1
|
Lai D, Sosicka P, Williams DJ, Bowyer ME, Ressler AK, Kohrt SE, Muron SJ, Crino PB, Freeze HH, Boland MJ, Heinzen EL. SLC35A2 loss of function variants affect glycomic signatures, neuronal fate, and network dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630524. [PMID: 39763953 PMCID: PMC11703275 DOI: 10.1101/2024.12.27.630524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
SLC35A2 encodes a UDP-galactose transporter essential for glycosylation of proteins and galactosylation of lipids and glycosaminoglycans. Germline genetic SLC35A2 variants have been identified in congenital disorders of glycosylation and somatic SLC35A2 variants have been linked to intractable epilepsy associated with malformations of cortical development. However, the functional consequences of these pathogenic variants on brain development and network integrity remain elusive. In this study, we use an isogenic human induced pluripotent stem cell-derived neuron model to comprehensively interrogate the functional impact of loss of function variants in SLC35A2 through the integration of cellular and molecular biology, protein glycosylation analysis, neural network dynamics, and single cell electrophysiology. We show that loss of function variants in SLC35A2 result in disrupted glycomic signatures and precocious neurodevelopment, yielding hypoactive, asynchronous neural networks. This aberrant network activity is attributed to an inhibitory/excitatory imbalance as characterization of neural composition revealed preferential differentiation of SLC35A2 loss of function variants towards the GABAergic fate. Additionally, electrophysiological recordings of synaptic activity reveal a shift in excitatory/inhibitory balance towards increased inhibitory drive, indicating changes occurring specifically at the pre-synaptic terminal. Our study is the first to provide mechanistic insight regarding the early development and functional connectivity of SLC35A2 loss of function variant harboring human neurons, providing important groundwork for future exploration of potential therapeutic interventions.
Collapse
Affiliation(s)
- Dulcie Lai
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Damian J Williams
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - MaryAnn E Bowyer
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrew K Ressler
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sarah E Kohrt
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Savannah J Muron
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Epilepsy and Neurodevelopmental Disorders, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Erin L Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
2
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2024:10.1038/s41583-024-00888-w. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Cervera-Juanes R, Zimmerman KD, Wilhelm L, Zhu D, Bodie J, Kohama SG, Urbanski HF. Modulation of neural gene networks by estradiol in old rhesus macaque females. GeroScience 2024; 46:5819-5841. [PMID: 38509416 PMCID: PMC11493911 DOI: 10.1007/s11357-024-01133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent subcutaneous bioidentical E2 chronic treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p = 1.6 × 10-51) and upregulation (p = 3.8 × 10-3) of UBE2M across both brain regions provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p = 1.9 × 10-4; interaction p = 3.5 × 10-2) of LTBR in the PFC provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step toward understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.
Collapse
Affiliation(s)
- Rita Cervera-Juanes
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
- Center for Precision Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Kip D Zimmerman
- Center for Precision Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Larry Wilhelm
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Dongqin Zhu
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Jessica Bodie
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
4
|
Lei C, Li X, Li W, Chen Z, Liu S, Cheng B, Hu Y, Song Q, Qiu Y, Zhou Y, Meng X, Yu H, Zhou W, Chen X, Li J. Chemical glycoproteomic profiling in rice seedlings reveals N-glycosylation in the ERAD-L machinery. Mol Cell Proteomics 2024:100883. [PMID: 39577566 DOI: 10.1016/j.mcpro.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
As a ubiquitous and essential posttranslational modification occurring in both plants and animals, protein N-linked glycosylation regulates various important biological processes. Unlike the well-studied animal N-glycoproteomes, the landscape of rice N-glycoproteome remains largely unexplored. Here, by developing a chemical glycoproteomic strategy based on metabolic glycan labeling (MGL), we report a comprehensive profiling of the N-glycoproteome in rice seedlings. The rice seedlings are incubated with N-azidoacetylgalactosamine (GalNAz) - a monosaccharide analog containing a bioorthogonal functional group - to metabolically label N-glycans, followed by conjugation with an affinity probe via click chemistry for enrichment of the N-glycoproteins. Subsequent mass spectrometry analyses identify a total of 403 N-glycosylation sites and 673 N-glycosylated proteins, which are involved in various important biological processes. In particular, the core components of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery are N-glycosylated, and the N-glycosylation is important for the ERAD-L function. This work not only provides an invaluable resource for studying rice N-glycosylation, but also demonstrates the applicability of MGL in glycoproteomic profiling for crop species.
Collapse
Affiliation(s)
- Cong Lei
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; Yazhouwan National Laboratory, Sanya, China
| | - Xilong Li
- Yazhouwan National Laboratory, Sanya, China.
| | - Wenjia Li
- Yazhouwan National Laboratory, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zihan Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Simiao Liu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Yili Hu
- Yazhouwan National Laboratory, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qitao Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yahong Qiu
- Yazhouwan National Laboratory, Sanya, China
| | - Yilan Zhou
- Yazhouwan National Laboratory, Sanya, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong Yu
- Yazhouwan National Laboratory, Sanya, China
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Synthetic and Functional Biomolecules Center, Peking University, Beijing, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China.
| | - Jiayang Li
- Yazhouwan National Laboratory, Sanya, China; State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Ziogiene D, Burdulis A, Timinskas A, Zinkeviciute R, Vasiliunaite E, Norkiene M, Gedvilaite A. Dolichol kinases from yeast, nematode and human can replace each other and exchange their domains creating active chimeric enzymes in yeast. PLoS One 2024; 19:e0313330. [PMID: 39509371 PMCID: PMC11542857 DOI: 10.1371/journal.pone.0313330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Protein glycosylation is a fundamental modification crucial for numerous intra- and extracellular functions in all eukaryotes. The phosphorylated dolichol (Dol-P) is utilized in N-linked protein glycosylation and other glycosylation pathways. Dolichol kinase (DK) plays a key role in catalyzing the phosphorylation of dolichol. The glycosylation patterns in the Kluyveromyces lactis DK mutant revealed that the yeast well tolerated a minor deficiency in Dol-P by adjusting protein glycosylation. Comparative analysis of sequences of DK homologs from different species of eukaryotes, archaea and bacteria and AlphaFold3 structural model studies, allowed us to predict that DK is most likely composed of two structural/functional domains. The activity of predicted K. lactis DK C-terminal domain expressed from the single copy in the chromosome was not sufficient to keep protein glycosylation level necessary for survival of K. lactis. However, the glycosylation level was partially restored by additionally provided and overexpressed N- or C-terminal domain. Moreover, co-expression of the individual N-and C-terminal domains restored the glycosylation of vacuolar carboxypeptidase Y in both K. lactis and Saccharomyces cerevisiae. Despite the differences in length and non-homologous sequences of the N-terminal domains the human and nematode Caenorhabditis elegans DKs successfully complemented DK functions in both yeast species. Additionally, the N-terminal domains of K. lactis and C. elegans DK could functionally substitute for one another, creating active chimeric enzymes. Our results suggest that while the C-terminal domain remains crucial for DK activity, the N-terminal domain may serve not only as a structural domain but also as a possible regulator of DK activity.
Collapse
Affiliation(s)
- Danguole Ziogiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andrius Burdulis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Albertas Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ruta Zinkeviciute
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Emilija Vasiliunaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Norkiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Alma Gedvilaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
6
|
Spyrou J, Aung KP, Vanyai H, Leventer RJ, Maljevic S, Lockhart PJ, Howell KB, Reid CA. Slc35a2 mosaic knockout impacts cortical development, dendritic arborisation, and neuronal firing. Neurobiol Dis 2024; 201:106657. [PMID: 39236911 DOI: 10.1016/j.nbd.2024.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE) is an important cause of drug-resistant epilepsy. A significant subset of individuals diagnosed with MOGHE display somatic mosaicism for loss-of-function variants in SLC35A2, which encodes the UDP-galactose transporter. We developed a mouse model to investigate how disruption of this transporter leads to a malformation of cortical development. We used in utero electroporation and CRISPR/Cas9 to knockout Slc35a2 in a subset of layer 2/3 cortical neuronal progenitors in the developing brains of male and female fetal mice to model mosaic expression. Mosaic Slc35a2 knockout was verified through next-generation sequencing and immunohistochemistry of GFP-labelled transfected cells. Histology of brain tissue in mosaic Slc35a2 knockout mice revealed the presence of upper layer-derived cortical neurons in the white matter. Reconstruction of single filled neurons identified altered dendritic arborisation with Slc35a2 knockout neurons having increased complexity. Whole-cell electrophysiological recordings revealed that Slc35a2 knockout neurons display reduced action potential firing, increased afterhyperpolarisation duration and reduced burst-firing when compared with control neurons. Mosaic Slc35a2 knockout mice also exhibited significantly increased epileptiform spiking and increased locomotor activity. We successfully generated a mouse model of mosaic Slc35a2 deficiency, which recapitulates features of the human phenotype, including impaired neuronal migration. We show that knockout in layer 2/3 cortical neuron progenitors is sufficient to disrupt neuronal excitability, increase epileptiform activity and cause hyperactivity in mosaic mice. Our mouse model provides an opportunity to further investigate the disease mechanisms that contribute to MOGHE and facilitate the development of precision therapies.
Collapse
Affiliation(s)
- James Spyrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Khaing Phyu Aung
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Hannah Vanyai
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Katherine B Howell
- Department of Neurology, Royal Children's Hospital, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia.
| |
Collapse
|
7
|
Adeniyi M, Gutierrez Reyes CD, Chávez-Reyes J, Marichal-Cancino BA, Solomon J, Fowowe M, Onigbinde S, Flores-Rodriguez JA, Bhuiyan MMAA, Mechref Y. Serum N-Glycan Changes in Rats Chronically Exposed to Glyphosate-Based Herbicides. Biomolecules 2024; 14:1077. [PMID: 39334844 PMCID: PMC11430009 DOI: 10.3390/biom14091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/30/2024] Open
Abstract
Glyphosate, the active ingredient in many herbicides, has been widely used in agriculture since the 1970s. Despite initial beliefs in its safety for humans and animals due to the absence of the shikimate pathway, recent studies have raised concerns about its potential health effects. This study aimed to identify glycomic changes indicative of glyphosate-induced toxicity. Specifically, the study focused on profiling N-glycosylation, a protein post-translational modification increasingly recognized for its involvement in various disorders, including neurological conditions. A comprehensive analysis of rat serum N-glycomics following chronic exposure to glyphosate-based herbicides (GBH) was conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results revealed significant changes in the N-glycan profile, particularly in sialylated and sialofucosylated N-glycans. The analysis of N-glycans across gender subgroups provided insights into gender-specific responses to GBH exposure, with the male rats exhibiting a higher susceptibility to these N-glycan changes compared to females. The validation of significantly altered N-glycans using parallel reaction monitoring (PRM) confirmed their expression patterns. This study provides novel insights into the impact of chronic GBH exposure on serum N-glycan composition, with implications for assessing glyphosate toxicity and its potential neurological implications.
Collapse
Affiliation(s)
- Moyinoluwa Adeniyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | | | - Jesús Chávez-Reyes
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20131, Mexico
| | - Bruno A Marichal-Cancino
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20131, Mexico
| | - Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Jorge A Flores-Rodriguez
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20131, Mexico
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
8
|
Errichiello E, Lecca M, Vantaggiato C, Motta Z, Zanotta N, Zucca C, Bertuzzo S, Piubelli L, Pollegioni L, Bonaglia MC. Further evidence supporting the role of GTDC1 in glycine metabolism and neurodevelopmental disorders. Eur J Hum Genet 2024; 32:920-927. [PMID: 38605125 PMCID: PMC11291697 DOI: 10.1038/s41431-024-01603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Copy number variants (CNVs) represent the genetic cause of about 15-20% of neurodevelopmental disorders (NDDs). We identified a ~67 kb de novo intragenic deletion on chromosome 2q22.3 in a female individual showing a developmental encephalopathy characterised by epilepsy, severe intellectual disability, speech delay, microcephaly, and thin corpus callosum with facial dysmorphisms. The microdeletion involved exons 5-6 of GTDC1, encoding a putative glycosyltransferase, whose expression is particularly enriched in the nervous system. In a previous study, a balanced de novo translocation encompassing GTDC1 was reported in a male child with global developmental delay and delayed speech and language development. Based on these premises, we explored the transcriptomic profile of our proband to evaluate the functional consequences of the novel GTDC1 de novo intragenic deletion in relation to the observed neurodevelopmental phenotype. RNA-seq on the proband's lymphoblastoid cell line (LCL) showed expression changes of glycine/serine and cytokine/chemokine signalling pathways, which are related to neurodevelopment and epileptogenesis. Subsequent analysis by ELISA (enzyme-linked immunosorbent assay) and HPLC (high-performance liquid chromatography) revealed increased levels of glycine in the proband's LCL and serum compared to matched controls. Given that an increased level of glycine has been observed in the plasma samples of individuals with Rett syndrome, a condition sharing epilepsy, microcephaly, and intellectual disability with our proband, we proposed that the GTDC1 downregulation is implicated in neurodevelopmental impairment by altering glycine metabolism. Furthermore, our findings expanded the phenotypic spectrum of the novel GTDC1-related condition, including microcephaly and epilepsy among relevant clinical features.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Mauro Lecca
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Chiara Vantaggiato
- Laboratory of Molecular Biology, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Nicoletta Zanotta
- Unit of Clinical Neurophysiology and Epilepsy Centre, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Claudio Zucca
- Unit of Clinical Neurophysiology and Epilepsy Centre, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Sara Bertuzzo
- Laboratory of Cytogenetics, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | |
Collapse
|
9
|
Neto S, Reis A, Pinheiro M, Ferreira M, Neves V, Castanho TC, Santos N, Rodrigues AJ, Sousa N, Santos MAS, Moura GR. Unveiling the molecular landscape of cognitive aging: insights from polygenic risk scores, DNA methylation, and gene expression. Hum Genomics 2024; 18:75. [PMID: 38956648 PMCID: PMC11221141 DOI: 10.1186/s40246-024-00640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for magnetic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their correlation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individual "omics" signature that distinguishes subjects with varying cognitive profiles. RESULTS We found a positive association between MD-PRS and long-term memory, as well as a correlation between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregulation of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organization, and glycosylation in the process of cognitive aging. CONCLUSIONS These findings provide valuable insights into the biological mechanisms underlying the association between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation and gene expression changes contribute to cognitive aging.
Collapse
Affiliation(s)
- Sonya Neto
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andreia Reis
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Pinheiro
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Margarida Ferreira
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vasco Neves
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Teresa Costa Castanho
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Nadine Santos
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Ana João Rodrigues
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Nuno Sousa
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
- P5 Medical Center, Braga, Portugal
| | - Manuel A S Santos
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
- Multidisciplinary Institute of Aging, MIA-Portugal, Faculty of Medicine, University of Coimbra, Rua Largo 2, 3º, 3000-370, Coimbra, Portugal
| | - Gabriela R Moura
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Zhang Q, Ma C, Chin LS, Pan S, Li L. Human brain glycoform coregulation network and glycan modification alterations in Alzheimer's disease. SCIENCE ADVANCES 2024; 10:eadk6911. [PMID: 38579000 PMCID: PMC10997212 DOI: 10.1126/sciadv.adk6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Despite the importance of protein glycosylation to brain health, current knowledge of glycosylated proteoforms or glycoforms in human brain and their alterations in Alzheimer's disease (AD) is limited. Here, we report a proteome-wide glycoform profiling study of human AD and control brains using intact glycopeptide-based quantitative glycoproteomics coupled with systems biology. Our study identified more than 10,000 human brain N-glycoforms from nearly 1200 glycoproteins and uncovered disease signatures of altered glycoforms and glycan modifications, including reduced sialylation and N-glycan branching and elongation as well as elevated mannosylation and N-glycan truncation in AD. Network analyses revealed a higher-order organization of brain glycoproteome into networks of coregulated glycoforms and glycans and discovered glycoform and glycan modules associated with AD clinical phenotype, amyloid-β accumulation, and tau pathology. Our findings provide valuable insights into disease pathogenesis and a rich resource of glycoform and glycan changes in AD and pave the way forward for developing glycosylation-based therapies and biomarkers for AD.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheng Ma
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lih-Shen Chin
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lian Li
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Tsai YX, Chang NE, Reuter K, Chang HT, Yang TJ, von Bülow S, Sehrawat V, Zerrouki N, Tuffery M, Gecht M, Grothaus IL, Colombi Ciacchi L, Wang YS, Hsu MF, Khoo KH, Hummer G, Hsu STD, Hanus C, Sikora M. Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries. Cell 2024; 187:1296-1311.e26. [PMID: 38428397 DOI: 10.1016/j.cell.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024]
Abstract
Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.
Collapse
Affiliation(s)
- Yu-Xi Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Ning-En Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Klaus Reuter
- Max Planck Computing and Data Facility, 85748 Garching, Germany
| | - Hao-Ting Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany
| | - Vidhi Sehrawat
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland
| | - Noémie Zerrouki
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France
| | - Matthieu Tuffery
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France
| | - Michael Gecht
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany
| | - Isabell Louise Grothaus
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Yong-Sheng Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Institute of Biophysics, Goethe University, 60438 Frankfurt, Germany
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Hiroshima 739-8526, Japan.
| | - Cyril Hanus
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France; GHU Psychiatrie et Neurosciences de Paris, 75014 Paris, France.
| | - Mateusz Sikora
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland.
| |
Collapse
|
12
|
Benner O, Cast TP, Minamide LS, Lenninger Z, Bamburg JR, Chanda S. Multiple N-linked glycosylation sites critically modulate the synaptic abundance of neuroligin isoforms. J Biol Chem 2023; 299:105361. [PMID: 37865312 PMCID: PMC10679506 DOI: 10.1016/j.jbc.2023.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
In recent years, elegant glycomic and glycoproteomic approaches have revealed an intricate glycosylation profile of mammalian brain with enormous spatial and temporal diversities. Nevertheless, at a cellular level, it is unclear how these post-translational modifications affect various proteins to influence crucial neuronal properties. Here, we have investigated the impact of N-linked glycosylation on neuroligins (NLGNs), a class of cell-adhesion molecules that play instructive roles in synapse organization. We found that endogenous NLGN proteins are differentially glycosylated across several regions of murine brain in a sex-independent but isoform-dependent manner. In both rodent primary neurons derived from brain sections and human neurons differentiated from stem cells, all NLGN variants were highly enriched with multiple N-glycan subtypes, which cumulatively ensured their efficient trafficking to the cell surface. Removal of these N-glycosylation residues only had a moderate effect on NLGNs' stability or expression levels but particularly enhanced their retention at the endoplasmic reticulum. As a result, the glycosylation-deficient NLGNs exhibited considerable impairments in their dendritic distribution and postsynaptic accumulation, which in turn, virtually eliminated their ability to recruit presynaptic terminals and significantly reduced NLGN overexpression-induced assemblies of both glutamatergic and GABAergic synapse structures. Therefore, our results highlight an essential mechanistic contribution of N-linked glycosylations in facilitating the appropriate secretory transport of a major synaptic cell-adhesion molecule and promoting its cellular function in neurons.
Collapse
Affiliation(s)
- Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Thomas P Cast
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Laurie S Minamide
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Zephyr Lenninger
- Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA
| | - James R Bamburg
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
13
|
Zhang Q, Ma C, Chin LS, Pan S, Li L. Human brain glycoform co-regulation network and glycan modification alterations in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566889. [PMID: 38014218 PMCID: PMC10680592 DOI: 10.1101/2023.11.13.566889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Despite the importance of protein glycosylation to brain health, current knowledge of glycosylated proteoforms or glycoforms in human brain and their alterations in Alzheimer's disease (AD) is limited. Here, we present a new paradigm of proteome-wide glycoform profiling study of human AD and control brains using intact glycopeptide-based quantitative glycoproteomics coupled with systems biology. Our study identified over 10,000 human brain N-glycoforms from nearly 1200 glycoproteins and uncovered disease signatures of altered glycoforms and glycan modifications, including reduced sialylation and N-glycan branching as well as elevated mannosylation and N-glycan truncation in AD. Network analyses revealed a higher-order organization of brain glycoproteome into networks of co-regulated glycoforms and glycans and discovered glycoform and glycan modules associated with AD clinical phenotype, amyloid-β accumulation, and tau pathology. Our findings provide novel insights and a rich resource of glycoform and glycan changes in AD and pave the way forward for developing glycosylation-based therapies and biomarkers for AD.
Collapse
|
14
|
Mei J, Li Z, Zhou S, Chen XL, Wilson RA, Liu W. Effector secretion and stability in the maize anthracnose pathogen Colletotrichum graminicola requires N-linked protein glycosylation and the ER chaperone pathway. THE NEW PHYTOLOGIST 2023; 240:1449-1466. [PMID: 37598305 DOI: 10.1111/nph.19213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
N-linked protein glycosylation is a conserved and essential modification mediating protein processing and quality control in the endoplasmic reticulum (ER), but how this contributes to the infection cycle of phytopathogenic fungi is largely unknown. In this study, we discovered that inhibition of protein N-glycosylation severely affected vegetative growth, hyphal tip development, conidial germination, appressorium formation, and, ultimately, the ability of the maize (Zea mays) anthracnose pathogen Colletotrichum graminicola to infect its host. Quantitative proteomics analysis showed that N-glycosylation can coordinate protein O-glycosylation, glycosylphosphatidylinositol anchor modification, and endoplasmic reticulum quality control (ERQC) by directly targeting the proteins from the corresponding pathway in the ER. We performed a functional study of the N-glycosylation pathway-related protein CgALG3 and of the ERQC pathway-related protein CgCNX1, which demonstrated that N-glycosylation of ER chaperone proteins is essential for effector stability, secretion, and pathogenicity of C. graminicola. Our study provides concrete evidence for the regulation of effector protein stability and secretion by N-glycosylation.
Collapse
Affiliation(s)
- Jie Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
15
|
Yang J, Li H, Zhao Y. Dessert or Poison? The Roles of Glycosylation in Alzheimer's, Parkinson's, Huntington's Disease, and Amyotrophic Lateral Sclerosis. Chembiochem 2023; 24:e202300017. [PMID: 37440197 DOI: 10.1002/cbic.202300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/27/2023] [Indexed: 07/14/2023]
Abstract
Ministry of Education and Key Laboratory of Neurons and glial cells of the central nervous system (CNS) are modified by glycosylation and rely on glycosylation to achieve normal neural function. Neurodegenerative disease is a common disease of the elderly, affecting their healthy life span and quality of life, and no effective treatment is currently available. Recent research implies that various glycosylation traits are altered during neurodegenerative diseases, suggesting a potential implication of glycosylation in disease pathology. Herein, we summarized the current knowledge about glycosylation associated with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS) pathogenesis, focusing on their promising functional avenues. Moreover, we collected research aimed at highlighting the need for such studies to provide a wealth of disease-related glycosylation information that will help us better understand the pathophysiological mechanisms and hopefully specific glycosylation information to provide further diagnostic and therapeutic directions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiajun Yang
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongmei Li
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yuhui Zhao
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
16
|
Yale AR, Kim E, Gutierrez B, Hanamoto JN, Lav NS, Nourse JL, Salvatus M, Hunt RF, Monuki ES, Flanagan LA. Regulation of neural stem cell differentiation and brain development by MGAT5-mediated N-glycosylation. Stem Cell Reports 2023:S2213-6711(23)00141-8. [PMID: 37172586 DOI: 10.1016/j.stemcr.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Undifferentiated neural stem and progenitor cells (NSPCs) encounter extracellular signals that bind plasma membrane proteins and influence differentiation. Membrane proteins are regulated by N-linked glycosylation, making it possible that glycosylation plays a critical role in cell differentiation. We assessed enzymes that control N-glycosylation in NSPCs and found that loss of the enzyme responsible for generating β1,6-branched N-glycans, N-acetylglucosaminyltransferase V (MGAT5), led to specific changes in NSPC differentiation in vitro and in vivo. Mgat5 homozygous null NSPCs in culture formed more neurons and fewer astrocytes compared with wild-type controls. In the brain cerebral cortex, loss of MGAT5 caused accelerated neuronal differentiation. Rapid neuronal differentiation led to depletion of cells in the NSPC niche, resulting in a shift in cortical neuron layers in Mgat5 null mice. Glycosylation enzyme MGAT5 plays a critical and previously unrecognized role in cell differentiation and early brain development.
Collapse
Affiliation(s)
- Andrew R Yale
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Estelle Kim
- Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Brenda Gutierrez
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - J Nicole Hanamoto
- Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Nicole S Lav
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Jamison L Nourse
- Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Marc Salvatus
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Robert F Hunt
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Edwin S Monuki
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Lisa A Flanagan
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
Brain N-Glycosylation and Lipidomic Profile Changes Induced by a High-Fat Diet in Dyslipidemic Hamsters. Int J Mol Sci 2023; 24:ijms24032883. [PMID: 36769208 PMCID: PMC9918045 DOI: 10.3390/ijms24032883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The consumption of diets rich in saturated fats is known to be associated with higher mortality. The adoption of healthy habits, for instance adhering to a Mediterranean diet, has proved to exert a preventive effect towards cardiovascular diseases and dyslipidemia. Little is known about how a suboptimal diet can affect brain function, structure, and the mechanisms involved. The aims of this study were to examine how a high-fat diet can alter the brain N-glycan and lipid profile in male Golden Syrian hamsters and to evaluate the potential of a Mediterranean-like diet to reverse this situation. During twelve weeks, hamsters were fed a normal fat diet (CTRL group), a high-fat diet (HFD group), and a high-fat diet followed by a Mediterranean-like diet (MED group). Out of seventy-two identified N-glycans, fourteen were significant (p < 0.05) between HFD and CTRL groups, nine between MED and CTRL groups, and one between MED and HFD groups. Moreover, forty-nine lipids were altered between HFD and CTRL groups, seven between MED and CTRL groups, and five between MED and HFD groups. Our results suggest that brain N-glycan composition in high-fat diet-fed hamsters can produce events comparable to those found in some neurodegenerative diseases, and may promote brain ageing.
Collapse
|
18
|
Reyes CDG, Hakim MA, Atashi M, Goli M, Gautam S, Wang J, Bennett AI, Zhu J, Lubman DM, Mechref Y. LC-MS/MS Isomeric Profiling of N-Glycans Derived from Low-Abundant Serum Glycoproteins in Mild Cognitive Impairment Patients. Biomolecules 2022; 12:1657. [PMID: 36359007 PMCID: PMC9687829 DOI: 10.3390/biom12111657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 09/29/2023] Open
Abstract
Mild cognitive impairment (MCI) is an early stage of memory loss that affects cognitive abilities, such as language or virtual/spatial comprehension. This cognitive decline is mostly observed with the aging of individuals. Recently, MCI has been considered as a prodromal phase of Alzheimer's disease (AD), with a 10-15% conversion rate. However, the existing diagnostic methods fail to provide precise and well-timed diagnoses, and the pathophysiology of MCI is not fully understood. Alterations of serum N-glycan expression could represent essential contributors to the overall pathophysiology of neurodegenerative diseases and be used as a potential marker to assess MCI diagnosis using non-invasive procedures. Herein, we undertook an LC-MS/MS glycomics approach to determine and characterize potential N-glycan markers in depleted blood serum samples from MCI patients. For the first time, we profiled the isomeric glycome of the low abundant serum glycoproteins extracted from serum samples of control and MCI patients using an LC-MS/MS analytical strategy. Additionally, the MRM validation of the identified data showed five isomeric N-glycans with the ability to discriminate between healthy and MCI patients: the sialylated N-glycans GlcNAc5,Hex6,Neu5Ac3 and GlcNAc6,Hex7,Neu5Ac4 with single AUCs of 0.92 and 0.87, respectively, and a combined AUC of 0.96; and the sialylated-fucosylated N-glycans GlcNAc4,Hex5,Fuc,Neu5Ac, GlcNAc5,Hex6,Fuc,Neu5Ac2, and GlcNAc6,Hex7,Fuc,Neu5Ac3 with single AUCs of 0.94, 0.67, and 0.88, respectively, and a combined AUC of 0.98. According to the ingenuity pathway analysis (IPA) and in line with recent publications, the identified N-glycans may play an important role in neuroinflammation. It is a process that plays a fundamental role in neuroinflammation, an important process in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Md. Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Andrew I. Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Jianhui Zhu
- Department of Surgery, The University of Michigan, Ann Arbor, MI 48109, USA
| | - David M. Lubman
- Department of Surgery, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
19
|
Sasserath T, Robertson AL, Mendez R, Hays TT, Smith E, Cooper H, Akanda N, Rumsey JW, Guo X, Farkhondeh A, Pradhan M, Baumgaertel K, Might M, Rodems S, Zheng W, Hickman JJ. An induced pluripotent stem cell-derived NMJ platform for study of the NGLY1-Congenital Disorder of Deglycosylation. ADVANCED THERAPEUTICS 2022; 5:2200009. [PMID: 36589922 PMCID: PMC9798846 DOI: 10.1002/adtp.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 01/05/2023]
Abstract
There are many neurological rare diseases where animal models have proven inadequate or do not currently exist. NGLY1 Deficiency, a congenital disorder of deglycosylation, is a rare disease that predominantly affects motor control, especially control of neuromuscular action. In this study, NGLY1-deficient, patient-derived induced pluripotent stem cells (iPSCs) were differentiated into motoneurons (MNs) to identify disease phenotypes analogous to clinical disease pathology with significant deficits apparent in the NGLY1-deficient lines compared to the control. A neuromuscular junction (NMJ) model was developed using patient and wild type (WT) MNs to study functional differences between healthy and diseased NMJs. Reduced axon length, increased and shortened axon branches, MN action potential (AP) bursting and decreased AP firing rate and amplitude were observed in the NGLY1-deficient MNs in monoculture. When transitioned to the NMJ-coculture system, deficits in NMJ number, stability, failure rate, and synchronicity with indirect skeletal muscle (SkM) stimulation were observed. This project establishes a phenotypic NGLY1 model for investigation of possible therapeutics and investigations into mechanistic deficits in the system.
Collapse
Affiliation(s)
- Trevor Sasserath
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
| | - Ashley L Robertson
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
| | - Roxana Mendez
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826 USA
| | - Tristan T Hays
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
| | - Ethan Smith
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
| | - Helena Cooper
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
| | - Nesar Akanda
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826 USA
| | - John W Rumsey
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
| | - Xiufang Guo
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826 USA
| | - Atena Farkhondeh
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Building C, Room 310W Rockville, MD 20850, USA
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Building C, Room 310W Rockville, MD 20850, USA
| | - Karsten Baumgaertel
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Matthew Might
- University of Alabama at Birmingham, Hugh Kaul Precision Medicine Institute, 510 20th St S, Office 858B, Birmingham, AL 35210, USA
| | - Steven Rodems
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Building C, Room 310W Rockville, MD 20850, USA
| | - James J Hickman
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826 USA
| |
Collapse
|
20
|
Hawkinson TR, Clarke HA, Young LEA, Conroy LR, Markussen KH, Kerch KM, Johnson LA, Nelson PT, Wang C, Allison DB, Gentry MS, Sun RC. In situ spatial glycomic imaging of mouse and human Alzheimer's disease brains. Alzheimers Dement 2022; 18:1721-1735. [PMID: 34908231 PMCID: PMC9198106 DOI: 10.1002/alz.12523] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 01/28/2023]
Abstract
N-linked protein glycosylation in the brain is an understudied facet of glucose utilization that impacts a myriad of cellular processes including resting membrane potential, axon firing, and synaptic vesicle trafficking. Currently, a spatial map of N-linked glycans within the normal and Alzheimer's disease (AD) human brain does not exist. A comprehensive analysis of the spatial N-linked glycome would improve our understanding of brain energy metabolism, linking metabolism to signaling events perturbed during AD progression, and could illuminate new therapeutic strategies. Herein we report an optimized in situ workflow for enzyme-assisted, matrix-assisted laser desorption and ionization (MALDI) mass spectrometry imaging (MSI) of brain N-linked glycans. Using this workflow, we spatially interrogated N-linked glycan heterogeneity in both mouse and human AD brains and their respective age-matched controls. We identified robust regional-specific N-linked glycan changes associated with AD in mice and humans. These data suggest that N-linked glycan dysregulation could be an underpinning of AD pathologies.
Collapse
Affiliation(s)
- Tara R. Hawkinson
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Harrison A. Clarke
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Lyndsay E. A. Young
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Lindsey R. Conroy
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Kayla M. Kerch
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Lance A. Johnson
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Peter T. Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Derek B. Allison
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Ramon C. Sun
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Proceedings of workshop: "Neuroglycoproteins in health and disease", INNOGLY cost action. Glycoconj J 2022; 39:579-586. [PMID: 36001187 PMCID: PMC9399589 DOI: 10.1007/s10719-022-10078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
The Cost Action "Innovation with glycans: new frontiers from synthesis to new biological targets" (INNOGLY) hosted the Workshop "Neuroglycoproteins in health and disease", in Alicante, Spain, on March 2022. This event brought together an european group of scientists that presented novel insights into changes in glycosylation in diseases of the central nervous system and cancer, as well as new techniques to study protein glycosylation. Herein we provide the abstracts of all the presentations.
Collapse
|
22
|
Mondello S, Sandner V, Goli M, Czeiter E, Amrein K, Kochanek PM, Gautam S, Cho BG, Morgan R, Nehme A, Fiumara G, Eid AH, Barsa C, Haidar MA, Buki A, Kobeissy FH, Mechref Y. Exploring serum glycome patterns after moderate to severe traumatic brain injury: A prospective pilot study. EClinicalMedicine 2022; 50:101494. [PMID: 35755600 PMCID: PMC9218141 DOI: 10.1016/j.eclinm.2022.101494] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Glycans play essential functional roles in the nervous system and their pathobiological relevance has become increasingly recognized in numerous brain disorders, but not fully explored in traumatic brain injury (TBI). We investigated longitudinal glycome patterns in patients with moderate to severe TBI (Glasgow Coma Scale [GCS] score ≤12) to characterize glyco-biomarker signatures and their relation to clinical features and long-term outcome. METHODS This prospective single-center observational study included 51 adult patients with TBI (GCS ≤12) admitted to the neurosurgical unit of the University Hospital of Pecs, Pecs, Hungary, between June 2018 and April 2019. We used a high-throughput liquid chromatography-tandem mass spectrometry platform to assess serum levels of N-glycans up to 3 days after injury. Outcome was assessed using the Glasgow Outcome Scale-Extended (GOS-E) at 12 months post-injury. Multivariate statistical techniques, including principal component analysis and orthogonal partial least squares discriminant analysis, were used to analyze glycomics data and define highly influential structures driving class distinction. Receiver operating characteristic analyses were used to determine prognostic accuracy. FINDINGS We identified 94 N-glycans encompassing all typical structural types, including oligomannose, hybrid, and complex-type entities. Levels of high mannose, hybrid and sialylated structures were temporally altered (p<0·05). Four influential glycans were identified. Two brain-specific structures, HexNAc5Hex3DeoxyHex0NeuAc0 and HexNAc5Hex4DeoxyHex0NeuAc1, were substantially increased early after injury in patients with unfavorable outcome (GOS-E≤4) (area under the curve [AUC]=0·75 [95%CI 0·59-0·90] and AUC=0·71 [0·52-0·89], respectively). Serum levels of HexNAc7Hex7DeoxyHex1NeuAc2 and HexNAc8Hex6DeoxyHex0NeuAc0 were persistently increased in patients with favorable outcome, but undetectable in those with unfavorable outcome. Levels of HexNAc5Hex4DeoxyHex0NeuAc1 were acutely elevated in patients with mass lesions and in those requiring decompressive craniectomy. INTERPRETATION In spite of the exploratory nature of the study and the relatively small number of patients, our results provide to the best of our knowledge initial evidence supporting the utility of glycomics approaches for biomarker discovery and patient phenotyping in TBI. Further larger multicenter studies will be required to validate our findings and to determine their pathobiological value and potential applications in practice. FUNDING This work was funded by the Italian Ministry of Health (grant number GR-2013-02354960), and also partially supported by a NIH grant (1R01GM112490-08).
Collapse
Affiliation(s)
- Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Corresponding author.
| | - Viktor Sandner
- Sartorius Data Analytics, Sartorius Stedim Austria GmbH, 1030 Vienna, Austria
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA
| | - Endre Czeiter
- Department of Neurosurgery, University of Pécs, H-7623 Pécs, Hungary
- Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, H-7623 Pécs, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, University of Pécs, H-7623 Pécs, Hungary
- Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, H-7623 Pécs, Hungary
| | - Patrick M. Kochanek
- Departments of Critical Care Medicine, Pediatrics, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, and UPMC Children's Hospital of Pittsburgh, Pittsburgh 15224, USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA
| | - Ryan Morgan
- Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA
| | - Ali Nehme
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Giacomo Fiumara
- Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, University of Messina, 98100 Messina, Italy
| | - Ali H. Eid
- Department of Biochemistry and Molecular Genetics, American University of Beirut, 1107-2020 Beirut, Lebanon
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Chloe Barsa
- Department of Biochemistry and Molecular Genetics, American University of Beirut, 1107-2020 Beirut, Lebanon
| | - Muhammad Ali Haidar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, 1107-2020 Beirut, Lebanon
| | - Andras Buki
- Department of Neurosurgery, University of Pécs, H-7623 Pécs, Hungary
- Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, H-7623 Pécs, Hungary
| | - Firas H. Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, 1107-2020 Beirut, Lebanon
- Department of Psychiatry and Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA
- Corresponding author.
| |
Collapse
|
23
|
N-glycans Profiling in Pilocarpine Induced Status Epilepticus in Immature Rats. EUROPEAN PHARMACEUTICAL JOURNAL 2022. [DOI: 10.2478/afpuc-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Status epilepticus (SE) is a common neurological emergency in children and a well-known epileptogenic insult. Neonates are extremely susceptible to seizures in the neonatal period due to the higher vulnerability. Neonatal SE is associated with significant mortality and morbidity. There is an evident need for attention on neonatal SE in research due to the incredibly limited diagnostic and treatment options in current neonatology, and its serious long-term consequences. The aim of the present study was to characterize the glycoprofiles in the pilocarpine-induced SE model in immature rats to assess the overall N-glycans composition. To induce lithium-pilocarpine (Li-Pilo) SE male Wistar rat pups were pretreated with lithium chloride (127 mg/kg, n=11) on the 11th postnatal day. After 24 hours, the lithium pre-treated pups were administered either with pilocarpine intraperitoneally (i.p.) (35 kg/g, n=6) or saline (n=5) in the control group (Control). On the 19th postnatal day, serum was collected and the analytical procedures were done by mass spectrometry (MS) analytics on matrix-assisted laser desorption/ionization in combination with a time-of-flight detector (MALDI-TOF/MS). Analyzed data were processed by FlexAnalysis (Bruker Daltonics) and GlycoWorkbench software. There were 21 N-glycans that were identified, appointed, and sorted with special emphasis on their structure. We have demonstrated the significant changes in terms of N-glycans sialylation in Li-Pilo compared to the Control. We also observed some other remodelation trends in different portions of relative intenstities of N-glycan clusters according to their glycan type. Our preliminary findings have laid the foundation for additional investigation into glycosylation alterations in the SE in immature rats.
Collapse
|
24
|
Barth M, Toto Nienguesso A, Navarrete Santos A, Schmidt C. Quantitative proteomics and in-cell cross-linking reveal cellular reorganisation during early neuronal differentiation of SH-SY5Y cells. Commun Biol 2022; 5:551. [PMID: 35672350 PMCID: PMC9174471 DOI: 10.1038/s42003-022-03478-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
The neuroblastoma cell line SH-SY5Y is commonly employed to study neuronal function and disease. This includes cells grown under standard conditions or differentiated to neuron-like cells by administration of chemical reagents such as retinoic acid (RA) or phorbol-12-myristate-13-acetate (PMA). Even though SH-SY5Y cells are widely explored, a complete description of the resulting proteomes and cellular reorganisation during differentiation is still missing. Here, we relatively quantify the proteomes of cells grown under standard conditions and obtained from two differentiation protocols employing RA or a combination of RA and PMA. Relative quantification and KEGG pathway analysis of the proteins reveals the presence of early differentiating cells and provides a list of marker proteins for undifferentiated and differentiated cells. For characterisation of neuronal sub-types, we analyse expression of marker genes and find that RA-differentiated cells are acetylcholinergic and cholinergic, while RA/PMA-differentiated cells show high expression of acetylcholinergic and dopaminergic marker genes. In-cell cross-linking further allows capturing protein interactions in different cellular organelles. Specifically, we observe structural reorganisation upon differentiation involving regulating protein factors of the actin cytoskeleton. Quantitative proteomic analyses are employed to explore the changes in the proteome that occur upon neuronal differentiation in the SH-SY5Y cell line.
Collapse
Affiliation(s)
- Marie Barth
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alicia Toto Nienguesso
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anne Navarrete Santos
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
25
|
Zhang Y, Heylen L, Partoens M, Mills JD, Kaminski RM, Godard P, Gillard M, de Witte PAM, Siekierska A. Connectivity Mapping Using a Novel sv2a Loss-of-Function Zebrafish Epilepsy Model as a Powerful Strategy for Anti-epileptic Drug Discovery. Front Mol Neurosci 2022; 15:881933. [PMID: 35686059 PMCID: PMC9172968 DOI: 10.3389/fnmol.2022.881933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 12/03/2022] Open
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) regulates action potential-dependent neurotransmitter release and is commonly known as the primary binding site of an approved anti-epileptic drug, levetiracetam. Although several rodent knockout models have demonstrated the importance of SV2A for functional neurotransmission, its precise physiological function and role in epilepsy pathophysiology remains to be elucidated. Here, we present a novel sv2a knockout model in zebrafish, a vertebrate with complementary advantages to rodents. We demonstrated that 6 days post fertilization homozygous sv2a–/– mutant zebrafish larvae, but not sv2a+/– and sv2a+/+ larvae, displayed locomotor hyperactivity and spontaneous epileptiform discharges, however, no major brain malformations could be observed. A partial rescue of this epileptiform brain activity could be observed after treatment with two commonly used anti-epileptic drugs, valproic acid and, surprisingly, levetiracetam. This observation indicated that additional targets, besides Sv2a, maybe are involved in the protective effects of levetiracetam against epileptic seizures. Furthermore, a transcriptome analysis provided insights into the neuropathological processes underlying the observed epileptic phenotype. While gene expression profiling revealed only one differentially expressed gene (DEG) between wildtype and sv2a+/– larvae, there were 4386 and 3535 DEGs between wildtype and sv2a–/–, and sv2a+/– and sv2a–/– larvae, respectively. Pathway and gene ontology (GO) enrichment analysis between wildtype and sv2a–/– larvae revealed several pathways and GO terms enriched amongst up- and down-regulated genes, including MAPK signaling, synaptic vesicle cycle, and extracellular matrix organization, all known to be involved in epileptogenesis and epilepsy. Importantly, we used the Connectivity map database to identify compounds with opposing gene signatures compared to the one observed in sv2a–/– larvae, to finally rescue the epileptic phenotype. Two out of three selected compounds rescued electrographic discharges in sv2a–/– larvae, while negative controls did not. Taken together, our results demonstrate that sv2a deficiency leads to increased seizure vulnerability and provide valuable insight into the functional importance of sv2a in the brain in general. Furthermore, we provided evidence that the concept of connectivity mapping represents an attractive and powerful approach in the discovery of novel compounds against epilepsy.
Collapse
Affiliation(s)
- Yifan Zhang
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Lise Heylen
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Michèle Partoens
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - James D. Mills
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom
| | - Rafal M. Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- UCB Pharma, Braine-l’Alleud, Belgium
| | | | | | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
- *Correspondence: Peter A. M. de Witte,
| | - Aleksandra Siekierska
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
- Aleksandra Siekierska,
| |
Collapse
|
26
|
Gao AYL, Lourdin-De Filippis E, Orlowski J, McKinney RA. Roles of Endomembrane Alkali Cation/Proton Exchangers in Synaptic Function and Neurodevelopmental Disorders. Front Physiol 2022; 13:892196. [PMID: 35547574 PMCID: PMC9081726 DOI: 10.3389/fphys.2022.892196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly associated with neurological disorders. These eNHEs play integral roles in regulating the luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential regulatory processes vital for neuronal development and plasticity. Given the complex morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in maintaining optimal pH homeostasis and cargo trafficking is especially significant during periods of structural and functional development and remodeling. While the importance of eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in neuronal function is less well understood. In this review, we will discuss their emerging roles in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling. We will also explore their connections to neurodevelopmental conditions, including intellectual disability, autism, and attention deficit hyperactivity disorders.
Collapse
Affiliation(s)
- Andy Y L Gao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | | | - John Orlowski
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Zimmermann MT. Molecular Modeling is an Enabling Approach to Complement and Enhance Channelopathy Research. Compr Physiol 2022; 12:3141-3166. [PMID: 35578963 DOI: 10.1002/cphy.c190047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hundreds of human membrane proteins form channels that transport necessary ions and compounds, including drugs and metabolites, yet details of their normal function or how function is altered by genetic variants to cause diseases are often unknown. Without this knowledge, researchers are less equipped to develop approaches to diagnose and treat channelopathies. High-resolution computational approaches such as molecular modeling enable researchers to investigate channelopathy protein function, facilitate detailed hypothesis generation, and produce data that is difficult to gather experimentally. Molecular modeling can be tailored to each physiologic context that a protein may act within, some of which may currently be difficult or impossible to assay experimentally. Because many genomic variants are observed in channelopathy proteins from high-throughput sequencing studies, methods with mechanistic value are needed to interpret their effects. The eminent field of structural bioinformatics integrates techniques from multiple disciplines including molecular modeling, computational chemistry, biophysics, and biochemistry, to develop mechanistic hypotheses and enhance the information available for understanding function. Molecular modeling and simulation access 3D and time-dependent information, not currently predictable from sequence. Thus, molecular modeling is valuable for increasing the resolution with which the natural function of protein channels can be investigated, and for interpreting how genomic variants alter them to produce physiologic changes that manifest as channelopathies. © 2022 American Physiological Society. Compr Physiol 12:3141-3166, 2022.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
28
|
Mealer RG, Williams SE, Noel M, Yang B, D’Souza AK, Nakata T, Graham DB, Creasey EA, Cetinbas M, Sadreyev RI, Scolnick EM, Woo CM, Smoller JW, Xavier RJ, Cummings RD. The schizophrenia-associated variant in SLC39A8 alters protein glycosylation in the mouse brain. Mol Psychiatry 2022; 27:1405-1415. [PMID: 35260802 PMCID: PMC9106890 DOI: 10.1038/s41380-022-01490-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 01/13/2023]
Abstract
A missense mutation (A391T) in SLC39A8 is strongly associated with schizophrenia in genomic studies, though the molecular connection to the brain is unknown. Human carriers of A391T have reduced serum manganese, altered plasma glycosylation, and brain MRI changes consistent with altered metal transport. Here, using a knock-in mouse model homozygous for A391T, we show that the schizophrenia-associated variant changes protein glycosylation in the brain. Glycosylation of Asn residues in glycoproteins (N-glycosylation) was most significantly impaired, with effects differing between regions. RNAseq analysis showed negligible regional variation, consistent with changes in the activity of glycosylation enzymes rather than gene expression. Finally, nearly one-third of detected glycoproteins were differentially N-glycosylated in the cortex, including members of several pathways previously implicated in schizophrenia, such as cell adhesion molecules and neurotransmitter receptors that are expressed across all cell types. These findings provide a mechanistic link between a risk allele and potentially reversible biochemical changes in the brain, furthering our molecular understanding of the pathophysiology of schizophrenia and a novel opportunity for therapeutic development.
Collapse
Affiliation(s)
- Robert G. Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital. Harvard Medical School, Boston, MA.,National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA.,Corresponding Author: Robert Gene Mealer, M.D., Ph.D., Richard B. Simches Research Center, 185 Cambridge St, 6th Floor, Boston, MA 02114,
| | - Sarah E. Williams
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Maxence Noel
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Bo Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | | | - Toru Nakata
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel B. Graham
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elizabeth A. Creasey
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Edward M. Scolnick
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital. Harvard Medical School, Boston, MA.,The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard D. Cummings
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Accogli A, Radenkovic S, Ranatunga W, Ligezka AN, Rivière JB, Morava E, Trakadis Y. Could distal variants in ALG13 lead to atypical clinical presentation? Eur J Med Genet 2022; 65:104473. [PMID: 35240324 DOI: 10.1016/j.ejmg.2022.104473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
Congenital disorders of glycosylation (CDG) represent a wide range of some 150 inherited metabolic diseases, continually expanding in terms of newly identified genes and the heterogeneity of clinical and molecular presentations within each subtype. Heterozygous pathogenic variants in ALG13 are associated with early-onset epileptic encephalopathy, typically in females. The majority of subjects described so far harbour one of the two recurrent pathogenic variants, namely p.(Asn107Ser) and p.(Ala81Thr) in the C-terminal glycosyltransferase domain. We report a novel ALG13 variant (c.1709G > A, p.(Gly570Glu)) in an adult female with unremarkable past developmental and medical history, except for mild kinetic tremor. Our proband presented with acute onset of neurological and psychiatric features, along with liver dysfunction, during pregnancy, all of which gradually resolved after delivery. The proband's newborn baby died at 22 days of life from neonatal liver disease, due to gestational alloimmune liver disease (GALD). Functional assessment on fibroblasts derived from our case showed alterations in 2 of 3 cellular glycosylation markers (LAMP2, Factor IX), suggesting a functional effect of this novel ALG13 variant on glycosylation. This paper raises the possibility that variants outside the glycosyltransferase domain may have a hypomorphic effect leading to atypical clinical manifestations.
Collapse
Affiliation(s)
- Andrea Accogli
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada; Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minesota, USA; Metabolomics Expertise Center, Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium
| | | | - Anna N Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minesota, USA
| | - Jean-Baptiste Rivière
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, H3A 1B1, Canada; Bioinformatics Platform, Research Institute of the McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minesota, USA
| | - Yannis Trakadis
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada; Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, H3A 1B1, Canada.
| |
Collapse
|
30
|
Role and therapeutic implications of protein glycosylation in neuroinflammation. Trends Mol Med 2022; 28:270-289. [PMID: 35120836 DOI: 10.1016/j.molmed.2022.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The importance of glycosylation (post-translational attachment of glycan residues to proteins) in the context of neuroinflammation is only now beginning to be understood. Although the glycome is challenging to investigate due to its complexity, this field is gaining interest because of the emergence of novel analytical methods. These investigations offer the possibility of further understanding the molecular signature of disorders with underlying neuroinflammatory cascades. In this review, we portray the clinically relevant trends in glyconeurobiology and suggest glyco-related paths that could be targeted therapeutically to decrease neuroinflammation. A combinatorial insight from glycobiology and neurology can be harnessed to better understand neuroinflammatory-related conditions to identify relevant molecular targets.
Collapse
|
31
|
Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, Sadreyev RI, Scolnick EM, Smoller JW, Cummings RD, Mealer RG. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nat Commun 2022; 13:275. [PMID: 35022400 PMCID: PMC8755730 DOI: 10.1038/s41467-021-27781-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023] Open
Abstract
Glycosylation is essential to brain development and function, but prior studies have often been limited to a single analytical technique and excluded region- and sex-specific analyses. Here, using several methodologies, we analyze Asn-linked and Ser/Thr/Tyr-linked protein glycosylation between brain regions and sexes in mice. Brain N-glycans are less complex in sequence and variety compared to other tissues, consisting predominantly of high-mannose and fucosylated/bisected structures. Most brain O-glycans are unbranched, sialylated O-GalNAc and O-mannose structures. A consistent pattern is observed between regions, and sex differences are minimal compared to those in plasma. Brain glycans correlate with RNA expression of their synthetic enzymes, and analysis of glycosylation genes in humans show a global downregulation in the brain compared to other tissues. We hypothesize that this restricted repertoire of protein glycans arises from their tight regulation in the brain. These results provide a roadmap for future studies of glycosylation in neurodevelopment and disease.
Collapse
Affiliation(s)
- Sarah E Williams
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramnik J Xavier
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward M Scolnick
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert G Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA.
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Brandão-Teles C, Smith BJ, Carregari VC. PTMs: A Missing Piece for Schizophrenia Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:119-127. [DOI: 10.1007/978-3-031-05460-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Ru FX, Kong F, Ren CY, He YS, Xia SY, Li YN, Liang YP, Feng JJ, Wei ZY, Chen JH. Repeated Winning and Losing Experiences in Chronic Social Conflicts Are Linked to RNA Editing Pattern Difference. Front Psychiatry 2022; 13:896794. [PMID: 35664469 PMCID: PMC9161819 DOI: 10.3389/fpsyt.2022.896794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Winner-loser effects influence subsequent agonistic interactions between conspecifics. Previous winning experiences could strengthen future aggression and increase the chance of winning the next agonistic interaction, while previous losing experiences could have the opposite effect. Although the role of A-to-I RNA editing has been recently implicated in chronic social defeat stress and aggressive behavior, it remains to be further elucidated in chronic social conflicts in agonistic interactions, especially in the repeated aggression (winners) and repeated defeat (losers) resulted from these conflicts. In the current study, transcriptome-wide A-to-I RNA editing in the dorsal striatum was investigated in a mouse model of chronic social conflicts, and compared between mice repeatedly winning and losing daily agonistic interactions. Our analysis identified 622 A-to-I RNA editing sites in the mouse dorsal striatum, with 23 to be differentially edited in 22 genes, most of which had been previously associated with neurological, psychiatric, or immune disorders. Among these differential RNA editing (DRE) sites four missense variants were observed in neuroligin 2 (Nlgn2), Cdc42 guanine nucleotide exchange factor 9 (Arhgef9) BLCAP apoptosis inducing factor (Blcap), and cytoplasmic FMR1 interacting protein 2 (Cyfip2), as well as two noncoding RNA sites in small nucleolar RNA host gene 11 (Snhg11) and the maternally expressed 3 (Meg3) gene. Moreover, significant changes were observed in gene functions and pathways enriched by genes with A-to-I RNA editing in losers and especially winners compared to controls. Our results demonstrate that repeated winning and losing experiences in chronic social conflicts are linked to A-to-I RNA editing pattern difference, underlining its role in the molecular mechanism of agonistic interactions between conspecifics.
Collapse
Affiliation(s)
- Fu-Xia Ru
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Fanzhi Kong
- Shantou University Mental Health Center, Shantou University Medical College, Shantou, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Yu-Shan He
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Shou-Yue Xia
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Yu-Ning Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Jun-Jie Feng
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| |
Collapse
|
34
|
Li Y, Li S, Liu J, Huo Y, Luo XJ. The schizophrenia susceptibility gene NAGA regulates dendritic spine density: further evidence for the dendritic spine pathology of schizophrenia. Mol Psychiatry 2021; 26:7102-7104. [PMID: 34376824 DOI: 10.1038/s41380-021-01261-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
35
|
Hayes JM, O'Hara DM, Davey GP. Metabolic Labeling of Primary Neurons Using Carbohydrate Click Chemistry. Methods Mol Biol 2021; 2370:315-322. [PMID: 34611877 DOI: 10.1007/978-1-0716-1685-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Glycans play an important role in many neuronal processes, such as neurotransmitter release and reuptake, cell-cell communication and adhesion, modulation of ion channel activity, and immune function. Carbohydrate click chemistry is a powerful technique for studying glycan function and dynamics in vitro, in vivo, and ex vivo. Here, we use commercially available synthetic tetraacetylated azido sugars, copper and copper-free click chemistry to metabolically label and analyze primary rat cortical neurons. In addition, we use high resolution confocal and STED microscopy to image and analyze different forms of glycosylation in ultrahigh resolution. We observe different patterns of GlcNAz, GalNAz, and ManNAz distribution at different stages of neuronal development. We also observe highly sialylated structures on the neuronal plasma membrane, which warrant further investigation.
Collapse
Affiliation(s)
- Jerrard M Hayes
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Darren M O'Hara
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gavin P Davey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
36
|
Govind AP, Jeyifous O, Russell TA, Yi Z, Weigel AV, Ramaprasad A, Newell L, Ramos W, Valbuena FM, Casler JC, Yan JZ, Glick BS, Swanson GT, Lippincott-Schwartz J, Green WN. Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome. eLife 2021; 10:68910. [PMID: 34545811 PMCID: PMC8494481 DOI: 10.7554/elife.68910] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Activity-driven changes in the neuronal surface glycoproteome are known to occur with synapse formation, plasticity, and related diseases, but their mechanistic basis and significance are unclear. Here, we observed that N-glycans on surface glycoproteins of dendrites shift from immature to mature forms containing sialic acid in response to increased neuronal activation. In exploring the basis of these N-glycosylation alterations, we discovered that they result from the growth and proliferation of Golgi satellites scattered throughout the dendrite. Golgi satellites that formed during neuronal excitation were in close association with endoplasmic reticulum (ER) exit sites and early endosomes and contained glycosylation machinery without the Golgi structural protein, GM130. They functioned as distal glycosylation stations in dendrites, terminally modifying sugars either on newly synthesized glycoproteins passing through the secretory pathway or on surface glycoproteins taken up from the endocytic pathway. These activities led to major changes in the dendritic surface of excited neurons, impacting binding and uptake of lectins, as well as causing functional changes in neurotransmitter receptors such as nicotinic acetylcholine receptors. Neural activity thus boosts the activity of the dendrite’s satellite micro-secretory system by redistributing Golgi enzymes involved in glycan modifications into peripheral Golgi satellites. This remodeling of the neuronal surface has potential significance for synaptic plasticity, addiction, and disease.
Collapse
Affiliation(s)
- Anitha P Govind
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Okunola Jeyifous
- Department of Neurobiology, University of Chicago, Chicago, United States.,Marine Biological Laboratory, Woods Hole, United States
| | - Theron A Russell
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Zola Yi
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Abhijit Ramaprasad
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Luke Newell
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - William Ramos
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Fernando M Valbuena
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jason C Casler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jing-Zhi Yan
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | | | - William N Green
- Department of Neurobiology, University of Chicago, Chicago, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
37
|
Li D, Mukhopadhyay S. A three-pocket model for substrate coordination and selectivity by the nucleotide sugar transporters SLC35A1 and SLC35A2. J Biol Chem 2021; 297:101069. [PMID: 34384782 PMCID: PMC8411240 DOI: 10.1016/j.jbc.2021.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 10/25/2022] Open
Abstract
The CMP-sialic acid transporter SLC35A1 and UDP-galactose transporter SLC35A2 are two well-characterized nucleotide sugar transporters with distinctive substrate specificities. Mutations in either induce congenital disorders of glycosylation. Despite the biomedical relevance, mechanisms of substrate specificity are unclear. To address this critical issue, we utilized a structure-guided mutagenesis strategy and assayed a series of SLC35A2 and SLC35A1 mutants using a rescue approach. Our results suggest that three pockets in the central cavity of each transporter provide substrate specificity. The pockets comprise (1) nucleobase (residues E52, K55, and Y214 of SLC35A1; E75, K78, N235, and G239 of SLC35A2); (2) middle (residues Q101, N102, and T260 of SLC35A1; Q125, N126, Q129, Y130, and Q278 of SLC35A2); and (3) sugar (residues K124, T128, S188, and K272 of SLC35A1; K148, T152, S213, and K297 of SLC35A2) pockets. Within these pockets, two components appear to be especially critical for substrate specificity. Y214 (for SLC35A1) and G239 (for SLC35A2) in the nucleobase pocket appear to discriminate cytosine from uracil. Furthermore, Q129 and Q278 of SLC35A2 in the middle pocket appear to interact specifically with the β-phosphate of UDP while the corresponding A105 and A253 residues in SLC35A1 do not interact with CMP, which lacks a β-phosphate. Overall, our findings contribute to a molecular understanding of substrate specificity and coordination in SLC35A1 and SLC35A2, and have important implications for the understanding and treatment of diseases associated with mutations or dysregulations of these two transporters.
Collapse
Affiliation(s)
- Danyang Li
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712.
| |
Collapse
|
38
|
Barboza M, Solakyildirim K, Knotts TA, Luke J, Gareau MG, Raybould HE, Lebrilla CB. Region-Specific Cell Membrane N-Glycome of Functional Mouse Brain Areas Revealed by nanoLC-MS Analysis. Mol Cell Proteomics 2021; 20:100130. [PMID: 34358619 PMCID: PMC8426282 DOI: 10.1016/j.mcpro.2021.100130] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
N-glycosylation is a ubiquitous posttranslational modification that affects protein structure and function, including those of the central nervous system. N-glycans attached to cell membrane proteins play crucial roles in all aspects of biology, including embryogenesis, development, cell-cell recognition and adhesion, and cell signaling and communication. Although brain function and behavior are known to be regulated by the N-glycosylation state of numerous cell surface glycoproteins, our current understanding of brain glycosylation is limited, and glycan variations associated with functional brain regions remain largely unknown. In this work, we used a well-established cell surface glycomic nanoLC-Chip-Q-TOF platform developed in our laboratory to characterize the N-glycome of membrane fractions enriched in cell surface glycoproteins obtained from specific functional brain areas. We report the cell membrane N-glycome of two major developmental divisions of mice brain with specific and distinctive functions, namely the forebrain and hindbrain. Region-specific glycan maps were obtained with ∼120 N-glycan compositions in each region, revealing significant differences in "brain-type" glycans involving high mannose, bisecting, and core and antenna fucosylated species. Additionally, the cell membrane N-glycome of three functional regions of the forebrain and hindbrain, the cerebral cortex, hippocampus, and cerebellum, was characterized. In total, 125 N-glycan compositions were identified, and their region-specific expression profiles were characterized. Over 70 N-glycans contributed to the differentiation of the cerebral cortex, hippocampus, and cerebellum N-glycome, including bisecting and branched glycans with varying degrees of core and antenna fucosylation and sialylation. This study presents a comprehensive spatial distribution of the cell-membrane enriched N-glycomes associated with five discrete anatomical and functional brain areas, providing evidence for the presence of a previously unknown brain glyco-architecture. The region-specific molecular glyco fingerprints identified here will enable a better understanding of the critical biological roles that N-glycans play in the specialized functional brain areas in health and disease.
Collapse
Affiliation(s)
- Mariana Barboza
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, USA; Department of Chemistry, University of California Davis, Davis, California, USA.
| | - Kemal Solakyildirim
- Department of Chemistry, University of California Davis, Davis, California, USA; Department of Chemistry, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Trina A Knotts
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Jonathan Luke
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Melanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
39
|
Okui M, Murakami T, Sun H, Ikeshita C, Kanamura N, Taruno A. Posttranslational regulation of CALHM1/3 channel: N-linked glycosylation and S-palmitoylation. FASEB J 2021; 35:e21527. [PMID: 33788965 DOI: 10.1096/fj.202002632r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 11/11/2022]
Abstract
Among calcium homeostasis modulator (CALHM) family members, CALHM1 and 3 together form a voltage-gated large-pore ion channel called CALHM1/3. CALHM1/3 plays an essential role in taste perception by mediating neurotransmitter release at channel synapses of taste bud cells. However, it is poorly understood how CALHM1/3 is regulated. Biochemical analyses of the two subunits following site-directed mutagenesis and pharmacological treatments established that both CALHM1 and 3 were N-glycosylated at single Asn residues in their second extracellular loops. Biochemical and electrophysiological studies revealed that N-glycan acquisition on CALHM1 and 3, respectively, controls the biosynthesis and gating kinetics of the CALHM1/3 channel. Furthermore, failure in subsequent remodeling of N-glycans decelerated the gating kinetics. Thus, the acquisition of N-glycans on both subunits and their remodeling differentially contribute to the functional expression of CALHM1/3. Meanwhile, metabolic labeling and acyl-biotin exchange assays combined with genetic modification demonstrated that CALHM3 was reversibly palmitoylated at three intracellular Cys residues. Screening of the DHHC protein acyltransferases identified DHHC3 and 15 as CALHM3 palmitoylating enzymes. The palmitoylation-deficient mutant CALHM3 showed a normal degradation rate and interaction with CALHM1. However, the same mutation markedly attenuated the channel activity but not surface localization of CALHM1/3, suggesting that CALHM3 palmitoylation is a critical determinant of CALHM1/3 activity but not its formation or forward trafficking. Overall, this study characterized N-glycosylation and S-palmitoylation of CALHM1/3 subunits and clarified their differential contributions to its functional expression, providing insights into the fine control of the CALHM1/3 channel and associated physiological processes.
Collapse
Affiliation(s)
- Motoki Okui
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuro Murakami
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hongxin Sun
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chiaki Ikeshita
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| |
Collapse
|
40
|
Zhao X, Zhang P, Li Y, Wu S, Li F, Wang Y, Liang S, He X, Zeng Y, Liu Z. Glucose-Lipopeptide Conjugates Reveal the Role of Glucose Modification Position in Complexation and the Potential of Malignant Melanoma Therapy. J Med Chem 2021; 64:11483-11495. [PMID: 34282902 DOI: 10.1021/acs.jmedchem.1c00805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glycosylation and fatty acid modification are promising strategies to improve peptide performance. We previously studied glycosylation and fatty acid modification of the anticancer peptide R-lycosin-I. In this study, we further investigated the co-modification of fatty acids and monosaccharides in R-lycosin-I. A glucose derivative was covalently coupled to the ε-amino group of the Lys residues of the lipopeptide R-C12, which was derived from R-lycosin-I modified with dodecanoic acid, and obtained seven glycolipid peptides. They exhibited different cytotoxicity profiles, which may be related to the changes in physicochemical properties and binding ability to glucose transporter 1 (GLUT1). Among them, R-C12-4 exhibited the highest cytotoxicity and improved selectivity. A further study demonstrated that R-C12-4 showed significant cytotoxicity and antimetastasis activity in murine melanoma cells, melanoma spheroids, and animal models. Our results indicated that the glucose derivative modification position plays important roles in glucose-lipopeptide conjugates, and R-C12-4 might be a promising lead for developing anticancer drugs.
Collapse
Affiliation(s)
- Xinxin Zhao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Peng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, College of Chemistry & Chemical Engineering, Changsha, Hunan 410081, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Saizhi Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Fengjiao Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Youlin Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, College of Chemistry & Chemical Engineering, Changsha, Hunan 410081, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
41
|
Meserve JH, Nelson JC, Marsden KC, Hsu J, Echeverry FA, Jain RA, Wolman MA, Pereda AE, Granato M. A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1. PLoS Genet 2021; 17:e1008943. [PMID: 34061829 PMCID: PMC8195410 DOI: 10.1371/journal.pgen.1008943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/11/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
The acoustic startle response is an evolutionarily conserved avoidance behavior. Disruptions in startle behavior, particularly startle magnitude, are a hallmark of several human neurological disorders. While the neural circuitry underlying startle behavior has been studied extensively, the repertoire of genes and genetic pathways that regulate this locomotor behavior has not been explored using an unbiased genetic approach. To identify such genes, we took advantage of the stereotypic startle behavior in zebrafish larvae and performed a forward genetic screen coupled with whole genome analysis. We uncovered mutations in eight genes critical for startle behavior, including two genes encoding proteins associated with human neurological disorders, Dolichol kinase (Dolk), a broadly expressed regulator of the glycoprotein biosynthesis pathway, and the potassium Shaker-like channel subunit Kv1.1. We demonstrate that Kv1.1 and Dolk play critical roles in the spinal cord to regulate movement magnitude during the startle response and spontaneous swim movements. Moreover, we show that Kv1.1 protein is mislocalized in dolk mutants, suggesting they act in a common genetic pathway. Combined, our results identify a diverse set of eight genes, all associated with human disorders, that regulate zebrafish startle behavior and reveal a previously unappreciated role for Dolk and Kv1.1 in regulating movement magnitude via a common genetic pathway.
Collapse
Affiliation(s)
- Joy H. Meserve
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kurt C. Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jerry Hsu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fabio A. Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Roshan A. Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marc A. Wolman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
42
|
Glycoproteomic analysis of the changes in protein N-glycosylation during neuronal differentiation in human-induced pluripotent stem cells and derived neuronal cells. Sci Rep 2021; 11:11169. [PMID: 34045517 PMCID: PMC8160270 DOI: 10.1038/s41598-021-90102-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
N-glycosylation of glycoproteins, a major post-translational modification, plays a crucial role in various biological phenomena. In central nervous systems, N-glycosylation is thought to be associated with differentiation and regeneration; however, the state and role of N-glycosylation in neuronal differentiation remain unclear. Here, we conducted sequential LC/MS/MS analyses of tryptic digest, enriched glycopeptides, and deglycosylated peptides of proteins derived from human-induced pluripotent stem cells (iPSCs) and iPSC-derived neuronal cells, which were used as a model of neuronal differentiation. We demonstrate that the production profiles of many glycoproteins and their glycoforms were altered during neuronal differentiation. Particularly, the levels of glycoproteins modified with an N-glycan, consisting of five N-acetylhexosamines, three hexoses, and a fucose (HN5H3F), increased in dopaminergic neuron-rich cells (DAs). The N-glycan was deduced to be a fucosylated and bisected biantennary glycan based on product ion spectra. Interestingly, the HN5H3F-modified proteins were predicted to be functionally involved in neural cell adhesion, axon guidance, and the semaphorin-plexin signaling pathway, and protein modifications were site-selective and DA-selective regardless of protein production levels. Our integrated method for glycoproteome analysis and resultant profiles of glycoproteins and their glycoforms provide valuable information for further understanding the role of N-glycosylation in neuronal differentiation and neural regeneration.
Collapse
|
43
|
Bhimreddy M, Rushton E, Kopke DL, Broadie K. Secreted C-type lectin regulation of neuromuscular junction synaptic vesicle dynamics modulates coordinated movement. J Cell Sci 2021; 134:261954. [PMID: 33973638 DOI: 10.1242/jcs.257592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/03/2021] [Indexed: 11/20/2022] Open
Abstract
The synaptic cleft manifests enriched glycosylation, with structured glycans coordinating signaling between presynaptic and postsynaptic cells. Glycosylated signaling ligands orchestrating communication are tightly regulated by secreted glycan-binding lectins. Using the Drosophila neuromuscular junction (NMJ) as a model glutamatergic synapse, we identify a new Ca2+-binding (C-type) lectin, Lectin-galC1 (LGC1), which modulates presynaptic function and neurotransmission strength. We find that LGC1 is enriched in motoneuron presynaptic boutons and secreted into the NMJ extracellular synaptomatrix. We show that LGC1 limits locomotor peristalsis and coordinated movement speed, with a specific requirement for synaptic function, but not NMJ architecture. LGC1 controls neurotransmission strength by limiting presynaptic active zone (AZ) and postsynaptic glutamate receptor (GluR) aligned synapse number, reducing both spontaneous and stimulation-evoked synaptic vesicle (SV) release, and capping SV cycling rate. During high-frequency stimulation (HFS), mutants have faster synaptic depression and impaired recovery while replenishing depleted SV pools. Although LGC1 removal increases the number of glutamatergic synapses, we find that LGC1-null mutants exhibit decreased SV density within presynaptic boutons, particularly SV pools at presynaptic active zones. Thus, LGC1 regulates NMJ neurotransmission to modulate coordinated movement.
Collapse
Affiliation(s)
- Meghana Bhimreddy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Emma Rushton
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Danielle L Kopke
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA.,Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA.,Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| |
Collapse
|
44
|
Burand AJ, Stucky CL. Fabry disease pain: patient and preclinical parallels. Pain 2021; 162:1305-1321. [PMID: 33259456 PMCID: PMC8054551 DOI: 10.1097/j.pain.0000000000002152] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Severe neuropathic pain is a hallmark of Fabry disease, a genetic disorder caused by a deficiency in lysosomal α-galactosidase A. Pain experienced by these patients significantly impacts their quality of life and ability to perform everyday tasks. Patients with Fabry disease suffer from peripheral neuropathy, sensory abnormalities, acute pain crises, and lifelong ongoing pain. Although treatment of pain through medication and enzyme replacement therapy exists, pain persists in many of these patients. Some has been learned in the past decades regarding clinical manifestations of pain in Fabry disease and the pathological effects of α-galactosidase A insufficiency in neurons. Still, it is unclear how pain and sensory abnormalities arise in patients with Fabry disease and how these can be targeted with therapeutics. Our knowledge is limited in part due to the lack of adequate preclinical models to study the disease. This review will detail the types of pain, sensory abnormalities, influence of demographics on pain, and current strategies to treat pain experienced by patients with Fabry disease. In addition, we discuss the current knowledge of Fabry pain pathogenesis and which aspects of the disease preclinical models accurately recapitulate. Understanding the commonalities and divergences between humans and preclinical models can be used to further interrogate mechanisms causing the pain and sensory abnormalities as well as advance development of the next generation of therapeutics to treat pain in patients with Fabry disease.
Collapse
Affiliation(s)
- Anthony J. Burand
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
45
|
Sastre Toraño J, Aizpurua‐Olaizola O, Wei N, Li T, Unione L, Jiménez‐Osés G, Corzana F, Somovilla VJ, Falcon‐Perez JM, Boons G. Identification of Isomeric N-Glycans by Conformer Distribution Fingerprinting using Ion Mobility Mass Spectrometry. Chemistry 2021; 27:2149-2154. [PMID: 33047840 PMCID: PMC7898647 DOI: 10.1002/chem.202004522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Glycans possess unparalleled structural complexity arising from chemically similar monosaccharide building blocks, configurations of anomeric linkages and different branching patterns, potentially giving rise to many isomers. This level of complexity is one of the main reasons that identification of exact glycan structures in biological samples still lags behind that of other biomolecules. Here, we introduce a methodology to identify isomeric N-glycans by determining gas phase conformer distributions (CDs) by measuring arrival time distributions (ATDs) using drift-tube ion mobility spectrometry-mass spectrometry. Key to the approach is the use of a range of well-defined synthetic glycans that made it possible to investigate conformer distributions in the gas phase of isomeric glycans in a systematic manner. In addition, we have computed CD fingerprints by molecular dynamics (MD) simulation, which compared well with experimentally determined CDs. It supports that ATDs resemble conformational populations in the gas phase and offer the prospect that such an approach can contribute to generating a library of CCS distributions (CCSDs) for structure identification.
Collapse
Affiliation(s)
- Javier Sastre Toraño
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Oier Aizpurua‐Olaizola
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Exosomes LabCIC bioGUNE, CIBERehdDerioSpain
| | - Na Wei
- The University of GeorgiaComplex Carbohydrate Research CenterAthensGAUSA
| | - Tiehai Li
- The University of GeorgiaComplex Carbohydrate Research CenterAthensGAUSA
| | - Luca Unione
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Gonzalo Jiménez‐Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNEBasque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801A48160DerioSpain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis QuímicaUniversidad de La Rioja26006LogroñoSpain
| | - Victor J. Somovilla
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | | | - Geert‐Jan Boons
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- The University of GeorgiaComplex Carbohydrate Research CenterAthensGAUSA
| |
Collapse
|
46
|
Bonduelle T, Hartlieb T, Baldassari S, Sim NS, Kim SH, Kang HC, Kobow K, Coras R, Chipaux M, Dorfmüller G, Adle-Biassette H, Aronica E, Lee JH, Blumcke I, Baulac S. Frequent SLC35A2 brain mosaicism in mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). Acta Neuropathol Commun 2021; 9:3. [PMID: 33407896 PMCID: PMC7788938 DOI: 10.1186/s40478-020-01085-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Focal malformations of cortical development (MCD) are linked to somatic brain mutations occurring during neurodevelopment. Mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE) is a newly recognized clinico-pathological entity associated with pediatric drug-resistant focal epilepsy, and amenable to neurosurgical treatment. MOGHE is histopathologically characterized by clusters of increased oligodendroglial cell densities, patchy zones of hypomyelination, and heterotopic neurons in the white matter. The molecular etiology of MOGHE remained unknown so far. We hypothesized a contribution of mosaic brain variants and performed deep targeted gene sequencing on 20 surgical MOGHE brain samples from a single-center cohort of pediatric patients. We identified somatic pathogenic SLC35A2 variants in 9/20 (45%) patients with mosaic rates ranging from 7 to 52%. SLC35A2 encodes a UDP-galactose transporter, previously implicated in other malformations of cortical development (MCD) and a rare type of congenital disorder of glycosylation. To further clarify the histological features of SLC35A2-brain tissues, we then collected 17 samples with pathogenic SLC35A2 variants from a multicenter cohort of MCD cases. Histopathological reassessment including anti-Olig2 staining confirmed a MOGHE diagnosis in all cases. Analysis by droplet digital PCR of pools of microdissected cells from one MOGHE tissue revealed a variant enrichment in clustered oligodendroglial cells and heterotopic neurons. Through an international consortium, we assembled an unprecedented series of 26 SLC35A2-MOGHE cases providing evidence that mosaic SLC35A2 variants, likely occurred in a neuroglial progenitor cell during brain development, are a genetic marker for MOGHE.
Collapse
|
47
|
Aberrant glycosylation in schizophrenia: a review of 25 years of post-mortem brain studies. Mol Psychiatry 2020; 25:3198-3207. [PMID: 32404945 PMCID: PMC8081047 DOI: 10.1038/s41380-020-0761-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Glycosylation, the enzymatic attachment of carbohydrates to proteins and lipids, regulates nearly all cellular processes and is critical in the development and function of the nervous system. Axon pathfinding, neurite outgrowth, synaptogenesis, neurotransmission, and many other neuronal processes are regulated by glycans. Over the past 25 years, studies analyzing post-mortem brain samples have found evidence of aberrant glycosylation in individuals with schizophrenia. Proteins involved in both excitatory and inhibitory neurotransmission display altered glycans in the disease state, including AMPA and kainate receptor subunits, glutamate transporters EAAT1 and EAAT2, and the GABAA receptor. Polysialylated NCAM (PSA-NCAM) and perineuronal nets, highly glycosylated molecules critical for axonal migration and synaptic stabilization, are both downregulated in multiple brain regions of individuals with schizophrenia. In addition, enzymes spanning several pathways of glycan synthesis show differential expression in brains of individuals with schizophrenia. These changes may be due to genetic predisposition, environmental perturbations, medication use, or a combination of these factors. However, the recent association of several enzymes of glycosylation with schizophrenia by genome-wide association studies underscores the importance of glycosylation in this disease. Understanding how glycosylation is dysregulated in the brain will further our understanding of how this pathway contributes to the development and pathophysiology of schizophrenia.
Collapse
|
48
|
Park D, Park S, Song J, Kang M, Lee S, Horak M, Suh YH. N‐linked glycosylation of the mGlu7 receptor regulates the forward trafficking and transsynaptic interaction with Elfn1. FASEB J 2020; 34:14977-14996. [DOI: 10.1096/fj.202001544r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Da‐ha Park
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Sunha Park
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Jae‐man Song
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Minji Kang
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Sanghyeon Lee
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Martin Horak
- Institute of Physiology of the Czech Academy of Sciences Institute of Experimental Medicine of the Czech Academy of Sciences Prague 4 Czech Republic
| | - Young Ho Suh
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| |
Collapse
|
49
|
Rushton E, Kopke DL, Broadie K. Extracellular heparan sulfate proteoglycans and glycan-binding lectins orchestrate trans-synaptic signaling. J Cell Sci 2020; 133:133/15/jcs244186. [PMID: 32788209 DOI: 10.1242/jcs.244186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The exceedingly narrow synaptic cleft (<20 nm) and adjacent perisynaptic extracellular space contain an astonishing array of secreted and membrane-anchored glycoproteins. A number of these extracellular molecules regulate intercellular trans-synaptic signaling by binding to ligands, acting as co-receptors or modulating ligand-receptor interactions. Recent work has greatly expanded our understanding of extracellular proteoglycan and glycan-binding lectin families as key regulators of intercellular signaling at the synapse. These secreted proteins act to regulate the compartmentalization of glycoprotein ligands and receptors, crosslink dynamic extracellular and cell surface lattices, modulate both exocytosis and endocytosis vesicle cycling, and control postsynaptic receptor trafficking. Here, we focus closely on the Drosophila glutamatergic neuromuscular junction (NMJ) as a model synapse for understanding extracellular roles of the many heparan sulfate proteoglycan (HSPG) and lectin proteins that help determine synaptic architecture and neurotransmission strength. We particularly concentrate on the roles of extracellular HSPGs and lectins in controlling trans-synaptic signaling, especially that mediated by the Wnt and BMP pathways. These signaling mechanisms are causally linked to a wide spectrum of neurological disease states that impair coordinated movement and cognitive functions.
Collapse
Affiliation(s)
- Emma Rushton
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Danielle L Kopke
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
50
|
Goldman AM. What does a defect in N-glycosylation mean for neuronal migration and function? Neurol Genet 2020; 6:e490. [PMID: 32754647 PMCID: PMC7357410 DOI: 10.1212/nxg.0000000000000490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Alica M Goldman
- Department of Neurology, Baylor College of Medicine, Houston, TX
| |
Collapse
|