1
|
Regmi P, Knesebeck M, Boles E, Weuster-Botz D, Oreb M. A comparative analysis of NADPH supply strategies in Saccharomyces cerevisiae: Production of d-xylitol from d-xylose as a case study. Metab Eng Commun 2024; 19:e00245. [PMID: 39072283 PMCID: PMC11283233 DOI: 10.1016/j.mec.2024.e00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Enhancing the supply of the redox cofactor NADPH in metabolically engineered cells is a critical target for optimizing the synthesis of many product classes, such as fatty acids or terpenoids. In S. cerevisiae, several successful approaches have been developed in different experimental contexts. However, their systematic comparison has not been reported. Here, we established the reduction of xylose to xylitol by an NADPH-dependent xylose reductase as a model reaction to compare the efficacy of different NADPH supply strategies in the course of a batch fermentation, in which glucose and ethanol are sequentially used as carbon sources and redox donors. We show that strains overexpressing the glucose-6-phosphate dehydrogenase Zwf1 perform best, producing up to 16.9 g L-1 xylitol from 20 g L-1 xylose in stirred tank bioreactors. The beneficial effect of increased Zwf1 activity is especially pronounced during the ethanol consumption phase. The same notion applies to the deletion of the aldehyde dehydrogenase ALD6 gene, albeit at a quantitatively lower level. Reduced expression of the phosphoglucose isomerase Pgi1 and heterologous expression of the NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase Gdp1 from Kluyveromyces lactis acted synergistically with ZWF1 overexpression in the presence of glucose, but had a detrimental effect after the diauxic shift. Expression of the mitochondrial NADH kinase Pos5 in the cytosol likewise improved the production of xylitol only on glucose, but not in combination with enhanced Zwf1 activity. To demonstrate the generalizability of our observations, we show that the most promising strategies - ZWF1 overexpression and deletion of ALD6 - also improve the production of l-galactonate from d-galacturonic acid. Therefore, we expect that these findings will provide valuable guidelines for engineering not only the production of xylitol but also of diverse other pathways that require NADPH.
Collapse
Affiliation(s)
- Priti Regmi
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Molecular Biosciences, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany
| | - Melanie Knesebeck
- Technical University of Munich, Chair of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| | - Eckhard Boles
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Molecular Biosciences, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Chair of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| | - Mislav Oreb
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Molecular Biosciences, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Kwolek-Mirek M, Maslanka R, Bednarska S, Przywara M, Kwolek K, Zadrag-Tecza R. Strategies to Maintain Redox Homeostasis in Yeast Cells with Impaired Fermentation-Dependent NADPH Generation. Int J Mol Sci 2024; 25:9296. [PMID: 39273244 PMCID: PMC11395483 DOI: 10.3390/ijms25179296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Redox homeostasis is the balance between oxidation and reduction reactions. Its maintenance depends on glutathione, including its reduced and oxidized form, GSH/GSSG, which is the main intracellular redox buffer, but also on the nicotinamide adenine dinucleotide phosphate, including its reduced and oxidized form, NADPH/NADP+. Under conditions that enable yeast cells to undergo fermentative metabolism, the main source of NADPH is the pentose phosphate pathway. The lack of enzymes responsible for the production of NADPH has a significant impact on yeast cells. However, cells may compensate in different ways for impairments in NADPH synthesis, and the choice of compensation strategy has several consequences for cell functioning. The present study of this issue was based on isogenic mutants: Δzwf1, Δgnd1, Δald6, and the wild strain, as well as a comprehensive panel of molecular analyses such as the level of gene expression, protein content, and enzyme activity. The obtained results indicate that yeast cells compensate for the lack of enzymes responsible for the production of cytosolic NADPH by changing the content of selected proteins and/or their enzymatic activity. In turn, the cellular strategy used to compensate for them may affect cellular efficiency, and thus, the ability to grow or sensitivity to environmental acidification.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Sabina Bednarska
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Michał Przywara
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Kornelia Kwolek
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
3
|
Shi Y, Lu S, Zhou X, Wang X, Zhang C, Wu N, Dong T, Xing S, Wang Y, Xiao W, Yao M. Systematic metabolic engineering enables highly efficient production of vitamin A in Saccharomyces cerevisiae. Synth Syst Biotechnol 2024; 10:58-67. [PMID: 39247801 PMCID: PMC11380465 DOI: 10.1016/j.synbio.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Vitamin A is a micronutrient critical for versatile biological functions and has been widely used in the food, cosmetics, pharmaceutical, and nutraceutical industries. Synthetic biology and metabolic engineering enable microbes, especially the model organism Saccharomyces cerevisiae (generally recognised as safe) to possess great potential for the production of vitamin A. Herein, we first generated a vitamin A-producing strain by mining β-carotene 15,15'-mono(di)oxygenase from different sources and identified two isoenzymes Mbblh and Ssbco with comparable catalytic properties but different catalytic mechanisms. Combinational expression of isoenzymes increased the flux from β-carotene to vitamin A metabolism. To modulate the vitamin A components, retinol dehydrogenase 12 from Homo sapiens was introduced to achieve more than 90 % retinol purity using shake flask fermentation. Overexpressing POS5Δ17 enhanced the reduced nicotinamide adenine dinucleotide phosphate pool, and the titer of vitamin A was elevated by almost 46 %. Multi-copy integration of the key rate-limiting step gene Mbblh further improved the synthesis of vitamin A. Consequently, the titer of vitamin A in the strain harbouring the Ura3 marker was increased to 588 mg/L at the shake-flask level. Eventually, the highest reported titer of 5.21 g/L vitamin A in S. cerevisiae was achieved in a 1-L bioreactor. This study unlocked the potential of S. cerevisiae for synthesising vitamin A in a sustainable and economical way, laying the foundation for the commercial-scale production of bio-based vitamin A.
Collapse
Affiliation(s)
- Yi Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Shuhuan Lu
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan, 430075, China
| | - Xiao Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Xinhui Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Chenglong Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Nan Wu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Tianyu Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Shilong Xing
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
- School of Life Sciences, Faculty of Medicine, Tianjin University, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, 518071, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| |
Collapse
|
4
|
Dancis A, Pandey AK, Pain D. Mitochondria function in cytoplasmic FeS protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119733. [PMID: 38641180 DOI: 10.1016/j.bbamcr.2024.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Iron‑sulfur (FeS) clusters are cofactors of numerous proteins involved in essential cellular functions including respiration, protein translation, DNA synthesis and repair, ribosome maturation, anti-viral responses, and isopropylmalate isomerase activity. Novel FeS proteins are still being discovered due to the widespread use of cryogenic electron microscopy (cryo-EM) and elegant genetic screens targeted at protein discovery. A complex sequence of biochemical reactions mediated by a conserved machinery controls biosynthesis of FeS clusters. In eukaryotes, a remarkable epistasis has been observed: the mitochondrial machinery, termed ISC (Iron-Sulfur Cluster), lies upstream of the cytoplasmic machinery, termed CIA (Cytoplasmic Iron‑sulfur protein Assembly). The basis for this arrangement is the production of a hitherto uncharacterized intermediate, termed X-S or (Fe-S)int, produced in mitochondria by the ISC machinery, exported by the mitochondrial ABC transporter Atm1 (ABCB7 in humans), and then utilized by the CIA machinery for the cytoplasmic/nuclear FeS cluster assembly. Genetic and biochemical findings supporting this sequence of events are herein presented. New structural views of the Atm1 transport phases are reviewed. The key compartmental roles of glutathione in cellular FeS cluster biogenesis are highlighted. Finally, data are presented showing that every one of the ten core components of the mitochondrial ISC machinery and Atm1, when mutated or depleted, displays similar phenotypes: mitochondrial and cytoplasmic FeS clusters are both rendered deficient, consistent with the epistasis noted above.
Collapse
Affiliation(s)
- Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Park J, Lee N, Kim H, Kim D, Shin S, Choi S, Choi GJ, Son H. A mitochondrial NAD/NADH kinase governs fungal virulence through an oxidative stress response and arginine biosynthesis in Fusarium graminearum. Microbiol Res 2024; 283:127692. [PMID: 38508088 DOI: 10.1016/j.micres.2024.127692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
NADP/NADPH plays an indispensable role in cellular metabolism, serving as a pivotal cofactor in numerous enzymatic processes involved in anabolic pathways, antioxidant defense, and the biosynthesis of essential cellular components. NAD/NADH kinases (NADKs) phosphorylate NAD/NADH, constituting the sole de novo synthetic pathway for NADP/NADPH generation. Despite the pivotal role of NADP/NADPH in cellular functions, the physiological role of NADK remains largely unexplored in filamentous fungi. In this study, we identified three putative NADKs in Fusarium graminearum-FgNadk1, FgNadk2, and FgNadk3-responsible for NAD/NADH phosphorylation. NADK-mediated formation of intracellular NADPH proved crucial for vegetative growth, sexual reproduction, and virulence. Specifically, FgNadk2, the mitochondrial NADK, played a role in oxidative stress resistance and the maintenance of mitochondrial reactive oxygen species levels. Moreover, the deletion of FgNADK2 resulted in arginine auxotrophy, contributing to the reduced fungal virulence. These findings underscore the necessity of mitochondrial NADK in fungal virulence in F. graminearum, revealing its involvement in mitochondrial redox homeostasis and the arginine biosynthetic pathway. This study provides critical insights into the interconnectedness of metabolic pathways essential for fungal growth, stress response, and pathogenicity.
Collapse
Affiliation(s)
- Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Nahyun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hun Kim
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dohun Kim
- Childern's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Soobin Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyoung Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Wang J, Zhou X, Li K, Wang H, Zhang C, Shi Y, Yao M, Wang Y, Xiao W. Systems Metabolic Engineering for Efficient Violaxanthin Production in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10459-10468. [PMID: 38666490 DOI: 10.1021/acs.jafc.4c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Violaxanthin is a plant-derived orange xanthophyll with remarkable antioxidant activity that has wide applications in various industries, such as food, agriculture, and cosmetics. In addition, it is the key precursor of important substances such as abscisic acid and fucoxanthin. Saccharomyces cerevisiae, as a GRAS (generally regarded as safe) chassis, provides a good platform for producing violaxanthin production with a yield of 7.3 mg/g DCW, which is far away from commercialization. Herein, an integrated strategy involving zeaxanthin epoxidase (ZEP) source screening, cytosol redox state engineering, and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration was implemented to enhance violaxanthin production in S. cerevisiae. 58aa-truncated ZEP from Vitis vinifera exhibited optimal efficiency in an efficient zeaxanthin-producing strain. The titer of violaxanthin gradually increased by 17.9-fold (up to 119.2 mg/L, 15.19 mg/g DCW) via cytosol redox state engineering and NADPH supplementation. Furthermore, balancing redox homeostasis considerably improved the zeaxanthin concentration by 139.3% (up to 143.9 mg/L, 22.06 mg/g DCW). Thus, the highest reported titers of violaxanthin and zeaxanthin in S. cerevisiae were eventually achieved. This study not only builds an efficient platform for violaxanthin biosynthesis but also serves as a useful reference for the microbial production of xanthophylls.
Collapse
Affiliation(s)
- Jia Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Xiao Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Kexin Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Herong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Chenglong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ying Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| |
Collapse
|
7
|
Tyibilika V, Setati ME, Bloem A, Divol B, Camarasa C. Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production. Int J Food Microbiol 2024; 411:110537. [PMID: 38150773 DOI: 10.1016/j.ijfoodmicro.2023.110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
The maintenance of the balance between oxidised and reduced redox cofactors is essential for the functioning of many cellular processes in all living organisms. While the electron transport chain plays a key role in maintaining this balance under respiratory conditions, its inactivity in the absence of oxygen poses a challenge that yeasts such as Saccharomyces cerevisiae overcome through the production of various metabolic end-products during alcoholic fermentation. In this study, we investigated the diversity occurring between wine yeast species in their management of redox balance and its consequences on the fermentation performances and the formation of metabolites. To this aim, we quantified the changes in NAD(H) and NADP(H) concentrations and redox status throughout the fermentation of 6 wine yeast species. While the availability of NADP and NADPH remained balanced and stable throughout the process for all the strains, important differences between species were observed in the dynamics of NAD and NADH intracellular pools. A comparative analysis of these data with the fermentation capacity and metabolic profiles of the strains revealed that Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans strains were able to reoxidise NADH to NAD throughout the fermentation, mainly by the formation of glycerol. These species exhibited good fermentation capacities. Conversely, Starmerella bacillaris and Metschnikowia pulcherrima species were unable to regenerate NAD as early as one third of sugars were consumed, explaining at least in part their poor growth and fermentation performances. The Kluyveromyces marxianus strain exhibited a specific behaviour, by maintaining similar levels of NAD and NADH throughout the process. This balance between oxidised and reduced redox cofactors ensured the consumption of a large part of sugars by this species, despite a low fermentation rate. In addition, the dynamics of redox cofactors affected the production of by-products by the various strains either directly or indirectly, through the formation of precursors. Major examples are the increased formation of glycerol by S. bacillaris and M. pulcherrima strains, as a way of trying to reoxidise NADH, and the greater capacity to produce acetate and derived metabolites of yeasts capable of maintaining their redox balance. Overall, this study provided new insight into the contribution of the management of redox status to the orientation of yeast metabolism during fermentation. This information should be taken into account when developing strategies for more efficient and effective fermentation.
Collapse
Affiliation(s)
- Viwe Tyibilika
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France; South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Audrey Bloem
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Benoit Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Carole Camarasa
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France; South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
8
|
Karitani Y, Yamada R, Matsumoto T, Ogino H. UV mutagenesis improves growth potential of green algae in a green algae-yeast co-culture system. Arch Microbiol 2024; 206:61. [PMID: 38216809 DOI: 10.1007/s00203-023-03796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
It is known that co-cultivation of green algae with heterotrophic microorganisms, such as yeast, improves green algae's growth potential and carbon dioxide fixation, even under low CO2 concentration conditions such as the atmosphere. Introducing mutations into green algae is also expected to enhance their growth potential. In this study, we sought to improve the growth potential of a co-culture system of the green algae Chlamydomonas reinhardtii and the yeast Saccharomyces cerevisiae by introducing mutations into the green algae. Additionally, we performed a transcriptome analysis of the co-culture of the green algae mutant strain with yeast, discussing the interaction between the green algae mutant strain and the yeast. When the green algae mutant strain was co-cultured with yeast, the number of green algae cells reached 152 × 105 cells/mL after 7 days of culture. This count was 2.6 times higher than when the wild-type green algae strain was cultured alone and 1.6 times higher than when the wild-type green algae strain and yeast were co-cultured. The transcriptome analysis also indicated that the primary reason for the increased growth potential of the green algae mutant strain was its enhanced photosynthetic activity and nitrogen utilization efficiency.
Collapse
Affiliation(s)
- Yukino Karitani
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan.
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
9
|
Fan F, Zhu YX, Wu MY, Yin WX, Li GQ, Hahn M, Hamada MS, Luo CX. Mitochondrial Inner Membrane ABC Transporter Bcmdl1 Is Involved in Conidial Germination, Virulence, and Resistance to Anilinopyrimidine Fungicides in Botrytis cinerea. Microbiol Spectr 2023; 11:e0010823. [PMID: 37318357 PMCID: PMC10434148 DOI: 10.1128/spectrum.00108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 06/16/2023] Open
Abstract
Botrytis cinerea causes gray mold on thousands of plants, leading to huge losses in production. Anilinopyrimidine (AP) fungicides have been applied to control B. cinerea since the 1990s. Although resistance to AP fungicides was detected soon after their application, the mechanism of AP resistance remains to be elucidated. In this study, a sexual cross between resistant and sensitive isolates was performed, and the genomes of parental isolates and progenies were sequenced to identify resistance-related single nucleotide polymorphisms (SNPs). After screening and verification, mutation E407K in the Bcmdl1 gene was identified and confirmed to confer resistance to AP fungicides in B. cinerea. Bcmdl1 was predicted to encode a mitochondrial protein that belonged to a half-type ATP-binding cassette (ABC) transporter. Although Bcmdl1 was a transporter, it did not mediate resistance to multiple fungicides but mediated resistance specifically to AP fungicides. On the other hand, reductions in conidial germination and virulence were observed in Bcmdl1 knockout transformants compared to the parental isolate and complemented transformants, illustrating the biological functions of Bcmdl1. Subcellular localization analysis indicated that Bcmdl1 was localized in mitochondria. Interestingly, the production of ATP was reduced after cyprodinil treatment in Bcmdl1 knockout transformants, suggesting that Bcmdl1 was involved in ATP synthesis. Since Mdl1 could interact with ATP synthase in yeast, we hypothesize that Bcmdl1 forms a complex with ATP synthase, which AP fungicides might target, thereby interfering with the metabolism of energy. IMPORTANCE Gray mold, caused by B. cinerea, causes huge losses in the production of many fruits and vegetables. AP fungicides have been largely adopted to control this disease since the 1990s, and the development of resistance to AP fungicides initiates new problems for disease control. Due to the unknown mode of action, information on the mechanism of AP resistance is also limited. Recently, mutations in mitochondrial genes were reported to be related to AP resistance. However, the mitochondrial process of these genes remains to be elucidated. In this study, we identified several AP resistance-related mutations by quantitative trait locus sequencing (QTL-seq) and confirmed that mutation E407K in Bcmdl1 conferred AP resistance. We further characterized the expression patterns, biological functions, subcellular localization, and mitochondrial processes of the Bcmdl1 gene. This study deepens our understanding of the mechanism of resistance to and mode of action of AP fungicides.
Collapse
Affiliation(s)
- Fei Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Xu Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min-Yi Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guo-Qing Li
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed S. Hamada
- Pesticides Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Chao-Xi Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Janeczko A, Przywara M, Maslanka R, Raś B, Ziaja K, Kwolek-Mirek M, Zadrag-Tecza R, Bednarska S. Redox perturbations in yeast cells lacking glutathione reductase. Fungal Genet Biol 2023; 167:103810. [PMID: 37172803 DOI: 10.1016/j.fgb.2023.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cellular redox homeostasis has a major effect on cell functions and its maintenance is supported by glutathione and protein thiols which serve as redox buffers in cells. The regulation of the glutathione biosynthetic pathway is a focus of a lot of scientific research. However, still little is known about how complex cellular networks influence glutathione homeostasis. In this work was used an experimental system based on an S. cerevisiae yeast mutant with a lack of the glutathione reductase enzyme and allyl alcohol as a precursor of acrolein inside the cell to determine the cellular processes influencing glutathione homeostasis. The absence of Glr1p slows down the growth rate of the cell population, especially in the presence of allyl alcohol, but does not lead to complete inhibition of the cell's reproductive capacity. It also amends the GSH/GSSG ratio and the share of NADPH and NADP+ in the total NADP(H) pool. The obtained results show that potential pathways involved in the maintenance of redox homeostasis are based from one side on de novo synthesis of GSH as indicated by increased activity of γ-GCS and increased expression of GSH1 gene in the Δglr1 mutant, from the other hand, on increased the level of NADPH. This is because the lower ratio of GSH/GSSG can be counterbalanced with the NADPH/NADP+ alternative system. The higher level of NADPH can be used by the thioredoxin system and other enzymes requiring NADPH to reduce cytosolic GSSG and maintain glutathione redox potential.
Collapse
Affiliation(s)
- Agnieszka Janeczko
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Michał Przywara
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Roman Maslanka
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Barbara Raś
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Klaudia Ziaja
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Magdalena Kwolek-Mirek
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland.
| | - Sabina Bednarska
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
11
|
Guo J, Sun X, Yuan Y, Chen Q, Ou Z, Deng Z, Ma T, Liu T. Metabolic Engineering of Saccharomyces cerevisiae for Vitamin B5 Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7408-7417. [PMID: 37154424 DOI: 10.1021/acs.jafc.3c01082] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Vitamin B5, also called d-pantothenic acid, is an essential vitamin in the human body and is widely used in pharmaceuticals, nutritional supplements, food, and cosmetics. However, few studies have investigated the microbial production of d-pantothenic acid, especially in Saccharomyces cerevisiae. By employing a systematic optimization strategy, we screened seven key genes in d-pantothenic acid biosynthesis from diverse species, including bacteria, yeast, fungi, algae, plants, animals, etc., and constructed an efficient heterologous d-pantothenic acid pathway in S. cerevisiae. By adjusting the copy number of the pathway modules, knocking out the endogenous bypass gene, balancing NADPH utilization, and regulating the GAL inducible system, a high-yield d-pantothenic acid-producing strain, DPA171, which can regulate gene expression using glucose, was constructed. By optimizing fed-batch fermentation, DPA171 produced 4.1 g/L d-pantothenic acid, which is the highest titer in S. cerevisiae to date. This study provides guidance for the development of vitamin B5 microbial cell factories.
Collapse
Affiliation(s)
- Jiaxuan Guo
- Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xixi Sun
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yujie Yuan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qitong Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zutian Ou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zixin Deng
- Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism, Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tian Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tiangang Liu
- Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism, Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
- Hesheng Tech, Co., Ltd., Wuhan 430073, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Zhang Y, Su M, Chen Y, Wang Z, Nielsen J, Liu Z. Engineering yeast mitochondrial metabolism for 3-hydroxypropionate production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:64. [PMID: 37031180 PMCID: PMC10082987 DOI: 10.1186/s13068-023-02309-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND With unique physiochemical environments in subcellular organelles, there has been growing interest in harnessing yeast organelles for bioproduct synthesis. Among these organelles, the yeast mitochondrion has been found to be an attractive compartment for production of terpenoids and branched-chain alcohols, which could be credited to the abundant supply of acetyl-CoA, ATP and cofactors. In this study we explored the mitochondrial potential for production of 3-hydroxypropionate (3-HP) and performed the cofactor engineering and flux control at the acetyl-CoA node to maximize 3-HP synthesis. RESULTS Metabolic modeling suggested that the mitochondrion serves as a more suitable compartment for 3-HP synthesis via the malonyl-CoA pathway than the cytosol, due to the opportunity to obtain a higher maximum yield and a lower oxygen consumption. With the malonyl-CoA reductase (MCR) targeted into the mitochondria, the 3-HP production increased to 0.27 g/L compared with 0.09 g/L with MCR expressed in the cytosol. With enhanced expression of dissected MCR enzymes, the titer reached to 4.42 g/L, comparable to the highest titer achieved in the cytosol so far. Then, the mitochondrial NADPH supply was optimized by overexpressing POS5 and IDP1, which resulted in an increase in the 3-HP titer to 5.11 g/L. Furthermore, with induced expression of an ACC1 mutant in the mitochondria, the final 3-HP production reached 6.16 g/L in shake flask fermentations. The constructed strain was then evaluated in fed-batch fermentations, and produced 71.09 g/L 3-HP with a productivity of 0.71 g/L/h and a yield on glucose of 0.23 g/g. CONCLUSIONS In this study, the yeast mitochondrion is reported as an attractive compartment for 3-HP production. The final 3-HP titer of 71.09 g/L with a productivity of 0.71 g/L/h was achieved in fed-batch fermentations, representing the highest titer reported for Saccharomyces cerevisiae so far, that demonstrated the potential of recruiting the yeast mitochondria for further development of cell factories.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mo Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Zheng Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
13
|
Zhang R, Zhang K. Mitochondrial NAD kinase in health and disease. Redox Biol 2023; 60:102613. [PMID: 36689815 PMCID: PMC9873681 DOI: 10.1016/j.redox.2023.102613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADP), a co-enzyme and an electron carrier, plays crucial roles in numerous biological functions, including cellular metabolism and antioxidation. Because NADP is subcellular-membrane impermeable, eukaryotes compartmentalize NAD kinases (NADKs), the NADP biosynthetic enzymes. Mitochondria are fundamental organelles for energy production through oxidative phosphorylation. Ten years after the discovery of the mitochondrial NADK (known as MNADK or NADK2), a significant amount of knowledge has been obtained regarding its functions, mechanism of action, human biology, mouse models, crystal structures, and post-translation modifications. NADK2 phosphorylates NAD(H) to generate mitochondrial NADP(H). NADK2-deficient patients suffered from hyperlysinemia, elevated plasma C10:2-carnitine (due to the inactivity of relevant NADP-dependent enzymes), and neuronal development defects. Nadk2-deficient mice recapitulate key features of NADK2-deficient patients, including metabolic and neuronal abnormalities. Crystal structures of human NADK2 show a dimer, with the NADP+-binding site located at the dimer interface. NADK2 activity is highly regulated by post-translational modifications, including S188 phosphorylation, K76 and K304 acetylation, and C193 S-nitrosylation; mutations in each site affect NADK2 activity and function. In mice, hepatic Nadk2 functions as a major metabolic regulator upon increased energy demands by regulating sirtuin 3 activity and fatty acid oxidation. Hopefully, future research on NADK2 will not only elucidate its functional roles in health and disease but will also pave the way for novel therapeutics for both rare and common diseases, including NADK2 deficiency and metabolic syndrome.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
14
|
Suzuki S, Tanaka D, Miyagi A, Takahara K, Kono M, Noguchi K, Ishikawa T, Nagano M, Yamaguchi M, Kawai-Yamada M. Loss of peroxisomal NAD kinase 3 (NADK3) affects photorespiration metabolism in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 283:153950. [PMID: 36889102 DOI: 10.1016/j.jplph.2023.153950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Nicotinamide adenine dinucleotides (NAD+ and NADP+) are electron mediators involved in various metabolic pathways. NADP(H) are produced by NAD kinase (NADK) through the phosphorylation of NAD(H). The Arabidopsis NADK3 (AtNADK3) is reported to preferentially phosphorylate NADH to NADPH and is localized in the peroxisome. To elucidate the biological function of AtNADK3 in Arabidopsis, we compared metabolites of nadk1, nadk2 and nadk3 Arabidopsis T-DNA inserted mutants. Metabolome analysis revealed that glycine and serine, which are intermediate metabolites of photorespiration, both increased in the nadk3 mutants. Plants grown for 6 weeks under short-day conditions showed increased NAD(H), indicating a decrease in the phosphorylation ratio in the NAD(P)(H) equilibrium. Furthermore, high CO2 (0.15%) treatment induced a decrease in glycine and serine in nadk3 mutants. The nadk3 showed a significant decrease in post-illumination CO2 burst, suggesting that the photorespiratory flux was disrupted in the nadk3 mutant. In addition, an increase in CO2 compensation points and a decrease in CO2 assimilation rate were observed in the nadk3 mutants. These results indicate that the lack of AtNADK3 causes a disruption in the intracellular metabolism, such as in amino acid synthesis and photorespiration.
Collapse
Affiliation(s)
- Shota Suzuki
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Daimu Tanaka
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan; Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Kentaro Takahara
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masaru Kono
- Graduate School of Science, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Minoru Nagano
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| |
Collapse
|
15
|
Pham NN, Chang CW, Chang YH, Tu Y, Chou JY, Wang HY, Hu YC. Rational genome and metabolic engineering of Candida viswanathii by split CRISPR to produce hundred grams of dodecanedioic acid. Metab Eng 2023; 77:76-88. [PMID: 36948241 DOI: 10.1016/j.ymben.2023.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
Candida viswanathii is a promising cell factory for producing dodecanedioic acid (DDA) and other long chain dicarboxylic acids. However, metabolic engineering of C. viswanathii is difficult partly due to the lack of synthetic biology toolkits. Here we developed CRISPR-based approaches for rational genome and metabolic engineering of C. viswanathii. We first optimized the CRISPR system and protocol to promote the homozygous gene integration efficiency to >60%. We also designed a split CRISPR system for one-step integration of multiple genes into C. viswanathii. We uncovered that co-expression of CYP52A19, CPRb and FAO2 that catalyze different steps in the biotransformation enhances DDA production and abolishes accumulation of intermediates. We also unveiled that co-expression of additional enzyme POS5 further promotes DDA production and augments cell growth. We harnessed the split CRISPR system to co-integrate these 4 genes (13.6 kb) into C. viswanathii and generated a stable strain that doubles the DDA titer (224 g/L), molar conversion (83%) and productivity (1.87 g/L/h) when compared with the parent strain. This study altogether identifies appropriate enzymes/promoters to augment dodecane conversion to DDA and implicates the potential of split CRISPR system for metabolic engineering of C. viswanathii.
Collapse
Affiliation(s)
- Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi Tu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - June-Yen Chou
- Innovation and R&D Division, Chang Chun Group, Taipei, Taiwan; Dairen Chemical Corp, Taipei, Taiwan
| | | | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
16
|
Wang H, Jiang G, Liang N, Dong T, Shan M, Yao M, Wang Y, Xiao W, Yuan Y. Systematic Engineering to Enhance 8-Hydroxygeraniol Production in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4319-4327. [PMID: 36857414 DOI: 10.1021/acs.jafc.2c09028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
8-Hydroxygeraniol, an important component of insect sex pheromones and defensive secretions, can be used as a potential biological insect repellent in agriculture. Microbial production provides sustainable and green means to efficiently gain 8-hydroxygeraniol. The conversion of geraniol to 8-hydroxygeraniol by P450 geraniol-8-hydroxylase (G8H) was regarded as the bottleneck for 8-hydroxygeraniol production. Herein, an integrated strategy consisting of the fitness between G8H and cytochrome P450 reductase (CPR), endoplasmic reticulum (ER) engineering, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) supply is implemented to enhance the production of 8-hydroxygeraniol in Saccharomyces cerevisiae. The titer of 8-hydroxygeraniol was gradually increased by 2.1-fold (up to 158.1 mg/L). Moreover, dehydrogenase ADH6 and reductase ARI1 responsible for the reduction of 8-hydroxygeraniol toward shunt products were also deleted, elevating 8-hydroxygeraniol production to 238.9 mg/L at the shake flask level. Consequently, more than 1.0 g/L 8-hydroxygeraniol in S. cerevisiae was achieved in 5.0 L fed-batch fermentation by a carbon restriction strategy, which was the highest-reported titer in microbes so far. Our work not only provides a sustainable way for de novo biosynthesis of 8-hydroxygeraniol but also sets a good reference in P450 engineering in microbes.
Collapse
Affiliation(s)
- Herong Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Guozhen Jiang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Nan Liang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tianyu Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mengying Shan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
17
|
Oka SI, Titus AS, Zablocki D, Sadoshima J. Molecular properties and regulation of NAD + kinase (NADK). Redox Biol 2022; 59:102561. [PMID: 36512915 PMCID: PMC9763689 DOI: 10.1016/j.redox.2022.102561] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) kinase (NADK) phosphorylates NAD+, thereby producing nicotinamide adenine dinucleotide phosphate (NADP). Both NADK genes and the NADP(H)-producing mechanism are evolutionarily conserved among archaea, bacteria, plants and mammals. In mammals, NADK is activated by phosphorylation and protein-protein interaction. Recent studies conducted using genetically altered models validate the essential role of NADK in cellular redox homeostasis and metabolism in multicellular organisms. Here, we describe the evolutionary conservation, molecular properties, and signaling mechanisms and discuss the pathophysiological significance of NADK.
Collapse
Affiliation(s)
| | | | | | - Junichi Sadoshima
- Rutgers New Jersey Medical School Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, NJ, 07101, USA.
| |
Collapse
|
18
|
Gong X, Li F, Liang Y, Han X, Wen M. Characteristics of NtCCD1-3 from tobacco, and protein engineering of the CCD1 to enhance β-ionone production in yeast. Front Microbiol 2022; 13:1011297. [PMID: 36212872 PMCID: PMC9539813 DOI: 10.3389/fmicb.2022.1011297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Biosynthesis of β-ionone by microbial cell factories has become a promising way to obtain natural β-ionone. The catalytic activity of carotenoid cleavage dioxygenase 1 (CCD1) in cleavage of β-carotene to β-ionone severely limits its biosynthesis. In this study, NtCCD1-3 from Nicotiana tabacum with high ability to cleave β-carotene was screened. Multiple strategies for improving the β-ionone yield in Saccharomyces cerevisiae were performed. The results showed that NtCCD1-3 could cleave a variety of caroteniods at the 9,10 (9′,10′) double bonds and lycopene at the 5,6 (5′,6′) positions. The insertion site delta for NtCCD1-3 gene was more suitable for enhancing the yield of β-ionone, showing 19.1-fold increase compared with the rox1 site. More importantly, mutant K38A of NtCCD1-3 in membrane-bonding domains could greatly promote β-ionone production by more than 3-fold. We also found that overexpression of the NADH kinase Pos5 could improve β-ionone yield up to 1.5 times. These results may provide valuable references for biosynthesis of β-ionone.
Collapse
Affiliation(s)
- Xiaowei Gong
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- R&D Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Fan Li
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Yupeng Liang
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Xiulin Han
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- *Correspondence: Xiulin Han,
| | - Mengliang Wen
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- Mengliang Wen,
| |
Collapse
|
19
|
Jiang YQ, Lin JP. Recent progress in strategies for steroid production in yeasts. World J Microbiol Biotechnol 2022; 38:93. [PMID: 35441962 DOI: 10.1007/s11274-022-03276-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
As essential structural molecules of fungal cell membrane, ergosterol is not only an important component of fungal growth and stress-resistance but also a key precursor for manufacturing steroid drugs of pharmaceutical or agricultural significance. So far, ergosterol biosynthesis in yeast has been elucidated elaborately, and efforts have been made to increase ergosterol production through regulation of ergosterol metabolism and storage. Furthermore, the same intermediates shared by yeasts and animals or plants make the construction of heterologous sterol pathways in yeast a promising approach to synthesize valuable steroids, such as phytosteroids and animal steroid hormones. During these challenging processes, several obstacles have arisen and been combated with great endeavors. This paper reviews recent research progress of yeast metabolic engineering for improving the production of ergosterol and heterologous steroids. The remaining tactics are also discussed.
Collapse
Affiliation(s)
- Yi-Qi Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian-Ping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
20
|
Xiao F, Lian J, Tu S, Xie L, Li J, Zhang F, Linhardt RJ, Huang H, Zhong W. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Chlorogenic Acid from Glucose. ACS Synth Biol 2022; 11:800-811. [PMID: 35107250 DOI: 10.1021/acssynbio.1c00487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorogenic acid (CGA), a major dietary phenolic compound, has been increasingly used in the food and pharmaceutical industries because of its ready availability and extensive biological and pharmacological activities. Traditionally, extraction from plants has been the main approach for the commercial production of CGA. This study reports the first efficient microbial production of CGA by engineering the yeast, Saccharomyces cerevisiae, on a simple mineral medium. First, an optimized de novo biosynthetic pathway for CGA was reconstructed in S. cerevisiae from glucose with a CGA titer of 36.6 ± 2.4 mg/L. Then, a multimodule engineering strategy was employed to improve CGA production: (1) unlocking the shikimate pathway and optimizing carbon distribution; (2) optimizing the l-Phe branch and pathway balancing; and (3) increasing the copy number of CGA pathway genes. The combination of these interventions resulted in an about 6.4-fold improvement of CGA titer up to 234.8 ± 11.1 mg/L in shake flask cultures. CGA titers of 806.8 ± 1.7 mg/L were achieved in a 1 L fed-batch fermenter. This study opens a route to effectively produce CGA from glucose in S. cerevisiae and establishes a platform for the biosynthesis of CGA-derived value-added metabolites.
Collapse
Affiliation(s)
- Feng Xiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Shuai Tu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linlin Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Haichan Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
21
|
Watcharawipas A, Sansatchanon K, Phithakrotchanakoon C, Tanapongpipat S, Runguphan W, Kocharin K. Novel carotenogenic gene combinations from red yeasts enhanced lycopene and beta-carotene production in Saccharomyces cerevisiae from the low-cost substrate sucrose. FEMS Yeast Res 2021; 21:6449371. [PMID: 34865010 DOI: 10.1093/femsyr/foab062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Carotenoids (C40H56) including lycopene and beta-carotene are relatively strong antioxidants that provide benefits to human health. Here, we screened highly efficient crt variants from red yeasts to improve lycopene and beta-carotene production in Saccharomyces cerevisiae. We identified that crt variants from Sporidiobolus pararoseus TBRC-BCC 63403 isolated from rice leaf in Thailand exhibited the highest activity in term of lycopene and beta-carotene production in the context of yeast. Specifically, the phytoene desaturase SpCrtI possessed up to 4-fold higher in vivo activity based on lycopene content than the benchmark enzyme BtCrtI from Blakeslea trispora in our engineered WWY005 strain. Also, the geranylgeranyl pyrophosphate (GGPP) synthase SpCrtE, the bifunctional phytoene synthase-lycopene cyclase SpCrtYB, and SpCrtI when combined led to 7-fold improvement in beta-carotene content over the benchmark enzymes from Xanthophyllomyces dendrorhous in the laboratory strain CEN.PK2-1C. Sucrose as an alternative to glucose was found to enhance lycopene production in cells lacking GAL80. Lastly, we demonstrated a step-wise improvement in lycopene production from shake-flasks to a 5-L fermenter using the strain with GAL80 intact. Altogether, our study represents novel findings on more effective crt genes from Sp. pararoseus over the previously reported benchmark genes and their potential applications in scale-up lycopene production.
Collapse
Affiliation(s)
- Akaraphol Watcharawipas
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kitisak Sansatchanon
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Chitwadee Phithakrotchanakoon
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kanokarn Kocharin
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
22
|
Zheng Y, Cabassa-Hourton C, Planchais S, Lebreton S, Savouré A. The proline cycle as an eukaryotic redox valve. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6856-6866. [PMID: 34331757 DOI: 10.1093/jxb/erab361] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The amino acid proline has been known for many years to be a component of proteins as well as an osmolyte. Many recent studies have demonstrated that proline has other roles such as regulating redox balance and energy status. In animals and plants, the well-described proline cycle is concomitantly responsible for the preferential accumulation of proline and shuttling of redox equivalents from the cytosol to mitochondria. The impact of the proline cycle goes beyond regulating proline levels. In this review, we focus on recent evidence of how the proline cycle regulates redox status in relation to other redox shuttles. We discuss how the interconversion of proline and glutamate shuttles reducing power between cellular compartments. Spatial aspects of the proline cycle in the entire plant are considered in terms of proline transport between organs with different metabolic regimes (photosynthesis versus respiration). Furthermore, we highlight the importance of this shuttle in the regulation of energy and redox power in plants, through a particularly intricate coordination, notably between mitochondria and cytosol.
Collapse
Affiliation(s)
- Yao Zheng
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Séverine Planchais
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Sandrine Lebreton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| |
Collapse
|
23
|
Wangpaichitr M, Theodoropoulos G, Nguyen DJM, Wu C, Spector SA, Feun LG, Savaraj N. Cisplatin Resistance and Redox-Metabolic Vulnerability: A Second Alteration. Int J Mol Sci 2021; 22:7379. [PMID: 34298999 PMCID: PMC8304747 DOI: 10.3390/ijms22147379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
The development of drug resistance in tumors is a major obstacle to effective cancer chemotherapy and represents one of the most significant complications to improving long-term patient outcomes. Despite early positive responsiveness to platinum-based chemotherapy, the majority of lung cancer patients develop resistance. The development of a new combination therapy targeting cisplatin-resistant (CR) tumors may mark a major improvement as salvage therapy in these patients. The recent resurgence in research into cellular metabolism has again confirmed that cancer cells utilize aerobic glycolysis ("the Warburg effect") to produce energy. Hence, this observation still remains a characteristic hallmark of altered metabolism in certain cancer cells. However, recent evidence promotes another concept wherein some tumors that acquire resistance to cisplatin undergo further metabolic alterations that increase tumor reliance on oxidative metabolism (OXMET) instead of glycolysis. Our review focuses on molecular changes that occur in tumors due to the relationship between metabolic demands and the importance of NAD+ in redox (ROS) metabolism and the crosstalk between PARP-1 (Poly (ADP ribose) polymerase-1) and SIRTs (sirtuins) in CR tumors. Finally, we discuss a role for the tumor metabolites of the kynurenine pathway (tryptophan catabolism) as effectors of immune cells in the tumor microenvironment during acquisition of resistance in CR cells. Understanding these concepts will form the basis for future targeting of CR cells by exploiting redox-metabolic changes and their consequences on immune cells in the tumor microenvironment as a new approach to improve overall therapeutic outcomes and survival in patients who fail cisplatin.
Collapse
Affiliation(s)
- Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
- Department of Surgery, Cardiothoracic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - George Theodoropoulos
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Dan J. M. Nguyen
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Sydney A. Spector
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Lynn G. Feun
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.G.F.); (N.S.)
| | - Niramol Savaraj
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.G.F.); (N.S.)
- Department of Veterans Affairs, Miami VA Healthcare System, Hematology/Oncology, 1201 NW 16 Street, Room D1010, Miami, FL 33125, USA
| |
Collapse
|
24
|
Zhu J, Schwörer S, Berisa M, Kyung YJ, Ryu KW, Yi J, Jiang X, Cross JR, Thompson CB. Mitochondrial NADP(H) generation is essential for proline biosynthesis. Science 2021; 372:968-972. [PMID: 33888598 DOI: 10.1126/science.abd5491] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
The coenzyme nicotinamide adenine dinucleotide phosphate (NADP+) and its reduced form (NADPH) regulate reductive metabolism in a subcellularly compartmentalized manner. Mitochondrial NADP(H) production depends on the phosphorylation of NAD(H) by NAD kinase 2 (NADK2). Deletion of NADK2 in human cell lines did not alter mitochondrial folate pathway activity, tricarboxylic acid cycle activity, or mitochondrial oxidative stress, but rather led to impaired cell proliferation in minimal medium. This growth defect was rescued by proline supplementation. NADK2-mediated mitochondrial NADP(H) generation was required for the reduction of glutamate and hence proline biosynthesis. Furthermore, mitochondrial NADP(H) availability determined the production of collagen proteins by cells of mesenchymal lineage. Thus, a primary function of the mitochondrial NADP(H) pool is to support proline biosynthesis for use in cytosolic protein synthesis.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon Schwörer
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mirela Berisa
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yeon Ju Kyung
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Keun Woo Ryu
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Junmei Yi
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin R Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Craig B Thompson
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
25
|
Zhao Y, Li J, Su R, Liu Y, Wang J, Deng Y. Effect of magnesium ions on glucaric acid production in the engineered Saccharomyces cerevisiae. J Biotechnol 2021; 332:61-71. [PMID: 33812897 DOI: 10.1016/j.jbiotec.2021.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 11/27/2022]
Abstract
Glucaric acid has been successfully produced in Escherichia coli and fungus. Here, we first analyzed the effects of different metal ions on glucaric acid production in the engineered Saccharomyces cerevisiae Bga-3 strain harboring the glucaric acid synthesis pathway. We found that magnesium ions could promote the growth rate of yeast cells, and thus, increase the glucaric acid production by elevating the glucose and myo-inositol utilization of Bga-3 strain. RNA-Seq transcriptome analysis results showed that the upregulation of genes involved in the gluconeogenesis pathway, as well as the downregulation of genes associated with the glycolysis pathway and pentose phosphate pathway in response to MgCl2 were all benefit for the enhancement of the glucose-6-phosphate flux, which was the precursor for myo-inositol and glucaric acid. In addition, we found that MgCl2 could also increase the activity of MIOX4, which was also crucial for glucaric acid synthesis. At last, a final glucaric acid titer of 10.6 g/L, the highest reported titer, was achieved in the fed-batch fermentation using a 5-L bioreactor by adding 100 mM MgCl2. Our findings will provide a new way of promoting the production of other chemicals in the engineered yeast cells.
Collapse
Affiliation(s)
- Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jie Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Ruifang Su
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, 100048, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
26
|
MURATA K. Polyphosphate-dependent nicotinamide adenine dinucleotide (NAD) kinase: A novel missing link in human mitochondria. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:479-498. [PMID: 34629356 PMCID: PMC8553519 DOI: 10.2183/pjab.97.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Polyphosphate [poly(P)] is described as a homopolymer of inorganic phosphates. Nicotinamide adenine dinucleotide kinase (NAD kinase) catalyzes the phosphorylation of NAD+ to NADP+ in the presence of ATP (ATP-NAD kinase). Novel NAD kinase that explicitly phosphorylates NAD+ to NADP+ using poly(P), besides ATP [ATP/poly(P)-NAD kinase], was found in bacteria, in particular, Gram-positive bacteria, and the gene encoding ATP/poly(P)-NAD kinase was also newly identified in Mycobacterium tuberculosis H37Rv. Both NAD kinases required multi-homopolymeric structures for activity expression. The enzymatic and genetic results, combined with their primary and tertiary structures, have led to the discovery of a long-awaited human mitochondrial NAD kinase. This discovery showed that the NAD kinase is a bacterial type of ATP/poly(P)-NAD kinase. These pioneering findings, i.e., ATP/poly(P)-NAD kinase, NAD kinase gene, and human mitochondrial NAD kinase, have significantly enhanced research on the biochemistry, molecular biology, and evolutionary biology of NAD kinase, mitochondria, and poly(P), including some biotechnological knowledge applicable to NADP+ production.
Collapse
|
27
|
Rabani R, Cossette C, Graham F, Powell WS. Protein kinase C activates NAD kinase in human neutrophils. Free Radic Biol Med 2020; 161:50-59. [PMID: 33011272 DOI: 10.1016/j.freeradbiomed.2020.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/14/2020] [Accepted: 09/26/2020] [Indexed: 12/23/2022]
Abstract
NAD kinase (NADK) is required for the de novo synthesis of NADP+ from NAD+. In neutrophils, NADK plays an essential role by providing sufficient levels of NADPH to support a robust oxidative burst. Activation of NADPH oxidase-2 (NOX-2) in neutrophils by stimulators of protein kinase C (PKC), such as phorbol myristate acetate (PMA), results in the rapid generation of superoxide at the expense of oxidation of NADPH to NADP+. In this study, we measured the levels of pyridine nucleotides following the addition of PMA to neutrophils. PMA elicited a rapid increase in NADP+ in neutrophils, which was not due to oxidation of NADPH, the levels of which also rose. This was mirrored by a rapid reduction in NAD+ levels, suggesting that NADK had been activated. PMA-induced depletion of NAD+ in neutrophils was blocked by PKC inhibitors, but was not dependent on NOX-2, as it was not blocked by the NOX inhibitor, diphenyleneiodonium. PMA also increased NADK activity in neutrophil lysates as well as NADK phosphorylation, as revealed by a monoclonal antibody selective for phospho-NADK. Human recombinant NADK was phosphorylated by PKCδ, resulting in increased immunoreactivity, but unchanged enzyme activity, suggesting that PKC-induced phosphorylation alone is insufficient to increase NADK activity in neutrophils. This leads us to speculate that phosphorylation of NADK promotes the dissociation of an inhibitory molecule from a complex, thereby increasing enzyme activity. Activation of NADK by PKC in phagocytic cells could be critical for the rapid provision of sufficient levels of superoxide for host defence against invading microorganisms.
Collapse
Affiliation(s)
- Razieh Rabani
- Meakins-Christie Laboratories, Centre for Translational Biology, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Chantal Cossette
- Meakins-Christie Laboratories, Centre for Translational Biology, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada
| | - François Graham
- Meakins-Christie Laboratories, Centre for Translational Biology, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada
| | - William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
28
|
Gu N, Qiu C, Zhao L, Zhang L, Pei J. Enhancing UDP-Rhamnose Supply for Rhamnosylation of Flavonoids in Escherichia coli by Regulating the Modular Pathway and Improving NADPH Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9513-9523. [PMID: 32693583 DOI: 10.1021/acs.jafc.0c03689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
UDP-rhamnose is the main type of sugar donor and endows flavonoids with special activity, selectivity, and pharmacological properties by glycosylation. In this study, several UDP-glucose synthesis pathways and UDP-rhamnose synthases were screened to develop an efficient UDP-rhamnose biosynthesis pathway in Escherichia coli. Maximal UDP-rhamnose production reached 82.2 mg/L in the recombinant strain by introducing the cellobiose phosphorolysis pathway and Arabidopsis thaliana UDP-rhamnose synthase (AtRHM). Quercitrin production of 3522 mg/L was achieved in the recombinant strain by coupling the UDP-rhamnose generation system with A. thaliana rhamnosyltransferase (AtUGT78D1) to recycle UDP-rhamnose. To further increase UDP-rhamnose supply, an NADPH-independent fusion enzyme was constructed, the UTP supply was improved, and NADPH regenerators were overexpressed in vivo. Finally, by optimizing the bioconversion conditions, the highest quercitrin production reached 7627 mg/L with the average productivity of 141 mg/(L h), which is the highest yield of quercitrin and efficiency of UDP-rhamnose supply reported to date in E. coli. Therefore, the method described herein for the regeneration of UDP-rhamnose from cellobiose may be widely used for the rhamnosylation of flavonoids and other bioactive substances.
Collapse
Affiliation(s)
- Na Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Cong Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Lihu Zhang
- Department of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224006, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| |
Collapse
|
29
|
Tomàs-Gamisans M, Andrade CCP, Maresca F, Monforte S, Ferrer P, Albiol J. Redox Engineering by Ectopic Overexpression of NADH Kinase in Recombinant Pichia pastoris ( Komagataella phaffii): Impact on Cell Physiology and Recombinant Production of Secreted Proteins. Appl Environ Microbiol 2020; 86:e02038-19. [PMID: 31757828 PMCID: PMC7054088 DOI: 10.1128/aem.02038-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/16/2019] [Indexed: 11/20/2022] Open
Abstract
High-level expression and secretion of heterologous proteins in yeast cause an increased energy demand, which may result in altered metabolic flux distributions. Moreover, recombinant protein overproduction often results in endoplasmic reticulum (ER) stress and oxidative stress, causing deviations from the optimal NAD(P)H regeneration balance. In this context, overexpression of genes encoding enzymes catalyzing endogenous NADPH-producing reactions, such as the oxidative branch of the pentose phosphate pathway, has been previously shown to improve protein production in Pichia pastoris (syn. Komagataella spp.). In this study, we evaluate the overexpression of the Saccharomyces cerevisiaePOS5-encoded NADH kinase in a recombinant P. pastoris strain as an alternative approach to overcome such redox constraints. Specifically, POS5 was cooverexpressed in a strain secreting an antibody fragment, either by directing Pos5 to the cytosol or to the mitochondria. The physiology of the resulting strains was evaluated in continuous cultivations with glycerol or glucose as the sole carbon source, as well as under hypoxia (on glucose). Cytosolic targeting of Pos5 NADH kinase resulted in lower biomass-substrate yields but allowed for a 2-fold increase in product specific productivity. In contrast, Pos5 NADH kinase targeting to the mitochondria did not affect growth physiology and recombinant protein production significantly. Growth physiological parameters were in silico evaluated using the recent upgraded version (v3.0) of the P. pastoris consensus genome-scale metabolic model iMT1026, providing insights on the impact of POS5 overexpression on metabolic flux distributions.IMPORTANCE Recombinant protein overproduction often results in oxidative stress, causing deviations from the optimal redox cofactor regeneration balance. This becomes one of the limiting factors in obtaining high levels of heterologous protein production. Overexpression of redox-affecting enzymes has been explored in other organisms, such as Saccharomyces cerevisiae, as a means to fine tune the cofactor regeneration balance in order to obtain higher protein titers. In the present work, this strategy is explored in P. pastoris In particular, one NADH kinase enzyme from S. cerevisiae (Pos5) is used, either in the cytosol or in mitochondria of P. pastoris, and its impact on the production of a model protein (antibody fragment) is evaluated. A significant improvement in the production of the model protein is observed when the kinase is directed to the cytosol. These results are significant in the field of heterologous protein production in general and in particular in the development of improved metabolic engineering strategies for P. pastoris.
Collapse
Affiliation(s)
- Màrius Tomàs-Gamisans
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Cristiane Conte Paim Andrade
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Francisco Maresca
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Sergi Monforte
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Pau Ferrer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Joan Albiol
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
30
|
Møller IM, Igamberdiev AU, Bykova NV, Finkemeier I, Rasmusson AG, Schwarzländer M. Matrix Redox Physiology Governs the Regulation of Plant Mitochondrial Metabolism through Posttranslational Protein Modifications. THE PLANT CELL 2020; 32:573-594. [PMID: 31911454 PMCID: PMC7054041 DOI: 10.1105/tpc.19.00535] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 05/18/2023]
Abstract
Mitochondria function as hubs of plant metabolism. Oxidative phosphorylation produces ATP, but it is also a central high-capacity electron sink required by many metabolic pathways that must be flexibly coordinated and integrated. Here, we review the crucial roles of redox-associated posttranslational protein modifications (PTMs) in mitochondrial metabolic regulation. We discuss several major concepts. First, the major redox couples in the mitochondrial matrix (NAD, NADP, thioredoxin, glutathione, and ascorbate) are in kinetic steady state rather than thermodynamic equilibrium. Second, targeted proteomics have produced long lists of proteins potentially regulated by Cys oxidation/thioredoxin, Met-SO formation, phosphorylation, or Lys acetylation, but we currently only understand the functional importance of a few of these PTMs. Some site modifications may represent molecular noise caused by spurious reactions. Third, different PTMs on the same protein or on different proteins in the same metabolic pathway can interact to fine-tune metabolic regulation. Fourth, PTMs take part in the repair of stress-induced damage (e.g., by reducing Met and Cys oxidation products) as well as adjusting metabolic functions in response to environmental variation, such as changes in light irradiance or oxygen availability. Finally, PTMs form a multidimensional regulatory system that provides the speed and flexibility needed for mitochondrial coordination far beyond that provided by changes in nuclear gene expression alone.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Natalia V Bykova
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba R6M 1Y5, Canada
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, DE-48149 Münster, Germany
| | | | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, DE-48143 Münster, Germany
| |
Collapse
|
31
|
Pan C, Li YX, Yang K, Famous E, Ma Y, He X, Geng Q, Liu M, Tian J. The Molecular Mechanism of Perillaldehyde Inducing Cell Death in Aspergillus flavus by Inhibiting Energy Metabolism Revealed by Transcriptome Sequencing. Int J Mol Sci 2020; 21:ijms21041518. [PMID: 32102190 PMCID: PMC7073185 DOI: 10.3390/ijms21041518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/01/2023] Open
Abstract
Perillaldehyde (PAE), an essential oil in Perilla plants, serves as a safe flavor ingredient in foods, and shows an effectively antifungal activity. Reactive oxygen species (ROS) accumulation in Aspergillus flavus plays a critical role in initiating a metacaspase-dependent apoptosis. However, the reason for ROS accumulation in A. flavus is not yet clear. Using transcriptome sequencing of A. flavus treated with different concentrations of PAE, our data showed that the ROS accumulation might have been as a result of an inhibition of energy metabolism with less production of reducing power. By means of GO and KEGG enrichment analysis, we screened four key pathways, which were divided into two distinct groups: a downregulated group that was made up of the glycolysis and pentose phosphate pathway, and an upregulated group that consisted of MAPK signaling pathway and GSH metabolism pathway. The inhibition of dehydrogenase gene expression in two glycometabolism pathways might play a crucial role in antifungal mechanism of PAE. Also, in our present study, we systematically showed a gene interaction network of how genes of four subsets are effected by PAE stress on glycometabolism, oxidant damage repair, and cell cycle control. This research may contribute to explaining an intrinsic antifungal mechanism of PAE against A. flavus.
Collapse
Affiliation(s)
- Chao Pan
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Yong-Xin Li
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Kunlong Yang
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Erhunmwunsee Famous
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Yan Ma
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Xiaona He
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Qingru Geng
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Man Liu
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
- Correspondence: (M.L.); (J.T.); Tel.: +86-516-83403172 (J.T.)
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing100048, China
- Correspondence: (M.L.); (J.T.); Tel.: +86-516-83403172 (J.T.)
| |
Collapse
|
32
|
Wang X, Li BB, Ma TT, Sun LY, Tai L, Hu CH, Liu WT, Li WQ, Chen KM. The NAD kinase OsNADK1 affects the intracellular redox balance and enhances the tolerance of rice to drought. BMC PLANT BIOLOGY 2020; 20:11. [PMID: 31910821 PMCID: PMC6947874 DOI: 10.1186/s12870-019-2234-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/30/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND NAD kinases (NADKs) are the only known enzymes that directly phosphorylate NAD(H) to generate NADP(H) in different subcellular compartments. They participate in multiple life activities, such as modulating the NADP/NAD ratio, maintaining the intracellular redox balance and responding to environmental stresses. However, the functions of individual NADK in plants are still under investigation. Here, a rice NADK, namely, OsNADK1, was identified, and its functions in plant growth regulation and stress tolerance were analysed by employing a series of transgenic plant lines. RESULTS OsNADK1 is a cytosol-localized NADK in rice. It was expressed in all rice tissues examined, and its transcriptional expression could be stimulated by a number of environmental stress treatments. Compared with wild-type (WT) rice, the mutant plant osnadk1 in which OsNADK1 was knocked out was a dwarf at the heading stage and had decreased NADP(H)/NAD(H), ascorbic acid (ASA)/dehydroascorbate (DHA) and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios, which led to increased oxidation states in the rice cells and sensitivity to drought. Moreover, certain stress-related genes showed differential expression patterns in osnadk1 under both normal growth and drought-stress conditions compared with WT. Among these genes, OsDREB1B and several WRKY family transcription factors, e.g., OsWRKY21 and OsWRKY42, showed correlated co-expression patterns with OsNADK1 in osnadk1 and the plants overexpressing or underexpressing OsNADK1, implying roles for these transcription factors in OsNADK1-mediated processes. In addition, overexpression of OsNADK1 enhanced the drought tolerance of rice plants, whereas loss of function of the gene reduced the tolerance. Furthermore, the proline content was dramatically increased in the leaves of the OsNADK1-overexpressing lines under drought conditions. CONCLUSIONS Altogether, the results suggest that an OsNADK1-mediated intracellular redox balance is involved in the tolerance of rice plants to drought.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 Hubei China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Tian-Tian Ma
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Liang-Yu Sun
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
- College of Life Science and Agriculture, Zhoukou Normal University, Zhoukou, 466001 Henan China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
33
|
A Genetic Screen To Identify Genes Influencing the Secondary Redox Couple NADPH/NADP + in the Yeast Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:371-378. [PMID: 31757928 PMCID: PMC6945034 DOI: 10.1534/g3.119.400606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NADPH is an important cofactor in the cell. In addition to its role in the biosynthesis of critical metabolites, it plays crucial roles in the regeneration of the reduced forms of glutathione, thioredoxins and peroxiredoxins. The enzymes and pathways that regulate NADPH are thus extremely important to understand, and yet are only partially understood. We have been interested in understanding how NADPH fluxes are altered in the cell. We describe here both an assay and a genetic screen that allows one to discern changes in NADPH levels. The screen exploits the secondary redox property of NADPH. At low levels of glutathione we show that the redox contributions of NADPH become critical for growth, and we have used this to develop a genetic screen for genes affecting NADPH homeostasis. The screen was validated in pathways that both directly (pentose phosphate pathway) and indirectly (glycolytic pathway) affect NADPH levels, and was then exploited to identify mitochondrial genes that affect NADPH homeostasis. A total of 239 mitochondrial gene knockouts were assayed using this screen. Among these, several genes were predicted to play a role in NADPH homeostasis. This included several new genes of unknown function, and others of poorly defined function. We examined two of these genes, FMP40 which encodes a protein required during oxidative stress and GOR1, glyoxylate reductase. Our studies throw new light on these proteins that appear to be major consumers of NADPH in the cell. The genetic screen is thus predicted to be an exceedingly useful tool for investigating NADPH homeostasis.
Collapse
|
34
|
Müller WE, Schröder HC, Wang X. Inorganic Polyphosphates As Storage for and Generator of Metabolic Energy in the Extracellular Matrix. Chem Rev 2019; 119:12337-12374. [PMID: 31738523 PMCID: PMC6935868 DOI: 10.1021/acs.chemrev.9b00460] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 12/14/2022]
Abstract
Inorganic polyphosphates (polyP) consist of linear chains of orthophosphate residues, linked by high-energy phosphoanhydride bonds. They are evolutionarily old biopolymers that are present from bacteria to man. No other molecule concentrates as much (bio)chemically usable energy as polyP. However, the function and metabolism of this long-neglected polymer are scarcely known, especially in higher eukaryotes. In recent years, interest in polyP experienced a renaissance, beginning with the discovery of polyP as phosphate source in bone mineralization. Later, two discoveries placed polyP into the focus of regenerative medicine applications. First, polyP shows morphogenetic activity, i.e., induces cell differentiation via gene induction, and, second, acts as an energy storage and donor in the extracellular space. Studies on acidocalcisomes and mitochondria provided first insights into the enzymatic basis of eukaryotic polyP formation. In addition, a concerted action of alkaline phosphatase and adenylate kinase proved crucial for ADP/ATP generation from polyP. PolyP added extracellularly to mammalian cells resulted in a 3-fold increase of ATP. The importance and mechanism of this phosphotransfer reaction for energy-consuming processes in the extracellular matrix are discussed. This review aims to give a critical overview about the formation and function of this unique polymer that is capable of storing (bio)chemically useful energy.
Collapse
Affiliation(s)
- Werner E.G. Müller
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
35
|
Shi B, Ma T, Ye Z, Li X, Huang Y, Zhou Z, Ding Y, Deng Z, Liu T. Systematic Metabolic Engineering of Saccharomyces cerevisiae for Lycopene Overproduction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11148-11157. [PMID: 31532654 DOI: 10.1021/acs.jafc.9b04519] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lycopene is widely used in foods, cosmetics, nutritional supplements, and pharmaceuticals. Microbial production of lycopene has been intensively studied. However, there are few systematic engineering studies on Saccharomyces cerevisiae aimed at achieving high-yield lycopene production. In the current study, by employing a systematic optimization strategy, we screened the key lycopene biosynthetic genes, crtE, crtB, and crtI, from diverse organisms. By adjusting the copy number of these three key genes, knocking out endogenous bypass genes, increasing the supply of the precursor acetyl-CoA, balancing NADPH utilization, and regulating the GAL-inducible system, we constructed a high-yield lycopene-producing strain BS106, which can produce 310 mg/L lycopene in shake-flask fermentation, with gene expression controlled by glucose. In optimized two-stage fed-batch fermentation, BS106 produced 3.28 g/L lycopene in a 7 L fermenter, which is the highest concentration achieved in S. cerevisiae to date. It will decrease the consumption of tomatoes for lycopene extraction and increase the market supply of lycopene.
Collapse
Affiliation(s)
- Bin Shi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan 430072 , China
| | - Tian Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan 430072 , China
| | - Ziling Ye
- J1 Biotech Co., Ltd. , Wuhan 430075 , China
| | - Xiaowei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan 430072 , China
| | - Yanglei Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan 430072 , China
| | - Zhiyi Zhou
- J1 Biotech Co., Ltd. , Wuhan 430075 , China
| | - Yunkun Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan 430072 , China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan 430072 , China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan 430072 , China
- Hubei Engineering Laboratory for Synthetic Microbiology , Wuhan Institute of Biotechnology , Wuhan 430075 , China
| |
Collapse
|
36
|
Pandey AK, Pain J, Dancis A, Pain D. Mitochondria export iron-sulfur and sulfur intermediates to the cytoplasm for iron-sulfur cluster assembly and tRNA thiolation in yeast. J Biol Chem 2019; 294:9489-9502. [PMID: 31040179 DOI: 10.1074/jbc.ra119.008600] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/26/2019] [Indexed: 12/28/2022] Open
Abstract
Iron-sulfur clusters are essential cofactors of proteins. In eukaryotes, iron-sulfur cluster biogenesis requires a mitochondrial iron-sulfur cluster machinery (ISC) and a cytoplasmic iron-sulfur protein assembly machinery (CIA). Here we used mitochondria and cytoplasm isolated from yeast cells, and [35S]cysteine to detect cytoplasmic Fe-35S cluster assembly on a purified apoprotein substrate. We showed that mitochondria generate an intermediate, called (Fe-S)int, needed for cytoplasmic iron-sulfur cluster assembly. The mitochondrial biosynthesis of (Fe-S)int required ISC components such as Nfs1 cysteine desulfurase, Isu1/2 scaffold, and Ssq1 chaperone. Mitochondria then exported (Fe-S)int via the Atm1 transporter in the inner membrane, and we detected (Fe-S)int in active form. When (Fe-S)int was added to cytoplasm, CIA utilized it for iron-sulfur cluster assembly without any further help from the mitochondria. We found that both iron and sulfur for cytoplasmic iron-sulfur cluster assembly originate from the mitochondria, revealing a surprising and novel mitochondrial role. Mitochondrial (Fe-S)int export was most efficient in the presence of cytoplasm containing an apoprotein substrate, suggesting that mitochondria respond to the cytoplasmic demand for iron-sulfur cluster synthesis. Of note, the (Fe-S)int is distinct from the sulfur intermediate called Sint, which is also made and exported by mitochondria but is instead used for cytoplasmic tRNA thiolation. In summary, our findings establish a direct and vital role of mitochondria in cytoplasmic iron-sulfur cluster assembly in yeast cells.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- From the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103 and
| | - Jayashree Pain
- From the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103 and
| | - Andrew Dancis
- the Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Debkumar Pain
- From the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103 and
| |
Collapse
|
37
|
Veskoukis AS, Margaritelis NV, Kyparos A, Paschalis V, Nikolaidis MG. Spectrophotometric assays for measuring redox biomarkers in blood and tissues: the NADPH network. Redox Rep 2018; 23:47-56. [PMID: 29088980 PMCID: PMC6748689 DOI: 10.1080/13510002.2017.1392695] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+/NADH) along with its phosphorylated form (NADP+/NADPH) are two molecules ubiquitously present in all organisms, and they play key roles as cofactors in fundamental catabolic and anabolic processes, respectively. The oxidation of NADPH to NADP+ initiates a cascade of reactions, where a network of molecules is implicated. The molecules of this cascade form a network with eminent translational potential in redox metabolism. A special point of interest is that spectrophotometric assays have been developed both for NADH/NADPH and the molecules directly regulated by them. Therefore, crucial molecules of the NADPH-dependent redox network can be measured, and the results can be used to assess the bioenergetic and/or oxidative stress status. The main aim of this review is to collectively present the NADPH-related molecules, namely NADPH, NADH, NAD+ kinase, NADPH oxidase, peroxiredoxin, thioredoxin, thioredoxin reductase, and nitric oxide synthase, that can be measured in blood and tissues with the use of a spectrophotometer, which is probably the most simple, inexpensive and widely used tool in biochemistry. We are providing the researchers with reliable and valid spectrophotometric assays for the measurement of the most important biomarkers of the NADPH network in blood and other tissues, thus allowing the opportunity to follow the redox changes in response to a stimulus.
Collapse
Affiliation(s)
- Aristidis S. Veskoukis
- Department of Biochemistry and
Biotechnology, University of Thessaly, Larissa,
Greece
- Department of Physical Education and
Sports Science at Serres, Aristotle University of
Thessaloniki, Serres, Greece
| | - Nikos V. Margaritelis
- Department of Physical Education and
Sports Science at Serres, Aristotle University of
Thessaloniki, Serres, Greece
- Intensive Care Unit, 424 General Military
Hospital of Thessaloniki, Thessaloniki,
Greece
| | - Antonios Kyparos
- Department of Physical Education and
Sports Science at Serres, Aristotle University of
Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport
Science, National and Kapodistrian University of Athens,
Athens, Greece
- Department of Health Sciences, School of
Sciences, European University Cyprus, Nicosia,
Cyprus
| | - Michalis G. Nikolaidis
- Department of Physical Education and
Sports Science at Serres, Aristotle University of
Thessaloniki, Serres, Greece
| |
Collapse
|
38
|
Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng 2018; 52:134-142. [PMID: 30471360 DOI: 10.1016/j.ymben.2018.11.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022]
Abstract
Saccharomyces cerevisiae is an efficient host for natural-compound production and preferentially employed in academic studies and bioindustries. However, S. cerevisiae exhibits limited production capacity for lipophilic natural products, especially compounds that accumulate intracellularly, such as polyketides and carotenoids, with some engineered compounds displaying cytotoxicity. In this study, we used a nature-inspired strategy to establish an effective platform to improve lipid oil-triacylglycerol (TAG) metabolism and enable increased lycopene accumulation. Through systematic traditional engineering methods, we achieved relatively high-level production at 56.2 mg lycopene/g cell dry weight (cdw). To focus on TAG metabolism in order to increase lycopene accumulation, we overexpressed key genes associated with fatty acid synthesis and TAG production, followed by modulation of TAG fatty acyl composition by overexpressing a fatty acid desaturase (OLE1) and deletion of Seipin (FLD1), which regulates lipid-droplet size. Results showed that the engineered strain produced 70.5 mg lycopene/g cdw, a 25% increase relative to the original high-yield strain, with lycopene production reaching 2.37 g/L and 73.3 mg/g cdw in fed-batch fermentation and representing the highest lycopene yield in S. cerevisiae reported to date. These findings offer an effective strategy for extended systematic metabolic engineering through lipid engineering.
Collapse
|
39
|
Schwechheimer SK, Becker J, Peyriga L, Portais JC, Wittmann C. Metabolic flux analysis in Ashbya gossypii using 13C-labeled yeast extract: industrial riboflavin production under complex nutrient conditions. Microb Cell Fact 2018; 17:162. [PMID: 30326916 PMCID: PMC6190667 DOI: 10.1186/s12934-018-1003-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022] Open
Abstract
Background The fungus Ashbya gossypii is an important industrial producer of the vitamin riboflavin. Using this microbe, riboflavin is manufactured in a two-stage process based on a rich medium with vegetable oil, yeast extract and different precursors: an initial growth and a subsequent riboflavin production phase. So far, our knowledge on the intracellular metabolic fluxes of the fungus in this complex process is limited, but appears highly relevant to better understand and rationally engineer the underlying metabolism. To quantify intracellular fluxes of growing and riboflavin producing A. gossypii, studies with different 13C tracers were embedded into a framework of experimental design, isotopic labeling analysis by MS and NMR techniques, and model-based data processing. The studies included the use 13C of yeast extract, a key component used in the process. Results During growth, the TCA cycle was found highly active, whereas the cells exhibited a low flux through gluconeogenesis as well as pentose phosphate pathway. Yeast extract was the main carbon donor for anabolism, while vegetable oil selectively contributed to the proteinogenic amino acids glutamate, aspartate, and alanine. During the subsequent riboflavin biosynthetic phase, the carbon flux through the TCA cycle remained high. Regarding riboflavin formation, most of the vitamin’s carbon originated from rapeseed oil (81 ± 1%), however extracellular glycine and yeast extract also contributed with 9 ± 0% and 8 ± 0%, respectively. In addition, advanced yeast extract-based building blocks such as guanine and GTP were directly incorporated into the vitamin. Conclusion Intracellular carbon fluxes for growth and riboflavin production on vegetable oil provide the first flux insight into a fungus on complex industrial medium. The knowledge gained therefrom is valuable for further strain and process improvement. Yeast extract, while being the main carbon source during growth, contributes valuable building blocks to the synthesis of vitamin B2. This highlights the importance of careful selection of the right yeast extract for a process based on its unique composition. Electronic supplementary material The online version of this article (10.1186/s12934-018-1003-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Lindsay Peyriga
- Université de Toulouse, INSA, UPS, INP, Toulouse, France.,INRA, UMR792 Ingénerie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Jean-Charles Portais
- Université de Toulouse, INSA, UPS, INP, Toulouse, France.,INRA, UMR792 Ingénerie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
40
|
Li BB, Wang X, Tai L, Ma TT, Shalmani A, Liu WT, Li WQ, Chen KM. NAD Kinases: Metabolic Targets Controlling Redox Co-enzymes and Reducing Power Partitioning in Plant Stress and Development. FRONTIERS IN PLANT SCIENCE 2018; 9:379. [PMID: 29662499 PMCID: PMC5890153 DOI: 10.3389/fpls.2018.00379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 03/07/2018] [Indexed: 05/03/2023]
Abstract
NAD(H) and NADP(H) are essential co-enzymes which dominantly control a number of fundamental biological processes by acting as reducing power and maintaining the intracellular redox balance of all life kingdoms. As the only enzymes that catalyze NAD(H) and ATP to synthesize NADP(H), NAD Kinases (NADKs) participate in many essential metabolic reactions, redox sensitive regulation, photosynthetic performance and also reactive oxygen species (ROS) homeostasis of cells and therefore, play crucial roles in both development and stress responses of plants. NADKs are highly conserved enzymes in amino acid sequences but have multiple subcellular localization and diverse functions. They may function as monomers, dimers or multimers in cells but the enzymatic properties in plants are not well elucidated yet. The activity of plant NADK is regulated by calcium/calmodulin and plays crucial roles in photosynthesis and redox co-enzyme control. NADK genes are expressed in almost all tissues and developmental stages of plants with specificity for different members. Their transcripts can be greatly stimulated by a number of environmental factors such as pathogenic attack, irritant applications and abiotic stress treatments. Using transgenic approaches, several studies have shown that NADKs are involved in chlorophyll synthesis, photosynthetic efficiency, oxidative stress protection, hormone metabolism and signaling regulation, and therefore contribute to the growth regulation and stress tolerance of plants. In this review, the enzymatic properties and functional mechanisms of plant NADKs are thoroughly investigated based on literature and databases. The results obtained here are greatly advantageous for further exploration of NADK function in plants.
Collapse
|
41
|
Mosbach A, Edel D, Farmer AD, Widdison S, Barchietto T, Dietrich RA, Corran A, Scalliet G. Anilinopyrimidine Resistance in Botrytis cinerea Is Linked to Mitochondrial Function. Front Microbiol 2017; 8:2361. [PMID: 29250050 PMCID: PMC5714876 DOI: 10.3389/fmicb.2017.02361] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022] Open
Abstract
Crop protection anilinopyrimidine (AP) fungicides were introduced more than 20 years ago for the control of a range of diseases caused by ascomycete plant pathogens, and in particular for the control of gray mold caused by Botrytis cinerea. Although early mode of action studies suggested an inhibition of methionine biosynthesis, the molecular target of this class of fungicides was never fully clarified. Despite AP-specific resistance having been described in B. cinerea field isolates and in multiple other targeted species, the underlying resistance mechanisms were unknown. It was therefore expected that the genetic characterization of resistance mechanisms would permit the identification of the molecular target of these fungicides. In order to explore the widest range of possible resistance mechanisms, AP-resistant B. cinerea UV laboratory mutants were generated and the mutations conferring resistance were determined by combining whole-genome sequencing and reverse genetics. Genetic mapping from a cross between a resistant field isolate and a sensitive reference isolate was used in parallel and led to the identification of an additional molecular determinant not found from the characterized UV mutant collection. Together, these two approaches enabled the characterization of an unrivaled diversity of resistance mechanisms. In total, we report the elucidation of resistance-conferring mutations within nine individual genes, two of which are responsible for almost all instances of AP resistance in the field. All identified resistance-conferring genes encode proteins that are involved in mitochondrial processes, suggesting that APs primarily target the mitochondria. The functions of these genes and their possible interactions are discussed in the context of the potential mode of action for this important class of fungicides.
Collapse
Affiliation(s)
| | | | - Andrew D. Farmer
- National Center for Genome Resources, Santa Fe, NM, United States
- Syngenta Biotechnology Inc., Research Triangle Park, NC, United States
| | - Stephanie Widdison
- Syngenta Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | | | | | - Andy Corran
- Syngenta Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | | |
Collapse
|
42
|
Abstract
SIGNIFICANCE Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (EGSH) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. CRITICAL ISSUES In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H2O2), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. FUTURE DIRECTIONS We postulate that the application of genetically encoded sensors for glutathione in combination with novel H2O2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.
Collapse
Affiliation(s)
- Gaetano Calabrese
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 2 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| |
Collapse
|
43
|
Paramasivan K, Mutturi S. Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8162-8170. [PMID: 28845666 DOI: 10.1021/acs.jafc.7b02945] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although overexpression of the tHMG1 gene is a well-known strategy for terpene synthesis in Saccharomyces cerevisiae, the optimal level for tHMG1p has not been established. In the present study, it was observed that two copies of the tHMG1 gene on a dual gene expression cassette improved squalene synthesis in laboratory strain by 16.8-fold in comparison to single-copy expression. It was also observed that tHMG1p is limited by its cofactor (NADPH), as the overexpression of NADPH regenerating genes', viz., ZWF1 and POS5 (full length and without mitochondrial presequence), has led to its increased enzyme activity. Further, it was demonstrated that overexpression of full-length POS5 has improved squalene synthesis in cytosol. Finally, when tHMG1 and full-length POS5 were co-overexpressed there was a net 27.5-fold increase in squalene when compared to control strain. These results suggest novel strategies to increase squalene accumulation in S. cerevisiae.
Collapse
Affiliation(s)
- Kalaivani Paramasivan
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute , Mysore, India
- Academy of Scientific and Innovative Research , Mysore, New Delhi, India
| | - Sarma Mutturi
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute , Mysore, India
- Academy of Scientific and Innovative Research , Mysore, New Delhi, India
| |
Collapse
|
44
|
Prasad UV, Vasu D, Gowtham RR, Pradeep CK, Swarupa V, Yeswanth S, Choudhary A, Sarma PVGK. Cloning, Expression and Characterization of NAD Kinase from Staphylococcus aureus Involved in the Formation of NADP (H): A Key Molecule in the Maintaining of Redox Status and Biofilm Formation. Adv Biomed Res 2017; 6:97. [PMID: 28828348 PMCID: PMC5549544 DOI: 10.4103/2277-9175.211833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Staphylococcus aureus has the ability to form biofilms on any niches, a key pathogenic factor of this organism and this phenomenon is directly related to the concentration of NADPH. The formation of NADP is catalyzed by NAD kinase (NADK) and this gene of S. aureus ATCC 12600 was cloned, sequenced, expressed and characterized. MATERIALS AND METHODS The NADK gene was polymerase chain reaction amplified from the chromosomal DNA of S. aureus ATCC 12600 and cloned in pQE 30 vector, sequenced and expressed in Escherichia coli DH5α. The pure protein was obtained by passing through nickel metal chelate agarose column. The enzyme kinetics of the enzyme and biofilm assay of the S. aureus was carried out in both aerobic and anaerobic conditions. The kinetics was further confirmed by the ability of the substrates to dock to the NADK structure. RESULTS The recombinant NADK exhibited single band with a molecular weight of 31kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the gene sequence (GenBank: JN645814) revealed presence of only one kind of NADK in all S. aureus strains. The enzyme exhibited very high affinity for NAD compared to adenosine triphosphate concurring with the docking results. A root-mean-square deviation value 14.039Å observed when NADK structure was superimposed with its human counterpart suggesting very low homology. In anaerobic conditions, higher biofilm units were found with decreased NADK activity. CONCLUSION The results of this study suggest increased NADPH concentration in S. aureus plays a vital role in the biofilm formation and survival of this pathogen in any environmental conditions.
Collapse
Affiliation(s)
- U Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - D Vasu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - R Rishi Gowtham
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Ch Krishna Pradeep
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - V Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - S Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Abhijit Choudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| |
Collapse
|
45
|
Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods 2017; 14:720-728. [PMID: 28581494 DOI: 10.1038/nmeth.4306] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/23/2017] [Indexed: 12/24/2022]
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is essential for biosynthetic reactions and antioxidant functions; however, detection of NADPH metabolism in living cells remains technically challenging. We develop and characterize ratiometric, pH-resistant, genetically encoded fluorescent indicators for NADPH (iNap sensors) with various affinities and wide dynamic range. iNap sensors enabled quantification of cytosolic and mitochondrial NADPH pools that are controlled by cytosolic NAD+ kinase levels and revealed cellular NADPH dynamics under oxidative stress depending on glucose availability. We found that mammalian cells have a strong tendency to maintain physiological NADPH homeostasis, which is regulated by glucose-6-phosphate dehydrogenase and AMP kinase. Moreover, using the iNap sensors we monitor NADPH fluctuations during the activation of macrophage cells or wound response in vivo. These data demonstrate that the iNap sensors will be valuable tools for monitoring NADPH dynamics in live cells and gaining new insights into cell metabolism.
Collapse
|
46
|
Yang DH, Jung KW, Bang S, Lee JW, Song MH, Floyd-Averette A, Festa RA, Ianiri G, Idnurm A, Thiele DJ, Heitman J, Bahn YS. Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans. Genetics 2017; 205:201-219. [PMID: 27866167 PMCID: PMC5223503 DOI: 10.1534/genetics.116.190595] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/08/2016] [Indexed: 01/17/2023] Open
Abstract
Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the Sch9-dependent and Sch9-independent signaling networks modulating C. neoformans thermotolerance by using genome-wide transcriptome analysis and reverse genetic approaches. During temperature upshift, genes encoding for molecular chaperones and heat shock proteins were upregulated, whereas those for translation, transcription, and sterol biosynthesis were highly suppressed. In this process, Sch9 regulated basal expression levels or induced/repressed expression levels of some temperature-responsive genes, including heat shock transcription factor (HSF1) and heat shock proteins (HSP104 and SSA1). Notably, we found that the HSF1 transcript abundance decreased but the Hsf1 protein became transiently phosphorylated during temperature upshift. Nevertheless, Hsf1 is essential for growth and its overexpression promoted C. neoformans thermotolerance. Transcriptome analysis using an HSF1 overexpressing strain revealed a dual role of Hsf1 in the oxidative stress response and thermotolerance. Chromatin immunoprecipitation demonstrated that Hsf1 binds to the step-type like heat shock element (HSE) of its target genes more efficiently than to the perfect- or gap-type HSE. This study provides insight into the thermotolerance of C. neoformans by elucidating the regulatory mechanisms of Sch9 and Hsf1 through the genome-scale identification of temperature-dependent genes.
Collapse
Affiliation(s)
- Dong-Hoon Yang
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang-Woo Jung
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Soohyun Bang
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jang-Won Lee
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Hee Song
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Anna Floyd-Averette
- Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Richard A Festa
- Departments of Pharmacology and Cancer Biology and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Giuseppe Ianiri
- Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Dennis J Thiele
- Departments of Pharmacology and Cancer Biology and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Joseph Heitman
- Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
47
|
Ishikawa Y, Miyagi A, Haishima Y, Ishikawa T, Nagano M, Yamaguchi M, Hihara Y, Kawai-Yamada M. Metabolomic analysis of NAD kinase-deficient mutants of the cyanobacterium Synechocystis sp. PCC 6803. JOURNAL OF PLANT PHYSIOLOGY 2016; 205:105-112. [PMID: 27657983 DOI: 10.1016/j.jplph.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 05/04/2023]
Abstract
NAD kinase (NADK) phosphorylates NAD(H) to NADP(H). The enzyme has a crucial role in the regulation of the NADP(H)/NAD(H) ratio in various organisms. The unicellular cyanobacterium Synechocystis sp. PCC 6803 possesses two NADK-encoding genes, sll1415 and slr0400. To elucidate the metabolic change in NADK-deficient mutants growing under photoautotrophic conditions, we conducted metabolomic analysis using capillary electrophoresis mass spectrometry (CE-MS). The growth curves of the wild-type parent (WT) and NADK-deficient mutants (Δ1415 and Δ0400) did not show any differences under photoautotrophic conditions. The NAD(P)(H) balance showed abnormality in both mutants. However, only the metabolite pattern of Δ0400 showed differences compared to WT. These results indicated that the two NADK isoforms have distinct functions in cyanobacterial metabolism.
Collapse
Affiliation(s)
- Yuuma Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Yuto Haishima
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Minoru Nagano
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan.
| |
Collapse
|
48
|
Haverkorn van Rijsewijk BRB, Kochanowski K, Heinemann M, Sauer U. Distinct transcriptional regulation of the two Escherichia coli transhydrogenases PntAB and UdhA. MICROBIOLOGY-SGM 2016; 162:1672-1679. [PMID: 27488847 DOI: 10.1099/mic.0.000346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transhydrogenases catalyse interconversion of the redox cofactors NADH and NADPH, thereby conveying metabolic flexibility to balance catabolic NADPH formation with anabolic or stress-based consumption of NADPH. Escherichia coli is one of the very few microbes that possesses two isoforms: the membrane-bound, proton-translocating transhydrogenase PntAB and the cytosolic, energy-independent transhydrogenase UdhA. Despite their physiological relevance, we have only fragmented information on their regulation and the signals coordinating their counteracting activities. Here we investigated PntAB and UdhA regulation by studying transcriptional responses to environmental and genetic perturbations. By testing pntAB and udhA GFP reporter constructs in the background of WT E. coli and 62 transcription factor mutants during growth on different carbon sources, we show distinct transcriptional regulation of the two transhydrogenase promoters. Surprisingly, transhydrogenase regulation was independent of the actual catabolic overproduction or underproduction of NADPH but responded to nutrient levels and growth rate in a fashion that matches the cellular need for the redox cofactors NADPH and/or NADH. Specifically, the identified transcription factors Lrp, ArgP and Crp link transhydrogenase expression to particular amino acids and intracellular concentrations of cAMP. The overall identified set of regulators establishes a primarily biosynthetic role for PntAB and link UdhA to respiration.
Collapse
Affiliation(s)
- Bart R B Haverkorn van Rijsewijk
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Molecular Life Science Graduate School, Zurich, Switzerland
| | - Karl Kochanowski
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Systems Biology Graduate School, Zurich, Switzerland
| | - Matthias Heinemann
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Hong PH, Zhang J, Liu XJ, Tan TW, Li ZJ. Effect of NADH kinase on poly-3-hydroxybutyrate production by recombinant Escherichia coli. J Biosci Bioeng 2016; 122:685-688. [PMID: 27353858 DOI: 10.1016/j.jbiosc.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/09/2016] [Indexed: 11/19/2022]
Abstract
The cofactor NADPH participates in a variety of anabolic reactions and its availability is considered to play a critical role in biotransformation processes. NADH kinase (Pos5) from Saccharomyces cerevisiae catalyzes the phosphorylation of NADH to generate NADPH. To investigate the effect of NADH kinase on poly-3-hydroxybutyrate (PHB) production, pos5 was co-expressed with PHB synthetic operon phbCAB in Escherichia coli. The recombinant strain carrying pos5 and phbCAB co-expression plasmid reached 5.96 g/L cell dry weight with 64.1% PHB accumulation in 72 h shake flask cultivation, while the control strain without pos5 yielded 3.93 g/L cell dry weight with 58.5% PHB content. PHB production titer was enhanced from 2.30 g/L to 3.82 g/L. Intracellular cofactor concentration analysis revealed that the ratio of NADP/NAD in pos5 overexpression strain was two times more compared with that of the control without pos5. The results showed that NADH kinase could be employed as an effective metabolic manipulation target to improve PHB synthesis.
Collapse
Affiliation(s)
- Peng-Hui Hong
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jie Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiao-Jie Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tian-Wei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zheng-Jun Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
50
|
Riemer J, Schwarzländer M, Conrad M, Herrmann JM. Thiol switches in mitochondria: operation and physiological relevance. Biol Chem 2016; 396:465-82. [PMID: 25720067 DOI: 10.1515/hsz-2014-0293] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/19/2015] [Indexed: 01/08/2023]
Abstract
Mitochondria are a major source of reactive oxygen species (ROS) in the cell, particularly of superoxide and hydrogen peroxide. A number of dedicated enzymes regulate the conversion and consumption of superoxide and hydrogen peroxide in the intermembrane space and the matrix of mitochondria. Nevertheless, hydrogen peroxide can also interact with many other mitochondrial enzymes, particularly those with reactive cysteine residues, modulating their reactivity in accordance with changes in redox conditions. In this review we will describe the general redox systems in mitochondria of animals, fungi and plants and discuss potential target proteins that were proposed to contain regulatory thiol switches.
Collapse
|