1
|
Khan AA, Taylor MC, Fortes Francisco A, Jayawardhana S, Atherton RL, Olmo F, Lewis MD, Kelly JM. Animal models for exploring Chagas disease pathogenesis and supporting drug discovery. Clin Microbiol Rev 2024; 37:e0015523. [PMID: 39545730 PMCID: PMC11629624 DOI: 10.1128/cmr.00155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYInfections with the parasitic protozoan Trypanosoma cruzi cause Chagas disease, which results in serious cardiac and/or digestive pathology in 30%-40% of individuals. However, symptomatic disease can take decades to become apparent, and there is a broad spectrum of possible outcomes. The complex and long-term nature of this infection places a major constraint on the scope for experimental studies in humans. Accordingly, predictive animal models have been a mainstay of Chagas disease research. The resulting data have made major contributions to our understanding of parasite biology, immune responses, and disease pathogenesis and have provided a platform that informs and facilitates the global drug discovery effort. Here, we provide an overview of available animal models and illustrate how they have had a key impact across the field.
Collapse
Affiliation(s)
- Archie A. Khan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Richard L. Atherton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
Borgna E, Prochetto E, Gamba JC, Vermeulen EM, Poncini CV, Cribb P, Pérez AR, Marcipar I, González FB, Cabrera G. Control of myeloid-derived suppressor cell dynamics potentiates vaccine protection in multiple mouse models of Trypanosoma cruzi infection. Front Immunol 2024; 15:1484290. [PMID: 39555082 PMCID: PMC11568482 DOI: 10.3389/fimmu.2024.1484290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
To date, there is no licensed vaccine against the protozoan parasite Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas Disease. T. cruzi has evolved numerous mechanisms to evade and manipulate the host immune system. Among the subversive strategies employed by the parasite, marked increases in CD11b+ Gr-1+ myeloid-derived suppressor cells (MDSCs) in several organs have been described. We have reported that CD11b+ Gr-1+ cells are involved not only during infection but also after immunization with a trans-sialidase fragment (TSf) adjuvanted with a cage-like particle adjuvant (ISPA). Thus, the aim of this work was to gain control over the involvement of MDSCs during immunization to potentiate a vaccine candidate with protective capacity in multiple mouse models of T. cruzi infection. Here, we show that the Gr-1+ cells that increase during TSf-ISPA immunization have suppressive capacity over bone marrow-derived dendritic cells and CD4+ lymphocytes. Protocols using one or two doses of 5-fluorouracil (5FU) were employed to deplete and control MDSC dynamics during immunization. The protocol based on two doses of 5FU (double 5FU TSf-ISPA) was more successful in controlling MDSCs during immunization and triggered a higher immune effector response, as evidenced by increased numbers of CD4+, CD4+CD44+, CD8+, CD8+CD44+, CD11c+, and CD11c+CD8α+ cells in the spleen and lymph nodes of double 5FU TSf-ISPA mice as compared to 5FU-TSf-ISPA mice. In line with these results, the protective capacity of the double 5FU TSf-ISPA protocol was higher compared to the 5FU-TSf-ISPA protocol against high lethal doses of intraperitoneal infection with the Tulahuen T. cruzi strain. When cross-protective capacity was analyzed, the optimized protocol based on double 5FU TSf-ISPA conferred protection in several preclinical models using different discrete typing units (DTU VI and DTU I), different mouse strains (BALB/c and C57BL/6), different parasite doses (1000 to 20000), and routes of administration (intraperitoneal and intradermal). Developing vaccines that are currently lacking may require new strategies to further potentiate vaccine candidates. Results reported herein provide evidence that rational control of cells from the regulatory arm of the immune system could enhance a vaccine candidate with cross-protective capacity in multiple mouse models of T. cruzi infection.
Collapse
Affiliation(s)
- Eliana Borgna
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Estefanía Prochetto
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Juan Cruz Gamba
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Elba Mónica Vermeulen
- Laboratorio de Células Presentadoras de Antígeno y Respuesta Inflamatoria, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carolina Verónica Poncini
- Laboratorio de Inmunología Celular e Inmunopatología de Infecciones, IMPaM UBA-CONICET, Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pamela Cribb
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), and Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Iván Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Florencia Belén González
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), and Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Gabriel Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
3
|
Dedola S, Ahmadipour S, de Andrade P, Baker AN, Boshra AN, Chessa S, Gibson MI, Hernando PJ, Ivanova IM, Lloyd JE, Marín MJ, Munro-Clark AJ, Pergolizzi G, Richards SJ, Ttofi I, Wagstaff BA, Field RA. Sialic acids in infection and their potential use in detection and protection against pathogens. RSC Chem Biol 2024; 5:167-188. [PMID: 38456038 PMCID: PMC10915975 DOI: 10.1039/d3cb00155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 03/09/2024] Open
Abstract
In structural terms, the sialic acids are a large family of nine carbon sugars based around an alpha-keto acid core. They are widely spread in nature, where they are often found to be involved in molecular recognition processes, including in development, immunology, health and disease. The prominence of sialic acids in infection is a result of their exposure at the non-reducing terminus of glycans in diverse glycolipids and glycoproteins. Herein, we survey representative aspects of sialic acid structure, recognition and exploitation in relation to infectious diseases, their diagnosis and prevention or treatment. Examples covered span influenza virus and Covid-19, Leishmania and Trypanosoma, algal viruses, Campylobacter, Streptococci and Helicobacter, and commensal Ruminococci.
Collapse
Affiliation(s)
- Simone Dedola
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Sanaz Ahmadipour
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Peterson de Andrade
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Alexander N Baker
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Andrew N Boshra
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Simona Chessa
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Matthew I Gibson
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School Coventry CV4 7AL UK
| | - Pedro J Hernando
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Irina M Ivanova
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Jessica E Lloyd
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich NR4 7TJ UK
| | - Alexandra J Munro-Clark
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | | | - Sarah-Jane Richards
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Iakovia Ttofi
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Ben A Wagstaff
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
4
|
Macedo-da-Silva J, Mule SN, Rosa-Fernandes L, Palmisano G. A computational pipeline elucidating functions of conserved hypothetical Trypanosoma cruzi proteins based on public proteomic data. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:401-428. [PMID: 38220431 DOI: 10.1016/bs.apcsb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The proteome is complex, dynamic, and functionally diverse. Functional proteomics aims to characterize the functions of proteins in biological systems. However, there is a delay in annotating the function of proteins, even in model organisms. This gap is even greater in other organisms, including Trypanosoma cruzi, the causative agent of the parasitic, systemic, and sometimes fatal disease called Chagas disease. About 99.8% of Trypanosoma cruzi proteome is not manually annotated (unreviewed), among which>25% are conserved hypothetical proteins (CHPs), calling attention to the knowledge gap on the protein content of this organism. CHPs are conserved proteins among different species of various evolutionary lineages; however, they lack functional validation. This study describes a bioinformatics pipeline applied to public proteomic data to infer possible biological functions of conserved hypothetical Trypanosoma cruzi proteins. Here, the adopted strategy consisted of collecting differentially expressed proteins between the epimastigote and metacyclic trypomastigotes stages of Trypanosoma cruzi; followed by the functional characterization of these CHPs applying a manifold learning technique for dimension reduction and 3D structure homology analysis (Spalog). We found a panel of 25 and 26 upregulated proteins in the epimastigote and metacyclic trypomastigote stages, respectively; among these, 18 CHPs (8 in the epimastigote stage and 10 in the metacyclic stage) were characterized. The data generated corroborate the literature and complement the functional analyses of differentially regulated proteins at each stage, as they attribute potential functions to CHPs, which are frequently identified in Trypanosoma cruzi proteomics studies. However, it is important to point out that experimental validation is required to deepen our understanding of the CHPs.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil; Centre for Motor Neuron Disease Research, Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Sydney, NSW, Australia
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil; School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Flores A, Alonso-Vega C, Hermann E, Torrico MC, Montaño Villarroel NA, Torrico F, Carlier Y, Truyens C. Monocytes from Uninfected Neonates Born to Trypanosoma cruzi-Infected Mothers Display Upregulated Capacity to Produce TNF-α and to Control Infection in Association with Maternally Transferred Antibodies. Pathogens 2023; 12:1103. [PMID: 37764911 PMCID: PMC10536721 DOI: 10.3390/pathogens12091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Activated monocytes/macrophages that produce inflammatory cytokines and nitric oxide are crucial for controlling Trypanosoma cruzi infection. We previously showed that uninfected newborns from T. cruzi infected mothers (M+B- newborns) were sensitized to produce higher levels of inflammatory cytokines than newborns from uninfected mothers (M-B- newborns), suggesting that their monocytes were more activated. Thus, we wondered whether these cells might help limit congenital infection. We investigated this possibility by studying the activation status of M+B- cord blood monocytes and their ability to control T. cruzi in vitro infection. We showed that M+B- monocytes have an upregulated capacity to produce the inflammatory cytokine TNF-α and a better ability to control T. cruzi infection than M-B- monocytes. Our study also showed that T. cruzi-specific Abs transferred from the mother play a dual role by favoring trypomastigote entry into M+B- monocytes and inhibiting intracellular amastigote multiplication. These results support the possibility that some M+B- fetuses may eliminate the parasite transmitted in utero from their mothers, thus being uninfected at birth.
Collapse
Affiliation(s)
- Amilcar Flores
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | - Cristina Alonso-Vega
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | - Emmanuel Hermann
- Laboratory of Parasitology, Faculty of Medicine, ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
| | - Mary-Cruz Torrico
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | | | - Faustino Torrico
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | - Yves Carlier
- Laboratory of Parasitology, Faculty of Medicine, ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
| |
Collapse
|
6
|
De Fuentes-Vicente JA, Santos-Hernández NG, Ruiz-Castillejos C, Espinoza-Medinilla EE, Flores-Villegas AL, de Alba-Alvarado M, Cabrera-Bravo M, Moreno-Rodríguez A, Vidal-López DG. What Do You Need to Know before Studying Chagas Disease? A Beginner's Guide. Trop Med Infect Dis 2023; 8:360. [PMID: 37505656 PMCID: PMC10383928 DOI: 10.3390/tropicalmed8070360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Chagas disease is one of the most important tropical infections in the world and mainly affects poor people. The causative agent is the hemoflagellate protozoan Trypanosoma cruzi, which circulates among insect vectors and mammals throughout the Americas. A large body of research on Chagas disease has shown the complexity of this zoonosis, and controlling it remains a challenge for public health systems. Although knowledge of Chagas disease has advanced greatly, there are still many gaps, and it is necessary to continue generating basic and applied research to create more effective control strategies. The aim of this review is to provide up-to-date information on the components of Chagas disease and highlight current trends in research. We hope that this review will be a starting point for beginners and facilitate the search for more specific information.
Collapse
Affiliation(s)
- José A De Fuentes-Vicente
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| | - Nancy G Santos-Hernández
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| | - Christian Ruiz-Castillejos
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| | | | - A Laura Flores-Villegas
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Margarita Cabrera-Bravo
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Adriana Moreno-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
| | - Dolores G Vidal-López
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| |
Collapse
|
7
|
Macaluso G, Grippi F, Di Bella S, Blanda V, Gucciardi F, Torina A, Guercio A, Cannella V. A Review on the Immunological Response against Trypanosoma cruzi. Pathogens 2023; 12:282. [PMID: 36839554 PMCID: PMC9964664 DOI: 10.3390/pathogens12020282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Chagas disease is a chronic systemic infection transmitted by Trypanosoma cruzi. Its life cycle consists of different stages in vector insects and host mammals. Trypanosoma cruzi strains cause different clinical manifestations of Chagas disease alongside geographic differences in morbidity and mortality. Natural killer cells provide the cytokine interferon-gamma in the initial phases of T. cruzi infection. Phagocytes secrete cytokines that promote inflammation and activation of other cells involved in defence. Dendritic cells, monocytes and macrophages modulate the adaptive immune response, and B lymphocytes activate an effective humoral immune response to T. cruzi. This review focuses on the main immune mechanisms acting during T. cruzi infection, on the strategies activated by the pathogen against the host cells, on the processes involved in inflammasome and virulence factors and on the new strategies for preventing, controlling and treating this disease.
Collapse
Affiliation(s)
| | | | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy
| | | | | | | | | |
Collapse
|
8
|
Molecular Recognition of Surface Trans-Sialidases in Extracellular Vesicles of the Parasite Trypanosoma cruzi Using Atomic Force Microscopy (AFM). Int J Mol Sci 2022; 23:ijms23137193. [PMID: 35806197 PMCID: PMC9266976 DOI: 10.3390/ijms23137193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Trans-sialidases (TS) are important constitutive macromolecules of the secretome present on the surface of Trypanosoma cruzi (T. cruzi) that play a central role as a virulence factor in Chagas disease. These enzymes have been related to infectivity, escape from immune surveillance and pathogenesis exhibited by this protozoan parasite. In this work, atomic force microscopy (AFM)-based single molecule-force spectroscopy is implemented as a suitable technique for the detection and location of functional TS on the surface of extracellular vesicles (EVs) released by tissue-culture cell-derived trypomastigotes (Ex-TcT). For that purpose, AFM cantilevers with functionalized tips bearing the anti-TS monoclonal antibody mAb 39 as a sense biomolecule are engineered using a covalent chemical ligation based on vinyl sulfonate click chemistry; a reliable, simple and efficient methodology for the molecular recognition of TS using the antibody-antigen interaction. Measurements of the breakdown forces between anti-TS mAb 39 antibodies and EVs performed to elucidate adhesion and forces involved in the recognition events demonstrate that EVs isolated from tissue-culture cell-derived trypomastigotes of T. cruzi are enriched in TS. Additionally, a mapping of the TS binding sites with submicrometer-scale resolution is provided. This work represents the first AFM-based molecular recognition study of Ex-TcT using an antibody-tethered AFM probe.
Collapse
|
9
|
Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. Vaccines (Basel) 2022; 10:vaccines10040587. [PMID: 35455336 PMCID: PMC9028413 DOI: 10.3390/vaccines10040587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi and is endemic to Central and South America. However, it has spread around the world and affects several million people. Treatment with currently available drugs cause several side effects and require long treatment times to eliminate the parasite, however, this does not improve the chronic effects of the disease such as cardiomyopathy. A therapeutic vaccine for Chagas disease may be able to prevent the disease and improve the chronic effects such as cardiomyopathy. This vaccine would be beneficial for both infected people and those which are at risk in endemic and non-endemic areas. In this article, we will review the surface antigens of T. cruzi, in order to choose those that are most antigenic and least variable, to design effective vaccines against the etiological agent of Chagas disease. Also, we discuss aspects of the design of nucleic acid-based vaccines, which have been developed and proven to be effective against the SARS-CoV-2 virus. The role of co-adjuvants and delivery carriers is also discussed. We present an example of a chimeric trivalent vaccine, based on experimental work, which can be used to design a vaccine against Chagas disease.
Collapse
|
10
|
Ozdilek A, Avci FY. Glycosylation as a key parameter in the design of nucleic acid vaccines. Curr Opin Struct Biol 2022; 73:102348. [PMID: 35255387 PMCID: PMC8957583 DOI: 10.1016/j.sbi.2022.102348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 01/21/2023]
Abstract
Vaccine-induced immunity is expected to target the native antigens expressed by the pathogens. Therefore, it is highly important to generate vaccine antigens that are immunologically indistinguishable from the native antigens. Nucleic acid vaccines, comprised of DNA, mRNA, or recombinant viral vector vaccines, introduce the genetic material encoding the antigenic protein for the host to express. Because these proteins will undergo host posttranslational modifications, host glycosylation can potentially alter the structure and immunological efficacy of the antigen. In this review, we discuss the potential impact of host protein glycosylation on the immune responses generated by nucleic acid vaccines against bacterial and viral pathogens.
Collapse
Affiliation(s)
- Ahmet Ozdilek
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
11
|
de Andrade P, Ahmadipour S, Field RA. Anomeric 1,2,3-triazole-linked sialic acid derivatives show selective inhibition towards a bacterial neuraminidase over a trypanosome trans-sialidase. Beilstein J Org Chem 2022; 18:208-216. [PMID: 35280952 PMCID: PMC8895027 DOI: 10.3762/bjoc.18.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Sialic acid is the natural substrate for sialidases and its chemical modification has been a useful approach to generate potent and selective inhibitors. Aiming at advancing the discovery of selective Trypanosoma cruzi trans-sialidase (TcTS) inhibitors, we have synthesised a small series of anomeric 1,2,3-triazole-linked sialic acid derivatives in good yields and high purity via copper-catalysed azide-alkyne cycloaddition (CuAAC, click chemistry) and evaluated their activity towards TcTS and neuraminidase. Surprisingly, the compounds showed practically no TcTS inhibition, whereas ca. 70% inhibition was observed for neuraminidase in relation to the analogues bearing hydrophobic substituents and ca. 5% for more polar substituents. These results suggest that polarity changes are less tolerated by neuraminidase due to the big difference in impact of hydrophobicity upon inhibition, thus indicating a simple approach to differentiate both enzymes. Moreover, such selectivity might be reasoned based on a possible steric hindrance caused by a bulky hydrophobic loop that sits over the TcTS active site and may prevent the hydrophobic inhibitors from binding. The present study is a step forward in exploiting subtle structural differences in sialidases that need to be addressed in order to achieve selective inhibition.
Collapse
Affiliation(s)
- Peterson de Andrade
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Sanaz Ahmadipour
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Iceni Glycoscience Ltd, Norwich Research Park NR4 7GJ, UK
| | - Robert A Field
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Iceni Glycoscience Ltd, Norwich Research Park NR4 7GJ, UK
| |
Collapse
|
12
|
de Lederkremer RM, Giorgi ME, Agusti R. trans-Sialylation: a strategy used to incorporate sialic acid into oligosaccharides. RSC Chem Biol 2022; 3:121-139. [PMID: 35360885 PMCID: PMC8827155 DOI: 10.1039/d1cb00176k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/20/2021] [Indexed: 01/02/2023] Open
Abstract
Sialic acid, as a component of cell surface glycoconjugates, plays a crucial role in recognition events. Efficient synthetic methods are necessary for the supply of sialosides in enough quantities for biochemical and immunological studies. Enzymatic glycosylations obviate the steps of protection and deprotection of the constituent monosaccharides required in a chemical synthesis. Sialyl transferases with CMP-Neu5Ac as an activated donor were used for the construction of α2-3 or α2-6 linkages to terminal galactose or N-acetylgalactosamine units. trans-Sialidases may transfer sialic acid from a sialyl glycoside to a suitable acceptor and specifically construct a Siaα2-3Galp linkage. The trans-sialidase of Trypanosoma cruzi (TcTS), which fulfills an important role in the pathogenicity of the parasite, is the most studied one. The recombinant enzyme was used for the sialylation of β-galactosyl oligosaccharides. One of the main advantages of trans-sialylation is that it circumvents the use of the high energy nucleotide. Easily available glycoproteins with a high content of sialic acid such as fetuin and bovine κ-casein-derived glycomacropeptide (GMP) have been used as donor substrates. Here we review the trans-sialidase from various microorganisms and describe their application for the synthesis of sialooligosaccharides.
Collapse
Affiliation(s)
- Rosa M de Lederkremer
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| | - María Eugenia Giorgi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| | - Rosalía Agusti
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| |
Collapse
|
13
|
Ramírez-Toloza G, Aguilar-Guzmán L, Valck C, Menon SS, Ferreira VP, Ferreira A. Is It Possible to Intervene in the Capacity of Trypanosoma cruzi to Elicit and Evade the Complement System? Front Immunol 2021; 12:789145. [PMID: 34975884 PMCID: PMC8716602 DOI: 10.3389/fimmu.2021.789145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
Chagas' disease is a zoonotic parasitic ailment now affecting more than 6 million people, mainly in Latin America. Its agent, the protozoan Trypanosoma cruzi, is primarily transmitted by endemic hematophagous triatomine insects. Transplacental transmission is also important and a main source for the emerging global expansion of this disease. In the host, the parasite undergoes intra (amastigotes) and extracellular infective (trypomastigotes) stages, both eliciting complex immune responses that, in about 70% of the cases, culminate in permanent immunity, concomitant with the asymptomatic presence of the parasite. The remaining 30% of those infected individuals will develop a syndrome, with variable pathological effects on the circulatory, nervous, and digestive systems. Herein, we review an important number of T. cruzi molecules, mainly located on its surface, that have been characterized as immunogenic and protective in various experimental setups. We also discuss a variety of parasite strategies to evade the complement system - mediated immune responses. Within this context, we also discuss the capacity of the T. cruzi infective trypomastigote to translocate the ER-resident chaperone calreticulin to its surface as a key evasive strategy. Herein, it is described that T. cruzi calreticulin inhibits the initial stages of activation of the host complement system, with obvious benefits for the parasite. Finally, we speculate on the possibility to experimentally intervene in the interaction of calreticulin and other T. cruzi molecules that interact with the complement system; thus resulting in significant inhibition of T. cruzi infectivity.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Lorena Aguilar-Guzmán
- Department of Pathology, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Carolina Valck
- Department of Immunology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Smrithi S. Menon
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Arturo Ferreira
- Department of Immunology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
14
|
Medina-Rincón GJ, Gallo-Bernal S, Jiménez PA, Cruz-Saavedra L, Ramírez JD, Rodríguez MJ, Medina-Mur R, Díaz-Nassif G, Valderrama-Achury MD, Medina HM. Molecular and Clinical Aspects of Chronic Manifestations in Chagas Disease: A State-of-the-Art Review. Pathogens 2021; 10:pathogens10111493. [PMID: 34832648 PMCID: PMC8619182 DOI: 10.3390/pathogens10111493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic manifestations of Chagas disease present as disabling and life-threatening conditions affecting mainly the cardiovascular and gastrointestinal systems. Although meaningful research has outlined the different molecular mechanisms underlying Trypanosoma cruzi’s infection and the host-parasite interactions that follow, prompt diagnosis and treatment remain a challenge, particularly in developing countries and also in those where the disease is considered non-endemic. This review intends to present an up-to-date review of the parasite’s life cycle, genetic diversity, virulence factors, and infective mechanisms, as well as the epidemiology, clinical presentation, diagnosis, and treatment options of the main chronic complications of Chagas disease.
Collapse
Affiliation(s)
- Germán J. Medina-Rincón
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (S.G.-B.); (M.D.V.-A.); (H.M.M.)
- Correspondence: ; Tel.: +57-310-817-2369
| | - Sebastián Gallo-Bernal
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (S.G.-B.); (M.D.V.-A.); (H.M.M.)
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Paula A. Jiménez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (P.A.J.); (L.C.-S.); (J.D.R.)
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (P.A.J.); (L.C.-S.); (J.D.R.)
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (P.A.J.); (L.C.-S.); (J.D.R.)
| | - María Juliana Rodríguez
- Division of Cardiology, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 110131, Colombia; (M.J.R.); (R.M.-M.)
| | - Ramón Medina-Mur
- Division of Cardiology, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 110131, Colombia; (M.J.R.); (R.M.-M.)
| | - Gustavo Díaz-Nassif
- Division of Gastroenterology and Liver Diseases, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 111221, Colombia;
| | | | - Héctor M. Medina
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (S.G.-B.); (M.D.V.-A.); (H.M.M.)
- Division of Cardiology, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 110131, Colombia; (M.J.R.); (R.M.-M.)
| |
Collapse
|
15
|
da Costa KM, Marques da Fonseca L, dos Reis JS, Santos MARDC, Previato JO, Mendonça-Previato L, Freire-de-Lima L. Trypanosoma cruzi trans-Sialidase as a Potential Vaccine Target Against Chagas Disease. Front Cell Infect Microbiol 2021; 11:768450. [PMID: 34765570 PMCID: PMC8576188 DOI: 10.3389/fcimb.2021.768450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 01/21/2023] Open
Abstract
Chagas' disease is caused by the protozoan Trypanosoma cruzi, described in the early 20th century by the Brazilian physician Dr. Carlos Chagas. There was a great amount of research devoted to diagnosis, treatment and prevention of the disease. One of the most important discoveries made since then, impacting the understanding of how the parasite interacts with the host's immune system, was the description of trans-sialidase. It is an unique enzyme, capable of masking the parasite's presence from the host, while at the same time dampening the activation of CD8+ T cells, the most important components of the immune response. Since the description of Chagas' disease in 1909, extensive research has identified important events in the disease in order to understand the biochemical mechanism that modulates T. cruzi-host cell interactions and the ability of the parasite to ensure its survival. The importance of the trans-sialidase enzyme brought life to many studies for the design of diagnostic tests, drugs and vaccines. While many groups have been prolific, such efforts have encountered problems, among them: the fact that while T. cruzi have many genes that are unique to the parasite, it relies on multiple copies of them and the difficulty in providing epitopes that result in effective and robust immune responses. In this review, we aim to convey the importance of trans-sialidase as well as to provide a history, including the initial failures and the most promising successes in the chasing of a working vaccine for a disease that is endemic in many tropical countries, including Brazil.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
García-Huertas P, Cardona-Castro N. Advances in the treatment of Chagas disease: Promising new drugs, plants and targets. Biomed Pharmacother 2021; 142:112020. [PMID: 34392087 DOI: 10.1016/j.biopha.2021.112020] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is treated with only two drugs; benznidazole and nifurtimox. These drugs have some disadvantages, including their efficacy only in the acute or early infection phases, adverse effects during their use, and the resistance that the parasite has developed to their activity. Therefore, it is necessary to identify new, safe and effective therapeutic alternatives to treat Chagas disease, though governments and the pharmaceutical industry have shown a lack of interest in contributing to this solution. Institutions and research groups on the other hand have worked on some strategies that can help to address the problem. Some of these include the modification of conventional drug dosages, drug repurposing, and combined therapy. Plants and derived compounds with antiparasitic effects have also been studied, taking advantage of traditional medicinal knowledge. Others have studied the parasite to identify essential genes that can be used as therapeutic targets to design new, targeted drugs. Some of these studies have generated promising results, but few reach clinical phase studies. Institutions and research groups should be encouraged to unify efforts and cover all aspects of drug development according to resources and knowledge availability. In the end, this exchange of knowledge would lead to the development of new therapeutic alternatives to treat Chagas disease and benefit the populations it affects.
Collapse
Affiliation(s)
| | - Nora Cardona-Castro
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia.
| |
Collapse
|
17
|
Teixeira AAR, Carnero LR, Kuramoto A, Tang FHF, Gomes CH, Pereira NB, de Oliveira LC, Garrini R, Monteiro JS, Setubal JC, Sabino EC, Pasqualini R, Colli W, Arap W, Alves MJM, Cunha-Neto E, Giordano RJ. A refined genome phage display methodology delineates the human antibody response in patients with Chagas disease. iScience 2021; 24:102540. [PMID: 34142048 PMCID: PMC8185243 DOI: 10.1016/j.isci.2021.102540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Large-scale mapping of antigens and epitopes is pivotal for developing immunotherapies but challenging, especially for eukaryotic pathogens, owing to their large genomes. Here, we developed an integrated platform for genome phage display (gPhage) to show that unbiased libraries of the eukaryotic parasite Trypanosoma cruzi enable the identification of thousands of antigens recognized by serum samples from patients with Chagas disease. Because most of these antigens are hypothetical proteins, gPhage provides evidence of their expression during infection. We built and validated a comprehensive map of Chagas disease antibody response to show how linear and putative conformation epitopes, many rich in repetitive elements, allow the parasite to evade a buildup of neutralizing antibodies directed against protein domains that mediate infection pathogenesis. Thus, the gPhage platform is a reproducible and effective tool for rapid simultaneous identification of epitopes and antigens, not only in Chagas disease but perhaps also in globally emerging/reemerging acute pathogens. Genomic shotgun phage display (gPhage) of eukaryotes is feasible and promising. gPhage allows rapid antigen ID and epitope mapping, including 3D structures. Conformation epitopes can be identified and validated by using the gPhage platform. Most Chagas disease antigens are hypothetical proteins rich in repetitive elements.
Collapse
Affiliation(s)
- André Azevedo Reis Teixeira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Luis Rodriguez Carnero
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Andréia Kuramoto
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, SP, 05403-000, Brazil
| | - Fenny Hui Fen Tang
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.,Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Carlos Hernique Gomes
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Natalia Bueno Pereira
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, SP, 05403-000, Brazil
| | - Léa Campos de Oliveira
- Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo, SP, 05403-000, Brazil
| | - Regina Garrini
- Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo, SP, 05403-000, Brazil
| | - Jhonatas Sirino Monteiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - João Carlos Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo, SP, 05403-000, Brazil
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.,Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Walter Colli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.,Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Maria Júlia Manso Alves
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Edécio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, SP, 05403-000, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, SP 01246-903, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
| | - Ricardo José Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Biophysical and Biochemical Comparison of Extracellular Vesicles Produced by Infective and Non-Infective Stages of Trypanosoma cruzi. Int J Mol Sci 2021; 22:ijms22105183. [PMID: 34068436 PMCID: PMC8153575 DOI: 10.3390/ijms22105183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are small lipid vesicles released by either any prokaryotic or eukaryotic cell, or both, with a biological role in cell-to-cell communication. In this work, we characterize the proteomes and nanomechanical properties of EVs released by tissue-culture cell-derived trypomastigotes (mammalian infective stage; (TCT)) and epimastigotes (insect stage; (E)) of Trypanosoma cruzi, the etiologic agent of Chagas disease. EVs of each stage were isolated by differential centrifugation and analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), electron microscopy and atomic force microscopy (AFM). Measurements of zeta-potential were also included. Results show marked differences in the surface molecular cargos of EVs between both stages, with a noteworthy expansion of all groups of trans-sialidase proteins in trypomastigote's EVs. In contrast, chromosomal locations of trans-sialidases of EVs of epimastigotes were dramatically reduced and restricted to subtelomeric regions, indicating a possible regulatable expression of these proteins between both stages of the parasite. Regarding mechanical properties, EVs of trypomastigotes showed higher adhesion compared to the EVs of epimastigotes. These findings demonstrate the remarkable surface remodeling throughout the life cycle of T. cruzi, which shapes the physicochemical composition of the extracellular vesicles and could have an impact in the ability of these vesicles to participate in cell communication in completely different niches of infection.
Collapse
|
19
|
de Castro Neto AL, da Silveira JF, Mortara RA. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans. Front Cell Infect Microbiol 2021; 11:669079. [PMID: 33937106 PMCID: PMC8085324 DOI: 10.3389/fcimb.2021.669079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei, Leishmania spp., and T. cruzi are flagellate protozoans of the family Trypanosomatidae and the causative agents of human African trypanosomiasis, leishmaniasis, and Chagas disease, respectively. These diseases affect humans worldwide and exert a significant impact on public health. Over the course of evolution, the parasites associated with these pathologies have developed mechanisms to circumvent the immune response system throughout the infection cycle. In cases of human infection, this function is undertaken by a group of proteins and processes that allow the parasites to propagate and survive during host invasion. In T. brucei, antigenic variation is promoted by variant surface glycoproteins and other proteins involved in evasion from the humoral immune response, which helps the parasite sustain itself in the extracellular milieu during infection. Conversely, Leishmania spp. and T. cruzi possess a more complex infection cycle, with specific intracellular stages. In addition to mechanisms for evading humoral immunity, the pathogens have also developed mechanisms for facilitating their adhesion and incorporation into host cells. In this review, the different immune evasion strategies at cellular and molecular levels developed by these human-pathogenic trypanosomatids have been discussed, with a focus on the key molecules responsible for mediating the invasion and evasion mechanisms and the effects of these molecules on virulence.
Collapse
Affiliation(s)
- Artur Leonel de Castro Neto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
West CM, Malzl D, Hykollari A, Wilson IBH. Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective. Mol Cell Proteomics 2021; 20:100024. [PMID: 32994314 PMCID: PMC8724618 DOI: 10.1074/mcp.r120.002263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Glycosylation is a highly diverse set of co- and posttranslational modifications of proteins. For mammalian glycoproteins, glycosylation is often site-, tissue-, and species-specific and diversified by microheterogeneity. Multitudinous biochemical, cellular, physiological, and organismic effects of their glycans have been revealed, either intrinsic to the carrier proteins or mediated by endogenous reader proteins with carbohydrate recognition domains. Furthermore, glycans frequently form the first line of access by or defense from foreign invaders, and new roles for nucleocytoplasmic glycosylation are blossoming. We now know enough to conclude that the same general principles apply in invertebrate animals and unicellular eukaryotes-different branches of which spawned the plants or fungi and animals. The two major driving forces for exploring the glycomes of invertebrates and protists are (i) to understand the biochemical basis of glycan-driven biology in these organisms, especially of pathogens, and (ii) to uncover the evolutionary relationships between glycans, their biosynthetic enzyme genes, and biological functions for new glycobiological insights. With an emphasis on emerging areas of protist glycobiology, here we offer an overview of glycan diversity and evolution, to promote future access to this treasure trove of glycobiological processes.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; VetCore Facility for Research/Proteomics Unit, Veterinärmedizinische Universität, Vienna, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| |
Collapse
|
21
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
22
|
Lattanzi R, Maftei D, Fullone MR, Miele R. Trypanosoma cruzi trans-sialidase induces STAT3 and ERK activation by prokineticin receptor 2 binding. Cell Biochem Funct 2020; 39:326-334. [PMID: 32892338 DOI: 10.1002/cbf.3586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/15/2020] [Accepted: 08/01/2020] [Indexed: 01/22/2023]
Abstract
Tc85, as other members of trans-sialidase family, is involved in Trypanosoma cruzi parasite adhesion to mammalian cells. Particularly, Tc85 acts through specific interactions with prokineticin receptor 2, a G-protein coupled receptor involved in diverse physiological and pathological processes. In this manuscript, through biochemical analyses, we demonstrated that LamG, a Tc85 domain, physically interacts with the prokineticin receptor 2. Moreover, expressing prokineticin receptor 1 and 2 we demonstrated that LamG specifically activates prokineticin receptor 2 through a strong coupling with Gαi or Gαq proteins in yeast strains and inducing ERK and NFAT phosphorylation in CHO mammalian cells. To demonstrate a Tc85 physiological role in T. cruzi infection of the nervous system, we evidenced a strong STAT3 and ERK activation by LamG in mice Dorsal Root Ganglia. L173R is the most common prokineticin receptor 2 mutation reported in Kallmann syndrome and it is a founder mutation. Our results demonstrated that in cells co-expressing prokineticin receptor 2 mutant (L173R) and wild-type, LamG is unable to induce signal transduction. The L173R mutation in heterozygosity may allow for a selective advantage due to increased protection from T. cruzi infection. SIGNIFICANCE OF THE STUDY: The Chagas' disease affecting millions of people worldwide is caused by an eukaryotic microorganism called T. cruzi. Pharmacological treatment for patients with Chagas' disease is still limited. Indeed, the small number of drugs available shows important side effects that can be debilitating for patient health. In order to replicate and produce new parasites T. cruzi uses a complex of different proteins produced by both the parasite and the human host cells. So, understanding the molecular details used by T. cruzi to be internalised by different types of human cells is an important step towards the development of new drugs for this disease. Prokineticin receptors are relevant for host-parasite interaction. To characterise the signal transduction cascade induced by their activation may help to understand the molecular details of cell infection, leading to novel therapeutic alternative for this debilitating disease.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Maria Rosaria Fullone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
The Glycan Structure of T. cruzi mucins Depends on the Host. Insights on the Chameleonic Galactose. Molecules 2020; 25:molecules25173913. [PMID: 32867240 PMCID: PMC7504415 DOI: 10.3390/molecules25173913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Trypanosoma cruzi, the protozoa that causes Chagas disease in humans, is transmitted by insects from the Reduviidae family. The parasite has developed the ability to change the structure of the surface molecules, depending on the host. Among them, the mucins are the most abundant glycoproteins. Structural studies have focused on the epimastigotes and metacyclic trypomastigotes that colonize the insect, and on the mammal trypomastigotes. The carbohydrate in the mucins fulfills crucial functions, the most important of which being the accepting of sialic acid from the host, a process catalyzed by the unique parasite trans-sialidase. The sialylation of the parasite influences the immune response on infection. The O-linked sugars have characteristics that differentiate them from human mucins. One of them is the linkage to the polypeptide chain by the hexosamine, GlcNAc, instead of GalNAc. The main monosaccharide in the mucins oligosaccharides is galactose, and this may be present in three configurations. Whereas β-d-galactopyranose (β-Galp) was found in the insect and the human stages of Trypanosoma cruzi, β-d-galactofuranose (β-Galf) is present only in the mucins of some strains of epimastigotes and α-d-galactopyranose (α-Galp) characterizes the mucins of the bloodstream trypomastigotes. The two last configurations confer high antigenic properties. In this review we discuss the different structures found and we pose the questions that still need investigation on the exchange of the configurations of galactose.
Collapse
|
24
|
Watanabe Costa R, Batista MF, Meneghelli I, Vidal RO, Nájera CA, Mendes AC, Andrade-Lima IA, da Silveira JF, Lopes LR, Ferreira LRP, Antoneli F, Bahia D. Comparative Analysis of the Secretome and Interactome of Trypanosoma cruzi and Trypanosoma rangeli Reveals Species Specific Immune Response Modulating Proteins. Front Immunol 2020; 11:1774. [PMID: 32973747 PMCID: PMC7481403 DOI: 10.3389/fimmu.2020.01774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/04/2022] Open
Abstract
Chagas disease, a zoonosis caused by the flagellate protozoan Trypanosoma cruzi, is a chronic and systemic parasitic infection that affects ~5–7 million people worldwide, mainly in Latin America. Chagas disease is an emerging public health problem due to the lack of vaccines and effective treatments. According to recent studies, several T. cruzi secreted proteins interact with the human host during cell invasion. Moreover, some comparative studies with T. rangeli, which is non-pathogenic in humans, have been performed to identify proteins directly involved in the pathogenesis of the disease. In this study, we present an integrated analysis of canonical putative secreted proteins (PSPs) from both species. Additionally, we propose an interactome with human host and gene family clusters, and a phylogenetic inference of a selected protein. In total, we identified 322 exclusively PSPs in T. cruzi and 202 in T. rangeli. Among the PSPs identified in T. cruzi, we found several trans-sialidases, mucins, MASPs, proteins with phospholipase 2 domains (PLA2-like), and proteins with Hsp70 domains (Hsp70-like) which have been previously characterized and demonstrated to be related to T. cruzi virulence. PSPs found in T. rangeli were related to protozoan metabolism, specifically carboxylases and phosphatases. Furthermore, we also identified PSPs that may interact with the human immune system, including heat shock and MASP proteins, but in a lower number compared to T. cruzi. Interestingly, we describe a hypothetical hybrid interactome of PSPs which reveals that T. cruzi secreted molecules may be down-regulating IL-17 whilst T. rangeli may enhance the production of IL-15. These results will pave the way for a better understanding of the pathophysiology of Chagas disease and may ultimately lead to the identification of molecular targets, such as key PSPs, that could be used to minimize the health outcomes of Chagas disease by modulating the immune response triggered by T. cruzi infection.
Collapse
Affiliation(s)
- Renata Watanabe Costa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marina Ferreira Batista
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela Meneghelli
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ramon Oliveira Vidal
- The Berlin Institute for Medical Systems Biology-Max Delbrück Center for Molecular Medicine in the Helmholtz Association in Berlin, Berlin, Germany.,Laboratorio Nacional de Biociências (LNBio), Campinas, São Paulo, Brazil
| | - Carlos Alcides Nájera
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara Mendes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Augusta Andrade-Lima
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luciano Rodrigo Lopes
- Departamento de Informática em Saúde, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- RNA Systems Biology Lab (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Antoneli
- Departamento de Informática em Saúde, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Velásquez-Ortiz N, Ramírez JD. Understanding the oral transmission of Trypanosoma cruzi as a veterinary and medical foodborne zoonosis. Res Vet Sci 2020; 132:448-461. [PMID: 32781335 DOI: 10.1016/j.rvsc.2020.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Chagas disease is a neglected tropical disease transmitted by the protozoan Trypanosoma cruzi that lately has been highlighted because several outbreaks attributed to oral transmission of the parasite have occurred. These outbreaks are characterized by high mortality rates and massive infections that cannot be related to other types of transmission such as the vectorial route. Oral transmission of Chagas disease has been reported in Brazil, Colombia, Venezuela, Bolivia, Ecuador, Argentina and French Guiana, most of them are massive oral outbreaks caused by the ingestion of beverages and food contaminated with triatomine feces or parasites' reservoirs secretions and considered since 2012 as a foodborne disease. In this review, we present the current status and all available data regarding oral transmission of Chagas disease, highlighting its relevance as a veterinary and medical foodborne zoonosis.
Collapse
Affiliation(s)
- Natalia Velásquez-Ortiz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
26
|
Batista MF, Nájera CA, Meneghelli I, Bahia D. The Parasitic Intracellular Lifestyle of Trypanosomatids: Parasitophorous Vacuole Development and Survival. Front Cell Dev Biol 2020; 8:396. [PMID: 32587854 PMCID: PMC7297907 DOI: 10.3389/fcell.2020.00396] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
The trypanosomatid (protozoan) parasites Trypanosoma cruzi and Leishmania spp. are causative agents of Chagas disease and Leishmaniasis, respectively. They display high morphological plasticity, are capable of developing in both invertebrate and vertebrate hosts, and are the only trypanosomatids that can survive and multiply inside mammalian host cells. During internalization by host cells, these parasites are lodged in "parasitophorous vacuoles" (PVs) comprised of host cell endolysosomal system components. PVs effectively shelter parasites within the host cell. PV development and maturation (acidification, acquisition of membrane markers, and/or volumetric expansion) precede parasite escape from the vacuole and ultimately from the host cell, which are key determinants of infective burden and persistence. PV biogenesis varies, depending on trypanosomatid species, in terms of morphology (e.g., size), biochemical composition, and parasite-mediated processes that coopt host cell machinery. PVs play essential roles in the intracellular development (i.e., morphological differentiation and/or multiplication) of T. cruzi and Leishmania spp. They are of great research interest as potential gateways for drug delivery systems and other therapeutic strategies for suppression of parasite multiplication and control of the large spectrum of diseases caused by these trypanosomatids. This mini-review focuses on mechanisms of PV biogenesis, and processes whereby PVs of T. cruzi and Leishmania spp. promote parasite persistence within and dissemination among mammalian host cells.
Collapse
Affiliation(s)
| | | | | | - Diana Bahia
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
27
|
Campetella O, Buscaglia CA, Mucci J, Leguizamón MS. Parasite-host glycan interactions during Trypanosoma cruzi infection: trans-Sialidase rides the show. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165692. [PMID: 31972227 DOI: 10.1016/j.bbadis.2020.165692] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Many important pathogen-host interactions rely on highly specific carbohydrate binding events. In the case of the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, glycointeractions involving sialic acid (SA) residues are pivotal for parasite infectivity, escape from immune surveillance and pathogenesis. Though unable to synthesize SA de novo, T. cruzi displays a unique trans-Sialidase (TS) enzyme, which is able to cleave terminal SA residues from host donor glycoconjugates and transfer them onto parasite surface mucins, thus generating protective/adhesive structures. In addition, this parasite sheds TS into the bloodstream, as a way of modifying the surface SA signature, and thereby the signaling/functional properties of mammalian host target cells on its own advantage. Here, we discuss the pathogenic aspects of T. cruzi TS: its molecular adaptations, the multiplicity of interactions in which it is involved during infections, and the array of novel and appealing targets for intervention in Chagas disease provided by TS-remodeled sialoglycophenotypes.
Collapse
Affiliation(s)
- Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Mucci
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Susana Leguizamón
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
28
|
Host protein glycosylation in nucleic acid vaccines as a potential hurdle in vaccine design for nonviral pathogens. Proc Natl Acad Sci U S A 2020; 117:1280-1282. [PMID: 31907319 PMCID: PMC6983373 DOI: 10.1073/pnas.1916131117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleic acid vaccines introduce the genetic materials encoding antigenic proteins into host cells. If these proteins are directed into the secretory pathway with a signal/leader sequence, they will be exposed to the host’s glycosylation machinery, and, if their amino acid sequences contain consensus sequons for N-linked glycosylation, they may become glycosylated. The presence of host glycans on the proteins of microbial origin may prevent a strong protective immune response either through hindering access to key epitopes by lymphocytes or through altering immune responses by binding to immunoregulatory glycan-binding receptors on immune cells. Ag85A expressed by Mycobacterium tuberculosis (Mtb) is a bacterial surface protein that is commonly used in nucleic acid vaccines in multiple clinical trials. Here we show that, when Ag85A is expressed in mammalian cells, it is glycosylated, does not induce a strong humoral immune response in mice, and does not activate Ag85A-specific lymphocytes as highly as Ag85A natively expressed by the bacterium. Our study indicates that host glycosylation of the vaccine target can impede its antigenicity and immunogenicity. Glycosylation of the antigenic protein targets therefore must be carefully evaluated in designing nucleic acid vaccines.
Collapse
|
29
|
Sialic acid and biology of life: An introduction. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153325 DOI: 10.1016/b978-0-12-816126-5.00001-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sialic acids are important molecule with high structural diversity. They are known to occur in higher animals such as Echinoderms, Hemichordata, Cephalochorda, and Vertebrata and also in other animals such as Platyhelminthes, Cephalopoda, and Crustaceae. Plants are known to lack sialic acid. But they are reported to occur in viruses, bacteria, protozoa, and fungi. Deaminated neuraminic acid although occurs in vertebrates and bacteria, is reported to occur in abundance in the lower vertebrates. Sialic acids are mostly located in terminal ends of glycoproteins and glycolipids, capsular and tissue polysialic acids, bacterial lipooligosaccharides/polysaccharides, and in different forms that dictate their role in biology. Sialic acid play important roles in human physiology of cell-cell interaction, communication, cell-cell signaling, carbohydrate-protein interactions, cellular aggregation, development processes, immune reactions, reproduction, and in neurobiology and human diseases in enabling the infection process by bacteria and virus, tumor growth and metastasis, microbiome biology, and pathology. It enables molecular mimicry in pathogens that allows them to escape host immune responses. Recently sialic acid has found role in therapeutics. In this chapter we have highlighted the (i) diversity of sialic acid, (ii) their occurrence in the diverse life forms, (iii) sialylation and disease, and (iv) sialic acid and therapeutics.
Collapse
|
30
|
De Fuentes-Vicente JA, Vidal-López DG, Flores-Villegas AL, Moreno-Rodríguez A, De Alba-Alvarado MC, Salazar-Schettino PM, Rodríguez-López MH, Gutiérrez-Cabrera AE. Trypanosoma cruzi: A review of biological and methodological factors in Mexican strains. Acta Trop 2019; 195:51-57. [PMID: 31022383 DOI: 10.1016/j.actatropica.2019.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 01/09/2023]
Abstract
Trypanosoma cruzi, responsible for Chagas disease, is a serious public health problem in Latin America with eight million people infected in the world. Clinical manifestations observed in humans due to T. cruzi infection are largely associated with the wide biological and genetic heterogeneity of the parasite. This review presents an overview of the parasitological aspects of various strains of T. cruzi isolated mainly in Mexico, as well as an analysis of the methodological processes used to determine their virulence that could be influencing their biological characterization. We emphasize the importance of using uniform protocols to study T. cruzi virulence, taking into account factors related to: strain (i.e. developmental stage, lineage, biological origin, genetic variability), animal model used (i.e. role of hormones, host immune response, age) and methodology (i.e. inoculum size, inoculation route, and laboratory conditions used during strain maintenance). These uniform protocols will then allow proposing elements for understanding clinical evolution and management of the disease, for providing adequate treatment, and for developing tools for future vaccines against Chagas disease.
Collapse
|
31
|
Sheikh MO, Gas-Pascual E, Glushka JN, Bustamante JM, Wells L, West CM. Trypanosoma cruzi 13C-labeled O-Glycan standards for mass spectrometry. Glycobiology 2019; 29:280-284. [PMID: 30649355 DOI: 10.1093/glycob/cwy111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/20/2018] [Accepted: 12/15/2018] [Indexed: 01/26/2023] Open
Abstract
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease, a debilitating condition that affects over 10 million humans in the American continents. In addition to its traditional mode of human entry via the "kissing bug" in endemic areas, the infection can also be spread in non-endemic countries through blood transfusion, organ transplantation, eating food contaminated with the parasites, and from mother to fetus. Previous NMR-based studies established that the parasite expresses a variety of strain-specific and developmentally-regulated O-glycans that may contribute to virulence. In this report, we describe five synthetic O-glycan analytical standards and show their potential to enable a more facile analysis of native O-glycan isomers based on mass spectrometry.
Collapse
Affiliation(s)
- M Osman Sheikh
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - John N Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Juan M Bustamante
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
32
|
Agusti R, Gallo-Rodriguez C, de Lederkremer RM. Trypanosoma cruzi trans-sialidase. A tool for the synthesis of sialylated oligosaccharides. Carbohydr Res 2019; 479:48-58. [PMID: 31132642 DOI: 10.1016/j.carres.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cells are covered by a complex array of carbohydrates. Among them, sialosides are of key importance in intracellular adhesion, recognition and signaling. The need for structurally diverse sialosides impelled the search for efficient synthetic methods since their isolation from natural sources is a difficult task. The enzymatic approach obviates the need of a chemical synthesis for protecting or participating groups in the substrates. The trans-sialidase of Trypanosoma cruzi (TcTS) is highly stereospecific for the transfer of sialic acid from an α-sialylglycoside donor to a terminal β-galactopyranosyl unit in the acceptor substrate to form the α-Neu5Ac-(2 → 3)-β-D-Galp motif. The enzyme was cloned and easily available glycoproteins, e.g. fetuin, may be used as donors of sialic acid, constituting strong points for the scalability of TcTS-catalyzed reactions. This review outlines the preparative use of TcTS for the sialylation of oligosaccharides. A detailed description of the substrates used as sialic acid donors, the acceptor substrates and the methods employed to monitor the reaction is included.
Collapse
Affiliation(s)
- Rosalía Agusti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Rosa M de Lederkremer
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina.
| |
Collapse
|
33
|
Cabrera G, Marcipar I. Vaccines and the regulatory arm of the immune system. An overview from the Trypanosoma cruzi infection model. Vaccine 2019; 37:3628-3637. [PMID: 31155420 DOI: 10.1016/j.vaccine.2019.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 04/13/2019] [Accepted: 05/03/2019] [Indexed: 01/06/2023]
Abstract
The knowledge that the immune system is composed of a regulatory/suppressor arm added a new point of view to better understand the nature of several pathologies including cancer, transplants, infections and autoimmune diseases. The striking discoveries concerning molecules and cells involved in this kind of regulation were followed by the elucidation of equally notable mechanisms used by several pathogens to manipulate the host immune system. Vaccines against pathogens are an invaluable tool developed to help the immune system cope with a potential infection or prevent disease pathology. Nowadays, there is accumulated evidence indicating that the powerful stimulation capacity of vaccines influences not only the effector arm of the immune system but also cells with regulatory/suppressor capacity, such as myeloid derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs). Trypanosoma cruzi (T. cruzi) is a protozoan parasite with a complex life cycle that has evolved several strategies to influence the regulatory immune response. Although diverse vaccine formulations have been able to stimulate the effector response, achieving non-sterilizing protection against T. cruzi, the influence of the vaccine candidates on the regulatory machinery has scarcely been assessed. This fact may not only reveal important information concerning how vaccines may influence cells with regulatory/suppressor capacity but also open the possibility to analyze whether vaccines are able to disrupt the mechanisms used by some pathogens to manipulate the host regulatory circuits. The aim of this review is to summarize and discuss available data related to the role of cellular components, like MDSCs and Foxp3+ Tregs, during T. cruzi infection, and the potential utility of those populations as additional targets for the rational design of vaccines.
Collapse
Affiliation(s)
- Gabriel Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Iván Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
34
|
Figueredo AS, de Andrade P, Riul TB, Marchiori MF, De Leo TC, Fleuri AKA, Schenkman S, Baruffi MD, Carvalho I. Galactosyl and sialyl clusters: synthesis and evaluation against T. cruzi parasite. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
The multivalent effect of carbohydrates (glycoclusters) has been explored to study important biological targets and processes involving Trypanosoma cruzi (T. cruzi) infection. Likewise, CuAAC cycloaddition reactions (click chemistry) have been applied as useful strategy in the discovery of bioactive molecules. Hence, we describe the synthesis of 1,2,3-triazole-based tetravalent homoglycoclusters (1–3) and heteroglycoclusters (4 and 5) of d-galactopyranose (C-1 and C-6 positions) and sialic acid (C-2 position) to assess their potential to inhibit T. cruzi cell invasion and also its cell surface trans-sialidase (TcTS). The target compounds were synthesised in good yields (52–75 %) via click chemistry by coupling azidosugars galactopyranose and sialic acid with alkynylated pentaerythritol or tris(hydroxymethyl)-aminomethane (TRIS) scaffolds. T. cruzi cell invasion inhibition assays showed expressive low parasite infection index values (5.3–6.8) for most compounds. However, most glycoclusters proved to be weak TcTS inhibitors at 1 mM (<17 %), except the tetravalent sialic acid 3 (99 % at 1 mM, IC50 450 μM). Therefore, we assume that T. cruzi cell invasion blockage is not due to TcTS inhibition by itself, but rather by other mechanisms involved in this process. In addition, all glycoclusters were not cytotoxic and had significant trypanocidal activity upon parasite survival of amastigote forms.
Collapse
Affiliation(s)
- Andreza S. Figueredo
- Pharmaceutical Sciences , University of São Paulo , Av. do Café s/n, Monte Alegre , Ribeirão Preto 14040-903 , Brazil
| | - Peterson de Andrade
- Pharmaceutical Sciences , University of São Paulo , Av. do Café s/n, Monte Alegre , Ribeirão Preto 14040-903 , Brazil
| | - Thalita B. Riul
- Pharmaceutical Sciences , Clinical Analysis, Toxicology and Food Sciences , University of São Paulo , Av. do Café s/n, Monte Alegre , Ribeirão Preto 14040-903 , Brazil
| | - Marcelo F. Marchiori
- Pharmaceutical Sciences , University of São Paulo , Av. do Café s/n, Monte Alegre , Ribeirão Preto 14040-903 , Brazil
| | - Thais Canassa De Leo
- Pharmaceutical Sciences , Clinical Analysis, Toxicology and Food Sciences , University of São Paulo , Av. do Café s/n, Monte Alegre , Ribeirão Preto 14040-903 , Brazil
| | - Anna Karoline A. Fleuri
- Pharmaceutical Sciences , Clinical Analysis, Toxicology and Food Sciences , University of São Paulo , Av. do Café s/n, Monte Alegre , Ribeirão Preto 14040-903 , Brazil
| | - Sérgio Schenkman
- Federal University of São Paulo, Microbiology, Imunology and Parasitology , Rua Pedro de Toledo 669 L6A , São Paulo 04039-032, SP , Brazil
| | - Marcelo D. Baruffi
- Pharmaceutical Sciences , Clinical Analysis, Toxicology and Food Sciences , University of São Paulo , Av. do Café s/n, Monte Alegre , Ribeirão Preto 14040-903 , Brazil
| | - Ivone Carvalho
- Pharmaceutical Sciences , University of São Paulo , Av. do Café s/n, Monte Alegre , Ribeirão Preto 14040-903 , Brazil , Tel.: +551633154709
| |
Collapse
|
35
|
In silico analysis as a strategy to identify candidate epitopes with human IgG reactivity to study Porphyromonas gingivalis virulence factors. AMB Express 2019; 9:35. [PMID: 30859419 PMCID: PMC6411804 DOI: 10.1186/s13568-019-0757-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
Porphyromonas gingivalis (Pg) is one of the main pathogens in chronic periodontitis (CP). Studies on the immunogenicity of its virulence factors may contribute to understanding the host response to infection. The present study aimed to use in silico analysis as a tool to identify epitopes from Lys-gingipain (Kgp) and neuraminidase virulence factors of the Pg ATCC 33277 strain. Protein sequences were obtained from the NCBI Protein Database and they were scanned for amino acid patterns indicative of MHC II binding using the MHC-II Binding Predictions tool from the Immune Epitope Database (IEDB). Peptides from different regions of the proteins were chemically synthesized and tested by the indirect ELISA method to verify IgG immunoreactivity in serum of subjects with CP and without periodontitis (WP). T cell epitope prediction resulted in 16 peptide sequences from Kgp and 18 peptide sequences from neuraminidase. All tested Kgp peptides exhibited IgG immunoreactivity whereas tested neuraminidase peptides presented low IgG immunoreactivity. Thus, the IgG reactivity to Kgp protein could be reaffirmed and the low IgG reactivity to Pg neuraminidase could be suggested. The novel peptide epitopes from Pg were useful to evaluate its immunoreactivity based on the IgG-mediated host response. In silico analysis was useful for preselecting epitopes for immune response studies in CP.
Collapse
|
36
|
da Fonseca LM, da Costa KM, Chaves VDS, Freire-de-Lima CG, Morrot A, Mendonça-Previato L, Previato JO, Freire-de-Lima L. Theft and Reception of Host Cell's Sialic Acid: Dynamics of Trypanosoma Cruzi Trans-sialidases and Mucin-Like Molecules on Chagas' Disease Immunomodulation. Front Immunol 2019; 10:164. [PMID: 30787935 PMCID: PMC6372544 DOI: 10.3389/fimmu.2019.00164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/18/2019] [Indexed: 12/27/2022] Open
Abstract
The last decades have produced a plethora of evidence on the role of glycans, from cell adhesion to signaling pathways. Much of that information pertains to their role on the immune system and their importance on the surface of many human pathogens. A clear example of this is the flagellated protozoan Trypanosoma cruzi, which displays on its surface a great variety of glycoconjugates, including O-glycosylated mucin-like glycoproteins, as well as multiple glycan-binding proteins belonging to the trans-sialidase (TS) family. Among the latter, different and concurrently expressed molecules may present or not TS activity, and are accordingly known as active (aTS) and inactive (iTS) members. Over the last thirty years, it has been well described that T. cruzi is unable to synthesize sialic acid (SIA) on its own, making use of aTS to steal the host's SIA. Although iTS did not show enzymatic activity, it retains a substrate specificity similar to aTS (α-2,3 SIA-containing glycotopes), displaying lectinic properties. It is accepted that aTS members act as virulence factors in mammals coursing the acute phase of the T. cruzi infection. However, recent findings have demonstrated that iTS may also play a pathogenic role during T. cruzi infection, since it modulates events related to adhesion and invasion of the parasite into the host cells. Since both aTS and iTS proteins share structural substrate specificity, it might be plausible to speculate that iTS proteins are able to assuage and/or attenuate biological phenomena depending on the catalytic activity displayed by aTS members. Since SIA-containing glycotopes modulate the host immune system, it should not come as any surprise that changes in the sialylation of parasite's mucin-like molecules, as well as host cell glycoconjugates might disrupt critical physiological events, such as the building of effective immune responses. This review aims to discuss the importance of mucin-like glycoproteins and both aTS and iTS for T. cruzi biology, as well as to present a snapshot of how disturbances in both parasite and host cell sialoglycophenotypes may facilitate the persistence of T. cruzi in the infected mammalian host.
Collapse
Affiliation(s)
- Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victoria de Sousa Chaves
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Célio Geraldo Freire-de-Lima
- Laboratório de Imunomodulação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Pesquisa em Tuberculose, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Carlevaro G, Lantos AB, Cánepa GE, de Los Milagros Cámara M, Somoza M, Buscaglia CA, Campetella O, Mucci J. Metabolic Labeling of Surface Neo-sialylglyconjugates Catalyzed by Trypanosoma cruzi trans-Sialidase. Methods Mol Biol 2019; 1955:135-146. [PMID: 30868524 DOI: 10.1007/978-1-4939-9148-8_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trypanosoma cruzi, the protozoan agent of Chagas disease, has evolved an innovative metabolic pathway by which protective sialic acid (SA) residues are scavenged from host sialylglycoconjugates and transferred onto parasite surface mucin-like molecules (or surface glycoconjugates from host target cells) by means of a unique trans-sialidase (TS) enzyme. TS-induced changes in the glycoprotein sialylation profile of both parasite and host cells are crucial for the establishment of a persistent T. cruzi infection and for the development of Chagas disease-associated pathogenesis. In this chapter, we describe a novel metabolic labeling method developed in our labs that enables straightforward identification and molecular characterization of SA acceptors of the TS-catalyzed reaction.
Collapse
Affiliation(s)
- Giannina Carlevaro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Andrés B Lantos
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Laboratorio Dr. Lantos, Buenos Aires, Argentina
| | - Gaspar E Cánepa
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - María de Los Milagros Cámara
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Instituto de Tecnología, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Martín Somoza
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan Mucci
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
38
|
A systematic review of the Trypanosoma cruzi genetic heterogeneity, host immune response and genetic factors as plausible drivers of chronic chagasic cardiomyopathy. Parasitology 2018; 146:269-283. [PMID: 30210012 DOI: 10.1017/s0031182018001506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are responsible of this clinical pattern. To date, no conclusive data support the reason why a few percentages of the infected individuals will develop CCC. Therefore, we decided to conduct a systematic review analysing the host genetic factors, immune response, cytokine production, virulence factors and the plausible association of the parasite DTUs and CCC. The epidemiological and clinical implications are herein discussed.
Collapse
|
39
|
Quintana I, Espariz M, Villar SR, González FB, Pacini MF, Cabrera G, Bontempi I, Prochetto E, Stülke J, Perez AR, Marcipar I, Blancato V, Magni C. Genetic Engineering of Lactococcus lactis Co-producing Antigen and the Mucosal Adjuvant 3' 5'- cyclic di Adenosine Monophosphate (c-di-AMP) as a Design Strategy to Develop a Mucosal Vaccine Prototype. Front Microbiol 2018; 9:2100. [PMID: 30258417 PMCID: PMC6143824 DOI: 10.3389/fmicb.2018.02100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
Lactococcus lactis is a promising candidate for the development of mucosal vaccines. More than 20 years of experimental research supports this immunization approach. In addition, 3′ 5′- cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that plays a key role in the regulation of diverse physiological functions (potassium and cellular wall homeostasis, among others). Moreover, recent studies showed that c-di-AMP has a strong mucosal adjuvant activity that promotes both humoral and cellular immune responses. In this study, we report the development of a novel mucosal vaccine prototype based on a genetically engineered L. lactis strain. First, we demonstrate that homologous expression of cdaA gen in L. lactis is able to increase c-di-AMP levels. Thus, we hypothesized that in vivo synthesis of the adjuvant can be combined with production of an antigen of interest in a separate form or jointly in the same strain. Therefore, a specifically designed fragment of the trans-sialidase (TScf) enzyme from the Trypanosoma cruzi parasite, the etiological agent of Chagas disease, was selected to evaluate as proof of concept the immune response triggered by our vaccine prototypes. Consequently, we found that oral administration of a L. lactis strain expressing antigenic TScf combined with another L. lactis strain producing the adjuvant c-di-AMP could elicit a TS-specific immune response. Also, an additional L. lactis strain containing a single plasmid with both cdaA and tscf genes under the Pcit and Pnis promoters, respectively, was also able to elicit a specific immune response. Thus, the current report is the first one to describe an engineered L. lactis strain that simultaneously synthesizes the adjuvant c-di-AMP as well as a heterologous antigen in order to develop a simple and economical system for the formulation of vaccine prototypes using a food grade lactic acid bacterium.
Collapse
Affiliation(s)
- Ingrid Quintana
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET UNR), Universidad Nacional de Rosario, Rosario, Argentina.,Department of General Microbiology, GZMB, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET UNR), Universidad Nacional de Rosario, Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas - Municipalidad de Granadero Baigorria (UNR), Rosario, Argentina
| | - Silvina R Villar
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET UNR), Rosario, Argentina.,Facultad de Ciencias Médicas, Centro de Investigación y Producción de Reactivos Biológicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Florencia B González
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET UNR), Rosario, Argentina
| | - Maria F Pacini
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET UNR), Rosario, Argentina
| | - Gabriel Cabrera
- Laboratorio de Tecnología Inmunológica, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Iván Bontempi
- Laboratorio de Tecnología Inmunológica, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Estefanía Prochetto
- Laboratorio de Tecnología Inmunológica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ana R Perez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET UNR), Rosario, Argentina.,Facultad de Ciencias Médicas, Centro de Investigación y Producción de Reactivos Biológicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Iván Marcipar
- Laboratorio de Tecnología Inmunológica, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Victor Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET UNR), Universidad Nacional de Rosario, Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas - Municipalidad de Granadero Baigorria (UNR), Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET UNR), Universidad Nacional de Rosario, Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas - Municipalidad de Granadero Baigorria (UNR), Rosario, Argentina
| |
Collapse
|
40
|
Gallant JP, Lima-Cordón RA, Justi SA, Monroy MC, Viola T, Stevens L. The role of natural selection in shaping genetic variation in a promising Chagas disease drug target: Trypanosoma cruzi trans-sialidase. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 62:151-159. [PMID: 29684709 PMCID: PMC6196115 DOI: 10.1016/j.meegid.2018.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/20/2023]
Abstract
Rational drug design creates innovative therapeutics based on knowledge of the biological target to provide more effective and responsible therapeutics. Chagas disease, endemic throughout Latin America, is caused by Trypanosoma cruzi, a protozoan parasite. Current therapeutics are problematic with widespread calls for new approaches. Researchers are using rational drug design for Chagas disease and one target receiving considerable attention is the T. cruzi trans-sialidase protein (TcTS). In T. cruzi, trans-sialidase catalyzes the transfer of sialic acid from a mammalian host to coat the parasite surface membrane and avoid immuno-detection. However, the role of TcTS in pathology variance among and within genetic variants of the parasite is not well understood despite numerous studies. Previous studies reported the crystalline structure of TcTS and the TS protein structure in other trypanosomes where the enzyme is often inactive. However, no study has examined the role of natural selection in genetic variation in TcTS. To understand the role of natural selection in TcTS DNA sequence and protein variation, we examined a 471 bp portion of the TcTS gene from 48 T. cruzi samples isolated from insect vectors. Because there may be multiple parasite genotypes infecting one insect and there are multiple copies of TcTS per parasite genome, all 48 sequences had multiple polymorphic bases. To resolve these polymorphisms, we examined cloned sequences from two insect vectors. The data are analyzed to understand the role of natural selection in shaping genetic variation in TcTS and interpreted in light of the possible role of TcTS as a drug target. The analysis highlights negative or purifying selection on three amino acids previously shown to be important in TcTS transfer activity. One amino acid in particular, Tyr342, is a strong candidate for a drug target because it is under negative selection and amino acid substitutions inactivate TcTS transfer activity. AUTHOR SUMMARY: Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and transmitted to humans and other mammals primarily by Triatomine insects. Being endemic in many South and Central American countries and affecting millions of people the need for new more effective and safe therapies is evident. Here, we examine genetic variation and natural selection on DNA (471 bp) and amino acid (157 aa) sequence data of the T. cruzi trans-sialdiase (TcTS) protein, often suggested as a candidate for rational drug design. In our surveyed region of the protein there were five amino acid residues that have been shown to be integral to the function of TcTS. We found that three were under strong negative selection making them ideal candidates for drug design; however, one was under balancing selection and should be avoided as a drug target. Our study provides new information into identifying potential targets for a new Chagas drug.
Collapse
Affiliation(s)
- Joseph P Gallant
- Department of Biology, University of Vermont, Burlington, VT, United States; Department of Pharmacology, University of Vermont, Burlington, VT. United States
| | | | - Silvia A Justi
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Maria Carlota Monroy
- Biology School, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala
| | - Toni Viola
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Lori Stevens
- Department of Pharmacology, University of Vermont, Burlington, VT. United States.
| |
Collapse
|
41
|
Barreto de Albuquerque J, Silva Dos Santos D, Stein JV, de Meis J. Oral Versus Intragastric Inoculation: Similar Pathways of Trypanosoma cruzi Experimental Infection? From Target Tissues, Parasite Evasion, and Immune Response. Front Immunol 2018; 9:1734. [PMID: 30100907 PMCID: PMC6072848 DOI: 10.3389/fimmu.2018.01734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022] Open
Abstract
Currently, oral infection is the most frequent transmission mechanism of Chagas disease in Brazil and others Latin American countries. This transmission pathway presents increased mortality rate in the first 2 weeks, which is higher than the calculated mortality after the biting of infected insect vectors. Thus, the oral route of Trypanosoma cruzi infection, and the consequences in the host must be taken into account when thinking on the mechanisms underlying the natural history of the disease. Distinct routes of parasite entry may differentially affect immune circuits, stimulating regional immune responses that impact on the overall profile of the host protective immunity. Experimental studies related to oral infection usually comprise inoculation in the mouth (oral infection, OI) or gavage (gastrointestinal infection, GI), being often considered as similar routes of infection. Hence, establishing a relationship between the inoculation site (OI or GI) with disease progression and the mounting of T. cruzi-specific regional immune responses is an important issue to be considered. Here, we provide a discussion on studies performed in OI and GI in experimental models of acute infections, including T. cruzi infection.
Collapse
Affiliation(s)
| | - Danielle Silva Dos Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Nascimento MS, Stolf AMS, Andrade Junior HFD, Pandey RP, Umezawa ES. Vimentin and Anti Vimentin Antibodies in Chagas' Disease. Arq Bras Cardiol 2018. [PMID: 29538505 PMCID: PMC5941957 DOI: 10.5935/abc.20180038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Vimentin is a main structural protein of the cell, a component of
intermediate cell filaments and immersed in cytoplasm. Vimentin is mimicked
by some bacterial proteins and anti-vimentin antibodies occur in autoimmune
cardiac disease, as rheumatic fever. In this work we studied vimentin
distribution on LLC-MK2 cells infected with T. cruzi and anti-vimentin
antibodies in sera from several clinical pictures of Chagas' disease or
American Trypanosomiasis, in order to elucidate any vimentin involvement in
the humoral response of this pathology. Objective We standardized an indirect immunofluorescence assay (IFI) to determine sub
cellular expression in either parasites and host cells, and ELISA to
evaluate anti-vimentin antibodies in sera fron chagasic patients. Methods We analyzed the distribution of vimentin in culture cells using indirect
fluorescent assays, using as external controls anti-T. cruzi sera, derived
from chronic infected patients for identification of the parasites in the
same model. After infection and growth of T.cruzi amastigotes, those cells
express larger amounts of vimentin, with heavy staining of cytoplasm outside
the parasitophorous vacuole and some particle shadowing patterns, suggesting
that vimentin are associated with cell cytoplasm. Anti-vimentin antibodies
were present in most American trypanosomiasis samples, but notably, they are
much more present in acute (76, 9%) or clinical defined syndromes,
especially cardiac disease (87, 9%). Paradoxically, they were relatively
infrequent in asymptomatic (25%) infected patients, which had a clearly
positive serological reaction to parasite antigens, but had low frequency of
anti-vimentin antibodies, similar to controls (2,5%). Conclusion Our current data revealed that anti-vimentin antibodies induced during T.
cruzi infection could be a marker of active disease in the host and its
levels could also justify drug therapy in American Trypanosomiasis chronic
infection, as a large group of asymptomatic patients would be submitted to
treatment with frequent adverse reactions of the available drugs.
Anti-vimentin antibodies could be a marker of cardiac muscle cell damage,
appearing in American Trypanosomiasis patients during active muscle cell
damage.
Collapse
|
43
|
Franco J, Scarone L, Comini MA. Drugs and Drug Resistance in African and American Trypanosomiasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Pascuale CA, Burgos JM, Postan M, Lantos AB, Bertelli A, Campetella O, Leguizamón MS. Inactive trans-Sialidase Expression in iTS-null Trypanosoma cruzi Generates Virulent Trypomastigotes. Front Cell Infect Microbiol 2017; 7:430. [PMID: 29046868 PMCID: PMC5632715 DOI: 10.3389/fcimb.2017.00430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/19/2017] [Indexed: 11/30/2022] Open
Abstract
Disclosing virulence factors from pathogens is required to better understand the pathogenic mechanisms involved in their interaction with the host. In the case of Trypanosoma cruzi several molecules are associated with virulence. Among them, the trans-sialidase (TS) has arisen as one of particular relevance due to its effect on the immune system and involvement in the interaction/invasion of the host cells. The presence of conserved genes encoding for an inactive TS (iTS) isoform is puzzlingly restricted to the genome of parasites from the Discrete Typing Units TcII, TcV, and TcVI, which include highly virulent strains. Previous in vitro results using recombinant iTS support that this isoform could play a different or complementary pathogenic role to that of the enzymatically active protein. However, direct evidence involving iTS in in vivo pathogenesis and invasion is still lacking. Here we faced this challenge by transfecting iTS-null parasites with a recombinant gene that allowed us to follow its expression and association with pathological events. We found that iTS expression improves parasite invasion of host cells and increases their in vivo virulence for mice as shown by histopathologic findings in heart and skeletal muscle.
Collapse
Affiliation(s)
- Carla A. Pascuale
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan M. Burgos
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Miriam Postan
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Administración Nacional de Laboratorio e Institutos de Salud, “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Andrés B. Lantos
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Adriano Bertelli
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - M. Susana Leguizamón
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
45
|
Ramírez-Toloza G, Ferreira A. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin. Front Microbiol 2017; 8:1667. [PMID: 28919885 PMCID: PMC5585158 DOI: 10.3389/fmicb.2017.01667] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote) and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68), T. cruzi complement regulatory protein (TcCRP), trypomastigote decay-accelerating factor (T-DAF), C2 receptor inhibitor trispanning (CRIT) and T. cruzi calreticulin (TcCRT). Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH) and plasma membrane-derived vesicles (PMVs). All these proteins inhibit different steps of the classical (CP), alternative (AP) or lectin pathways (LP). Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host-parasite interplay. Thus, we have proposed that TcCRT is a pleiotropic molecule, present not only in the parasite endoplasmic reticulum, but also on the trypomastigote surface, participating in key processes to establish T. cruzi infection, such as inhibition of the complement system and serving as an important virulence factor. Additionally, TcCRT interaction with key complement components, participates as an anti-angiogenic and anti-tumor molecule, inhibiting at least in important part, tumor growth in infected animals.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Laboratory of Parasitology, Department of Animal Preventive Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of ChileSantiago, Chile
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| |
Collapse
|
46
|
Park M, Reddy GR, Wallukat G, Xiang YK, Steinberg SF. β 1-adrenergic receptor O-glycosylation regulates N-terminal cleavage and signaling responses in cardiomyocytes. Sci Rep 2017; 7:7890. [PMID: 28801655 PMCID: PMC5554155 DOI: 10.1038/s41598-017-06607-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/15/2017] [Indexed: 11/09/2022] Open
Abstract
β1-adrenergic receptors (β1ARs) mediate catecholamine actions in cardiomyocytes by coupling to both Gs/cAMP-dependent and Gs-independent/growth-regulatory pathways. Structural studies of the β1AR define ligand-binding sites in the transmembrane helices and effector docking sites at the intracellular surface of the β1AR, but the extracellular N-terminus, which is a target for post-translational modifications, typically is ignored. This study identifies β1AR N-terminal O-glycosylation at Ser37/Ser41 as a mechanism that prevents β1AR N-terminal cleavage. We used an adenoviral overexpression strategy to show that both full-length/glycosylated β1ARs and N-terminally truncated glycosylation-defective β1ARs couple to cAMP and ERK-MAPK signaling pathways in cardiomyocytes. However, a glycosylation defect that results in N-terminal truncation stabilizes β1ARs in a conformation that is biased toward the cAMP pathway. The identification of O-glycosylation and N-terminal cleavage as novel structural determinants of β1AR responsiveness in cardiomyocytes could be exploited for therapeutic advantage.
Collapse
Affiliation(s)
- Misun Park
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Gerd Wallukat
- Experimental and Clinical Research Center, Charité Campus Buch and Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | | |
Collapse
|
47
|
Urquiza JM, Burgos JM, Ojeda DS, Pascuale CA, Leguizamón MS, Quarleri JF. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi. Front Cell Infect Microbiol 2017; 7:345. [PMID: 28824880 PMCID: PMC5539089 DOI: 10.3389/fcimb.2017.00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV), the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis.
Collapse
Affiliation(s)
- Javier M Urquiza
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Juan M Burgos
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Diego S Ojeda
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Carla A Pascuale
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - M Susana Leguizamón
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Jorge F Quarleri
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|
48
|
Biagiotti M, Dominguez S, Yamout N, Zufferey R. Lipidomics and anti-trypanosomatid chemotherapy. Clin Transl Med 2017; 6:27. [PMID: 28766182 PMCID: PMC5539062 DOI: 10.1186/s40169-017-0160-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Trypanosomatids such as Leishmania, Trypanosoma brucei and Trypanosoma cruzi belong to the order Kinetoplastida and are the source of many significant human and animal diseases. Current treatment is unsatisfactory and is compromised by the rising appearance of drug resistant parasites. Novel and more effective chemotherapeutics are urgently needed to treat and prevent these devastating diseases, which relies on the identification of essential, parasite specific targets that are absent in the host. Lipids constitute essential components of the cell and carry out multiple critical functions from building blocks of biological membranes to regulatory roles in signal transduction, organellar biogenesis, energy storage, and virulence. The recent technological advances of lipidomics has facilitated the broadening of our knowledge in the field of cellular lipid content, structure, functions, and metabolic pathways. MAIN BODY This review highlights the application of lipidomics (i) in the characterization of the lipidome of kinetoplastid parasites or of their subcellular structure(s), (ii) in the identification of unique lipid species or metabolic pathways that can be targeted for novel drug therapies, (iii) as an analytic tool to gain a deeper insight into the roles of specific enzymes in lipid metabolism using genetically modified microorganisms, and (iv) in deciphering the mechanism of action of anti-microbial drugs on lipid metabolism. Lastly, an outlook stating where the field is evolving is presented. CONCLUSION Lipidomics has contributed to the expanding knowledge related to lipid metabolism, mechanism of drug action and resistance, and pathogen-host interaction of trypanosomatids, which provides a solid basis for the development of better anti-parasitic pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Nader Yamout
- St John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Rachel Zufferey
- St John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
49
|
Freire-de-Lima L, Gentile LB, da Fonseca LM, da Costa KM, Santos Lemos J, Jacques LR, Morrot A, Freire-de-Lima CG, Nunes MP, Takiya CM, Previato JO, Mendonça-Previato L. Role of Inactive and Active Trypanosoma cruzi Trans-sialidases on T Cell Homing and Secretion of Inflammatory Cytokines. Front Microbiol 2017; 8:1307. [PMID: 28744279 PMCID: PMC5504189 DOI: 10.3389/fmicb.2017.01307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/28/2017] [Indexed: 12/29/2022] Open
Abstract
Trans-sialidase from Trypanosoma cruzi (Tc-TS) belongs to a superfamily of proteins that may have enzymatic activity. While enzymatically active members (Tc-aTS) are able to transfer sialic acid from the host cell sialyl-glycoconjugates onto the parasite or to other molecules on the host cell surface, the inactive members (Tc-iTS) are characterized by their lectinic properties. Over the last 10 years, several papers demonstrated that, individually, Tc-aTS or Tc-iTS is able to modulate several biological events. Since the genes encoding Tc-iTS and Tc-aTS are present in the same copy number, and both proteins portray similar substrate-specificities as well, it would be plausible to speculate that such molecules may compete for the same sialyl-glycan structures and govern numerous immunobiological phenomena. However, their combined effect has never been evaluated in the course of an acute infection. In this study, we investigated the ability of both proteins to modulate the production of inflammatory signals, as well as the homing of T cells to the cardiac tissue of infected mice, events that usually occur during the acute phase of T. cruzi infection. The results showed that the intravenous administration of Tc-iTS, but not Tc-aTS protected the cardiac tissue from injury caused by reduced traffic of inflammatory cells. In addition, the ability of Tc-aTS to modulate the production of inflammatory cytokines was attenuated and/or compromised when Tc-iTS was co-injected in the same proportions. These results suggest that although both proteins present structural similarities and compete for the same sialyl-glycan epitopes, they might present distinct immunomodulatory properties on T cells following T. cruzi infection.
Collapse
Affiliation(s)
- Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Luciana B Gentile
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Leonardo M da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Kelli M da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Jessica Santos Lemos
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lucas Rodrigues Jacques
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil.,Instituto de Microbiologia, Centro de Ciência da Saúde - Sala D1-035, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Célio G Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Marise P Nunes
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | - Christina M Takiya
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Jose O Previato
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
50
|
Pech-Canul ÁDLC, Monteón V, Solís-Oviedo RL. A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. J Parasitol Res 2017; 2017:3751403. [PMID: 28656101 PMCID: PMC5474541 DOI: 10.1155/2017/3751403] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi is the causal agent of Chagas' disease which affects millions of people around the world mostly in Central and South America. T. cruzi expresses a wide variety of proteins on its surface membrane which has an important role in the biology of these parasites. Surface molecules of the parasites are the result of the environment to which the parasites are exposed during their life cycle. Hence, T. cruzi displays several modifications when they move from one host to another. Due to the complexity of this parasite's cell surface, this review presents some membrane proteins organized as large families, as they are the most abundant and/or relevant throughout the T. cruzi membrane.
Collapse
Affiliation(s)
- Ángel de la Cruz Pech-Canul
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
| | - Victor Monteón
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| | - Rosa-Lidia Solís-Oviedo
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| |
Collapse
|