1
|
Romero-Rodríguez A, Ruíz-Villafán B, Sánchez S, Paredes-Sabja D. Is there a role for intestinal sporobiota in the antimicrobial resistance crisis? Microbiol Res 2024; 288:127870. [PMID: 39173554 DOI: 10.1016/j.micres.2024.127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Antimicrobial resistance (AMR) is a complex issue requiring specific, multi-sectoral measures to slow its spread. When people are exposed to antimicrobial agents, it can cause resistant bacteria to increase. This means that the use, misuse, and excessive use of antimicrobial agents exert selective pressure on bacteria, which can lead to the development of "silent" reservoirs of antimicrobial resistance genes. These genes can later be mobilized into pathogenic bacteria and contribute to the spread of AMR. Many socioeconomic and environmental factors influence the transmission and dissemination of resistance genes, such as the quality of healthcare systems, water sanitation, hygiene infrastructure, and pollution. The sporobiota is an essential part of the gut microbiota that plays a role in maintaining gut homeostasis. However, because spores are highly transmissible and can spread easily, they can be a vector for AMR. The sporobiota resistome, particularly the mobile resistome, is important for tracking, managing, and limiting the spread of antimicrobial resistance genes among pathogenic and commensal bacterial species.
Collapse
Affiliation(s)
- A Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México 04510, Mexico.
| | - B Ruíz-Villafán
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - S Sánchez
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - D Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Moglad E, Elekhnawy E, Alanazi N, Al-Fakhrany OM. Repurposing simvastatin for treatment of Klebsiella pneumoniae infections: in vitro and in vivo study. BIOFOULING 2024:1-15. [PMID: 39390775 DOI: 10.1080/08927014.2024.2413652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Simvastatin had minimum inhibitory concentrations of 32 to 128 µg/mL against Klebsiella pneumoniae isolates and hindered the biofilm-formation ability of 58.54% of the isolates. It considerably diminished the bacterial cell counts in the biofilms as revealed by scanning electron microscope. Also, qRT-PCR revealed a downregulation of the biofilm genes (bcsA, wza, and luxS) by simvastatin in 48.78% of the isolates. Moreover, simvastatin has significantly improved the survival of mice and decreased the burden of bacteria in the infected lungs. Also, the histological architecture was substantially improved in the simvastatin-treated group, as the alveolar sacs and bronchioles appeared normal with minimal collagen fiber deposition. The immunohistochemical studies exposed that the TNF-α, NF-kβ, and COX-2 immunostaining considerably declined in the simvastatin-treated group. Furthermore, ELISA exposed that both IL-1β and IL-6 were considerably diminished in the lungs of the simvastatin-treated group.
Collapse
Affiliation(s)
- Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Nuor Alanazi
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | | |
Collapse
|
3
|
Khan RT, Sharma V, Khan SS, Rasool S. Prevention and potential remedies for antibiotic resistance: current research and future prospects. Front Microbiol 2024; 15:1455759. [PMID: 39421555 PMCID: PMC11484029 DOI: 10.3389/fmicb.2024.1455759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The increasing threat of antibiotic resistance and shrinking treatment options for infections have pushed mankind into a difficult position. The looming threat of the return of the pre-antibiotic era has caused a sense of urgency to protect and conserve the potency of antibiotic therapy. One of the perverse effects of antibiotic resistance is the dissemination of its causative agents from non-clinically important strains to clinically important strains and vice versa. The popular saying "Prevention is better than cure" is appropriate for tackling antibiotic resistance. On the one hand, new and effective antibiotics are required; on the other hand, better measures for the use of antibiotics, along with increased awareness in the general public related to antibiotic use, are essential. Awareness, especially of appropriate antibiotic use, antibiotic resistance, its dissemination, and potential threats, can help greatly in controlling the use and abuse of antibiotics, and the containment of antibiotic resistance. Antibiotic drugs' effectiveness can be enhanced by producing novel antibiotic analogs or adding adjuvants to current antibiotics. Combinatorial therapy of antibiotics has proven successful in treating multidrug-resistant (MDR) bacterial infections. This review aims to highlight the current global situation of antibiotic resistance and discuss the methods used to monitor, prevent, inhibit, or reverse bacterial resistance mechanisms in the fight against antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | - Shafaq Rasool
- Molecular Biology Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| |
Collapse
|
4
|
Datta D, Jamwal S, Jyoti N, Patnaik S, Kumar D. Actionable mechanisms of drug tolerance and resistance in Mycobacterium tuberculosis. FEBS J 2024; 291:4433-4452. [PMID: 38676952 DOI: 10.1111/febs.17142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
The emergence of antimicrobial resistance (AMR) across bacterial pathogens presents a serious threat to global health. This threat is further exacerbated in tuberculosis (TB), mainly due to a protracted treatment regimen involving a combination of drugs. A diversity of factors contributes to the emergence of drug resistance in TB, which is caused by the pathogen Mycobacterium tuberculosis (Mtb). While the traditional genetic mutation-driven drug resistance mechanisms operate in Mtb, there are also several additional unique features of drug resistance in this pathogen. Research in the past decade has enriched our understanding of such unconventional factors as efflux pumps, bacterial heterogeneity, metabolic states, and host microenvironment. Given that the discovery of new antibiotics is outpaced by the emergence of drug resistance patterns displayed by the pathogen, newer strategies for combating drug resistance are desperately needed. In the context of TB, such approaches include targeting the efflux capability of the pathogen, modulating the host environment to prevent bacterial drug tolerance, and activating the host anti-mycobacterial pathways. In this review, we discuss the traditional mechanisms of drug resistance in Mtb, newer understandings and the shaping of a set of unconventional approaches to target both the emergence and treatment of drug resistance in TB.
Collapse
Affiliation(s)
- Dipanwita Datta
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Shaina Jamwal
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nishant Jyoti
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
5
|
Aggarwal R, Mahajan P, Pandiya S, Bajaj A, Verma SK, Yadav P, Kharat AS, Khan AU, Dua M, Johri AK. Antibiotic resistance: a global crisis, problems and solutions. Crit Rev Microbiol 2024; 50:896-921. [PMID: 38381581 DOI: 10.1080/1040841x.2024.2313024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/23/2024]
Abstract
Healthy state is priority in today's world which can be achieved using effective medicines. But due to overuse and misuse of antibiotics, a menace of resistance has increased in pathogenic microbes. World Health Organization (WHO) has announced ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) as the top priority pathogens as these have developed resistance against certain antibiotics. To combat such a global issue, it is utmost important to identify novel therapeutic strategies/agents as an alternate to such antibiotics. To name certain antibiotic adjuvants including: inhibitors of beta-lactamase, efflux pumps and permeabilizers for outer membrane can potentially solve the antibiotic resistance problems. In this regard, inhibitors of lytic domain of lytic transglycosylases provide a novel way to not only act as an alternate to antibiotics but also capable of restoring the efficiency of previously resistant antibiotics. Further, use of bacteriophages is another promising strategy to deal with antibiotic resistant pathogens. Taking in consideration the alternatives of antibiotics, a green synthesis nanoparticle-based therapy exemplifies a good option to combat microbial resistance. As horizontal gene transfer (HGT) in bacteria facilitates the evolution of new resistance strains, therefore identifying the mechanism of resistance and development of inhibitors against it can be a novel approach to combat such problems. In our perspective, host-directed therapy (HDT) represents another promising strategy in combating antimicrobial resistance (AMR). This approach involves targeting specific factors within host cells that pathogens rely on for their survival, either through replication or persistence. As many new drugs are under clinical trials it is advisable that more clinical data and antimicrobial stewardship programs should be conducted to fully assess the clinical efficacy and safety of new therapeutic agents.
Collapse
Affiliation(s)
- Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sameeksha Pandiya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Aayushi Bajaj
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Arun S Kharat
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Asad Ullah Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Sher EK, Džidić-Krivić A, Sesar A, Farhat EK, Čeliković A, Beća-Zećo M, Pinjic E, Sher F. Current state and novel outlook on prevention and treatment of rising antibiotic resistance in urinary tract infections. Pharmacol Ther 2024; 261:108688. [PMID: 38972453 DOI: 10.1016/j.pharmthera.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Antibiotic-resistant bacteria are currently an important public health concern posing a serious threat due to their resistance to the current arsenal of antibiotics. Uropathogens Escherichia coli (UPEC), Proteus mirabilis, Klebsiella pneumoniae and Enterococcus faecalis, antibiotic-resistant gram-negative bacteria, cause serious cases of prolonged UTIs, increasing healthcare costs and potentially even leading to the death of an affected patient. This review discusses current knowledge about the increasing resistance to currently recommended antibiotics for UTI therapy, as well as novel therapeutic options. Traditional antibiotics are still a part of the therapy guidelines for UTIs, although they are often not effective and have serious side effects. Hence, novel drugs are being developed, such as combinations of β-lactam antibiotics with cephalosporins and carbapenems. Siderophoric cephalosporins, such as cefiderocol, have shown potential in the treatment of individuals with significant gram-negative bacterial infections, as well as aminoglycosides, fluoroquinolones and tetracyclines that are also undergoing clinical trials. The use of cranberry and probiotics is another potential curative and preventive method that has shown antimicrobial and anti-inflammatory effects. However, further studies are needed to assess the efficacy and safety of probiotics containing cranberry extract for UTI prevention and treatment. An emerging novel approach for UTI treatment is the use of immuno-prophylactic vaccines, as well as different nanotechnology solutions such as nanoparticles (NP). NP have the potential to be used as delivery systems for drugs to specific targets. Furthermore, nanotechnology could enable the development of nano antibiotics with improved features by the application of different NPs in their structure, such as gold and copper NPs. However, further high-quality research is required for the synthesis and testing of these novel molecules, such as safety evaluation and pharmacovigilance.
Collapse
Affiliation(s)
- Emina K Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Zenica 72000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ana Sesar
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Health Studies, Victoria International University, Mostar 88000, Bosnia and Herzegovina
| | - Esma K Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Croatia
| | - Amila Čeliković
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Medicine, University of Zenica, Zenica 71000, Bosnia and Herzegovina
| | - Merima Beća-Zećo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Health Studies, Victoria International University, Mostar 88000, Bosnia and Herzegovina
| | - Emma Pinjic
- Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, United States
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
7
|
Pelliccia S, Russomanno P, Barone S, Mateu B, Alfano AI, Miranda M, Coretti L, Lembo F, Piccolo M, Irace C, Friggeri L, Hargrove TY, Curtis A, Lepesheva GI, Kavanagh K, Buommino E, Brindisi M. A First-in-Class Pyrazole-isoxazole Enhanced Antifungal Activity of Voriconazole: Synergy Studies in an Azole-Resistant Candida albicans Strain, Computational Investigation and in Vivo Validation in a Galleria mellonella Fungal Infection Model. J Med Chem 2024; 67:14256-14276. [PMID: 39115219 PMCID: PMC11482282 DOI: 10.1021/acs.jmedchem.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The widespread and irrational use of azole antifungal agents has led to an increase of azole-resistant Candida albicans strains with an urgent need for combination drug therapy, enhancing the treatment efficacy. Here, we report the discovery of a first-in-class pyrazole-isoxazole, namely, 5b, that showed remarkable growth inhibition against the C. albicans ATCC 10231 strain in combination with voriconazole, acting as a downregulator of ERG 11 (Cyp51) gene expression with a significant reduction of the yeast-to-hypha morphological transition. Furthermore, C. albicans CYP51 enzyme assay and in-depth molecular docking studies unveiled the unique ability of the combination of 5b and voriconazole to completely fill the CYP51 binding sites. In vivo studies using a Galleria mellonella model confirmed the previously in vitro observed synergistic effect of 5b with voriconazole. Also considering its biocompatibility in a cellular model of human keratinocytes, these results indicate that 5b represents a promising compound for a further optimization campaign.
Collapse
Affiliation(s)
- Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Pasquale Russomanno
- Magnetic Resonance Centre (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP) and Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Simona Barone
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Baptiste Mateu
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Antonella Ilenia Alfano
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Martina Miranda
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Lorena Coretti
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy,School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Friggeri
- Department of Cell and Development Biology, U4225 Medical Research Building III, Nashville, Tennessee 37232, United States
| | - Tatiana Y. Hargrove
- Department of Biochemistry,Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Aaron Curtis
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Galina I. Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Elisabetta Buommino
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
8
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
9
|
Alka, Singh P, Pal RR, Mishra N, Singh N, Verma A, Saraf SA. Development of pH-Sensitive hydrogel for advanced wound Healing: Graft copolymerization of locust bean gum with acrylamide and acrylic acid. Int J Pharm 2024; 661:124450. [PMID: 38986968 DOI: 10.1016/j.ijpharm.2024.124450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Wounds pose a formidable challenge in healthcare, necessitating the exploration of innovative tissue-healing solutions. Traditional wound dressings exhibit drawbacks, causing tissue damage and impeding natural healing. Using a Microwave (MW)-)-assisted technique, we envisaged a novel hydrogel (Hg) scaffold to address these challenges. This hydrogel scaffold was created by synthesizing a pH-responsive crosslinked material, specifically locust bean gum-grafted-poly(acrylamide-co-acrylic acid) [LBG-g-poly(AAm-co-AAc)], to enable sustained release of c-phycocyanin (C-Pc). Synthesized LBG-g-poly(AAm-co-AAc) was fine-tuned by adjusting various synthetic parameters, including the concentration of monomers, duration of reaction, and MW irradiation intensity, to maximize the yield of crosslinked LBG grafted product and enhance encapsulation efficiency of C-Pc. Following its synthesis, LBG-g-poly(AAm-co-AAc) was thoroughly characterized using advanced techniques, like XRD, TGA, FTIR, NMR, and SEM, to analyze its structural and chemical properties. Moreover, the study examined the in-vitro C-Pc release profile from LBG-g-poly(AAm-co-AAc) based hydrogel (HgCPcLBG). Findings revealed that the maximum release of C-Pc (64.12 ± 2.69 %) was achieved at pH 7.4 over 48 h. Additionally, HgCPcLBG exhibited enhanced antioxidant performance and compatibility with blood. In vivo studies confirmed accelerated wound closure, and ELISA findings revealed reduced inflammatory markers (IL-6, IL-1β, TNF-α) within treated skin tissue, suggesting a positive impact on injury repair. A low-cost and eco-friendly approach for creating LBG-g-poly(AAm-co-AAc) and HgCPcLBG has been developed. This method achieved sustained release of C-Pc, which could be a significant step forward in wound care technology.
Collapse
Affiliation(s)
- Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India; School of Pharmacy, GITAM (Deemed-to-be) University, Rudraram, Patancheru Mandal, Hyderabad, 502329 Telangana, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India; National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, 226002 Uttar Pradesh, India.
| |
Collapse
|
10
|
Kherroubi L, Bacon J, Rahman KM. Navigating fluoroquinolone resistance in Gram-negative bacteria: a comprehensive evaluation. JAC Antimicrob Resist 2024; 6:dlae127. [PMID: 39144447 PMCID: PMC11323783 DOI: 10.1093/jacamr/dlae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Since the introduction of quinolone and fluoroquinolone antibiotics to treat bacterial infections in the 1960s, there has been a pronounced increase in the number of bacterial species that have developed resistance to fluoroquinolone treatment. In 2017, the World Health Organization established a priority list of the most critical Gram-negative resistant pathogens. These included Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. In the last three decades, investigations into the mechanisms of fluoroquinolone resistance have revealed that mutations in the target enzymes of fluoroquinolones, DNA gyrase or topoisomerase IV, are the most prevalent mechanism conferring high levels of resistance. Alterations to porins and efflux pumps that facilitate fluoroquinolone permeation and extrusion across the bacterial cell membrane also contribute to the development of resistance. However, there is a growing observation of novel mutants with newer generations of fluoroquinolones, highlighting the need for novel treatments. Currently, steady progress has been made in the development of novel antimicrobial agents that target DNA gyrase or topoisomerase IV through different avenues than current fluoroquinolones to prevent target-mediated resistance. Therefore, an updated review of the current understanding of fluoroquinolone resistance within the literature is imperative to aid in future investigations.
Collapse
Affiliation(s)
- Linda Kherroubi
- School of Cancer and Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Joanna Bacon
- Discovery Group, Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | | |
Collapse
|
11
|
Lovey A, Lee A, Yu A, Krel M, Wang M, Paderu P, Brady T, Hough G, Zhao Q, Balkovec JM, Perlin DS, Zhao Y. CTC-177, a novel drug-Fc conjugate, shows promise as an immunoprophylactic agent against multidrug-resistant Gram-negative bacterial infections. JAC Antimicrob Resist 2024; 6:dlae100. [PMID: 39071163 PMCID: PMC11276960 DOI: 10.1093/jacamr/dlae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/31/2024] [Indexed: 07/30/2024] Open
Abstract
Background The widespread emergence of antibiotic resistance including MDR in Gram-negative bacterial pathogens poses a critical challenge to the current antimicrobial armamentarium. Objectives To create a novel drug-Fc conjugate (DFC) that can be delivered at sustained and prolonged levels while simultaneously activating the host immune response to combat MDR Gram-negative infections. Methods The Cloudbreak™ platform was used to develop DFCs consisting of a targeting moiety (TM) (a polymyxin-derived dimer) attached via a non-cleavable linker to an effector moiety (EM) (the Fc domain of human IgG1). In vitro activities of the DFCs were assessed by MIC testing. Neutropenic mouse models of thigh infection, septicaemia and pneumonia were used to evaluate in vivo efficacy. Pharmacokinetics were evaluated in mice and cynomolgus monkeys. Results A single prophylactic dose of our lead DFC, CTC-177, resulted in significantly decreased bacterial burdens and reduced inflammation comparable to daily treatment with colistin in septicaemia and pneumonia mouse models. Furthermore, CTC-177 prophylaxis was able to restore colistin efficacy in colistin-resistant septicaemia, reducing bacterial burdens beyond the limit of detection. Finally, CTC-177 displayed a long terminal half-life of over 24 and 65 h in mice and cynomolgus monkeys, respectively. Conclusions These data support the continued development of Cloudbreak™ DFCs as broad-spectrum prophylactic agents against Gram-negative infections.
Collapse
Affiliation(s)
- Arianne Lovey
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Annie Lee
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Allison Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Mila Krel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Mingming Wang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Padmaja Paderu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Thomas Brady
- Departments of Medicinal Chemistry and Protein Chemistry, Cidara Therapeutics, Inc., San Diego, CA 92121, USA
| | - Grayson Hough
- Departments of Medicinal Chemistry and Protein Chemistry, Cidara Therapeutics, Inc., San Diego, CA 92121, USA
| | - Qiping Zhao
- Departments of Medicinal Chemistry and Protein Chemistry, Cidara Therapeutics, Inc., San Diego, CA 92121, USA
| | - James M Balkovec
- Departments of Medicinal Chemistry and Protein Chemistry, Cidara Therapeutics, Inc., San Diego, CA 92121, USA
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Yanan Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
12
|
Feng L, Xu F, Qiu S, Sun C, Lai P. Chemical Composition and Antibacterial, Antioxidant, and Cytotoxic Activities of Essential Oils from Leaves and Stems of Aeschynomene indica L. Molecules 2024; 29:3552. [PMID: 39124959 PMCID: PMC11313771 DOI: 10.3390/molecules29153552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The objective of this study was to analyze the chemical composition and evaluate the biological capabilities of the essential oils (EOs) extracted from leaves and stems of wild Aeschynomene indica L. plants by the hydrodistillation method. By using GC-FID/MS, fifty-six and fifty-five compounds, representing 95.1 and 97.6% of the essential oils in the leaves and stems, respectively, were characterized. The predominant constituents of A. indica EOs were (E)-caryophyllene, linalool, viridiflorol, phytol, hexadecanoic acid, trans-verbenol, and α-guaiene. The antibacterial and synergistic activities of the EOs were assessed by microdilution and checkerboard assays. The results revealed a potent inhibition and bactericidal activity against Staphylococcus aureus and Bacillus subtilis with MICs of 0.312-0.625 mg/mL. When combined with traditional antibiotics, the essential oils of A. indica possessed excellent synergistic effects against all tested bacteria. Additionally, the EOs of A. indica leaves showed higher antioxidant activity (IC50 = 0.11 ± 0.01 µg/mL) compared to the stem oil (IC50 = 0.19 ± 0.01 µg/mL) using the ABTS radical scavenging assay. The in vitro cytotoxicity of EOs against human cancer cell lines HepG2, MCF-7, A-549, and HCT-116 was examined, and MTT assays showed that the EOs possessed a significant cytotoxic potential against MCF-7 breast cancer cells, with IC50 values of 10.04 ± 1.82 and 15.89 ± 1.66 μg/mL, and a moderate cytotoxic activity against other tested cells. In conclusion, the A. indica EOs could be considered a potential source of pharmacologically active compounds.
Collapse
Affiliation(s)
- Linjie Feng
- Sdu-Anu Joint Science College, Shandong University, Weihai 264209, China; (L.F.)
| | - Fan Xu
- Sdu-Anu Joint Science College, Shandong University, Weihai 264209, China; (L.F.)
| | - Shu Qiu
- Sdu-Anu Joint Science College, Shandong University, Weihai 264209, China; (L.F.)
| | - Chengqi Sun
- Sdu-Anu Joint Science College, Shandong University, Weihai 264209, China; (L.F.)
| | - Pengxiang Lai
- Sdu-Anu Joint Science College, Shandong University, Weihai 264209, China; (L.F.)
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
13
|
Ma J, Dai J, Cao C, Su L, Cao M, He Y, Li M, Zhang Z, Chen J, Cui S, Yang B. Prevalence, serotype, antimicrobial susceptibility, contamination factors, and control methods of Salmonella spp. in retail fresh fruits and vegetables: A systematic review and meta-analysis. Compr Rev Food Sci Food Saf 2024; 23:e13407. [PMID: 39030802 DOI: 10.1111/1541-4337.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 07/22/2024]
Abstract
This research presents a comprehensive review of Salmonella presence in retail fresh fruits and vegetables from 2010 to 2023, utilizing data from recognized sources such as PubMed, Scopus, and Web of Science. The study incorporates a meta-analysis of prevalence, serovar distribution, antimicrobial susceptibility, and antimicrobial resistance genes (ARGs). Additionally, it scrutinizes the heterogeneous sources across various food categories and geographical regions The findings show a pooled prevalence of 2.90% (95% CI: 0.0180-0.0430), with an increase from 4.63% in 2010 to 5.32% in 2022. Dominant serovars include S. Typhimurium (29.14%, 95% CI: 0.0202-0.6571) and S. Enteritidis (21.06%, 95% CI: 0.0181-0.4872). High resistance rates were noted for antimicrobials like erythromycin (60.70%, 95% CI: 0.0000-1.0000) and amoxicillin (39.92%, 95% CI: 0.0589-0.8020). The most prevalent ARGs were blaTEM (80.23%, 95% CI: 0.5736-0.9692) and parC mutation (66.67%, 95% CI: 0.3213-0.9429). Factors such as pH, water activity, and nutrient content, along with external factors like the quality of irrigation water and prevailing climatic conditions, have significant implications on Salmonella contamination. Nonthermal sterilization technologies, encompassing chlorine dioxide, ozone, and ultraviolet light, are emphasized as efficacious measures to control Salmonella. This review stresses the imperative need to bolster prevention strategies and control measures against Salmonella in retail fresh fruits and vegetables to alleviate related food safety risks.
Collapse
Affiliation(s)
- Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Yu F, Zhong Y, Zhang B, Zhou Y, He M, Yang Y, Wang Q, Yang X, Ren X, Qian J, Zhang H, Tian M. A New Theranostic Platform Against Gram-Positive Bacteria Based on Near-Infrared-Emissive Aggregation-Induced Emission Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308071. [PMID: 38342680 DOI: 10.1002/smll.202308071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/24/2024] [Indexed: 02/13/2024]
Abstract
Infections induced by Gram-positive bacteria pose a great threat to public health. Antibiotic therapy, as the first chosen strategy against Gram-positive bacteria, is inevitably associated with antibiotic resistance selection. Novel therapeutic strategies for the discrimination and inactivation of Gram-positive bacteria are thus needed. Here, a specific type of aggregation-induced emission luminogen (AIEgen) with near-infrared fluorescence emission as a novel antibiotic-free therapeutic strategy against Gram-positive bacteria is proposed. With the combination of a positively charged group into a highly twisted architecture, self-assembled AIEgens (AIE nanoparticles (NPs)) at a relatively low concentration (5 µm) exhibited specific binding and photothermal effect against living Gram-positive bacteria both in vitro and in vivo. Moreover, toxicity assays demonstrated excellent biocompatibility of AIE NPs at this concentration. All these properties make the AIE NPs as a novel generation of theranostic platform for combating Gram-positive bacteria and highlight their promising potential for in vivo tracing of such bacteria.
Collapse
Affiliation(s)
- Feiyan Yu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Bing Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yu Zhou
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Mubin He
- State Key Laboratory of Extreme Photonics and Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Hangzhou, 310058, China
| | - Yang Yang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Qianqian Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Xi Yang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Xiuyun Ren
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Jun Qian
- State Key Laboratory of Extreme Photonics and Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Hangzhou, 310058, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310007, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| |
Collapse
|
15
|
Zhuang H, Chen M, Hu D, Liu L, Wu D, Zhang H, Wang Z, Jiang S, Chen Y, Zhu F, Hong Y, Lei T, Wang H, Sun L, Ji S, Yu Y, Chen Y. Role of tcaA, a potential target as a ceftobiprole resistance breaker in MRSA β-lactam resistance. Int J Antimicrob Agents 2024; 64:107185. [PMID: 38692492 DOI: 10.1016/j.ijantimicag.2024.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVES Using a random forest algorithm, we previously found that teicoplanin-associated gene A (tcaA) might play a role in resistance of methicillin-resistant Staphylococcus aureus (MRSA) to β-lactams, which we have investigated further here. METHODS Representative MRSA strains of prevalent clones were selected to identify the role of tcaA in the MRSA response to β-lactams. tcaA genes were deleted by homologous recombination in the selected MRSA strains, and antibiotic susceptibility tests were applied to evaluate the effect of tcaA on the minimum inhibitory concentrations (MICs) of glycopeptides and β-lactams. Scanning electron microscopy, RNA sequencing, and quantitative reverse transcription-polymerase chain reaction were performed to explore the mechanism of tcaA in MRSA resistance to β-lactams. RESULTS The MIC of penicillin plus clavulanate decreased from 3 mg/L to 0.064 mg/L and that of oxacillin decreased from 16 to 0.5 mg/L when tcaA was knocked out in the LAC strain. Compared with wild-type MRSA isolates, when tcaA was deleted, all selected strains were more susceptible to β-lactams. Susceptibility to ceftobiprole was restored in the ceftobiprole-resistant strain when tcaA was deleted. tcaA knockout caused "log-like" abnormal division of MRSA, and tcaA deficiency mediated low expression of mecA, ponA, and murA2. CONCLUSIONS Machine learning is a reliable tool for identifying drug resistance-related genes. tcaA may be involved in S. aureus cell division and may affect mecA, ponA, and murA2 expression. Furthermore, tcaA is a potential resistance breaker target for β-lactams, including ceftobiprole, in MRSA.
Collapse
Affiliation(s)
- Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongping Hu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Infectious Disease, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Lin Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Infectious Diseases, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dandan Wu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yueqin Hong
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Infectious Diseases, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Fang Y, Wang Q, Yao Y, Mao J, Liu G, Li J. Amphiphilic AIE Fluorescent Probe: A Dual-Functionality Strategy for Efficient Antibacterial Therapy Fluorescence Bioimaging against Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2024; 7:3758-3765. [PMID: 38768375 DOI: 10.1021/acsabm.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Drug-resistant bacteria present a grave threat to human health. Fluorescence imaging-guided photodynamic antibacterial therapy holds enormous potential as an innovative treatment in antibacterial therapy. However, the development of a fluorescent material with good water solubility, large Stokes shift, bacterial identification, and high photodynamic antibacterial efficiency remains challenging. In this study, we successfully synthesized an amphiphilic aggregation-induced emission (AIE) fluorescent probe referred to as NPTPA-QM. This probe possesses the ability to perform live-bacteria fluorescence imaging while also exhibiting antibacterial activity, specifically against Staphylococcus aureus (S. aureus). We demonstrate that NPTPA-QM can eliminate S. aureus at a very low concentration (2 μmol L-1). Moreover, it can effectively promote skin wound healing. Meanwhile, this NPTPA-QM exhibits an excellent imaging ability by simple mixing with S. aureus. In summary, this research presents a straightforward and highly effective method for creating "amphiphilic" AIE fluorescent probes with antibacterial properties. Additionally, it offers a rapid approach for imaging bacteria utilizing red emission.
Collapse
Affiliation(s)
- Yan Fang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Qi Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yue Yao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jie Mao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Guijin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Junjian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
17
|
Meng J, Ding J, Wang W, Gu B, Zhou F, Wu D, Fu X, Liu J. Reversal of gentamicin sulfate resistance in avian pathogenic Escherichia coli by matrine combined with berberine hydrochloride. Arch Microbiol 2024; 206:292. [PMID: 38849633 DOI: 10.1007/s00203-024-04021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
In recent years, the evolution of antibiotic resistance has led to the inefficacy of several antibiotics, and the reverse of resistance was a novel method to solve this problem. We previously demonstrated that matrine (Mat) and berberine hydrochloride (Ber) had a synergistic effect against multidrug-resistant Escherichia coli (MDREC). This study aimed to demonstrate the effect of Mat combined with Ber in reversing the resistance of MDREC. The MDREC was sequenced passaged in the presence of Mat, Ber, and a combination of Mat and Ber, which did not affect its growth. The reverse rate was up to 39.67% after MDREC exposed to Mat + Ber for 15 days. The strain that reversed resistance was named drug resistance reversed E. coli (DRREC) and its resistance to ampicillin, streptomycin, gentamicin, and tetracycline was reversed. The MIC of Gentamicin Sulfate (GS) against DRREC decreased 128-fold to 0.63 µg/mL, and it was stable within 20 generations. Furthermore, the susceptible phenotype of DRREC remained stable within 20 generations, as well. The LD50 of DRREC for chickens was 8.69 × 109 CFU/mL. qRT-PCR assays revealed that the transcript levels of antibiotic-resistant genes and virulence genes in the DRREC strain were significantly lower than that in the MDREC strain (P < 0.05). In addition, GS decreased the death, decreased the bacterial loading in organs, alleviated the injury of the spleen and liver, and decreased the cytokine levels in the chickens infected by the DRREC strain. In contrast, the therapeutic effect of GS in chickens infected with MDREC was not as evident. These findings suggest that the combination of Mat and Ber has potential for reversing resistance to MDREC.
Collapse
Affiliation(s)
- Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Jinxue Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Weiran Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Bolin Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Fanting Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Desheng Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Xiang Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China.
| |
Collapse
|
18
|
Turner RJ. The good, the bad, and the ugly of metals as antimicrobials. Biometals 2024; 37:545-559. [PMID: 38112899 PMCID: PMC11101337 DOI: 10.1007/s10534-023-00565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
We are now moving into the antimicrobial resistance (AMR) era where more antibiotic resistant bacteria are now the majority, a problem brought on by both misuse and over use of antibiotics. Unfortunately, the antibiotic development pipeline dwindled away over the past decades as they are not very profitable compounds for companies to develop. Regardless researchers over the past decade have made strides to explore alternative options and out of this we see revisiting historical infection control agents such as toxic metals. From this we now see a field of research exploring the efficacy of metal ions and metal complexes as antimicrobials. Such antimicrobials are delivered in a variety of forms from metal salts, alloys, metal complexes, organometallic compounds, and metal based nanomaterials and gives us the broad term metalloantimicrobials. We now see many effective formulations applied for various applications using metals as antimicrobials that are effective against drug resistant strains. The purpose of the document here is to step aside and begin a conversation on the issues of use of such toxic metal compounds against microbes. This critical opinion mini-review in no way aims to be comprehensive. The goal here is to understand the benefits of metalloantimicrobials, but also to consider strongly the disadvantages of using metals, and what are the potential consequences of misuse and overuse. We need to be conscious of the issues, to see the entire system and affect through a OneHealth vision.
Collapse
Affiliation(s)
- Raymond J Turner
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada.
| |
Collapse
|
19
|
Ye G, Fan L, Zheng Y, Liao X, Huang Q, Su Y. Upregulated Palmitoleate and Oleate Production in Escherichia coli Promotes Gentamicin Resistance. Molecules 2024; 29:2504. [PMID: 38893378 PMCID: PMC11173871 DOI: 10.3390/molecules29112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic reprogramming mediates antibiotic efficacy. However, metabolic adaptation of microbes evolving from antibiotic sensitivity to resistance remains undefined. Therefore, untargeted metabolomics was conducted to unveil relevant metabolic reprogramming and potential intervention targets involved in gentamicin resistance. In total, 61 metabolites and 52 metabolic pathways were significantly altered in gentamicin-resistant E. coli. Notably, the metabolic reprogramming was characterized by decreases in most metabolites involved in carbohydrate and amino acid metabolism, and accumulation of building blocks for nucleotide synthesis in gentamicin-resistant E. coli. Meanwhile, fatty acid metabolism and glycerolipid metabolism were also significantly altered in gentamicin-resistant E. coli. Additionally, glycerol, glycerol-3-phosphate, palmitoleate, and oleate were separately defined as the potential biomarkers for identifying gentamicin resistance in E. coli. Moreover, palmitoleate and oleate could attenuate or even abolished killing effects of gentamicin on E. coli, and separately increased the minimum inhibitory concentration of gentamicin against E. coli by 2 and 4 times. Furthermore, palmitoleate and oleate separately decreased intracellular gentamicin contents, and abolished gentamicin-induced accumulation of reactive oxygen species, indicating involvement of gentamicin metabolism and redox homeostasis in palmitoleate/oleate-promoted gentamicin resistance in E. coli. This study identifies the metabolic reprogramming, potential biomarkers and intervention targets related to gentamicin resistance in bacteria.
Collapse
Affiliation(s)
- Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; (G.Y.); (X.L.)
| | - Lvyuan Fan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (L.F.); (Y.Z.)
| | - Yuhong Zheng
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (L.F.); (Y.Z.)
| | - Xu Liao
- Xiamen Key Laboratory of Indoor Air and Health, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; (G.Y.); (X.L.)
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; (G.Y.); (X.L.)
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (L.F.); (Y.Z.)
| |
Collapse
|
20
|
Lee T, Lee S, Kim MK, Ahn JH, Park JS, Seo HW, Park KH, Chong Y. 3- O-Substituted Quercetin: an Antibiotic-Potentiating Agent against Multidrug-Resistant Gram-Negative Enterobacteriaceae through Simultaneous Inhibition of Efflux Pump and Broad-Spectrum Carbapenemases. ACS Infect Dis 2024; 10:1624-1643. [PMID: 38652574 DOI: 10.1021/acsinfecdis.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The discovery of safe and efficient inhibitors against efflux pumps as well as metallo-β-lactamases (MBL) is one of the main challenges in the development of multidrug-resistant (MDR) reversal agents which can be utilized in the treatment of carbapenem-resistant Gram-negative bacteria. In this study, we have identified that introduction of an ethylene-linked sterically demanding group at the 3-OH position of the previously reported MDR reversal agent di-F-Q endows the resulting compounds with hereto unknown multitarget inhibitory activity against both efflux pumps and broad-spectrum β-lactamases including difficult-to-inhibit MBLs. A molecular docking study of the multitarget inhibitors against efflux pump, as well as various classes of β-lactamases, revealed that the 3-O-alkyl substituents occupy the novel binding sites in efflux pumps as well as carbapenemases. Not surprisingly, the multitarget inhibitors rescued the antibiotic activity of a carbapenem antibiotic, meropenem (MEM), in NDM-1 (New Delhi Metallo-β-lactamase-1)-producing carbapenem-resistant Enterobacteriaceae (CRE), and they reduced MICs of MEM more than four-fold (synergistic effect) in 8-9 out of 14 clinical strains. The antibiotic-potentiating activity of the multitarget inhibitors was also demonstrated in CRE-infected mouse model. Taken together, these results suggest that combining inhibitory activity against two critical targets in MDR Gram-negative bacteria, efflux pumps, and β-lactamases, in one molecule is possible, and the multitarget inhibitors may provide new avenues for the discovery of safe and efficient MDR reversal agents.
Collapse
Affiliation(s)
- Taegum Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Seongyeon Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Mi Kyoung Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Joong Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Ji Sun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Yuseong-gu, Daejeon 34141, Korea
| | - Hwi Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Yuseong-gu, Daejeon 34141, Korea
| | - Ki-Ho Park
- Department of Infectious Disease, Kyung Hee University School of Medicine, Seoul 02447, Korea
| | - Youhoon Chong
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
21
|
Sharma S, Chauhan A, Ranjan A, Mathkor DM, Haque S, Ramniwas S, Tuli HS, Jindal T, Yadav V. Emerging challenges in antimicrobial resistance: implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front Microbiol 2024; 15:1403168. [PMID: 38741745 PMCID: PMC11089201 DOI: 10.3389/fmicb.2024.1403168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Overuse of antibiotics is accelerating the antimicrobial resistance among pathogenic microbes which is a growing public health challenge at the global level. Higher resistance causes severe infections, high complications, longer stays at hospitals and even increased mortality rates. Antimicrobial resistance (AMR) has a significant impact on national economies and their health systems, as it affects the productivity of patients or caregivers due to prolonged hospital stays with high economic costs. The main factor of AMR includes improper and excessive use of antimicrobials; lack of access to clean water, sanitation, and hygiene for humans and animals; poor infection prevention and control measures in hospitals; poor access to medicines and vaccines; lack of awareness and knowledge; and irregularities with legislation. AMR represents a global public health problem, for which epidemiological surveillance systems have been established, aiming to promote collaborations directed at the well-being of human and animal health and the balance of the ecosystem. MDR bacteria such as E. coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Acinetobacter spp., and Klebsiella pneumonia can even cause death. These microorganisms use a variety of antibiotic resistance mechanisms, such as the development of drug-deactivating targets, alterations in antibiotic targets, or a decrease in intracellular antibiotic concentration, to render themselves resistant to numerous antibiotics. In context, the United Nations issued the Sustainable Development Goals (SDGs) in 2015 to serve as a worldwide blueprint for a better, more equal, and more sustainable existence on our planet. The SDGs place antimicrobial resistance (AMR) in the context of global public health and socioeconomic issues; also, the continued growth of AMR may hinder the achievement of numerous SDGs. In this review, we discuss the role of environmental pollution in the rise of AMR, different mechanisms underlying the antibiotic resistance, the threats posed by pathogenic microbes, novel antibiotics, strategies such as One Health to combat AMR, and the impact of resistance on sustainability and sustainable development goals.
Collapse
Affiliation(s)
- Shikha Sharma
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
22
|
Nasrollahian S, Moradi F, Hadi N, Ranjbar S, Ranjbar R. An update on alternative therapy for Escherichia coli causing urinary tract infections; a narrative review. Photodiagnosis Photodyn Ther 2024; 46:104075. [PMID: 38574879 DOI: 10.1016/j.pdpdt.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Urinary tract infections (UTIs) are the most common type of nosocomial infection and severe health issues because of the difficulties and frequent recurrence. Today, alternative methods such as sonodynamic therapy (SDT), photodynamic therapy (PDT) and herbal materials use for treating infections like UTI in many countries. METHOD We conducted searches of the biomedical databases (Google Scholar, Scopus, PubMed, and Web of sciences) to identify related studies from 2008 to 2023. RESULT SDT aims to use ultrasound to activate a sonosensitizer, which causes a biological effect by raising reactive oxygen species (ROS). When bacteria are exposed to ROS, several important effects occur: oxidative damage, DNA damage, protein dysfunction etc. SDT with herbal medicine significantly reduced the number of colony-forming units and bactericidal activity for Klebsiella pneumonia and E. coli. PDT is a promising treatment for cancer and microbial infections, combining a photosensitiser, light and tissue molecular oxygen. It involves a photosensitizer, light source, and oxygen, with variations affecting microbial binding and bactericidal activity. Factors affecting antibacterial properties include plant type, growing conditions, harvesting, and processing. This review highlights the recent advancements in sonodynamic, photodynamic, herbal, and bio-material-based approaches in the treatment of E. coli infections. CONCLUSIONS These alternative therapies offer exciting prospects for addressing UTIs, especially in cases where traditional antibiotic treatments may be less effective. Further research and clinical studies are warranted to fully explore the potential of these innovative treatment modalities in combating UTIs and improving patient outcomes.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahal Hadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Ranjbar
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Islam MM, Saha S, Sahoo P, Mandal S. Endophytic Streptomyces sp. MSARE05 isolated from roots of Peanut plant produces a novel antimicrobial compound. J Appl Microbiol 2024; 135:lxae051. [PMID: 38419296 DOI: 10.1093/jambio/lxae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
AIM This study aimed to isolate, endophytic Streptomyces sp. MSARE05 isolated from root of a peanut (Arachis hypogaea) inhibits the growth of other bacteria. The research focused on characterizing the strain and the antimicrobial compound. METHODS AND RESULTS The surface-sterilized peanut roots were used to isolate the endophytic bacterium Streptomyces sp. MSARE05. A small-scale fermentation was done to get the antimicrobial compound SM05 produced in highest amount in ISP-2 medium (pH 7) for 7 days at 30°C in shaking (180 rpm) condition. Extraction, purification, and chemical analysis of the antibacterial component revealed a novel class of antibiotics with a 485.54 Dalton molecular weight. The MIC was 0.4-0.8 µg ml-1 against the tested pathogens. It also inhibits multidrug-resistant (MDR) pathogens and Mycobacterium with 0.8-3.2 µg ml-1 MIC. SM05 was found to disrupt cell membrane of target pathogen as evident by significant leakage of intracellular proteins and nucleic acids. It showed synergistic activity with ampicillin, chloramphenicol, streptomycin, and kanamycin. CONCLUSIONS The new-class antimicrobial SM05 consisting naphthalene core moiety was effective against drug-resistant pathogens but non-cytotoxic to human cells. This study underscores the significance of endophytic Streptomyces as a source of innovative antibiotics, contributing to the ongoing efforts to combat antibiotic resistance.
Collapse
Affiliation(s)
- Md Majharul Islam
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Shrabani Saha
- The Molecular Recognition Laboratory, Department of Chemistry, Visva-Bharati University, Siksha Bhavana, Santiniketan, Birbhum 731235, India
| | - Prithidipa Sahoo
- The Molecular Recognition Laboratory, Department of Chemistry, Visva-Bharati University, Siksha Bhavana, Santiniketan, Birbhum 731235, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| |
Collapse
|
24
|
Ma Y, Wu N, Zhang T, Li Y, Cao L, Zhang P, Zhang Z, Zhu T, Zhang C. The microbiome, resistome, and their co-evolution in sewage at a hospital for infectious diseases in Shanghai, China. Microbiol Spectr 2024; 12:e0390023. [PMID: 38132570 PMCID: PMC10846037 DOI: 10.1128/spectrum.03900-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria (ARB) caused by the overuse of antibiotics severely threatens human health. Hospital sewage may be a key transmission hub for ARB. However, the complex link between the microbiome and resistomeresistance in hospital sewage remains unclear. In this study, metagenomic assembly and binning methods were used to investigate the microbial community, resistome, and association of antibiotic resistance genes (ARGs) with ARB in sewage from 10 representative sites (outpatient building, surgery building, internal medicine buildings [IMB1-4], staff dormitory, laboratory animal building, tuberculosis building [TBB], and hospital wastewater treatment plant) of a hospital in Shanghai from June 2021 to February 2022. A total of 252 ARG subtypes, belonging to 17 antibiotic classes, were identified. The relative abundance of KPC-2 was higher at IMBs and TBB than at other sites. Of the ARG-carrying contigs, 47.3%-62.6% were associated with mobile genetic elements, and the proportion of plasmid-associated ARGs was significantly higher than that of chromosome-associated ARGs. Although a similar microbiome composition was shared, certain bacteria were enriched at different sites. Potential pathogens Enterococcus B faecium and Klebsiella pneumoniae were primarily enriched in IMB2 and IMB4, respectively. The same ARGs were identified in diverse bacterial hosts (especially pathogenic bacteria), and accordingly, the latter possessed multiple ARGs. Furthermore, gene flow was frequently observed in the sewage of different buildings. The results provide crucial information on the characterization profiles of resistomes in hospital sewage in Shanghai.IMPORTANCEEnvironmental antibiotic resistance genes (ARGs) play a critical role in the emergence and spread of antimicrobial resistance, which poses a global health threat. Wastewater from healthcare facilities serves as a significant reservoir for ARGs. Here, we characterized the microbial community along with the resistome (comprising all antibiotic resistance genes) in wastewater from a specialized hospital for infectious diseases in Shanghai. Potential pathogenic bacteria (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus B faecium) were frequently detected in hospital wastewater and carried multiple ARGs. A complex link between microbiome and resistome was observed in the wastewater of this hospital. The monitoring of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater might be of great significance for preventing the spread of ARB.
Collapse
Affiliation(s)
- Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Nannan Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Tongyu Zhu
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Cheema HS, Maurya A, Kumar S, Pandey VK, Singh RM. Antibiotic Potentiation Through Phytochemical-Based Efflux Pump Inhibitors to Combat Multidrug Resistance Bacteria. Med Chem 2024; 20:557-575. [PMID: 37907487 DOI: 10.2174/0115734064263586231022135644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Antimicrobial resistance development poses a significant danger to the efficacy of antibiotics, which were once believed to be the most efficient method for treating infections caused by bacteria. Antimicrobial resistance typically involves various mechanisms, such as drug inactivation or modification, drug target modification, drug uptake restriction, and drug efflux, resulting in decreased antibiotic concentrations within the cell. Antimicrobial resistance has been associated with efflux Pumps, known for their capacity to expel different antibiotics from the cell non-specifically. This makes EPs fascinating targets for creating drugs to combat antimicrobial resistance (AMR). The varied structures of secondary metabolites (phytomolecules) found in plants have positioned them as a promising reservoir of efflux pump inhibitors. These inhibitors act as modifiers of bacterial resistance and facilitate the reintroduction of antibiotics that have lost clinical effectiveness. Additionally, they may play a role in preventing the emergence of multidrug resistant strains. OBJECTIVE The objective of this review article is to discuss the latest studies on plant-based efflux pump inhibitors such as terpenoids, alkaloids, flavonoids, glycosides, and tetralones. It highlighted their potential in enhancing the effectiveness of antibiotics and combating the development of multidrug resistance. RESULTS Efflux pump inhibitors (EPIs) derived from botanical sources, including compounds like lysergol, chanaoclavine, niazrin, 4-hydroxy-α-tetralone, ursolic acid, phytol, etc., as well as their partially synthesized forms, have shown significant potential as practical therapeutic approaches in addressing antimicrobial resistance caused by efflux pumps. Further, several phyto-molecules and their analogs demonstrated superior potential for reversing drug resistance, surpassing established agents like reserpine, niaziridin, etc. Conclusion: This review found that while the phyto-molecules and their derivatives did not possess notable antimicrobial activity, their combination with established antibiotics significantly reduced their minimum inhibitory concentration (MIC). Specific molecules, such as chanaoclavine and niaziridin, exhibited noteworthy potential in reversing the effectiveness of drugs, resulting in a reduction of the MIC of tetracycline by up to 16 times against the tested strain of bacteria. These molecules inhibited the efflux pumps responsible for drug resistance and displayed a stronger affinity for membrane proteins. By employing powerful EPIs, these molecules can selectively target and obstruct drug efflux pumps. This targeted approach can significantly augment the strength and efficacy of older antibiotics against various drug resistant bacteria, given that active drug efflux poses a susceptibility for nearly all antibiotics.
Collapse
Affiliation(s)
| | - Anupam Maurya
- Chemistry Section, Pharmacopoeia Commission for Indian Medicine, and Homoeopathy (PCIM&H), Ministry of Ayush, Ghaziabad, 201002, (U.P.), India
| | - Sandeep Kumar
- Department of Botany, Meerut College, Meerut, 250003 (U.P.), India
| | - Vineet Kumar Pandey
- Chemistry Section, Pharmacopoeia Commission for Indian Medicine, and Homoeopathy (PCIM&H), Ministry of Ayush, Ghaziabad, 201002, (U.P.), India
| | - Raman Mohan Singh
- Chemistry Section, Pharmacopoeia Commission for Indian Medicine, and Homoeopathy (PCIM&H), Ministry of Ayush, Ghaziabad, 201002, (U.P.), India
| |
Collapse
|
26
|
Lang M, Carvalho A, Baharoglu Z, Mazel D. Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules. Microbiol Mol Biol Rev 2023; 87:e0003622. [PMID: 38047635 PMCID: PMC10732077 DOI: 10.1128/mmbr.00036-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYAminoglycosides (AGs) are long-known molecules successfully used against Gram-negative pathogens. While their use declined with the discovery of new antibiotics, they are now classified as critically important molecules because of their effectiveness against multidrug-resistant bacteria. While they can efficiently cross the Gram-negative envelope, the mechanism of AG entry is still incompletely understood, although this comprehension is essential for the development of new therapies in the face of the alarming increase in antibiotic resistance. Increasing antibiotic uptake in bacteria is one strategy to enhance effective treatments. This review aims, first, to consolidate old and recent knowledge about AG uptake; second, to explore the connection between AG-dependent bacterial stress and drug uptake; and finally, to present new strategies of potentiation of AG uptake for more efficient antibiotic therapies. In particular, we emphasize on the connection between sugar transport and AG potentiation.
Collapse
Affiliation(s)
- Manon Lang
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - André Carvalho
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
27
|
Kumar V, Yasmeen N, Pandey A, Ahmad Chaudhary A, Alawam AS, Ahmad Rudayni H, Islam A, Lakhawat SS, Sharma PK, Shahid M. Antibiotic adjuvants: synergistic tool to combat multi-drug resistant pathogens. Front Cell Infect Microbiol 2023; 13:1293633. [PMID: 38179424 PMCID: PMC10765517 DOI: 10.3389/fcimb.2023.1293633] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
The rise of multi-drug resistant (MDR) pathogens poses a significant challenge to the field of infectious disease treatment. To overcome this problem, novel strategies are being explored to enhance the effectiveness of antibiotics. Antibiotic adjuvants have emerged as a promising approach to combat MDR pathogens by acting synergistically with antibiotics. This review focuses on the role of antibiotic adjuvants as a synergistic tool in the fight against MDR pathogens. Adjuvants refer to compounds or agents that enhance the activity of antibiotics, either by potentiating their effects or by targeting the mechanisms of antibiotic resistance. The utilization of antibiotic adjuvants offers several advantages. Firstly, they can restore the effectiveness of existing antibiotics against resistant strains. Adjuvants can inhibit the mechanisms that confer resistance, making the pathogens susceptible to the action of antibiotics. Secondly, adjuvants can enhance the activity of antibiotics by improving their penetration into bacterial cells, increasing their stability, or inhibiting efflux pumps that expel antibiotics from bacterial cells. Various types of antibiotic adjuvants have been investigated, including efflux pump inhibitors, resistance-modifying agents, and compounds that disrupt bacterial biofilms. These adjuvants can act synergistically with antibiotics, resulting in increased antibacterial activity and overcoming resistance mechanisms. In conclusion, antibiotic adjuvants have the potential to revolutionize the treatment of MDR pathogens. By enhancing the efficacy of antibiotics, adjuvants offer a promising strategy to combat the growing threat of antibiotic resistance. Further research and development in this field are crucial to harness the full potential of antibiotic adjuvants and bring them closer to clinical application.
Collapse
Affiliation(s)
- Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Aishwarya Pandey
- INRS, Eau Terre Environnement Research Centre, Québec, QC, Canada
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sudarshan S. Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K. Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
28
|
Paul D, Chawla M, Ahrodia T, Narendrakumar L, Das B. Antibiotic Potentiation as a Promising Strategy to Combat Macrolide Resistance in Bacterial Pathogens. Antibiotics (Basel) 2023; 12:1715. [PMID: 38136749 PMCID: PMC10740890 DOI: 10.3390/antibiotics12121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotics, which hit the market with astounding impact, were once called miracle drugs, as these were considered the ultimate cure for infectious diseases in the mid-20th century. However, today, nearly all bacteria that afflict humankind have become resistant to these wonder drugs once developed to stop them, imperiling the foundation of modern medicine. During the COVID-19 pandemic, there was a surge in macrolide use to treat secondary infections and this persistent use of macrolide antibiotics has provoked the emergence of macrolide resistance. In view of the current dearth of new antibiotics in the pipeline, it is essential to find an alternative way to combat drug resistance. Antibiotic potentiators or adjuvants are non-antibacterial active molecules that, when combined with antibiotics, increase their activity. Thus, potentiating the existing antibiotics is one of the promising approaches to tackle and minimize the impact of antimicrobial resistance (AMR). Several natural and synthetic compounds have demonstrated effectiveness in potentiating macrolide antibiotics against multidrug-resistant (MDR) pathogens. The present review summarizes the different resistance mechanisms adapted by bacteria to resist macrolides and further emphasizes the major macrolide potentiators identified which could serve to revive the antibiotic and can be used for the reversal of macrolide resistance.
Collapse
Affiliation(s)
- Deepjyoti Paul
- Functional Genomics Laboratory, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, India
| | | | | | | | | |
Collapse
|
29
|
Wagdy RA, Abutaleb NS, Fathalla RK, Elgammal Y, Weck S, Pal R, Fischer PD, Ducho C, Abadi AH, N Seleem M, Engel M, Abdel-Halim M. Discovery of 1,2-diaryl-3-oxopyrazolidin-4-carboxamides as a new class of MurA enzyme inhibitors and characterization of their antibacterial activity. Eur J Med Chem 2023; 261:115789. [PMID: 37717380 DOI: 10.1016/j.ejmech.2023.115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
The cytoplasmic steps of peptidoglycan synthesis represent an important targeted pathway for development of new antibiotics. Herein, we report the synthesis of novel 3-oxopyrazolidin-4-carboxamide derivatives with variable amide side chains as potential antibacterial agents targeting MurA enzyme, the first committed enzyme in these cytosolic steps. Compounds 15 (isoindoline-1,3-dione-5-yl), 16 (4-(1H-pyrazol-4-yl)phenyl), 20 (5-cyanothiazol-2-yl), 21 and 31 (5-nitrothiazol-2-yl derivatives) exhibited the most potent MurA inhibition, with IC50 values of 9.8-12.2 μM. Compounds 15, 16 and 21 showed equipotent inhibition of the C115D MurA mutant developed by fosfomycin-resistant Escherichia coli. NMR binding studies revealed that some of the MurA residues targeted by 15 also interacted with fosfomycin, but not all, indicating an overlapping but not identical binding site. The antibacterial activity of the compounds against E. coli ΔtolC suggests that inhibition of MurA accounts for the observed effect on bacterial growth, considering that a few potent MurA inhibitors could not penetrate the bacterial outer membrane and were therefore inactive as proven by the bacterial cell uptake assay. The most promising compounds were also evaluated against a panel of Gram-positive bacteria. Remarkably, compounds 21 and 31 (MurA IC50 = 9.8 and 10.2 μM respectively) exhibited a potent activity against Clostridioides difficile strains with MIC values ranging from 0.125 to 1 μg/mL, and were also shown to be bactericidal with MBC values between 0.25 and 1 μg/mL. Furthermore, both compounds were shown to have a limited activity against human normal intestinal flora and showed high safety towards human colon cells (Caco-2) in vitro. The thiolactone derivative (compound 5) exhibited an interesting broad spectrum antibacterial activity despite its weak MurA inhibition. Altogether, the presented series provides a promising class of antibiotics that merits further investigation.
Collapse
Affiliation(s)
- Reem A Wagdy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Reem K Fathalla
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Stefanie Weck
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Rusha Pal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Patrick D Fischer
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Christian Ducho
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
30
|
Bachar G, Shemesh D, Farago N, Siegler Y, Khatib N, Ginsberg Y, Beloosesky R, Weiner Z, Vitner D. The optimal induction timing in prelabor rupture of membranes: a retrospective study. J Matern Fetal Neonatal Med 2023; 36:2215997. [PMID: 37225389 DOI: 10.1080/14767058.2023.2215997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE Term prelabour rupture of membrane (PROM) occurs in 8% of term deliveries, but it is unclear when to initiate induction. Our objective was to assess the optimal timing of oxytocin induction in the management of term PROM in terms of maternal and neonatal outcomes. METHODS A retrospective cohort study was performed at a single tertiary care center from 2010 to 2020. All singleton pregnancies with PROM beyond 37 weeks gestation, without regular uterine contractions, were included. Eligible women were divided into three groups according to the timing of oxytocin induction (≤12; 12-24; ≥24 h) following PROM. RESULTS Of 9,443 women presented with the term PROM, 1676 were included. They were classified according to the timing of oxytocin induction initiation following PROM: 1,127 within 12 h; 285 within 12-24 h; 264 after 24 h. There were no significant differences in baseline demographic characteristics between groups. Women who presented at our emergency department were induced earlier delivered significantly sooner than those who received oxytocin later (45 vs. 28.2 vs. 23.2 h, respectively, p < .001. Maternal infection rate was similar and unrelated to oxytocin starting time. Induction at <12 h from PROM was associated with reduced rate of antibiotic administration compared with other timings (26.8% vs. 38.6% vs. 33.33%, respectively; p < .001), and the same was found for neonatal composite adverse outcomes (RR = 1.27, p = .0307). CONCLUSION In term PROM, early induction (within 12 h of PROM) may be recommended to reduce the time-do-delivery interval and increase the delivery rate within 24 h. It may be of economic significance and improve women satisfaction. Furthermore, early induction may also improve neonatal outcomes, without worsening maternal outcomes.
Collapse
Affiliation(s)
- Gal Bachar
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Doron Shemesh
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Naama Farago
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Yoav Siegler
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
- Bruce Rappaport, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
- Bruce Rappaport, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
- Bruce Rappaport, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
- Bruce Rappaport, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dana Vitner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
- Bruce Rappaport, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
31
|
Gauba A, Rahman KM. Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1590. [PMID: 37998792 PMCID: PMC10668847 DOI: 10.3390/antibiotics12111590] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Multidrug-resistant Gram-negative bacterial infections are exponentially increasing, posing one of the most urgent global healthcare and economic threats. Due to the lack of new therapies, the World Health Organization classified these bacterial species as priority pathogens in 2017, known as ESKAPE pathogens. This classification emphasizes the need for urgent research and development of novel targeted therapies. The majority of these priority pathogens are Gram-negative species, which possess a structurally dynamic cell envelope enabling them to resist multiple antibiotics, thereby leading to increased mortality rates. Despite 6 years having passed since the WHO classification, the progress in generating new treatment ideas has not been sufficient, and antimicrobial resistance continues to escalate, acting as a global ticking time bomb. Numerous efforts and strategies have been employed to combat the rising levels of antibiotic resistance by targeting specific resistance mechanisms. These mechanisms include antibiotic inactivating/modifying enzymes, outer membrane porin remodelling, enhanced efflux pump action, and alteration of antibiotic target sites. Some strategies have demonstrated clinical promise, such as the utilization of beta-lactamase inhibitors as antibiotic adjuvants, as well as recent advancements in machine-based learning employing artificial intelligence to facilitate the production of novel narrow-spectrum antibiotics. However, further research into an enhanced understanding of the precise mechanisms by which antibiotic resistance occurs, specifically tailored to each bacterial species, could pave the way for exploring narrow-spectrum targeted therapies. This review aims to introduce the key features of Gram-negative bacteria and their current treatment approaches, summarizing the major antibiotic resistance mechanisms with a focus on Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Additionally, potential directions for alternative therapies will be discussed, along with their relative modes of action, providing a future perspective and insight into the discipline of antimicrobial resistance.
Collapse
Affiliation(s)
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| |
Collapse
|
32
|
Teng J, Imani S, Zhou A, Zhao Y, Du L, Deng S, Li J, Wang Q. Combatting resistance: Understanding multi-drug resistant pathogens in intensive care units. Biomed Pharmacother 2023; 167:115564. [PMID: 37748408 DOI: 10.1016/j.biopha.2023.115564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
The escalating misuse and excessive utilization of antibiotics have led to the widespread dissemination of drug-resistant bacteria, posing a significant global healthcare crisis. Of particular concern is the increasing prevalence of multi-drug resistant (MDR) opportunistic pathogens in Intensive Care Units (ICUs), which presents a severe threat to public health and contributes to substantial morbidity and mortality. Among them, MDR ESKAPE pathogens account for the vast majority of these opportunistic pathogens. This comprehensive review provides a meticulous analysis of the current prevalence landscape of MDR opportunistic pathogens in ICUs, especially in ESKAPE pathogens, illuminating their resistance mechanisms against commonly employed first-line antibiotics, including polymyxins, carbapenems, and tigecycline. Furthermore, this review explores innovative strategies aimed at preventing and controlling the emergence and spread of resistance. By emphasizing the urgent need for robust measures to combat nosocomial infections caused by MDR opportunistic pathogens in ICUs, this study serves as an invaluable reference for future investigations in the field of antibiotic resistance.
Collapse
Affiliation(s)
- Jianying Teng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China; The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Saber Imani
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China
| | - Aiping Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai, PR China
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China
| | - Lailing Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China
| | - Shuli Deng
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, PR China.
| | - Jun Li
- College of Food Science and Engineering, Jiangxi Agricultural University, 1225 Zhimin Avenue, Nanchang, Jiangxi Province, PR China.
| | - Qingjing Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China.
| |
Collapse
|
33
|
Johnson TS, Bourdine AA, Deber CM. Hydrophobic moment drives penetration of bacterial membranes by transmembrane peptides. J Biol Chem 2023; 299:105266. [PMID: 37734555 PMCID: PMC10585379 DOI: 10.1016/j.jbc.2023.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
With antimicrobial resistance (AMR) remaining a persistent and growing threat to human health worldwide, membrane-active peptides are gaining traction as an alternative strategy to overcome the issue. Membrane-embedded multi-drug resistant (MDR) efflux pumps are a prime target for membrane-active peptides, as they are a well-established contributor to clinically relevant AMR infections. Here, we describe a series of transmembrane peptides (TMs) to target the oligomerization motif of the AcrB component of the AcrAB-TolC MDR efflux pump from Escherichia coli. These peptides contain an N-terminal acetyl-A-(Sar)3 (sarcosine; N-methylglycine) tag and a C-terminal lysine tag-a design strategy our lab has utilized to improve the solubility and specificity of targeting for TMs previously. While these peptides have proven useful in preventing AcrB-mediated substrate efflux, the mechanisms by which these peptides associate with and penetrate the bacterial membrane remained unknown. In this study, we have shown peptide hydrophobic moment (μH)-the measure of concentrated hydrophobicity on one face of a lipopathic α-helix-drives bacterial membrane permeabilization and depolarization, likely through lateral-phase separation of negatively-charged POPG lipids and the disruption of lipid packing. Our results show peptide μH is an important consideration when designing membrane-active peptides and may be the determining factor in whether a TM will function in a permeabilizing or non-permeabilizing manner when embedded in the bacterial membrane.
Collapse
Affiliation(s)
- Tyler S Johnson
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Aleksandra A Bourdine
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Charles M Deber
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Podoll JD, Rosen E, Wang W, Gao Y, Zhang J, Wang X. A small-molecule membrane fluidizer re-sensitizes methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics. Antimicrob Agents Chemother 2023; 67:e0005123. [PMID: 37681969 PMCID: PMC10583677 DOI: 10.1128/aac.00051-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/04/2023] [Indexed: 09/09/2023] Open
Abstract
Novel antibacterial agents and strategies are urgently needed to fight against the ongoing global antibiotic resistance problem. While natural products remain the main source in antibiotic discovery, synthetic antibacterials provide an attractive alternative and may evade the ancient antibiotic resistance. Herein, we report a small molecule that re-sensitizes methicillin-resistant Staphylococcus aureus to β-lactam antibiotics with extremely low potential for resistance development. It belongs to a new class of broad-spectrum antibacterials, trypyricins, which share similar structural characteristics and mechanism of action to the cationic antimicrobial peptides. Mechanistic studies indicated that trypyricins fluidize and disrupt bacterial cytoplasmic membrane. These results suggested that trypyricins represent a promising new class of antibacterials and may be further developed as antibiotic adjuvants to fight against resistant bacteria in the clinic.
Collapse
Affiliation(s)
| | - Emma Rosen
- Recreo Pharmaceuticals Inc, Yale Circle, Boulder, Colorado, USA
| | - Wei Wang
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA
| | - Yuefeng Gao
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA
| | - Jing Zhang
- Recreo Pharmaceuticals Inc, Yale Circle, Boulder, Colorado, USA
| | - Xiang Wang
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
35
|
Fayek M, Ebrahim HY, Abdel-Aziz MS, Taha H, Moharram FA. Bioactive metabolites identified from Aspergillus terreus derived from soil. AMB Express 2023; 13:107. [PMID: 37789186 PMCID: PMC10547674 DOI: 10.1186/s13568-023-01612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Aspergillus terreus has been reported to produce many bioactive metabolites that possess potential activities including anti-inflammatory, cytotoxic, and antimicrobial activities. In the present study, we report the isolation and identification of A. terreus from a collected soil sample. The metabolites existing in the microbial ethyl acetate extract were tentatively identified by HPLC/MS and chemically categorized into alkaloids, terpenoids, polyketides, γ-butyrolactones, quinones, and peptides. In addition, a new triglyceride (1) and a diketopiperazine derivative namely asterrine (4), together with two known butyrolactone (2-3) were purified from the extract. The chemical skeleton of the purified compounds was established by comprehensive analysis of their ESI/MS, 1 and 2D-NMR data. The extract and compounds 3,4 exhibited a strong inhibitory activity for the binding of ACE2 to SARS-CoV-2 spike-protein receptor with IC50 7.4, 9.5, and 8.5 µg/mL, respectively. In addition, the extract, 1 and 2 displayed a potent anti-inflammatory effect with IC50 51.31 and 37.25 pg/mL (Il-6) and 87.97, 68.22 pg/mL (TNF-α), respectively, in comparison to LPS control. In addition, the extract and compound 4 displayed an antimicrobial effect towards S. aureus by MIC 62.5 and 125 μg/mL, while the extract exhibited a potent effect against C. albicans (MIC of 125 μg/mL). Collectively, our data introduce novel bioactivities for the secondary metabolites produced by the terrestrial fungus Aspergillus terreus.
Collapse
Affiliation(s)
- Menna Fayek
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Hassan Y Ebrahim
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Mohamed S Abdel-Aziz
- Department of Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Giza, 12622, Egypt
| | - Heba Taha
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| |
Collapse
|
36
|
Bhowmik P, Modi B, Roy P, Chowdhury A. Strategies to combat Gram-negative bacterial resistance to conventional antibacterial drugs: a review. Osong Public Health Res Perspect 2023; 14:333-346. [PMID: 37920891 PMCID: PMC10626324 DOI: 10.24171/j.phrp.2022.0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/11/2023] [Accepted: 08/15/2023] [Indexed: 11/04/2023] Open
Abstract
The emergence of antimicrobial resistance raises the fear of untreatable diseases. Antimicrobial resistance is a multifaceted and dynamic phenomenon that is the cumulative result of different factors. While Gram-positive pathogens, such as methicillin-resistant Staphylococcus aureus and Clostridium difficile, were previously the most concerning issues in the field of public health, Gram-negative pathogens are now of prime importance. The World Health Organization's priority list of pathogens mostly includes multidrug-resistant Gram-negative organisms particularly carbapenem-resistant Enterobacterales, carbapenem-resistant Pseudomonas aeruginosa, and extensively drug-resistant Acinetobacter baumannii. The spread of Gram-negative bacterial resistance is a global issue, involving a variety of mechanisms. Several strategies have been proposed to control resistant Gram-negative bacteria, such as the development of antimicrobial auxiliary agents and research into chemical compounds with new modes of action. Another emerging trend is the development of naturally derived antibacterial compounds that aim for targets novel areas, including engineered bacteriophages, probiotics, metal-based antibacterial agents, odilorhabdins, quorum sensing inhibitors, and microbiome-modifying agents. This review focuses on the current status of alternative treatment regimens against multidrug-resistant Gram-negative bacteria, aiming to provide a snapshot of the situation and some information on the broader context.
Collapse
Affiliation(s)
- Priyanka Bhowmik
- Department of Biological Sciences, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Barkha Modi
- Department of Microbiology, Techno India University, Kolkata, India
| | - Parijat Roy
- Department of Biological Sciences, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Antarika Chowdhury
- Department of Biological Sciences, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| |
Collapse
|
37
|
Raj N, Agarwal J, Singh V, Nath SS, Das A, Sen M. A retrospective analysis of the 5-year trends of antimicrobial resistance in gram-negative bacterial isolates from an intensive care unit at a tertiary care hospital. Int J Crit Illn Inj Sci 2023; 13:178-183. [PMID: 38292394 PMCID: PMC10824198 DOI: 10.4103/ijciis.ijciis_30_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 02/01/2024] Open
Abstract
Background Intensive care units (ICUs) in developing countries constitute a high risk for patients acquiring infection by multidrug-resistant organisms (MDROs). The rise in antimicrobial resistance (AMR) threatens the effective prevention and treatment of an increasing range of infections. The present study analyzed the local trends of AMR in Gram-negative isolates of ICU patients from a tertiary care facility in North India. Methods This retrospective study was conducted over 5 years (January 2018-December 2022). All bacterial isolates from patients admitted to ICU during the study period were included in the study, and their AMR pattern was analyzed. In addition, sensitivity trends of different antimicrobials against the common Gram-negative bacteria were analyzed, and AMR trends were analyzed over the study period. Results Klebsiella spp. was the most common isolate in samples received from ICU. A rise of carbapenem-resistant microorganisms was observed over the study period. Escherichia coli and Klebsiella spp. showed around 10% and a 17% decrease in susceptibility to carbapenems, respectively. In contrast, a marked 29% decrease in sensitivity to carbapenems was observed in Acinetobacter spp. Conclusion The inception of integrated stewardship measures has shown a rising trend in susceptibility and is the need of the hour to prevent the spread of MDROs. Surveillance studies help us understand the impact of AMR in hospitals and help plan prevention programs.
Collapse
Affiliation(s)
- Nikhil Raj
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Jyotsna Agarwal
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Vikramjeet Singh
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Soumya Sankar Nath
- Department of Anesthesiology and Critical Care Medicine, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Anupam Das
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Manodeep Sen
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
38
|
Zhang S, Wang J, Ahn J. Advances in the Discovery of Efflux Pump Inhibitors as Novel Potentiators to Control Antimicrobial-Resistant Pathogens. Antibiotics (Basel) 2023; 12:1417. [PMID: 37760714 PMCID: PMC10525980 DOI: 10.3390/antibiotics12091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR) pathogens in clinical settings and food-producing animals, posing significant challenges to clinical management and food control. Over the past few decades, the discovery of antimicrobials has slowed down, leading to a lack of treatment options for clinical infectious diseases and foodborne illnesses. Given the increasing prevalence of antibiotic resistance and the limited availability of effective antibiotics, the discovery of novel antibiotic potentiators may prove useful for the treatment of bacterial infections. The application of antibiotics combined with antibiotic potentiators has demonstrated successful outcomes in bench-scale experiments and clinical settings. For instance, the use of efflux pump inhibitors (EPIs) in combination with antibiotics showed effective inhibition of MDR pathogens. Thus, this review aims to enable the possibility of using novel EPIs as potential adjuvants to effectively control MDR pathogens. Specifically, it provides a comprehensive summary of the advances in novel EPI discovery and the underlying mechanisms that restore antimicrobial activity. In addition, we also characterize plant-derived EPIs as novel potentiators. This review provides insights into current challenges and potential strategies for future advancements in fighting antibiotic resistance.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
39
|
Habib Adam M, Tandon N, Singh I, Tandon R. The Phytochemical Tactics for Battling Antibiotic Resistance in Microbes: Secondary Metabolites and Nano Antibiotics Methods. Chem Biodivers 2023; 20:e202300453. [PMID: 37535351 DOI: 10.1002/cbdv.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
One of the most serious threats to human health is antibiotic resistance, which has left the world without effective antibiotics. While continuous research and inventions for new antibiotics are going on, especially those with new modes of action, it is unlikely that this alone would be sufficient to win the battle. Furthermore, it is also important to investigate additional approaches. One such strategy for improving the efficacy of existing antibiotics is the discovery of adjuvants. This review has collected data from various studies on the current crisis and approaches for combating multi-drug resistance in microbial pathogens using phytochemicals. In addition, the nano antibiotic approaches, are discussed, highlighting the high potentials of essential oils, alkaloids, phenolic compounds, and nano antibiotics in combating antibiotic resistance.
Collapse
Affiliation(s)
- Mujahid Habib Adam
- School of Pharmaceutical Sciences, Lovely Professional University, 144411, Phagwara, India
| | - Nitin Tandon
- Department of Chemistry, School of Physical Sciences, Lovely Professional University, 144411, Phagwara, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, 144411, Phagwara, India
| | - Runjhun Tandon
- Department of Chemistry, School of Physical Sciences, Lovely Professional University, 144411, Phagwara, India
| |
Collapse
|
40
|
Farizqi MTI, Effendi MH, Adikara RTS, Yudaniayanti IS, Putra GDS, Khairullah AR, Kurniawan SC, Silaen OSM, Ramadhani S, Millannia SK, Kaben SE, Waruwu YKK. Detection of extended-spectrum β-lactamase-producing Escherichia coli genes isolated from cat rectal swabs at Surabaya Veterinary Hospital, Indonesia. Vet World 2023; 16:1917-1925. [PMID: 37859949 PMCID: PMC10583880 DOI: 10.14202/vetworld.2023.1917-1925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Escherichia coli causes a bacterial illness that frequently affects cats. Diseases caused by E. coli are treated using antibiotics. Because of their proximity to humans, cats possess an extremely high risk of contracting antibiotic resistance genes when their owners touch cat feces containing E. coli that harbor resistance genes. This study was conducted to identify multidrug-resistant E. coli and extended-spectrum β-lactamase (ESBL)-producing genes from cat rectal swabs collected at Surabaya City Veterinary Hospital to determine antibiotic sensitivity. Materials and Methods Samples of cat rectal swabs were cultured in Brilliant Green Bile Lactose Broth medium and then streaked on eosin methylene blue agar medium for bacterial isolation, whereas Gram-staining and IMViC tests were conducted to confirm the identification results. The Kirby-Bauer diffusion test was used to determine antibiotic sensitivity, and the double-disk synergy test was used to determine ESBL-producing bacteria. Molecular detection of the genes TEM and CTX-M was performed using a polymerase chain reaction. Results Based on morphological culture, Gram-staining, and biochemical testing, the results of sample inspection showed that of the 100 cat rectal swab samples isolated, 71 (71%) were positive for E. coli. Furthermore, 23 E. coli isolates (32.39%) demonstrated the highest resistance to ampicillin. Four isolates were confirmed to be multidurg-resistant and ESBL-producing strains. Molecular examination revealed that three E. coli isolates harbored TEM and CTX-M. Conclusion In conclusion, pet owners must be educated on the use of antibiotics to improve their knowledge about the risks of antibiotic resistance.
Collapse
Affiliation(s)
- M. Thoriq Ihza Farizqi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya, 60115, East Java, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya, 60115, East Java, Indonesia
| | - R. Tatang Santanu Adikara
- Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya, 60115, East Java, Indonesia
| | - Ira Sari Yudaniayanti
- Division of Veterinary Clinic, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabay, 60115, East Java, Indonesia
| | - Giovanni Dwi Syahni Putra
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya, 60115, East Java, Indonesia
| | - Aswin Rafif Khairullah
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya, 60115, East Java, Indonesia
| | - Shendy Canadya Kurniawan
- Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research. Wageningen, 6708 PB, Netherlands
| | - Otto Sahat Martua Silaen
- Department of Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6 Senen, Jakarta, 10430, Indonesia
| | - Safira Ramadhani
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya, 60115, East Java, Indonesia
| | - Saumi Kirey Millannia
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya, 60115, East Java, Indonesia
| | - Sergius Erikson Kaben
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya, 60115, East Java, Indonesia
| | - Yusac Kristanto Khoda Waruwu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya, 60115, East Java, Indonesia
| |
Collapse
|
41
|
Zhang C, Kong Y, Xiang Q, Ma Y, Guo Q. Bacterial memory in antibiotic resistance evolution and nanotechnology in evolutionary biology. iScience 2023; 26:107433. [PMID: 37575196 PMCID: PMC10415926 DOI: 10.1016/j.isci.2023.107433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Bacterial memory refers to the phenomenon in which past experiences influence current behaviors in response to changing environments. It serves as a crucial process that enables adaptation and evolution. We first summarize the state-of-art approaches regarding history-dependent behaviors that impact growth dynamics and underlying mechanisms. Then, the phenotypic and genotypic origins of memory and how encoded memory modulates drug tolerance/resistance are reviewed. We also provide a summary of possible memory effects induced by antimicrobial nanoparticles. The regulatory networks and genetic underpinnings responsible for memory building partially overlap with nanoparticle and drug exposures, which may raise concerns about the impact of nanotechnology on adaptation. Finally, we provide a perspective on the use of nanotechnology to harness bacterial memory based on its unique mode of actions on information processing and transmission in bacteria. Exploring bacterial memory mechanisms provides valuable insights into acclimation, evolution, and the potential applications of nanotechnology in harnessing memory.
Collapse
Affiliation(s)
- Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Kong
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qingxin Xiang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yayun Ma
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Quanyi Guo
- School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
42
|
Rosales-Hurtado M, Sannio F, Lari L, Verdirosa F, Feller G, Carretero E, Vo-Hoang Y, Licznar-Fajardo P, Docquier JD, Gavara L. Zidovudine-β-Lactam Pronucleoside Strategy for Selective Delivery into Gram-Negative Bacteria Triggered by β-Lactamases. ACS Infect Dis 2023; 9:1546-1557. [PMID: 37439673 DOI: 10.1021/acsinfecdis.3c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Addressing antibacterial resistance is a major concern of the modern world. The development of new approaches to meet this deadly threat is a critical priority. In this article, we investigate a new approach to negate bacterial resistance: exploit the β-lactam bond cleavage by β-lactamases to selectively trigger antibacterial prodrugs into the bacterial periplasm. Indeed, multidrug-resistant Gram-negative pathogens commonly produce several β-lactamases that are able to inactivate β-lactam antibiotics, our most reliable and widely used therapeutic option. The chemical structure of these prodrugs is based on a monobactam promoiety, covalently attached to the active antibacterial substance, zidovudine (AZT). We describe the synthesis of 10 prodrug analogues (5a-h) in four to nine steps and their biological activity. Selective enzymatic activation by a panel of β-lactamases is demonstrated, and subsequent structure-activity relationships are discussed. The best compounds are further evaluated for their activity on both laboratory strains and clinical isolates, preliminary stability, and toxicity.
Collapse
Affiliation(s)
- Miyanou Rosales-Hurtado
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy
| | - Lindita Lari
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Federica Verdirosa
- Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy
| | - Georges Feller
- Laboratoire de Biochimie, Centre d'Ingénierie des Protéines-InBioS, Université de Liège, B-4000 Liège, Belgium
| | - Elodie Carretero
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Yen Vo-Hoang
- HSM, Univ Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France
| | | | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy
- Laboratoire de Bactériologie Moléculaire, Centre d'Ingénierie des Protéines-InBioS, Université de Liège, B-4000 Liège, Belgium
| | - Laurent Gavara
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
43
|
Kadeřábková N, Furniss RCD, Maslova E, Eisaiankhongi L, Bernal P, Filloux A, Landeta C, Gonzalez D, McCarthy RR, Mavridou DA. Antibiotic potentiation and inhibition of cross-resistance in pathogens associated with cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551661. [PMID: 37577508 PMCID: PMC10418187 DOI: 10.1101/2023.08.02.551661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Critical Gram-negative pathogens, like Pseudomonas, Stenotrophomonas and Burkholderia, have become resistant to most antibiotics. Complex resistance profiles together with synergistic interactions between these organisms increase the likelihood of treatment failure in distinct infection settings, for example in the lungs of cystic fibrosis patients. Here, we discover that cell envelope protein homeostasis pathways underpin both antibiotic resistance and cross-protection in CF-associated bacteria. We find that inhibition of oxidative protein folding inactivates multiple species-specific resistance proteins. Using this strategy, we sensitize multi-drug resistant Pseudomonas aeruginosa to β-lactam antibiotics and demonstrate promise of new treatment avenues for the recalcitrant pathogen Stenotrophomonas maltophilia. The same approach also inhibits cross-protection between resistant S. maltophilia and susceptible P. aeruginosa, allowing eradication of both commonly co-occurring CF-associated organisms. Our results provide the basis for the development of next-generation strategies that target antibiotic resistance, while also impairing specific interbacterial interactions that enhance the severity of polymicrobial infections.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, Texas, USA
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - R. Christopher D. Furniss
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Lara Eisaiankhongi
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, 41012, Spain
| | - Alain Filloux
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Cristina Landeta
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, 78712, Texas, USA
| |
Collapse
|
44
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
45
|
Kosol S, Rostock L, Barsig J, Tabarelli T, Hommernick K, Kulike M, Eulberg T, Seidel M, Behroz I, Kleebauer L, Grätz S, Mainz A, Süssmuth RD. Transcription activation by the resistance protein AlbA as a tool to evaluate derivatives of the antibiotic albicidin. Chem Sci 2023; 14:5069-5078. [PMID: 37206387 PMCID: PMC10189885 DOI: 10.1039/d3sc00955f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023] Open
Abstract
The rising numbers of fatal infections with resistant pathogens emphasizes the urgent need for new antibiotics. Ideally, new antibiotics should be able to evade or overcome existing resistance mechanisms. The peptide antibiotic albicidin is a highly potent antibacterial compound with a broad activity spectrum but also with several known resistance mechanisms. In order to assess the effectiveness of novel albicidin derivatives in the presence of the binding protein and transcription regulator AlbA, a resistance mechanism against albicidin identified in Klebsiella oxytoca, we designed a transcription reporter assay. In addition, by screening shorter albicidin fragments, as well as various DNA-binders and gyrase poisons, we were able to gain insights into the AlbA target spectrum. We analysed the effect of mutations in the binding domain of AlbA on albicidin sequestration and transcription activation, and found that the signal transduction mechanism is complex but can be evaded. Further demonstrating AlbA's high level of specificity, we find clues for the logical design of molecules capable of avoiding the resistance mechanism.
Collapse
Affiliation(s)
- Simone Kosol
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Lida Rostock
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Jonas Barsig
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Theresa Tabarelli
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Kay Hommernick
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Marcel Kulike
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Tobias Eulberg
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Maria Seidel
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Iraj Behroz
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Leonardo Kleebauer
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Stefan Grätz
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
46
|
Rampacci E, Felicetti T, Cernicchi G, Stefanetti V, Sabatini S, Passamonti F. Inhibition of Staphylococcus pseudintermedius Efflux Pumps by Using Staphylococcus aureus NorA Efflux Pump Inhibitors. Antibiotics (Basel) 2023; 12:antibiotics12050806. [PMID: 37237709 DOI: 10.3390/antibiotics12050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
One promising approach in treating antibiotic-resistant bacteria is to "break" resistances connected with antibacterial efflux by co-administering efflux pump inhibitors (EPIs) with antibiotics. Here, ten compounds, previously optimized to restore the susceptibility to ciprofloxacin (CIP) of norA-overexpressing Staphylococcus aureus, were evaluated for their ability to inhibit norA-mediated efflux in Staphylococcus pseudintermedius and synergize with CIP, ethidium bromide (EtBr), gentamycin (GEN), and chlorhexidine digluconate (CHX). We focused efforts on S. pseudintermedius as a pathogenic bacterium of concern within veterinary and human medicine. By combining data from checkerboard assays and EtBr efflux inhibition experiments, the hits 2-arylquinoline 1, dihydropyridine 6, and 2-phenyl-4-carboxy-quinoline 8 were considered the best EPIs for S. pseudintermedius. Overall, most of the compounds, except for 2-arylquinoline compound 2, were able to fully restore the susceptibility of S. pseudintermedius to CIP and synergize with GEN as well, while the synergistic effect with CHX was less significant and often did not show a dose-dependent effect. These are valuable data for medicinal chemistry optimization of EPIs for S. pseudintermedius and lay the foundation for further studies on successful EPIs to treat staphylococcal infections.
Collapse
Affiliation(s)
- Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, Via Del Liceo 1, 06123 Perugia, Italy
| | - Giada Cernicchi
- Department of Pharmaceutical Sciences, Via Del Liceo 1, 06123 Perugia, Italy
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, Via Del Liceo 1, 06123 Perugia, Italy
| | - Fabrizio Passamonti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| |
Collapse
|
47
|
Han N, Li J, Zhao F, Li Y, Wang J, Dai X, Zeng D, Xiong W, Zeng Z. Isopropoxy Benzene Guanidine Ameliorates Streptococcus suis Infection In Vivo and In Vitro. Int J Mol Sci 2023; 24:ijms24087354. [PMID: 37108521 PMCID: PMC10138962 DOI: 10.3390/ijms24087354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Streptococcus suis, an encapsulated zoonotic pathogen, has been reported to cause a variety of infectious diseases, such as meningitis and streptococcal-toxic-shock-like syndrome. Increasing antimicrobial resistance has triggered the need for new treatments. In the present study, we found that isopropoxy benzene guanidine (IBG) significantly attenuated the effects caused by S. suis infection, in vivo and in vitro, by killing S. suis and reducing S. suis pathogenicity. Further studies showed that IBG disrupted the integrity of S. suis cell membranes and increased the permeability of S. suis cell membranes, leading to an imbalance in proton motive force and the accumulation of intracellular ATP. Meanwhile, IBG antagonized the hemolysis activity of suilysin and decreased the expression of Sly gene. In vivo, IBG improved the viability of S. suis SS3-infected mice by reducing tissue bacterial load. In conclusion, IBG is a promising compound for the treatment of S. suis infections, given its antibacterial and anti-hemolysis activity.
Collapse
Affiliation(s)
- Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Feifei Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yangyang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolan Dai
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
48
|
Apinundecha C, Teethaisong Y, Suknasang S, Ayamuang IO, Eumkeb G. Synergistic Interaction between Boesenbergia rotunda (L.) Mansf. Essential Oil and Cloxacillin on Methicillin-Resistant Staphylococcus aureus (MRSA) Inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:3453273. [PMID: 37114143 PMCID: PMC10129417 DOI: 10.1155/2023/3453273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/26/2022] [Accepted: 03/18/2023] [Indexed: 04/29/2023]
Abstract
Currently, antibiotic resistance is widespread among bacteria. This problem requires greater awareness because bacterial resistance increases, reducing antibiotic use effectiveness. Consequently, new alternative treatments are needed because the treatment options for these bacteria are limited. This work aims to determine the synergistic interaction and mechanism of action of Boesenbergia rotunda essential oil (BREO) against methicillin-resistant Staphylococcus aureus (MRSA). Gas chromatography-mass spectrometry identified 24 BREO chemicals (GC-MS). The main components of BREO were β-ocimene (36.73%), trans-geraniol (25.29%), camphor (14.98%), and eucalyptol (8.99%). BREO and CLX inhibited MRSA DMST 20649, 20651, and 20652 with a minimum inhibitory concentration (MIC) of 4 mg/mL and 512 µg/mL, respectively. The checkerboard method and the time-kill assay revealed synergy between BREO and CLX with fractional inhibitory concentration (FIC) <0.5 and log reduction >2log10 CFU/mL at 24 hours compared to the most effective chemical. BREO inhibited biofilm formation and increased membrane permeability. Exposure alone to BREO or in combination with CLX inhibited biofilm formation and increased cytoplasmic membrane (CM) permeability. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results revealed that alterations in the cell walls, cytoplasmic membrane, and leakage of intracellular components of MRSA DMST 20651 after treatment with BREO alone and in combination with CLX were observed. These results indicate that BREO synergizes and could reverse the antibacterial activity of CLX against MRSA strains. The synergy of BREO may lead to novel drug combinations that increase the effectiveness of antibiotics against MRSA.
Collapse
Affiliation(s)
- Chittadech Apinundecha
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yothin Teethaisong
- Faculty of Allied Health Sciences, Burapha University, Chon Buri 20131, Thailand
- Research Unit for Sensor Innovation (RUSI), Burapha University, Chonburi 20131, Thailand
| | - Siriporn Suknasang
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Intu-Orn Ayamuang
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Griangsak Eumkeb
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
49
|
Ottonello A, Wyllie JA, Yahiaoui O, Sun S, Koelln RA, Homer JA, Johnson RM, Murray E, Williams P, Bolla JR, Robinson CV, Fallon T, Soares da Costa TP, Moses JE. Shapeshifting bullvalene-linked vancomycin dimers as effective antibiotics against multidrug-resistant gram-positive bacteria. Proc Natl Acad Sci U S A 2023; 120:e2208737120. [PMID: 37011186 PMCID: PMC10104512 DOI: 10.1073/pnas.2208737120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Abstract
The alarming rise in superbugs that are resistant to drugs of last resort, including vancomycin-resistant enterococci and staphylococci, has become a significant global health hazard. Here, we report the click chemistry synthesis of an unprecedented class of shapeshifting vancomycin dimers (SVDs) that display potent activity against bacteria that are resistant to the parent drug, including the ESKAPE pathogens, vancomycin-resistant Enterococcus (VRE), methicillin-resistant Staphylococcus aureus (MRSA), as well as vancomycin-resistant S. aureus (VRSA). The shapeshifting modality of the dimers is powered by a triazole-linked bullvalene core, exploiting the dynamic covalent rearrangements of the fluxional carbon cage and creating ligands with the capacity to inhibit bacterial cell wall biosynthesis. The new shapeshifting antibiotics are not disadvantaged by the common mechanism of vancomycin resistance resulting from the alteration of the C-terminal dipeptide with the corresponding d-Ala-d-Lac depsipeptide. Further, evidence suggests that the shapeshifting ligands destabilize the complex formed between the flippase MurJ and lipid II, implying the potential for a new mode of action for polyvalent glycopeptides. The SVDs show little propensity for acquired resistance by enterococci, suggesting that this new class of shapeshifting antibiotic will display durable antimicrobial activity not prone to rapidly acquired clinical resistance.
Collapse
Affiliation(s)
- Alessandra Ottonello
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Jessica A. Wyllie
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Oussama Yahiaoui
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Shoujun Sun
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Rebecca A. Koelln
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Robert M. Johnson
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Ewan Murray
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K.
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K.
| | - Jani R. Bolla
- Department of Biology, University of Oxford, OxfordOX1 3RB, U.K.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, U.K.
| | - Carol V. Robinson
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, U.K.
- Physical and Theoretical Chemistry Laboratory, University of Oxford, OxfordOX1 3QZ, U.K.
| | - Thomas Fallon
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | | | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| |
Collapse
|
50
|
Sadeeshkumar H, Balaji A, Sutherland AG, Mootien S, Anthony KG, Breaker RR. Screening for small molecule inhibitors of SAH nucleosidase using an SAH riboswitch. Anal Biochem 2023; 666:115047. [PMID: 36682579 PMCID: PMC11149561 DOI: 10.1016/j.ab.2023.115047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
Due to the emergence of multidrug resistant pathogens, it is imperative to identify new targets for antibiotic drug discovery. The S-adenosylhomocysteine (SAH) nucleosidase enzyme is a promising target for antimicrobial drug development due to its critical functions in multiple bacterial processes including recycling of toxic byproducts of S-adenosylmethionine (SAM)-mediated reactions and producing the precursor of the universal quorum sensing signal, autoinducer-2 (AI-2). Riboswitches are structured RNA elements typically used by bacteria to precisely monitor and respond to changes in essential bacterial processes, including metabolism. Natural riboswitches fused to a reporter gene can be exploited to detect changes in metabolism or in physiological signaling. We performed a high-throughput screen (HTS) using an SAH-riboswitch controlled β-galactosidase reporter gene in Escherichia coli to discover small molecules that inhibit SAH recycling. We demonstrate that the assay strategy using SAH riboswitches to detect the effects of SAH nucleosidase inhibitors can quickly identify compounds that penetrate the barriers of Gram-negative bacterial cells and perturb pathways involving SAH.
Collapse
Affiliation(s)
- Harini Sadeeshkumar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8103, USA
| | - Aparaajita Balaji
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8103, USA
| | | | | | - Karen G Anthony
- L2 Diagnostics, LLC, 300 George Street, New Haven, CT, 06511, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520-8103, USA.
| |
Collapse
|