1
|
Korolenko A, Skinner MK. Generational stability of epigenetic transgenerational inheritance facilitates adaptation and evolution. Epigenetics 2024; 19:2380929. [PMID: 39104183 PMCID: PMC11305060 DOI: 10.1080/15592294.2024.2380929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
The epigenome and epigenetic inheritance were not included in the original modern synthesis theory or more recent extended evolutionary synthesis of evolution. In a broad range of species, the environment has been shown to play a significant role in natural selection, which more recently has been shown to occur through epigenetic alterations and epigenetic inheritance. However, even with this evidence, the field of epigenetics and epigenetic inheritance has been left out of modern evolutionary synthesis, as well as other current evolutionary models. Epigenetic mechanisms can direct the regulation of genetic processes (e.g. gene expression) and also can be directly changed by the environment. In contrast, DNA sequence cannot be directly altered by the environment. The goal of this review is to present the evidence of how epigenetics and epigenetic inheritance can alter phenotypic variation in numerous species. This can occur at a significantly higher frequency than genetic change, so correlates with the frequency of evolutionary change. In addition, the concept and importance of generational stability of transgenerational inheritance is incorporated into evolutionary theory. For there to be a better understanding of evolutionary biology, we must incorporate all aspects of molecular (e.g. genetics and epigenetics) and biological sciences (e.g. environment and adaptation).
Collapse
Affiliation(s)
- Alexandra Korolenko
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
2
|
Pandkar MR, Shukla S. Epigenetics and alternative splicing in cancer: old enemies, new perspectives. Biochem J 2024; 481:1497-1518. [PMID: 39422322 DOI: 10.1042/bcj20240221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
In recent years, significant strides in both conceptual understanding and technological capabilities have bolstered our comprehension of the factors underpinning cancer initiation and progression. While substantial insights have unraveled the molecular mechanisms driving carcinogenesis, there has been an overshadowing of the critical contribution made by epigenetic pathways, which works in concert with genetics. Mounting evidence demonstrates cancer as a complex interplay between genetics and epigenetics. Notably, epigenetic elements play a pivotal role in governing alternative pre-mRNA splicing, a primary contributor to protein diversity. In this review, we have provided detailed insights into the bidirectional communication between epigenetic modifiers and alternative splicing, providing examples of specific genes and isoforms affected. Notably, succinct discussion on targeting epigenetic regulators and the potential of the emerging field of epigenome editing to modulate splicing patterns is also presented. In summary, this review offers valuable insights into the intricate interplay between epigenetics and alternative splicing in cancer, paving the way for novel approaches to understanding and targeting this critical process.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
3
|
McCaw BA, Leonard AM, Stevenson TJ, Lancaster LT. A role of epigenetic mechanisms in regulating female reproductive responses to temperature in a pest beetle. INSECT MOLECULAR BIOLOGY 2024; 33:516-533. [PMID: 38864655 DOI: 10.1111/imb.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Many species are threatened by climate change and must rapidly respond to survive in changing environments. Epigenetic modifications, such as DNA methylation, can facilitate plastic responses by regulating gene expression in response to environmental cues. Understanding epigenetic responses is therefore essential for predicting species' ability to rapidly adapt in the context of global environmental change. Here, we investigated the functional significance of different methylation-associated cellular processes on temperature-dependent life history in seed beetles, Callosobruchus maculatus Fabricius 1775 (Coleoptera: Bruchidae). We assessed changes under thermal stress in (1) DNA methyltransferase (Dnmt1 and Dnmt2) expression levels, (2) genome-wide methylation and (3) reproductive performance, with (2) and (3) following treatment with 3-aminobenzamide (3AB) and zebularine (Zeb) over two generations. These drugs are well-documented to alter DNA methylation across the tree of life. We found that Dnmt1 and Dnmt2 were expressed throughout the body in males and females, but were highly expressed in females compared with males and exhibited temperature dependence. However, whole-genome methylation did not significantly vary with temperature, and only marginally or inconclusively with drug treatment. Both 3AB and Zeb led to profound temperature-dependent shifts in female reproductive life history trade-off allocation, often increasing fitness compared with control beetles. Mismatch between magnitude of treatment effects on DNA methylation versus life history effects suggest potential of 3AB and Zeb to alter reproductive trade-offs via changes in DNA repair and recycling processes, rather than or in addition to (subtle) changes in DNA methylation. Together, our results suggest that epigenetic mechanisms relating to Dnmt expression, DNA repair and recycling pathways, and possibly DNA methylation, are strongly implicated in modulating insect life history trade-offs in response to temperature change.
Collapse
Affiliation(s)
- Beth A McCaw
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Aoife M Leonard
- Centre for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tyler J Stevenson
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
4
|
S Y, I I, D Z, E A, D A. The possible role of epigenetics in the etiology of hypospadias. J Pediatr Urol 2024; 20:877-883. [PMID: 39033034 DOI: 10.1016/j.jpurol.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Hypospadias is a common malformation of the genitourinary system and is thought with a complex interplay between genetics and environmental factors likely contributing to its pathogenesis. This study aimed to investigate the receptor gene expressions of sex hormones, FGFR2, FGF8 and BMP7 and DNA methylations in these genes as an epigenetic mark, which may play a role in the etiology of hypospadias. MATERIAL AND METHODS The samples from the foreskin of 20 patients with hypospadias and 20 healthy children who underwent circumcision operations were collected. AR, ESR1, FGF8, FGFR2 and BMP7 gene expressions and DNA methylation rates of these genes were investigated in tissues. RESULTS While ESR1, FGFR2 and BMP7 gene expressions were found to be significantly higher in the hypospadias group, AR gene expression was found to be lower. In the hypospadias group, DNA methylation rates were found to be significantly higher in the ESR1, FGF8 and FGFR2 genes, but lower in the AR gene (Table). DISCUSSION Recent clinical studies suggest that epigenetic modifications may play a significant role in genital development, potentially contributing to the etiology of hypospadias. Our recent study demonstrated significant differences in foreskin AR, ESR1, and FGFR2 gene expression between patients with hypospadias and controls. To address this, the present study investigated DNA methylation levels of these same genes in hypospadias patients, hypothesizing that epigenetic modifications might be responsible for the observed gene expression changes. We again observed abnormalities in AR, ESR1, and FGFR2 gene expression in hypospadias patients. Furthermore, we found that DNA methylation patterns associated with these genes differed significantly between hypospadias and control groups. CONCLUSIONS Our study demonstrates significant alterations in DNA methylation of sex hormone receptor genes (ESR1 and AR), FGFR2, and FGF8, which correlate with abnormal expression of these genes in hypospadias cases. These findings suggest a potential role for epigenetic modifications in hypospadias etiology.
Collapse
Affiliation(s)
- Yıldız S
- Department of Pediatric Surgery, Trakya University Faculty of Medicine, 22030, Edirne, Turkey.
| | - Inanç I
- Department of Pediatric Surgery, Trakya University Faculty of Medicine, 22030, Edirne, Turkey.
| | - Zhuri D
- Trakya University, Faculty of Medicine, Department of Medical Genetics, 22030, Edirne, Turkey.
| | - Atlı E
- Trakya University, Faculty of Medicine, Department of Medical Genetics, 22030, Edirne, Turkey.
| | - Avlan D
- Department of Pediatric Surgery, Division of Pediatric Urology, Trakya University Faculty of Medicine, 22030, Edirne, Turkey.
| |
Collapse
|
5
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Biology in the 21st century: Natural selection is cognitive selection. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:170-184. [PMID: 38740143 DOI: 10.1016/j.pbiomolbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Natural selection has a formal definition as the natural process that results in the survival and reproductive success of individuals or groups best adjusted to their environment, leading to the perpetuation of those genetic qualities best suited to that organism's environmental niche. Within conventional Neo-Darwinism, the largest source of those variations that can be selected is presumed to be secondary to random genetic mutations. As these arise, natural selection sustains adaptive traits in the context of a 'struggle for existence'. Consequently, in the 20th century, natural selection was generally portrayed as the primary evolutionary driver. The 21st century offers a comprehensive alternative to Neo-Darwinian dogma within Cognition-Based Evolution. The substantial differences between these respective evolutionary frameworks have been most recently articulated in a revision of Crick's Central Dogma, a former centerpiece of Neo-Darwinism. The argument is now advanced that the concept of natural selection should also be comprehensively reappraised. Cognitive selection is presented as a more precise term better suited to 21st century biology. Since cognition began with life's origin, natural selection represents cognitive selection.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
6
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
7
|
Yamamura K, Murai T. Revisiting Emil Kraepelin's eugenic arguments. HISTORY OF PSYCHIATRY 2024; 35:206-214. [PMID: 38379314 DOI: 10.1177/0957154x241230273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
It is widely recognized that Emil Kraepelin explicitly advocated for eugenic ideas in his academic works. Given the renewed interest in related concepts such as self-domestication and neo-Lamarckism in different contexts, this article revisits his eugenic arguments by scrutinizing a section of his seminal work, the 8th edition of his textbook published in 1909. Our analysis reveals that Kraepelin's arguments consisted of multiple theories and ideas prevalent at the time (i.e. self-domestication hypothesis, neo-Lamarckism, degeneration theory, social Darwinism, racism and ethnic nationalism), each of which presented individual fundamental claims. Nevertheless, Kraepelin amalgamated them into one combined narrative, which crystallized into an anti-humanistic psychiatry in the next generation. This paper cautions that a similar 'packaging of ideas' might be emerging now.
Collapse
|
8
|
Shahmohamadloo RS, Fryxell JM, Rudman SM. Transgenerational epigenetic inheritance increases trait variation but is not adaptive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589575. [PMID: 38659883 PMCID: PMC11042258 DOI: 10.1101/2024.04.15.589575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Understanding processes that can produce adaptive phenotypic shifts in response to rapid environmental change is critical to reducing biodiversity loss. The ubiquity of environmentally induced epigenetic marks has led to speculation that epigenetic inheritance could potentially enhance population persistence in response to environmental change. Yet, the magnitude and fitness consequences of epigenetic marks carried beyond maternal inheritance are largely unknown. Here, we tested how transgenerational epigenetic inheritance (TEI) shapes the phenotypic response of Daphnia clones to the environmental stressor Microcystis. We split individuals from each of eight genotypes into exposure and control treatments (F0 generation) and tracked the fitness of their descendants to the F3 generation. We found transgenerational epigenetic exposure to Microcystis led to reduced rates of survival and individual growth and no consistent effect on offspring production. Increase in trait variance in the F3 relative to F0 generations suggests potential for heritable bet hedging driven by TEI, which could impact population dynamics. Our findings are counter to the working hypothesis that TEI is a generally adaptive mechanism likely to prevent extinction for populations inhabiting rapidly changing environments.
Collapse
Affiliation(s)
- René S. Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - John M. Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Seth M. Rudman
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
9
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
10
|
Blumberg B, Cheng-An Chang R, Egusquiza R, Amato A, Li Z, Joloya E, Wheeler H, Nguyen A, Shioda K, Odajima J, Lawrence M, Shioda T. Heritable changes in chromatin contacts linked to transgenerational obesity. RESEARCH SQUARE 2023:rs.3.rs-3570919. [PMID: 38077066 PMCID: PMC10705594 DOI: 10.21203/rs.3.rs-3570919/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Burgeoning evidence demonstrates that effects of environmental exposures can be transmitted to subsequent generations through the germline without DNA mutations1,2. This phenomenon remains controversial because underlying mechanisms have not been identified. Therefore, understanding how effects of environmental exposures are transmitted to unexposed generations without DNA mutations is a fundamental unanswered question in biology. Here, we used an established murine model of male-specific transgenerational obesity to show that exposure to the obesogen tributyltin (TBT) elicited heritable changes in chromatin interactions (CIs) in primordial germ cells (PGCs). New CIs were formed within the Ide gene encoding Insulin Degrading Enzyme in the directly exposed PGCs, then stably maintained in PGCs of the subsequent (unexposed) two generations. Concomitantly, Ide mRNA expression was decreased in livers of male descendants from the exposed dams. These males were hyperinsulinemic and hyperglycemic, phenocopying Ide-deficient mice that are predisposed to adult-onset, diet-induced obesity. Creation of new CIs in PGCs, suppression of hepatic Ide mRNA, increased fat mass, hyperinsulinemia and hyperglycemia were male-specific. Our results provide a plausible molecular mechanism underlying transmission of the transgenerational predisposition to obesity caused by gestational exposure to an environmental obesogen. They also provide an entry point for future studies aimed at understanding how environmental exposures alter chromatin structure to influence physiology across multiple generations in mammals.
Collapse
|
11
|
Liu Z, Li Y, Zhang X. DNA methylation on C5-Cytosine and N6-Adenine in the Bursaphelenchus xylophilus genome. BMC Genomics 2023; 24:671. [PMID: 37936063 PMCID: PMC10631105 DOI: 10.1186/s12864-023-09783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND The pinewood nematode is the causal agent of the pine wilt disease, which causes severe ecological and economic losses in coniferous forests. The invasion of pine wood nematode has undergone various rapid adaptations to a wide range of temperatures and to new hosts and vector insects. DNA methylation may play crucial roles in the rapid adaptation of PWN during invasion. However, whether the PWN genome contins functional DNA modifications remains elusive. RESULTS Here, we detected the extensive presence of 5-methylcytosine (5mC) and N6-methyladenine (6mA) in the B. xylophilus genome, with low methylation levels at most positions. Cytosines were methylated in the CpG, CHG. and CHH sequence contexts, with the lowest methylation levels at CpG sites. The methylation levels of CpG and 6mA in gene regions showed opposite trends. The changes in the abundance of 5mC and 6mA showed the same trends in response to temperature change, but opposite trends during development. Sequence and phylogenetic analyses showed that the proteins BxDAMT and BxNMAD have typical characteristics of a methylase and demethylase, respectively, and are conserved among species. CONCLUSIONS These findings shed light on the epigenetic modifications present in the genome of PWN, and will improve our understanding of its invasiveness and evolution.
Collapse
Affiliation(s)
- Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, PR China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China.
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China
| |
Collapse
|
12
|
Hoffmann LB, McVicar EA, Harris RV, Collar-Fernández C, Clark MB, Hannan AJ, Pang TY. Increased paternal corticosterone exposure influences offspring behaviour and expression of urinary pheromones. BMC Biol 2023; 21:186. [PMID: 37667240 PMCID: PMC10478242 DOI: 10.1186/s12915-023-01678-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/07/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Studies have shown that paternal stress prior to conception can influence the innate behaviours of their offspring. The evolutionary impacts of such intergenerational effects are therefore of considerable interest. Our group previously showed in a model of daily stress that glucocorticoid treatment of adult male mouse breeders prior to conception leads to increased anxiety-related behaviours in male offspring. Here, we aimed to understand the transgenerational effects of paternal stress exposure on the social behaviour of progeny and its potential influence on reproductive success. RESULTS We assessed social parameters including social reward, male attractiveness and social dominance, in the offspring (F1) and grand-offspring (F2). We report that paternal corticosterone treatment was associated with increased display of subordination towards other male mice. Those mice were unexpectedly more attractive to female mice while expressing reduced levels of the key rodent pheromone Darcin, contrary to its conventional role in driving female attraction. We investigated the epigenetic regulation of major urinary protein (Mup) expression by performing the first Oxford Nanopore direct methylation of sperm DNA in a mouse model of stress, but found no differences in Mup genes that could be attributed to corticosterone-treatment. Furthermore, no overt differences of the prefrontal cortex transcriptome were found in F1 offspring, implying that peripheral mechanisms are likely contributing to the phenotypic differences. Interestingly, no phenotypic differences were observed in the F2 grand-offspring. CONCLUSIONS Overall, our findings highlight the potential of moderate paternal stress to affect intergenerational (mal)adaptive responses, informing future studies of adaptiveness in rodents, humans and other species.
Collapse
Affiliation(s)
- Lucas B Hoffmann
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia
| | - Evangeline A McVicar
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Rebekah V Harris
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Coralina Collar-Fernández
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia
| | - Michael B Clark
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia.
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Mandrioli M. From Environmental Epigenetics to the Inheritance of Acquired Traits: A Historian and Molecular Perspective on an Unnecessary Lamarckian Explanation. Biomolecules 2023; 13:1077. [PMID: 37509113 PMCID: PMC10377537 DOI: 10.3390/biom13071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In the last decade, it has been suggested that epigenetics may enhance the adaptive possibilities of animals and plants to novel environments and/or habitats and that such epigenetic changes may be inherited from parents to offspring, favoring their adaptation. As a consequence, several Authors called for a shift in the Darwinian paradigm, asking for a neo-Lamarckian view of evolution. Regardless of what will be discovered about the mechanisms of rapid adaptation to environmental changes, the description of epigenetic inheritance as a Lamarckian process is incorrect from a historical point of view and useless at a scientific level. At the same time, even if some examples support the presence of adaptation without the involvement of changes in DNA sequences, in the current scenario no revolution is actually occurring, so we are simply working on a stimulating research program that needs to be developed but that is, at present, completely Darwinian.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| |
Collapse
|
14
|
Rubio K, Hernández-Cruz EY, Rogel-Ayala DG, Sarvari P, Isidoro C, Barreto G, Pedraza-Chaverri J. Nutriepigenomics in Environmental-Associated Oxidative Stress. Antioxidants (Basel) 2023; 12:771. [PMID: 36979019 PMCID: PMC10045733 DOI: 10.3390/antiox12030771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Complex molecular mechanisms define our responses to environmental stimuli. Beyond the DNA sequence itself, epigenetic machinery orchestrates changes in gene expression induced by diet, physical activity, stress and pollution, among others. Importantly, nutrition has a strong impact on epigenetic players and, consequently, sustains a promising role in the regulation of cellular responses such as oxidative stress. As oxidative stress is a natural physiological process where the presence of reactive oxygen-derived species and nitrogen-derived species overcomes the uptake strategy of antioxidant defenses, it plays an essential role in epigenetic changes induced by environmental pollutants and culminates in signaling the disruption of redox control. In this review, we present an update on epigenetic mechanisms induced by environmental factors that lead to oxidative stress and potentially to pathogenesis and disease progression in humans. In addition, we introduce the microenvironment factors (physical contacts, nutrients, extracellular vesicle-mediated communication) that influence the epigenetic regulation of cellular responses. Understanding the mechanisms by which nutrients influence the epigenome, and thus global transcription, is crucial for future early diagnostic and therapeutic efforts in the field of environmental medicine.
Collapse
Affiliation(s)
- Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Estefani Y. Hernández-Cruz
- Postgraduate in Biological Sciences, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| | - Diana G. Rogel-Ayala
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale, Via Paolo Solaroli 17, 28100 Novara, Italy
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
15
|
Mistriotis A. Mathematical and physical considerations indicating that the cell genome is a read-write memory. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:50-56. [PMID: 36736433 DOI: 10.1016/j.pbiomolbio.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
The molecular mechanisms that govern biological evolution have not been fully elucidated so far. Recent studies indicate that regulatory proteins, acting as decision-making complex devices, can accelerate or retard the evolution of cells. Such biochemically controlled evolution may be considered as an optimization process of logical nature aimed at developing fitter species that can better survive in a specific environment. Therefore, we may assume that new genetic information can be stored in the cell memory (i.e., genome) by a sophisticated biomolecular process that resembles writing in computer memory. Such a hypothesis is theoretically supported by a recent work showing that logic is a necessary component of life, so living systems process information in the same way as computers. The current study summarizes existing evidence showing that cells can intentionally modify their stored data by biochemical processes resembling stochastic algorithms to avoid environmental stress and increase their chances of survival. Furthermore, the mathematical and physical considerations that render a read-write memory a necessary component of biological systems are presented.
Collapse
Affiliation(s)
- Antonis Mistriotis
- Agricultural University of Athens, Dept. of Natural Resources and Agricultural Engineering, Iera Odos 75, Athens, Greece.
| |
Collapse
|
16
|
Chen YH, Cohen ZP, Bueno EM, Christensen BM, Schoville SD. Rapid evolution of insecticide resistance in the Colorado potato beetle, Leptinotarsa decemlineata. CURRENT OPINION IN INSECT SCIENCE 2023; 55:101000. [PMID: 36521782 DOI: 10.1016/j.cois.2022.101000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Despite considerable research, efforts to manage insecticide resistance continue to fail. The Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), epitomizes this problem, as it has repeatedly and rapidly evolved resistance to>50 insecticides. The patterns of resistance evolution are intriguing, as they defy models where resistance evolves from rare mutations. Here, we synthesize recent research on insecticide resistance in CPB showing that polygenic resistance drawn from standing genetic diversity explains genomic patterns of insecticide resistance evolution. However, rapid gene regulatory evolution suggests that other mechanisms might also facilitate adaptive change. We explore the hypothesis that sublethal stress from insecticide exposure could alter heritable epigenetic modifications, and discuss the range of experimental approaches needed to fully understand insecticide resistance evolution in this super pest.
Collapse
Affiliation(s)
- Yolanda H Chen
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA.
| | - Zachary P Cohen
- USDA ARS, Insect Control and Cotton Disease Research, College Station, TX, USA
| | - Erika M Bueno
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| | - Blair M Christensen
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
17
|
Wong ML, Prabhu A. Cells as the first data scientists. J R Soc Interface 2023; 20:20220810. [PMID: 36751931 PMCID: PMC9905997 DOI: 10.1098/rsif.2022.0810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
The concepts that we generally associate with the field of data science are strikingly descriptive of the way that life, in general, processes information about its environment. The 'information life cycle', which enumerates the stages of information treatment in data science endeavours, also captures the steps of data collection and handling in biological systems. Similarly, the 'data-information-knowledge ecosystem', developed to illuminate the role of informatics in translating raw data into knowledge, can be a framework for understanding how information is constantly being transferred between life and the environment. By placing the principles of data science in a broader biological context, we see the activities of data scientists as the latest development in life's ongoing journey to better understand and predict its environment. Finally, we propose that informatics frameworks can be used to understand the similarities and differences between abiotic complex evolving systems and life.
Collapse
Affiliation(s)
- Michael L. Wong
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
- NHFP Sagan Fellow, NASA Hubble Fellowship Program, Space Telescope Science Institute, Baltimore, MD 21218, USA
| | - Anirudh Prabhu
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| |
Collapse
|
18
|
Kaefer M, Rink R, Misseri R, Winchester P, Proctor C, Ben Maamar M, Beck D, Nilsson E, Skinner MK. Role of epigenetics in the etiology of hypospadias through penile foreskin DNA methylation alterations. Sci Rep 2023; 13:555. [PMID: 36631595 PMCID: PMC9834259 DOI: 10.1038/s41598-023-27763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Abnormal penile foreskin development in hypospadias is the most frequent genital malformation in male children, which has increased dramatically in recent decades. A number of environmental factors have been shown to be associated with hypospadias development. The current study investigated the role of epigenetics in the etiology of hypospadias and compared mild (distal), moderate (mid shaft), and severe (proximal) hypospadias. Penile foreskin samples were collected from hypospadias and non-hypospadias individuals to identify alterations in DNA methylation associated with hypospadias. Dramatic numbers of differential DNA methylation regions (DMRs) were observed in the mild hypospadias, with reduced numbers in moderate and low numbers in severe hypospadias. Atresia (cell loss) of the principal foreskin fibroblast is suspected to be a component of the disease etiology. A genome-wide (> 95%) epigenetic analysis was used and the genomic features of the DMRs identified. The DMR associated genes identified a number of novel hypospadias associated genes and pathways, as well as genes and networks known to be involved in hypospadias etiology. Observations demonstrate altered DNA methylation sites in penile foreskin is a component of hypospadias etiology. In addition, a potential role of environmental epigenetics and epigenetic inheritance in hypospadias disease etiology is suggested.
Collapse
Affiliation(s)
- Martin Kaefer
- grid.257413.60000 0001 2287 3919Department of Pediatric Urology, Riley Hospital for Children, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Richard Rink
- grid.257413.60000 0001 2287 3919Department of Pediatric Urology, Riley Hospital for Children, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Rosalia Misseri
- grid.257413.60000 0001 2287 3919Department of Pediatric Urology, Riley Hospital for Children, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Paul Winchester
- grid.257413.60000 0001 2287 3919Department of Pediatrics, St. Franciscan Hospital, School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Cathy Proctor
- grid.257413.60000 0001 2287 3919Department of Pediatrics, St. Franciscan Hospital, School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Millissia Ben Maamar
- grid.30064.310000 0001 2157 6568Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Daniel Beck
- grid.30064.310000 0001 2157 6568Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Eric Nilsson
- grid.30064.310000 0001 2157 6568Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Michael K. Skinner
- grid.30064.310000 0001 2157 6568Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| |
Collapse
|
19
|
Mogilicherla K, Roy A. Epigenetic regulations as drivers of insecticide resistance and resilience to climate change in arthropod pests. Front Genet 2023; 13:1044980. [PMID: 36685945 PMCID: PMC9853188 DOI: 10.3389/fgene.2022.1044980] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Arthropod pests are remarkably capable of rapidly adapting to novel forms of environmental stress, including insecticides and climate change. The dynamic interplay between epigenetics and genetics explains the largely unexplored reality underlying rapid climatic adaptation and the development of insecticide resistance in insects. Epigenetic regulation modulates gene expression by methylating DNA and acetylating histones that play an essential role in governing insecticide resistance and adaptation to climate change. This review summarises and discusses the significance of recent advances in epigenetic regulation that facilitate phenotypic plasticity in insects and their symbiotic microbes to cope with selection pressure implied by extensive insecticide applications and climate change. We also discuss how epigenetic changes are passed on to multiple generations through sexual recombination, which remains enigmatic. Finally, we explain how these epigenetic signatures can be utilized to manage insecticide resistance and pest resilience to climate change in Anthropocene.
Collapse
|
20
|
Jeremias G, Veloso T, Gonçalves FJM, Van Nieuwerburgh F, Pereira JL, Asselman J. Multigenerational DNA methylation responses to copper exposure in Daphnia: Potential targets for epigenetic biomarkers? CHEMOSPHERE 2022; 308:136231. [PMID: 36055596 DOI: 10.1016/j.chemosphere.2022.136231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic mechanisms are moving to the forefront of environmental sciences, as environmentally induced epigenetic changes shape biological responses to chemical contamination. This work focused on Daphnia as a representative of potentially threatened freshwater biota, aiming to gain an insight into the involvement of epigenetic mechanisms in their response and eventual adaptation to metal contamination. Copper-induced DNA methylation changes, their potential transgenerational inheritance, and life-history traits were assessed. Organisms with different histories of past exposure to copper were exposed to toxic levels of the element for one generation (F0) and then monitored for three subsequent unexposed generations (F1, F2, and F3). Overall, methylation changes targeted important genes for counteracting the effects of metals and oxidative stress, including dynein light chain, ribosomal kinase and nuclear fragile X mental retardation-interacting protein. Also, contrasting overall and gene-specific methylation responses were observed in organisms differing in their history of exposure to copper, with different transgenerational methylation responses being also identified among the two groups, without apparent life-history costs. Taken together, these results demonstrate the capacity of copper to promote epigenetic transgenerational inheritance in a manner related explicitly to history of exposure, thereby supporting the development and incorporation of epigenetic biomarkers in risk assessment frameworks.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Telma Veloso
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal; CICECO - Aveiro Institute of Materials & Department of Chemistry, University of Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | | | - Joana Luísa Pereira
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| |
Collapse
|
21
|
Brander SM, White JW, DeCourten BM, Major K, Hutton SJ, Connon RE, Mehinto A. Accounting for transgenerational effects of toxicant exposure in population models alters the predicted long-term population status. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac023. [PMID: 36518876 PMCID: PMC9730329 DOI: 10.1093/eep/dvac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/12/2022] [Accepted: 11/01/2022] [Indexed: 06/04/2023]
Abstract
Acute environmental stressors such as short-term exposure to pollutants can have lasting effects on organisms, potentially impacting future generations. Parental exposure to toxicants can result in changes to the epigenome (e.g., DNA methylation) that are passed down to subsequent, unexposed generations. However, it is difficult to gauge the cumulative population-scale impacts of epigenetic effects from laboratory experiments alone. Here, we developed a size- and age-structured delay-coordinate population model to evaluate the long-term consequences of epigenetic modifications on population sustainability. The model emulated changes in growth, mortality, and fecundity in the F0, F1, and F2 generations observed in experiments in which larval Menidia beryllina were exposed to environmentally relevant concentrations of bifenthrin (Bif), ethinylestradiol (EE2), levonorgestrel (LV), or trenbolone (TB) in the parent generation (F0) and reared in clean water up to the F2 generation. Our analysis suggests potentially dramatic population-level effects of repeated, chronic exposures of early-life stage fish that are not captured by models not accounting for those effects. Simulated exposures led to substantial declines in population abundance (LV and Bif) or near-extinction (EE2 and TB) with the exact trajectory and timeline of population decline dependent on the combination of F0, F1, and F2 effects produced by each compound. Even acute one-time exposures of each compound led to declines and recovery over multiple years due to lagged epigenetic effects. These results demonstrate the potential for environmentally relevant concentrations of commonly used compounds to impact the population dynamics and sustainability of an ecologically relevant species and model organism.
Collapse
Affiliation(s)
- Susanne M Brander
- *Correspondence address. Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, 2030 SE Marine Science Drive, Newport, OR 97365, USA. Tel: +541-737-5413; E-mail:
| | - J Wilson White
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA
| | | | - Kaley Major
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Sara J Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95656, USA
| | - Alvine Mehinto
- Toxicology Department, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| |
Collapse
|
22
|
Moreno DF, Acar M. Phenotypic selection during laboratory evolution of yeast populations leads to a genome-wide sustainable chromatin compaction shift. Front Microbiol 2022; 13:974055. [PMID: 36312917 PMCID: PMC9615041 DOI: 10.3389/fmicb.2022.974055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
In a previous study, we have shown how microbial evolution has resulted in a persistent reduction in expression after repeatedly selecting for the lowest PGAL1-YFP-expressing cells. Applying the ATAC-seq assay on samples collected from this 28-day evolution experiment, here we show how genome-wide chromatin compaction changes during evolution under selection pressure. We found that the chromatin compaction was altered not only on GAL network genes directly impacted by the selection pressure, showing an example of selection-induced non-genetic memory, but also at the whole-genome level. The GAL network genes experienced chromatin compaction accompanying the reduction in PGAL1-YFP reporter expression. Strikingly, the fraction of global genes with differentially compacted chromatin states accounted for about a quarter of the total genome. Moreover, some of the ATAC-seq peaks followed well-defined temporal dynamics. Comparing peak intensity changes on consecutive days, we found most of the differential compaction to occur between days 0 and 3 when the selection pressure was first applied, and between days 7 and 10 when the pressure was lifted. Among the gene sets enriched for the differential compaction events, some had increased chromatin availability once selection pressure was applied and decreased availability after the pressure was lifted (or vice versa). These results intriguingly show that, despite the lack of targeted selection, transcriptional availability of a large fraction of the genome changes in a very diverse manner during evolution, and these changes can occur in a relatively short number of generations.
Collapse
Affiliation(s)
- David F. Moreno
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
- Systems Biology Institute, Yale University, West Haven, CT, United States
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
- Systems Biology Institute, Yale University, West Haven, CT, United States
- Department of Medical Biology, School of Medicine, Koc University, Istanbul, Turkey
- *Correspondence: Murat Acar,
| |
Collapse
|
23
|
Deans C, Hutchison WD. Hormetic and transgenerational effects in spotted-wing Drosophila (Diptera: Drosophilidae) in response to three commonly-used insecticides. PLoS One 2022; 17:e0271417. [PMID: 35862486 PMCID: PMC9302851 DOI: 10.1371/journal.pone.0271417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Although insecticide formulations and spray rates are optimized to achieve lethal exposure, there are many factors in agricultural settings that can reduce the effective exposure of insect pests. These include weather patterns, timing of application, chemical degradation/volatilization, plant structural complexity, and resistant populations. While sub-lethal exposure to insecticides can still have negative impacts on pest populations, they can also lead to stimulatory, or hormetic, responses that can increase the fitness of surviving insects. Sub-lethal concentrations may also produce increased tolerance in the offspring of surviving adults through transgenerational effects. Sub-lethal effects are pertinent for the invasive fruit pest, spotted-wing Drosophila, Drosophila suzukii (Matsumura), because its small size, diurnal movement patterns, and utilization of hosts with complex plant structures, such as caneberries and blueberries, make effective insecticide applications tenuous. In this study, we measured spotted-wing Drosophila survivorship, reproductive performance, and offspring tolerance in flies exposed to sub-lethal concentrations of three commonly-used insecticides (zeta-cypermethrin, spinetoram, and pyrethrin). We found some evidence for hormesis, with survival effects being sex- and concentration-dependent for all insecticides. Males were far more susceptible to insecticides than females, which in some cases exhibited higher eclosion success and reproductive rates when exposed to sub-lethal doses. We did not observe significant transgenerational effects at sub-lethal concentrations, despite trends of increased offspring viability for zeta-cypermethrin and spinetoram. More research, however, is needed to fully understand the role that sub-lethal effects may play in pest population dynamics, insecticide efficacy, and the development of genetic resistance.
Collapse
Affiliation(s)
- Carrie Deans
- Department of Entomology, University of Minnesota, St. Paul, MN, United States of America
| | - William D. Hutchison
- Department of Entomology, University of Minnesota, St. Paul, MN, United States of America
| |
Collapse
|
24
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
25
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Abstract
Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
27
|
Li L, Li S, Qin S, Gao Y, Wang C, Du J, Zhang N, Chen Y, Han Z, Yu Y, Wang F, Zhao Y. Diet, Sports, and Psychological Stress as Modulators of Breast Cancer Risk: Focus on OPRM1 Methylation. Front Nutr 2022; 8:747964. [PMID: 35024367 PMCID: PMC8744450 DOI: 10.3389/fnut.2021.747964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023] Open
Abstract
Background: DNA methylation is influenced by environmental factors and contributes to adverse modification of cancer risk and clinicopathological features. Methods: A case-control study (402 newly diagnosed cases, 470 controls) was conducted to evaluate the effect of environmental factors and OPRM1 methylation in peripheral blood leukocyte (PBL) DNA on the risk of breast cancer. A case-only study (373 cases) was designed to evaluate the effects of environmental factors on OPRM1 methylation in tumor tissue and the relationship of methylation with clinicopathological features. Results: We found a significant association between hypermethylation of OPRM1 and the risk of breast cancer (OR = 1.914, 95%CI = 1.357–2.777). OPRM1 hypermethylation in PBL DNA combined with low intake of vegetable, garlic, soybean, poultry, and milk; high pork intake; less regular sports and a high psychological stress index significantly increased the risk of breast cancer. Soybean intake (OR = 0.425, 95%CI: 0.231–0.781) and regular sports (OR = 0.624, 95%CI: 0.399–0.976) were associated with OPRM1 hypermethylation in tumor DNA. OPRM1 hypermethylation in tumor tissue was correlated with estrogen receptor (ER) (OR = 1.945, 95%CI: 1.262–2.996) and progesterone receptor (PR) (OR = 1.611, 95%CI: 1.069–2.427) negative status; in addition, OPRM1 hypermethylation in PBL DNA was associated with human epidermal growth factor receptor 2 (HER-2) negative status (OR = 3.673, 95%CI: 1.411–9.564). Conclusion: A healthy diet, psychosocial adaptability, and regular sports are very beneficial for breast cancer prevention and progress, especially for OPRM1 hypermethylation carriers. Personalized treatment considering the correlation between OPRM1 hypermethylation and ER and PR status may provide a novel benefit for breast cancer patients.
Collapse
Affiliation(s)
- Liangliang Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Shuo Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Shidong Qin
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Gao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Chao Wang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinghang Du
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Nannan Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yanbo Chen
- The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhen Han
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yue Yu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Ladoukakis ED, Michelioudakis D, Anagnostopoulou E. Toward an evolutionary framework for language variation and change. Bioessays 2022; 44:e2100216. [PMID: 34985776 DOI: 10.1002/bies.202100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022]
Abstract
In this paper, we identify the parallels and the differences between language and life as evolvable systems in pursuit of a framework that will investigate language change from the perspective of a general theory of evolution. Despite the consensus that languages change similarly to species, as reflected in the construction of language trees, the field has mainly applied biological techniques to specific problems of historical linguistics and has not systematically engaged in disentangling the basic concepts (population, reproductive unit, inheritance, etc.) and the core processes underlying evolutionary theory, namely mutation, selection, drift, and migration, as applied to language. We develop such a proposal. Treating language as an evolvable system places previous studies in a novel perspective, as it offers an elegant unifying framework that can accommodate current knowledge, utilize the rich theoretical framework of evolutionary biology, and synthesize many independent strands of inquiry, initiating a whole new research program.
Collapse
Affiliation(s)
| | - Dimitris Michelioudakis
- Department of Linguistics, School of Philology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Anagnostopoulou
- Department of Philology, Division of Linguistics, University of Crete, Rethymnon, Greece
| |
Collapse
|
29
|
Mohajer N, Joloya EM, Seo J, Shioda T, Blumberg B. Epigenetic Transgenerational Inheritance of the Effects of Obesogen Exposure. Front Endocrinol (Lausanne) 2021; 12:787580. [PMID: 34975759 PMCID: PMC8716683 DOI: 10.3389/fendo.2021.787580] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and metabolic disorders have become a worldwide pandemic affecting millions of people. Although obesity is a multifaceted disease, there is growing evidence supporting the obesogen hypothesis, which proposes that exposure to a subset of endocrine disrupting chemicals (EDCs), known as obesogens, promotes obesity. While these effects can be observed in vitro using cell models, in vivo and human epidemiological studies have strengthened this hypothesis. Evidence from animal models showed that the effects of obesogen exposure can be inherited transgenerationally through at least the F4 generation. Transgenerational effects of EDC exposure predispose future generations to undesirable phenotypic traits and diseases, including obesity and related metabolic disorders. The exact mechanisms through which phenotypic traits are passed from an exposed organism to their offspring, without altering the primary DNA sequence, remain largely unknown. Recent research has provided strong evidence suggesting that a variety of epigenetic mechanisms may underlie transgenerational inheritance. These include differential DNA methylation, histone methylation, histone retention, the expression and/or deposition of non-coding RNAs and large-scale alterations in chromatin structure and organization. This review highlights the most recent advances in the field of epigenetics with respect to the transgenerational effects of environmental obesogens. We highlight throughout the paper the strengths and weaknesses of the evidence for proposed mechanisms underlying transgenerational inheritance and why none of these is sufficient to fully explain the phenomenon. We propose that changes in higher order chromatin organization and structure may be a plausible explanation for how some disease predispositions are heritable through multiple generations, including those that were not exposed. A solid understanding of these possible mechanisms is essential to fully understanding how environmental exposures can lead to inherited susceptibility to diseases such as obesity.
Collapse
Affiliation(s)
- Nicole Mohajer
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States
| | - Erika M. Joloya
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Jeongbin Seo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Toshi Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, United States
| | - Bruce Blumberg
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| |
Collapse
|
30
|
Duffy KA, Getz KD, Hathaway ER, Byrne ME, MacFarland SP, Kalish JM. Characteristics Associated with Tumor Development in Individuals Diagnosed with Beckwith-Wiedemann Spectrum: Novel Tumor-(epi)Genotype-Phenotype Associations in the BWSp Population. Genes (Basel) 2021; 12:genes12111839. [PMID: 34828445 PMCID: PMC8621885 DOI: 10.3390/genes12111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/14/2023] Open
Abstract
Beckwith–Wiedemann Spectrum (BWSp) is the most common epigenetic childhood cancer predisposition disorder. BWSp is caused by (epi)genetic changes affecting the BWS critical region on chromosome 11p15. Clinically, BWSp represents complex molecular and phenotypic heterogeneity resulting in a range of presentations from Classic BWS to milder features. The previously reported tumor risk based on Classic BWS cohorts is 8–10% and routine tumor screening has been recommended. This work investigated the tumor risk and correlation with phenotype within a cohort of patients from Classic BWS to BWSp using a mixed-methods approach to explore phenotype and epigenotype profiles associated with tumor development through statistical analyses with post-hoc retrospective case series review. We demonstrated that tumor risk across BWSp differs from Classic BWS and that certain phenotypic features are associated with specific epigenetic causes; nephromegaly and/or hyperinsulinism appear associated with cancer in some patients. We also demonstrated that prenatal and perinatal factors that are not currently part of the BWSp classification may factor into tumor risk. Additionally, blood testing results are not necessarily synonymous with tissue testing results. Together, it appears that the current understanding from Classic BWS of (epi)genetics and phenotype correlations with tumors is not represented in the BWSp. Further study is needed in this complex population.
Collapse
Affiliation(s)
- Kelly A. Duffy
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.A.D.); (E.R.H.); (M.E.B.)
| | - Kelly D. Getz
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, Philadelphia, PA 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Evan R. Hathaway
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.A.D.); (E.R.H.); (M.E.B.)
| | - Mallory E. Byrne
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.A.D.); (E.R.H.); (M.E.B.)
| | - Suzanne P. MacFarland
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA;
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer M. Kalish
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.A.D.); (E.R.H.); (M.E.B.)
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA;
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-215-590-1278
| |
Collapse
|
31
|
Brabazon DC, Callanan JJ, Nolan CM. Imprinting of canine IGF2 and H19. Anim Genet 2021; 53:108-118. [PMID: 34676575 DOI: 10.1111/age.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
Genomic imprinting occurs in therian mammals and is a phenomenon whereby the two alleles of a gene are differentially expressed, based on the sex of the parent from whom the alleles were inherited. The allelic differences in expression are the consequence of different epigenetic modifications that are established in the sperm or oocyte during gametogenesis and transmitted at fertilization to offspring. A small minority of genes is regulated in this way but they have important biological functions, and aberrant regulation of imprinted genes contributes to disease aetiology in humans and other animals. The factors driving the evolution of imprinted genes are also of considerable interest, as these genes appear to forego the benefits of diploidy. To broaden the phylogenetic analysis of genomic imprinting, we began a study of imprinted genes in the domestic dog, Canis familiaris. In this report, we show that canine IGF2 and H19 are imprinted, with parent-of origin-dependent monoallelic expression patterns in neonatal umbilical cord. We identify a putative imprint control region associated with the genes, and provide evidence for differential methylation of this region in a somatic tissue (umbilical cord) and for its hypermethylation in the male germline. Canis familiaris is fast becoming a highly informative system for elucidating disease processes and evolution, and the study of imprinted genes in this species may help in understanding how these genes contribute to the generation of morphological and behavioral diversity.
Collapse
Affiliation(s)
- D C Brabazon
- University College Dublin School of Biology and Environmental Science, Belfield, Dublin 4, Ireland
| | - J J Callanan
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland
| | - C M Nolan
- University College Dublin School of Biology and Environmental Science, Belfield, Dublin 4, Ireland
| |
Collapse
|
32
|
Nathanielsz PW. General review of contents by Peter Nathanielsz. Eur J Clin Invest 2021; 51:e13647. [PMID: 34218438 DOI: 10.1111/eci.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
|
33
|
Catania F, Ujvari B, Roche B, Capp JP, Thomas F. Bridging Tumorigenesis and Therapy Resistance With a Non-Darwinian and Non-Lamarckian Mechanism of Adaptive Evolution. Front Oncol 2021; 11:732081. [PMID: 34568068 PMCID: PMC8462274 DOI: 10.3389/fonc.2021.732081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Although neo-Darwinian (and less often Lamarckian) dynamics are regularly invoked to interpret cancer's multifarious molecular profiles, they shine little light on how tumorigenesis unfolds and often fail to fully capture the frequency and breadth of resistance mechanisms. This uncertainty frames one of the most problematic gaps between science and practice in modern times. Here, we offer a theory of adaptive cancer evolution, which builds on a molecular mechanism that lies outside neo-Darwinian and Lamarckian schemes. This mechanism coherently integrates non-genetic and genetic changes, ecological and evolutionary time scales, and shifts the spotlight away from positive selection towards purifying selection, genetic drift, and the creative-disruptive power of environmental change. The surprisingly simple use-it or lose-it rationale of the proposed theory can help predict molecular dynamics during tumorigenesis. It also provides simple rules of thumb that should help improve therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Deakin, VIC, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
34
|
Ramo-Fernández L, Gumpp AM, Boeck C, Krause S, Bach AM, Waller C, Kolassa IT, Karabatsiakis A. Associations between childhood maltreatment and DNA methylation of the oxytocin receptor gene in immune cells of mother-newborn dyads. Transl Psychiatry 2021; 11:449. [PMID: 34471100 PMCID: PMC8410844 DOI: 10.1038/s41398-021-01546-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The neuropeptide oxytocin (OXT) and its receptor (OXTR) modulate interpersonal relationships, particularly mother-child interactions. DNA methylation (DNAm) changes of the OXTR gene were observed in individuals who experienced Childhood Maltreatment (CM). A modulatory role of single nucleotide polymorphisms (SNP) within OXTR in association with CM on the regulation of OXTR was also postulated. Whether these CM-induced epigenetic alterations are biologically inherited by the offspring remains unknown. We thus investigated possible intergenerational effects of maternal CM exposure on DNAm and OXTR gene expression, additionally accounting for the possible influence of three SNP: rs53576 and rs2254298 (OXTR gene), and rs2740210 (OXT gene). We used the Childhood Trauma Questionnaire to classify mothers into individuals with (CM+) or without CM (CM-). Maternal peripheral immune cells were isolated from venous blood (N = 117) and fetal immune cells from the umbilical cord (N = 113) after parturition. DNA methylation was assessed using MassARRAY. Taqman assays were performed for genotyping and gene expression analyses. Among mothers, CM was not associated with OXTR mean methylation or gene expression. However, four CpG sites showed different methylation levels in CM- compared to CM+. In mothers, the OXTR rs53576 and OXT rs2740210 allelic variations interacted with CM load on the OXTR mean methylation. Maternal and newborns' mean methylation of OXTR were positively associated within CM- dyads, but not in CM+ dyads. We show gene×environment interactions on the epigenetic regulation of the oxytocinergic signaling and show the intergenerational comparability of the OXTR DNAm might be altered in infants of CM+ mothers.
Collapse
Affiliation(s)
- Laura Ramo-Fernández
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| | - Anja M. Gumpp
- grid.6582.90000 0004 1936 9748Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Christina Boeck
- grid.6582.90000 0004 1936 9748Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Sabrina Krause
- grid.410712.10000 0004 0473 882XPsychosomatic Medicine and Psychotherapy, University Hospital Ulm, Ulm, Germany
| | - Alexandra M. Bach
- grid.6582.90000 0004 1936 9748Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Christiane Waller
- grid.410712.10000 0004 0473 882XPsychosomatic Medicine and Psychotherapy, University Hospital Ulm, Ulm, Germany ,Department of Psychosomatics and Psychotherapeutic Medicine, Paracelsus Medical Private University of Nueremberg, Nueremberg, Germany
| | - Iris-Tatjana Kolassa
- grid.6582.90000 0004 1936 9748Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexander Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany. .,Department of Clinical Psychology II, Institute of Psychology, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
35
|
Bland JS. A Discovery that Reframes the Whole of Global Healthcare in the 21st Century: The Importance of the Imprintome. Integr Med (Encinitas) 2021; 20:18-22. [PMID: 34602872 PMCID: PMC8483255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Within the genome exists a specific subset of genes whose expression is controlled by epigenetic marks. These tags can be modified by lifestyle factors including diet, behavior, environment and social interactions. Differences in genetic expression, despite identical genes, is explained in part through metastable epialleles-alleles that, while genetically indistinguishable, are variably expressed as a function of epigenetic modification. As a group, these metastable epialleles have been given a unique descriptive name: the imprintome. This breakthrough in understanding genetic expression has led to a wider recognition that our genes are fundamentally controlled at two levels. One is the hardware of the genetic code, which is modified slowly by natural selection through mutational changes in the genome over centuries of time. The other is the software that controls the expression of our genetic code, converting nucleotide sequences into phenotype in response to the imprinting of our epigenome. Acting as a rapid translator for real time changes, the imprintome responds to environmental and lifestyle inputs by genomic methylation and histone modifications that affect promoter accessibility and transcription factor activity. In application, this understanding of the plasticity of the imprintome necessitates a rethinking of both health and disease states. It's a concept that cuts across all forms of healthcare: physical, metabolic, and cognitive-behavioral interventions. But at the same time, it is an aggregating concept-one that brings disciplines together to collaborate on the personalization of health and the delivery of truly individualized care. This article reviews the development of the concept of the imprintome, as well as clinical studies supporting its importance as a potential driver of change in global health care.
Collapse
|
36
|
Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide-rich springs. Proc Natl Acad Sci U S A 2021; 118:2014929118. [PMID: 34185679 PMCID: PMC8255783 DOI: 10.1073/pnas.2014929118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Environmental factors can promote phenotypic variation through alterations in the epigenome and facilitate adaptation of an organism to the environment. Although hydrogen sulfide is toxic to most organisms, the fish Poecilia mexicana has adapted to survive in environments with high levels that exceed toxicity thresholds by orders of magnitude. Epigenetic changes in response to this environmental stressor were examined by assessing DNA methylation alterations in red blood cells, which are nucleated in fish. Males and females were sampled from sulfidic and nonsulfidic natural environments; individuals were also propagated for two generations in a nonsulfidic laboratory environment. We compared epimutations between the sexes as well as field and laboratory populations. For both the wild-caught (F0) and the laboratory-reared (F2) fish, comparing the sulfidic and nonsulfidic populations revealed evidence for significant differential DNA methylation regions (DMRs). More importantly, there was over 80% overlap in DMRs across generations, suggesting that the DMRs have stable generational inheritance in the absence of the sulfidic environment. This is an example of epigenetic generational stability after the removal of an environmental stressor. The DMR-associated genes were related to sulfur toxicity and metabolic processes. These findings suggest that adaptation of P. mexicana to sulfidic environments in southern Mexico may, in part, be promoted through epigenetic DNA methylation alterations that become stable and are inherited by subsequent generations independent of the environment.
Collapse
|
37
|
Epimutations and mutations, nurturing phenotypic diversity. Genetica 2021; 150:171-181. [PMID: 34114171 DOI: 10.1007/s10709-021-00124-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/26/2021] [Indexed: 12/22/2022]
Abstract
Epimutations and mutations are two dissimilar mechanisms that have contributed to the phenotypic diversities in organisms. Though dissimilar, many previous studies have revealed that the consequences of epimutations and mutations are not mutually exclusive. DNA rich in epigenetic modifications can be prone to mutations and vice versa. In order to get a better insight into the molecular evolution in organisms, it is important to consider the information of both genetic and epigenetic changes in their genomes. Understanding the similarities and differences between the consequences of epimutations and mutations is required for a better interpretation of phenotypic diversities in organisms. Factors contributing to epigenetic changes such as paramutations and mutation hotspots and, the correlation of the interdependence of mutations and epigenetic changes in DNA are important aspects that need to be considered for molecular evolutionary studies. Thus, this review explains what epimutations are, their causes, how they are similar/different from mutations, and the influence of epigenetic changes and mutations on each other, further emphasizing how molecular evolution involving both mutations and epimutations can lead to speciation. Considering this approach will aid in reorganizing taxonomic classifications, importantly, solving disparities in species identification.
Collapse
|
38
|
Loison L. Epigenetic inheritance and evolution: a historian's perspective. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200120. [PMID: 33866812 PMCID: PMC8059632 DOI: 10.1098/rstb.2020.0120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this article is to put the growing interest in epigenetics in the field of evolutionary theory into a historical context. First, I assess the view that epigenetic inheritance could be seen as vindicating a revival of (neo)Lamarckism. Drawing on Jablonka's and Lamb's considerable output, I identify several differences between modern epigenetics and what Lamarckism was in the history of science. Even if Lamarckism is not back, epigenetic inheritance might be appealing for evolutionary biologists because it could potentiate two neglected mechanisms: the Baldwin effect and genetic assimilation. Second, I go back to the first ideas about the Baldwin effect developed in the late nineteenth century to show that the efficiency of this mechanism was already linked with a form of non-genetic inheritance. The opposition to all forms of non-genetic inheritance that prevailed at the time of the rise of the Modern Synthesis helps to explain why the Baldwin effect was understood as an insignificant mechanism during the second half of the twentieth century. Based on this historical reconstruction, in §4, I examine what modern epigenetics can bring to the picture and under what conditions epigenetic inheritance might be seen as strengthening the causal relationship between adaptability and adaptation. Throughout I support the view that the Baldwin effect and genetic assimilation, even if they are quite close, should not be conflated, and that drawing a line between these concepts is helpful in order to better understand where epigenetic inheritance might endorse a new causal role. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Laurent Loison
- Institut d'Histoire et de Philsophie des Sciences et des Techniques (CNRS, Université Paris 1 Panthéon-Sorbonne), 13 rue du Four, 75006 Paris, France
| |
Collapse
|
39
|
Liu L, Li Z, Luo X, Zhang X, Chou SH, Wang J, He J. Which Is Stronger? A Continuing Battle Between Cry Toxins and Insects. Front Microbiol 2021; 12:665101. [PMID: 34140940 PMCID: PMC8203666 DOI: 10.3389/fmicb.2021.665101] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
In this article, we review the latest works on the insecticidal mechanisms of Bacillus thuringiensis Cry toxins and the resistance mechanisms of insects against Cry toxins. Currently, there are two models of insecticidal mechanisms for Cry toxins, namely, the sequential binding model and the signaling pathway model. In the sequential binding model, Cry toxins are activated to bind to their cognate receptors in the mid-intestinal epithelial cell membrane, such as the glycophosphatidylinositol (GPI)-anchored aminopeptidases-N (APNs), alkaline phosphatases (ALPs), cadherins, and ABC transporters, to form pores that elicit cell lysis, while in the signaling pathway model, the activated Cry toxins first bind to the cadherin receptor, triggering an extensive cell signaling cascade to induce cell apoptosis. However, these two models cannot seem to fully describe the complexity of the insecticidal process of Cry toxins, and new models are required. Regarding the resistance mechanism against Cry toxins, the main method insects employed is to reduce the effective binding of Cry toxins to their cognate cell membrane receptors by gene mutations, or to reduce the expression levels of the corresponding receptors by trans-regulation. Moreover, the epigenetic mechanisms, host intestinal microbiota, and detoxification enzymes also play significant roles in the insects' resistance against Cry toxins. Today, high-throughput sequencing technologies like transcriptomics, proteomics, and metagenomics are powerful weapons for studying the insecticidal mechanisms of Cry toxins and the resistance mechanisms of insects. We believe that this review shall shed some light on the interactions between Cry toxins and insects, which can further facilitate the development and utilization of Cry toxins.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xing Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jieping Wang
- Agricultural Bioresources Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
40
|
Behavioral variation according to feeding organ diversification in glossiphoniid leeches (Phylum: Annelida). Sci Rep 2021; 11:10940. [PMID: 34035418 PMCID: PMC8149456 DOI: 10.1038/s41598-021-90421-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/06/2021] [Indexed: 11/08/2022] Open
Abstract
Adaptive radiation is a phenomenon in which various organs are diversified morphologically or functionally as animals adapt to environmental inputs. Leeches exhibit a variety of ingestion behaviors and morphologically diverse ingestion organs. In this study, we investigated the correlation between behavioral pattern and feeding organ structure of leech species. Among them, we found that Alboglossiphonia sp. swallows prey whole using its proboscis, whereas other leeches exhibit typical fluid-sucking behavior. To address whether the different feeding behaviors are intrinsic, we investigated the behavioral patterns and muscle arrangements in the earlier developmental stage of glossiphoniid leeches. Juvenile Glossiphoniidae including the Alboglossiphonia sp. exhibit the fluid ingestion behavior and have the proboscis with the compartmentalized muscle layers. This study provides the characteristics of leeches with specific ingestion behaviors, and a comparison of structural differences that serves as the first evidence of the proboscis diversification.
Collapse
|
41
|
Vogt G. Epigenetic variation in animal populations: Sources, extent, phenotypic implications, and ecological and evolutionary relevance. J Biosci 2021. [DOI: 10.1007/s12038-021-00138-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Hossin MZ, Falkstedt D, Allebeck P, Mishra G, Koupil I. Early life programming of adult ischemic heart disease within and across generations: The role of the socioeconomic context. Soc Sci Med 2021; 275:113811. [PMID: 33713928 DOI: 10.1016/j.socscimed.2021.113811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/22/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The developmental origins of ischemic heart disease (IHD) have been widely documented but little is known about their persistence across more than one generation. This study aimed to investigate whether the effects of early life disadvantages on adult IHD have changed between generations and are mediated by adult socioeconomic circumstances, and further explore the transgenerational effects of grandparental and parental exposures to disadvantaged circumstances on adult offspring's IHD. METHODS We used register-based data from the Uppsala Multigenerational Study, Sweden. The study populations were the parents born 1915-1929 and their offspring born 1932-1972 with available obstetric data. The offspring were further linked to grandparents who had their socioeconomic and demographic data recorded. The outcome was incident IHD assessed at ages 32-75 during a follow-up from January 1, 1964 till December 31, 2008. The exposures included birthweight standardized-for-gestational age, ponderal index, gestational length, and parental socioeconomic position (SEP). Education and income were analyzed as mediators. Potential transgenerational associations were explored by linking offspring IHD to parents' standardized birthweight and gestational length, grandparental SEP, and to grandmothers' age, parity, and marital status at parental birth. All associations were examined in Cox proportional hazard regression models. RESULTS Lower standardized birthweight and lower parental SEP were found to be associated with higher IHD rates in both generations, with no evidence of effect modification by generation. Education and income did not mediate the association between standardized birthweight and IHD. Disadvantaged grandparental SEP, younger and older childbearing ages of grandmothers, and paternal preterm birth affected offspring's IHD independent of parental education, income, or IHD history. CONCLUSIONS The findings point to similar magnitudes of IHD inequalities by early life disadvantages across two historical periods and the existence of transgenerational effects on IHD. Epigenetic dysregulation involving the germline is a plausible candidate mechanism underlying the transgenerational associations that warrant further research.
Collapse
Affiliation(s)
| | - Daniel Falkstedt
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden.
| | - Peter Allebeck
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden.
| | - Gita Mishra
- School of Public Health, The University of Queensland, Herston, Australia.
| | - Ilona Koupil
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden; Department of Public Health Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
43
|
Lister-Shimauchi EH, Dinh M, Maddox P, Ahmed S. Gametes deficient for Pot1 telomere binding proteins alter levels of telomeric foci for multiple generations. Commun Biol 2021; 4:158. [PMID: 33542458 PMCID: PMC7862594 DOI: 10.1038/s42003-020-01624-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Deficiency for telomerase results in transgenerational shortening of telomeres. However, telomeres have no known role in transgenerational epigenetic inheritance. C. elegans Protection Of Telomeres 1 (Pot1) proteins form foci at the telomeres of germ cells that disappear at fertilization and gradually accumulate during development. We find that gametes from mutants deficient for Pot1 proteins alter levels of telomeric foci for multiple generations. Gametes from pot-2 mutants give rise to progeny with abundant POT-1::mCherry and mNeonGreen::POT-2 foci throughout development, which persists for six generations. In contrast, gametes from pot-1 mutants or pot-1; pot-2 double mutants induce diminished Pot1 foci for several generations. Deficiency for MET-2, SET-25, or SET-32 methyltransferases, which promote heterochromatin formation, results in gametes that induce diminished Pot1 foci for several generations. We propose that C. elegans POT-1 may interact with H3K9 methyltransferases during pot-2 mutant gametogenesis to induce a persistent form of transgenerational epigenetic inheritance that causes constitutively high levels of heterochromatic Pot1 foci.
Collapse
Affiliation(s)
- Evan H Lister-Shimauchi
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Michael Dinh
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Paul Maddox
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
44
|
Gualtieri CT. Genomic Variation, Evolvability, and the Paradox of Mental Illness. Front Psychiatry 2021; 11:593233. [PMID: 33551865 PMCID: PMC7859268 DOI: 10.3389/fpsyt.2020.593233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Twentieth-century genetics was hard put to explain the irregular behavior of neuropsychiatric disorders. Autism and schizophrenia defy a principle of natural selection; they are highly heritable but associated with low reproductive success. Nevertheless, they persist. The genetic origins of such conditions are confounded by the problem of variable expression, that is, when a given genetic aberration can lead to any one of several distinct disorders. Also, autism and schizophrenia occur on a spectrum of severity, from mild and subclinical cases to the overt and disabling. Such irregularities reflect the problem of missing heritability; although hundreds of genes may be associated with autism or schizophrenia, together they account for only a small proportion of cases. Techniques for higher resolution, genomewide analysis have begun to illuminate the irregular and unpredictable behavior of the human genome. Thus, the origins of neuropsychiatric disorders in particular and complex disease in general have been illuminated. The human genome is characterized by a high degree of structural and behavioral variability: DNA content variation, epistasis, stochasticity in gene expression, and epigenetic changes. These elements have grown more complex as evolution scaled the phylogenetic tree. They are especially pertinent to brain development and function. Genomic variability is a window on the origins of complex disease, neuropsychiatric disorders, and neurodevelopmental disorders in particular. Genomic variability, as it happens, is also the fuel of evolvability. The genomic events that presided over the evolution of the primate and hominid lineages are over-represented in patients with autism and schizophrenia, as well as intellectual disability and epilepsy. That the special qualities of the human genome that drove evolution might, in some way, contribute to neuropsychiatric disorders is a matter of no little interest.
Collapse
|
45
|
Beck D, Ben Maamar M, Skinner MK. Integration of sperm ncRNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance. Epigenetics Chromatin 2021; 14:6. [PMID: 33436057 PMCID: PMC7802319 DOI: 10.1186/s13072-020-00378-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Environmentally induced epigenetic transgenerational inheritance of pathology and phenotypic variation has been demonstrated in all organisms investigated from plants to humans. This non-genetic form of inheritance is mediated through epigenetic alterations in the sperm and/or egg to subsequent generations. Although the combined regulation of differential DNA methylated regions (DMR), non-coding RNA (ncRNA), and differential histone retention (DHR) have been shown to occur, the integration of these different epigenetic processes remains to be elucidated. The current study was designed to examine the integration of the different epigenetic processes. RESULTS A rat model of transiently exposed F0 generation gestating females to the agricultural fungicide vinclozolin or pesticide DDT (dichloro-diphenyl-trichloroethane) was used to acquire the sperm from adult males in the subsequent F1 generation offspring, F2 generation grand offspring, and F3 generation great-grand offspring. The F1 generation sperm ncRNA had substantial overlap with the F1, F2 and F3 generation DMRs, suggesting a potential role for RNA-directed DNA methylation. The DMRs also had significant overlap with the DHRs, suggesting potential DNA methylation-directed histone retention. In addition, a high percentage of DMRs induced in the F1 generation sperm were maintained in subsequent generations. CONCLUSIONS Many of the DMRs, ncRNA, and DHRs were colocalized to the same chromosomal location regions. Observations suggest an integration of DMRs, ncRNA, and DHRs in part involve RNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance.
Collapse
Affiliation(s)
- Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
46
|
Mohajer N, Du CY, Checkcinco C, Blumberg B. Obesogens: How They Are Identified and Molecular Mechanisms Underlying Their Action. Front Endocrinol (Lausanne) 2021; 12:780888. [PMID: 34899613 PMCID: PMC8655100 DOI: 10.3389/fendo.2021.780888] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022] Open
Abstract
Adult and childhood obesity have reached pandemic level proportions. The idea that caloric excess and insufficient levels of physical activity leads to obesity is a commonly accepted answer for unwanted weight gain. This paradigm offers an inconclusive explanation as the world continually moves towards an unhealthier and heavier existence irrespective of energy balance. Endocrine disrupting chemicals (EDCs) are chemicals that resemble natural hormones and disrupt endocrine function by interfering with the body's endogenous hormones. A subset of EDCs called obesogens have been found to cause metabolic disruptions such as increased fat storage, in vivo. Obesogens act on the metabolic system through multiple avenues and have been found to affect the homeostasis of a variety of systems such as the gut microbiome and adipose tissue functioning. Obesogenic compounds have been shown to cause metabolic disturbances later in life that can even pass into multiple future generations, post exposure. The rising rates of obesity and related metabolic disease are demanding increasing attention on chemical screening efforts and worldwide preventative strategies to keep the public and future generations safe. This review addresses the most current findings on known obesogens and their effects on the metabolic system, the mechanisms of action through which they act upon, and the screening efforts through which they were identified with. The interplay between obesogens, brown adipose tissue, and the gut microbiome are major topics that will be covered.
Collapse
Affiliation(s)
- Nicole Mohajer
- Deparment of Pharmaceutical Sciences, University of California, Irvine, CA, United States
| | - Chrislyn Y. Du
- Deparment of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Christian Checkcinco
- Deparment of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Bruce Blumberg
- Deparment of Pharmaceutical Sciences, University of California, Irvine, CA, United States
- Deparment of Developmental and Cell Biology, University of California, Irvine, CA, United States
- Deparment of Biomedical Engineering, University of California, Irvine, CA, United States
- *Correspondence: Bruce Blumberg,
| |
Collapse
|
47
|
Skinner MK, Nilsson EE. Role of environmentally induced epigenetic transgenerational inheritance in evolutionary biology: Unified Evolution Theory. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab012. [PMID: 34729214 PMCID: PMC8557805 DOI: 10.1093/eep/dvab012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 05/15/2023]
Abstract
The current evolutionary biology theory primarily involves genetic alterations and random DNA sequence mutations to generate the phenotypic variation required for Darwinian natural selection to act. This neo-Darwinian evolution is termed the Modern Evolution Synthesis and has been the primary paradigm for nearly 100 years. Although environmental factors have a role in neo-Darwinian natural selection, Modern Evolution Synthesis does not consider environment to impact the basic molecular processes involved in evolution. An Extended Evolutionary Synthesis has recently developed that extends the modern synthesis to consider non-genetic processes. Over the past few decades, environmental epigenetics research has been demonstrated to regulate genetic processes and directly generate phenotypic variation independent of genetic sequence alterations. Therefore, the environment can on a molecular level through non-genetic (i.e. epigenetic) mechanisms directly influence phenotypic variation, genetic variation, inheritance and adaptation. This direct action of the environment to alter phenotype that is heritable is a neo-Lamarckian concept that can facilitate neo-Darwinian (i.e. Modern Synthesis) evolution. The integration of genetics, epigenetics, Darwinian theory, Lamarckian concepts, environment, and epigenetic inheritance provides a paradigm shift in evolution theory. The role of environmental-induced epigenetic transgenerational inheritance in evolution is presented to describe a more unified theory of evolutionary biology.
Collapse
Affiliation(s)
- Michael K Skinner
- **Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1 509-335-1524; E-mail:
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
48
|
McCaw BA, Stevenson TJ, Lancaster LT. Epigenetic Responses to Temperature and Climate. Integr Comp Biol 2020; 60:1469-1480. [PMID: 32470117 DOI: 10.1093/icb/icaa049] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetics represents a widely accepted set of mechanisms by which organisms respond to the environment by regulating phenotypic plasticity and life history transitions. Understanding the effects of environmental control on phenotypes and fitness, via epigenetic mechanisms, is essential for understanding the ability of organisms to rapidly adapt to environmental change. This review highlights the significance of environmental temperature on epigenetic control of phenotypic variation, with the aim of furthering our understanding of how epigenetics might help or hinder species' adaptation to climate change. It outlines how epigenetic modifications, including DNA methylation and histone/chromatin modification, (1) respond to temperature and regulate thermal stress responses in different kingdoms of life, (2) regulate temperature-dependent expression of key developmental processes, sex determination, and seasonal phenotypes, (3) facilitate transgenerational epigenetic inheritance of thermal adaptation, (4) adapt populations to local and global climate gradients, and finally (5) facilitate in biological invasions across climate regions. Although the evidence points towards a conserved role of epigenetics in responding to temperature change, there appears to be an element of temperature- and species-specificity in the specific effects of temperature change on epigenetic modifications and resulting phenotypic responses. The review identifies areas of future research in epigenetic responses to environmental temperature change.
Collapse
Affiliation(s)
- Beth A McCaw
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
49
|
Environmentally Induced Epigenetic Transgenerational Inheritance and the Weismann Barrier: The Dawn of Neo-Lamarckian Theory. J Dev Biol 2020; 8:jdb8040028. [PMID: 33291540 PMCID: PMC7768451 DOI: 10.3390/jdb8040028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
For the past 120 years, the Weismann barrier and associated germ plasm theory of heredity have been a doctrine that has impacted evolutionary biology and our concepts of inheritance through the germline. Although August Weismann in his 1872 book was correct that the sperm and egg were the only cells to transmit molecular information to the subsequent generation, the concept that somatic cells do not impact the germline (i.e., the Weismann barrier) is incorrect. However, the doctrine or dogma of the Weismann barrier still influences many scientific fields and topics. The discovery of epigenetics, and more recently environmentally induced epigenetic transgenerational inheritance of phenotypic variation and pathology, have had significant impacts on evolution theory and medicine today. Environmental epigenetics and the concept of epigenetic transgenerational inheritance refute aspects of the Weismann barrier and require a re-evaluation of both inheritance theory and evolution theory.
Collapse
|
50
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|