPS. Although 4-deoxy-l-aminoarabinose (Ara4N) and phosphoethanolamine (PEtN) are highly conserved LPS modifications in Escherichia coli, different lineages exhibit variable PMB susceptibilities and frequencies of resistance for reasons that are poorly understood. Herein, we describe a mechanism prevalent in E. coli B strains that depends on specific insertion sequence 1 (IS1) elements that flank genes involved in the biosynthesis and transfer of Ara4N to LPS. Spontaneous and transient chromosomal amplifications mediated by IS1 raise the frequency of PMB resistance by 10- to 100-fold in comparison to strains where a single IS1 element located 90 kb away from the end of the arn operon has been deleted. Amplification involving IS1 becomes the dominant resistance mechanism in the absence of PEtN modification. Isolates with amplified arn operons gradually lose their PMB-resistant phenotype with passaging, consistent with classical PMB heteroresistance behavior. Analysis of the whole genome transcriptome profile showed altered expression of genes residing both within and outside of the duplicated chromosomal segment, suggesting complex phenotypes including PMB resistance can result from tandem amplification events.IMPORTANCEPhenotypic variation in susceptibility and the emergence of resistant subpopulations are major challenges to the clinical use of polymyxins. While a large database of genes and alleles that can confer polymyxin resistance has been compiled, this report demonstrates that the chromosomal insertion sequence (IS) content and distribution warrant consideration as well. Amplification of large chromosomal segments containing the arn operon by IS1 increases the Ara4N content of the lipopolysaccharide layer in Escherichia coli B lineages using a mechanism that is orthogonal to transcriptional upregulation through two-component regulatory systems. Altogether, our work highlights the importance of IS elements in modulating gene expression and generating diverse subpopulations that can contribute to phenotypic polymyxin B heteroresistance.
Collapse
Affiliation(s)
- Michael Maybin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Aditi M. Ranade
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ursula Schombel
- Division of Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Uwe Mamat
- Division of Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Leibniz Research Alliance INFECTIONS, Borstel, Germany
| | - Timothy C. Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Kaur M, Mingeot-Leclercq MP. Maintenance of bacterial outer membrane lipid asymmetry: insight into MlaA. BMC Microbiol 2024; 24:186. [PMID: 38802775 PMCID: PMC11131202 DOI: 10.1186/s12866-023-03138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 05/29/2024] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier to protect against toxic compounds. By nature, the OM is asymmetric with the highly packed lipopolysaccharide (LPS) at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla system, in which is responsible for the retrograde transport of glycerophospholipids from the OM to the inner membrane. This system is comprised of six Mla proteins, including MlaA, an OM lipoprotein involved in the removal of glycerophospholipids that are mis-localized at the outer leaflet of the OM. Interestingly, MlaA was initially identified - and called VacJ - based on its role in the intracellular spreading of Shigella flexneri.Many open questions remain with respect to the Mla system and the mechanism involved in the translocation of mislocated glycerophospholipids at the outer leaflet of the OM, by MlaA. After summarizing the current knowledge on MlaA, we focus on the impact of mlaA deletion on OM lipid composition and biophysical properties of the OM. How changes in OM lipid composition and biophysical properties can impact the generation of membrane vesicles and membrane permeability is discussed. Finally, we explore whether and how MlaA might be a candidate for improving the activity of antibiotics and as a vaccine candidate.Efforts dedicated to understanding the relationship between the OM lipid composition and the mechanical strength of the bacterial envelope and, in turn, how such properties act against external stress, are needed for the design of new targets or drugs for Gram-negative infections.
Collapse
Affiliation(s)
- M Kaur
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium
| | - M-P Mingeot-Leclercq
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium.
| |
Collapse
|
12
|
Ong LL, Jan HM, Le HHT, Yang TC, Kuo CY, Feng AF, Mong KKT, Lin CH. Membrane lipid remodeling eradicates Helicobacter pylori by manipulating the cholesteryl 6'-acylglucoside biosynthesis. J Biomed Sci 2024; 31:44. [PMID: 38685037 PMCID: PMC11057186 DOI: 10.1186/s12929-024-01031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Helicobacter pylori, the main cause of various gastric diseases, infects approximately half of the human population. This pathogen is auxotrophic for cholesterol which it converts to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl α-glucoside (CAG). Since the related biosynthetic enzymes can be translocated to the host cells, the acyl chain of CAG likely comes from its precursor phosphatidylethanolamine (PE) in the host membranes. This work aims at examining how the acyl chain of CAG and PE inhibits the membrane functions, especially bacterial adhesion. METHODS Eleven CAGs that differ in acyl chains were used to study the membrane properties of human gastric adenocarcinoma cells (AGS cells), including lipid rafts clustering (monitored by immunofluorescence with confocal microscopy) and lateral membrane fluidity (by the fluorescence recovery after photobleaching). Cell-based and mouse models were employed to study the degree of bacterial adhesion, the analyses of which were conducted by using flow cytometry and immunofluorescence staining, respectively. The lipidomes of H. pylori, AGS cells and H. pylori-AGS co-cultures were analyzed by Ultraperformance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) to examine the effect of PE(10:0)2, PE(18:0)2, PE(18:3)2, or PE(22:6)2 treatments. RESULTS CAG10:0, CAG18:3 and CAG22:6 were found to cause the most adverse effect on the bacterial adhesion. Further LC-MS analysis indicated that the treatment of PE(10:0)2 resulted in dual effects to inhibit the bacterial adhesion, including the generation of CAG10:0 and significant changes in the membrane compositions. The initial (1 h) lipidome changes involved in the incorporation of 10:0 acyl chains into dihydro- and phytosphingosine derivatives and ceramides. In contrast, after 16 h, glycerophospholipids displayed obvious increase in their very long chain fatty acids, monounsaturated and polyunsaturated fatty acids that are considered to enhance membrane fluidity. CONCLUSIONS The PE(10:0)2 treatment significantly reduced bacterial adhesion in both AGS cells and mouse models. Our approach of membrane remodeling has thus shown great promise as a new anti-H. pylori therapy.
Collapse
Affiliation(s)
- Lih-Lih Ong
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001, University Road, Eastern District, Hsinchu, 300093, Taiwan
- Institute of Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hong-Hanh Thi Le
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Tsai-Chen Yang
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Chou-Yu Kuo
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Ai-Feng Feng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001, University Road, Eastern District, Hsinchu, 300093, Taiwan
| | - Kwok-Kong Tony Mong
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001, University Road, Eastern District, Hsinchu, 300093, Taiwan.
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.
- Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
13
|
Möller AM, Vázquez-Hernández M, Kutscher B, Brysch R, Brückner S, Marino EC, Kleetz J, Senges CHR, Schäkermann S, Bandow JE, Narberhaus F. Common and varied molecular responses of Escherichia coli to five different inhibitors of the lipopolysaccharide biosynthetic enzyme LpxC. J Biol Chem 2024; 300:107143. [PMID: 38458396 PMCID: PMC10998244 DOI: 10.1016/j.jbc.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E. coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E. coli to vancomycin and rifampin, which poorly cross the outer membrane of intact cells. Four of the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E. coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Anna-Maria Möller
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Blanka Kutscher
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Raffael Brysch
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Simon Brückner
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Emily C Marino
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia Kleetz
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christoph H R Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
14
|
Dunstan RA, Hay ID, Lithgow T. Defining Membrane Protein Localization by Isopycnic Density Gradients. Methods Mol Biol 2024; 2715:91-98. [PMID: 37930523 DOI: 10.1007/978-1-0716-3445-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Bacterial membrane proteins account for around one-third of the proteome in many species and can represent much more than half of the mass of the membranes. Classic techniques in cell biology can be applied to characterize bacterial membranes and their membrane protein constituents, and here we describe a protocol for the purification of outer membranes and inner membranes from Escherichia coli. This allows for compositional analysis of the membranes as well as functional analyses. The procedure can be applied with minor modifications to other bacterial species including those carrying capsular polysaccharide attached to the outer membrane.
Collapse
Affiliation(s)
- Rhys A Dunstan
- Centre to Impact AMR, Monash University, Melbourne, VIC, Australia
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Iain D Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, VIC, Australia.
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics, due in large part to the permeability barrier formed by their cell envelope. The complex and synergistic interplay of the two Gram-negative membranes and active efflux prevents the accumulation of a diverse range of compounds that are effective against Gram-positive bacteria. A lack of detailed information on how components of the cell envelope contribute to this has been identified as a key barrier to the rational development of new antibiotics with efficacy against Gram-negative species. This review describes the current understanding of the role of the different components of the Gram-negative cell envelope in preventing compound accumulation and the state of efforts to describe properties that allow compounds to overcome this barrier and apply them to the development of new broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Claire Maher
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Karl A. Hassan
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
16
|
Hussein M, Allobawi R, Zhao J, Yu H, Neville SL, Wilksch J, Wong LJM, Baker M, McDevitt CA, Rao GG, Li J, Velkov T. Integrated Transcriptomic and Metabolomic Mapping Reveals the Mechanism of Action of Ceftazidime/Avibactam against Pan-Drug-Resistant Klebsiella pneumoniae. ACS Infect Dis 2023; 9:2409-2422. [PMID: 37878861 PMCID: PMC10714405 DOI: 10.1021/acsinfecdis.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Here, we employed an integrated metabolomics and transcriptomics approach to investigate the molecular mechanism(s) of action of ceftazidime/avibactam against a pan-drug-resistant K. pneumoniae clinical isolate from a patient with urinary tract infection. Ceftazidime/avibactam induced time-dependent perturbations in the metabolome and transcriptome of the bacterium, mainly at 6 h, with minimal effects at 1 and 3 h. Metabolomics analysis revealed a notable reduction in essential lipids involved in outer membrane glycerolipid biogenesis. This disruption effect extended to peptidoglycan and lipopolysaccharide biosynthetic pathways, including lipid A and O-antigen assembly. Importantly, ceftazidime/avibactam not only affected the final steps of peptidoglycan biosynthesis in the periplasm, a common mechanism of ceftazidime action, but also influenced the synthesis of lipid-linked intermediates and early stages of cytoplasmic peptidoglycan synthesis. Furthermore, ceftazidime/avibactam substantially inhibited central carbon metabolism (e.g., the pentose phosphate pathway and tricarboxylic acid cycle). Consistently, the dysregulation of genes governing these metabolic pathways aligned with the metabolomics findings. Certain metabolomics and transcriptomics signatures associated with ceftazidime resistance were also perturbed. Consistent with the primary target of antibiotic activity, biochemical assays also confirmed the direct impact of ceftazidime/avibactam on peptidoglycan production. This study explored the intricate interactions of ceftazidime and avibactam within bacterial cells, including their impact on cell envelope biogenesis and central carbon metabolism. Our findings revealed the complexities of how ceftazidime/avibactam operates, such as hindering peptidoglycan formation in different cellular compartments. In summary, this study confirms the existing hypotheses about the antibacterial and resistance mechanisms of ceftazidime/avibactam while uncovering novel insights, including its impact on lipopolysaccharide formation.
Collapse
Affiliation(s)
- Maytham Hussein
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Rafah Allobawi
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jinxin Zhao
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Heidi Yu
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie L. Neville
- Department
of Microbiology and Immunology, The Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jonathan Wilksch
- Department
of Microbiology and Immunology, The Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Labell J. M. Wong
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Mark Baker
- Discipline
of Biological Sciences, Priority Research Centre in Reproductive Biology,
Faculty of Science and IT, University of
Newcastle, University
Drive, Callaghan, NSW 2308, Australia
| | - Christopher A. McDevitt
- Department
of Microbiology and Immunology, The Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Gauri G. Rao
- Division
of Pharmacotherapy and Experimental Therapeutics, Eshelman School
of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7355, United
States
| | - Jian Li
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Grasekamp KP, Beaud Benyahia B, Taib N, Audrain B, Bardiaux B, Rossez Y, Izadi-Pruneyre N, Lejeune M, Trivelli X, Chouit Z, Guerardel Y, Ghigo JM, Gribaldo S, Beloin C. The Mla system of diderm Firmicute Veillonella parvula reveals an ancestral transenvelope bridge for phospholipid trafficking. Nat Commun 2023; 14:7642. [PMID: 37993432 PMCID: PMC10665443 DOI: 10.1038/s41467-023-43411-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
E. coli and most other diderm bacteria (those with two membranes) have an inner membrane enriched in glycerophospholipids (GPLs) and an asymmetric outer membrane (OM) containing GPLs in its inner leaflet and primarily lipopolysaccharides in its outer leaflet. In E. coli, this lipid asymmetry is maintained by the Mla system which consists of six proteins: the OM lipoprotein MlaA extracts GPLs from the outer leaflet, and the periplasmic chaperone MlaC transfers them across the periplasm to the inner membrane complex MlaBDEF. However, GPL trafficking still remains poorly understood, and has only been studied in a handful of model species. Here, we investigate GPL trafficking in Veillonella parvula, a diderm Firmicute with an Mla system that lacks MlaA and MlaC, but contains an elongated MlaD. V. parvula mla mutants display phenotypes characteristic of disrupted lipid asymmetry which can be suppressed by mutations in tamB, supporting that these two systems have opposite GPL trafficking functions across diverse bacterial lineages. Structural modelling and subcellular localisation assays suggest that V. parvula MlaD forms a transenvelope bridge, comprising a typical inner membrane-localised MCE domain and, in addition, an outer membrane ß-barrel. Phylogenomic analyses indicate that this elongated MlaD type is widely distributed across diderm bacteria and likely forms part of the ancestral functional core of the Mla system, which would be composed of MlaEFD only.
Collapse
Affiliation(s)
- Kyrie P Grasekamp
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, Paris, France
| | - Basile Beaud Benyahia
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
| | - Najwa Taib
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Bianca Audrain
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, Structural Bioinformatics Unit, CNRS UMR 3528, Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Paris, France
| | - Yannick Rossez
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, Structural Bioinformatics Unit, CNRS UMR 3528, Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Paris, France
| | - Maylis Lejeune
- Institut Pasteur, Université Paris Cité, Structural Bioinformatics Unit, CNRS UMR 3528, Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Paris, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, Lille, 59000, France
| | - Zina Chouit
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yann Guerardel
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France.
| | - Christophe Beloin
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, Paris, France.
| |
Collapse
|
18
|
Savitskaya A, Masso-Silva J, Haddaoui I, Enany S. Exploring the arsenal of antimicrobial peptides: Mechanisms, diversity, and applications. Biochimie 2023; 214:216-227. [PMID: 37499896 DOI: 10.1016/j.biochi.2023.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Antimicrobial peptides (AMPs) are essential for defence against pathogens in all living organisms and possessed activities against bacteria, fungi, viruses, parasites and even cancer cells. AMPs are short peptides containing 12-100 amino acids conferring a net positive charge and an amphiphilic property in most cases. Although, anionic AMPs also exist. AMPs can be classified based on the types of secondary structures, charge, hydrophobicity, amino acid composition, length, etc. Their mechanism of action usually includes a membrane disruption process through pore formation (three different models have been described, barrel-stave, toroidal or carpet model) but AMPs can also penetrate and impair intracellular functions. Besides their activity against pathogens, they have also shown immunomodulatory properties in complex scenarios through many different interactions. The aim of this review to summarize knowledge about AMP's and discuss the potential application of AMPs as therapeutics, the challenges due to their limitations, including their susceptibility to degradation, the potential generation of AMP resistance, cost, etc. We also discuss the current FDA-approved drugs based on AMPs and strategies to circumvent natural AMPs' limitations.
Collapse
Affiliation(s)
- Anna Savitskaya
- Institute of Bioorganic Chemistry of Russian Academy of Science, Moscow, Russian Federation
| | - Jorge Masso-Silva
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, University of California San Diego, La Jolla, CA, USA
| | - Imen Haddaoui
- National Research Institute of Rural Engineering, Water and Forestry, University of Carthage, LR Valorization of Unconventional Waters, Ariana, Tunisia
| | - Shymaa Enany
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt.
| |
Collapse
|
19
|
Wang Z, Zhao A, Qiao J, Yu J, He F, Bi Y, Yu L, Wang X. Engineering Escherichia coli MG1655 to Efficiently Produce 3-Deacyl-4'-monophosphoryl Lipid A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13376-13390. [PMID: 37656614 DOI: 10.1021/acs.jafc.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Monophosphoryl lipid A, derived from Salmonella minnesota R595, has been used in various adjuvant formulations. Escherichia coli can produce lipid A, but its structure is different. In this study, E. coli MG1655 has been engineered to efficiently produce the monophosphoryl lipid A. First, 126 genes relevant to the biosynthesis of the fimbriae, flagella, and ECA were deleted in MG1655, resulting in WQM027. Second, the genes pldA, mlaA, and mlaC related to the phospholipid transport system, the gene ptsG related to the carbohydrate phosphotransferase system, and the gene eptA encoding phosphoethanolamine transferase for lipid A modification were further deleted from WQM027, resulting in MW020. Third, lpxE from Francisella novicida and pagP and pagL from Salmonella were overexpressed in pFT24, resulting in pTEPL. pTEPL was transformed into MW020, resulting in MW020/pTEPL. Finally, fabI encoding an enoyl-ACP reductase was deleted from the genome of MW020/pTEPL, resulting in MW021/pTEPL. MW021/pTEPL could produce 85.31 mg/L of lipid A species after 26 h of fed-batch fermentation. Mainly two monophosphoryl lipid A species were produced in MW021/pTEPL, one is 3-deacyl-2-acyloxyacyl-4'-monophosphoryl lipid A and the other is 3-deacyl-4'-monophosphoryl lipid A. E. coli MW021/pTEPL constructed in this study could be an ideal host for the industrial production of monophosphoryl lipid A.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Aizhen Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fenfang He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yibing Bi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Letong Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Corrêa JMM, de Oliveira MLG, de Souza PG, Filho PMS, de Macedo AN, Faria AF. Optimization of the first extraction protocol for metabolomic studies of Brucella abortus. Braz J Microbiol 2023; 54:2383-2392. [PMID: 37209273 PMCID: PMC10484873 DOI: 10.1007/s42770-023-01001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/22/2023] Open
Abstract
Brucellosis is a zoonosis prevalent worldwide and very recurrent in less developed or developing regions. This zoonosis affects livestock, generating high financial losses to producers, in addition to transmitting diseases to humans through meat consumption or handling contaminated products and animals. In this study, five extraction methods for Brucella abortus intracellular metabolites, using different solvent compositions and cell membrane disruption procedures, were evaluated. Derivatized extracts were analyzed by GC-HRMS. Raw data were processed in XCMS Online and the results were evaluated through multivariate statistical analysis using the MetaboAnalyst platform. The identification of the extracted metabolites was performed by the Unknowns software using the NIST 17.L library. The extraction performance of each method was evaluated for thirteen representative metabolites, comprising four different chemical classes. Most of these compounds are reported in the cell membrane composition of Gram-negative bacteria. The method based on extraction with methanol/chloroform/water presented the best performance in the evaluation of the extracted compounds and in the statistical results. Therefore, this method was selected for extracting intracellular metabolites from cultures of Brucella abortus for untargeted metabolomics analysis.
Collapse
Affiliation(s)
- Joane M M Corrêa
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Patrícia G de Souza
- Laboratório Federal de Defesa Agropecuária em Minas Gerais, Ministério da Agricultura, Pecuária e Abastecimento, Pedro Leopoldo, MG, 33600-000, Brazil
| | - Paulo M S Filho
- Laboratório Federal de Defesa Agropecuária em Minas Gerais, Ministério da Agricultura, Pecuária e Abastecimento, Pedro Leopoldo, MG, 33600-000, Brazil
| | - Adriana N de Macedo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Adriana F Faria
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
21
|
Som N, Reddy M. Cross-talk between phospholipid synthesis and peptidoglycan expansion by a cell wall hydrolase. Proc Natl Acad Sci U S A 2023; 120:e2300784120. [PMID: 37276399 PMCID: PMC10268279 DOI: 10.1073/pnas.2300784120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
The Gram-negative bacterial cell envelope is a complex multilayered structure comprising a bilayered phospholipid (PL) membrane that surrounds the cytoplasm (inner membrane or IM) and an asymmetric outer membrane (OM) with PLs in the inner leaflet and lipopolysaccharides in the outer leaflet. Between these two layers is the periplasmic space, which contains a highly cross-linked mesh-like glycan polymer, peptidoglycan (PG). During cell expansion, coordinated synthesis of each of these components is required to maintain the integrity of the cell envelope; however, it is currently not clear how such coordination is achieved. In this study, we show that a cross-link-specific PG hydrolase couples the expansion of PG sacculus with that of PL synthesis in the Gram-negative model bacterium, Escherichia coli. We find that unregulated activity of a PG hydrolytic enzyme, MepS is detrimental for growth of E. coli during fatty acid (FA)-limiting conditions. Further genetic and biochemical analyses revealed that cellular availability of FA or PL alters the post-translational stability of MepS by modulating the proteolytic activity of a periplasmic adaptor-protease complex, NlpI-Prc toward MepS. Our results indicate that loss of OM lipid asymmetry caused by alterations in PL abundance leads to the generation of a signal to the NlpI-Prc complex for the stabilization of MepS, which subsequently cleaves the cross-links to facilitate expansion of PG. In summary, our study shows the existence of a molecular cross-talk that enables coordinated expansion of the PG sacculus with that of membrane synthesis for balanced cell-envelope biogenesis.
Collapse
Affiliation(s)
- Nilanjan Som
- Centre for Cellular and Molecular Biology, Hyderabad, 500007Telangana, India
| | - Manjula Reddy
- Centre for Cellular and Molecular Biology, Hyderabad, 500007Telangana, India
| |
Collapse
|
22
|
Elahimanesh M, Najafi M. Cross talk between bacterial and human gene networks enriched using ncRNAs in IBD disease. Sci Rep 2023; 13:7704. [PMID: 37169818 PMCID: PMC10175251 DOI: 10.1038/s41598-023-34780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term inflammatory immune-mediated gut illness with several extra-intestinal complications. The aims of this study were to identify a novel network-based meta-analysis approach on the basis of the combinations of the differentially expressed genes (DEGs) from microarray data, to enrich the functional modules from human protein-protein interaction (PPI) and gene ontology (GO) data, and to profile the ncRNAs on the genes involved in IBD. The gene expression profiles of GSE126124, GSE87473, GSE75214, and GSE95095 are obtained from the Gene Expression Omnibus (GEO) database based on the study criteria between 2017 and 2022. The DEGs were screened by the R software. DEGs were then used to examine gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The ncRNAs including the miRNAs and ceRNAs were predicted on the PPIs visualized using Cytoscape. Enrichment analysis of genes with differential expression (n = 342) using KEGG and GO showed that the signaling pathways related with staphylococcus aureus and pertussis bacterial infections may stimulate the immune system and exacerbate IBD via the interaction with human proteins including Fibrinogen gamma chain (FGG), Keratin 10 (KRT10), and Toll like receptor 4 (TLR4). By building a ceRNA network, lncRNA XIST and NEAT1 were determined by affecting common miRNAs, hsa-miR-6875-5p, hsa-miR-1908-5p, hsa-miR-186-5p, hsa-miR-6763-5p, hsa-miR-4436a, and hsa-miR-520a-5p. Additionally, the chromosome regions including NM_001039703 and NM_006267, which produce the most potent circRNAs play a significant role in the ceRNA network of IBD. Also, we predicted the siRNAs that would be most effective against the bacterial genes in staphylococcus aureus and pertussis infections. These findings suggested that three genes (FGG, KRT10, and TLR4), six miRNAs (hsa-miR-6875-5p, hsa-miR-1908-5p, hsa-miR-186-5p, hsa-miR-4436a, hsa-miR-520a-5p, and hsa-miR-6763-5p), two lncRNAs (XIST and NEAT1), and chromosomal regions including NM_001039703 and NM_006267 with the production of the most effective circRNAs are involved in the ncRNA-associated ceRNA network of IBD. These ncRNA profiles are related to the described gene functions and may play therapeutic targets in controlling inflammatory bowel disease.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Sperandeo P, Martorana AM, Zaccaria M, Polissi A. Targeting the LPS export pathway for the development of novel therapeutics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119406. [PMID: 36473551 DOI: 10.1016/j.bbamcr.2022.119406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
The rapid rise of multi-resistant bacteria is a global health threat. This is especially serious for Gram-negative bacteria in which the impermeable outer membrane (OM) acts as a shield against antibiotics. The development of new drugs with novel modes of actions to combat multi-drug resistant pathogens requires the selection of suitable processes to be targeted. The LPS export pathway is an excellent under exploited target for drug development. Indeed, LPS is the major determinant of the OM permeability barrier, and its biogenetic pathway is conserved in most Gram-negatives. Here we describe efforts to identify inhibitors of the multiprotein Lpt system that transports LPS to the cell surface. Despite none of these molecules has been approved for clinical use, they may represent valuable compounds for optimization. Finally, the recent discovery of a link between inhibition of LPS biogenesis and changes in peptidoglycan structure uncovers additional targets to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra M Martorana
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Marta Zaccaria
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
24
|
Cho THS, Pick K, Raivio TL. Bacterial envelope stress responses: Essential adaptors and attractive targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119387. [PMID: 36336206 DOI: 10.1016/j.bbamcr.2022.119387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Millions of deaths a year across the globe are linked to antimicrobial resistant infections. The need to develop new treatments and repurpose of existing antibiotics grows more pressing as the growing antimicrobial resistance pandemic advances. In this review article, we propose that envelope stress responses, the signaling pathways bacteria use to recognize and adapt to damage to the most vulnerable outer compartments of the microbial cell, are attractive targets. Envelope stress responses (ESRs) support colonization and infection by responding to a plethora of toxic envelope stresses encountered throughout the body; they have been co-opted into virulence networks where they work like global positioning systems to coordinate adhesion, invasion, microbial warfare, and biofilm formation. We highlight progress in the development of therapeutic strategies that target ESR signaling proteins and adaptive networks and posit that further characterization of the molecular mechanisms governing these essential niche adaptation machineries will be important for sparking new therapeutic approaches aimed at short-circuiting bacterial adaptation.
Collapse
Affiliation(s)
- Timothy H S Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kat Pick
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
25
|
Omptin Proteases of Enterobacterales Show Conserved Regulation by the PhoPQ Two-Component System but Exhibit Divergent Protection from Antimicrobial Host Peptides and Complement. Infect Immun 2023; 91:e0051822. [PMID: 36533918 PMCID: PMC9872669 DOI: 10.1128/iai.00518-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacteria that colonize eukaryotic surfaces interact with numerous antimicrobial host-produced molecules, including host defense peptides, complement, and antibodies. Bacteria have evolved numerous strategies to both detect and resist these molecules, and in the Enterobacterales order of bacteria these include alterations of the cell surface lipopolysaccharide structure and/or charge and the production of proteases that can degrade these antimicrobial molecules. Here, we show that omptin family proteases from Escherichia coli and Citrobacter rodentium are regulated by the PhoPQ system. Omptin protease activity is induced by growth in low Mg2+, and deletion of PhoP dramatically reduces omptin protease activity, transcriptional regulation, and protein levels. We identify conserved PhoP-binding sites in the promoters of the E. coli omptin genes ompT, ompP, and arlC as well as in croP of Citrobacter rodentium and show that mutation of the putative PhoP-binding site in the ompT promoter abrogates PhoP-dependent expression. Finally, we show that although regulation by PhoPQ is conserved, each of the omptin proteins has differential activity toward host defense peptides, complement components, and resistance to human serum, suggesting that each omptin confers unique survival advantages against specific host antimicrobial factors.
Collapse
|
26
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
27
|
Forward or backward, that is the question: phospholipid trafficking by the Mla system. Emerg Top Life Sci 2022; 7:125-135. [PMID: 36459067 DOI: 10.1042/etls20220087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022]
Abstract
The distinctive feature of Gram-negative bacteria is the presence of an asymmetric outer membrane (OM), which acts as a permeation barrier blocking the diffusion of noxious components such as antibiotics that could compromise cell survival. The outer membrane has an inner leaflet, mainly formed by phospholipids (PLs), and the outer leaflet, composed of molecules of lipopolysaccharide (LPS). Building this membrane is a very complex process as every OM element needs to be transported from the cytoplasm or the inner membrane and properly placed in the OM. In addition, the asymmetry needs to be maintained to guarantee the barrier function of the membrane. The presence of misplaced PLs in the outer leaflet of the OM causes increased permeability, endangering cell survival. The Mla system (maintenance of OM lipid asymmetry) has been linked to the removal of the misplaced PLs, restoring OM asymmetry. The Mla system has elements in all compartments of the cell envelope: the lipoprotein MlaA in complex with the trimeric porins OmpC/F in the OM, MlaC in the periplasmic space and an ABC transporter in the inner membrane called MlaFEDB. While genetic and structural work suggest that the Mla pathway is retrograde (PL movement from OM to IM), several groups have advocated that transport could happen in an anterograde fashion (from IM to OM). However, recent biochemical studies strongly support retrograde transport. This review provides an overview of the current knowledge of the Mla system from a structural point of view and addresses the latest biochemical findings and their impact in transport directionality.
Collapse
|
28
|
de Jonge EF, Vogrinec L, van Boxtel R, Tommassen J. Inactivation of the Mla system and outer-membrane phospholipase A results in disrupted outer-membrane lipid asymmetry and hypervesiculation in Bordetella pertussis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100172. [DOI: 10.1016/j.crmicr.2022.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Panda G, Dash S, Sahu SK. Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. MEMBRANES 2022; 12:914. [PMID: 36295673 PMCID: PMC9612325 DOI: 10.3390/membranes12100914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| |
Collapse
|
30
|
Transient Complexity of E. coli Lipidome Is Explained by Fatty Acyl Synthesis and Cyclopropanation. Metabolites 2022; 12:metabo12090784. [PMID: 36144187 PMCID: PMC9500627 DOI: 10.3390/metabo12090784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
In the case of many bacteria, such as Escherichia coli, the composition of lipid molecules, termed the lipidome, temporally adapts to different environmental conditions and thus modifies membrane properties to permit growth and survival. Details of the relationship between the environment and lipidome composition are lacking, particularly for growing cultures under either favourable or under stress conditions. Here, we highlight compositional lipidome changes by describing the dynamics of molecular species throughout culture-growth phases. We show a steady cyclopropanation of fatty acyl chains, which acts as a driver for lipid diversity. There is a bias for the cyclopropanation of shorter fatty acyl chains (FA 16:1) over longer ones (FA 18:1), which likely reflects a thermodynamic phenomenon. Additionally, we observe a nearly two-fold increase in saturated fatty acyl chains in response to the presence of ampicillin and chloramphenicol, with consequences for membrane fluidity and elasticity, and ultimately bacterial stress tolerance. Our study provides the detailed quantitative lipidome composition of three E. coli strains across culture-growth phases and at the level of the fatty acyl chains and provides a general reference for phospholipid composition changes in response to perturbations. Thus, lipidome diversity is largely transient and the consequence of lipid synthesis and cyclopropanation.
Collapse
|
31
|
Ji F, Huang D, Tan X, Guo Y, Wang Z, Zhou Q, Wang X. Structure analysis of lipid A species in Vibrio parahaemolyticus by constructing mutants lacking multiple secondary acyltransferases of lipid A. Biotechnol Appl Biochem 2022; 70:716-729. [PMID: 35913040 DOI: 10.1002/bab.2393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/24/2022] [Indexed: 11/10/2022]
Abstract
Four secondary acyltransferases of Vibrio parahaemolyticus lipid A encoded by VP_RS00880, VP_RS08405, VP_RS12170 and VP_RS01045 have been identified. In this study, mutants of V. parahaemolyticus were constructed by deleting two, three or four of these genes. The double mutants showed similar growth pattern with the wild type, but the quadruple mutant VPW011 showed significant growth defect at both 37°C and 21°C. Lipid A samples were extracted from these mutants and analyzed by electrospray ionization-mass spectrometry. The double and triple mutants could synthesize hepta- and octa-acylated lipid A species, while the quadruple mutant VPW011could synthesized hexa- and hepta-acylated lipid A. The results suggest that the four secondary acyltransferases could complement each other in V. parahaemolyticus. More importantly, additional secondary acyltransferases of lipid A might exist in V. parahaemolyticus and their activities might be as strong as the four known secondary acyltransferases. The unusual multiple secondary acyltransferases of lipid A might play roles in pathogenicity and antimicrobic resistance of V. parahaemolyticus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
32
|
Sun L, Zhang Y, Cai T, Li X, Li N, Xie Z, Yang F, You X. CrrAB regulates PagP-mediated glycerophosphoglycerol palmitoylation in the outer membrane of Klebsiella pneumoniae. J Lipid Res 2022; 63:100251. [PMID: 35841948 PMCID: PMC9403492 DOI: 10.1016/j.jlr.2022.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an evolving antibiotic barrier composed of a glycerophospholipid (GP) inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The two-component regulatory system CrrAB has only recently been reported to confer high-level polymyxin resistance and virulence in Klebsiella pneumoniae. Mutations in crrB have been shown to lead to the modification of the lipid A moiety of LPS through CrrAB activation. However, functions of CrrAB activation in the regulation of other lipids are unclear. Work here demonstrates CrrAB activation not only stimulates LPS modification, but also regulates synthesis of acyl-glycerophosphoglycerols (acyl-PGs), a lipid species with undefined functions and biosynthesis. Among all possible modulators of acyl-PG identified from proteomic data, we found expression of lipid A palmitoyltransferase (PagP) was significantly up-regulated in the crrB mutant. Furthermore, comparative lipidomics showed that most of the increasing acyl-PG activated by CrrAB was decreased after pagP knockout with CRISPR-Cas9. These results suggest that PagP also transfers a palmitate chain from GPs to PGs, generating acyl-PGs. Further investigation revealed that PagP mainly regulates the GP contents within the OM, leading to an increased ratio of acyl-PG to PG species, and improving OM hydrophobicity, which may contribute to resistance against certain cationic antimicrobial peptides (CAMP) resistance upon LPS modification. Taken together, this work suggests that CrrAB regulates the outer membrane GP contents of K. pneumoniae through upregulation of PagP, which functions along with LPS to form an outer membrane barrier critical for bacterial survival.
Collapse
Affiliation(s)
- Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
33
|
Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Rev 2022; 46:6617596. [PMID: 35749576 PMCID: PMC9629497 DOI: 10.1093/femsre/fuac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Enea Sancho-Vaello
- Corresponding author. College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. E-mail:
| |
Collapse
|
34
|
Bray AS, Smith RD, Hudson AW, Hernandez GE, Young TM, George HE, Ernst RK, Zafar MA. MgrB-Dependent Colistin Resistance in Klebsiella pneumoniae Is Associated with an Increase in Host-to-Host Transmission. mBio 2022; 13:e0359521. [PMID: 35311534 PMCID: PMC9040857 DOI: 10.1128/mbio.03595-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
Due to its high transmissibility, Klebsiella pneumoniae is one of the leading causes of nosocomial infections. Here, we studied the biological cost of colistin resistance, an antibiotic of last resort, in this opportunistic pathogen using a murine model of gut colonization and transmission. Colistin resistance in K. pneumoniae is commonly the result of the inactivation of the small regulatory protein MgrB. Without a functional MgrB, the two-component system PhoPQ is constitutively active, leading to an increase in lipid A modifications and subsequent colistin resistance. Using an isogenic mgrB deletion mutant (MgrB-), we demonstrate that the mutant's colistin resistance is not associated with a fitness defect under in vitro growth conditions. However, in our murine model of K. pneumoniae gastrointestinal (GI) colonization, the MgrB- colonizes the gut poorly, allowing us to identify a fitness cost. Moreover, the MgrB- mutant has higher survival outside the host compared with the parental strain. We attribute this enhanced survivability to dysregulation of the PhoPQ two-component system and accumulation of the master stress regulator RpoS. The enhanced survival of MgrB- may be critical for its rapid host-to-host transmission observed in our model. Together, our data using multiple clinical isolates demonstrate that MgrB-dependent colistin resistance in K. pneumoniae comes with a biological cost in gut colonization. However, this cost is mitigated by enhanced survival outside the host and consequently increases its host-to-host transmission. Additionally, it underscores the importance of considering the entire life cycle of a pathogen to determine the actual biological cost associated with antibiotic resistance. IMPORTANCE The biological cost associated with colistin resistance in Klebsiella pneumoniae was examined using a murine model of K. pneumoniae gut colonization and fecal-oral transmission. A common mutation resulting in colistin resistance in K. pneumoniae is a loss-of-function mutation of the small regulatory protein MgrB that regulates the two-component system PhoPQ. Even though colistin resistance in K. pneumoniae comes with a fitness defect in gut colonization, it increases bacterial survival outside the host enabling it to transmit more effectively to a new host. The enhanced survival is dependent upon the accumulation of RpoS and dysregulation of the PhoPQ. Hence, our study expands our understanding of the underlying molecular mechanism contributing to the transmission of colistin-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Richard D. Smith
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Andrew W. Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Giovanna E. Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Taylor M. Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | | | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
35
|
Valvano MA. Remodelling of the Gram-negative bacterial Kdo 2-lipid A and its functional implications. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35394417 DOI: 10.1099/mic.0.001159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lipopolysaccharide (LPS) is a characteristic molecule of the outer leaflet of the Gram-negative bacterial outer membrane, which consists of lipid A, core oligosaccharide, and O antigen. The lipid A is embedded in outer membrane and provides an efficient permeability barrier, which is particularly important to reduce the permeability of antibiotics, toxic cationic metals, and antimicrobial peptides. LPS, an important modulator of innate immune responses ranging from localized inflammation to disseminated sepsis, displays a high level of structural and functional heterogeneity, which arise due to regulated differences in the acylation of the lipid A and the incorporation of non-stoichiometric modifications in lipid A and the core oligosaccharide. This review focuses on the current mechanistic understanding of the synthesis and assembly of the lipid A molecule and its most salient non-stoichiometric modifications.
Collapse
Affiliation(s)
- Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
36
|
Coordination of Phosphate and Magnesium Metabolism in Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:135-150. [PMID: 35288878 DOI: 10.1007/978-3-030-91623-7_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The majority of cellular phosphate (PO4-3; Pi) exists as nucleoside triphosphates, mainly adenosine triphosphate (ATP), and ribosomal RNA (rRNA). ATP and rRNA are also the largest cytoplasmic reservoirs of magnesium (Mg2+), the most abundant divalent cation in living cells. The co-occurrence of these ionic species in the cytoplasm is not coincidental. Decades of work in the Pi and Mg2+ starvation responses of two model enteric bacteria, Escherichia coli and Salmonella enterica, have led to the realization that the metabolisms of Pi and Mg2+ are interconnected. Bacteria must acquire these nutrients in a coordinated manner to achieve balanced growth and avoid loss of viability. In this chapter, we will review how bacteria sense and respond to fluctuations in environmental and intracellular Pi and Mg2+ levels. We will also discuss how these two compounds are functionally linked, and how cells elicit physiological responses to maintain their homeostasis.
Collapse
|
37
|
Gerster T, Wröbel M, Hofstaedter CE, Schwudke D, Ernst RK, Ranf S, Gisch N. Remodeling of Lipid A in Pseudomonas syringae pv. phaseolicola In Vitro. Int J Mol Sci 2022; 23:1996. [PMID: 35216122 PMCID: PMC8876380 DOI: 10.3390/ijms23041996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas species infect a variety of organisms, including mammals and plants. Mammalian pathogens of the Pseudomonas family modify their lipid A during host entry to evade immune responses and to create an effective barrier against different environments, for example by removal of primary acyl chains, addition of phosphoethanolamine (P-EtN) to primary phosphates, and hydroxylation of secondary acyl chains. For Pseudomonas syringae pv. phaseolicola (Pph) 1448A, an economically important pathogen of beans, we observed similar lipid A modifications by mass spectrometric analysis. Therefore, we investigated predicted proteomes of various plant-associated Pseudomonas spp. for putative lipid A-modifying proteins using the well-studied mammalian pathogen Pseudomonas aeruginosa as a reference. We generated isogenic mutant strains of candidate genes and analyzed their lipid A. We show that the function of PagL, LpxO, and EptA is generally conserved in Pph 1448A. PagL-mediated de-acylation occurs at the distal glucosamine, whereas LpxO hydroxylates the secondary acyl chain on the distal glucosamine. The addition of P-EtN catalyzed by EptA occurs at both phosphates of lipid A. Our study characterizes lipid A modifications in vitro and provides a useful set of mutant strains relevant for further functional studies on lipid A modifications in Pph 1448A.
Collapse
Affiliation(s)
- Tim Gerster
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany;
| | - Michelle Wröbel
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (M.W.); (D.S.)
| | - Casey E. Hofstaedter
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (C.E.H.); (R.K.E.)
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (M.W.); (D.S.)
- German Center for Infection Research (DZIF), Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Site Research Center Borstel, 23845 Borstel, Germany
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (C.E.H.); (R.K.E.)
| | - Stefanie Ranf
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany;
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (M.W.); (D.S.)
| |
Collapse
|
38
|
Chen X, Tian J, Luo C, Wang X, Li X, Wang M. Cell Membrane Remodeling Mediates Polymyxin B Resistance in Klebsiella pneumoniae: An Integrated Proteomics and Metabolomics Study. Front Microbiol 2022; 13:810403. [PMID: 35222333 PMCID: PMC8866958 DOI: 10.3389/fmicb.2022.810403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022] Open
Abstract
Polymyxin B (PB) is introduced into the clinic as the last-line therapy against carbapenem-resistant Klebsiella pneumoniae (CRKP). Unfortunately, increased resistance to PB in Klebsiella pneumoniae (K. pneumoniae) has threatened global health. Resistance of K. pneumoniae to PB was induced by passaging in serial concentrations of PB and determined by microbroth dilution method. Growth characteristics of induced strains including growth curve, reversibility of resistance, and biofilm formation (crystal violet staining method) were measured. This study employed TMT-labeled quantitative proteomics and LC-MS/MS metabolomics analysis to investigate the key biological processes associated with PB resistance in K. pneumoniae. A total of 315 differentially expressed proteins (DEPs) were identified, of which 133 were upregulated and 182 were downregulated in the PB-resistant K. pneumoniae. KEGG enrichment analysis revealed that the DEPs were mainly involved in ATP-binding cassette (ABC) transporters and cationic antimicrobial peptide (CAMP) resistance. Proteins related to central carbon metabolism were inhibited in the PB-resistant K. pneumoniae, but proteins mediating LPS modification were activated. Transcriptional levels of CAMP resistance-related proteins were significantly different between PB-susceptible and -resistant K. pneumoniae. PB treatment led to an increase in reactive oxygen species (ROS) levels of K. pneumoniae. Metabolomics data demonstrated that 23 metabolites were significantly upregulated in PB-resistant K. pneumoniae and 5 were downregulated. The differential metabolites were mainly lipids, including glycerophospholipids, sphingolipids, and fatty acids. Exposure to PB resulted in increased level of phospholipid transport gene mlaF in K. pneumoniae. Our study suggested that membrane remodeling and inhibited central carbon metabolism are conducive to the development of PB resistance in K. pneumoniae.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
39
|
Garcia-Vello P, Di Lorenzo F, Zucchetta D, Zamyatina A, De Castro C, Molinaro A. Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther 2022; 230:107970. [PMID: 34454000 DOI: 10.1016/j.pharmthera.2021.107970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Lipopolysaccharides (LPS) are the main components of the external leaflet of the Gram-negative outer membrane and consist of three different moieties: lipid A, core oligosaccharide, and O-polysaccharide. The lipid A is a glucosamine disaccharide with different levels of acylation and phosphorylation, beside carrying, in certain cases, additional substituents on the sugar backbone. It is also the main immunostimulatory part of the LPS, as its recognition by the host immune system represents a fundamental event for detection of perilous microorganisms. Moreover, an uncontrolled immune response caused by a large amount of circulating LPS can lead to dramatic outcomes for human health, such as septic shock. The immunostimulant properties of an LPS incredibly vary depending on lipid A chemical structure, and for this reason, natural and synthetic variants of the lipid A are under study to develop new drugs that mimic or antagonise its natural effects. Here, we review past and recent findings on the lipid A as an antibiotic target and immune-therapeutic molecule, with a special attention on the crucial role of the chemical structure and its exploitation for conceiving novel strategies for treatment of several immune-related pathologies.
Collapse
Affiliation(s)
- Pilar Garcia-Vello
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Daniele Zucchetta
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
40
|
Murtha AN, Kazi MI, Schargel RD, Cross T, Fihn C, Cattoir V, Carlson EE, Boll JM, Dörr T. High-level carbapenem tolerance requires antibiotic-induced outer membrane modifications. PLoS Pathog 2022; 18:e1010307. [PMID: 35130322 PMCID: PMC8853513 DOI: 10.1371/journal.ppat.1010307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Antibiotic tolerance is an understudied potential contributor to antibiotic treatment failure and the emergence of multidrug-resistant bacteria. The molecular mechanisms governing tolerance remain poorly understood. A prominent type of β-lactam tolerance relies on the formation of cell wall-deficient spheroplasts, which maintain structural integrity via their outer membrane (OM), an asymmetric lipid bilayer consisting of phospholipids on the inner leaflet and a lipid-linked polysaccharide (lipopolysaccharide, LPS) enriched in the outer monolayer on the cell surface. How a membrane structure like LPS, with its reliance on mere electrostatic interactions to maintain stability, is capable of countering internal turgor pressure is unknown. Here, we have uncovered a novel role for the PhoPQ two-component system in tolerance to the β-lactam antibiotic meropenem in Enterobacterales. We found that PhoPQ is induced by meropenem treatment and promotes an increase in 4-amino-4-deoxy-L-aminoarabinose [L-Ara4N] modification of lipid A, the membrane anchor of LPS. L-Ara4N modifications likely enhance structural integrity, and consequently tolerance to meropenem, in several Enterobacterales species. Importantly, mutational inactivation of the negative PhoPQ regulator mgrB (commonly selected for during clinical therapy with the last-resort antibiotic colistin, an antimicrobial peptide [AMP]) results in dramatically enhanced tolerance, suggesting that AMPs can collaterally select for meropenem tolerance via stable overactivation of PhoPQ. Lastly, we identify histidine kinase inhibitors (including an FDA-approved drug) that inhibit PhoPQ-dependent LPS modifications and consequently potentiate meropenem to enhance lysis of tolerant cells. In summary, our results suggest that PhoPQ-mediated LPS modifications play a significant role in stabilizing the OM, promoting survival when the primary integrity maintenance structure, the cell wall, is removed. Treating an infection with an antibiotic often fails, resulting in a tremendous public health burden. One understudied likely reason for treatment failure is the development of “antibiotic tolerance”, the ability of bacteria to survive normally lethal exposure to an antibiotic. Here, we describe a molecular mechanism promoting tolerance. A bacterial stress sensor (PhoPQ) is activated in response to antibiotic (meropenem) treatment and consequently strengthens a bacterial protective “shell” to enhance survival. We also identify inhibitors of this mechanism, opening the door to developing compounds that help antibiotics work better against tolerant bacteria.
Collapse
Affiliation(s)
- Andrew N. Murtha
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Misha I. Kazi
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Richard D. Schargel
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Trevor Cross
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Conrad Fihn
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Vincent Cattoir
- Department of Clinical Microbiology and National Reference Center for Antimicrobial Resistance (Lab Enterococci), Rennes University Hospital, Rennes, France; Inserm Unit U1230, University of Rennes 1, Rennes, France
| | - Erin E. Carlson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joseph M. Boll
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
- * E-mail: (JMB); (TD)
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
- * E-mail: (JMB); (TD)
| |
Collapse
|
41
|
Goodall ECA, Isom GL, Rooke JL, Pullela K, Icke C, Yang Z, Boelter G, Jones A, Warner I, Da Costa R, Zhang B, Rae J, Tan WB, Winkle M, Delhaye A, Heinz E, Collet JF, Cunningham AF, Blaskovich MA, Parton RG, Cole JA, Banzhaf M, Chng SS, Vollmer W, Bryant JA, Henderson IR. Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth. PLoS Genet 2021; 17:e1009586. [PMID: 34941903 PMCID: PMC8741058 DOI: 10.1371/journal.pgen.1009586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/07/2022] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target. All life depends on a cell envelope to enclose the chemical reactions that make life possible. But how do cell envelopes grow? How each component of the cell envelope is incorporated into the envelope at the correct amount, in the correct place, and at the correct time, to prevent cell death, has been a long-standing question in bacteriology. Using a unique combination of high throughput chemical genetic screens we identified yhcB, a conserved gene of unknown function, required for the maintenance of cell envelope integrity in Escherichia coli. Loss of YhcB results in aberrant cell size driven by the production of excess membrane phospholipids. Subsequent molecular and biochemical analyses suggest YhcB influences the spatiotemporal biogenesis of LPS, peptidoglycan and membrane phospholipids. Our data indicate YhcB is a key regulator of cell envelope growth in Gram-negative bacteria playing a crucial role in coordinating cell width, elongation, and division to maintain cell envelope integrity.
Collapse
Affiliation(s)
- Emily C. A. Goodall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| | - Georgia L. Isom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jessica L. Rooke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Zihao Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Gabriela Boelter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Isabel Warner
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Rochelle Da Costa
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Bing Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Wee Boon Tan
- Department of Chemistry, National University of Singapore, Singapore
| | - Matthias Winkle
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antoine Delhaye
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Adam F. Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Mark A. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Australia
| | - Jeff A. Cole
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jack A. Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| |
Collapse
|
42
|
Thoma J, Burmann BM. Architects of their own environment: How membrane proteins shape the Gram-negative cell envelope. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:1-34. [PMID: 35034716 DOI: 10.1016/bs.apcsb.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gram-negative bacteria are surrounded by a complex multilayered cell envelope, consisting of an inner and an outer membrane, and separated by the aqueous periplasm, which contains a thin peptidoglycan cell wall. These bacteria employ an arsenal of highly specialized membrane protein machineries to ensure the correct assembly and maintenance of the membranes forming the cell envelope. Here, we review the diverse protein systems, which perform these functions in Escherichia coli, such as the folding and insertion of membrane proteins, the transport of lipoproteins and lipopolysaccharide within the cell envelope, the targeting of phospholipids, and the regulation of mistargeted envelope components. Some of these protein machineries have been known for a long time, yet still hold surprises. Others have only recently been described and some are still missing pieces or yet remain to be discovered.
Collapse
Affiliation(s)
- Johannes Thoma
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
43
|
Homeoviscous Adaptation of the Acinetobacter baumannii Outer Membrane: Alteration of Lipooligosaccharide Structure during Cold Stress. mBio 2021; 12:e0129521. [PMID: 34425709 PMCID: PMC8406137 DOI: 10.1128/mbio.01295-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To maintain optimal membrane dynamics, cells from all domains of life must acclimate to various environmental signals in a process referred to as homeoviscous adaptation. Alteration of the lipid composition is critical for maintaining membrane fluidity, permeability of the lipid bilayer, and protein function under diverse conditions. It is well documented, for example, that glycerophospholipid content varies substantially in both Gram-negative and Gram-positive bacteria with changes in growth temperature. However, in the case of Gram-negative bacteria, far less is known concerning structural changes in lipopolysaccharide (LPS) or lipooligosaccharide (LOS) during temperature shifts. LPS/LOS is anchored at the cell surface by the highly conserved lipid A domain and localized in the outer leaflet of the outer membrane. Here, we identified a novel acyltransferase, termed LpxS, involved in the synthesis of the lipid A domain of Acinetobacter baumannii. A. baumannii is a significant, multidrug-resistant, opportunistic pathogen that is particularly difficult to clear from health care settings because of its ability to survive under diverse conditions. LpxS transfers an octanoate (C8:0) fatty acid, the shortest known secondary acyl chain reported to date, replacing a C12:0 fatty acid at the 2' position of lipid A. Expression of LpxS was highly upregulated under cold conditions and likely increases membrane fluidity. Furthermore, incorporation of a C8:0 acyl chain under cold conditions increased the effectiveness of the outer membrane permeability barrier. LpxS orthologs are found in several Acinetobacter species and may represent a common mechanism for adaptation to cold temperatures in these organisms. IMPORTANCE To maintain cellular fitness, the composition of biological membranes must change in response to shifts in temperature or other stresses. This process, known as homeoviscous adaptation, allows for maintenance of optimal fluidity and membrane permeability. Here, we describe an enzyme that alters the fatty acid content of A. baumannii LOS, a major structural feature and key component of the bacterial outer membrane. Although much is known regarding how glycerophospholipids are altered during temperature shifts, our understanding of LOS or LPS alterations under these conditions is lacking. Our work identifies a cold adaptation mechanism in A. baumannii, a highly adaptable and multidrug-resistant pathogen.
Collapse
|
44
|
Buxser S. Has resistance to chlorhexidine increased among clinically-relevant bacteria? A systematic review of time course and subpopulation data. PLoS One 2021; 16:e0256336. [PMID: 34411140 PMCID: PMC8376095 DOI: 10.1371/journal.pone.0256336] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/03/2021] [Indexed: 12/03/2022] Open
Abstract
Chlorhexidine (CHX) was introduced for use as an antimicrobial more than 70 years ago. CHX has been and continues to be used broadly for disinfecting surfaces in medical and food service facilities as well as directly on skin of humans and animals. Considering its widespread use over many decades, questions of resistance to CHX have been raised. Additionally, questions of possible coincident resistance to the biocide and resistance to clinically relevant antibiotics have also been raised. A number of important questions remain, including is there consistent evidence of resistance, what is the degree of resistance, especially among clinically isolated microbial strains, and what is the degree of resistance compared to the typical concentrations of the biocide used? Data for microbial species isolated over the last 70+ years were compiled to construct as complete a picture as practical regarding possible resistance, especially among species in which resistance to commonly used antibiotics has been noted to be increasing. This is a compilation and analysis of individual MIC values for CHX reported in the literature, not a compilation of the conclusions individual authors reached. The data were analyzed using straight-forward and robust statistical procedures to detect changes in susceptibility to CHX over time, i.e. linear regression. Linear regression was supplemented with the use of nonlinear least squares regression analysis to detect the presence of population parameters associated with subpopulations of microbial strains which exhibit increased resistance to CHX. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii were all found to have an increased resistance to CHX over time with the most profound change detected in A. baumannii. Additionally, subpopulations with log-normal distributions were found consistent with the presence of a baseline subpopulation of susceptible strains and a subpopulation with increased resistance to CHX. However, the CHX-resistant subpopulations did not correlate exactly with antibiotic resistance, so details of the relationship remain to be addressed. Increased resistance over time was not detected for Escherichia coli, Enterobacter faecalis, Staphylococcus aureus, or Candida albicans, although a subpopulation with greater than baseline resistance to CHX was detected among strains of E. faecalis and C. albicans. A difference in susceptibility to CHX was also detected between methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) S. aureus strains. The levels of resistance to CHX detected were all markedly lower than concentrations routinely used in medical and food service applications. Reaching conclusions regarding the relationship between antibiotic and CHX resistance was complicated by the limited overlap between tests of CHX and antibiotic resistance for several species. The results compiled here may serve as a foundation for monitoring changes in resistance to CHX and possible relationships between the use of CHX and resistance to antibiotics commonly used in clinical medicine.
Collapse
Affiliation(s)
- Stephen Buxser
- Select Bio Consult, LLC, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
45
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Genome Scale Analysis Reveals IscR Directly and Indirectly Regulates Virulence Factor Genes in Pathogenic Yersinia. mBio 2021; 12:e0063321. [PMID: 34060331 PMCID: PMC8262890 DOI: 10.1128/mbio.00633-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The iron-sulfur cluster coordinating transcription factor IscR is important for the virulence of Yersinia pseudotuberculosis and a number of other bacterial pathogens. However, the IscR regulon has not yet been defined in any organism. To determine the Yersinia IscR regulon and identify IscR-dependent functions important for virulence, we employed chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of Y. pseudotuberculosis expressing or lacking iscR following iron starvation conditions, such as those encountered during infection. We found that IscR binds to the promoters of genes involved in iron homeostasis, reactive oxygen species metabolism, and cell envelope remodeling and regulates expression of these genes in response to iron depletion. Consistent with our previous work, we also found that IscR binds in vivo to the promoter of the Ysc type III secretion system (T3SS) master regulator LcrF, leading to regulation of T3SS genes. Interestingly, comparative genomic analysis suggested over 93% of IscR binding sites were conserved between Y. pseudotuberculosis and the related plague agent Yersinia pestis. Surprisingly, we found that the IscR positively regulated sufABCDSE Fe-S cluster biogenesis pathway was required for T3SS activity. These data suggest that IscR regulates the T3SS in Yersinia through maturation of an Fe-S cluster protein critical for type III secretion, in addition to its known role in activating T3SS genes through LcrF. Altogether, our study shows that iron starvation triggers IscR to coregulate multiple, distinct pathways relevant to promoting bacterial survival during infection.
Collapse
|
47
|
Increased Production of Outer Membrane Vesicles by Salmonella Interferes with Complement-Mediated Innate Immune Attack. mBio 2021; 12:e0086921. [PMID: 34061589 PMCID: PMC8262969 DOI: 10.1128/mbio.00869-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) enriched with bioactive proteins, toxins, and virulence factors play a critical role in host-pathogen and microbial interactions. The two-component system PhoP-PhoQ (PhoPQ) of Salmonella enterica orchestrates the remodeling of outer membrane lipopolysaccharide (LPS) molecules and concomitantly upregulates OMV production. In this study, we document a novel use of nanoparticle tracking analysis to determine bacterial OMV size and number. Among the PhoPQ-activated genes tested, pagC expression had the most significant effect on the upregulation of OMV production. We provide the first evidence that PhoPQ-mediated upregulation of OMV production contributes to bacterial survival by interfering with complement activation. OMVs protected bacteria in a dose-dependent manner, and bacteria were highly susceptible to complement-mediated killing in their absence. OMVs from bacteria expressing PagC bound to complement component C3b in a dose-dependent manner and inactivated it by recruiting complement inhibitor Factor H. As we also found that Factor H binds to PagC, we propose that PagC interferes with complement-mediated killing of Salmonella in the following two steps: first by engaging Factor H, and second, through the production of PagC-enriched OMVs that divert and inactivate the complement away from the bacteria. Since PhoPQ activation occurs intracellularly, the resultant increase in PagC expression and OMV production is suggested to contribute to the local and systemic spread of Salmonella released from dying host cells that supports the infection of new cells. IMPORTANCE Bacterial outer membrane vesicles (OMVs) mediate critical bacterium-bacterium and host-microbial interactions that influence pathogenesis through multiple mechanisms, including the elicitation of inflammatory responses, delivery of virulence factors, and enhancement of biofilm formation. As such, there is a growing interest in understanding the underlying mechanisms of OMV production. Recent studies have revealed that OMV biogenesis is a finely tuned physiological process that requires structural organization and selective sorting of outer membrane components into the vesicles. In Salmonella, outer membrane remodeling and OMV production are tightly regulated by its PhoPQ system. In this study, we demonstrate that PhoPQ-regulated OMV production plays a significant role in defense against host innate immune attack. PhoPQ-activated PagC expression recruits the complement inhibitor Factor H and degrades the active C3 component of complement. Our results provide valuable insight into the combination of tools and environmental signals that Salmonella employs to evade complement-mediated lysis, thereby suggesting a strong evolutionary adaptation of this facultative intracellular pathogen to protect itself during its extracellular stage in the host.
Collapse
|
48
|
Molecular Basis of Essentiality of Early Critical Steps in the Lipopolysaccharide Biogenesis in Escherichia coli K-12: Requirement of MsbA, Cardiolipin, LpxL, LpxM and GcvB. Int J Mol Sci 2021; 22:ijms22105099. [PMID: 34065855 PMCID: PMC8151780 DOI: 10.3390/ijms22105099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
To identify the physiological factors that limit the growth of Escherichia coli K-12 strains synthesizing minimal lipopolysaccharide (LPS), we describe the first construction of strains devoid of the entire waa locus and concomitantly lacking all three acyltransferases (LpxL/LpxM/LpxP), synthesizing minimal lipid IVA derivatives with a restricted ability to grow at around 21 °C. Suppressors restoring growth up to 37 °C of Δ(gmhD-waaA) identified two independent single-amino-acid substitutions—P50S and R310S—in the LPS flippase MsbA. Interestingly, the cardiolipin synthase-encoding gene clsA was found to be essential for the growth of ΔlpxLMP, ΔlpxL, ΔwaaA, and Δ(gmhD-waaA) bacteria, with a conditional lethal phenotype of Δ(clsA lpxM), which could be overcome by suppressor mutations in MsbA. Suppressor mutations basS A20D or basR G53V, causing a constitutive incorporation of phosphoethanolamine (P-EtN) in the lipid A, could abolish the Ca++ sensitivity of Δ(waaC eptB), thereby compensating for P-EtN absence on the second Kdo. A single-amino-acid OppA S273G substitution is shown to overcome the synthetic lethality of Δ(waaC surA) bacteria, consistent with the chaperone-like function of the OppA oligopeptide-binding protein. Furthermore, overexpression of GcvB sRNA was found to repress the accumulation of LpxC and suppress the lethality of LapAB absence. Thus, this study identifies new and limiting factors in regulating LPS biosynthesis.
Collapse
|
49
|
Abstract
The outer membrane of Gram-negative bacteria is essential for their survival in harsh environments and provides intrinsic resistance to many antibiotics. This membrane is remarkable; it is a highly asymmetric lipid bilayer. The inner leaflet of the outer membrane contains phospholipids, whereas the fatty acyl chains attached to lipopolysaccharide (LPS) comprise the hydrophobic portion of the outer leaflet. This lipid asymmetry, and in particular the exclusion of phospholipids from the outer leaflet, is key to creating an almost impenetrable barrier to hydrophobic molecules that can otherwise pass through phospholipid bilayers. It has long been known that these lipids are not made in the outer membrane. It is now believed that conserved multisubunit protein machines extract these lipids after their synthesis is completed at the inner membrane and transport them to the outer membrane. A longstanding question is how the cell builds and maintains this asymmetric lipid bilayer in coordination with the assembly of the other components of the cell envelope. This Review describes the trans-envelope lipid transport systems that have been identified to participate in outer-membrane biogenesis: LPS transport via the Lpt machine, and phospholipid transport via the Mla pathway and several recently proposed transporters.
Collapse
Affiliation(s)
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
50
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|