1
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Wang L, Chen SF, Huang XW, Wu ZY, Zhang QM. Efficacy and safety of creatine phosphate sodium in the treatment of viral myocarditis: A systematic review and meta-analysis. PLoS One 2025; 20:e0317498. [PMID: 39854433 PMCID: PMC11760627 DOI: 10.1371/journal.pone.0317498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
PURPOSE To systematically evaluate the efficacy and safety of creatine phosphate sodium in the treatment of viral myocarditis, and to provide guidance for its clinical treatment. METHODS We conducted a search of The Cochrane Library, PubMed, EMbase, and Web of Science databases to retrieve randomized controlled trials (RCTs) on the use of creatine phosphate sodium (CPS) in the treatment of viral myocarditis. The search was conducted up to April 2024. After screening the literature, extracting data, and evaluating the risk of bias in the included studies, we performed a meta-analysis using RevMan 5.4 and Stata17.0 statistical software. RESULTS A total of 104 articles were retrieved, and 9 articles with a combined total of 1,116 patients were ultimately included in the meta-analysis. The results of the meta-analysis indicated that the overall efficacy rate in the phosphocreatine sodium treatment group was higher than that in the control group [RR = 1.22, 95%CI (1.15, 1.28), P<0.00001]. Furthermore, post-treatment levels of cardiac troponin I [MD = 0.1, 95%CI (0.07, 0.13), P<0.00001] and creatine kinase isoenzyme [MD = 9.43, 95%CI (7.04,11 .82), P<0 .00001] in the phosphocreatine treatment group were lower compared to those in the control group; both differences between groups were statistically significant. Additionally, there was no significant difference observed in adverse reaction incidence between the phosphocreatine sodium treatment group and conventional treatment group [RR = 1 .07, 95% CI (0 .68, 1 .67), P = O .77]. CONCLUSION Creatine phosphate sodium treatment can significantly improve the therapeutic effect of patients with viral myocarditis, and can reduce the levels of cTnI and CK-MB. Compared with conventional treatment, it has good safety.
Collapse
Affiliation(s)
- Li Wang
- Department of Cardiology, Quanzhou Traditional Chinese Medicine Hospital, Quanzhou, Fujian Province, China
| | - Su-Fang Chen
- Department of Cardiology, The 910th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Quanzhou, Fujian Province, China
| | - Xi-Wei Huang
- Department of Emergency Medicine, Puning People’s Hospital, Jieyang City, Guangdong Province, China
| | - Zhi-Yang Wu
- Department of Cardiology, Quanzhou Traditional Chinese Medicine Hospital, Quanzhou, Fujian Province, China
| | - Qing-Mei Zhang
- Department of Pediatrics, Quanzhou First Hospital, Quanzhou, Fujian Province, China
| |
Collapse
|
3
|
Singh D, Oladimeji-Salami J, Akindele AJ. New insights on pharmacological and therapeutic potentials of trimetazidine beyond anti-anginal drug: A comprehensive review. Eur J Pharmacol 2024; 985:177062. [PMID: 39427862 DOI: 10.1016/j.ejphar.2024.177062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Trimetazidine (TMZ) is a beneficial and well-tolerable anti-anginal drug which has protective action towards ischemia and reperfusion injury. TMZ performs its anti-ischemic effect by modifying cardiac metabolism without shifting the hemodynamic functions, so it represents an outstanding complementary perspective to the general angina treatment. TMZ possesses a positive impact on the inflammatory profile, and also endothelial function furthermore displays various benefits through minimising the number, as well as the intensity of angina strikes and ameliorating the clinical indication and symptoms of myocardium ischemia. It is administrated as monotherapy along with a combination of different antianginal drugs. Apart from anti-angina action, in recent years TMZ has shown various pharmacological activities such as neuroprotective, renal protective, hepato-protective, cardio-protective effects, and other beneficial pharmacological activities. We select to write the present review article to cover the different pharmacological and therapeutic potentials of TMZ.
Collapse
Affiliation(s)
- Dhirendra Singh
- Department of Pharmacology, M.M College of Pharmacy, Maharishi Markandeshwar Mullana, Ambala, Haryana, India.
| | - Joy Oladimeji-Salami
- Medical Biotechnology Department, National Biotechnology Research and Development Agency, Abuja, Nigeria
| | - Abidemi James Akindele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, P.M.B. 12003, Lagos, Nigeria.
| |
Collapse
|
4
|
Ng YH, Koay YC, Marques FZ, Kaye DM, O’Sullivan JF. Leveraging metabolism for better outcomes in heart failure. Cardiovasc Res 2024; 120:1835-1850. [PMID: 39351766 PMCID: PMC11630082 DOI: 10.1093/cvr/cvae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 12/11/2024] Open
Abstract
Whilst metabolic inflexibility and substrate constraint have been observed in heart failure for many years, their exact causal role remains controversial. In parallel, many of our fundamental assumptions about cardiac fuel use are now being challenged like never before. For example, the emergence of sodium-glucose cotransporter 2 inhibitor therapy as one of the four 'pillars' of heart failure therapy is causing a revisit of metabolism as a key mechanism and therapeutic target in heart failure. Improvements in the field of cardiac metabolomics will lead to a far more granular understanding of the mechanisms underpinning normal and abnormal human cardiac fuel use, an appreciation of drug action, and novel therapeutic strategies. Technological advances and expanding biorepositories offer exciting opportunities to elucidate the novel aspects of these metabolic mechanisms. Methodologic advances include comprehensive and accurate substrate quantitation such as metabolomics and stable-isotope fluxomics, improved access to arterio-venous blood samples across the heart to determine fuel consumption and energy conversion, high quality cardiac tissue biopsies, biochemical analytics, and informatics. Pairing these technologies with recent discoveries in epigenetic regulation, mitochondrial dynamics, and organ-microbiome metabolic crosstalk will garner critical mechanistic insights in heart failure. In this state-of-the-art review, we focus on new metabolic insights, with an eye on emerging metabolic strategies for heart failure. Our synthesis of the field will be valuable for a diverse audience with an interest in cardiac metabolism.
Collapse
Affiliation(s)
- Yann Huey Ng
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Victorian Heart Institute, Monash University, Melbourne, VIC 3800, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Monash-Alfred-Baker Centre for Cardiovascular Research, Monash University, Melbourne, VIC 3800, Australia
| | - John F O’Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Department of Medicine, Technische Univeristat Dresden, 01062 Dresden, Germany
| |
Collapse
|
5
|
Sharma G, Chaurasia SS, Carlson MA, Mishra PK. Recent advances associated with cardiometabolic remodeling in diabetes-induced heart failure. Am J Physiol Heart Circ Physiol 2024; 327:H1327-H1342. [PMID: 39453429 PMCID: PMC11684949 DOI: 10.1152/ajpheart.00539.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus (DM) is characterized by chronic hyperglycemia, and despite intensive glycemic control, the risk of heart failure in patients with diabetes remains high. Diabetes-induced heart failure (DHF) presents a unique metabolic challenge, driven by significant alterations in cardiac substrate metabolism, including increased reliance on fatty acid oxidation, reduced glucose utilization, and impaired mitochondrial function. These metabolic alterations lead to oxidative stress, lipotoxicity, and energy deficits, contributing to the progression of heart failure. Emerging research has identified novel mechanisms involved in the metabolic remodeling of diabetic hearts, such as autophagy dysregulation, epigenetic modifications, polyamine regulation, and branched-chain amino acid (BCAA) metabolism. These processes exacerbate mitochondrial dysfunction and metabolic inflexibility, further impairing cardiac function. Therapeutic interventions targeting these pathways-such as enhancing glucose oxidation, modulating fatty acid metabolism, and optimizing ketone body utilization-show promise in restoring metabolic homeostasis and improving cardiac outcomes. This review explores the key molecular mechanisms driving metabolic remodeling in diabetic hearts, highlights advanced methodologies, and presents the latest therapeutic strategies for mitigating the progression of DHF. Understanding these emerging pathways offers new opportunities to develop targeted therapies that address the root metabolic causes of heart failure in diabetes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, UT Southwestern Medical Center, Dallas, Texas, United States
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, United States
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department Ophthalmology & Visual Sciences, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
6
|
Lin S, Yang J, Yu J, Han Z, Meng Z, Sun L. Creatine phosphate improves myocardial function and myocardial enzyme profile in children with myocarditis. Biotechnol Genet Eng Rev 2024; 40:2818-2829. [PMID: 37070139 DOI: 10.1080/02648725.2023.2202536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Myocarditis in children is more common in clinical practice, which can cause different degrees of cardiac function damage. We investigated the effects of creatine phosphate in the treatment of myocarditis in children. Children in the control group were treated with sodium fructose diphosphate, and children in the observation group were treated with creatine phosphate on the basis of the control group. After treatment, the myocardial enzyme profile and cardiac function of children in the observation group were better than the control group. The total effective rate of treatment for children in the observation group was higher than that in the control group. In conclusion, creatine phosphate could significantly improve myocardial function, improve myocardial enzyme profile and reduce myocardial damage in children with pediatric myocarditis and had a high safety of use, which was worthy of clinical promotion.
Collapse
Affiliation(s)
- Shaoli Lin
- Department of Pediatrics, Yantaishan Hospital, Yantai, China
| | - Junbo Yang
- Department of Pediatrics, Jiyang People's Hospital, Jinan, China
| | - Jing Yu
- Cardiac Function Examination Room, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| | - Zengtai Han
- Department of MRI, Zhangqiu District People's Hospital, Jinan, China
| | - Zhen Meng
- Department of Ultrasound, Zhangqiu District People's Hospital, Jinan, China
| | - Lizhi Sun
- Department of Medical Laboratory Diagnosis Center, Jinan Central Hospital, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Gera J, Kumar D, Chauhan G, Choudhary A, Rani L, Mandal L, Mandal S. High sugar diet-induced fatty acid oxidation potentiates cytokine-dependent cardiac ECM remodeling. J Cell Biol 2024; 223:e202306087. [PMID: 38916917 PMCID: PMC11199913 DOI: 10.1083/jcb.202306087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/09/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Context-dependent physiological remodeling of the extracellular matrix (ECM) is essential for development and organ homeostasis. On the other hand, consumption of high-caloric diet leverages ECM remodeling to create pathological conditions that impede the functionality of different organs, including the heart. However, the mechanistic basis of high caloric diet-induced ECM remodeling has yet to be elucidated. Employing in vivo molecular genetic analyses in Drosophila, we demonstrate that high dietary sugar triggers ROS-independent activation of JNK signaling to promote fatty acid oxidation (FAO) in the pericardial cells (nephrocytes). An elevated level of FAO, in turn, induces histone acetylation-dependent transcriptional upregulation of the cytokine Unpaired 3 (Upd3). Release of pericardial Upd3 augments fat body-specific expression of the cardiac ECM protein Pericardin, leading to progressive cardiac fibrosis. Importantly, this pathway is quite distinct from the ROS-Ask1-JNK/p38 axis that regulates Upd3 expression under normal physiological conditions. Our results unravel an unknown physiological role of FAO in cytokine-dependent ECM remodeling, bearing implications in diabetic fibrosis.
Collapse
Affiliation(s)
- Jayati Gera
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Dheeraj Kumar
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Gunjan Chauhan
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Adarsh Choudhary
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Lavi Rani
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Lolitika Mandal
- Department of Biological Sciences, Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sudip Mandal
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|
8
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
9
|
Bornstein MR, Tian R, Arany Z. Human cardiac metabolism. Cell Metab 2024; 36:1456-1481. [PMID: 38959861 PMCID: PMC11290709 DOI: 10.1016/j.cmet.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
The heart is the most metabolically active organ in the human body, and cardiac metabolism has been studied for decades. However, the bulk of studies have focused on animal models. The objective of this review is to summarize specifically what is known about cardiac metabolism in humans. Techniques available to study human cardiac metabolism are first discussed, followed by a review of human cardiac metabolism in health and in heart failure. Mechanistic insights, where available, are reviewed, and the evidence for the contribution of metabolic insufficiency to heart failure, as well as past and current attempts at metabolism-based therapies, is also discussed.
Collapse
Affiliation(s)
- Marc R Bornstein
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA
| | - Zoltan Arany
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Nassiri S, Van de Bovenkamp AA, Remmelzwaal S, Sorea O, de Man F, Handoko ML. Effects of trimetazidine on heart failure with reduced ejection fraction and associated clinical outcomes: a systematic review and meta-analysis. Open Heart 2024; 11:e002579. [PMID: 38719498 PMCID: PMC11086535 DOI: 10.1136/openhrt-2023-002579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Despite maximal treatment, heart failure (HF) remains a major clinical challenge. Besides neurohormonal overactivation, myocardial energy homoeostasis is also impaired in HF. Trimetazidine has the potential to restore myocardial energy status by inhibiting fatty acid oxidation, concomitantly enhancing glucose oxidation. Trimetazidine is an interesting adjunct treatment, for it is safe, easy to use and comes at a low cost. OBJECTIVE We conducted a systematic review to evaluate all available clinical evidence on trimetazidine in HF. We searched Medline/PubMed, Embase, Cochrane CENTRAL and ClinicalTrials.gov to identify relevant studies. METHODS Out of 213 records, we included 28 studies in the meta-analysis (containing 2552 unique patients), which almost exclusively randomised patients with HF with reduced ejection fraction (HFrEF). The studies were relatively small (median study size: N=58) and of short duration (mean follow-up: 6 months), with the majority (68%) being open label. RESULTS Trimetazidine in HFrEF was found to significantly reduce cardiovascular mortality (OR 0.33, 95% CI 0.21 to 0.53) and HF hospitalisations (OR 0.42, 95% CI 0.29 to 0.60). In addition, trimetazidine improved (New York Heart Association) functional class (mean difference: -0.44 (95% CI -0.49 to -0.39), 6 min walk distance (mean difference: +109 m (95% CI 105 to 114 m) and quality of life (standardised mean difference: +0.52 (95% CI 0.32 to 0.71). A similar pattern of effects was observed for both ischaemic and non-ischaemic cardiomyopathy. CONCLUSIONS Current evidence supports the potential role of trimetazidine in HFrEF, but this is based on multiple smaller trials of varying quality in study design. We recommend a large pragmatic randomised clinical trial to establish the definitive role of trimetazidine in the management of HFrEF.
Collapse
Affiliation(s)
- Soufiane Nassiri
- Cardiology, Amsterdam University Medical Centres, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Arno A Van de Bovenkamp
- Cardiology, Amsterdam University Medical Centres, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Sharon Remmelzwaal
- Epidemiology & Biostatistics, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | - Olimpia Sorea
- Cardiology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | - Frances de Man
- Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
- Pulmonary Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | - M Louis Handoko
- Cardiology, Amsterdam University Medical Centres, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| |
Collapse
|
11
|
Pal N, Acharjee A, Ament Z, Dent T, Yavari A, Mahmod M, Ariga R, West J, Steeples V, Cassar M, Howell NJ, Lockstone H, Elliott K, Yavari P, Briggs W, Frenneaux M, Prendergast B, Dwight JS, Kharbanda R, Watkins H, Ashrafian H, Griffin JL. Metabolic profiling of aortic stenosis and hypertrophic cardiomyopathy identifies mechanistic contrasts in substrate utilization. FASEB J 2024; 38:e23505. [PMID: 38507255 DOI: 10.1096/fj.202301710rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/24/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
Aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing). The identified changes in the metabolome were further validated by metabolomic and orthogonal transcriptomic analysis, in separately recruited patient cohorts. We identified a highly discriminant metabolomic signature in severe AS in all samples, regardless of sampling site, characterized by striking accumulation of long-chain acylcarnitines, intermediates of fatty acid transport across the inner mitochondrial membrane, and validated this in a separate cohort. Mechanistically, we identify a downregulation in the PPAR-α transcriptional network, including expression of genes regulating fatty acid oxidation (FAO). In silico modeling of β-oxidation demonstrated that flux could be inhibited by both the accumulation of fatty acids as a substrate for mitochondria and the accumulation of medium-chain carnitines which induce competitive inhibition of the acyl-CoA dehydrogenases. We present a comprehensive analysis of changes in the metabolic pathways (transcriptome to metabolome) in severe AS, and its comparison to HCM. Our results demonstrate a progressive impairment of β-oxidation from HCM to AS, particularly for FAO of long-chain fatty acids, and that the PPAR-α signaling network may be a specific metabolic therapeutic target in AS.
Collapse
Affiliation(s)
- Nikhil Pal
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Animesh Acharjee
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- MRC-Human Nutrition Research Unit, University of Cambridge, Cambridge, UK
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Zsuzsanna Ament
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- MRC-Human Nutrition Research Unit, University of Cambridge, Cambridge, UK
| | - Tim Dent
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Arash Yavari
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rina Ariga
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - James West
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- MRC-Human Nutrition Research Unit, University of Cambridge, Cambridge, UK
| | - Violetta Steeples
- Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, UK
| | - Mark Cassar
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Neil J Howell
- Department of Cardiothoracic Surgery, University Hospital Birmingham, Birmingham, UK
| | - Helen Lockstone
- Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, UK
| | - Kate Elliott
- Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, UK
| | - Parisa Yavari
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - William Briggs
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Michael Frenneaux
- Norwich Medical School, University of East Anglia, Bob Champion Research and Educational Building, Norwich, UK
| | - Bernard Prendergast
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jeremy S Dwight
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rajesh Kharbanda
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Houman Ashrafian
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Julian L Griffin
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- MRC-Human Nutrition Research Unit, University of Cambridge, Cambridge, UK
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
12
|
Wang H, Shen M, Shu X, Guo B, Jia T, Feng J, Lu Z, Chen Y, Lin J, Liu Y, Zhang J, Zhang X, Sun D. Cardiac Metabolism, Reprogramming, and Diseases. J Cardiovasc Transl Res 2024; 17:71-84. [PMID: 37668897 DOI: 10.1007/s12265-023-10432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Cardiovascular diseases (CVD) account for the largest bulk of deaths worldwide, posing a massive burden on societies and the global healthcare system. Besides, the incidence and prevalence of these diseases are on the rise, demanding imminent action to revert this trend. Cardiovascular pathogenesis harbors a variety of molecular and cellular mechanisms among which dysregulated metabolism is of significant importance and may even proceed other mechanisms. The healthy heart metabolism primarily relies on fatty acids for the ultimate production of energy through oxidative phosphorylation in mitochondria. Other metabolites such as glucose, amino acids, and ketone bodies come next. Under pathological conditions, there is a shift in metabolic pathways and the preference of metabolites, termed metabolic remodeling or reprogramming. In this review, we aim to summarize cardiovascular metabolism and remodeling in different subsets of CVD to come up with a new paradigm for understanding and treatment of these diseases.
Collapse
Affiliation(s)
- Haichang Wang
- Heart Hospital, Xi'an International Medical Center, Xi'an, China
| | - Min Shen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xiaofei Shu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Baolin Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Tengfei Jia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiaxu Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Zuocheng Lu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yanyan Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yue Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xuan Zhang
- Institute for Hospital Management Research, Chinese PLA General Hospital, Beijing, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
13
|
Pușcaș A, Ștefănescu R, Vari CE, Ősz BE, Filip C, Bitzan JK, Buț MG, Tero-Vescan A. Biochemical Aspects That Lead to Abusive Use of Trimetazidine in Performance Athletes: A Mini-Review. Int J Mol Sci 2024; 25:1605. [PMID: 38338885 PMCID: PMC10855343 DOI: 10.3390/ijms25031605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Trimetazidine (TMZ), used for treating stable angina pectoris, has garnered attention in the realm of sports due to its potential performance-enhancing properties, and the World Anti-Doping Agency (WADA) has classified TMZ on the S4 list of prohibited substances since 2014. The purpose of this narrative mini-review is to emphasize the biochemical aspects underlying the abusive use of TMZ among athletes as a metabolic modulator of cardiac energy metabolism. The myocardium's ability to adapt its energy substrate utilization between glucose and fatty acids is crucial for maintaining cardiac function under various conditions, such as rest, moderate exercise, and intense effort. TMZ acts as a partial inhibitor of fatty acid oxidation by inhibiting 3-ketoacyl-CoA thiolase (KAT), shifting energy production from long-chain fatty acids to glucose, reducing oxygen consumption, improving cardiac function, and enhancing exercise capacity. Furthermore, TMZ modulates pyruvate dehydrogenase (PDH) activity, promoting glucose oxidation while lowering lactate production, and ultimately stabilizing myocardial function. TMZs role in reducing oxidative stress is notable, as it activates antioxidant enzymes like glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). In conclusion, TMZs biochemical mechanisms make it an attractive but controversial option for athletes seeking a competitive edge.
Collapse
Affiliation(s)
- Amalia Pușcaș
- Biochemistry and Chemistry of the Environmental Factors Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.P.); (C.F.)
| | - Ruxandra Ștefănescu
- Pharmacognosy and Phytotherapy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Camil-Eugen Vari
- Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (C.-E.V.); (B.-E.Ő.)
| | - Bianca-Eugenia Ősz
- Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (C.-E.V.); (B.-E.Ő.)
| | - Cristina Filip
- Biochemistry and Chemistry of the Environmental Factors Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.P.); (C.F.)
| | - Jana Karlina Bitzan
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Campus Hamburg—UMCH, 22761 Hamburg, Germany;
| | - Mădălina-Georgiana Buț
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (M.-G.B.); (A.T.-V.)
| | - Amelia Tero-Vescan
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (M.-G.B.); (A.T.-V.)
| |
Collapse
|
14
|
Jiang MY, Man WR, Zhang XB, Zhang XH, Duan Y, Lin J, Zhang Y, Cao Y, Wu DX, Shu XF, Xin L, Wang H, Zhang X, Li CY, Gu XM, Zhang X, Sun DD. Adipsin inhibits Irak2 mitochondrial translocation and improves fatty acid β-oxidation to alleviate diabetic cardiomyopathy. Mil Med Res 2023; 10:63. [PMID: 38072993 PMCID: PMC10712050 DOI: 10.1186/s40779-023-00493-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism. METHODS A high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC-MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator. RESULTS The expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC-MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin. CONCLUSIONS Adipsin improves fatty acid β-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation.
Collapse
Affiliation(s)
- Meng-Yuan Jiang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Wan-Rong Man
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xue-Bin Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xiao-Hua Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yang Cao
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - De-Xi Wu
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xiao-Fei Shu
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Lei Xin
- Department of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Hao Wang
- Department of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Cong-Ye Li
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xiao-Ming Gu
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, 710032, China
| | - Xuan Zhang
- Institute for Hospital Management Research, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Dong-Dong Sun
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
Kasa G, Bayes-Genis A, Delgado V. Latest Updates in Heart Failure Imaging. Heart Fail Clin 2023; 19:407-418. [PMID: 37714583 DOI: 10.1016/j.hfc.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Heart failure (HF), a challenging and heterogeneous syndrome, still remains a major health problem worldwide, despite all the advances in prevention, diagnosis, and treatment of cardiovascular disease. Cardiac imaging plays a pivotal role in the classification of HF, accurate diagnosis of underlying etiology and decision-making. Integration of other imaging techniques such as cardiac magnetic resonance, nuclear imaging, and exercise imaging testing is important to characterize HF accurately. This article reviews the role of multimodality imaging to diagnose patients with HF.
Collapse
Affiliation(s)
- Gizem Kasa
- Cardiovascular Imaging Section, Department of Cardiology, Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Antoni Bayes-Genis
- Cardiovascular Imaging Section, Department of Cardiology, Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Victoria Delgado
- Cardiovascular Imaging Section, Department of Cardiology, Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
16
|
van de Bovenkamp AA, Geurkink KTJ, Oosterveer FT, de Man FS, Kok WE, Bronzwaer PN, Allaart CP, Nederveen AJ, van Rossum AC, Bakermans AJ, Handoko ML. Trimetazidine in heart failure with preserved ejection fraction: a randomized controlled cross-over trial. ESC Heart Fail 2023; 10:2998-3010. [PMID: 37530098 PMCID: PMC10567667 DOI: 10.1002/ehf2.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 08/03/2023] Open
Abstract
AIMS Impaired myocardial energy homeostasis plays an import role in the pathophysiology of heart failure with preserved ejection fraction (HFpEF). Left ventricular relaxation has a high energy demand, and left ventricular diastolic dysfunction has been related to impaired energy homeostasis. This study investigated whether trimetazidine, a fatty acid oxidation inhibitor, could improve myocardial energy homeostasis and consequently improve exercise haemodynamics in patients with HFpEF. METHODS AND RESULTS The DoPING-HFpEF trial was a phase II single-centre, double-blind, placebo-controlled, randomized cross-over trial. Patients were randomized to trimetazidine treatment or placebo for 3 months and switched after a 2-week wash-out period. The primary endpoint was change in pulmonary capillary wedge pressure, measured with right heart catheterization at multiple stages of bicycling exercise. Secondary endpoint was change in myocardial phosphocreatine/adenosine triphosphate, an index of the myocardial energy status, measured with phosphorus-31 magnetic resonance spectroscopy. The study included 25 patients (10/15 males/females; mean (standard deviation) age, 66 (10) years; body mass index, 29.8 (4.5) kg/m2 ); with the diagnosis of HFpEF confirmed with (exercise) right heart catheterization either before or during the trial. There was no effect of trimetazidine on the primary outcome pulmonary capillary wedge pressure at multiple levels of exercise (mean change 0 [95% confidence interval, 95% CI -2, 2] mmHg over multiple levels of exercise, P = 0.60). Myocardial phosphocreatine/adenosine triphosphate in the trimetazidine arm was similar to placebo (1.08 [0.76, 1.76] vs. 1.30 [0.95, 1.86], P = 0.08). There was no change by trimetazidine compared with placebo in the exploratory parameters: 6-min walking distance (mean change of -6 [95% CI -18, 7] m vs. -5 [95% CI -22, 22] m, respectively, P = 0.93), N-terminal pro-B-type natriuretic peptide (5 (-156, 166) ng/L vs. -13 (-172, 147) ng/L, P = 0.70), overall quality-of-life (KCCQ and EQ-5D-5L, P = 0.78 and P = 0.51, respectively), parameters for diastolic function measured with echocardiography and cardiac magnetic resonance, or metabolic parameters. CONCLUSIONS Trimetazidine did not improve myocardial energy homeostasis and did not improve exercise haemodynamics in patients with HFpEF.
Collapse
Affiliation(s)
- Arno A. van de Bovenkamp
- Department of CardiologyAmsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - Kiki T. J. Geurkink
- Department of CardiologyAmsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Frank T.P. Oosterveer
- Department of Pulmonary MedicineAmsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Frances S. de Man
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
- Department of Pulmonary MedicineAmsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Wouter E.M. Kok
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
- Department of Clinical and Experimental CardiologyAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | | | - Cor P. Allaart
- Department of CardiologyAmsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Albert C. van Rossum
- Department of CardiologyAmsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - Adrianus J. Bakermans
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - M. Louis Handoko
- Department of CardiologyAmsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| |
Collapse
|
17
|
Park S, Chang J, Hong SP, Jin ES, Kong MG, Choi HY, Kwon SS, Park GM, Park RW. Impact of Trimetazidine on the Incident Heart Failure After Coronary Artery Revascularization. J Cardiovasc Pharmacol 2023; 82:318-326. [PMID: 37437526 DOI: 10.1097/fjc.0000000000001453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
ABSTRACT Abnormal myocardial metabolism is a common pathophysiological process underlying ischemic heart disease and heart failure (HF). Trimetazidine is an antianginal agent with a unique mechanism of action that regulates myocardial energy metabolism and might have a beneficial effect in preventing HF in patients undergoing myocardial revascularization. We aimed to evaluate the potential benefit of trimetazidine in preventing incident hospitalization for HF after myocardial revascularization. Using the common data model, we identified patients without prior HF undergoing myocardial revascularization from 8 hospital databases in Korea. To compare clinical outcomes using trimetazidine, database-level hazard ratios (HRs) were estimated using large-scale propensity score matching for each database and pooled using a random-effects model. The primary outcome was incident hospitalization for HF. The secondary outcome of interest was major adverse cardiac events (MACEs). After propensity score matching, 6724 and 11,211 patients were allocated to trimetazidine new-users and nonusers, respectively. There was no significant difference in the incidence of hospitalization for HF between the 2 groups (HR: 1.08, 95% confidence interval [CI], 0.88-1.31; P = 0.46). The risk of MACE also did not differ between the 2 groups (HR: 1.07, 95% CI, 0.98-1.16; P = 0.15). In conclusion, the use of trimetazidine did not reduce the risk of hospitalization for HF or MACE in patients undergoing myocardial revascularization. Therefore, the role of trimetazidine in contemporary clinical practice cannot be expanded beyond its current role as an add-on treatment for symptomatic angina.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Junhyuk Chang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Seung-Pyo Hong
- Department of Cardiology, Daegu Catholic University Medical Center, Daegu, Korea
| | - Eun-Sun Jin
- Department of Cardiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Min Gyu Kong
- Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Ha-Young Choi
- Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Seong Soon Kwon
- Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea; and
| | - Gyung-Min Park
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Rae Woong Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
18
|
Khanra S, Reddy P, Giménez-Palomo A, Park CHJ, Panizzutti B, McCallum M, Arumugham SS, Umesh S, Debnath M, Das B, Venkatasubramanian G, Ashton M, Turner A, Dean OM, Walder K, Vieta E, Yatham LN, Pacchiarotti I, Reddy YCJ, Goyal N, Kesavan M, Colomer L, Berk M, Kim JH. Metabolic regulation to treat bipolar depression: mechanisms and targeting by trimetazidine. Mol Psychiatry 2023; 28:3231-3242. [PMID: 37386057 PMCID: PMC10618096 DOI: 10.1038/s41380-023-02134-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Bipolar disorder's core feature is the pathological disturbances in mood, often accompanied by disrupted thinking and behavior. Its complex and heterogeneous etiology implies that a range of inherited and environmental factors are involved. This heterogeneity and poorly understood neurobiology pose significant challenges to existing drug development paradigms, resulting in scarce treatment options, especially for bipolar depression. Therefore, novel approaches are needed to discover new treatment options. In this review, we first highlight the main molecular mechanisms known to be associated with bipolar depression-mitochondrial dysfunction, inflammation and oxidative stress. We then examine the available literature for the effects of trimetazidine in said alterations. Trimetazidine was identified without a priori hypothesis using a gene-expression signature for the effects of a combination of drugs used to treat bipolar disorder and screening a library of off-patent drugs in cultured human neuronal-like cells. Trimetazidine is used to treat angina pectoris for its cytoprotective and metabolic effects (improved glucose utilization for energy production). The preclinical and clinical literature strongly support trimetazidine's potential to treat bipolar depression, having anti-inflammatory and antioxidant properties while normalizing mitochondrial function only when it is compromised. Further, trimetazidine's demonstrated safety and tolerability provide a strong rationale for clinical trials to test its efficacy to treat bipolar depression that could fast-track its repurposing to address such an unmet need as bipolar depression.
Collapse
Affiliation(s)
- Sourav Khanra
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Preethi Reddy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Chun Hui J Park
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Bruna Panizzutti
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Madeleine McCallum
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Shreekantiah Umesh
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Monojit Debnath
- Department of Human Genetics, NIMHANS, Bengaluru, Karnataka, India
| | - Basudeb Das
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Melanie Ashton
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Alyna Turner
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Olivia M Dean
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ken Walder
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Y C Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nishant Goyal
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Muralidharan Kesavan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Lluc Colomer
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Jee Hyun Kim
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Watson WD, Green PG, Lewis AJ, Arvidsson P, De Maria GL, Arheden H, Heiberg E, Clarke WT, Rodgers CT, Valkovič L, Neubauer S, Herring N, Rider OJ. Retained Metabolic Flexibility of the Failing Human Heart. Circulation 2023; 148:109-123. [PMID: 37199155 PMCID: PMC10417210 DOI: 10.1161/circulationaha.122.062166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/01/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND The failing heart is traditionally described as metabolically inflexible and oxygen starved, causing energetic deficit and contractile dysfunction. Current metabolic modulator therapies aim to increase glucose oxidation to increase oxygen efficiency of adenosine triphosphate production, with mixed results. METHODS To investigate metabolic flexibility and oxygen delivery in the failing heart, 20 patients with nonischemic heart failure with reduced ejection fraction (left ventricular ejection fraction 34.9±9.1) underwent separate infusions of insulin+glucose infusion (I+G) or Intralipid infusion. We used cardiovascular magnetic resonance to assess cardiac function and measured energetics using phosphorus-31 magnetic resonance spectroscopy. To investigate the effects of these infusions on cardiac substrate use, function, and myocardial oxygen uptake (MVo2), invasive arteriovenous sampling and pressure-volume loops were performed (n=9). RESULTS At rest, we found that the heart had considerable metabolic flexibility. During I+G, cardiac glucose uptake and oxidation were predominant (70±14% total energy substrate for adenosine triphosphate production versus 17±16% for Intralipid; P=0.002); however, no change in cardiac function was seen relative to basal conditions. In contrast, during Intralipid infusion, cardiac long-chain fatty acid (LCFA) delivery, uptake, LCFA acylcarnitine production, and fatty acid oxidation were all increased (LCFA 73±17% of total substrate versus 19±26% total during I+G; P=0.009). Myocardial energetics were better with Intralipid compared with I+G (phosphocreatine/adenosine triphosphate 1.86±0.25 versus 2.01±0.33; P=0.02), and systolic and diastolic function were improved (LVEF 34.9±9.1 baseline, 33.7±8.2 I+G, 39.9±9.3 Intralipid; P<0.001). During increased cardiac workload, LCFA uptake and oxidation were again increased during both infusions. There was no evidence of systolic dysfunction or lactate efflux at 65% maximal heart rate, suggesting that a metabolic switch to fat did not cause clinically meaningful ischemic metabolism. CONCLUSIONS Our findings show that even in nonischemic heart failure with reduced ejection fraction with severely impaired systolic function, significant cardiac metabolic flexibility is retained, including the ability to alter substrate use to match both arterial supply and changes in workload. Increasing LCFA uptake and oxidation is associated with improved myocardial energetics and contractility. Together, these findings challenge aspects of the rationale underlying existing metabolic therapies for heart failure and suggest that strategies promoting fatty acid oxidation may form the basis for future therapies.
Collapse
Affiliation(s)
- William D. Watson
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
- Department of Cardiovascular Medicine (W.D.W.), University of Cambridge, UK
| | - Peregrine G. Green
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
- Department for Physiology, Anatomy and Genetics (P.G.G., N.H.), University of Oxford, UK
| | - Andrew J.M. Lewis
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
| | - Per Arvidsson
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden (P.A., H.A., E.H.)
| | | | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden (P.A., H.A., E.H.)
| | - Einar Heiberg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden (P.A., H.A., E.H.)
| | - William T. Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences (W.T.C.), University of Oxford, UK
| | | | - Ladislav Valkovič
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
- Institute of Measurement Science, Slovak Academy of Sciences, Slovakia (L.V.)
| | - Stefan Neubauer
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
| | - Neil Herring
- Department for Physiology, Anatomy and Genetics (P.G.G., N.H.), University of Oxford, UK
| | - Oliver J. Rider
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
| |
Collapse
|
20
|
Spoladore R, Pinto G, Daus F, Pezzini S, Kolios D, Fragasso G. Metabolic Approaches for the Treatment of Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2023; 10:287. [PMID: 37504543 PMCID: PMC10380730 DOI: 10.3390/jcdd10070287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
In dilated cardiomyopathy (DCM), where the heart muscle becomes stretched and thin, heart failure (HF) occurs, and the cardiomyocytes suffer from an energetic inefficiency caused by an abnormal cardiac metabolism. Although underappreciated as a potential therapeutic target, the optimal metabolic milieu of a failing heart is still largely unknown and subject to debate. Because glucose naturally has a lower P/O ratio (the ATP yield per oxygen atom), the previous studies using this strategy to increase glucose oxidation have produced some intriguing findings. In reality, the vast majority of small-scale pilot trials using trimetazidine, ranolazine, perhexiline, and etomoxir have demonstrated enhanced left ventricular (LV) function and, in some circumstances, myocardial energetics in chronic ischemic and non-ischemic HF with a reduced ejection fraction (EF). However, for unidentified reasons, none of these drugs has ever been tested in a clinical trial of sufficient size. Other pilot studies came to the conclusion that because the heart in severe dilated cardiomyopathy appears to be metabolically flexible and not limited by oxygen, the current rationale for increasing glucose oxidation as a therapeutic target is contradicted and increasing fatty acid oxidation is supported. As a result, treating metabolic dysfunction in HF may benefit from raising ketone body levels. Interestingly, treatment with sodium-glucose cotransporter-2 inhibitors (SGLT2i) improves cardiac function and outcomes in HF patients with or without type 2 diabetes mellitus (T2DM) through a variety of pleiotropic effects, such as elevated ketone body levels. The improvement in overall cardiac function seen in patients receiving SGLT2i could be explained by this increase, which appears to be a reflection of an adaptive process that optimizes cardiac energy metabolism. This review aims to identify the best metabolic therapeutic approach for DCM patients, to examine the drugs that directly affect cardiac metabolism, and to outline all the potential ancillary metabolic effects of the guideline-directed medical therapy. In addition, a special focus is placed on SGLT2i, which were first studied and prescribed to diabetic patients before being successfully incorporated into the pharmacological arsenal for HF patients.
Collapse
Affiliation(s)
- Roberto Spoladore
- Department of Cardiology, Heart Failure Clinic, Alessandro Manzoni Hospital, ASST Lecco, 23900 Lecco, Italy
| | - Giuseppe Pinto
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Francesca Daus
- Post-Graduate School of Cardiovascular Medicine, Milan-Bicocca University, 20126 Milan, Italy
| | - Sara Pezzini
- Post-Graduate School of Cardiovascular Medicine, Milan-Bicocca University, 20126 Milan, Italy
| | - Damianos Kolios
- Department of Clinical Cardiology, Heart Failure Clinic, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy (G.F.)
| | - Gabriele Fragasso
- Department of Clinical Cardiology, Heart Failure Clinic, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy (G.F.)
| |
Collapse
|
21
|
Tsampasian V, Cameron D, Sobhan R, Bazoukis G, Vassiliou VS. Phosphorus Magnetic Resonance Spectroscopy ( 31P MRS) and Cardiovascular Disease: The Importance of Energy. Medicina (B Aires) 2023; 59:medicina59010174. [PMID: 36676798 PMCID: PMC9866867 DOI: 10.3390/medicina59010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Background and Objectives: The heart is the organ with the highest metabolic demand in the body, and it relies on high ATP turnover and efficient energy substrate utilisation in order to function normally. The derangement of myocardial energetics may lead to abnormalities in cardiac metabolism, which herald the symptoms of heart failure (HF). In addition, phosphorus magnetic resonance spectroscopy (31P MRS) is the only available non-invasive method that allows clinicians and researchers to evaluate the myocardial metabolic state in vivo. This review summarises the importance of myocardial energetics and provides a systematic review of all the available research studies utilising 31P MRS to evaluate patients with a range of cardiac pathologies. Materials and Methods: We have performed a systematic review of all available studies that used 31P MRS for the investigation of myocardial energetics in cardiovascular disease. Results: A systematic search of the Medline database, the Cochrane library, and Web of Science yielded 1092 results, out of which 62 studies were included in the systematic review. The 31P MRS has been used in numerous studies and has demonstrated that impaired myocardial energetics is often the beginning of pathological processes in several cardiac pathologies. Conclusions: The 31P MRS has become a valuable tool in the understanding of myocardial metabolic changes and their impact on the diagnosis, risk stratification, and prognosis of patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Vasiliki Tsampasian
- Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building, Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, UK
- Correspondence: (V.T.); (V.S.V.)
| | - Donnie Cameron
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Rashed Sobhan
- Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building, Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, UK
| | - George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Larnaca 6301, Cyprus
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia 2417, Cyprus
| | - Vassilios S. Vassiliou
- Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building, Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, UK
- Correspondence: (V.T.); (V.S.V.)
| |
Collapse
|
22
|
Monga S, Valkovič L, Tyler D, Lygate CA, Rider O, Myerson SG, Neubauer S, Mahmod M. Insights Into the Metabolic Aspects of Aortic Stenosis With the Use of Magnetic Resonance Imaging. JACC Cardiovasc Imaging 2022; 15:2112-2126. [PMID: 36481080 PMCID: PMC9722407 DOI: 10.1016/j.jcmg.2022.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 01/13/2023]
Abstract
Pressure overload in aortic stenosis (AS) encompasses both structural and metabolic remodeling and increases the risk of decompensation into heart failure. A major component of metabolic derangement in AS is abnormal cardiac substrate use, with down-regulation of fatty acid oxidation, increased reliance on glucose metabolism, and subsequent myocardial lipid accumulation. These changes are associated with energetic and functional cardiac impairment in AS and can be assessed with the use of cardiac magnetic resonance spectroscopy (MRS). Proton MRS allows the assessment of myocardial triglyceride content and creatine concentration. Phosphorous MRS allows noninvasive in vivo quantification of the phosphocreatine-to-adenosine triphosphate ratio, a measure of cardiac energy status that is reduced in patients with severe AS. This review summarizes the changes to cardiac substrate and high-energy phosphorous metabolism and how they affect cardiac function in AS. The authors focus on the role of MRS to assess these metabolic changes, and potentially guide future (cellular) metabolic therapy in AS.
Collapse
Affiliation(s)
- Shveta Monga
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ladislav Valkovič
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Damian Tyler
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Oliver Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Saul G Myerson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
23
|
Andreasen CR, Andersen A, Hagelqvist PG, Lauritsen JV, Jørgensen PG, Engberg S, Faber J, Hartmann B, Pedersen-Bjergaard U, Knop FK, Vilsbøll T. Hypoglycaemia and rebound hyperglycaemia increase left ventricular systolic function in patients with type 1 diabetes. Diabetes Obes Metab 2022; 24:2027-2037. [PMID: 35670658 DOI: 10.1111/dom.14790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
AIM To investigate echocardiographic changes during acute hypoglycaemia followed by recovery to hyperglycaemia or euglycaemia in patients with type 1 diabetes. MATERIALS AND METHODS In a randomized crossover study, 24 patients with type 1 diabetes took part in two experimental study days, consisting of a hyperinsulinaemic-euglycaemic phase (5.0-8.0 mmol/L) for 45 minutes followed by a hyperinsulinemic-hypoglycaemic phase (2.5 mmol/L) for 60 minutes, and a recovery phase in either hyperglycaemia (20 mmol/L) or euglycaemia (5.0-8.0 mmol/L) for 60 minutes. Cardiac function was evaluated with echocardiography during each phase. RESULTS Acute hypoglycaemia increased all markers of left ventricular (LV) systolic function, including LV ejection fraction (LVEF), global longitudinal strain (GLS), GLS rate and peak systolic velocity of mitral annular longitudinal movement (s'; P < 0.001 for all). During the recovery phases, all markers of LV systolic function were increased during hyperglycaemia (P < 0.01 for all), and LVEF and GLS remained increased during euglycaemia (P = 0.0116 and P = 0.0092, respectively). The increment in LVEF during the recovery phase was greater during hyperglycaemia than euglycaemia (P = 0.0046). CONCLUSIONS Hypoglycaemia, recent hypoglycaemia, and overcorrection of hypoglycaemia to rebound hyperglycaemia increased LV systolic function in type 1 diabetes and may imply consideration of plasma glucose when evaluating LV function in patients with type 1 diabetes. An increase in LV systolic function may cause increased strain on the heart and partly explain the link between hypoglycaemia, high glycaemic variability and cardiovascular disease.
Collapse
Affiliation(s)
- Christine R Andreasen
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Andreas Andersen
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Per G Hagelqvist
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Julius V Lauritsen
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Peter G Jørgensen
- Department of Cardiology, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark
| | - Susanne Engberg
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Jens Faber
- Department of Endocrinology, Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Pedersen-Bjergaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology and Nephrology, Nordsjaellands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Harjoko RP, Sobirin MA, Uddin I, Bahrudin U, Maharani N, Herminingsih S, Tsutsui H. Trimetazidine improves left ventricular global longitudinal strain value in patients with heart failure with reduced ejection fraction due to ischemic heart disease. Drug Discov Ther 2022; 16:177-184. [PMID: 36002315 DOI: 10.5582/ddt.2022.01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Heart failure with reduced ejection fraction (HFrEF) due to ischemic heart disease (IHD) showed a progressive decline in left ventricular contractile function. However, no previous study has examined the left ventricular global longitudinal strain (LV GLS) parameter that represents LV contractile function. We investigated whether trimetazidine could improve the LV GLS value in patients with HFrEF due to IHD. We performed a double-blind, randomized controlled trial (RCT) including 26 patients with HFrEF due to stable IHD who were given modified-release trimetazidine 35 mg twice per day (n = 13) or placebo (n = 13) for 3 months in addition to standard medication. Left ventricular systolic function including GLS values was assessed at baseline and after 3 months using echocardiography. A total of 25 participants (13 control and 12 trimetazidine groups) were recruited with a baseline average age of 57.1 ± 10 years, and LV ejection fraction (LVEF) value of 34.6% ± 4.4%, and a GLS value of 7.4% ± 2.1%. Baseline clinical characteristics and echocardiogram were similar between the two groups. There was significant GLS improvement in the trimetazidine group (-6.9% ± 2.4% to -8.4% ± 2.6%, p = 0.000), but no significant differences were noted in the control group. The GLS improvement was significantly higher in the trimetazidine group than the control (1.5% + 0.9% vs. -0.7% + 1.7%, p = 0.001). No adverse drug reactions from the administration of trimetazidine in this study. Trimetazidine may improve GLS values in patients with HFrEF due to IHD.
Collapse
Affiliation(s)
- Rille Puspitoadhi Harjoko
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Diponegoro - Dr. Kariadi General Hospital, Semarang, Indonesia
| | - Mochamad Ali Sobirin
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Diponegoro - Dr. Kariadi General Hospital, Semarang, Indonesia.,Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Diponegoro, Indonesia
| | - Ilham Uddin
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Diponegoro - Dr. Kariadi General Hospital, Semarang, Indonesia
| | - Udin Bahrudin
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Diponegoro - Dr. Kariadi General Hospital, Semarang, Indonesia
| | - Nani Maharani
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Diponegoro, Indonesia
| | - Susi Herminingsih
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Diponegoro - Dr. Kariadi General Hospital, Semarang, Indonesia
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
25
|
Therapeutic Effects of Salvianolic Acid B on Angiotensin II-Induced Atrial Fibrosis by Regulating Atrium Metabolism via Targeting AMPK/FoxO1/miR-148a-3p Axis. J Cardiovasc Transl Res 2022; 16:341-357. [PMID: 35984595 PMCID: PMC10151312 DOI: 10.1007/s12265-022-10303-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
The present study highlights the effects of salvianolic acid B (Sal B) on angiotensin II (Ang II)-activated atrial fibroblasts as well as the associated potential mechanism from the metabonomics perspective. Metabolic profile analysis performed an optimal separation of the Ang II and control group, indicating a recovery impact of Sal B on Ang II-activated fibroblasts (FBs). We found that metabolite levels in the Ang II + Sal B group were reversed to normal. Moreover, 23 significant metabolites were identified. Metabolic network analysis indicated that these metabolites participated in purine metabolism and FoxO signaling pathway. We found that Sal B activated AMP-activated protein kinase (AMPK) phosphorylation, which further promoted FoxO1 activation and increased miR-148a-3p level. We further verified that Sal B modulate the abnormal AMP, phosphocreatine, glutathione (GSH), and reactive oxygen species (ROS) production in Ang II-stimulated FBs. Collectively, Sal B can protect the Ang II-activated FBs from fibrosis and oxidative stress via AMPK/FoxO1/miRNA-148a-3p axis.
Collapse
|
26
|
Abstract
As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.
Collapse
Affiliation(s)
- Heiko Bugger
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - Nikole J Byrne
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (E.D.A.)
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW We review therapeutic approaches aimed at restoring function of the failing heart by targeting mitochondrial reactive oxygen species (ROS), ion handling, and substrate utilization for adenosine triphosphate (ATP) production. RECENT FINDINGS Mitochondria-targeted therapies have been tested in animal models of and humans with heart failure (HF). Cardiac benefits of sodium/glucose cotransporter 2 inhibitors might be partly explained by their effects on ion handling and metabolism of cardiac myocytes. The large energy requirements of the heart are met by oxidative phosphorylation in mitochondria, which is tightly regulated by the turnover of ATP that fuels cardiac contraction and relaxation. In heart failure (HF), this mechano-energetic coupling is disrupted, leading to bioenergetic mismatch and production of ROS that drive the progression of cardiac dysfunction. Furthermore, HF is accompanied by changes in substrate uptake and oxidation that are considered detrimental for mitochondrial oxidative metabolism and negatively affect cardiac efficiency. Mitochondria lie at the crossroads of metabolic and energetic dysfunction in HF and represent ideal therapeutic targets.
Collapse
Affiliation(s)
- Julia Schwemmlein
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany.
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genoa, Genoa, Italy.
| |
Collapse
|
28
|
Li J, Qi Y, Wang J, Dai C, Chen B, Li Y. Trimetazidine Alleviates Postresuscitation Myocardial Dysfunction and Improves 96-Hour Survival in a Ventricular Fibrillation Rat Model. J Am Heart Assoc 2022; 11:e023378. [PMID: 35261264 PMCID: PMC9075307 DOI: 10.1161/jaha.121.023378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Background Myocardial dysfunction is a critical cause of post-cardiac arrest hemodynamic instability and circulatory failure that may lead to early mortality after resuscitation. Trimetazidine is a metabolic agent that has been demonstrated to provide protective effects in myocardial ischemia. However, whether trimetazidine protects against postresuscitation myocardial dysfunction is unknown. Methods and Results Cardiopulmonary resuscitation was initiated after 8 minutes of untreated ventricular fibrillation in Sprague-Dawley rats. Animals were randomized to 4 groups immediately after resuscitation (n=15/group): (1) normothermia control (NTC); (2) targeted temperature management; (3) trimetazidine-normothermia; (4) trimetazidine-targeted temperature management. TMZ was administered at a single dose of 10 mg/kg in rats with trimetazidine. The body temperature was maintained at 34.0°C for 2 hours and then rewarmed to 37.5°C in rats with targeted temperature management. Postresuscitation hemodynamics, 96-hours survival, and pathological analysis were assessed. Heart tissues and blood samples of additional rats (n=6/group) undergoing the same experimental procedure were collected to measure myocardial injury, inflammation and oxidative stress-related biomarkers with ELISA-based quantification assays. Compared with normothermia control, tumor necrosis factor-α, and cardiac troponin-I were significantly reduced, whereas the left ventricular ejection fraction and 96-hours survival rates were significantly improved in the 3 experimental groups. Furthermore, inflammation and oxidative stress-related biomarkers together with collagen volume fraction were significantly decreased in rats undergoing postresuscitation interventions. Conclusions Trimetazidine significantly alleviates postresuscitation myocardial dysfunction and improves survival by decreasing oxidative stress and inflammation in a ventricular fibrillation rat model. A single dose of trimetazidine administrated immediately after resuscitation can effectively improve cardiac function, whether used alone or combined with targeted temperature management.
Collapse
Affiliation(s)
- Jingru Li
- Department of Biomedical Engineering and Imaging MedicineArmy Medical UniversityChongqingChina
| | - Yuantong Qi
- Department of PharmaceuticsCollege of PharmacyArmy Medical UniversityChongqingChina
| | - Jianjie Wang
- Department of Biomedical Engineering and Imaging MedicineArmy Medical UniversityChongqingChina
| | - Chenxi Dai
- Department of Biomedical Engineering and Imaging MedicineArmy Medical UniversityChongqingChina
| | - Bihua Chen
- Department of Biomedical Engineering and Imaging MedicineArmy Medical UniversityChongqingChina
| | - Yongqin Li
- Department of Biomedical Engineering and Imaging MedicineArmy Medical UniversityChongqingChina
| |
Collapse
|
29
|
Lin JQ, Wang JX, Yu S, Fu SH, Zhang YJ. Newly discovered molecules associated with trimetazidine on improvement of skeletal muscle function in aging: evidence from myoblasts and mice. Exp Gerontol 2022; 161:111733. [PMID: 35143872 DOI: 10.1016/j.exger.2022.111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Poor muscle function is increasingly obvious with aging and needs effective and safe medicine for treatment. Trimetazidine (TMZ) has potential benefits for the condition but has not yet been fully recognized. In the randomized-control pilot study part, fifty-three old patients were assigned to the TMZ group or control group. For the TMZ group, a dose of 35 mg of oral TMZ was administered with a meal twice a day for 3 months. Only conventional treatments were administrated in the control group. Muscle strength, gait speed, muscle endurance, and balance maintenance were measured during the visits. In the experiments part, thirty mice were screened and randomly assigned to three groups: model group received a D-gal (500 mg/kg) intraperitoneal injection every two days for six weeks, the control group received saline at the same condition, and the intervention group received 5 mg/kg TMZ solution every two days by gavage for two weeks. Swimming tests and forelimb grip strength measurements were also performed. Furthermore, significantly clustered profiles from differentially expressed genes were found by RNA-seq and verified by qRT-PCR and WB. Myofiber analyses were done by H&E staining. Here, we found the improvement of skeletal performance in aged individuals and aged mouse. The dominant handgrip strength (HS) was increased by 24.4% and dominant pinch strength (PS) by 12.4% in participants with TMZ modified-release tablets consumption. Exhaustive time was increased by 23.6% and upper limb grip strength by 44.1% in aged mouse with TMZ-treated. Besides, we also identified some newly discovered molecules associated with TMZ on muscle function improvement during aging. To aged C2C12 cells and aged mouse muscle, TMZ-treated was related to a statistically significant decrease in the expressions of NOS3 and MMP-9, but a statistically significant increase in the expressions of OMD and MyoG. In summary, TMZ modified-release tablets can improve the muscle strength of elderly patients. Besides, the improvement of skeletal muscle function affected by TMZ was associated with reducing NOS3 expression in senescent myoblasts.
Collapse
Affiliation(s)
- Jie-Qiong Lin
- Department of Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jing-Xin Wang
- Department of Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China; Department of Rehabilitation Medicine, Chinese PLA General Hospital, Beijing, China
| | - Shuai Yu
- Independent Researcher, Loyal Bioscience Co., Ltd, Zhengzhou, Henan, China
| | - Shi-Hui Fu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China; Department of Cardiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, China.
| | - Yu-Jie Zhang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China; Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Protective Effect of Trimetazidine on Potassium Ion Homeostasis in Myocardial Tissue in Mice with Heart Failure. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2387860. [PMID: 35097112 PMCID: PMC8791749 DOI: 10.1155/2022/2387860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
The occurrence of heart failure (HF) is closely correlated with the disturbance of mitochondrial energy metabolism, and trimetazidine (TMZ) has been regarded as an effective agent in treating HF. Intracellular potassium ion (K+) homeostasis, which is modulated by K+ channels and transporters, is crucial for maintaining normal myocardial function and can be disrupted by HF. This study is aimed at exploring the protective effect of TMZ on K+ homeostasis within myocardial tissue in mice with HF. We observed the pathological changes of myocardial tissue under microscopes and further measured the content of adenosine triphosphate (ATP), the activity of Na+-K+ ATPase, and the expression of ATP1α1 at the mRNA and protein levels. Moreover, we also analyzed the changes in K+ flux across the myocardial tissue in mice. As a result, we found that there was a large amount of myocardial fiber lysis and fracture in HF myocardial tissue. Meanwhile, the potassium flux of mice with HF was reduced, and the expression of ATP1α1, the activity of Na+-K+ ATPase, and the supply and delivery of ATP were also decreased. In contrast, TMZ can effectively treat HF by restoring K+ homeostasis in the local microenvironment of myocardial tissues.
Collapse
|
31
|
Wu C, Zhang Z, Zhang W, Liu X. Mitochondrial dysfunction and mitochondrial therapies in heart failure. Pharmacol Res 2021; 175:106038. [PMID: 34929300 DOI: 10.1016/j.phrs.2021.106038] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide in the last decade, accompanied by immense health and economic burdens. Heart failure (HF), as the terminal stage of many cardiovascular diseases, is a common, intractable, and costly medical condition. Despite significant improvements in pharmacologic and device therapies over the years, life expectancy for this disease remains poor. Current therapies have not reversed the trends in morbidity and mortality as expected. Thus, there is an urgent need for novel potential therapeutic agents. Although the pathophysiology of the failing heart is extraordinarily complex, targeting mitochondrial dysfunction can be an effective approach for potential treatment. Increasing evidence has shown that mitochondrial abnormalities, including altered metabolic substrate utilization, impaired mitochondrial oxidative phosphorylation (OXPHOS), increased reactive oxygen species (ROS) formation, and aberrant mitochondrial dynamics, are closely related to HF. Here, we reviewed the findings on the role of mitochondrial dysfunction in HF, along with novel mitochondrial therapeutics and their pharmacological effects.
Collapse
Affiliation(s)
- Chennan Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
32
|
Bubnova MG, Aronov DM. Efficacy of trimetazidine - an inhibitor of free fatty acids oxidation in the treatment of patients with stable angina pectoris and heart failure. KARDIOLOGIIA 2021; 61:65-76. [PMID: 34882080 DOI: 10.18087/cardio.2021.11.n1801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Aim To evaluate efficacy of modified-release trimetazidine (TMZ) included into the standard therapy for patients with stable angina and chronic heart failure (CHF) as a part of a subgroup analysis in the PERSPECTIVE study.Material and methods The study included 806 patients: group 1 (n=691), patients receiving a standard therapy and modified-release TMZ (TMZ group); and group 2 (n=115), patients receiving a standard therapy (control group). Total duration of the study was 12 months.Results In the TMZ group, the weekly number of angina attacks decreased by 41.9% (p<0.0001) in 2 months and by 69.6 % (from baseline, р<0.0001) in 12 months, and the frequency of nitroglycerine dosing decreased by 40.8 % (р<0.0001) and 67.7 % (р<0.0001), respectively. In the control group, the respective values did not change. In the TMZ group compared to the control group, the QT interval was shorter (7.9 %; р<0.05), the left ventricular (LV) end-systolic dimension was reduced (13.4 %; р<0.01), interventricular septal thickness and LV posterior wall thickness were decreased (9.5 %; р<0.01 and 12.2 %; р<0.01, respectively), and the ejection fraction was increased (11.4; р<0.05). Following the TMZ treatment, the leukocyte count in peripheral blood was decreased (5.3 %; р<0.01) and the serum concentration of high-sensitivity C-reactive protein was decreased (30.7 %; р<0.01) vs. increases of these indexes in the control group (17.9 %; р<0.05 and 17.8 %; р<0.05, respectively). The proportion of patients hospitalized for exacerbation of CHF or angina for 12 months was 8.6 % in the TMZ group and 15.7 % in the control group (p=0,001).Conclusion In patients with stable angina and CHF, inclusion of modified-release TMZ into the standard therapy decreases the number of angina attacks, reduces the activity of inflammatory factors, and improves the course of disease.
Collapse
Affiliation(s)
- M G Bubnova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow
| | - D M Aronov
- National Medical Research Center for Therapy and Preventive Medicine, Moscow
| |
Collapse
|
33
|
Karwi QG, Sun Q, Lopaschuk GD. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Cells 2021; 10:cells10113259. [PMID: 34831481 PMCID: PMC8621814 DOI: 10.3390/cells10113259] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes is a major risk factor for the development of cardiovascular disease via contributing and/or triggering significant cellular signaling and metabolic and structural alterations at the level of the heart and the whole body. The main cause of mortality and morbidity in diabetic patients is cardiovascular disease including diabetic cardiomyopathy. Therefore, understanding how diabetes increases the incidence of diabetic cardiomyopathy and how it mediates the major perturbations in cell signaling and energy metabolism should help in the development of therapeutics to prevent these perturbations. One of the significant metabolic alterations in diabetes is a marked increase in cardiac fatty acid oxidation rates and the domination of fatty acids as the major energy source in the heart. This increased reliance of the heart on fatty acids in the diabetic has a negative impact on cardiac function and structure through a number of mechanisms. It also has a detrimental effect on cardiac efficiency and worsens the energy status in diabetes, mainly through inhibiting cardiac glucose oxidation. Furthermore, accelerated cardiac fatty acid oxidation rates in diabetes also make the heart more vulnerable to ischemic injury. In this review, we discuss how cardiac energy metabolism is altered in diabetic cardiomyopathy and the impact of cardiac insulin resistance on the contribution of glucose and fatty acid to overall cardiac ATP production and cardiac efficiency. Furthermore, how diabetes influences the susceptibility of the myocardium to ischemia/reperfusion injury and the role of the changes in glucose and fatty acid oxidation in mediating these effects are also discussed.
Collapse
Affiliation(s)
- Qutuba G. Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Qiuyu Sun
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Gary D. Lopaschuk
- 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Correspondence: ; Tel.: +1-780-492-2170; Fax: +1-780-492-9753
| |
Collapse
|
34
|
Abstract
Impaired cardiac energy metabolism has been proposed as a mechanism common to different heart failure aetiologies. The energy-depletion hypothesis was pursued by several researchers, and is still a topic of considerable interest. Unlike most organs, in the heart, the creatine kinase system represents a major component of the metabolic machinery, as it functions as an energy shuttle between mitochondria and cytosol. In heart failure, the decrease in creatine level anticipates the reduction in adenosine triphosphate, and the degree of myocardial phosphocreatine/adenosine triphosphate ratio reduction correlates with disease severity, contractile dysfunction, and myocardial structural remodelling. However, it remains to be elucidated whether an impairment of phosphocreatine buffer activity contributes to the pathophysiology of heart failure and whether correcting this energy deficit might prove beneficial. The effects of creatine deficiency and the potential utility of creatine supplementation have been investigated in experimental and clinical models, showing controversial findings. The goal of this article is to provide a comprehensive overview on the role of creatine in cardiac energy metabolism, the assessment and clinical value of creatine deficiency in heart failure, and the possible options for the specific metabolic therapy.
Collapse
|
35
|
High Throughput Procedure for Comparative Analysis of In Vivo Cardiac Glucose or Amino Acids Use in Cardiovascular Pathologies and Pharmacological Treatments. Metabolites 2021; 11:metabo11080497. [PMID: 34436438 PMCID: PMC8398927 DOI: 10.3390/metabo11080497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
The heart is characterized by the prominent flexibility of its energy metabolism and is able to use diverse carbon substrates, including carbohydrates and amino acids. Cardiac substrate preference could have a major impact on the progress of cardiac pathologies. However, the majority of methods to investigate changes in substrates’ use in cardiac metabolism in vivo are complex and not suitable for high throughput testing necessary to understand and reverse these pathologies. Thus, this study aimed to develop a simple method that would allow for the analysis of cardiac metabolic substrate use. The developed methods involved the subcutaneous injection of stable 13C isotopomers of glucose, valine, or leucine with mass spectrometric analysis for the investigation of its entry into cardiac metabolic pathways that were deducted from 13C alanine and glutamate enrichments in heart extracts. The procedures were validated by confirming the known effects of treatments that modify glucose, free fatty acids, and amino acid metabolism. Furthermore, we studied changes in the energy metabolism of CD73 knock-out mice to demonstrate the potential of our methods in experimental research. The methods created allowed for fast estimation of cardiac glucose and amino acid use in mice and had the potential for high-throughput analysis of changes in pathology and after pharmacological treatments.
Collapse
|
36
|
Hundertmark MJ, Agbaje OF, Coleman R, George JT, Grempler R, Holman RR, Lamlum H, Lee J, Milton JE, Niessen HG, Rider O, Rodgers CT, Valkovič L, Wicks E, Mahmod M, Neubauer S. Design and rationale of the EMPA-VISION trial: investigating the metabolic effects of empagliflozin in patients with heart failure. ESC Heart Fail 2021; 8:2580-2590. [PMID: 33960149 PMCID: PMC8318430 DOI: 10.1002/ehf2.13406] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Aims Despite substantial improvements over the last three decades, heart failure (HF) remains associated with a poor prognosis. The sodium‐glucose co‐transporter‐2 inhibitor empagliflozin demonstrated significant reductions of HF hospitalization in patients with HF independent of the presence or absence of type 2 diabetes mellitus in the EMPEROR‐Reduced trial and cardiovascular mortality in the EMPA‐REG OUTCOME trial. To further elucidate the mechanisms behind these positive outcomes, this study aims to determine the effects of empagliflozin treatment on cardiac energy metabolism and physiology using magnetic resonance spectroscopy (MRS) and cardiovascular magnetic resonance (CMR). Methods and results The EMPA‐VISION trial is a double‐blind, randomized, placebo‐controlled, mechanistic study. A maximum of 86 patients with HF with reduced ejection fraction (n = 43, Cohort A) or preserved ejection fraction (n = 43, Cohort B), with or without type 2 diabetes mellitus, will be enrolled. Participants will be randomized 1:1 to receive either 10 mg of empagliflozin or placebo for 12 weeks. Eligible patients will undergo cardiovascular magnetic resonance, resting and dobutamine stress MRS, echocardiograms, cardiopulmonary exercise tests, serum metabolomics, and quality of life questionnaires at baseline and after 12 weeks. The primary endpoint will be the change in resting phosphocreatine‐to‐adenosine triphosphate ratio, as measured by 31Phosphorus‐MRS. Conclusions EMPA‐VISION is the first clinical trial assessing the effects of empagliflozin treatment on cardiac energy metabolism in human subjects in vivo. The results will shed light on the mechanistic action of empagliflozin in patients with HF and help to explain the results of the safety and efficacy outcome trials (EMPEROR‐Reduced and EMPEROR‐Preserved).
Collapse
Affiliation(s)
- Moritz J Hundertmark
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Olorunsola F Agbaje
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ruth Coleman
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Rolf Grempler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Rury R Holman
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Hanan Lamlum
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jisoo Lee
- Boehringer Ingelheim International GmBH, Ingelheim, Germany
| | - Joanne E Milton
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Heiko G Niessen
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Oliver Rider
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Christopher T Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, UK
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eleanor Wicks
- John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Masliza Mahmod
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.,Oxford NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
37
|
Shu H, Peng Y, Hang W, Zhou N, Wang DW. Trimetazidine in Heart Failure. Front Pharmacol 2021; 11:569132. [PMID: 33597865 PMCID: PMC7883591 DOI: 10.3389/fphar.2020.569132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a systemic syndrome caused by multiple pathological factors. Current treatments do not have satisfactory outcomes. Several basic studies have revealed the protective effect of trimetazidine on the heart, not only by metabolism modulation but also by relieving myocardial apoptosis, fibrosis, autophagy, and inflammation. Clinical studies have consistently indicated that trimetazidine acts as an adjunct to conventional treatments and improves the symptoms of heart failure. This review summarizes the basic pathological changes in the myocardium, with an emphasis on the alteration of cardiac metabolism in the development of heart failure. The clinical application of trimetazidine in heart failure and the mechanism of its protective effects on the myocardium are carefully discussed, as well as its main adverse effects. The intention of this review is to highlight this treatment as an effective alternative against heart failure and provide additional perspectives for future studies.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Gropler RJ. Imaging Myocardial Metabolism. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Glezer M. Trimetazidine and Bisoprolol to Treat Angina in Symptomatic Patients: Post Hoc Analysis From the CHOICE-2 Study. Cardiol Ther 2020; 10:161-173. [PMID: 33247333 PMCID: PMC8126526 DOI: 10.1007/s40119-020-00202-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction Angina is the cardinal symptom of chronic coronary syndrome (CCS), which is the leading cause of death worldwide. As such, the control of angina is important. The current guidelines recommend beta blockers (BB) or calcium channel blockers to reduce angina, yet many patients with stable angina remain symptomatic. It has been suggested that combining trimetazidine (TMZ), an anti-ischemic agent, with a BB is beneficial for symptomatic patients. Bisoprolol, a BB, is often used to treat patients with CCS, yet no data are currently available regarding the efficacy of bisoprolol combined with TMZ in patients who remain symptomatic despite receiving bisoprolol. Methods The aim of this post-hoc analysis of the CHOICE-2 study was to evaluate the efficacy and safety of TMZ 35 mg twice daily in combination with different bisoprolol doses in symptomatic patients with stable angina patients receiving hemodynamic therapy in a real-world clinical setting. Results This analysis involved 221 patients (mean [± standard deviation] age 64.8 ± 8.9 years) with stable angina. The mean number of weekly angina episodes gradually fell from 6.2 ± 5.3 at inclusion (M0) to 1.5 ± 1.9 at 6 months after treatment initiation (M6) with combined TMZ–bisoprolol therapy (P < 0.001). The number of patients assessed to be angina-free increased almost sixfold from 5.4% (12/221) at M0 to 33.9% (74/221) at M6. Exercise capacity improved, as measured by walking distance, from 308 ± 207 m at M0 to 497 ± 253 m at M6 (P < 0.05). The number of patients with Canadian Cardiovascular Society class 1 angina increased by tenfold during the study, whereas those with class 3 angina decreased by threefold. Conclusion The TMZ–bisoprolol combination is a rapidly effective treatment for reducing the frequency of angina attacks and the use of short-acting nitrates in patients with stable angina in a real-world clinical setting. The benefits of this combination therapy was observed as early as 2 weeks after treatment initiation and the treatment was well tolerated. Trial Registration ISRCTN identifier: ISRCTN65209863
Collapse
Affiliation(s)
- Maria Glezer
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov First Moscow State Medical University, Moscow, Russia.
| | | |
Collapse
|
40
|
Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD + and SIRT1. Sci Rep 2020; 10:20184. [PMID: 33214614 PMCID: PMC7678835 DOI: 10.1038/s41598-020-76564-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Urolithin A (UA) is a natural compound that is known to improve muscle function. In this work we sought to evaluate the effect of UA on muscle angiogenesis and identify the underlying molecular mechanisms. C57BL/6 mice were administered with UA (10 mg/body weight) for 12–16 weeks. ATP levels and NAD+ levels were measured using in vivo 31P NMR and HPLC, respectively. UA significantly increased ATP and NAD+ levels in mice skeletal muscle. Unbiased transcriptomics analysis followed by Ingenuity Pathway Analysis (IPA) revealed upregulation of angiogenic pathways upon UA supplementation in murine muscle. The expression of the differentially regulated genes were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Angiogenic markers such as VEGFA and CDH5 which were blunted in skeletal muscles of 28 week old mice were found to be upregulated upon UA supplementation. Such augmentation of skeletal muscle vascularization was found to be bolstered via Silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α) pathway. Inhibition of SIRT1 by selisistat EX527 blunted UA-induced angiogenic markers in C2C12 cells. Thus this work provides maiden evidence demonstrating that UA supplementation bolsters skeletal muscle ATP and NAD+ levels causing upregulated angiogenic pathways via a SIRT1-PGC-1α pathway.
Collapse
|
41
|
Maack C, Eschenhagen T, Hamdani N, Heinzel FR, Lyon AR, Manstein DJ, Metzger J, Papp Z, Tocchetti CG, Yilmaz MB, Anker SD, Balligand JL, Bauersachs J, Brutsaert D, Carrier L, Chlopicki S, Cleland JG, de Boer RA, Dietl A, Fischmeister R, Harjola VP, Heymans S, Hilfiker-Kleiner D, Holzmeister J, de Keulenaer G, Limongelli G, Linke WA, Lund LH, Masip J, Metra M, Mueller C, Pieske B, Ponikowski P, Ristić A, Ruschitzka F, Seferović PM, Skouri H, Zimmermann WH, Mebazaa A. Treatments targeting inotropy. Eur Heart J 2020; 40:3626-3644. [PMID: 30295807 DOI: 10.1093/eurheartj/ehy600] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/06/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Acute heart failure (HF) and in particular, cardiogenic shock are associated with high morbidity and mortality. A therapeutic dilemma is that the use of positive inotropic agents, such as catecholamines or phosphodiesterase-inhibitors, is associated with increased mortality. Newer drugs, such as levosimendan or omecamtiv mecarbil, target sarcomeres to improve systolic function putatively without elevating intracellular Ca2+. Although meta-analyses of smaller trials suggested that levosimendan is associated with a better outcome than dobutamine, larger comparative trials failed to confirm this observation. For omecamtiv mecarbil, Phase II clinical trials suggest a favourable haemodynamic profile in patients with acute and chronic HF, and a Phase III morbidity/mortality trial in patients with chronic HF has recently begun. Here, we review the pathophysiological basis of systolic dysfunction in patients with HF and the mechanisms through which different inotropic agents improve cardiac function. Since adenosine triphosphate and reactive oxygen species production in mitochondria are intimately linked to the processes of excitation-contraction coupling, we also discuss the impact of inotropic agents on mitochondrial bioenergetics and redox regulation. Therefore, this position paper should help identify novel targets for treatments that could not only safely improve systolic and diastolic function acutely, but potentially also myocardial structure and function over a longer-term.
Collapse
Affiliation(s)
- Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, Würzburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Partner site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research), Hamburg, Germany
| | - Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Frank R Heinzel
- Department of Cardiology, Charité University Medicine, Berlin, Germany
| | - Alexander R Lyon
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College, London, UK
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany.,Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
| | - Joseph Metzger
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - M Birhan Yilmaz
- Department of Cardiology, Cumhuriyet University, Sivas, Turkey
| | - Stefan D Anker
- Department of Cardiology and Pneumology, University Medical Center Göttingen and DZHK (German Center for Cardiovascular Research), Göttingen, Germany.,Division of Cardiology and Metabolism - Heart Failure, Cachexia and Sarcopenia, Department of Internal Medicine and Cardiology, Berlin-Brandenburg Center for Regenerative Therapies (BCRT) at Charité University Medicine, Berlin, Germany
| | - Jean-Luc Balligand
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Universite Catholique de Louvain and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover D-30625, Germany
| | | | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Partner site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research), Hamburg, Germany
| | - Stefan Chlopicki
- Department of Pharmacology, Medical College, Jagiellonian University, Krakow, Poland
| | - John G Cleland
- University of Hull, Kingston upon Hull, UK.,National Heart and Lung Institute, Royal Brompton and Harefield Hospitals NHS Trust, Imperial College, London, UK
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexander Dietl
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Rodolphe Fischmeister
- Inserm UMR-S 1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | | | | | | | | | - Gilles de Keulenaer
- Laboratory of Physiopharmacology (University of Antwerp) and Department of Cardiology, ZNA Hospital, Antwerp, Belgium
| | - Giuseppe Limongelli
- Department of Cardiothoracic Sciences, Second University of Naples, Naples, Italy
| | | | - Lars H Lund
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona, Spain
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| | - Christian Mueller
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin, and German Centre for Cardiovascular Research (DZHK), Partner site Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Piotr Ponikowski
- Department of Cardiology, Medical University, Clinical Military Hospital, Wroclaw, Poland
| | - Arsen Ristić
- Department of Cardiology of the Clinical Center of Serbia and Belgrade University School of Medicine, Belgrade, Serbia
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Switzerland
| | | | - Hadi Skouri
- Division of Cardiology, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner siteGöttingen, Göttingen, Germany
| | - Alexandre Mebazaa
- Hôpital Lariboisière, Université Paris Diderot, Inserm U 942, Paris, France
| |
Collapse
|
42
|
Peterzan MA, Lewis AJM, Neubauer S, Rider OJ. Non-invasive investigation of myocardial energetics in cardiac disease using 31P magnetic resonance spectroscopy. Cardiovasc Diagn Ther 2020; 10:625-635. [PMID: 32695642 DOI: 10.21037/cdt-20-275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiac metabolism and function are intrinsically linked. High-energy phosphates occupy a central and obligate position in cardiac metabolism, coupling oxygen and substrate fuel delivery to the myocardium with external work. This insight underlies the widespread clinical use of ischaemia testing. However, other deficits in high-energy phosphate metabolism (not secondary to supply-demand mismatch of oxygen and substrate fuels) may also be documented, and are of particular interest when found in the context of structural heart disease. This review introduces the scope of deficits in high-energy phosphate metabolism that may be observed in the myocardium, how to assess for them, and how they might be interpreted.
Collapse
Affiliation(s)
- Mark A Peterzan
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J M Lewis
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stefan Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Glezer MG, Vygodin VA. Effectiveness of Trimetazidine in Patients with Stable Angina Pectoris of Various Durations: Results from ODA. Cardiol Ther 2020; 9:395-408. [PMID: 32430799 PMCID: PMC7584693 DOI: 10.1007/s40119-020-00174-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Trimetazidine (TMZ) is an antianginal agent that acts directly at the myocardial cell level and which is now available in a once-daily (od) formulation. METHODS ODA, a 3-month, observational, multicenter study in Russia, assessed the effectiveness and tolerability of TMZ 80 mg od in patients with stable angina and persisting symptoms, in real-life settings. The present analysis explored the effects of adding TMZ to background antianginal treatment with respect to the duration of stable angina. RESULTS A total of 3032 patients were divided into four groups according to stable angina pectoris duration since diagnosis, ranging from less than 1 year to more than 10 years. A decrease in frequency of angina attacks was observed, including in patients with angina duration < 1 year, in whom the frequency of weekly angina attacks decreased from 3.8 ± 2.9 to 1.4 ± 1.7 at 1 month and 0.6 ± 1.0 at 3 months. Short-acting nitrate consumption and proportion of angina-free patients decreased, and self-reported physical activity and adherence to antianginal therapy improved in all patient groups, including recently diagnosed patients and starting already at month 1. CONCLUSIONS Addition of TMZ 80 mg od to antianginal treatment was effective in reducing the frequency of angina attacks and the use of short-acting nitrates, improving Canadian Cardiovascular Society (CCS) class, self-reported physical activity, and adherence to antianginal therapy. These beneficial effects were observed in patient groups with different durations of stable angina, suggesting an opportunity for decreasing angina burden even in recently diagnosed patients. TRIAL REGISTRATION ISRCTN registry Identifier, ISRCTN97780949.
Collapse
Affiliation(s)
- Maria G Glezer
- Department of Cardiology, Functional and Ultrasonic Diagnostics, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Vladimir A Vygodin
- Laboratory of Biostatistics, National Medical Research Center for Preventive Medicine of the Ministry of Healthcare, Moscow, Russia
| | | |
Collapse
|
44
|
Kumar V, Santhosh Kumar TR, Kartha CC. Mitochondrial membrane transporters and metabolic switch in heart failure. Heart Fail Rev 2020; 24:255-267. [PMID: 30535838 DOI: 10.1007/s10741-018-9756-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction is widely recognized as a major factor for the progression of cardiac failure. Mitochondrial uptake of metabolic substrates and their utilization for ATP synthesis, electron transport chain activity, reactive oxygen species levels, ion homeostasis, mitochondrial biogenesis, and dynamics as well as levels of reactive oxygen species in the mitochondria are key factors which regulate mitochondrial function in the normal heart. Alterations in these functions contribute to adverse outcomes in heart failure. Iron imbalance and oxidative stress are also major factors for the evolution of cardiac hypertrophy, heart failure, and aging-associated pathological changes in the heart. Mitochondrial ATP-binding cassette (ABC) transporters have a key role in regulating iron metabolism and maintenance of redox status in cells. Deficiency of mitochondrial ABC transporters is associated with an impaired mitochondrial electron transport chain complex activity, iron overload, and increased levels of reactive oxygen species, all of which can result in mitochondrial dysfunction. In this review, we discuss the role of mitochondrial ABC transporters in mitochondrial metabolism and metabolic switch, alterations in the functioning of ABC transporters in heart failure, and mitochondrial ABC transporters as possible targets for therapeutic intervention in cardiac failure.
Collapse
Affiliation(s)
- Vikas Kumar
- Cardiovascular Diseases and Diabetes Biology group, Rajiv Gandhi Centre for Biotechnology (RGCB), Poojappura, Thycaud Post, Trivandrum, Kerala, 695014, India.,Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - T R Santhosh Kumar
- Cardiovascular Diseases and Diabetes Biology group, Rajiv Gandhi Centre for Biotechnology (RGCB), Poojappura, Thycaud Post, Trivandrum, Kerala, 695014, India.,Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.,Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India
| | - C C Kartha
- Cardiovascular Diseases and Diabetes Biology group, Rajiv Gandhi Centre for Biotechnology (RGCB), Poojappura, Thycaud Post, Trivandrum, Kerala, 695014, India.
| |
Collapse
|
45
|
Wang SM, Ye LF, Wang LH. Shenmai Injection Improves Energy Metabolism in Patients With Heart Failure: A Randomized Controlled Trial. Front Pharmacol 2020; 11:459. [PMID: 32362824 PMCID: PMC7181884 DOI: 10.3389/fphar.2020.00459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background In recent years, the application of Shenmai (SM) injection, a traditional Chinese medicine (TCM), to treat heart failure (HF) has been gradually accepted in China. However, whether SM improves energy metabolism in patients with HF has not been determined due to the lack of high-quality studies. We aimed to investigate the influence of SM on energy metabolism in patients with HF. Methods This single-blind, controlled study randomly assigned 120 eligible patients equally into three groups receiving SM, trimetazidine (TMZ), or control in addition to standard medical treatment for HF for 7 days. The primary endpoints were changes in free fatty acids (FFAs), glucose, lactic acid (LA), pyroracemic acid (pyruvate, PA) and branched chain amino acids (BCAAs) in serum. The secondary outcomes included the New York Heart Association (NYHA) functional classification, TCM syndrome score (TCM-s), left ventricular injection fraction (LVEF), left ventricular internal diastolic diameter (LVIDd), left ventricular internal dimension systole (LVIDs), and B-type natriuretic peptide (BNP). Results After treatment for 1 week, the NYHA functional classification, TCM-s, and BNP level gradually decreased in the patients in all three groups, but these metrics were significantly increased in the patients in the SM group compared with those in the patients in the TMZ and control groups (P < 0.05). Moreover, energy metabolism was improved in the NYHA III–IV patients in the SM group compared with those in the patients in the TMZ and control groups as evidenced by changes in the serum levels of FFA, LA, PA, and BCAA. Conclusions Integrative treatment with SM in addition to standard medical treatment for HF was associated with improved cardiac function compared to standard medical treatment alone. The benefit of SM in HF may be related to an improvement in energy metabolism, which seems to be more remarkable than that following treatment with TMZ.
Collapse
Affiliation(s)
- Shao-Mei Wang
- Cardiovascular Medicine Department, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Bengbu Medical College, Bengbu, China
| | - Li-Fang Ye
- Cardiovascular Medicine Department, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li-Hong Wang
- Cardiovascular Medicine Department, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
46
|
TrimetaziDine as a Performance-enhancING drug in heart failure with preserved ejection fraction (DoPING-HFpEF): rationale and design of a placebo-controlled cross-over intervention study. Neth Heart J 2020; 28:312-319. [PMID: 32162204 PMCID: PMC7270414 DOI: 10.1007/s12471-020-01407-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Currently, no specific treatment exists for heart failure with preserved ejection fraction (HFpEF). Left ventricular (LV) relaxation during diastole is a highly energy-demanding process, while energy homeostasis is known to be compromised in HFpEF. We hypothesise that trimetazidine - a fatty acid β‑oxidation inhibitor - improves LV diastolic function in HFpEF, by altering myocardial substrate use and improving the myocardial energy status. OBJECTIVES To assess whether trimetazidine improves LV diastolic function by improving myocardial energy metabolism in HFpEF. METHODS The DoPING-HFpEF trial is a randomised, double-blind, placebo-controlled cross-over intervention trial comparing the efficacy of trimetazidine and placebo in 25 patients with stable HFpEF. The main inclusion criteria are: New York Heart Association functional class II to IV, LV ejection fraction ≥50%, and evidence of LV diastolic dysfunction. Patients are treated with one 20-mg trimetazidine tablet or placebo thrice daily (twice daily in the case of moderate renal dysfunction) for two periods of 3 months separated by a 2-week washout period. The primary endpoint is the change in pulmonary capillary wedge pressure during different intensities of exercise measured by right heart catheterisation. Our key secondary endpoint is the myocardial phosphocreatine (PCr)/ATP ratio measured by phosphorus-31 magnetic resonance spectroscopy and its relation to the primary endpoint. Exploratory endpoints are 6‑min walk distance, N-terminal pro-brain natriuretic peptide levels, and quality of life. CONCLUSION The DoPING-HFpEF is a phase-II trial that evaluates the effect of trimetazidine, a metabolic modulator, on diastolic function and myocardial energy status in HFpEF. [EU Clinical Trial Register: 2018-002170-52; NTR registration: NL7830].
Collapse
|
47
|
Abstract
The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.
Collapse
|
48
|
Zhao Y, Li S, Quan E, Zhang H, Wu Y, Luo Y, Peng L, Wang J, Zhu J, Liu J. Trimetazidine inhibits cardiac fibrosis by reducing reactive oxygen species and downregulating connective tissue growth factor in streptozotocin-induced diabetic rats. Exp Ther Med 2019; 18:1477-1485. [PMID: 31363380 DOI: 10.3892/etm.2019.7705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/16/2019] [Indexed: 01/12/2023] Open
Abstract
Diabetes may affect myocardial fibrosis through oxidative stress. Trimetazidine (TMZ) is an anti-anginal agent. The present study aimed to determine the modulatory effect of TMZ on reactive oxygen species (ROS) and connective tissue growth factor (CTGF) expression and to evaluate the potential of TMZ to improve diastolic function in streptozotocin (STZ)-induced diabetic rats. After treating STZ-induced diabetic rats with TMZ for 16 weeks, a decrease in malondialdehyde levels, cardiac collagen volume fraction, left ventricular (LV) end-diastolic pressure and protein expression of collagen-I (Col I), Col III and CTGF compared with those in diabetic control rats was observed. In vitro, TMZ inhibited Col I, Col III and CTGF protein expression in cardiac fibroblasts treated with high glucose and decreased intracellular ROS generation and hydroxyproline content in the cell culture medium of cardiac fibroblasts. TMZ markedly improved cardiac fibrosis and diastolic function in diabetic rats. This effect was associated with a reduction in ROS production and CTGF expression in cardiac fibroblasts. The present study suggests that TMZ may be beneficial for protecting the hearts of diabetic patients.
Collapse
Affiliation(s)
- Yunyue Zhao
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Suhua Li
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Enxi Quan
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hui Zhang
- Department of Ultrasonography, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yongxiang Wu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yanting Luo
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Long Peng
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jiarui Wang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jieming Zhu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jinlai Liu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
49
|
Zhang YJ, Wang JX, Fu SH, Li XY. Trimetazidine in angina and poor muscle function: protocol for a randomized controlled study. Chin Med J (Engl) 2019; 132:1461-1466. [PMID: 31205105 PMCID: PMC6629326 DOI: 10.1097/cm9.0000000000000267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Low handgrip strength (HS) and declining gait speed (GS) are increasingly obvious with aging, requiring effective, and safe medication for treatment. Trimetazidine (TMZ) modified release tablets, a common anti-angina drug, has potential benefits for alleviating the condition, but this has not yet been fully studied and therefore is the aim of this study. METHODS This is a prospective randomized controlled study. Fifty-eight eligible patients will be randomly assigned to one of two study groups: TMZ group or control group. For the TMZ group, a dose of 35 mg of oral TMZ will be administered with a meal twice a day for 3 months, in addition to any conventional treatments for angina. Only conventional treatments for angina will be administrated in the control group. The primary outcome will be the 6-min walking distance and the secondary outcomes will be: muscle strength (HS and pinch strength), GS, muscle endurance (five times sit-to-stand test), balance maintenance (tandem standing test), and the frequency of angina per week. Additionally, body mass index, circumferences (biceps, waist, hip, and calf), albumin levels, and the score on a five-question scale for sarcopenia will be obtained during the study. DISCUSSION This study aims to evaluate the usefulness of TMZ in a population with poor muscle function. The results may provide an effective and safe medical treatment to people with low muscle strength or physical performance. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR1800015000; www.chictr.org.cn/showproj.aspx?proj=25445.
Collapse
Affiliation(s)
- Yu-Jie Zhang
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Jing-Xin Wang
- Department of Rehabilitation, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan 450007, China
- Department of Rehabilitation, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Shi-Hui Fu
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xiao-Ying Li
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
50
|
Affiliation(s)
- Diem H Tran
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| | - Zhao V Wang
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| |
Collapse
|