1
|
Jiang X, Wang M, Liu B, Yang H, Ren J, Chen S, Ye D, Yang S, Mao Y. Gut microbiota and risk of ankylosing spondylitis. Clin Rheumatol 2024; 43:3351-3360. [PMID: 39243281 DOI: 10.1007/s10067-024-07102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Accepted: 08/04/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE Observational studies have established a connection between gut microbiota and ankylosing spondylitis (AS) risk; however, whether the observed associations are causal remains unclear. Therefore, we conducted a two-sample Mendelian randomization (MR) analysis to assess the potential causal associations of gut microbiota with AS risk. METHODS Instrumental variants of gut microbiota were obtained from the MiBioGen consortium (n = 18,340) and the Dutch Microbiome Project (n = 7738). The FinnGen consortium provided genetic association summary statistics for AS, encompassing 2860 cases and 270,964 controls. We used the inverse-variance weighted (IVW) method as the primary analysis, supplemented with the weighted median method, maximum likelihood-based method, MR pleiotropy residual sum and outlier test, and MR-Egger regression. In addition, we conducted a reverse MR analysis to assess the likelihood of reverse causality. RESULTS After the Bonferroni correction, species Bacteroides vulgatus remained statistically significantly associated with AS risk (odds ratio (OR) 1.55, 95% confidence interval (CI) 1.22-1.95, P = 2.55 × 10-4). Suggestive evidence of associations of eleven bacterial traits with AS risk was also observed (P < 0.05 by IVW). Among them, eight were associated with an elevated AS risk (OR 1.37, 95% CI 1.07-1.74, P = 0.011 for phylum Verrucomicrobia; OR 1.31, 95% CI 1.03-1.65, P = 0.026 for class Verrucomicrobiae; OR 1.17, 95% CI 1.01-1.36, P = 0.035 for order Bacillales; OR 1.31, 95% CI 1.03-1.65, P = 0.026 for order Verrucomicrobiales; OR 1.43, 95% CI 1.13-1.82, P = 0.003 for family Alcaligenaceae; OR 1.31, 95% CI 1.03-1.65, P = 0.026 for family Verrucomicrobiaceae; OR 1.31, 95% CI 1.03-1.65, P = 0.026 for genus Akkermansia; OR 1.55, 95% CI 1.19-2.02, P = 0.001 for species Sutterella wadsworthensis). Three traits exhibited a negative association with AS risk (OR 0.68, 95% CI 0.53-0.88, P = 0.003 for genus Dialister; OR 0.84, 95% CI 0.72-0.97, P = 0.020 for genus Howardella; OR 0.75, 95% CI 0.59-0.97, P = 0.026 for genus Oscillospira). Consistent associations were observed when employing alternate MR methods. In the reverse MR, no statistically significant correlations were detected between AS and these bacterial traits. CONCLUSION Our results revealed the associations of several gut bacterial traits with AS risk, suggesting a potential causal role of gut microbiota in AS development. Nevertheless, additional research is required to clarify the mechanisms by which these bacteria influence AS risk. Key Points • The association of gut microbiota with AS risk in observational studies is unclear. • This MR analysis revealed associations of 12 gut bacterial traits with AS risk.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Wang
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Bin Liu
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Hong Yang
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- The Third Hospital of Nanchang, Nanchang, China
| | - Jiadong Ren
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Shuhui Chen
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ding Ye
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Shaoxue Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
2
|
van Leeuwen PML, Mastromonaco GF, Mykytczuk N, Schulte-Hostedde AI. Captivity conditions matter for the gut microbiota of an endangered obligate hibernator. CONSERVATION PHYSIOLOGY 2024; 12:coae072. [PMID: 39464172 PMCID: PMC11503477 DOI: 10.1093/conphys/coae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Conservation breeding programmes include translocations of animals across breeding facilities, both in and ex situ, and to/from their natural habitat. Newly reintroduced Vancouver Island marmots (VIMs) originating from the captive breeding programme are known to experience high winter mortality once reintroduced. Whilst high winter mortality rates amongst reintroduced VIM populations remain a concern of unknown causes, this health issue could potentially be linked to changes in gut microbiota prior to hibernation. Furthermore, captivity is known to impact the gut microbiota of mammals that could be crucial for hibernation. In this study, we explored the diversity of bacterial communities in the gut of captive marmots during the entire active season, both kept in captivity at in situ and ex situ facilities, as well as free-ranging marmots during the summer period. Gut microbial diversity was higher in marmots held in ex situ facilities, outside of their habitat range, compared to captive marmots held within their habitat range, and in the wild, and differences in composition were also observed. In the entire active season, animals kept in the ex situ facility had increased abundance in taxa known to be mucin degraders, sulphate producers and possible cross-feeders, whilst an increase in fibre degraders of in situ and free-ranging marmots is potentially linked to diet variation between facilities. These results confirm the interest to transfer animals held at zoos to an in situ facility before relocation and expand our understanding of microbiota variation according to hibernation cycles in the context of conservation biology.
Collapse
Affiliation(s)
- Pauline M L van Leeuwen
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Conservation Genetics Laboratory, University of Liège, Liège, Belgium
| | | | - Nadia Mykytczuk
- Vale Living with Lakes Centre, Laurentian University, Sudbury, ON, Canada
| | | |
Collapse
|
3
|
de Ram C, van der Lugt B, Elzinga J, Geerlings S, Steegenga WT, Belzer C, Schols HA. Revealing Glycosylation Patterns in In Vitro-Produced Mucus Exposed to Pasteurized Mucus-Associated Intestinal Microbes by MALDI-TOF-MS and PGC-LC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15345-15356. [PMID: 38932522 PMCID: PMC11247495 DOI: 10.1021/acs.jafc.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
The human intestinal mucus layer protects against pathogenic microorganisms and harmful substances, whereas it also provides an important colonization niche for mutualistic microbes. The main functional components of mucus are heavily glycosylated proteins, called mucins. Mucins can be cleaved and utilized by intestinal microbes. The mechanisms between intestinal microbes and the regulation of mucin glycosylation are still poorly understood. In this study, in vitro mucus was produced by HT29-MTX-E12 cells under Semi-Wet interface with Mechanical Stimulation. Cells were exposed to pasteurized nonpathogenic bacteria Akkermansia muciniphila, Ruminococcus gnavus, and Bacteroides fragilis to evaluate influence on glycosylation patterns. Following an optimized protocol, O- and N-glycans were efficiently and reproducibly released, identified, and semiquantified using MALDI-TOF-MS and PGC-LC-MS/MS. Exposure of cells to bacteria demonstrated increased diversity of sialylated O-glycans and increased abundance of high mannose N-glycans in in vitro produced mucus. Furthermore, changes in glycan ratios were observed. It is speculated that bacterial components interact with the enzymatic processes in glycan production and that pasteurized bacteria influence glycosyltransferases or genes involved. These results highlight the influence of pasteurized bacteria on glycosylation patterns, stress the intrinsic relationship between glycosylation and microbiota, and show the potential of using in vitro produced mucus to study glycosylation behavior.
Collapse
Affiliation(s)
- Carol de Ram
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Benthe van der Lugt
- Human
Nutrition and Health, Wageningen University
& Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Janneke Elzinga
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Sharon Geerlings
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Wilma T. Steegenga
- Human
Nutrition and Health, Wageningen University
& Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Henk A. Schols
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
4
|
Cheng J, Kolba N, Tako E. The effect of dietary zinc and zinc physiological status on the composition of the gut microbiome in vivo. Crit Rev Food Sci Nutr 2024; 64:6432-6451. [PMID: 36688291 DOI: 10.1080/10408398.2023.2169857] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Zinc serves critical catalytic, regulatory, and structural roles. Hosts and their resident gut microbiota both require zinc, leading to competition, where a balance must be maintained. This systematic review examined evidence on dietary zinc and physiological status (zinc deficiency or high zinc/zinc overload) effects on gut microbiota. This review was conducted according to PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines and registered in PROSPERO (CRD42021250566). PubMed, Web of Science, and Scopus databases were searched for in vivo (animal) studies, resulting in eight selected studies. Study quality limitations were evaluated using the SYRCLE risk of bias tool and according to ARRIVE guidelines. The results demonstrated that zinc deficiency led to inconsistent changes in α-diversity and short-chain fatty acid production but led to alterations in bacterial taxa with functions in carbohydrate metabolism, glycan metabolism, and intestinal mucin degradation. High dietary zinc/zinc overload generally resulted in either unchanged or decreased α-diversity, decreased short-chain fatty acid production, and increased bacterial metal resistance and antibiotic resistance genes. Additional studies in human and animal models are needed to further understand zinc physiological status effects on the intestinal microbiome and clarify the applicability of utilizing the gut microbiome as a potential zinc status biomarker.
Collapse
Affiliation(s)
- Jacquelyn Cheng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Zhang J, Zhou J, He Z, Li H. Bacteroides and NAFLD: pathophysiology and therapy. Front Microbiol 2024; 15:1288856. [PMID: 38572244 PMCID: PMC10988783 DOI: 10.3389/fmicb.2024.1288856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition observed globally, with the potential to progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. Currently, the US Food and Drug Administration (FDA) has not approved any drugs for the treatment of NAFLD. NAFLD is characterized by histopathological abnormalities in the liver, such as lipid accumulation, steatosis, hepatic balloon degeneration, and inflammation. Dysbiosis of the gut microbiota and its metabolites significantly contribute to the initiation and advancement of NAFLD. Bacteroides, a potential probiotic, has shown strong potential in preventing the onset and progression of NAFLD. However, the precise mechanism by which Bacteroides treats NAFLD remains uncertain. In this review, we explore the current understanding of the role of Bacteroides and its metabolites in the treatment of NAFLD, focusing on their ability to reduce liver inflammation, mitigate hepatic steatosis, and enhance intestinal barrier function. Additionally, we summarize how Bacteroides alleviates pathological changes by restoring the metabolism, improving insulin resistance, regulating cytokines, and promoting tight-junctions. A deeper comprehension of the mechanisms through which Bacteroides is involved in the pathogenesis of NAFLD should aid the development of innovative drugs targeting NAFLD.
Collapse
Affiliation(s)
- Jun Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Zheyun He
- Liver Diseases Institute, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Hongshan Li
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Ren P, Yue H, Tang Q, Wang Y, Xue C. Astaxanthin exerts an adjunctive anti-cancer effect through the modulation of gut microbiota and mucosal immunity. Int Immunopharmacol 2024; 128:111553. [PMID: 38281337 DOI: 10.1016/j.intimp.2024.111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
This study aimed to investigate the function of gut microbiota in astaxanthin's adjuvant anticancer effects. Our prior research demonstrated that astaxanthin enhanced the antitumor effects of sorafenib by enhancing the body's antitumor immune response; astaxanthin also regulated the intestinal flora composition of tumor-bearing mice. However, it is presently unknown whether this beneficial effect is dependent on the gut microbiota. We first used broad-spectrum antibiotics to eradicate gut microbiota of tumor-bearing mice, followed by the transplantation of fecal microbiota. The results of this study indicate that the beneficial effects of astaxanthin when combined with molecular targeting are dependent on the presence of intestinal microbiota. Astaxanthin facilitates the infiltration of CD8+ T lymphocytes into the tumor microenvironment and increases Granzyme B production by modulating the intestinal flora. Therefore, it strengthens the body's anti-tumor immune response and synergistically boosts the therapeutic efficacy of drugs. Astaxanthin stimulates the production of cuprocytes and mucus in the intestines by promoting the proliferation of Akkermansia. In addition, astaxanthin enhances the intestinal mucosal immunological function. Our research supports the unique ability of astaxanthin to sustain intestinal flora homeostasis and its function as a dietary immune booster for individuals with tumors.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Han Yue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China.
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| |
Collapse
|
7
|
Goya-Jorge E, Gonza I, Douny C, Scippo ML, Delcenserie V. M-Batches to Simulate Luminal and Mucosal Human Gut Microbial Ecosystems: A Case Study of the Effects of Coffee and Green Tea. Microorganisms 2024; 12:236. [PMID: 38399640 PMCID: PMC10891782 DOI: 10.3390/microorganisms12020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Gastrointestinal simulations in vitro have only limited approaches to analyze the microbial communities inhabiting the mucosal compartment. Understanding and differentiating gut microbial ecosystems is crucial for a more comprehensive and accurate representation of the gut microbiome and its interactions with the host. Herein is suggested, in a short-term and static set-up (named "M-batches"), the analysis of mucosal and luminal populations of inhabitants of the human colon. After varying several parameters, such as the fermentation volume and the fecal inoculum (single or pool), only minor differences in microbial composition and metabolic production were identified. However, the pool created with feces from five donors and cultivated in a smaller volume (300 mL) seemed to provide a more stable luminal ecosystem. The study of commercially available coffee and green tea in the M-batches suggested some positive effects of these worldwide known beverages, including the increase in butyrate-producing bacteria and lactobacilli populations. We hope that this novel strategy can contribute to future advances in the study of intestinal ecosystems and host-microbe relationships and help elucidate roles of the microbiome in health and disease.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH-Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
- Intestinal Regenerative Medicine Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH-Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH-Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH-Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH-Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| |
Collapse
|
8
|
Wu H, Qi S, Yang R, Pan Q, Lu Y, Yao C, He N, Huang S, Ling X. Strategies for high cell density cultivation of Akkermansia muciniphila and its potential metabolism. Microbiol Spectr 2024; 12:e0238623. [PMID: 38059626 PMCID: PMC10782997 DOI: 10.1128/spectrum.02386-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Currently, there is significant interest in Akkermansia muciniphila as a promising next-generation probiotic, making it a hot topic in scientific research. However, to achieve efficient industrial production, there is an urgent need to develop an in vitro culture method to achieve high biomass using low-cost carbon sources such as glucose. This study aims to explore the high-density fermentation strategy of A. muciniphila by optimizing the culture process. This study also employs techniques such as LC-MS and RNA-Seq to explain the possible regulatory mechanism of high-density cell growth and increased cell surface hydrophobicity facilitating cell colonization of the gut in vitro culture. Overall, this research sheds light on the potential of A. muciniphila as a probiotic and provides valuable insights for future industrial production.
Collapse
Affiliation(s)
- Haiting Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Shuhua Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Ruixiong Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Qihua Pan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, People's Republic of China
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
| | - Song Huang
- Department of Microbiome and Health, Bluepha Co., Ltd, Shenzhen, People's Republic of China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
9
|
Gore R, Mohsenipour M, Wood JL, Balasuriya GK, Hill-Yardin EL, Franks AE. Hyperimmune bovine colostrum containing lipopolysaccharide antibodies (IMM124-E) has a nondetrimental effect on gut microbial communities in unchallenged mice. Infect Immun 2023; 91:e0009723. [PMID: 37830823 PMCID: PMC10652967 DOI: 10.1128/iai.00097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of bacterial diarrhea with the potential to cause long-term gastrointestinal (GI) dysfunction. Preventative treatments for ETEC-induced diarrhea exist, yet the effects of these treatments on GI commensals in healthy individuals are unclear. Whether administration of a prophylactic preventative treatment for ETEC-induced diarrhea causes specific shifts in gut microbial populations in controlled environments is also unknown. Here, we studied the effects of a hyperimmune bovine colostrum (IMM-124E) used in the manufacture of Travelan (AUST L 106709) on GI bacteria in healthy C57BL/6 mice. Using next-generation sequencing, we aimed to test the onset and magnitude of potential changes to the mouse gut microbiome in response to the antidiarrheagenic hyperimmune bovine colostrum product, rich in immunoglobulins against select ETEC strains (Travelan, Immuron Ltd). We show that in mice administered colostrum containing lipopolysaccharide (LPS) antibodies, there was an increased abundance of potentially gut-beneficial bacteria, such as Akkermansia and Desulfovibrio, without disrupting the underlying ecology of the GI tract. Compared to controls, there was no difference in overall weight gain, body or cecal weights, or small intestine length following LPS antibody colostrum supplementation. Overall, dietary supplementation with colostrum containing LPS antibodies produced subtle alterations in the gut bacterial composition of mice. Primarily, Travelan LPS antibody treatment decreased the ratio of Firmicutes/Bacteroidetes in gut microbial populations in unchallenged healthy mice. Further studies are required to examine the effect of Travelan LPS antibody treatment to engineer the microbiome in a diseased state and during recovery.
Collapse
Affiliation(s)
- Rachele Gore
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| | - Mitra Mohsenipour
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Jennifer L. Wood
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| | - Gayathri K. Balasuriya
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Elisa L. Hill-Yardin
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ashley E. Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
10
|
Liu B, Garza DR, Gonze D, Krzynowek A, Simoens K, Bernaerts K, Geirnaert A, Faust K. Starvation responses impact interaction dynamics of human gut bacteria Bacteroides thetaiotaomicron and Roseburia intestinalis. THE ISME JOURNAL 2023; 17:1940-1952. [PMID: 37670028 PMCID: PMC10579405 DOI: 10.1038/s41396-023-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Bacterial growth often alters the environment, which in turn can impact interspecies interactions among bacteria. Here, we used an in vitro batch system containing mucin beads to emulate the dynamic host environment and to study its impact on the interactions between two abundant and prevalent human gut bacteria, the primary fermenter Bacteroides thetaiotaomicron and the butyrate producer Roseburia intestinalis. By combining machine learning and flow cytometry, we found that the number of viable B. thetaiotaomicron cells decreases with glucose consumption due to acid production, while R. intestinalis survives post-glucose depletion by entering a slow growth mode. Both species attach to mucin beads, but only viable cell counts of B. thetaiotaomicron increase significantly. The number of viable co-culture cells varies significantly over time compared to those of monocultures. A combination of targeted metabolomics and RNA-seq showed that the slow growth mode of R. intestinalis represents a diauxic shift towards acetate and lactate consumption, whereas B. thetaiotaomicron survives glucose depletion and low pH by foraging on mucin sugars. In addition, most of the mucin monosaccharides we tested inhibited the growth of R. intestinalis but not B. thetaiotaomicron. We encoded these causal relationships in a kinetic model, which reproduced the observed dynamics. In summary, we explored how R. intestinalis and B. thetaiotaomicron respond to nutrient scarcity and how this affects their dynamics. We highlight the importance of understanding bacterial metabolic strategies to effectively modulate microbial dynamics in changing conditions.
Collapse
Affiliation(s)
- Bin Liu
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, B-3000, Leuven, Belgium
| | - Daniel Rios Garza
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, B-3000, Leuven, Belgium
| | - Didier Gonze
- Unité de Chronobiologie Théorique, Faculté des Sciences, CP 231, Université Libre de Bruxelles, Bvd du Triomphe, B-1050, Bruxelles, Belgium
| | - Anna Krzynowek
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, B-3000, Leuven, Belgium
| | - Kenneth Simoens
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, B-3001, Leuven, Belgium
| | - Kristel Bernaerts
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, B-3001, Leuven, Belgium
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Karoline Faust
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
11
|
Nishida AH, Ochman H. Origins and Evolution of Novel Bacteroides in Captive Apes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563286. [PMID: 37961372 PMCID: PMC10634691 DOI: 10.1101/2023.10.20.563286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bacterial strains evolve in response to the gut environment of their hosts, with genomic changes that influence their interactions with hosts as well as with other members of the gut community. Great apes in captivity have acquired strains of Bacteroides xylanisolvens, which are common within gut microbiome of humans but not typically found other apes, thereby enabling characterization of strain evolution following colonization. Here, we isolate, sequence and reconstruct the history of gene gain and loss events in numerous captive-ape-associated strains since their divergence from their closest human-associated strains. We show that multiple captive-ape-associated B. xylanisolvens lineages have independently acquired gene complexes that encode functions related to host mucin metabolism. Our results support the finding of high genome fluidity in Bacteroides, in that several strains, in moving from humans to captive apes, have rapidly gained large genomic regions that augment metabolic properties not previously present in their relatives.
Collapse
Affiliation(s)
- Alexandra H. Nishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712 USA
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712 USA
| |
Collapse
|
12
|
Fresno Rueda A, Griffith JE, Kruse C, St-Pierre B. Effects of grain-based diets on the rumen and fecal bacterial communities of the North American bison ( Bison bison). Front Microbiol 2023; 14:1163423. [PMID: 37485522 PMCID: PMC10359189 DOI: 10.3389/fmicb.2023.1163423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
To overcome the challenges of pasture-finishing of bison, producers commonly feed them with higher energy, grain-based diets to reach the desired market weight. However, decades of research on domesticated ruminants have shown that such diets can have profound effects on the composition of gut microbial communities. To gain further insight, the 16S rRNA gene-based study described in this report aimed to compare the composition of ruminal and fecal bacterial communities from two herds of bison heifers (n = 20/herd) raised on different ranches that were both transitioned from native pasture to a grain-based, free-choice diet for ~100 days prior to slaughter. Comparative analyses of operational taxonomic unit (OTU) composition, either by alpha diversity indices, principal coordinate analysis (PCoA), or on the most abundant individual OTUs, showed the dramatic effect of a diet on the composition of both rumen and fecal bacterial communities in bison. Indeed, feeding a grain-based diet resulted in a lower number of rumen and fecal bacterial OTUs, respectively, compared to grazing on pasture (p < 0.05). PCoA revealed that the composition of the rumen and fecal bacterial communities from the two herds was more similar when they were grazing on native pastures compared to when they were fed a grain-based, free-choice diet. Finally, a comparative analysis of the 20 most abundant OTUs from the rumen and fecal communities further showed that the representation of all these species-level bacterial groups differed (p < 0.05) between the two dietary treatments. Together, these results provide further insights into the rumen and fecal microbiomes of grazing bison and their response to grain-based diet regimens commonly used in intensive ruminant production systems.
Collapse
Affiliation(s)
- Anlly Fresno Rueda
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| | - Jason Eric Griffith
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| | - Carter Kruse
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
- Turner Institute of Ecoagriculture, Bozeman, MT, United States
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
13
|
Xue C, Li G, Gu X, Su Y, Zheng Q, Yuan X, Bao Z, Lu J, Li L. Health and Disease: Akkermansia muciniphila, the Shining Star of the Gut Flora. RESEARCH (WASHINGTON, D.C.) 2023; 6:0107. [PMID: 37040299 PMCID: PMC10079265 DOI: 10.34133/research.0107] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Akkermansia muciniphila (A. muciniphila) has drawn much attention as an important gut microbe strain in recent years. A. muciniphila can influence the occurrence and development of diseases of the endocrine, nervous, digestive, musculoskeletal, and respiratory systems and other diseases. It can also improve immunotherapy for some cancers. A. muciniphila is expected to become a new probiotic in addition to Lactobacillus and Bifidobacterium. An increase in A. muciniphila abundance through direct or indirect A. muciniphila supplementation may inhibit or even reverse disease progression. However, some contrary findings are found in type 2 diabetes mellitus and neurodegenerative diseases, where increased A. muciniphila abundance may aggravate the diseases. To enable a more comprehensive understanding of the role of A. muciniphila in diseases, we summarize the relevant information on A. muciniphila in different systemic diseases and introduce regulators of A. muciniphila abundance to promote the clinical transformation of A. muciniphila research.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
You HJ, Si J, Kim J, Yoon S, Cha KH, Yoon HS, Lee G, Yu J, Choi JS, Jung M, Kim DJ, Lee Y, Kim M, Vázquez-Castellanos JF, Sung J, Park JM, Ko G. Bacteroides vulgatus SNUG 40005 Restores Akkermansia Depletion by Metabolite Modulation. Gastroenterology 2023; 164:103-116. [PMID: 36240952 DOI: 10.1053/j.gastro.2022.09.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Weight loss and exercise intervention have been reported to increase the interaction between Bacteroides spp and Akkermansiamuciniphila (Am), although the underlying mechanisms and consequences of the interaction remain unknown. METHODS Using a healthy Korean twin cohort (n = 582), we analyzed taxonomic associations with host body mass index. B vulgatus strains were isolated from mice and human subjects to investigate the strain-specific effect of B vulgatus SNUG 40005 (Bvul) on obesity. The mechanisms underlying Am enrichment by Bvul administration were investigated by multiple experiments: (1) in vitro cross-feeding experiments, (2) construction of Bvul mutants with the N-acetylglucosaminidase gene knocked out, and (3) in vivo validation cohorts with different metabolites. Finally, metabolite profiling in mouse and human fecal samples was performed. RESULTS An interaction between Bvul and Am was observed in lean subjects but was disrupted in obese subjects. The administration of Bvul to mice fed a high-fat diet decreased body weight, insulin resistance, and gut permeability. In particular, Bvul restored the abundance of Am, which decreased significantly after a long-term high-fat diet. A cross-feeding analysis of Am with cecal contents or Bvul revealed that Am enrichment was attributed to metabolites produced during mucus degradation by Bvul. The metabolome profile of mouse fecal samples identified N-acetylglucosamine as contributing to Am enrichment, which was confirmed by in vitro and in vivo experiments. Metabolite network analysis of the twin cohort found that lysine serves as a bridge between N-acetylglucosamine, Bvul, and Am. CONCLUSIONS Strain-specific microbe-microbe interactions modulate the mucosal environment via metabolites produced during mucin degradation in the gut.
Collapse
Affiliation(s)
- Hyun Ju You
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea; Institute of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea; Center for Human and Environmental Microbiome, Seoul National University, Seoul, Korea; N-Bio, Seoul National University, Seoul, Korea; KoBioLabs, Seoul, Korea
| | - Jiyeon Si
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea; Institute of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea; Center for Human and Environmental Microbiome, Seoul National University, Seoul, Korea; Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Korea
| | - Jinwook Kim
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea
| | - Sunghyun Yoon
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Korea
| | - Hyo Shin Yoon
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea; Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Korea
| | - Giljae Lee
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea
| | - Junsun Yu
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea
| | - Joon-Sun Choi
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea
| | - Minkyung Jung
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea
| | - Do June Kim
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea
| | - Yujin Lee
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea
| | - Minyoung Kim
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea
| | - Jorge F Vázquez-Castellanos
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Joohon Sung
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea
| | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts
| | - GwangPyo Ko
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, Korea; Center for Human and Environmental Microbiome, Seoul National University, Seoul, Korea; N-Bio, Seoul National University, Seoul, Korea; KoBioLabs, Seoul, Korea.
| |
Collapse
|
15
|
Porras AM, Zhou H, Shi Q, Xiao X, Longman R, Brito IL. Inflammatory Bowel Disease-Associated Gut Commensals Degrade Components of the Extracellular Matrix. mBio 2022; 13:e0220122. [PMID: 36445085 PMCID: PMC9765649 DOI: 10.1128/mbio.02201-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular matrix (ECM) remodeling has emerged as a key feature of inflammatory bowel disease (IBD), and ECM fragments have been proposed as markers of clinical disease severity. Recent studies report increased protease activity in the gut microbiota of IBD patients. Nonetheless, the relationship between gut microbiota and ECM remodeling has remained unexplored. We hypothesized that members of the human gut microbiome could degrade the host ECM and that bacteria-driven remodeling, in turn, could enhance colonic inflammation. Through a variety of in vitro assays, we first confirmed that multiple bacterial species found in the human gut are capable of degrading specific ECM components. Clinical stool samples obtained from ulcerative colitis patients also exhibited higher levels of proteolytic activity in vitro, compared to those of their healthy counterparts. Furthermore, culture supernatants from bacteria species that are capable of degrading human ECM accelerated inflammation in dextran sodium sulfate (DSS)-induced colitis. Finally, we identified several of the bacterial proteases and carbohydrate degrading enzymes (CAZymes) that are potentially responsible for ECM degradation in vitro. Some of these protease families and CAZymes were also found in increased abundance in a metagenomic cohort of IBD. These results demonstrate that some commensal bacteria in the gut are indeed capable of degrading components of human ECM in vitro and suggest that this proteolytic activity may be involved in the progression of IBD. A better understanding of the relationship between nonpathogenic gut microbes, host ECM, and inflammation could be crucial to elucidating some of the mechanisms underlying host-bacteria interactions in IBD and beyond. IMPORTANCE Healthy gut epithelial cells form a barrier that keeps bacteria and other substances from entering the blood or tissues of the body. Those cells sit on scaffolding that maintains the structure of the gut and informs our immune system about the integrity of this barrier. In patients with inflammatory bowel disease (IBD), breaks are formed in this cellular barrier, and bacteria gain access to the underlying tissue and scaffolding. In our study, we discovered that bacteria that normally reside in the gut can modify and disassemble the underlying scaffolding. Additionally, we discovered that changes to this scaffolding affect the onset of IBD in mouse models of colitis as well as the abilities of these mice to recover. We propose that this new information will reveal how breaks in the gut wall lead to IBD and will open up new avenues by which to treat patients with IBD.
Collapse
Affiliation(s)
- Ana Maria Porras
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Hao Zhou
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Xieyue Xiao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - JRI Live Cell Bank
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, New York, USA
| | - Randy Longman
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, New York, USA
| | - Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
16
|
Hungatella hathewayi, an Efficient Glycosaminoglycan-Degrading
Firmicutes
from Human Gut and Its Chondroitin ABC Exolyase with High Activity and Broad Substrate Specificity. Appl Environ Microbiol 2022; 88:e0154622. [PMID: 36342199 PMCID: PMC9680638 DOI: 10.1128/aem.01546-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An increased understanding of GAG metabolism by intestinal bacteria is critical in identifying the driving factors for the composition, modulation, and homeostasis of the human gut microbiota. In addition, GAG-depolymerizing polysaccharide lyases are highly desired enzymes for the production of GAG oligosaccharides and as therapeutics.
Collapse
|
17
|
Roussel C, Chabaud S, Lessard-Lord J, Cattero V, Pellerin FA, Feutry P, Bochard V, Bolduc S, Desjardins Y. UPEC Colonic-Virulence and Urovirulence Are Blunted by Proanthocyanidins-Rich Cranberry Extract Microbial Metabolites in a Gut Model and a 3D Tissue-Engineered Urothelium. Microbiol Spectr 2022; 10:e0243221. [PMID: 35972287 PMCID: PMC9603664 DOI: 10.1128/spectrum.02432-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/27/2022] [Indexed: 01/04/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) ecology-pathophysiology from the gut reservoir to its urothelium infection site is poorly understood, resulting in equivocal benefits in the use of cranberry as prophylaxis against urinary tract infections. To add further understanding from the previous findings on PAC antiadhesive properties against UPEC, we assessed in this study the effects of proanthocyanidins (PAC) rich cranberry extract microbial metabolites on UTI89 virulence and fitness in contrasting ecological UPEC's environments. For this purpose, we developed an original model combining a colonic fermentation system (SHIME) with a dialysis cassette device enclosing UPEC and a 3D tissue-engineered urothelium. Two healthy fecal donors inoculated the colons. Dialysis cassettes containing 7log10 CFU/mL UTI89 were immersed for 2h in the SHIME colons to assess the effect of untreated (7-day control diet)/treated (14-day PAC-rich extract) metabolomes on UPEC behavior. Engineered urothelium were then infected with dialysates containing UPEC for 6 h. This work demonstrated for the first time that in the control fecal microbiota condition without added PAC, the UPEC virulence genes were activated upstream the infection site, in the gut. However, PAC microbial-derived cranberry metabolites displayed a remarkable propensity to blunt activation of genes encoding toxin, adhesin/invasins in the gut and on the urothelium, in a donor-dependent manner. Variability in subjects' gut microbiota and ensuing contrasting cranberry PAC metabolism affects UPEC virulence and should be taken into consideration when designing cranberry efficacy clinical trials. IMPORTANCE Uropathogenic Escherichia coli (UPEC) are the primary cause of recurrent urinary tract infections (UTI). The poor understanding of UPEC ecology-pathophysiology from its reservoir-the gut, to its infection site-the urothelium, partly explains the inadequate and abusive use of antibiotics to treat UTI, which leads to a dramatic upsurge in antibiotic-resistance cases. In this context, we evaluated the effect of a cranberry proanthocyanidins (PAC)-rich extract on the UPEC survival and virulence in a bipartite model of a gut microbial environment and a 3D urothelium model. We demonstrated that PAC-rich cranberry extract microbial metabolites significantly blunt activation of UPEC virulence genes at an early stage in the gut reservoir. We also showed that altered virulence in the gut affects infectivity on the urothelium in a microbiota-dependent manner. Among the possible mechanisms, we surmise that specific microbial PAC metabolites may attenuate UPEC virulence, thereby explaining the preventative, yet contentious properties of cranberry against UTI.
Collapse
Affiliation(s)
- Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, Quebec, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogenèse Expérimentale de l Université Laval/LOEX, Centre de Recherche du CHU de Québec‐Université Laval, Axe Médecine Régénératrice, Québec, Quebec, Canada
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, Quebec, Canada
| | - Valentina Cattero
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, Quebec, Canada
| | - Félix-Antoine Pellerin
- Centre de Recherche en Organogenèse Expérimentale de l Université Laval/LOEX, Centre de Recherche du CHU de Québec‐Université Laval, Axe Médecine Régénératrice, Québec, Quebec, Canada
| | - Perrine Feutry
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, Quebec, Canada
| | | | - Stéphane Bolduc
- Centre de Recherche en Organogenèse Expérimentale de l Université Laval/LOEX, Centre de Recherche du CHU de Québec‐Université Laval, Axe Médecine Régénératrice, Québec, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, Quebec, Canada
| |
Collapse
|
18
|
Bucheli JEV, Todorov SD, Holzapfel WH. Role of gastrointestinal microbial populations, a terra incognita of the human body in the management of intestinal bowel disease and metabolic disorders. Benef Microbes 2022; 13:295-318. [PMID: 35866598 DOI: 10.3920/bm2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal bowel disease (IBD) is a chronic immune-mediated clinical condition that affects the gastrointestinal tract and is mediated by an inflammatory response. Although it has been extensively studied, the multifactorial aetiology of this disorder makes it difficult to fully understand all the involved mechanisms in its development and therefore its treatment. In recent years, the fundamental role played by the human microbiota in the pathogenesis of IBD has been emphasised. Microbial imbalances in the gut bacterial communities and a lower species diversity in patients suffering from inflammatory gastrointestinal disorders compared to healthy individuals have been reported as principal factors in the development of IBD. These served to support scientific arguments for the use of probiotic microorganisms in alternative approaches for the prevention and treatment of IBD. In a homeostatic environment, the presence of bacteria (including probiotics) on the intestinal epithelial surface activates a cascade of processes by which immune responses inhibited and thereby commensal organisms maintained. At the same time these processes may support activities against specific pathogenic bacteria. In dysbiosis, these underlying mechanisms will serve to provoke a proinflammatory response, that, in combination with the use of antibiotics and the genetic predisposition of the host, will culminate in the development of IBD. In this review, we summarised the main causes of IBD, the physiological mechanisms involved and the related bacterial groups most frequently associated with these processes. The intention was to enable a better understanding of the interaction between the intestinal microbiota and the host, and to suggest possibilities by which this knowledge can be useful for the development of new therapeutic treatments.
Collapse
Affiliation(s)
- J E Vazquez Bucheli
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - S D Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - W H Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| |
Collapse
|
19
|
Oliveira IMFD, Ng DYK, van Baarlen P, Stegger M, Andersen PS, Wells JM. Comparative genomics of Rothia species reveals diversity in novel biosynthetic gene clusters and ecological adaptation to different eukaryotic hosts and host niches. Microb Genom 2022; 8. [PMID: 36165601 DOI: 10.1099/mgen.0.000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rothia species are understudied members of the phylum Actinobacteria and prevalent colonizers of the human and animal upper respiratory tract and oral cavity. The oral cavity, including the palatine tonsils, is colonized by a complex microbial community, which compete for resources, actively suppress competitors and influence host physiology. We analysed genomic data from 43 new porcine Rothia isolates, together with 112 publicly available draft genome sequences of Rothia isolates from humans, animals and the environment. In all Rothia genomes, we identified biosynthetic gene clusters predicted to produce antibiotic non-ribosomal peptides, iron scavenging siderophores and other secondary metabolites that modulate microbe-microbe and potentially microbe-host interactions. In vitro overlay inhibition assays corroborated the hypothesis that specific strains produce natural antibiotics. Rothia genomes encode a large number of carbohydrate-active enzymes (CAZy), with varying CAZy activities among the species found in different hosts, host niches and environments. These findings reveal competition mechanisms and metabolic specializations linked to ecological adaptation of Rothia species in different hosts.
Collapse
Affiliation(s)
| | - Duncan Y K Ng
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University and Research, Wageningen, Netherlands
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Paal Skytt Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
20
|
Asaji N, Inoue J, Hayashi H, Tokunaga E, Shimamoto Y, Kinoshita M, Tanaka T, Sakai A, Yano Y, Ueda Y, Kodama Y. Constitution of mucosa‐associated microbiota in the lower digestive tract does not change in early stage of non‐alcoholic fatty liver disease with fecal dysbiosis. JGH Open 2022; 6:677-684. [PMID: 36262534 PMCID: PMC9575329 DOI: 10.1002/jgh3.12803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022]
Abstract
Background and Aim Methods Results Conclusion
Collapse
Affiliation(s)
- Naoki Asaji
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Jun Inoue
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Hiroki Hayashi
- Division of Gastroenterology Kita‐Harima Medical Center Ono Japan
| | - Eri Tokunaga
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Yusaku Shimamoto
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Masato Kinoshita
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Takeshi Tanaka
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Arata Sakai
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Yoshihiko Yano
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Yoshihide Ueda
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Yuzo Kodama
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| |
Collapse
|
21
|
Peiffer LB, White JR, Jones CB, Slottke RE, Ernst SE, Moran AE, Graff JN, Sfanos KS. Composition of gastrointestinal microbiota in association with treatment response in individuals with metastatic castrate resistant prostate cancer progressing on enzalutamide and initiating treatment with anti-PD-1 (pembrolizumab). Neoplasia 2022; 32:100822. [PMID: 35908379 PMCID: PMC9340532 DOI: 10.1016/j.neo.2022.100822] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 01/04/2023]
Abstract
Recent studies in cancer patients and animal models demonstrate that intestinal microbiota influence the therapeutic efficacy of cancer treatments, including immune checkpoint inhibition. However, no studies to-date have investigated relationships between gastrointestinal microbiota composition and response to checkpoint inhibition in advanced metastatic castrate resistant prostate cancer (mCRPC). We performed 16S rRNA gene sequencing of fecal DNA from 23 individuals with mCRPC progressing on enzalutamide and just prior to treatment with anti-PD-1 (pembrolizumab) to determine whether certain features of the microbiome are associated with treatment response (defined as serum PSA decrease >50% at any time on treatment or radiographic response per RECIST V.1.1). Global bacterial composition was similar between responders and non-responders, as assessed by multiple alpha and beta diversity metrics. However, certain bacterial taxa identified by sequencing across multiple 16S rRNA hypervariable regions were consistently associated with response, including the archetypal oral bacterium Streptococcus salivarius. Quantitative PCR (qPCR) of DNA extracts from fecal samples confirmed increased Streptococcus salivarius fecal levels in responders, whereas qPCR of oral swish DNA extracts showed no relationship between oral Streptococcus salivarius levels and response status. Contrary to previous reports in other cancer types, Akkermansia muciniphila levels were reduced in responder samples as assessed by both 16S rRNA sequencing and qPCR. We further analyzed our data in the context of a previously published “integrated index” describing bacteria associated with response and non-response to checkpoint inhibition. We found that the index was not reflective of response status in our cohort. Lastly, we demonstrate little change in the microbiome over time, and with pembrolizumab treatment. Our results suggest that the association between fecal microbiota and treatment response to immunotherapy may be unique to cancer type and/or previous treatment history.
Collapse
Affiliation(s)
- Lauren B Peiffer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Carli B Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel E Slottke
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Sarah E Ernst
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy E Moran
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Julie N Graff
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA; Portland VA Health Care System, Portland, OR, USA.
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Oncology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Hintikka JE, Munukka E, Valtonen M, Luoto R, Ihalainen JK, Kallonen T, Waris M, Heinonen OJ, Ruuskanen O, Pekkala S. Gut Microbiota and Serum Metabolome in Elite Cross-Country Skiers: A Controlled Study. Metabolites 2022; 12:metabo12040335. [PMID: 35448522 PMCID: PMC9028832 DOI: 10.3390/metabo12040335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Exercise has been shown to affect gut the microbiome and metabolic health, with athletes typically displaying a higher microbial diversity. However, research on the gut microbiota and systemic metabolism in elite athletes remains scarce. In this study, we compared the gut microbiota profiles and serum metabolome of national team cross-country skiers at the end of an exhausting training and competitive season to those of normally physically-active controls. The gut microbiota were analyzed using 16S rRNA amplicon sequencing. Serum metabolites were analyzed using nuclear magnetic resonance. Phylogenetic diversity and the abundance of several mucin-degrading gut microbial taxa, including Akkermansia, were lower in the athletes. The athletes had a healthier serum lipid profile than the controls, which was only partly explained by body mass index. Butyricicoccus associated positively with HDL cholesterol, HDL2 cholesterol and HDL particle size. The Ruminococcus torques group was less abundant in the athlete group and positively associated with total cholesterol and VLDL and LDL particles. We found the healthier lipid profile of elite athletes to co-occur with known health-beneficial gut microbes. Further studies should elucidate these links and whether athletes are prone to mucin depletion related microbial changes during the competitive season.
Collapse
Affiliation(s)
- Jukka E. Hintikka
- Faculty of Sport and Health Sciences, University of Jyvaskyla, 40014 Jyväskylä, Finland; (J.K.I.); (S.P.)
- Correspondence:
| | - Eveliina Munukka
- Turku Microbiome Biobank, Institute of Biomedicine, University of Turku, 20500 Turku, Finland;
| | - Maarit Valtonen
- Research Institute for Olympic Sports, 40700 Jyväskylä, Finland;
| | - Raakel Luoto
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, 20521 Turku, Finland; (R.L.); (O.R.)
| | - Johanna K. Ihalainen
- Faculty of Sport and Health Sciences, University of Jyvaskyla, 40014 Jyväskylä, Finland; (J.K.I.); (S.P.)
| | - Teemu Kallonen
- Clinical Microbiology, Turku University Hospital, 20521 Turku, Finland;
| | - Matti Waris
- Institute of Biomedicine, University of Turku, 20500 Turku, Finland;
| | - Olli J. Heinonen
- Paavo Nurmi Centre, Department of Health and Physical Activity, University of Turku, 20540 Turku, Finland;
| | - Olli Ruuskanen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, 20521 Turku, Finland; (R.L.); (O.R.)
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyvaskyla, 40014 Jyväskylä, Finland; (J.K.I.); (S.P.)
| |
Collapse
|
23
|
Amimo JO, Raev SA, Chepngeno J, Mainga AO, Guo Y, Saif L, Vlasova AN. Rotavirus Interactions With Host Intestinal Epithelial Cells. Front Immunol 2021; 12:793841. [PMID: 35003114 PMCID: PMC8727603 DOI: 10.3389/fimmu.2021.793841] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Rotavirus (RV) is the foremost enteric pathogen associated with severe diarrheal illness in young children (<5years) and animals worldwide. RV primarily infects mature enterocytes in the intestinal epithelium causing villus atrophy, enhanced epithelial cell turnover and apoptosis. Intestinal epithelial cells (IECs) being the first physical barrier against RV infection employs a range of innate immune strategies to counteract RVs invasion, including mucus production, toll-like receptor signaling and cytokine/chemokine production. Conversely, RVs have evolved numerous mechanisms to escape/subvert host immunity, seizing translation machinery of the host for effective replication and transmission. RV cell entry process involve penetration through the outer mucus layer, interaction with cell surface molecules and intestinal microbiota before reaching the IECs. For successful cell attachment and entry, RVs use sialic acid, histo-blood group antigens, heat shock cognate protein 70 and cell-surface integrins as attachment factors and/or (co)-receptors. In this review, a comprehensive summary of the existing knowledge of mechanisms underlying RV-IECs interactions, including the role of gut microbiota, during RV infection is presented. Understanding these mechanisms is imperative for developing efficacious strategies to control RV infections, including development of antiviral therapies and vaccines that target specific immune system antagonists within IECs.
Collapse
Affiliation(s)
- Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Sergei Alekseevich Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Alfred Omwando Mainga
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Yusheng Guo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
24
|
Elzinga J, van der Lugt B, Belzer C, Steegenga WT. Characterization of increased mucus production of HT29-MTX-E12 cells grown under Semi-Wet interface with Mechanical Stimulation. PLoS One 2021; 16:e0261191. [PMID: 34928974 PMCID: PMC8687553 DOI: 10.1371/journal.pone.0261191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022] Open
Abstract
The intestinal mucus layer plays a crucial role in human health. To study intestinal mucus function and structure in vitro, the mucus-producing intestinal cell line HT29-MTX-E12 has been commonly used. However, this cell line produces only low amounts of the intestine-specific MUC2. It has been shown previously that HT29-MTX-E12 cells cultured under Semi-Wet interface with Mechanical Stimulation (SWMS) produced higher amounts of MUC2, concomitant with a thicker mucus layer, compared to cells cultured conventionally. However, it remains unknown which underlying pathways are involved. Therefore, we aimed to further explore the cellular processes underlying the increased MUC2 production by HT29-MTX-E12 cells grown under SWMS conditions. Cells grown on Transwell membranes for 14 days under static and SWMS conditions (after cell seeding and attachment) were subjected to transcriptome analysis to investigate underlying molecular pathways at gene expression level. Caco-2 and LS174T cell lines were included as references. We characterized how SWMS conditions affected HT29-MTX-E12 cells in terms of epithelial barrier integrity, by measuring transepithelial electrical resistance, and cell metabolism, by monitoring pH and lactate production per molecule glucose of the conditioned medium. We confirmed higher MUC2 production under SWMS conditions at gene and protein level and demonstrated that this culturing method primarily stimulated cell growth. In addition, we also found evidence for a more aerobic cell metabolism under SWMS, as shown previously for similar models. In summary, we suggest different mechanisms by which MUC2 production is enhanced under SWMS and propose potential applications of this model in future studies.
Collapse
Affiliation(s)
- Janneke Elzinga
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Benthe van der Lugt
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Wilma T Steegenga
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
25
|
Morales-Ferré C, Azagra-Boronat I, Massot-Cladera M, Tims S, Knipping K, Garssen J, Knol J, Franch À, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ. Effects of a Postbiotic and Prebiotic Mixture on Suckling Rats' Microbiota and Immunity. Nutrients 2021; 13:2975. [PMID: 34578853 PMCID: PMC8469903 DOI: 10.3390/nu13092975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Human milk serves as a model for infant formula providing nutritional solutions for infants not able to receive enough mother's milk. Infant formulas aim to mimic the composition and functionality of human milk by providing ingredients reflecting those of the latest human milk insights, such as prebiotics, probiotics and postbiotics. The aim of this study was to examine the effects of the supplementation with a postbiotic (LactofidusTM) and its combination with the prebiotics short-chain galactooligosaccharides (scGOS) and long-chain fructooligosaccharides (lcFOS) in a preclinical model of healthy suckling rats. Pups were supplemented daily with LactofidusTM (POST group) and/or scGOS/lcFOS (P+P and PRE groups, respectively). Body weight and fecal consistency were analyzed. At the end of the study, immunoglobulin (Ig) profile, intestinal gene expression, microbiota composition and short chain fatty acid (SCFA) proportion were quantified. The supplementation with all nutritional interventions modulated the Ig profile, but the prebiotic mixture and the postbiotic induced differential effects: whereas scGOS/lcFOS induced softer feces and modulated microbiota composition and SCFA profile, Lactofidus™ upregulated Toll-like receptors gene expression. The use of the combination of scGOS/lcFOS and Lactofidus™ showed the effects observed for the oligosaccharides separately, as well as showing a synergistic impact on animal growth. Thus, the combined use of both products seems to be a good strategy to modulate immune and microbial features in early life.
Collapse
Affiliation(s)
- Carla Morales-Ferré
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Ignasi Azagra-Boronat
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Sebastian Tims
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (S.T.); (K.K.); (J.G.); (J.K.)
| | - Karen Knipping
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (S.T.); (K.K.); (J.G.); (J.K.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Johan Garssen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (S.T.); (K.K.); (J.G.); (J.K.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Jan Knol
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (S.T.); (K.K.); (J.G.); (J.K.)
- Laboratory of Microbiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María J. Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
26
|
Ecological Adaptation and Succession of Human Fecal Microbial Communities in an Automated In Vitro Fermentation System. mSystems 2021; 6:e0023221. [PMID: 34313459 PMCID: PMC8409738 DOI: 10.1128/msystems.00232-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Longitudinal studies of gut microbiota following specific interventions are vital for understanding how they influence host health. However, robust longitudinal sampling of gut microbiota is a major challenge, which can be addressed using in vitro fermentors hosting complex microbial communities. Here, by employing 16S rRNA gene amplicon sequencing, we investigated the adaptation and succession of human fecal microbial communities in an automated multistage fermentor. We performed two independent experiments using different human donor fecal samples, one configured with two units of three colon compartments each studied for 22 days and another with one unit of two colon compartments studied for 31 days. The fermentor maintained a trend of increasing microbial alpha diversity along colon compartments. Within each experiment, microbial compositions followed compartment-specific trajectories and reached independent stable configurations. While compositions were highly similar between replicate units, they were clearly separated between different experiments, showing that they maintained the individuality of fecal inoculum rather than converging on a fermentor-specific composition. While some fecal amplicon sequence variants (ASVs) were undetected in the fermentor, many ASVs undetected in the fecal samples flourished in vitro. These bloomer ASVs accounted for significant proportions of the population and included prominent health-associated microbes such as Bacteroides fragilis and Akkermansia muciniphila. Turnover in community compositions is likely explained by feed composition and pH, suggesting that these communities can be easily modulated. Our results suggest that in vitro fermentors are promising tools to study complex microbial communities harboring important members of human gut microbiota. IMPORTANCE In vitro fermentors that can host complex gut microbial communities are promising tools to investigate the dynamics of human gut microbiota. In this work, using an automated in vitro gut fermentor consisting of different colon compartments, we investigated the adaptation dynamics of two different human fecal microbial communities over 22 and 31 days. By observing the temporal trends of different community members, we found that many dominant members of the fecal microbiota failed to maintain their dominance in vitro, and some of the low-abundance microbes undetected in the fecal microbiota successfully grew in the in vitro communities. Microbiome compositional changes and blooming could largely be explained by feed composition and pH, suggesting that these communities can be modulated to desired compositions via optimizing culture conditions. Thus, our results open up the possibility of modulating in vitro microbial communities to predefined compositions by optimizing feed composition and culture conditions.
Collapse
|
27
|
Meier MJ, Nguyen KC, Crosthwait J, Kawata A, Rigden M, Leingartner K, Wong A, Holloway A, Shwed PS, Beaudette L, Navarro M, Wade M, Tayabali AF. Low dose antibiotic ingestion potentiates systemic and microbiome changes induced by silver nanoparticles. NANOIMPACT 2021; 23:100343. [PMID: 35559844 DOI: 10.1016/j.impact.2021.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 06/15/2023]
Abstract
Changes in the mammalian gut microbiome are linked to the impairment of immunological function and numerous other pathologies. Antimicrobial silver nanoparticles (AgNPs) are incorporated into numerous consumer products (e.g., clothing, cosmetics, food packaging), which may directly impact the gut microbiome through ingestion. The human health impact of chronic AgNP ingestion is still uncertain, but evidence from exposure to other antimicrobials provides a strong rationale to assess AgNP effects on organ function, immunity, metabolism, and gut-associated microbiota. To investigate this, mice were gavaged daily for 5 weeks with saline, AgNPs, antibiotics (ciprofloxacin and metronidazole), or AgNPs combined with antibiotics. Animals were weighed daily, assessed for glucose tolerance, organ function, tissue and blood cytokine and leukocyte levels. At the end of the study, we used 16S rDNA amplicon and whole-metagenome shotgun sequencing to assess changes in the gut microbiome. In mice exposed to both AgNPs and antibiotics, silver was found in the stomach, and small and large intestines, but negligible amounts were present in other organs examined. Mice exposed to AgNPs alone showed minimal tissue silver levels. Antibiotics, but not AgNPs, altered glucose metabolism. Mice given AgNPs and antibiotics together demonstrated slower weight gain, reduced peripheral lymphocytes, and elevated splenic, but not circulatory markers of inflammation. 16S rDNA profiling of cecum and feces and metagenomic sequencing of fecal DNA demonstrated that combined AgNP-antibiotic treatment also significantly altered the structure and function of the gut microbiota, including depletion of the indicator species Akkermansia muciniphila. This study provides evidence for possible biological effects from repeated ingestion of AgNP-containing consumer products when antibiotics are also being used and raises concern that an impaired gut microbiome (e.g., through antibiotic use) can potentiate the harm from chemical exposures such as AgNPs.
Collapse
Affiliation(s)
- Matthew J Meier
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, Canada
| | - K C Nguyen
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, Canada; New Substances Assessment and Control Bureau, Health Canada, Ottawa, Canada
| | - J Crosthwait
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, Canada
| | - A Kawata
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, Canada
| | - M Rigden
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, Canada
| | - K Leingartner
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, Canada
| | - A Wong
- Department of Biology, Carleton University, Ottawa, Canada
| | - A Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada
| | - P S Shwed
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Lee Beaudette
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, Canada
| | - M Navarro
- Bureau of Chemical Safety, Health Canada, Ottawa, Canada
| | - M Wade
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, Canada
| | - A F Tayabali
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, Canada.
| |
Collapse
|
28
|
Altimiras F, Garcia JA, Palacios-García I, Hurley MJ, Deacon R, González B, Cogram P. Altered Gut Microbiota in a Fragile X Syndrome Mouse Model. Front Neurosci 2021; 15:653120. [PMID: 34121987 PMCID: PMC8190892 DOI: 10.3389/fnins.2021.653120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
The human gut microbiome is the ecosystem of microorganisms that live in the human digestive system. Several studies have related gut microbiome variants to metabolic, immune and nervous system disorders. Fragile X syndrome (FXS) is a neurodevelopmental disorder considered the most common cause of inherited intellectual disability and the leading monogenetic cause of autism. The role of the gut microbiome in FXS remains largely unexplored. Here, we report the results of a gut microbiome analysis using a FXS mouse model and 16S ribosomal RNA gene sequencing. We identified alterations in the fmr1 KO2 gut microbiome associated with different bacterial species, including those in the genera Akkermansia, Sutterella, Allobaculum, Bifidobacterium, Odoribacter, Turicibacter, Flexispira, Bacteroides, and Oscillospira. Several gut bacterial metabolic pathways were significantly altered in fmr1 KO2 mice, including menaquinone degradation, catechol degradation, vitamin B6 biosynthesis, fatty acid biosynthesis, and nucleotide metabolism. Several of these metabolic pathways, including catechol degradation, nucleotide metabolism and fatty acid biosynthesis, were previously reported to be altered in children and adults with autism. The present study reports a potential association of the gut microbiome with FXS, thereby opening new possibilities for exploring reliable treatments and non-invasive biomarkers.
Collapse
Affiliation(s)
- Francisco Altimiras
- Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Faculty of Engineering and Business, Universidad de las Américas, Santiago, Chile
| | - José Antonio Garcia
- Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ismael Palacios-García
- School of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Michael J Hurley
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Robert Deacon
- Department of Genetics, Institute of Ecology and Biodiversity (IEB), Faculty of Sciences, Universidad de Chile, Santiago, Chile.,FRAXA-DVI, FRAXA Research Foundation, Santiago, Chile
| | - Bernardo González
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Patricia Cogram
- Department of Genetics, Institute of Ecology and Biodiversity (IEB), Faculty of Sciences, Universidad de Chile, Santiago, Chile.,FRAXA-DVI, FRAXA Research Foundation, Santiago, Chile
| |
Collapse
|
29
|
Beauruelle C, Guilloux CA, Lamoureux C, Héry-Arnaud G. The Human Microbiome, an Emerging Key-Player in the Sex Gap in Respiratory Diseases. Front Med (Lausanne) 2021; 8:600879. [PMID: 34026772 PMCID: PMC8137850 DOI: 10.3389/fmed.2021.600879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The sex gap is well-documented in respiratory diseases such as cystic fibrosis and chronic obstructive pulmonary disease. While the differences between males and females in prevalence, severity and prognosis are well-established, the pathophysiology of the sex difference has been poorly characterized to date. Over the past 10 years, metagenomics-based studies have revealed the presence of a resident microbiome in the respiratory tract and its central role in respiratory disease. The lung microbiome is associated with host immune response and health outcomes in both animal models and patient cohorts. The study of the lung microbiome is therefore an interesting new avenue to explore in order to understand the sex gap observed in respiratory diseases. Another important parameter to consider is the gut-lung axis, since the gut microbiome plays a crucial role in distant immune modulation in respiratory diseases, and an intestinal “microgenderome” has been reported: i.e., sexual dimorphism in the gut microbiome. The microgenderome provides new pathophysiological clues, as it defines the interactions between microbiome, sex hormones, immunity and disease susceptibility. As research on the microbiome is increasing in volume and scope, the objective of this review was to describe the state-of-the-art on the sex gap in respiratory medicine (acute pulmonary infection and chronic lung disease) in the light of the microbiome, including evidence of local (lung) or distant (gut) contributions to the pathophysiology of these diseases.
Collapse
Affiliation(s)
- Clémence Beauruelle
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Unité de Bactériologie, Pôle de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Brest, France
| | | | - Claudie Lamoureux
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Unité de Bactériologie, Pôle de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Brest, France
| | - Geneviève Héry-Arnaud
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Unité de Bactériologie, Pôle de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Brest, France
| |
Collapse
|
30
|
Kruger A, Brucks SD, Yan T, Cárcarmo-Oyarce G, Wei Y, Wen DH, Carvalho DR, Hore MJA, Ribbeck K, Schrock RR, Kiessling LL. Stereochemical Control Yields Mucin Mimetic Polymers. ACS CENTRAL SCIENCE 2021; 7:624-630. [PMID: 34056092 PMCID: PMC8155468 DOI: 10.1021/acscentsci.0c01569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Indexed: 05/06/2023]
Abstract
All animals except sponges produce mucus. Across the animal kingdom, this hydrogel mediates surface wetting, viscosity, and protection against microbes. The primary components of mucus hydrogels are mucins-high molecular weight O-glycoproteins that adopt extended linear structures. Glycosylation is integral to mucin function, but other characteristics that give rise to their advantageous biological activities are unknown. We postulated that the extended conformation of mucins is critical for their ability to block microbial virulence phenotypes. To test this hypothesis, we developed synthetic mucin mimics that recapitulate the dense display of glycans and morphology of mucin. We varied the catalyst in a ring-opening metathesis polymerization (ROMP) to generate substituted norbornene-derived glycopolymers containing either cis- or trans-alkenes. Conformational analysis of the polymers based on allylic strain suggested that cis- rather than trans-poly(norbornene) glycopolymers would adopt linear structures that mimic mucins. High-resolution atomic force micrographs of our polymers and natively purified Muc2, Muc5AC, and Muc5B mucins revealed that cis-polymers adopt extended, mucin-like structures. The cis-polymers retained this structure in solution and were more water-soluble than their trans-analogs. Consistent with mucin's linear morphology, cis-glycopolymers were more potent binders of a bacterial virulence factor, cholera toxin. Our findings highlight the importance of the polymer backbone in mucin surrogate design and underscore the significance of the extended mucin backbone for inhibiting virulence.
Collapse
Affiliation(s)
- Austin
G. Kruger
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Spencer D. Brucks
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Tao Yan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Gerardo Cárcarmo-Oyarce
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuan Wei
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Deborah H. Wen
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Dayanne R. Carvalho
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Michael J. A. Hore
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Katharina Ribbeck
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Richard R. Schrock
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Laura L. Kiessling
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Barber TM, Valsamakis G, Mastorakos G, Hanson P, Kyrou I, Randeva HS, Weickert MO. Dietary Influences on the Microbiota-Gut-Brain Axis. Int J Mol Sci 2021; 22:ijms22073502. [PMID: 33800707 PMCID: PMC8038019 DOI: 10.3390/ijms22073502] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Over unimaginable expanses of evolutionary time, our gut microbiota have co-evolved with us, creating a symbiotic relationship in which each is utterly dependent upon the other. Far from confined to the recesses of the alimentary tract, our gut microbiota engage in complex and bi-directional communication with their host, which have far-reaching implications for overall health, wellbeing and normal physiological functioning. Amongst such communication streams, the microbiota–gut–brain axis predominates. Numerous complex mechanisms involve direct effects of the microbiota, or indirect effects through the release and absorption of the metabolic by-products of the gut microbiota. Proposed mechanisms implicate mitochondrial function, the hypothalamus–pituitary–adrenal axis, and autonomic, neuro-humeral, entero-endocrine and immunomodulatory pathways. Furthermore, dietary composition influences the relative abundance of gut microbiota species. Recent human-based data reveal that dietary effects on the gut microbiota can occur rapidly, and that our gut microbiota reflect our diet at any given time, although much inter-individual variation pertains. Although most studies on the effects of dietary macronutrients on the gut microbiota report on associations with relative changes in the abundance of particular species of bacteria, in broad terms, our modern-day animal-based Westernized diets are relatively high in fats and proteins and impoverished in fibres. This creates a perfect storm within the gut in which dysbiosis promotes localized inflammation, enhanced gut wall permeability, increased production of lipopolysaccharides, chronic endotoxemia and a resultant low-grade systemic inflammatory milieu, a harbinger of metabolic dysfunction and many modern-day chronic illnesses. Research should further focus on the colony effects of the gut microbiota on health and wellbeing, and dysbiotic effects on pathogenic pathways. Finally, we should revise our view of the gut microbiota from that of a seething mass of microbes to one of organ-status, on which our health and wellbeing utterly depends. Future guidelines on lifestyle strategies for wellbeing should integrate advice on the optimal establishment and maintenance of a healthy gut microbiota through dietary and other means. Although we are what we eat, perhaps more importantly, we are what our gut microbiota thrive on and they thrive on what we eat.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Georgios Valsamakis
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Endocrine Unit, 2nd Department of Obstetrics and Gynaecology and Pathology Department, Aretaieion University Hospital, Athens Medical School, 11528 Athens, Greece;
| | - George Mastorakos
- Endocrine Unit, 2nd Department of Obstetrics and Gynaecology and Pathology Department, Aretaieion University Hospital, Athens Medical School, 11528 Athens, Greece;
| | - Petra Hanson
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Correspondence:
| |
Collapse
|
32
|
Coleman OI, Haller D. Microbe-Mucus Interface in the Pathogenesis of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13040616. [PMID: 33557139 PMCID: PMC7913824 DOI: 10.3390/cancers13040616] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Overlying gastrointestinal epithelial cells is the transparent mucus layer that separates the lumen from the host. The dynamic mucus layer serves to lubricate the mucosal surface, to protect underlying epithelial cells, and as a transport medium between luminal contents and epithelial cells. Furthermore, it provides a habitat for commensal bacteria and signals to the underlying immune system. Mucins are highly glycosylated proteins, and their glycocode is tissue-specific and closely linked to the resident microbiota. Aberrant mucin expression and glycosylation are linked to chronic inflammation and gastrointestinal cancers, including colorectal cancer (CRC). Aberrant mucus production compromises the mucus layer and allows bacteria to come into close contact with the intestinal epithelium, potentially triggering unfavorable host responses and the subsequent development of tumors. Here, we review our current understanding of the interaction between the intestinal microbiota and mucus in healthy and CRC subjects. Deep knowledge of the intricate mechanisms of microbe-mucus interactions may contribute to the development of novel treatment strategies for CRC, in which a dysfunctional mucus layer is observed.
Collapse
Affiliation(s)
- Olivia I. Coleman
- Department of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
- Correspondence: ; Tel.: +49-08161-71-2375
| | - Dirk Haller
- Department of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
- ZIEL—Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
33
|
Wu X, Unno T, Kang S, Park S. A Korean-Style Balanced Diet Has a Potential Connection with Ruminococcaceae Enterotype and Reduction of Metabolic Syndrome Incidence in Korean Adults. Nutrients 2021; 13:nu13020495. [PMID: 33546299 PMCID: PMC7913599 DOI: 10.3390/nu13020495] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is associated with usual dietary patterns that may be involved in enterotypes. We aimed to understand the potential relationship of enterotypes and dietary patterns to influence metabolic syndrome in the Koreans. Using the Korea National Health and Nutrition Examination Survey (KNHANES)-VI in 2014, metabolic parameters were also analyzed among the dietary patterns classified by principal component analysis in Korean adults. The fecal microbiota data of 1199 Korean adults collected in 2014 were obtained from the Korea Centers for Disease Control and Prevention. Enterotypes were classified based on Dirichlet multinomial mixtures (DMM) by Mothur v.1.36. The functional abundance of fecal bacteria was analyzed using the PICRUSt2 pipeline. Korean adults were clustered into three dietary patterns including Korean-style balanced diets (KBD, 20.4%), rice-based diets (RBD, 17.2%), and Western-style diets (WSD, 62.4%) in KNHANES. The incidence of metabolic syndrome was lowered in the order of RBD, WSD, and KBD. The participants having a KBD had lower serum C-reactive protein and triglyceride concentrations than those with RBD and WSD (p < 0.05). Three types of fecal bacteria were classified as Ruminococcaceae type (ET-R, 28.7%), Prevotella type (ET-P, 52.2%), and Bacteroides type (ET-B, 42.1%; p < 0.05). ET-P had a higher abundance of Prevotella copri, while ET-R contained a higher abundance of Alistipes, Akkermansia muciniphila, Bifidobacterium adolescentis, and Faecalibacterium prausnitzii. ET-B had a higher abundance of the order Bilophila (p < 0.05). Metabolism of propanoate, starch, and sucrose in fecal microbiome was higher in ET-P and ET-R, whereas fatty acid metabolism was enhanced in ET-B. Fecal microbiota in ET-P and ET-B had higher lipopolysaccharide biosynthesis activity than that in ET-R. The metabolic results of KBD and RBD were consistent with ET-R and ET-P’s gut microbiota metabolism, respectively. In conclusion, Korean enterotypes of ET-P, ET-B, and ET-R were associated with RBD, WSD, and KBD, respectively. This study suggests a potential link between dietary patterns, metabolic syndrome, and enterotypes among Korean adults.
Collapse
Affiliation(s)
- Xuangao Wu
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea; (X.W.); (S.K.)
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju 63243, Korea;
| | - Suna Kang
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea; (X.W.); (S.K.)
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea
| | - Sunmin Park
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea; (X.W.); (S.K.)
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-5345; Fax: +82-41-548-0670
| |
Collapse
|
34
|
Mucin as a Functional Niche is a More Important Driver of in Vitro Gut Microbiota Composition and Functionality than Supplementation of Akkermansia m uciniphila. Appl Environ Microbiol 2021; 87:AEM.02647-20. [PMID: 33277271 PMCID: PMC7851700 DOI: 10.1128/aem.02647-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPORTANCE SECTION Research into identification of biomarkers for gut health and ways to modulate the microbiota composition and activity to improve health, has put Akkermansia muciniphila in the spotlight. As a mucin degrader, A. muciniphila colonizes the interesting but not-fully described host-glycan degradation niche., . Plenty of research concerning A. muciniphila has been done, but little is known about its behavior in the complex microbial ecosystem in the colon, about the potential role of mucins to influence A. muciniphila behavior and the impact of its probiotic administration on the microbial ecosystem.This study aimed at investigating the impact of A. muciniphila administration on the endogenous community while also taking into account its nutritional specificity. As such, the effect of A.mucinihpila administration was investigated with and without addition of mucin. This allowed us to elucidate the importance of mucin presence to modulate the efficiency of the probiotic supplementation with A. muciniphila Akkermansia muciniphila is an abundantly present commensal mucin degrading gut bacterium (1 - 4%) , widely distributed among healthy individuals. It has been positioned as a health biomarker and is currently explored as a biotherapeutic agent and next generation probiotic. Preliminary and ongoing research is mostly based on in vivo mouse models and human intervention trials. While these allow the assessment of physiologically relevant endpoints, the analysis of fecal samples presents limitations with respect to the in-depth mechanistic characterization of Akkermansia effects at the level of the microbiome. We aimed to evaluate the effect of A. muciniphila treatment on the endogenous community from four different donors in a validated, controlled in vitro model of the gut microbial ecosystem (SHIME). Taking into account the nutritional specificity of A. muciniphila, and the prebiotic-like action of mucins in the colon environment, the interplay between mucin, A. muciniphila and the endogenous community was investigated. The effects on the microbial community composition and functionality of A. muciniphila supplementation without mucin were limited, whereas mucin addition successfully induced compositional and metabolic changes in the gut microbiota. Indeed, mucin addition resulted in significantly higher acetate, propionate and butyrate production for all four donors, and the increase of several species, including A. muciniphila, Ruminococcus, Clostridium cluster XIVa, and Lachnospiraceae This study revealed that the supplementation of A. muciniphila together with mucin limited the observed prebiotic-like effect of mucin in inducing compositional changes.
Collapse
|
35
|
Molina Ortiz JP, McClure DD, Shanahan ER, Dehghani F, Holmes AJ, Read MN. Enabling rational gut microbiome manipulations by understanding gut ecology through experimentally-evidenced in silico models. Gut Microbes 2021; 13:1965698. [PMID: 34455914 PMCID: PMC8432618 DOI: 10.1080/19490976.2021.1965698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome has emerged as a contributing factor in non-communicable disease, rendering it a target of health-promoting interventions. Yet current understanding of the host-microbiome dynamic is insufficient to predict the variation in intervention outcomes across individuals. We explore the mechanisms that underpin the gut bacterial ecosystem and highlight how a more complete understanding of this ecology will enable improved intervention outcomes. This ecology varies within the gut over space and time. Interventions disrupt these processes, with cascading consequences throughout the ecosystem. In vivo studies cannot isolate and probe these processes at the required spatiotemporal resolutions, and in vitro studies lack the representative complexity required. However, we highlight that, together, both approaches can inform in silico models that integrate cellular-level dynamics, can extrapolate to explain bacterial community outcomes, permit experimentation and observation over ecological processes at high spatiotemporal resolution, and can serve as predictive platforms on which to prototype interventions. Thus, it is a concerted integration of these techniques that will enable rational targeted manipulations of the gut ecosystem.
Collapse
Affiliation(s)
- Juan P. Molina Ortiz
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, Australia
- Faculty of Engineering, Centre for Advanced Food Engineering, The University of Sydney, Sydney, Australia
| | - Dale D. McClure
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, Australia
- Faculty of Engineering, Centre for Advanced Food Engineering, The University of Sydney, Sydney, Australia
| | - Erin R. Shanahan
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, Australia
- Faculty of Engineering, Centre for Advanced Food Engineering, The University of Sydney, Sydney, Australia
| | - Andrew J. Holmes
- Faculty of Engineering, Centre for Advanced Food Engineering, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Mark N. Read
- Faculty of Engineering, Centre for Advanced Food Engineering, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
36
|
Kable ME, Riazati N, Kirschke CP, Zhao J, Tepaamorndech S, Huang L. The Znt7-null mutation has sex dependent effects on the gut microbiota and goblet cell population in the mouse colon. PLoS One 2020; 15:e0239681. [PMID: 32991615 PMCID: PMC7523961 DOI: 10.1371/journal.pone.0239681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023] Open
Abstract
Cellular homeostasis of zinc, an essential element for living organisms, is tightly regulated by a family of zinc transporters. The zinc transporter 7, ZnT7, is highly expressed on the membrane of the Golgi complex of intestinal epithelial cells and goblet cells. It has previously been shown that Znt7 knockout leads to zinc deficiency and decreased weight gain in C57BL/6 mice on a defined diet. However, effects within the colon are unknown. Given the expression profile of Znt7, we set out to analyze the changes in mucin density and gut microbial composition in the mouse large intestine induced by Znt7 knockout. We fed a semi-purified diet containing 30 mg Zn/kg to Znt7-/- mice with their heterozygous and wild type littermates and found a sex specific effect on colonic mucin density, goblet cell number, and microbiome composition. In male mice Znt7 knockout led to increased goblet cell number and mucin density but had little effect on gut microbiome composition. However, in female mice Znt7 knockout was associated with decreased goblet cell number and mucin density, with increased proportions of the microbial taxa, Allobaculum, relative to wild type. The gut microbial composition was correlated with mucin density in both sexes. These findings suggest that a sex-specific relationship exists between zinc homeostasis, mucin production and the microbial community composition within the colon.
Collapse
Affiliation(s)
- Mary E. Kable
- Immunity and Disease Prevention Research Unit, USDA-ARS, Western Human Nutrition Research Center, Davis, California, United States of America
- Department of Nutrition, University of California Davis, Davis, California, United States of America
- * E-mail: (MEK); (LH)
| | - Niknaz Riazati
- Department of Nutrition, University of California Davis, Davis, California, United States of America
| | - Catherine P. Kirschke
- Obesity and Metabolism Research Unit, USDA-ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - Junli Zhao
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
| | - Surapun Tepaamorndech
- Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Liping Huang
- Department of Nutrition, University of California Davis, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA-ARS, Western Human Nutrition Research Center, Davis, California, United States of America
- * E-mail: (MEK); (LH)
| |
Collapse
|
37
|
Li L, Figeys D. Proteomics and Metaproteomics Add Functional, Taxonomic and Biomass Dimensions to Modeling the Ecosystem at the Mucosal-luminal Interface. Mol Cell Proteomics 2020; 19:1409-1417. [PMID: 32581040 PMCID: PMC8143649 DOI: 10.1074/mcp.r120.002051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts in gut microbiome studies have highlighted the importance of explicitly describing the ecological processes beyond correlative analysis. However, we are still at the early stage of understanding the organizational principles of the gut ecosystem, partially because of the limited information provided by currently used analytical tools in ecological modeling practices. Proteomics and metaproteomics can provide a number of insights for ecological studies, including biomass, matter and energy flow, and functional diversity. In this Mini Review, we discuss proteomics and metaproteomics-based experimental strategies that can contribute to studying the ecology, in particular at the mucosal-luminal interface (MLI) where the direct host-microbiome interaction happens. These strategies include isolation protocols for different MLI components, enrichment methods to obtain designated array of proteins, probing for specific pathways, and isotopic labeling for tracking nutrient flow. Integration of these technologies can generate spatiotemporal and site-specific biological information that supports mathematical modeling of the ecosystem at the MLI.
Collapse
Affiliation(s)
- Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
38
|
Xu Y, Wang N, Tan HY, Li S, Zhang C, Feng Y. Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Front Microbiol 2020; 11:219. [PMID: 32153527 PMCID: PMC7046546 DOI: 10.3389/fmicb.2020.00219] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity and its metabolic syndrome, including liver disorders and type 2 diabetes, are a worldwide epidemic and are intimately linked to diet. The gut microbiota interaction has been pointed to as a hot topic of research in the treatment of obesity and related metabolic diseases by influencing energy metabolism and the immune system. In terms of the novel beneficial microbes identified, Akkermansia muciniphila (A. muciniphila) colonizes the mucosa layer of the gut and modulates basal metabolism. A. muciniphila is consistently correlated with obesity. The causal beneficial impact of A. muciniphila treatment on obesity is coming to light, having been proved by a variety of animal models and human studies. A. muciniphila has been characterized as a beneficial player in body metabolism and has great prospects for treatments of the metabolic disorders associated with obesity, as well as being considered for next-generation therapeutic agents. This paper aimed to investigate the basic mechanism underlying the relation of A. muciniphila to obesity and its host interactions, as identified in recent discoveries, facilitating the establishment of the causal relationship in A. muciniphila-associated therapeutic supplement in humans.
Collapse
Affiliation(s)
- Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
39
|
Stothart MR, Palme R, Newman AEM. It's what's on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc Biol Sci 2019; 286:20192111. [PMID: 31640519 DOI: 10.1098/rspb.2019.2111] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The microbiome's capacity to shape the host phenotype and its mutability underlie theorization that the microbiome might facilitate host acclimation to rapid environmental change. However, when environmental change occurs, it is unclear whether resultant microbiome restructuring is proximately driven by this changing external environment or by the host's physiological response to this change. We leveraged urbanization to compare the ability of host environment (urban or forest) versus multi-scale biological measures of host hypothalamic-pituitary-adrenal (HPA) axis physiology (neutrophil : lymphocyte ratio, faecal glucocorticoid metabolites, hair cortisol) to explain variation in the eastern grey squirrel (Sciurus carolinensis) faecal microbiome. Urban and forest squirrels differed across all three of the interpretations of HPA axis activity we measured. Direct consideration of these physiological measures better explained greater phylogenetic turnover between squirrels than environment. This pattern was strongly driven by trade-offs between bacteria which specialize on metabolizing digesta versus host-derived nutrient sources. Drawing on ecological theory to explain patterns in intestinal bacterial communities, we conclude that although environmental change can affect the microbiome, it might primarily do so indirectly by altering host physiology. We demonstrate that the inclusion and careful consideration of dynamic, rather than fixed (e.g. sex), dimensions of host physiology are essential for the study of host-microbe symbioses at the micro-evolutionary scale.
Collapse
Affiliation(s)
- Mason R Stothart
- Department of Integrative Biology, College of Biological Sciences, University of Guelph, Guelph, Canada N1G 2W1.,Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada T2N 4Z6
| | - Rupert Palme
- Department of Biomedical Sciences/Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Amy E M Newman
- Department of Integrative Biology, College of Biological Sciences, University of Guelph, Guelph, Canada N1G 2W1
| |
Collapse
|
40
|
Zhao F, Zhou G, Liu X, Song S, Xu X, Hooiveld G, Müller M, Liu L, Kristiansen K, Li C. Dietary Protein Sources Differentially Affect the Growth of
Akkermansia muciniphila
and Maintenance of the Gut Mucus Barrier in Mice. Mol Nutr Food Res 2019; 63:e1900589. [DOI: 10.1002/mnfr.201900589] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/01/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Fan Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; International Joint Laboratory of Animal Health and Food Safety, MOECollege of Food Science and TechnologyNanjing Agricultural University Nanjing 210095 P. R. China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; International Joint Laboratory of Animal Health and Food Safety, MOECollege of Food Science and TechnologyNanjing Agricultural University Nanjing 210095 P. R. China
| | - Xinyue Liu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; International Joint Laboratory of Animal Health and Food Safety, MOECollege of Food Science and TechnologyNanjing Agricultural University Nanjing 210095 P. R. China
| | - Shangxin Song
- School of Food ScienceNanjing Xiaozhuang University Nanjing 211171 P. R. China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; International Joint Laboratory of Animal Health and Food Safety, MOECollege of Food Science and TechnologyNanjing Agricultural University Nanjing 210095 P. R. China
| | - Guido Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen University Wageningen The Netherlands
| | - Michael Müller
- Norwich Medical SchoolUniversity of East Anglia Norwich UK
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC) Nanjing P. R. China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular BiomedicineDepartment of BiologyUniversity of Copenhagen Copenhagen 2100 Denmark
- Institute of MetagenomicsBGI‐Shenzhen Shenzhen 518083 P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; International Joint Laboratory of Animal Health and Food Safety, MOECollege of Food Science and TechnologyNanjing Agricultural University Nanjing 210095 P. R. China
| |
Collapse
|
41
|
Janket SJ, Ackerson LK, Diamandis EP. Gut microbiotas and immune checkpoint inhibitor therapy response: a causal or coincidental relationship? ACTA ACUST UNITED AC 2019; 58:18-24. [DOI: 10.1515/cclm-2019-0605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/06/2019] [Indexed: 01/20/2023]
Abstract
Abstract
As the largest immune organ, human gut microbiome could influence the efficacy of immune checkpoint inhibitor therapy (ICI). However, identifying contributory microbes from over 35,000 species is virtually impossible and the identified microbes are not consistent among studies. The reason for the disparity may be that the microbes found in feces are markers of other factors that link immune response and microbiotas. Notably, gut microbiome is influenced by stool consistency, diet and other lifestyle factors. Therefore, the ICI and microbiotas relationship must be adjusted for potential confounders and analyzed longitudinally. Moreover, a recent study where 11 low-abundance commensal bacteria induced interferon-γ-producing CD8 T cells, challenges the validity of the abundance-oriented microbiotas investigations. This study also confirmed the hierarchy in immunogenic roles among microbiotas. Fecal transplantation trials in germ-free mice provided “the proof of principle” that germ-free mice reproduce the donor’s microbiome and corresponding ICI efficacy. However, species-specific biological differences prevent direct extrapolation between the results in murine and human models. Fecal transplantation or supplementation with microbes found in ICI responders requires caution due to potential adverse events.
Collapse
Affiliation(s)
- Sok-Ja Janket
- Translational Oral Medicine Section, Forsyth Institute , Cambridge , MA , USA
| | - Leland K. Ackerson
- Department of Public Health , University of Massachusetts at Lowell , Lowell , MA , USA
| | - Eleftherios P. Diamandis
- Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
- Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada
- Department of Clinical Biochemistry , University Health Network , Toronto , ON , Canada
- Head of Clinical Biochemistry , Mount Sinai Hospital and University Health Network , Toronto , Canada
| |
Collapse
|
42
|
Jarett JK, Carlson A, Rossoni Serao M, Strickland J, Serfilippi L, Ganz HH. Diets with and without edible cricket support a similar level of diversity in the gut microbiome of dogs. PeerJ 2019; 7:e7661. [PMID: 31565574 PMCID: PMC6743483 DOI: 10.7717/peerj.7661] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome plays an important role in the health of dogs. Both beneficial microbes and overall diversity can be modulated by diet. Fermentable sources of fiber in particular often increase the abundance of beneficial microbes. Banded crickets (Gryllodes sigillatus) contain the fermentable polysaccharides chitin and chitosan. In addition, crickets are an environmentally sustainable protein source. Considering crickets as a potential source of both novel protein and novel fiber for dogs, four diets ranging from 0% to 24% cricket content were fed to determine their effects on healthy dogs’ (n = 32) gut microbiomes. Fecal samples were collected serially at 0, 14, and 29 days, and processed using high-throughput sequencing of 16S rRNA gene PCR amplicons. Microbiomes were generally very similar across all diets at both the phylum and genus level, and alpha and beta diversities did not differ between the various diets at 29 days. A total of 12 ASVs (amplicon sequence variants) from nine genera significantly changed in abundance following the addition of cricket, often in a dose-response fashion with increasing amounts of cricket. A net increase was observed in Catenibacterium, Lachnospiraceae [Ruminococcus], and Faecalitalea, whereas Bacteroides, Faecalibacterium, Lachnospiracaeae NK4A136 group and others decreased in abundance. Similar changes in Catenibacterium and Bacteroides have been associated with gut health benefits in other studies. However, the total magnitude of all changes was small and only a few specific taxa changed in abundance. Overall, we found that diets containing cricket supported the same level of gut microbiome diversity as a standard healthy balanced diet. These results support crickets as a potential healthy, novel food ingredient for dogs.
Collapse
|
43
|
Allonsius CN, Van Beeck W, De Boeck I, Wittouck S, Lebeer S. The microbiome of the invertebrate model host Galleria mellonella is dominated by Enterococcus. Anim Microbiome 2019; 1:7. [PMID: 33499945 PMCID: PMC7807499 DOI: 10.1186/s42523-019-0010-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/21/2019] [Indexed: 01/16/2023] Open
Abstract
Background The popularity of Galleria mellonella as invertebrate model is increasing rapidly, because it forms an attractive alternative to study bacterial, fungal and viral infections, toxin biology, and to screen antimicrobial drugs. For a number of vertebrate and invertebrate animal and plant models, it has been established that the commensals present within the microbial communities on various host surfaces will influence the host’s immune and growth development state and the colonization capacity of newly introduced micro-organisms. The microbial communities of Galleria mellonella larvae have, however, not yet been well characterized. Results In this study, we present the bacterial communities that were found by 16S rRNA amplicon sequencing on different body sites of G. mellonella larvae. These communities showed very little diversity and were mostly dominated by one Enterococcus taxon. In addition, we found that the production conditions (as ‘bait’ for fishing or under more controlled ‘research grade’ conditions - with or without hormones and antibiotics) appear to have little impact on the microbiota of the larvae. Conclusions Establishment of the simplicity of the microbiota of G. mellonella larvae underlines the potential of the larvae as a model host system for microbiome-host interactions.
Collapse
Affiliation(s)
- Camille Nina Allonsius
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Wannes Van Beeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Ilke De Boeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium.
| |
Collapse
|
44
|
Moye ZD, Woolston J, Abbeele PVAND, Duysburgh C, Verstrepen L, DAS CR, Marzorati M, Sulakvelidze A. A Bacteriophage Cocktail Eliminates Salmonella Typhimurium from the Human Colonic Microbiome while Preserving Cytokine Signaling and Preventing Attachment to and Invasion of Human Cells by Salmonella In Vitro. J Food Prot 2019; 82:1336-1349. [PMID: 31313962 DOI: 10.4315/0362-028x.jfp-18-587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nontyphoidal Salmonella strains continue to be a major cause of foodborne illness globally. One intriguing approach to reducing the risk of salmonellosis is the direct ingestion of phages targeting Salmonella to enhance natural gut resilience and provide protection during foodborne disease outbreaks. We evaluated the ability of a prophylactically administered bacteriophage cocktail, the foodborne outbreak pill (FOP) targeting Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella, to resolve a Salmonella infection in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME), a simulated gut platform populated by the human intestinal microbiome of healthy donors. The FOP preparation eliminated Salmonella enterica serovar Typhimurium from the colon compartment of the SHIME platform but health-associated metabolites, such as short-chain fatty acids and lactate, remained stable or increased in a donor-dependent manner. In studies of human intestinal cells, pretreatment of Salmonella Typhimurium with the FOP cocktail preserved lipopolysaccharide-stimulated signaling in a Caco-2-THP-1 Transwell system and prevented destruction of the Caco-2 monolayer by Salmonella. Adhesion and invasion of intestinal epithelial cells by Salmonella-a critical factor in Salmonella pathogenesis-was blunted when the bacteria were incubated with the FOP preparation before addition to the monolayer. The FOP phage cocktail was effective for (i) eliminating Salmonella from a simulated human gut without disturbing the indigenous microbiota and (ii) reducing the risk of invasion by Salmonella into the intestinal epithelia. These results suggest that the FOP preparation may be of value for reducing the risk of salmonellosis in humans, e.g., during foodborne disease outbreaks.
Collapse
Affiliation(s)
- Zachary D Moye
- 1 Intralytix, Inc., The Columbus Center, 701 East Pratt Street, Baltimore, Maryland 21202, USA
| | - Joelle Woolston
- 1 Intralytix, Inc., The Columbus Center, 701 East Pratt Street, Baltimore, Maryland 21202, USA
| | | | | | | | - Chythanya Rajanna DAS
- 1 Intralytix, Inc., The Columbus Center, 701 East Pratt Street, Baltimore, Maryland 21202, USA
| | - Massimo Marzorati
- 2 ProDigest, BVBA, Technologiepark 3, 9052 Ghent, Belgium.,3 Center of Microbial Ecology and Technology, Ghent University, 9000 Ghent, Belgium
| | - Alexander Sulakvelidze
- 1 Intralytix, Inc., The Columbus Center, 701 East Pratt Street, Baltimore, Maryland 21202, USA
| |
Collapse
|