1
|
D’aes J, Fraiture MA, Bogaerts B, Van Laere Y, De Keersmaecker SC, Roosens NH, Vanneste K. Metagenomics-based tracing of genetically modified microorganism contaminations in commercial fermentation products. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100236. [PMID: 39834589 PMCID: PMC11743831 DOI: 10.1016/j.fochms.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Genetically modified microorganisms (GMM) are frequently employed for the production of microbial fermentation products such as food enzymes. Although presence of the GMM or its recombinant DNA in the final product is not authorized, contaminations occur frequently. Insight into the contamination source of a GMM is of crucial importance to allow the competent authorities to take appropriate action. The aim of this study was to explore the feasibility of a metagenomic shotgun sequencing approach to investigate microbial contamination in fermentation products, focusing on source tracing of GMM strains using innovative strain deconvolution and phylogenomic approaches. In most cases, analysis of 16 GMM-contaminated food enzyme products supported finding the same GM producer strains in different products, while often multiple GMM contaminations per product were detected. Presence of AMR genes in the samples was strongly associated with GMM contamination, emphasizing the potential public health risk. Additionally, a variety of other microbial contaminations were detected, identifying a group of samples with a conspicuously similar contamination profile, which suggested that these samples originated from the same production facility or batch. Together, these findings highlight the need for guidelines and quality control for traceability of these products to ensure the safety of consumers. This study demonstrates the added value of metagenomics to obtain insight in the microbial contamination profiles, as well as their underlying relationships, in commercial microbial fermentation products. The proposed approach may be applied to other types of microbial fermentation products and/or to other (genetically modified) producer strains.
Collapse
Affiliation(s)
- Jolien D’aes
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Marie-Alice Fraiture
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Bert Bogaerts
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Yari Van Laere
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
- UGent, Department of Plant Biotechnology & Bioinformatics, Technologiepark 71 9052 Zwijnaarde, Belgium
| | | | - Nancy H.C. Roosens
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Kevin Vanneste
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| |
Collapse
|
2
|
Zhang M, Yin Z. Comparative Phylogenetic Analysis and Protein Prediction Reveal the Taxonomy and Diverse Distribution of Virulence Factors in Foodborne Clostridium Strains. Evol Bioinform Online 2024; 20:11769343241294153. [PMID: 39502941 PMCID: PMC11536399 DOI: 10.1177/11769343241294153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Background Clostridium botulinum and Clostridium perfringens, 2 major foodborne pathogenic fusobacteria, have a variety of virulent protein types with nervous and enterotoxic pathogenic potential, respectively. Objective The relationship between the molecular evolution of the 2 Clostridium genomes and virulence proteins was studied via a bioinformatics prediction method. The genetic stability, main features of gene coding and structural characteristics of virulence proteins were compared and analyzed to reveal the phylogenetic characteristics, diversity, and distribution of virulence factors of foodborne Clostridium strains. Methods The phylogenetic analysis was performed via composition vector and average nucleotide identity based methods. Evolutionary distances of virulence genes relative to those of housekeeping genes were calculated via multilocus sequence analysis. Bioinformatics software and tools were used to predict and compare the main functional features of genes encoding virulence proteins, and the structures of virulence proteins were predicted and analyzed through homology modeling and a deep learning algorithm. Results According to the diversity of toxins, genome evolution tended to cluster based on the protein-coding virulence genes. The evolutionary transfer distances of virulence genes relative to those of housekeeping genes in C. botulinum strains were greater than those in C. perfringens strains, and BoNTs and alpha toxin proteins were located extracellularly. The BoNTs have highly similar structures, but BoNT/A/B and BoNT/E/F have significantly different conformations. The beta2 toxin monomer structure is similar to but simpler than the alpha toxin monomer structure, which has 2 mobile loops in the N-terminal domain. The C-terminal domain of the CPE trimer forms a "claudin-binding pocket" shape, which suggests biological relevance, such as in pore formation. Conclusions According to the genotype of protein-coding virulence genes, the evolution of Clostridium showed a clustering trend. The genetic stability, functional and structural characteristics of foodborne Clostridium virulence proteins reveal the taxonomy and diverse distribution of virulence factors.
Collapse
Affiliation(s)
- Ming Zhang
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, Guangdong, China
| | - Zhenzhen Yin
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Sentürk NB, Kasapoglu B, Sahin E, Ozcan O, Ozansoy M, Ozansoy MB, Siyah P, Sezerman U, Sahin F. The Potential Role of Boron in the Modulation of Gut Microbiota Composition: An In Vivo Pilot Study. Pharmaceuticals (Basel) 2024; 17:1334. [PMID: 39458975 PMCID: PMC11510266 DOI: 10.3390/ph17101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The role of the gut microbiome in the development and progression of many diseases has received increased attention in recent years. Boron, a trace mineral found in dietary sources, has attracted interest due to its unique electron depletion and coordination characteristics in chemistry, as well as its potential role in modulating the gut microbiota. This study investigates the effects of inorganic boron derivatives on the gut microbiota of mice. Methods: For three weeks, boric acid (BA), sodium pentaborate pentahydrate (NaB), and sodium perborate tetrahydrate (SPT) were dissolved (200 mg/kg each) in drinking water and administered to wild-type BALB/c mice. The composition of the gut microbiota was analyzed to determine the impact of these treatments. Results: The administration of BA significantly altered the composition of the gut microbiota, resulting in a rise in advantageous species such as Barnesiella and Alistipes. Additionally, there was a decrease in some taxa associated with inflammation and illness, such as Clostridium XIVb and Bilophila. Notable increases in genera like Treponema and Catellicoccus were observed, suggesting the potential of boron compounds to enrich microbial communities with unique metabolic functions. Conclusions: These findings indicate that boron compounds may have the potential to influence gut microbiota composition positively, offering potential prebiotic effects. Further research with additional analyses is necessary to fully understand the interaction between boron and microbiota and to explore the possibility of their use as prebiotic agents in clinical settings.
Collapse
Affiliation(s)
- Nermin Basak Sentürk
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755 Istanbul, Turkey; (N.B.S.); (B.K.)
| | - Burcu Kasapoglu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755 Istanbul, Turkey; (N.B.S.); (B.K.)
- Abdi Ibrahim Pharmaceuticals, Biotechnological Products Production Facility (AbdiBio), 34538 Istanbul, Turkey
| | - Eray Sahin
- Biostatistics and Bioinformatics PhD Program, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | | | - Mehmet Ozansoy
- Department of Physiology, International School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | - Muzaffer Beyza Ozansoy
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Fenerbahçe University, 34758 Istanbul, Turkey;
| | - Pinar Siyah
- Department of Biochemistry, School of Pharmacy, Bahçeşehir University, 34353 Istanbul, Turkey;
| | - Ugur Sezerman
- Biostatistics and Bioinformatics PhD Program, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755 Istanbul, Turkey; (N.B.S.); (B.K.)
| |
Collapse
|
4
|
Wang L, Hu J, Li K, Zhao Y, Zhu M. Advancements in gene editing technologies for probiotic-enabled disease therapy. iScience 2024; 27:110791. [PMID: 39286511 PMCID: PMC11403445 DOI: 10.1016/j.isci.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Probiotics typically refer to microorganisms that have been identified for their health benefits, and they are added to foods or supplements to promote the health of the host. A growing number of probiotic strains have been identified lately and developed into valuable regulatory pharmaceuticals for nutritional and medical applications. Gene editing technologies play a crucial role in addressing the need for safe and therapeutic probiotics in disease treatment. These technologies offer valuable assistance in comprehending the underlying mechanisms of probiotic bioactivity and in the development of advanced probiotics. This review aims to offer a comprehensive overview of gene editing technologies applied in the engineering of both traditional and next-generation probiotics. It further explores the potential for on-demand production of customized products derived from enhanced probiotics, with a particular emphasis on the future of gene editing in the development of live biotherapeutics.
Collapse
Affiliation(s)
- Lixuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Li WJ, Yao C, Han L, Zhou JH, Pang RM. Causal Relationship Between Gut Microbiota and Chronic Obstructive Pulmonary Disease: A Bidirectional Two-Sample Mendelian Randomization Study. Int J Chron Obstruct Pulmon Dis 2024; 19:1957-1969. [PMID: 39247666 PMCID: PMC11379542 DOI: 10.2147/copd.s464917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/20/2024] [Indexed: 09/10/2024] Open
Abstract
Background The associations between gut microbiota and chronic obstructive pulmonary disease (COPD) have gained increasing attention and research interest among scholars. However, it remains unclear whether gut microbiota serves as a causal factor for COPD or if it is a consequence of the disease. Therefore, we investigated the causal relationship between COPD and gut microbiota, with intention of providing novel insights and references for clinical diagnosis and treatment. Methods Based on the genome-wide association study (GWAS) data, we employed MR-Egger regression, random-effects inverse variance-weighted (IVW) method, and weighted median method for bidirectional Mendelian randomization (MR) analysis. We conducted Cochran's Q test for heterogeneity assessment and performed multivariable analysis, sensitivity analysis, and heterogeneity testing to validate the reliability and stability of results. Results Utilizing MR analysis, mainly employing the IVW method, we detected a collective of 11 gut microbiota species that exhibited associations with COPD. Among them, Bacteroidia, family XIII, Clostridium innocuum group, Barnesiella, Collinsella, Lachnospiraceae NK4A136 group, Lachnospiraceae UCG004, Lachnospiraceae UCG010, and Bacteroidales were found to be protective factors for COPD. On the other hand, Holdemanella and Marvinbryantia were identified as risk factors for COPD. Individuals with elevated levels of Holdemanella exhibited a 1.141-fold higher risk of developing COPD compared to their healthy counterparts, and those with increased levels of Marvinbryantia had a 1.154-fold higher risk. Reverse MR analysis yielded no evidence indicating a causal relationship between gut microbiota and COPD occurrence. Conclusion Our study established a causal link between 11 specific gut microbiota species and COPD, offering novel insights and valuable references for targeted therapies in the clinical management of COPD. However, our results were mainly based on the analysis of database, and further clinical studies are needed to clarify the effects of gut microbiota on COPD and its specific protective mechanism.
Collapse
Affiliation(s)
- Wen-Jia Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen City, People's Republic of China
| | - Chen Yao
- Department of Orthopedics and Traumatology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen City, People's Republic of China
| | - Lu Han
- Department of Pulmonary and Critical Care Medicine, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen City, People's Republic of China
| | - Ji-Hong Zhou
- Department of Pulmonary and Critical Care Medicine, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen City, People's Republic of China
| | - Rui-Ming Pang
- Department of Orthopedics and Traumatology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen City, People's Republic of China
| |
Collapse
|
6
|
Postacchini P, Grimalt-Alemany A, Ghofrani-Isfahani P, Treu L, Campanaro S, Menin L, Patuzzi F, Baratieri M, Angelidaki I. Carbon monoxide inhibition on acidogenic glucose fermentation and aceticlastic methanogenesis. BIORESOURCE TECHNOLOGY 2024; 407:131076. [PMID: 39002885 DOI: 10.1016/j.biortech.2024.131076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Syngas and CO-rich off-gases are key chemical platforms to produce biofuels and bioproducts. From the perspective of optimizing and up-scaling CO co-digestion with organic waste streams, this study aims at assessing and quantifying the inhibitory effects of CO on acidogenic glucose fermentation and aceticlastic methanogenesis. Mesophilic cultures were fed in two sets of batch assays, respectively, with glucose and acetate while being exposed to dissolved CO in equilibrium with partial pressures in the range of 0.25-1.00 atm. Cumulative methane production and microbial monitoring revealed that aceticlastic methanogenic archaea were significantly inhibited (2-20 % of the methane production of CO non-exposed cultures). The acidogenic glucose degrading community was also inhibited by CO, although, thanks to its functional redundancy, shifted its metabolism towards propionate production. Future work should assess the sensitivity of hereby estimated CO inhibition parameters, e.g., on the simulation output of a continuous syngas co-digestion process with organic substrates.
Collapse
Affiliation(s)
- Pietro Postacchini
- Faculty of Engineering, Free University of Bolzano, piazza Domenicani/Domenikanerplatz 3, 39100 Bolzano/Bozen, Italy; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 220, Bld 227, 2800Kgs. Lyngby, Denmark
| | - Antonio Grimalt-Alemany
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 220, Bld 227, 2800Kgs. Lyngby, Denmark
| | - Parisa Ghofrani-Isfahani
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 220, Bld 227, 2800Kgs. Lyngby, Denmark
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Italy
| | - Lorenzo Menin
- Faculty of Engineering, Free University of Bolzano, piazza Domenicani/Domenikanerplatz 3, 39100 Bolzano/Bozen, Italy
| | - Francesco Patuzzi
- Faculty of Engineering, Free University of Bolzano, piazza Domenicani/Domenikanerplatz 3, 39100 Bolzano/Bozen, Italy
| | - Marco Baratieri
- Faculty of Engineering, Free University of Bolzano, piazza Domenicani/Domenikanerplatz 3, 39100 Bolzano/Bozen, Italy
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 220, Bld 227, 2800Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
8
|
Yang L, Chen Q, Wei J, Fan T, Kong L, Long T, Zhang S, Deng S. Response of microbial communities in aquifers with multiple organic solvent contamination: Implications for MNA remedy. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134798. [PMID: 38843633 DOI: 10.1016/j.jhazmat.2024.134798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 06/26/2024]
Abstract
The application of Monitored Natural Attenuation (MNA) technology has been widespread, while there is a paucity of data on groundwater with multiple co-contaminants. This study focused on high permeability, low hydraulic gradient groundwater with co-contamination of benzene, toluene, ethylbenzene, and xylenes (BTEX), chlorinated aliphatic hydrocarbons (CAHs), and chlorinated aromatic hydrocarbons (CPs). The objective was to investigate the responses of microbial communities during natural attenuation processes. Results revealed greater horizontal variation in groundwater microbial community composition compared to vertical variation. The variation was strongly correlated with the total contaminant quantity (r = 0.722, p < 0.001) rather than individual contaminants. BTEX exerted a more significant influence on community diversity than other contaminants. The assembly of groundwater microbial communities was primarily governed by deterministic processes (βNTI < -2) in high contaminant concentration zones, while stochastic processes (|βNTI| < 2) dominated in low-concentration zones. Moreover, the microbial interactions shifted at different depths indicating the degradation rate variation in the vertical. This study makes fundamental contribution to the understanding for the effects of groundwater flow and material fields on indigenous microbial communities, which will provide a scientific basis for more precise adoption of microbial stimulation/augmentation to accelerate the rate of contaminant removal.
Collapse
Affiliation(s)
- Lu Yang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Qiang Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Tingting Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Lingya Kong
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China.
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Shengtian Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China.
| |
Collapse
|
9
|
Palmieri O, Bossa F, Castellana S, Latiano T, Carparelli S, Martino G, Mangoni M, Corritore G, Nardella M, Guerra M, Biscaglia G, Perri F, Mazza T, Latiano A. Deciphering Microbial Composition in Patients with Inflammatory Bowel Disease: Implications for Therapeutic Response to Biologic Agents. Microorganisms 2024; 12:1260. [PMID: 39065032 PMCID: PMC11278628 DOI: 10.3390/microorganisms12071260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Growing evidence suggests that alterations in the gut microbiome impact the development of inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC). Although IBD often requires the use of immunosuppressant drugs and biologic therapies to facilitate clinical remission and mucosal healing, some patients do not benefit from these drugs, and the reasons for this remain poorly understood. Despite advancements, there is still a need to develop biomarkers to help predict prognosis and guide treatment decisions. The aim of this study was to investigate the gut microbiome of IBD patients using biologics to identify microbial signatures associated with responses, following standard accepted criteria. Microbiomes in 66 stool samples from 39 IBD patients, comprising 20 CD and 19 UC patients starting biologic therapies, and 29 samples from healthy controls (HCs) were prospectively analyzed via NGS and an ensemble of metagenomics analysis tools. At baseline, differences were observed in alpha and beta metrics among patients with CD, UC and HC, as well as between the CD and UC groups. The degree of dysbiosis was more pronounced in CD patients, and those with dysbiosis exhibited a limited response to biological drugs. Pairwise differential abundance analyses revealed an increasing trend in the abundance of an unannotated genus from the Clostridiales order, Gemmiger genus and an unannotated genus from the Rikenellaceae family, which were consistently identified in greater abundance in HC. The Clostridium genus was more abundant in CD patients. At baseline, a greater abundance of the Odoribacter and Ruminococcus genera was found in IBD patients who responded to biologics at 14 weeks, whereas a genus identified as SMB53 was more enriched at 52 weeks. The Collinsella genus showed a higher prevalence among non-responder IBD patients. Additionally, a greater abundance of an unclassified genus from the Barnesiellaceae family and one from Lachnospiraceae was observed in IBD patients responding to Vedolizumab at 14 weeks. Our analyses showed global microbial diversity, mainly in CD. This indicated the absence or depletion of key taxa responsible for producing short-chain fatty acids (SCFAs). We also identified an abundance of pathobiont microbes in IBD patients at baseline, particularly in non-responders to biologic therapies. Furthermore, specific bacteria-producing SCFAs were abundant in patients responding to biologics and in those responding to Vedolizumab.
Collapse
Affiliation(s)
- Orazio Palmieri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Fabrizio Bossa
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Stefano Castellana
- Unit of Bioinformatics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy (M.M.); (T.M.)
| | - Tiziana Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Sonia Carparelli
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Giuseppina Martino
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Manuel Mangoni
- Unit of Bioinformatics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy (M.M.); (T.M.)
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Corritore
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Marianna Nardella
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Maria Guerra
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Giuseppe Biscaglia
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Francesco Perri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy (M.M.); (T.M.)
| | - Anna Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| |
Collapse
|
10
|
Peregrino ES, Castañeda-Casimiro J, Vázquez-Flores L, Estrada-Parra S, Wong-Baeza C, Serafín-López J, Wong-Baeza I. The Role of Bacterial Extracellular Vesicles in the Immune Response to Pathogens, and Therapeutic Opportunities. Int J Mol Sci 2024; 25:6210. [PMID: 38892397 PMCID: PMC11172497 DOI: 10.3390/ijms25116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Pathogenic bacteria have several mechanisms to evade the host's immune response and achieve an efficient infection. Bacterial extracellular vesicles (EVs) are a relevant cellular communication mechanism, since they can interact with other bacterial cells and with host cells. In this review, we focus on the EVs produced by some World Health Organization (WHO) priority Gram-negative and Gram-positive pathogenic bacteria; by spore-producing bacteria; by Mycobacterium tuberculosis (a bacteria with a complex cell wall); and by Treponema pallidum (a bacteria without lipopolysaccharide). We describe the classification and the general properties of bacterial EVs, their role during bacterial infections and their effects on the host immune response. Bacterial EVs contain pathogen-associated molecular patterns that activate innate immune receptors, which leads to cytokine production and inflammation, but they also contain antigens that induce the activation of B and T cell responses. Understanding the many effects of bacterial EVs on the host's immune response can yield new insights on the pathogenesis of clinically important infections, but it can also lead to the development of EV-based diagnostic and therapeutic strategies. In addition, since EVs are efficient activators of both the innate and the adaptive immune responses, they constitute a promising platform for vaccine development.
Collapse
Affiliation(s)
- Eliud S. Peregrino
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
| | - Jessica Castañeda-Casimiro
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Luis Vázquez-Flores
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Carlos Wong-Baeza
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| |
Collapse
|
11
|
Wang X, Chen N, Cruz-Morales P, Zhong B, Zhang Y, Wang J, Xiao Y, Fu X, Lin Y, Acharya S, Li Z, Deng H, Sun Y, Bai L, Tang X, Keasling JD, Luo X. Elucidation of genes enhancing natural product biosynthesis through co-evolution analysis. Nat Metab 2024; 6:933-946. [PMID: 38609677 DOI: 10.1038/s42255-024-01024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/06/2024] [Indexed: 04/14/2024]
Abstract
Streptomyces has the largest repertoire of natural product biosynthetic gene clusters (BGCs), yet developing a universal engineering strategy for each Streptomyces species is challenging. Given that some Streptomyces species have larger BGC repertoires than others, we proposed that a set of genes co-evolved with BGCs to support biosynthetic proficiency must exist in those strains, and that their identification may provide universal strategies to improve the productivity of other strains. We show here that genes co-evolved with natural product BGCs in Streptomyces can be identified by phylogenomics analysis. Among the 597 genes that co-evolved with polyketide BGCs, 11 genes in the 'coenzyme' category have been examined, including a gene cluster encoding for the cofactor pyrroloquinoline quinone. When the pqq gene cluster was engineered into 11 Streptomyces strains, it enhanced production of 16,385 metabolites, including 36 known natural products with up to 40-fold improvement and several activated silent gene clusters. This study provides an innovative engineering strategy for improving polyketide production and finding previously unidentified BGCs.
Collapse
Affiliation(s)
- Xinran Wang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ningxin Chen
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Biming Zhong
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yangming Zhang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, China
| | - Yifan Xiao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinnan Fu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Lin
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Suneil Acharya
- Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Zhibo Li
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaxiang Deng
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, China
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Jay D Keasling
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Shenzhen Infrastructure for Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
12
|
Jensen RO, Schulz F, Roux S, Klingeman DM, Mitchell WP, Udwary D, Moraïs S, Reynoso V, Winkler J, Nagaraju S, De Tissera S, Shapiro N, Ivanova N, Reddy TBK, Mizrahi I, Utturkar SM, Bayer EA, Woyke T, Mouncey NJ, Jewett MC, Simpson SD, Köpke M, Jones DT, Brown SD. Phylogenomics and genetic analysis of solvent-producing Clostridium species. Sci Data 2024; 11:432. [PMID: 38693191 PMCID: PMC11063209 DOI: 10.1038/s41597-024-03210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
The genus Clostridium is a large and diverse group within the Bacillota (formerly Firmicutes), whose members can encode useful complex traits such as solvent production, gas-fermentation, and lignocellulose breakdown. We describe 270 genome sequences of solventogenic clostridia from a comprehensive industrial strain collection assembled by Professor David Jones that includes 194 C. beijerinckii, 57 C. saccharobutylicum, 4 C. saccharoperbutylacetonicum, 5 C. butyricum, 7 C. acetobutylicum, and 3 C. tetanomorphum genomes. We report methods, analyses and characterization for phylogeny, key attributes, core biosynthetic genes, secondary metabolites, plasmids, prophage/CRISPR diversity, cellulosomes and quorum sensing for the 6 species. The expanded genomic data described here will facilitate engineering of solvent-producing clostridia as well as non-model microorganisms with innately desirable traits. Sequences could be applied in conventional platform biocatalysts such as yeast or Escherichia coli for enhanced chemical production. Recently, gene sequences from this collection were used to engineer Clostridium autoethanogenum, a gas-fermenting autotrophic acetogen, for continuous acetone or isopropanol production, as well as butanol, butanoic acid, hexanol and hexanoic acid production.
Collapse
Affiliation(s)
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Daniel Udwary
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | | | | | | | | | - Nicole Shapiro
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia Ivanova
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - T B K Reddy
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Sagar M Utturkar
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Edward A Bayer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA
| | - Nigel J Mouncey
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | | | - David T Jones
- Department of Microbiology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
13
|
Yan Z, Lei Y, Zhao P, Zhang D, Shen J, Zhang G, Wei R, Liu H, Liu X, He Y, Shen S, Liu D. Natural mating ability is associated with gut microbiota composition and function in captive male giant pandas. Ecol Evol 2024; 14:e11189. [PMID: 38571808 PMCID: PMC10985376 DOI: 10.1002/ece3.11189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
The issue of poor sexual performance of some male giant pandas seriously impairs the growth and the genetic diversity of the captive population, yet there is still no clear understanding of the cause of the loss of this ability and its underlying mechanism. In this study, we analyzed the gut microbiota and its function in 72 fecal samples obtained from 20 captive male giant pandas, with an equal allocation between individuals capable and incapable of natural mating. Additionally, we investigated fecal hormone levels and behavioral differences between the two groups. A correlation analysis was then conducted among these factors to explore the influencing factors of their natural mating ability. The results showed significant differences in the composition of gut microbiota between the two groups of male pandas. The capable group had significantly higher abundance of Clostridium sensu stricto 1 (p adjusted = .0021, GLMM), which was positively correlated with fatty acid degradation and two-component system functions (Spearman, p adjusted < .05). Additionally, the capable group showed higher gene abundance in gut microbiota function including purine and pyrimidine metabolism and galactose metabolism, as well as pathways related to biological processes such as ribosome and homologous recombination (DEseq2, p adjusted < .05). We found no significant differences in fecal cortisol and testosterone levels between the two groups, and no difference was found in their behavior either. Our study provides a theoretical and practical basis for further studying the behavioral degradation mechanisms of giant pandas and other endangered mammal species.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Ecology, College of Life Sciences, Key Laboratory for Biodiversity and Ecological Engineering of Ministry of EducationBeijing Normal UniversityBeijingHebeiChina
| | - Yinghu Lei
- Research Center for the Qinling Giant PandaShaanxi Rare Wildlife Rescue BaseXi'anShaanxiChina
| | - Pengpeng Zhao
- Research Center for the Qinling Giant PandaShaanxi Rare Wildlife Rescue BaseXi'anShaanxiChina
| | - Danhui Zhang
- Research Center for the Qinling Giant PandaShaanxi Rare Wildlife Rescue BaseXi'anShaanxiChina
| | - Jiena Shen
- Research Center for the Qinling Giant PandaShaanxi Rare Wildlife Rescue BaseXi'anShaanxiChina
| | - Guiquan Zhang
- China Conservation and Research Centre for the Giant PandaWolongSichuanChina
| | - Rongping Wei
- China Conservation and Research Centre for the Giant PandaWolongSichuanChina
| | - Haoqiu Liu
- Department of Ecology, College of Life Sciences, Key Laboratory for Biodiversity and Ecological Engineering of Ministry of EducationBeijing Normal UniversityBeijingHebeiChina
| | - Xiaoyan Liu
- Department of Ecology, College of Life Sciences, Key Laboratory for Biodiversity and Ecological Engineering of Ministry of EducationBeijing Normal UniversityBeijingHebeiChina
| | - Yan He
- Department of Ecology, College of Life Sciences, Key Laboratory for Biodiversity and Ecological Engineering of Ministry of EducationBeijing Normal UniversityBeijingHebeiChina
| | - Sijia Shen
- Department of Ecology, College of Life Sciences, Key Laboratory for Biodiversity and Ecological Engineering of Ministry of EducationBeijing Normal UniversityBeijingHebeiChina
| | - Dingzhen Liu
- Department of Ecology, College of Life Sciences, Key Laboratory for Biodiversity and Ecological Engineering of Ministry of EducationBeijing Normal UniversityBeijingHebeiChina
| |
Collapse
|
14
|
Theys J, Patterson AV, Mowday AM. Clostridium Bacteria: Harnessing Tumour Necrosis for Targeted Gene Delivery. Mol Diagn Ther 2024; 28:141-151. [PMID: 38302842 PMCID: PMC10925577 DOI: 10.1007/s40291-024-00695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/03/2024]
Abstract
Necrosis is a common feature of solid tumours that offers a unique opportunity for targeted cancer therapy as it is absent from normal healthy tissues. Tumour necrosis provides an ideal environment for germination of the anaerobic bacterium Clostridium from endospores, resulting in tumour-specific colonisation. Two main species, Clostridium novyi-NT and Clostridium sporogenes, are at the forefront of this therapy, showing promise in preclinical models. However, anti-tumour activity is modest when used as a single agent, encouraging development of Clostridium as a tumour-selective gene delivery system. Various methods, such as allele-coupled exchange and CRISPR-cas9 technology, can facilitate the genetic modification of Clostridium, allowing chromosomal integration of transgenes to ensure long-term stability of expression. Strains of Clostridium can be engineered to express prodrug-activating enzymes, resulting in the generation of active drug selectively in the tumour microenvironment (a concept termed Clostridium-directed enzyme prodrug therapy). More recently, Clostridium strains have been investigated in the context of cancer immunotherapy, either in combination with immune checkpoint inhibitors or with engineered strains expressing immunomodulatory molecules such as IL-2 and TNF-α. Localised expression of these molecules using tumour-targeting Clostridium strains has the potential to improve delivery and reduce systemic toxicity. In summary, Clostridium species represent a promising platform for cancer therapy, with potential for localised gene delivery and immunomodulation selectively within the tumour microenvironment. The ongoing clinical progress being made with C. novyi-NT, in addition to developments in genetic modification techniques and non-invasive imaging capabilities, are expected to further progress Clostridium as an option for cancer treatment.
Collapse
Affiliation(s)
- Jan Theys
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1142, New Zealand
| | - Alexandra M Mowday
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, 1142, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1142, New Zealand.
| |
Collapse
|
15
|
Pan Z, Wang W, Chen J, Chen Z, Avellán-Llaguno RD, Xu W, Duan Y, Liu B, Huang Q. Temporal dynamics of microbial composition and antibiotic resistome in fermentation bed culture pig farms across various ages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168728. [PMID: 37992830 DOI: 10.1016/j.scitotenv.2023.168728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The discharge from pig farms presents significant challenges to the environment and human health, specifically regarding the dissemination of antimicrobial resistance (AMR). Fermentation bed culture has emerged as an increasingly popular and environmentally friendly pig farming model in China, as it minimizes the release of harmful substances into the environment. However, there remains a limited understanding of the occurrence and dynamics of microbiome and antibiotic resistome in fermentation bed culture. Herein, we collected fermentation bed materials (FBM) from four fermentation bed culture pig farms with varying service ages and investigated their bacterial communities, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), metal resistance genes (MRGs) and potential antibiotic-resistant bacterial hosts through metagenomics. Pseudomonadota, Actinomycetota, Bacteroidota and Bacillota were identified as the dominant phyla present in the FBM. In total, we detected 258 unique ARGs in the FBM samples, with 79 core ARGs shared by all FBM samples, accounting for 95 % of the total ARG abundance. Our results revealed significant variations in microbial communities and ARG profiles across varying service ages of FBM. Compared to long-term FBW, short-term FBM exhibited higher numbers and abundances of ARGs, MRGs and MGEs, along with higher levels of potential bacterial pathogens and high-risk ARGs. Further analysis of metagenome-assembled genome (MAG) indicated that the putative hosts of ARGs primarily belonged to Pseudomonadota, Actinomycetota and Bacillota. Alarmingly, among the 80 recovered ARG-carrying MAGs, 23 MAGs encoded multi-resistance, including clinically significant species that require urgent attention. Overall, this study provided valuable insights into the temporal patterns of antibiotic resistome and bacterial communities within FBM, enhancing our understanding of FBM in pig farming. The findings could potentially contribute to the development of effective strategies for evaluating and regulating fermentation bed culture practices in pig farming.
Collapse
Affiliation(s)
- Zhizhen Pan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Weiyi Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Hebei 071002, China
| | - Jingyu Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zheng Chen
- Institue of Plant Protection, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Ricardo David Avellán-Llaguno
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenjuan Xu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yifang Duan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bo Liu
- Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
16
|
Prinčič L, Burtscher J, Sacken P, Krajnc T, Domig KJ. Clostridium strain FAM25158, a unique endospore-forming bacterium related to Clostridium tyrobutyricum and isolated from Emmental cheese shows low tolerance to salt. Front Microbiol 2024; 15:1353321. [PMID: 38414773 PMCID: PMC10897056 DOI: 10.3389/fmicb.2024.1353321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
The genus Clostridium is a large and diverse group of species that can cause food spoilage, including late blowing defect (LBD) in cheese. In this study, we investigated the taxonomic status of strain FAM25158 isolated from Emmental cheese with LBD using a polyphasic taxonomic and comparative genomic approach. A 16S rRNA gene sequence phylogeny suggested affiliation to the Clostridium sensu stricto cluster, with Clostridium tyrobutyricum DSM 2637T being the closest related type strain (99.16% sequence similarity). Average Nucleotide Identity (ANI) analysis revealed that strain FAM25158 is at the species threshold with C. tyrobutyricum, with ANI values ranging from 94.70 to 95.26%, while the digital DNA-DNA hybridization values were below the recommended threshold, suggesting that FAM25158 is significantly different from C. tyrobutyricum at the genomic level. Moreover, comparative genomic analysis between FAM25158 and its four closest C. tyrobutyricum relatives revealed a diversity of metabolic pathways, with FAM25158 differing from other C. tyrobutyricum strains by the presence of genes such as scrA, srcB, and scrK, responsible for sucrose utilization, and the absence of many important functional genes associated with cold and osmolality adaptation, which was further supported by phenotypic analyses. Surprisingly, strain FAM25158 exhibited unique physiologic traits, such as an optimal growth temperature of 30°C, in contrast to its closest relatives, C. tyrobutyricum species with an optimal growth temperature of 37°C. Additionally, the growth of FAM25158 was inhibited at NaCl concentrations higher than 0.5%, a remarkable observation considering its origin from cheese. While the results of this study provide novel information on the genetic content of strain FAM25158, the relationship between its genetic content and the observed phenotype remains a topic requiring further investigation.
Collapse
Affiliation(s)
- Lucija Prinčič
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Johanna Burtscher
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Paul Sacken
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Tina Krajnc
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
17
|
Jacob J, Veras I, Calderόn O, Porter-Morgan HA, Tan J, Aguilar HE, Elkins WT, Martinez Castro VP, Fulton V, Yousri WK. Possibly pathogenic bacteria in aerosols and foams as a result of aeration remediation in a polluted urban waterway. Folia Microbiol (Praha) 2024; 69:235-246. [PMID: 37777646 PMCID: PMC10876779 DOI: 10.1007/s12223-023-01096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Newtown Creek is a tributary of the Hudson River Estuary. It has a legacy of both industrial pollution and sewage pollution and has been designated a Superfund site. To ameliorate the chronically low levels of dissolved oxygen detected in the Creek, the New York City Department of Environmental Protection has been installing aerators. The abundance of various bacteria in the aerosols, foams, and water, at two sites in the Creek, was studied before, during, and after the aeration process. Additionally, aerosols and dispersed foams created by the aeration process were sampled and cultured to determine what unique taxa of bacteria could be grown and identified. Taxa including Actinobacteria and Firmicutes were prevalent in cultures taken from aerosols, whereas Gammaproteobacteria were prevalent in cultures taken from foam. Campylobacteria was found to have a significant presence in both samples taken after the aerators were turned off. These taxa include potentially pathogenic bacteria and are therefore of particular concern.
Collapse
Affiliation(s)
- Joby Jacob
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA.
| | - Ingrid Veras
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Olga Calderόn
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Holly A Porter-Morgan
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Joshua Tan
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Harry E Aguilar
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | | | - Veronica P Martinez Castro
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Vania Fulton
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Wesam K Yousri
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| |
Collapse
|
18
|
Al Amaz S, Chaudhary A, Mahato PL, Jha R, Mishra B. Pre-hatch thermal manipulation of embryos and post-hatch baicalein supplementation mitigated heat stress in broiler chickens. J Anim Sci Biotechnol 2024; 15:8. [PMID: 38246989 PMCID: PMC10802028 DOI: 10.1186/s40104-023-00966-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND High environmental temperatures induce heat stress in broiler chickens, affecting their health and production performance. Several dietary, managerial, and genetics strategies have been tested with some success in mitigating heat stress (HS) in broilers. Developing novel HS mitigation strategies for sustaining broiler production is critically needed. This study investigated the effects of pre-hatch thermal manipulation (TM) and post-hatch baicalein supplementation on growth performance and health parameters in heat-stressed broilers. RESULTS Six hundred fertile Cobb 500 eggs were incubated for 21 d. After candling on embryonic day (ED) 10, 238 eggs were thermally manipulated at 38.5 °C with 55% relative humidity (RH) from ED 12 to 18, then transferred to the hatcher (ED 19 to 21, standard temperature) and 236 eggs were incubated at a controlled temperature (37.5 °C) till hatch. After hatch, 180-day-old chicks from both groups were raised in 36 pens (n = 10 birds/pen, 6 replicates per treatment). The treatments were: 1) Control, 2) TM, 3) control heat stress (CHS), 4) thermal manipulation heat stress (TMHS), 5) control heat stress supplement (CHSS), and 6) thermal manipulation heat stress supplement (TMHSS). All birds were raised under the standard environment for 21 d, followed by chronic heat stress from d 22 to 35 (32-33 °C for 8 h) in the CHS, TMHS, CHSS, and TMHSS groups. A thermoneutral (22-24 °C) environment was maintained in the Control and TM groups. RH was constant (50% ± 5%) throughout the trial. All the data were analyzed using one-way ANOVA in R and GraphPad software at P < 0.05 and are presented as mean ± SEM. Heat stress significantly decreased (P < 0.05) the final body weight and ADG in CHS and TMHS groups compared to the other groups. Embryonic TM significantly increased (P < 0.05) the expression of heat shock protein-related genes (HSP70, HSP90, and HSPH1) and antioxidant-related genes (GPX1 and TXN). TMHS birds showed a significant increment (P < 0.05) in total cecal volatile fatty acid (VFA) concentration compared to the CHS birds. The cecal microbial analysis showed significant enrichment (P < 0.05) in alpha and beta diversity and Coprococcus in the TMHSS group. CONCLUSIONS Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens' growth performance, upregulate favorable gene expression, increase VFA production, and promote gut health by increasing beneficial microbial communities.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Ajay Chaudhary
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Prem Lal Mahato
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
19
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martín-Rodríguez A, Tornero-Aguilera JF. Microbiota Implications in Endocrine-Related Diseases: From Development to Novel Therapeutic Approaches. Biomedicines 2024; 12:221. [PMID: 38255326 PMCID: PMC10813640 DOI: 10.3390/biomedicines12010221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review article delves into the critical role of the human microbiota in the development and management of endocrine-related diseases. We explore the complex interactions between the microbiota and the endocrine system, emphasizing the implications of microbiota dysbiosis for the onset and progression of various endocrine disorders. The review aims to synthesize current knowledge, highlighting recent advancements and the potential of novel therapeutic approaches targeting microbiota-endocrine interactions. Key topics include the impact of microbiota on hormone regulation, its role in endocrine pathologies, and the promising avenues of microbiota modulation through diet, probiotics, prebiotics, and fecal microbiota transplantation. We underscore the importance of this research in advancing personalized medicine, offering insights for more tailored and effective treatments for endocrine-related diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/ Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
20
|
Goh S, Inal J. Membrane Vesicles of Clostridioides difficile and Other Clostridial Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:315-327. [PMID: 38175481 DOI: 10.1007/978-3-031-42108-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Membrane vesicles are secreted by growing bacterial cells and are important components of the bacterial secretome, with a role in delivering effector molecules that ultimately enable bacterial survival. Membrane vesicles of Clostridioides difficile likely contribute to pathogenicity and is a new area of research on which there is currently very limited information. This chapter summarizes the current knowledge on membrane vesicle formation, content, methods of characterization and functions in Clostridia and model Gram-positive species.
Collapse
Affiliation(s)
- Shan Goh
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.
| | - Jameel Inal
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
21
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Prieto Maradona M, Querol A, Sijtsma L, Suarez JE, Sundh I, Barizzone F, Correia S, Herman L. Update of the list of qualified presumption of safety (QPS) recommended microbiological agents intentionally added to food or feed as notified to EFSA 19: Suitability of taxonomic units notified to EFSA until September 2023. EFSA J 2024; 22:e8517. [PMID: 38213415 PMCID: PMC10782250 DOI: 10.2903/j.efsa.2024.8517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. The QPS approach is based on an assessment of published data for each taxonomic unit (TU), with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a TU are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 71 microorganisms notified to EFSA between April and September 2023 (30 as feed additives, 22 as food enzymes or additives, 7 as novel foods and 12 from plant protection products [PPP]), 61 were not evaluated because: 26 were filamentous fungi, 1 was Enterococcus faecium, 5 were Escherichia coli, 1 was a bacteriophage (all excluded from the QPS evaluation) and 28 were TUs that already have a QPS status. The other 10 notifications belonged to 9 TUs which were evaluated for a possible QPS status: Ensifer adhaerens and Heyndrickxia faecalis did not get the QPS recommendation due to the limited body of knowledge about their occurrence in the food and/or feed chains and Burkholderia ubonensis also due to its ability to generate biologically active compounds with antimicrobial activity; Klebsiella pneumoniae, Serratia marcescens and Pseudomonas putida due to safety concerns. K. pneumoniae is excluded from future QPS evaluations. Chlamydomonas reinhardtii is recommended for QPS status with the qualification 'for production purposes only'; Clostridium tyrobutyricum is recommended for QPS status with the qualification 'absence of genetic determinants for toxigenic activity'; Candida oleophila has been added as a synonym of Yarrowia lipolytica. The Panel clarifies the extension of the QPS status for genetically modified strains.
Collapse
|
22
|
Ioannou P, Kopidakis I, Makraki E, Baliou S, Samonis G. Infective Endocarditis by Clostridioides and Clostridium Species-A Narrative Review. Antibiotics (Basel) 2023; 13:33. [PMID: 38247592 PMCID: PMC10812389 DOI: 10.3390/antibiotics13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Bacteria of the genus Clostridium are anaerobic Gram-positive spore-forming bacilli that include more than 200 species. Some of them are known to cause invasive infections and diseases caused by the production of toxins. Some of the diseases that are mediated by toxins are colitis in patients with specific risk factors, such as previous administration of antimicrobials or foodborne botulism. Invasive diseases include bacteremia, infective endocarditis (IE), clostridial myonecrosis (gas gangrene), and other diseases that involve the destruction of soft tissue due to the local production of toxins. The present study aimed to review all cases of IE by Clostridioides and Clostridium species and describe the epidemiology, clinical characteristics, treatment, and outcomes of these infections. A narrative review was performed based on a search in PubMed and Scopus for studies published until 11 September 2023, providing such data of IE caused by Clostridioides and Clostridium species in humans. A total of 20 studies containing data for 21 patients were included. A prosthetic valve was present in 5 patients (23.8%). The aortic valve was the most commonly involved, followed by the mitral valve. Fever, sepsis, and embolic phenomena were the most common clinical presentations. Beta-lactams and metronidazole were the most commonly used antimicrobials. Surgery was performed in nine patients (45%). Mortality reached 33.3%. IE in multiple valves was associated with increased mortality. Despite the heterogeneous genetic and molecular characteristics that necessitate the taxonomic change of some of this genus's previous members, the clinical syndrome of IE caused by these bacteria seems to have similar characteristics.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | | | | | | | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
23
|
Howard RD, Schul MD, Rodriguez Bravo LM, Altieri AH, Meyer JL. Shifts in the coral microbiome in response to in situ experimental deoxygenation. Appl Environ Microbiol 2023; 89:e0057723. [PMID: 37916820 PMCID: PMC10686059 DOI: 10.1128/aem.00577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Marine hypoxia is a threat for corals but has remained understudied in tropical regions where coral reefs are abundant. Though microbial symbioses can alleviate the effects of ecological stress, we do not yet understand the taxonomic or functional response of the coral microbiome to hypoxia. In this study, we experimentally lowered oxygen levels around Siderastrea siderea and Agaricia lamarcki colonies in situ to observe changes in the coral microbiome in response to deoxygenation. Our results show that hypoxia triggers a stochastic change of the microbiome overall, with some bacterial families changing deterministically after just 48 hours of exposure. These families represent an increase in anaerobic and opportunistic taxa in the microbiomes of both coral species. Thus, marine deoxygenation destabilizes the coral microbiome and increases bacterial opportunism. This work provides novel and fundamental knowledge of the microbial response in coral during hypoxia and may provide insight into holobiont function during stress.
Collapse
Affiliation(s)
- Rachel D. Howard
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Monica D. Schul
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Lucia M. Rodriguez Bravo
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Andrew H. Altieri
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Julie L. Meyer
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Srinivasan S, Austin MN, Fiedler TL, Strenk SM, Agnew KJ, Gowda GAN, Raftery D, Beamer MA, Achilles SL, Wiesenfeld HC, Fredricks DN, Hillier SL. Amygdalobacter indicium gen. nov., sp. nov., and Amygdalobacter nucleatus sp. nov., gen. nov.: novel bacteria from the family Oscillospiraceae isolated from the female genital tract. Int J Syst Evol Microbiol 2023; 73:006017. [PMID: 37787404 PMCID: PMC11318147 DOI: 10.1099/ijsem.0.006017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/17/2023] [Indexed: 10/04/2023] Open
Abstract
Four obligately anaerobic Gram-positive bacteria representing one novel genus and two novel species were isolated from the female genital tract. Both novel species, designated UPII 610-JT and KA00274T, and an additional isolate of each species were characterized utilizing biochemical, genotypic and phylogenetic analyses. All strains were non-motile and non-spore forming, asaccharolytic, non-cellulolytic and indole-negative coccobacilli. Fatty acid methyl ester analysis for UPII 610-JT and KA00274T and additional isolates revealed C16 : 0, C18 : 0, C18:1ω9c and C18:2ω6,9c to be the major fatty acids for both species. UPII 610-JT had a 16S rRNA gene sequence similarity of 99.4 % to an uncultured clone sequence (AY724740) designated as Bacterial Vaginosis Associated Bacterium 2 (BVAB2). KA00274T had a 16S rRNA gene sequence similarity of 96.5 % to UPII 610-JT. Whole genomic DNA mol% G+C content was 42.2 and 39.3 % for UPII 610-JT and KA00274T, respectively. Phylogenetic analyses indicate these isolates represent a novel genus and two novel species within the Oscillospiraceae family. We propose the names Amygdalobacter indicium gen. nov., sp. nov., for UPII 610-JT representing the type strain of this species (=DSM 112989T, =ATCC TSD-274T) and Amygdalobacter nucleatus gen. nov., sp. nov., for KA00274T representing the type strain of this species (=DSM 112988T, =ATCC TSD-275T).
Collapse
Affiliation(s)
- Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Tina L. Fiedler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Susan M. Strenk
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kathy J. Agnew
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Washington Medical Center, Seattle, WA, USA
| | - G. A. Nagana Gowda
- Northwest Metabolomics Research Center and Mitochondrial and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center and Mitochondrial and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington Medical Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - May A. Beamer
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Sharon L. Achilles
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh PA, USA
| | - Harold C. Wiesenfeld
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh PA, USA
| | - David N. Fredricks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sharon L. Hillier
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh PA, USA
| |
Collapse
|
25
|
Zhao X, Xie E. Reclaimed water influences bacterioplankton and bacteriobenthos communities differently in river networks. WATER RESEARCH 2023; 243:120389. [PMID: 37494747 DOI: 10.1016/j.watres.2023.120389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Reclaimed water reuse is a promising strategy for addressing water scarcity; however, its potential ecological impact remains largely unknown. In particular, the differential effects of reclaimed water on microbial communities in various habitats remain poorly understood. Here, we aimed to elucidate the distinct effects of reclaimed water on bacterioplankton and bacteriobenthos communities in reclaimed water-receiving river networks from multiple perspectives, including community structure, co-occurrence patterns, assembly mechanisms, and nitrogen cycle function. Significant differences in microbial composition were observed between the plankton and benthic habitats, and the average numbers of amplicon sequence variants (ASVs) that originated from the wastewater treatment plants (WWTP) sites were 310.0 and 613.3, respectively, indicating a stronger association between WWTP and benthic habitats. Random forest and network co-occurrence analyses identified the genus Clostridium_sensu_stricto as a biomarker and key module hub. The assembly of bacteriobenthos communities was driven primarily by deterministic processes (58.74% for River-S and 58.94% for WWTP-S), whereas for bacterioplankton communities, this proportion was reduced to 18.02% (River-W) and 19.09% (WWTP-W). The qPCR revealed a large difference in abundance between the N cycling related genes of bacteriobenthos (average 2.47 × 106 copies/ng) and bacterioplankton (average 3.11 × 103 copies/ng) communities, and different interaction patterns with functional genes. Variance partitioning analysis (VPA) indicated that nitrogen was the most important pollutant, affecting the structure and ecological functions of microbial communities. Moreover, pathway analysis suggested that the reuse of reclaimed water may have enhanced the N-cycling functions of microbial communities and the emission of nitrous oxide.
Collapse
Affiliation(s)
- Xiaohui Zhao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, PR China; Engineering Research Center of Agricultural Water-Saving and Water Resources, Ministry of Education, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
26
|
Sivamani RK, Maloh J, Nong Y. Correlating the Gut Microbiota and Circulating Hormones with Acne Lesion Counts and Skin Biophysical Features. Microorganisms 2023; 11:2049. [PMID: 37630609 PMCID: PMC10459794 DOI: 10.3390/microorganisms11082049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Acne vulgaris is a common inflammatory condition that is multi-factorial and impacted by both intrinsic and extrinsic features. Several previous studies have assessed for correlations between factors such as circulating hormones, stress, or the microbiome. However, there have not been any correlations specifically against lesion counts or differentiating correlations between inflammatory and non-inflammatory lesion counts. Here, we correlate several factors against acne lesions. Twenty men and women with mild to moderate acne were recruited, and their hormonal levels and their gut microbiome were collected and correlated against their inflammatory and non-inflammatory lesions of acne. Facial non-inflammatory lesions were weakly correlated to sebum excretion rate and weakly inversely correlated to forehead and cheek hydration. We examined stress through the use of a normalized peak-to-trough ratio (higher numbers indicated less stress), which correlated with skin hydration and inversely correlated with sebum excretion rate. Sebum excretion rate was weakly correlated to testosterone levels, and facial hydration correlated with estradiol levels. Correlations with the gut microbiome showed differential correlations with inflammatory and non-inflammatory lesions, with Clostridium sp AF 23-8 correlating to inflammatory lesion counts, while Actinomyces naeslundii str Howell 279 correlated to non-inflammatory lesions. Overall, measures of stress and circulating hormones correlate to skin biophysical properties and acne lesion counts. Also, different gut bacteria correlate with either inflammatory or non-inflammatory lesion counts. We hope that our findings stimulate further work on the gut-mind-stress-skin axis within acne.
Collapse
Affiliation(s)
- Raja K. Sivamani
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- Department of Dermatology, University of California-Davis, Sacramento, CA 95616, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
- Pacific Skin Institute, Sacramento, CA 95815, USA
| | - Jessica Maloh
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| | - Yvonne Nong
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| |
Collapse
|
27
|
Du Z, Yamasaki S, Oya T, Cai Y. Cellulase-lactic acid bacteria synergy action regulates silage fermentation of woody plant. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:125. [PMID: 37542284 PMCID: PMC10403842 DOI: 10.1186/s13068-023-02368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Feed shortage is an important factor limiting livestock production in the world. To effectively utilize natural woody plant resources, we used wilting and microbial additives to prepare an anaerobic fermentation feed of mulberry, and used PacBio single-molecule real-time (SMRT) sequencing technology to analyse the "enzyme-bacteria synergy" and fermentation mechanism. RESULTS The fresh branches and leaves of mulberry have high levels of moisture and nutrients, and also contain a diverse range of epiphytic microorganisms. After ensiling, the microbial diversity decreased markedly, and the dominant bacteria rapidly shifted from Gram-negative Proteobacteria to Gram-positive Firmicutes. Lactic acid bacteria (LAB) emerged as the dominant microbial population, resulting in increased in the proportion of the carbohydrate metabolism and decreased in the proportion of the amino acid and "global and overview map" (GOM) metabolism categories. The combination of cellulase and LAB exhibited a synergistic effect, through which cellulases such as glycanase, pectinase, and carboxymethyl cellulase decomposed cellulose and hemicellulose into sugars. LAB converted these sugars into lactic acid through the glycolytic pathway, thereby improving the microbial community structure, metabolism and fermentation quality of mulberry silage. The GOM, carbohydrate metabolism, and amino acid metabolism were the main microbial metabolic categories during ensiling. The presence of LAB had an important effect on the microbial community and metabolic pathways during silage fermentation. A "co-occurrence microbial network" formed with LAB, effectively inhibiting the growth of harmful microorganisms, and dominating the anaerobic fermentation process. CONCLUSIONS In summary, PacBio SMRT was used to accurately analyse the microbial network information and regulatory mechanism of anaerobic fermentation, which provided a scientific basis for the study of woody silage fermentation theory. This study reveals for the first time the main principle of the enzyme-bacteria synergy in a woody silage fermentation system, which provides technical support for the development and utilization of woody feed resources, and achieves sustainable livestock production.
Collapse
Affiliation(s)
- Zhumei Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Seishi Yamasaki
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Tetsuji Oya
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Yimin Cai
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan.
| |
Collapse
|
28
|
Salazar J, Durán P, Díaz MP, Chacín M, Santeliz R, Mengual E, Gutiérrez E, León X, Díaz A, Bernal M, Escalona D, Hernández LAP, Bermúdez V. Exploring the Relationship between the Gut Microbiota and Ageing: A Possible Age Modulator. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5845. [PMID: 37239571 PMCID: PMC10218639 DOI: 10.3390/ijerph20105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The gut microbiota (GM) has been the subject of intense research in recent years. Therefore, numerous factors affecting its composition have been thoroughly examined, and with them, their function and role in the individual's systems. The gut microbiota's taxonomical composition dramatically impacts older adults' health status. In this regard, it could either extend their life expectancy via the modulation of metabolic processes and the immune system or, in the case of dysbiosis, predispose them to age-related diseases, including bowel inflammatory and musculoskeletal diseases and metabolic and neurological disorders. In general, the microbiome of the elderly tends to present taxonomic and functional changes, which can function as a target to modulate the microbiota and improve the health of this population. The GM of centenarians is unique, with the faculty-promoting metabolic pathways capable of preventing and counteracting the different processes associated with age-related diseases. The molecular mechanisms by which the microbiota can exhibit anti-ageing properties are mainly based on anti-inflammatory and antioxidant actions. This review focuses on analysing the current knowledge of gut microbiota characteristics and modifiers, its relationship with ageing, and the GM-modulating approaches to increase life expectancy.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Maricarmen Chacín
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Sociedad Internacional de Rejuvenecimiento Facial No Quirúrgico (SIRF), Barranquilla 080002, Colombia
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Edgardo Mengual
- Biological Research Institute “Doctors Orlando Castejon and Haydee V Castejon”, Faculty of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Emma Gutiérrez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Xavier León
- Instituto Ecuatoriano de Seguridad Social, Cuenca 010101, Ecuador
| | - Andrea Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Marycarlota Bernal
- Facultad de Ingenierias, Universidad Simón Bolívar, Cúcuta 540001, Colombia
| | - Daniel Escalona
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | | | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| |
Collapse
|
29
|
Candeliere F, Musmeci E, Amaretti A, Sola L, Raimondi S, Rossi M. Profiling of the intestinal community of Clostridia: taxonomy and evolutionary analysis. MICROBIOME RESEARCH REPORTS 2023; 2:13. [PMID: 38047279 PMCID: PMC10688793 DOI: 10.20517/mrr.2022.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 12/05/2023]
Abstract
Aim: Clostridia are relevant commensals of the human gut due to their major presence and correlations to the host. In this study, we investigated intestinal Clostridia of 51 healthy subjects and reconstructed their taxonomy and phylogeny. The relatively small number of intestinal Clostridia allowed a systematic whole genome approach based on average amino acid identity (AAI) and core genome with the aim of revising the current classification into genera and determining evolutionary relationships. Methods: 51 healthy subjects' metagenomes were retrieved from public databases. After the dataset's validation through comparison with Human Microbiome Project (HMP) samples, the metagenomes were profiled using MetaPhlAn3 to identify the population ascribed to the class Clostridia. Intestinal Clostridia genomes were retrieved and subjected to AAI analysis and core genome identification. Phylogeny investigation was conducted with RAxML and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithms, and SplitsTree for split decomposition. Results: 225 out of 406 bacterial taxonomic units were ascribed to Bacillota [Firmicutes], among which 124 were assigned to the class Clostridia. 77 out of the 124 taxonomic units were referred to a species, altogether covering 87.7% of Clostridia abundance. According to the lowest AAI genus boundary set at 55%, 15 putative genera encompassing more than one species (G1 to G15) were identified, while 19 species did not cluster with any other one and each appeared to belong to a diverse genus. Phylogenetic investigations highlighted that most of the species clustered into three main evolutive clades. Conclusion: This study shed light on the species of Clostridia colonizing the gut of healthy adults and pinpointed several gaps in knowledge regarding the taxonomy and the phylogeny of Clostridia.
Collapse
Affiliation(s)
- Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Eliana Musmeci
- Department of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Bologna 40136, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia 42124, Italy
| | - Laura Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia 42124, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia 42124, Italy
| |
Collapse
|
30
|
Van der Veken D, Poortmans M, Dewulf L, Fraeye I, Michiels C, Leroy F. Challenge tests reveal limited outgrowth of proteolytic Clostridium botulinum during the production of nitrate- and nitrite-free fermented sausages. Meat Sci 2023; 200:109158. [PMID: 36905786 DOI: 10.1016/j.meatsci.2023.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/15/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Nitrate and nitrite salts perform a versatile role in fermented meats, including the inhibition of food pathogens (in particular proteolytic group I Clostridium botulinum). Despite the increasing interest in clean-label products, little is known about the behaviour of this pathogen in response to the removal of chemical preservatives from fermented meat formulations. Therefore, challenge tests with a cocktail of nontoxigenic group I C. botulinum strains were performed to produce nitrate/nitrite-free fermented sausages under different acidification conditions and starter culture formulations, including the use of an anticlostridial Mammaliicoccus sciuri strain. Results showed limited outgrowth of C. botulinum, even in the absence of acidification. The anticlostridial starter culture did not lead to an additional inhibitory effect. The selective plating procedure adopted within this study proofed robust to follow germination and growth of C. botulinum, inhibiting common fermentative meat microbiota. The challenge tests constitute a suitable tool to assess the behaviour of this food pathogen within fermented meats upon nitrate- and nitrite omission.
Collapse
Affiliation(s)
- David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marijke Poortmans
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Lore Dewulf
- Meat Technology & Science of Protein-Rich Foods, Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Ghent, Belgium
| | - Ilse Fraeye
- Meat Technology & Science of Protein-Rich Foods, Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Ghent, Belgium
| | - Chris Michiels
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
31
|
Lúquez C, Halpin JL, Dykes J. Unintended consequences: Renaming botulinum neurotoxin-producing species of clostridium and related species. Toxicon 2023; 224:107036. [PMID: 36693544 PMCID: PMC10866187 DOI: 10.1016/j.toxicon.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Botulinum neurotoxin-producing species of Clostridium are highly diverse. Clostridium botulinum could represent at least four different species of Clostridium. In addition, strains that do not produce botulinum neurotoxin are closely related to toxigenic strains, probably representing the same species. Although reclassification of these organisms has been proposed in the past, their species names have remained unchanged, mainly because of the premise that changing names of medically relevant organisms might cause confusion in the healthcare and scientific community. In this review, we discuss the possible unintended consequences of reclassifying botulinum neurotoxin-producing species of Clostridium, which are of public health, medical, and biodefense interest.
Collapse
Affiliation(s)
- Carolina Lúquez
- Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | - Janet Dykes
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
32
|
Abstract
The contribution of dysbiotic gut microbiota configuration is essential when making reference to the metabolic disorders by increasing energy. It is important to understand that the gut microbiota induced metabolic disease mechanisms and inflammations. Thus it is imperative to have an insight into the state of all chronic subclinical inflammations influencing disease outcomes. However, from the emerging studies, there still exist inconsistencies in the findings of such studies. While making the best out of the reasons for inconsistencies of the findings, this review is designed to make a clear spell out as to the inconsistence of gut microbiota with respect to diabetes. It considered gut-virome alterations and diabetes and gut-bacteriome-gut-virome-alterations and diabetes as confounding factors. The review further explained some study design strategies that will spontaneously eliminate any potential confounding factors to lead to a more evidence based diabetic-gut microbiota medicine. Lipopolysaccharide (LPS) pro-inflammatory, metabolic endotoxemia and diet/gut microbiota insulin-resistance and low-grade systemic inflammation induced by gut microbiota can trigger pro-inflammatory cytokines in insulin-resistance, consequently, leading to the diabetic condition. While diet influences the gut microbiota, the consequences are mainly the constant high levels of pro-inflammatory cytokines in the circulatory system. Of recent, dietary natural products have been shown to be anti-diabetic. The effects of resveratrol on the gut showed an improved lipid profile, anti-inflammatory properties and ameliorated the endotoxemia, tight junction and glucose intolerance.
Collapse
|
33
|
Lawson PA, Saavedra Perez L, Sankaranarayanan K. Reclassification of Clostridium cocleatum, Clostridium ramosum, Clostridium spiroforme and Clostridium saccharogumia as Thomasclavelia cocleata gen. nov., comb. nov., Thomasclavelia ramosa comb. nov., gen. nov., Thomasclavelia spiroformis comb. nov. and Thomasclavelia saccharogumia comb. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748617 DOI: 10.1099/ijsem.0.005694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The genus Clostridium is phenotypically and genotypically diverse, with many species phylogenetically located outside Clostridium sensu stricto. One such group consists of the species Clostridium cocleatum, Clostridium ramosum, Clostridium spiroforme and Clostridium saccharogumia (formally clostridial rRNA cluster XVIII) [1]. Sequencing of the 16S rRNA and, more recently, the results of genomic analyses have demonstrated that these species represent a coherent cluster separated from other closely related genera located in the family Coprobacillaceae within the order Erysipelotrichales [2]. In addition to phenotypic, phylogenetic and genomic comparisons, chemotaxonomic features were consistent between all four species, the predominant fatty acids were C16 : 0 and C18 : 1ω9c, while glucose and ribose were the whole cell sugars present in the cell walls. Furthermore, he results of peptidoglycan analysis indicated that meso-2,6-diaminopimelic acid was present as the diagnostic diamino acid in all four species. Biochemical profiles were also concordant with them being closely related species. Therefore, on the basis of phylogenetic, genomic, phenotypic and chemotaxonomic information, a novel genus, Thomasclavelia gen. nov., is proposed. It is suggested that Clostridium cocleatum, Clostridium ramosum, Clostridium spiroforme and Clostridium saccharogumia be transferred to this genus as Thomasclavelia cocleata comb. nov., Thomasclavelia ramosa comb. nov., Thomasclavelia saccharogumia comb. nov. and Thomasclavelia spiroformis comb. nov. The type species of the genus is Thomasclavelia ramosa CCUG 24038T (=ATCC 25582T=DSM 1402T).
Collapse
Affiliation(s)
- Paul A Lawson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Liz Saavedra Perez
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA.,Present address: Molecular & Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, Maine 04469-5735, USA
| | - Krithivasan Sankaranarayanan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA.,Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
34
|
Papadomichelakis G, Palamidi I, Paraskeuas VV, Giamouri E, Mountzouris KC. Evaluation of a Natural Phytogenic Formulation as an Alternative to Pharmaceutical Zinc Oxide in the Diet of Weaned Piglets. Animals (Basel) 2023; 13:431. [PMID: 36766320 PMCID: PMC9913353 DOI: 10.3390/ani13030431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
A natural phytogenic formulation (NPF) was tested as an alternative to pharmaceutical zinc oxide (ZnO) in weaned piglets with respect to growth performance, apparent total tract digestibility and faecal microbiota composition and metabolic activity. Two dietary NPF levels (NPF: 1000 and 2000 mg/kg diet) were compared to a positive control (ZnO: 3000 mg ZnO/kg diet) and a negative control (CON: no added ZnO or NPF) using 84 weaned piglets from 29 d to 78 d (days of age). Feed conversion ratio was improved (p < 0.05) in ZnO and NPF piglets were compared to CON at 50 d. Dry matter, organic matter and crude protein (p < 0.05) digestibility was improved in NPF piglets compared to CON at 57 d. Compared to CON, NPF inclusion reduced E. coli (p < 0.05) and increased C. leptum subgroup (p < 0.01) at 57 d and 78 d, and reduced C. perfringens subgroup (p < 0.05; at 78 d). The ZnO reduced (p < 0.001) E. coli and C. perfringens subgroup (p < 0.01) compared to CON at 78 d. Moreover, ZnO and NPF reduced molar ratios of branched chain volatile fatty acids (p < 0.05) compared to CON, while NPF also increased butyric acid (p < 0.05) at 78 d. In conclusion, the NPF appeared to be a promising alternative to pharmaceutical doses of ZnO.
Collapse
Affiliation(s)
| | | | | | | | - Konstantinos C. Mountzouris
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece
| |
Collapse
|
35
|
Asare PT, Lee CH, Hürlimann V, Teo Y, Cuénod A, Akduman N, Gekeler C, Afrizal A, Corthesy M, Kohout C, Thomas V, de Wouters T, Greub G, Clavel T, Pamer EG, Egli A, Maier L, Vonaesch P. A MALDI-TOF MS library for rapid identification of human commensal gut bacteria from the class Clostridia. Front Microbiol 2023; 14:1104707. [PMID: 36896425 PMCID: PMC9990839 DOI: 10.3389/fmicb.2023.1104707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Microbial isolates from culture can be identified using 16S or whole-genome sequencing which generates substantial costs and requires time and expertise. Protein fingerprinting via Matrix-assisted Laser Desorption Ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid bacterial identification in routine diagnostics but shows a poor performance and resolution on commensal bacteria due to currently limited database entries. The aim of this study was to develop a MALDI-TOF MS plugin database (CLOSTRI-TOF) allowing for rapid identification of non-pathogenic human commensal gastrointestinal bacteria. Methods We constructed a database containing mass spectral profiles (MSP) from 142 bacterial strains representing 47 species and 21 genera within the class Clostridia. Each strain-specific MSP was constructed using >20 raw spectra measured on a microflex Biotyper system (Bruker-Daltonics) from two independent cultures. Results For validation, we used 58 sequence-confirmed strains and the CLOSTRI-TOF database successfully identified 98 and 93% of the strains, respectively, in two independent laboratories. Next, we applied the database to 326 isolates from stool of healthy Swiss volunteers and identified 264 (82%) of all isolates (compared to 170 (52.1%) with the Bruker-Daltonics library alone), thus classifying 60% of the formerly unknown isolates. Discussion We describe a new open-source MSP database for fast and accurate identification of the Clostridia class from the human gut microbiota. CLOSTRI-TOF expands the number of species which can be rapidly identified by MALDI-TOF MS.
Collapse
Affiliation(s)
- Paul Tetteh Asare
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Chi-Hsien Lee
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Vera Hürlimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Youzheng Teo
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinical Bacteriology and Mycology, University Hospital of Basel, Basel, Switzerland
| | - Nermin Akduman
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany.,Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Cordula Gekeler
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany.,Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Afrizal Afrizal
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Myriam Corthesy
- Institute of Microbiology of the University of Lausanne, University Hospital Centre (CHUV), Lausanne, Switzerland
| | - Claire Kohout
- Duchossois Family Institute, Division of Infectious Diseases and Global Health, University of Chicago, Chicago, IL, United States
| | | | | | - Gilbert Greub
- Institute of Microbiology of the University of Lausanne, University Hospital Centre (CHUV), Lausanne, Switzerland
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Eric G Pamer
- Duchossois Family Institute, Division of Infectious Diseases and Global Health, University of Chicago, Chicago, IL, United States
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinical Bacteriology and Mycology, University Hospital of Basel, Basel, Switzerland
| | - Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany.,Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
Urvashi, Gundawar K, Sharma S, Choksket S, Sharma M, Grover V, Patil PB, Korpole S. Lacrimispora defluvii PI-S10-B5AT sp. nov., an Obligate Anaerobe, Isolated from an Industrial Waste and Reclassification of Hungatella xylanolytica as Lacrimispora xylanolytica and Clostridium indicum as Lacrimispora indica Comb. nov. Curr Microbiol 2022; 79:397. [DOI: 10.1007/s00284-022-03096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
|
37
|
Zhang Y, Bailey TS, Kubiak AM, Lambin P, Theys J. Heterologous Gene Regulation in Clostridia: Rationally Designed Gene Regulation for Industrial and Medical Applications. ACS Synth Biol 2022; 11:3817-3828. [PMID: 36265075 PMCID: PMC9680021 DOI: 10.1021/acssynbio.2c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several species from the Clostridium genus show promise as industrial solvent producers and cancer therapeutic delivery vehicles. Previous development of shuttle plasmids and genome editing tools has aided the study of these species and enabled their exploitation in industrial and medical applications. Nevertheless, the precise control of gene expression is still hindered by the limited range of characterized promoters. To address this, libraries of promoters (native and synthetic), 5' UTRs, and alternative start codons were constructed. These constructs were tested in Escherichia coli K-12, Clostridium sporogenes NCIMB 10696, and Clostridium butyricum DSM 10702, using β-glucuronidase (gusA) as a gene reporter. Promoter activity was corroborated using a second gene reporter, nitroreductase (nmeNTR) from Neisseria meningitides. A strong correlation was observed between the two reporters. In C. sporogenes and C. butyricum, respectively, changes in GusA activity between the weakest and strongest expressing levels were 129-fold and 78-fold. Similar results were obtained with the nmeNTR. Using the GusA reporter, translation initiation from six alternative (non-AUG) start codons was measured in E. coli, C. sporogenes, and C. butyricum. Clearly, species-specific differences between clostridia and E. coli in translation initiation were observed, and the performance of the start codons was influenced by the upstream 5' UTR sequence. These results highlight a new opportunity for gene control in recombinant clostridia. To demonstrate the value of these results, expression of the sacB gene from Bacillus subtilis was optimized for use as a novel negative selection marker in C. butyricum. In summary, these results indicate improvements in the understanding of heterologous gene regulation in Clostridium species and E. coli cloning strains. This new knowledge can be utilized for rationally designed gene regulation in Clostridium-mediated industrial and medical applications, as well as fundamental research into the biology of Clostridium species.
Collapse
Affiliation(s)
- Yanchao Zhang
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,
| | - Tom S. Bailey
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aleksandra M. Kubiak
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,Exomnis
Biotech BV, Oxfordlaan
55, 6229 EV Maastricht, The Netherlands
| | - Philippe Lambin
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jan Theys
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
38
|
The Light Chain Domain and Especially the C-Terminus of Receptor-Binding Domain of the Botulinum Neurotoxin (BoNT) Are the Hotspots for Amino Acid Variability and Toxin Type Diversity. Genes (Basel) 2022; 13:genes13101915. [PMID: 36292800 PMCID: PMC9601653 DOI: 10.3390/genes13101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/15/2023] Open
Abstract
Botulinum neurotoxins (BoNT) are the most potent toxins in the world. They are produced by a few dozens of strains within several clostridial species. The toxin that they produce can cause botulism, a flaccid paralysis in humans and other animals. With seven established serologically different types and over 40 subtypes, BoNTs are among the most diverse known toxins. The toxin, its structure, its function and its physiological effects on the neural cell and animal hosts along with its diversity have been the subjects of numerous studies. However, many gaps remain in our knowledge about the BoNT toxin and the species that produce them. One of these gaps involves the distribution and extent of variability along the full length of the gene and the protein as well as its domains and subdomains. In this study, we performed an extensive analysis of all of the available 143 unique BoNT-encoding genes and their products, and we investigated their diversity and evolution. Our results indicate that while the nucleotide variability is almost uniformly distributed along the entire length of the gene, the amino acid variability is not. We found that most of the differences were concentrated along the protein's light chain (LC) domain and especially, the C-terminus of the receptor-binding domain (HCC). These two regions of the protein are thus identified as the main source of the toxin type differentiation, and consequently, this toxin's versatility to bind different receptors and their isoforms and act upon different substrates, thus infecting different hosts.
Collapse
|
39
|
Epidemiology, aetiology and clinical characteristics of clostridial bacteraemia: a 6-year population-based observational study of 386 patients. Eur J Clin Microbiol Infect Dis 2022; 41:1305-1314. [PMID: 36136283 PMCID: PMC9556422 DOI: 10.1007/s10096-022-04491-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
The objective of this study is to provide a population-based clinical, epidemiological and microbiological overview of clostridial bacteraemia. All cases of bacteraemia in the Skåne Region between 2014 and 2019 with a species currently belonging to the Clostridium genus were identified in the regional clinical microbiology database. Clinical data were retrieved by medical chart-review. A total of 386 unique episodes of clostridial bacteraemia were found resulting in an incidence rate of 4.9/100.000 person-years. The median age was 76 with 56% males. The incidence rate ratio was 34.3 for those aged 80 + vs 0–59. The minimum inhibitory concentrations varied between species but were universally low for metronidazole and carbapenems. Malignancy was the most common co-morbidity, in 47% of patients and most pronounced for C. septicum. Criteria for sepsis and septic shock were met in 69% and 17%, respectively. The 28-day mortality was 26%. High age, absence of fever, high C-reactive protein and high SOFA-score were all significantly associated with mortality. We present the highest incidence rate of clostridial bacteraemia to date. Clostridial bacteraemia is a severe condition with acute onset, affecting elderly with co-morbidities, most pronounced malignancies. Mortality is related to acute manifestations rather than to background factors.
Collapse
|
40
|
Abdolmohammadi Khiav L, Zahmatkesh A. Major pathogenic Clostridia in human and progress toward the clostridial vaccines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1059-1068. [PMID: 36246067 PMCID: PMC9526890 DOI: 10.22038/ijbms.2022.65518.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022]
Abstract
The Clostridium genus is composed of a large spectrum of heterogeneous bacteria. They are Gram-positive, mostly mesophilic, and anaerobic spore-forming strains. Clostridia are widely distributed in oxygen-free habitats. They are found principally in the soil and intestines of ruminants as normal flora, but also are the cause of several infections in humans. The infections produced by important species in humans include botulism, tetanus, pseudomembranous colitis, antibiotics-associated diarrhea, and gas gangrene. Immunization with toxoid or bacterin-toxoid or genetically modified or other vaccines is a protective way against clostridial infection. Several experimental or commercial vaccines have been developed worldwide. Although conventional vaccines including toxoid vaccines are very important, the new generation of vaccines is an effective alternative to conventional vaccines. Recent advances have made it possible for new vaccines to increase immunogenicity. This review discusses briefly the important species of clostridia in humans, their toxins structure, and vaccine development and usage throughout the world.
Collapse
Affiliation(s)
- Lida Abdolmohammadi Khiav
- Department of Anaerobic Vaccine Research and Production, Specialized Clostridia Research Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Vaccine Research and Production, Specialized Clostridia Research Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| |
Collapse
|
41
|
Was the Last Bacterial Common Ancestor a Monoderm after All? Genes (Basel) 2022; 13:genes13020376. [PMID: 35205421 PMCID: PMC8871954 DOI: 10.3390/genes13020376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
The very nature of the last bacterial common ancestor (LBCA), in particular the characteristics of its cell wall, is a critical issue to understand the evolution of life on earth. Although knowledge of the relationships between bacterial phyla has made progress with the advent of phylogenomics, many questions remain, including on the appearance or disappearance of the outer membrane of diderm bacteria (also called Gram-negative bacteria). The phylogenetic transition between monoderm (Gram-positive bacteria) and diderm bacteria, and the associated peptidoglycan expansion or reduction, requires clarification. Herein, using a phylogenomic tree of cultivated and characterized bacteria as an evolutionary framework and a literature review of their cell-wall characteristics, we used Bayesian ancestral state reconstruction to infer the cell-wall architecture of the LBCA. With the same phylogenomic tree, we further revisited the evolution of the division and cell-wall synthesis (dcw) gene cluster using homology- and model-based methods. Finally, extensive similarity searches were carried out to determine the phylogenetic distribution of the genes involved with the biosynthesis of the outer membrane in diderm bacteria. Quite unexpectedly, our analyses suggest that all cultivated and characterized bacteria might have evolved from a common ancestor with a monoderm cell-wall architecture. If true, this would indicate that the appearance of the outer membrane was not a unique event and that selective forces have led to the repeated adoption of such an architecture. Due to the lack of phenotypic information, our methodology cannot be applied to all extant bacteria. Consequently, our conclusion might change once enough information is made available to allow the use of an even more diverse organism selection.
Collapse
|
42
|
Abstract
Soil microbes are considered the second genome of plants. Understanding the distribution and network of aluminum (Al)-tolerant microorganisms is helpful to alleviate Al toxicity to plants in acidic soils. Here, we examined soluble Al3+ and bacterial communities carrying Al resistance genes in paddy soils with a soil pH range of 3.6 to 8.7. In the acidic soil with pH <5.1, the content of Al3+ increased significantly. There were abundant and diverse Al-tolerant microorganisms in acidic soils, including Clostridium, Bacillus, Paenibacillus, Desulfitobacterium, and Desulfosporosinus, etc. Moreover, compared with neutral and alkaline soils, the network structure of Al-tolerant microorganisms was more complex. The potential roles of major Al-tolerant microbial taxa on each other in the ecological network were identified by a directed network along 0.01 pH steps. The influential taxa in the network had a broader niche and contained more antioxidant functional genes to resist Al stress, indicating their survival advantage over the sensitive taxa. Our study is the first to explore the distribution of Al-tolerant microorganisms in continental paddies and reveal their potential associations mediated by pH, which provides a basis for further utilization of microbial resources in acidic agricultural soils. IMPORTANCE Aluminum (Al) toxicity is the primary limiting factor of crop production in acidic soils with pH <5.0. Numerous studies have focused on the mechanism of Al toxicity and tolerance in plants; however, the effects of Al toxicity on soil microorganisms and their tolerance remain less studied. This study investigated the distribution and association patterns of Al-tolerant microorganisms across continental paddy fields with a soil pH range of 3.6 to 8.7. The results showed that soil pH filters exchangeable Al3+ content, diversity, and potential associations of Al-tolerant microbial community. The influential taxa in community network play an important role in Al tolerance and have potential applications in mitigating Al toxicity and promoting crop growth in acidic soils.
Collapse
|
43
|
Dynamics of Microbial Communities during the Removal of Copper and Zinc in a Sulfate-Reducing Bioreactor with a Limestone Pre-Column System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031484. [PMID: 35162506 PMCID: PMC8835105 DOI: 10.3390/ijerph19031484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Abstract
Biological treatment using sulfate-reducing bacteria (SRB) is a promising approach to remediate acid rock drainage (ARD). Our purpose was to assess the performance of a sequential system consisting of a limestone bed filter followed by a sulfate-reducing bioreactor treating synthetic ARD for 375 days and to evaluate changes in microbial composition. The treatment system was effective in increasing the pH of the ARD from 2.7 to 7.5 and removed total Cu(II) and Zn(II) concentrations by up to 99.8% and 99.9%, respectively. The presence of sulfate in ARD promoted sulfidogenesis and changed the diversity and structure of the microbial communities. Methansarcina spp. was the most abundant amplicon sequence variant (ASV); however, methane production was not detected. Biodiversity indexes decreased over time with the bioreactor operation, whereas SRB abundance remained stable. Desulfobacteraceae, Desulfocurvus, Desulfobulbaceae and Desulfovibrio became more abundant, while Desulfuromonadales, Desulfotomaculum and Desulfobacca decreased. Geobacter and Syntrophobacter were enriched with bioreactor operation time. At the beginning, ASVs with relative abundance <2% represented 65% of the microbial community and 21% at the end of the study period. Thus, the results show that the microbial community gradually lost diversity while the treatment system was highly efficient in remediating ARD.
Collapse
|
44
|
Silva-Andrade C, Martin AJ, Garrido D. Comparative Genomics of Clostridium baratii Reveals Strain-Level Diversity in Toxin Abundance. Microorganisms 2022; 10:microorganisms10020213. [PMID: 35208668 PMCID: PMC8879937 DOI: 10.3390/microorganisms10020213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Clostridium baratii strains are rare opportunistic pathogens associated with botulism intoxication. They have been isolated from foods, soil and be carried asymptomatically or cause botulism outbreaks. Is not taxonomically related to Clostridium botulinum, but some strains are equipped with BoNT/F7 cluster. Despite their relationship with diseases, our knowledge regarding the genomic features and phylogenetic characteristics is limited. We analyzed the pangenome of C. baratii to understand the diversity and genomic features of this species. We compared existing genomes in public databases, metagenomes, and one newly sequenced strain isolated from an asymptomatic subject. The pangenome was open, indicating it comprises genetically diverse organisms. The core genome contained 28.49% of the total genes of the pangenome. Profiling virulence factors confirmed the presence of phospholipase C in some strains, a toxin capable of disrupting eukaryotic cell membranes. Furthermore, the genomic analysis indicated significant horizontal gene transfer (HGT) events as defined by the presence of prophage genomes. Seven strains were equipped with BoNT/F7 cluster. The active site was conserved in all strains, identifying a missing 7-aa region upstream of the active site in C. baratii genomes. This analysis could be important to advance our knowledge regarding opportunistic clostridia and better understand their contribution to disease.
Collapse
Affiliation(s)
- Claudia Silva-Andrade
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile;
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alberto J. Martin
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile;
- Correspondence: (A.J.M.); (D.G.)
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (A.J.M.); (D.G.)
| |
Collapse
|
45
|
Lee J. Lessons from Clostridial Genetics: Toward Engineering Acetogenic Bacteria. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Patakova P, Branska B, Vasylkivska M, Jureckova K, Musilova J, Provaznik I, Sedlar K. Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol Adv 2021; 58:107889. [PMID: 34929313 DOI: 10.1016/j.biotechadv.2021.107889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Solventogenic clostridia are not a strictly defined group within the genus Clostridium but its representatives share some common features, i.e. they are anaerobic, non-pathogenic, non-toxinogenic and endospore forming bacteria. Their main metabolite is typically 1-butanol but depending on species and culture conditions, they can form other metabolites such as acetone, isopropanol, ethanol, butyric, lactic and acetic acids, and hydrogen. Although these organisms were previously used for the industrial production of solvents, they later fell into disuse, being replaced by more efficient chemical production. A return to a more biological production of solvents therefore requires a thorough understanding of clostridial metabolism. Transcriptome analysis, which reflects the involvement of individual genes in all cellular processes within a population, at any given (sampling) moment, is a valuable tool for gaining a deeper insight into clostridial life. In this review, we describe techniques to study transcription, summarize the evolution of these techniques and compare methods for data processing and visualization of solventogenic clostridia, particularly the species Clostridium acetobutylicum and Clostridium beijerinckii. Individual approaches for evaluating transcriptomic data are compared and their contributions to advancements in the field are assessed. Moreover, utilization of transcriptomic data for reconstruction of computational clostridial metabolic models is considered and particular models are described. Transcriptional changes in glucose transport, central carbon metabolism, the sporulation cycle, butanol and butyrate stress responses, the influence of lignocellulose-derived inhibitors on growth and solvent production, and other respective topics, are addressed and common trends are highlighted.
Collapse
Affiliation(s)
- Petra Patakova
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic.
| | - Barbora Branska
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Maryna Vasylkivska
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | | | - Jana Musilova
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Ivo Provaznik
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Karel Sedlar
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| |
Collapse
|
47
|
Dorn-In S, Mang S, Schwaiger K. Unknown cold-tolerant Clostridium spp.: Characteristics and potential to cause meat spoilage. Food Microbiol 2021; 102:103916. [PMID: 34809943 DOI: 10.1016/j.fm.2021.103916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/11/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022]
Abstract
Clostridium spp. are ubiquitous bacteria and often found in foods and animals. Some species are pathogenic, others food spoiling or commensals. In this study, 65 cold-tolerant Clostridium spp. strains isolated from variable samples (beef, lamb, venison, feces/skin of wild boars) were investigated. Fifty strains were lecithinase positive; six additionally produced β-hemolysis. By applying specific qPCR, 16S rRNA gene analysis, RFLP method, and MALDI-TOF MS, they were classified into two major groups: 29 strains were identified as C. tagluense-like, while the other 36 remained unidentified. Subsequently, twenty-two vacuum-packed beef samples were spiked with a single strain from both groups and stored at 4 °C for 8 weeks. The odor of challenged samples was variable (from unchanged, sour/musty, to sulfurous), while color, meat consistency and drip loss were similar to the control group. The ability to produce gas of all tested strains was lower than of C. estertheticum. Even though both groups of cold-tolerant clostridia exhibited similar 16S rRNA genes and biochemical activities, RFLP methods and MALDI-TOF MS are sufficient to differentiate them. In terms of food safety, strains producing lecithinase and hemolysin should be further investigated for their potential to produce substances affecting human and animal health.
Collapse
Affiliation(s)
- Samart Dorn-In
- Chair of Food Safety, Faculty of Veterinary Medicine, LMU Munich, Schönleutnerstr. 8, 85764, Oberschleißheim, Germany.
| | - Sirkka Mang
- Chair of Food Safety, Faculty of Veterinary Medicine, LMU Munich, Schönleutnerstr. 8, 85764, Oberschleißheim, Germany
| | - Karin Schwaiger
- Chair of Food Safety, Faculty of Veterinary Medicine, LMU Munich, Schönleutnerstr. 8, 85764, Oberschleißheim, Germany
| |
Collapse
|
48
|
Comparative genomic analysis of hyper-ammonia producing Acetoanaerobium sticklandii DSM 519 with purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genomics 2021; 113:4196-4205. [PMID: 34780936 DOI: 10.1016/j.ygeno.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Acetoanaerobium sticklandii DSM519 (CST) is a hype-ammonia producing non-pathogenic anaerobe that can use amino acids as important carbon and energy sources through the Stickland reactions. Biochemical aspects of this organism have been extensively studied, but systematic studies addressing its metabolic discrepancy remain scant. In this perspective, we have intensively analyzed its genomic and metabolic characteristics to comprehend the evolutionary conservation of amino acid catabolism by a comparative genomic approach. The whole-genome data indicated that CST has shown a phylogenomic similarity with hyper-ammonia producing, purinolytic, and proteolytic pathogenic Clostridia. CST has shown to common genomic context sharing across the purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genome syntenic analysis described that syntenic orthologs might be originated from the recent ancestor at a slow evolution rate and syntenic-out paralogs evolved from either CDF or CAC via α-event and β-event. Collinearity of either gene orders or gene families was adjusted with syntenic out-paralogs across these genomes. The genome-wide metabolic analysis predicted 11 unique putative metabolic subsystems from the CST genome for amino acid catabolism and hydrogen production. The in silico analysis of our study revealed that a characteristic system for amino acid catabolism-directed biofuel synthesis might have slowly evolved and established as a core genomic content of CST.
Collapse
|
49
|
Liu R, Shi J, Shultz S, Guo D, Liu D. Fecal Bacterial Community of Allopatric Przewalski's Gazelles and Their Sympatric Relatives. Front Microbiol 2021; 12:737042. [PMID: 34630362 PMCID: PMC8499116 DOI: 10.3389/fmicb.2021.737042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Mammal gastrointestinal tracts harbor diverse bacterial communities that play important roles in digestion, development, behavior, and immune function. Although, there is an increasing understanding of the factors that affect microbial community composition in laboratory populations, the impact of environment and host community composition on microbiomes in wild populations is less understood. Given that the composition of bacterial communities can be shaped by ecological factors, particularly exposure to the microbiome of other individuals, inter-specific interactions should impact on microbiome community composition. Here, we evaluated inter-population and inter-specific similarity in the fecal microbiota of Przewalski's gazelle (Procapra przewalskii), an endangered endemic ruminant around Qinghai Lake in China. We compared the fecal bacterial communities of three Przewalski's gazelle populations, with those of two sympatric ruminants, Tibetan gazelle (Procapra picticaudata) and Tibetan sheep (Ovis aries). The fecal bacterial community richness (Chao1, ACE) did not vary across the three Przewalski's gazelle populations, nor did the composition vary between species. In contrast, the managed Przewalski's gazelle population had higher bacterial diversity (Shannon and Simpson) and was more similar to its sympatric Tibetan sheep in beta diversity than the wild Przewalski's gazelle populations. These results suggest that ecological factors like host community composition or diet affect Przewalski's gazelle's gastrointestinal bacterial community. The role of bacterial community composition in maintaining gastrointestinal health should be assessed to improve conservation management of endangered Przewalski's gazelle. More broadly, captive breeding and reintroduction efforts may be impeded, where captive management results in dysbiosis and introduction of pathogenic bacteria. In free ranging populations, where wildlife and livestock co-occur, infection by domestic pathogens and diseases may be an underappreciated threat to wild animals.
Collapse
Affiliation(s)
- Ruoshuang Liu
- School of Environment, Beijing Normal University, Beijing, China
| | - Jianbin Shi
- School of Environment, Beijing Normal University, Beijing, China
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Dongsheng Guo
- Key Laboratory of Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Dingzhen Liu
- Key Laboratory of Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
50
|
Wambui J, Cernela N, Stevens MJA, Stephan R. Whole Genome Sequence-Based Identification of Clostridium estertheticum Complex Strains Supports the Need for Taxonomic Reclassification Within the Species Clostridium estertheticum. Front Microbiol 2021; 12:727022. [PMID: 34589074 PMCID: PMC8473909 DOI: 10.3389/fmicb.2021.727022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Isolates within the Clostridium estertheticum complex (CEC) have routinely been identified through the 16S rRNA sequence, but the high interspecies sequence similarity reduces the resolution necessary for species level identification and often results in ambiguous taxonomic classification. The current study identified CEC isolates from meat juice (MJS) and bovine fecal samples (BFS) and determined the phylogeny of species within the CEC through whole genome sequence (WGS)-based analyses. About 1,054 MJS were screened for CEC using quantitative real-time PCR (qPCR). Strains were isolated from 33 MJS and 34 BFS qPCR-positive samples, respectively. Pan- and core-genome phylogenomics were used to determine the species identity of the isolates. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were used to validate the species identity. The phylogeny of species within the CEC was determined through a combination of these methods. Twenty-eight clostridia strains were isolated from MJS and BFS samples out of which 13 belonged to CEC. At 95% ANI and 70% dDDH thresholds for speciation, six CEC isolates were identified as genomospecies2 (n=3), Clostridium tagluense (n=2) and genomospecies3 (n=1). Lower thresholds of 94% ANI and 58% dDDH were required for the classification of seven CEC isolates into species C. estertheticum and prevent an overlap between species C. estertheticum and Clostridium frigoriphilum. Combination of the two species and abolishment of current subspecies classification within the species C. estertheticum are proposed. These data demonstrate the suitability of phylogenomics to identify CEC isolates and determine the phylogeny within CEC.
Collapse
Affiliation(s)
- Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|