1
|
Sapehia D, Mahajan A, Singh P, Kaur J. Enrichment of trimethyl histone 3 lysine 4 in the Dlk1 and Grb10 genes affects pregnancy outcomes due to dietary manipulation of excess folic acid and low vitamin B12. Biol Res 2024; 57:85. [PMID: 39543691 PMCID: PMC11562088 DOI: 10.1186/s40659-024-00557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
The aberrant expression of placental imprinted genes due to epigenetic alterations during pregnancy can impact fetal development. We investigated the impact of dietary modification of low vitamin B12 with varying doses of folic acid on the epigenetic control of imprinted genes and fetal development using a transgenerational model of C57BL/6J mice. The animals were kept on four distinct dietary combinations based on low vitamin B12 levels and modulated folic acid, mated in the F0 generation within each group. In the F1 generation, each group of mice is split into two subgroups; the sustained group was kept on the same diet, while the transient group was fed a regular control diet. After mating, maternal placenta (F1) and fetal tissues (F2) were isolated on day 20 of gestation. We observed a generation-wise opposite promoter CpG methylation and gene expression trend of the two developmental genes Dlk1 and Grb10, with enhanced gene expression in both the sustained and transient experimental groups in F1 placentae. When fetal development characteristics and gene expression were correlated, there was a substantial negative association between placental weight and Dlk1 expression (r = - 0.49, p < 0.05) and between crown-rump length and Grb10 expression (r = - 0.501, p < 0.05) in fetuses of the F2 generation. Consistent with these results, we also found that H3K4me3 at the promoter level of these genes is negatively associated with all fetal growth parameters. Overall, our findings suggest that balancing vitamin B12 and folic acid levels is important for maintaining the transcriptional status of imprinted genes and fetal development.
Collapse
Affiliation(s)
- Divika Sapehia
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aatish Mahajan
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parampal Singh
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
2
|
Morey R, Bui T, Cheung VC, Dong C, Zemke JE, Requena D, Arora H, Jackson MG, Pizzo D, Theunissen TW, Horii M. iPSC-based modeling of preeclampsia identifies epigenetic defects in extravillous trophoblast differentiation. iScience 2024; 27:109569. [PMID: 38623329 PMCID: PMC11016801 DOI: 10.1016/j.isci.2024.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive pregnancy disorder with increased risk of maternal and fetal morbidity and mortality. Abnormal extravillous trophoblast (EVT) development and function is considered to be the underlying cause of PE, but has not been previously modeled in vitro. We previously derived induced pluripotent stem cells (iPSCs) from placentas of PE patients and characterized abnormalities in formation of syncytiotrophoblast and responses to changes in oxygen tension. In this study, we converted these primed iPSC to naïve iPSC, and then derived trophoblast stem cells (TSCs) and EVT to evaluate molecular mechanisms underlying PE. We found that primed (but not naïve) iPSC-derived PE-EVT have reduced surface HLA-G, blunted invasive capacity, and altered EVT-specific gene expression. These abnormalities correlated with promoter hypermethylation of genes associated with the epithelial-mesenchymal transition pathway, specifically in primed-iPSC derived PE-EVT. Our findings indicate that abnormal epigenetic regulation might play a role in PE pathogenesis.
Collapse
Affiliation(s)
- Robert Morey
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Virginia Chu Cheung
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph E. Zemke
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniela Requena
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Harneet Arora
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeline G. Jackson
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Thorold W. Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Latchney SE, Cadney MD, Hopkins A, Garland T. DNA Methylation Analysis of Imprinted Genes in the Cortex and Hippocampus of Cross-Fostered Mice Selectively Bred for Increased Voluntary Wheel-Running. Behav Genet 2022; 52:281-297. [PMID: 35988119 PMCID: PMC9463359 DOI: 10.1007/s10519-022-10112-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
We have previously shown that high runner (HR) mice (from a line genetically selected for increased wheel-running behavior) have distinct, genetically based, neurobiological phenotypes as compared with non-selected control (C) mice. However, developmental programming effects during early life, including maternal care and parent-of-origin-dependent expression of imprinted genes, can also contribute to variation in physical activity. Here, we used cross-fostering to address two questions. First, do HR mice have altered DNA methylation profiles of imprinted genes in the brain compared to C mice? Second, does maternal upbringing further modify the DNA methylation status of these imprinted genes? To address these questions, we cross-fostered all offspring at birth to create four experimental groups: C pups to other C dams, HR pups to other HR dams, C pups to HR dams, and HR pups to C dams. Bisulfite sequencing of 16 imprinted genes in the cortex and hippocampus revealed that the HR line had altered DNA methylation patterns of the paternally imprinted genes, Rasgrf1 and Zdbf2, as compared with the C line. Both fostering between the HR and C lines and sex modified the DNA methylation profiles for the paternally expressed genes Mest, Peg3, Igf2, Snrpn, and Impact. Ig-DMR, a gene with multiple paternal and maternal imprinted clusters, was also affected by maternal upbringing and sex. Our results suggest that differential methylation patterns of imprinted genes in the brain could contribute to evolutionary increases in wheel-running behavior and are also dependent on maternal upbringing and sex.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, 18952 E. Fisher Rd, Saint Mary's City, MD, 20686, USA.
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
4
|
Aoki S, Higashimoto K, Hidaka H, Ohtsuka Y, Aoki S, Mishima H, Yoshiura KI, Nakabayashi K, Hata K, Yatsuki H, Hara S, Ohba T, Katabuchi H, Soejima H. Aberrant hypomethylation at imprinted differentially methylated regions is involved in biparental placental mesenchymal dysplasia. Clin Epigenetics 2022; 14:64. [PMID: 35581658 PMCID: PMC9115938 DOI: 10.1186/s13148-022-01280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Placental mesenchymal dysplasia (PMD) is a morphological abnormality resembling partial hydatidiform moles. It is often associated with androgenetic/biparental mosaicism (ABM) and complicated by Beckwith-Wiedemann syndrome (BWS), an imprinting disorder. These phenomena suggest an association between PMD and aberrant genomic imprinting, particularly of CDKN1C and IGF2. The existence of another type of PMD containing the biparental genome has been reported. However, the frequency and etiology of biparental PMD are not yet fully understood. RESULTS We examined 44 placental specimens from 26 patients with PMD: 19 of these were macroscopically normal and 25 exhibited macroscopic PMD. Genotyping by DNA microarray or short tandem repeat analysis revealed that approximately 35% of the macroscopic PMD specimens could be classified as biparental, while the remainder were ABM. We performed a DNA methylation analysis using bisulfite pyrosequencing of 15 placenta-specific imprinted differentially methylated regions (DMRs) and 36 ubiquitous imprinted DMRs. As expected, most DMRs in the macroscopic PMD specimens with ABM exhibited the paternal epigenotype. Importantly, the biparental macroscopic PMD specimens exhibited frequent aberrant hypomethylation at seven of the placenta-specific DMRs. Allelic expression analysis using single-nucleotide polymorphisms revealed that five imprinted genes associated with these aberrantly hypomethylated DMRs were biallelically expressed. Frequent aberrant hypomethylation was observed at five ubiquitous DMRs, including GRB10 but not ICR2 or ICR1, which regulate the expression of CDKN1C and IGF2, respectively. Whole-exome sequencing performed on four biparental macroscopic PMD specimens did not reveal any pathological genetic abnormalities. Clinical and molecular analyses of babies born from pregnancies with PMD revealed four cases with BWS, each exhibiting different molecular characteristics, and those between BWS and PMD specimens were not always the same. CONCLUSION These data clarify the prevalence of biparental PMD and ABM-PMD and strongly implicate hypomethylation of DMRs in the pathogenesis of biparental PMD, particularly placenta-specific DMRs and the ubiquitous GRB10, but not ICR2 or ICR1. Aberrant hypomethylation of DMRs was partial, indicating that it occurs after fertilization. PMD is an imprinting disorder, and it may be a missing link between imprinting disorders and placental disorders incompatible with life, such as complete hydatidiform moles and partial hydatidiform moles.
Collapse
Affiliation(s)
- Saori Aoki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| | - Hidenori Hidaka
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Yasufumi Ohtsuka
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Shigehisa Aoki
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Satoshi Hara
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Takashi Ohba
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| |
Collapse
|
5
|
Mao J, Kinkade JA, Bivens NJ, Rosenfeld CS. miRNA changes in the mouse placenta due to bisphenol A exposure. Epigenomics 2021; 13:1909-1919. [PMID: 34841895 DOI: 10.2217/epi-2021-0339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To determine small RNA expression changes in mouse placenta induced by bisphenol A (BPA) exposure. Methods: Exposing female mice to BPA two weeks prior to conception through gestational day 12.5; whereupon fetal placentas were collected, frozen in liquid nitrogen and stored at -80°C. Small RNAs were isolated and used for small RNA-sequencing. Results: 43 small RNAs were differentially expressed. Target mRNAs were closely aligned to those expressed by thymus and brain, and pathway enrichment analyses indicated that such target mRNAs regulate neurogenesis and associated neurodevelopment processes. Conclusions: BPA induces several small RNAs in mouse placenta that might provide biomarkers for BPA exposure. Further, the placenta might affect fetal brain development through the secretion of miRNAs.
Collapse
Affiliation(s)
- Jiude Mao
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jessica A Kinkade
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Nathan J Bivens
- Genomics Technology Core Facility, University of Missouri, Columbia, MO 65211, USA
| | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.,MU Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA.,Thompson Center for Autism & Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA.,Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Eggermann T, Davies JH, Tauber M, van den Akker E, Hokken-Koelega A, Johansson G, Netchine I. Growth Restriction and Genomic Imprinting-Overlapping Phenotypes Support the Concept of an Imprinting Network. Genes (Basel) 2021; 12:genes12040585. [PMID: 33920525 PMCID: PMC8073901 DOI: 10.3390/genes12040585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Intrauterine and postnatal growth disturbances are major clinical features of imprinting disorders, a molecularly defined group of congenital syndromes caused by molecular alterations affecting parentally imprinted genes. These genes are expressed monoallelically and in a parent-of-origin manner, and they have an impact on human growth and development. In fact, several genes with an exclusive expression from the paternal allele have been shown to promote foetal growth, whereas maternally expressed genes suppress it. The evolution of this correlation might be explained by the different interests of the maternal and paternal genomes, aiming for the conservation of maternal resources for multiple offspring versus extracting maximal maternal resources. Since not all imprinted genes in higher mammals show the same imprinting pattern in different species, the findings from animal models are not always transferable to human. Therefore, human imprinting disorders might serve as models to understand the complex regulation and interaction of imprinted loci. This knowledge is a prerequisite for the development of precise diagnostic tools and therapeutic strategies for patients affected by imprinting disorders. In this review we will specifically overview the current knowledge on imprinting disorders associated with growth retardation, and its increasing relevance in a personalised medicine direction and the need for a multidisciplinary therapeutic approach.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, 52062 Aachen, Germany
- Correspondence: ; Tel.: +49-241-8088008; Fax: +49-241-8082394
| | - Justin H. Davies
- Department of Paediatric Endocrinology, University Hospital Southampton, Southampton SO16 6YD, UK;
| | - Maithé Tauber
- Research centre of rare diseases PRADORT, Childrens Hospital, CHU Toulouse, Toulouse Institute of Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Tolouse III University, 31062 Toulouse, France;
| | - Erica van den Akker
- Erasmus University Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Anita Hokken-Koelega
- Erasmus University Medical Center, Pediatrics, Subdivision of Endocrinology, 3015 GD Rotterdam, The Netherlands;
| | - Gudmundur Johansson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Department of Endocrinology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden;
| | - Irène Netchine
- Medical Faculty, AP-HP, Armand Trousseau Hospital-Functional Endocrine Research Unit, INSERM, Research Centre Saint-Antoine, Sorbonne University, 75012 Paris, France;
| |
Collapse
|
7
|
Genomic Imprinting at the Porcine PLAGL1 Locus and the Orthologous Locus in the Human. Genes (Basel) 2021; 12:genes12040541. [PMID: 33918057 PMCID: PMC8069715 DOI: 10.3390/genes12040541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Implementation of genomic imprinting in mammals often results in cis-acting silencing of a gene cluster and monoallelic expression, which are important for mammalian growth and function. Compared with widely documented imprinting status in humans and mice, current understanding of genomic imprinting in pigs is relatively limited. The objectives of this study were to identify DNA methylation status and allelic expression of alternative spliced isoforms at the porcine PLAGL1 locus and assess the conservation of the locus compared to the orthologous human locus. DNA methylome and transcriptome were constructed using porcine parthenogenetic or biparental control embryos. Using methylome, differentially methylated regions between those embryos were identified. Alternative splicing was identified by differential splicing analysis, and monoallelic expression was examined using single nucleotide polymorphism sites. Moreover, topological boundary regions were identified by analyzing CTCF binding sites and compared with the boundary of human orthologous locus. As a result, it was revealed that the monoallelic expression of the PLAGL1 gene in porcine embryos via genomic imprinting was maintained in the adult stage. The porcine PLAGL1 locus was largely conserved in regard to maternal hypermethylation, tissue distribution of mRNA expression, monoallelic expression, and biallelic CTCF-binding, with exceptions on transcript isoforms produced by alternative splicing instead of alternative promoter usage. These findings laid the groundwork for comparative studies on the imprinted PLAGL1 gene and related regulatory mechanisms across species.
Collapse
|
8
|
Ozmen A, Kipmen-Korgun D, Isenlik BS, Erman M, Sakinci M, Berkkanoglu M, Coetzee K, Ozgur K, Cetindag E, Yanar K, Korgun ET. Does fresh or frozen embryo transfer affect imprinted gene expressions in human term placenta? Acta Histochem 2021; 123:151694. [PMID: 33571695 DOI: 10.1016/j.acthis.2021.151694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Abstract
Our research aimed to compare the epigenetic alterations between placentae of in vitro fertilization (IVF) patients and spontaneous pregnancies. Additionally, the expression levels of proliferation markers (PCNA, Ki67) and glucose transporter proteins (GLUT1, GLUT3) were assessed in control and IVF placentae to examine the possible consequences of epigenetic alterations on placental development. Control group placentae were obtained from spontaneous pregnancies of healthy women (n = 16). IVF placentae were obtained from fresh (n = 16) and frozen (n = 16) embryo transfer pregnancies. A group of maternal and paternal imprint genes H19, IGF2, IGF2, IGF2R, PHLDA2, PLAGL1, MASH2, GRB10, PEG1, PEG3, and PEG10 were detected by Real-Time PCR. Additionally, PCNA, Ki67, GLUT1, and GLUT3 protein levels were assessed by immunohistochemistry and western blot. In the fresh embryo transfer placenta group (fETP), gene expression of paternal PEG1 and PEG10 was upregulated compared with the control group. Increased gene expression in paternal PEG1 and maternal IGFR2 genes was detected in the frozen embryo transfer placenta group (FET) compared with the control group. Conversely, expression levels of H19 and IGF2 genes were downregulated in the FET group. On the other hand, GLUT3 and PCNA expression was increased in FET group placentae. IVF techniques affect placental imprinted gene expressions which are important for proper placental development. Imprinted genes are differently expressed in fresh ET placentae and frozen ET placentae. In conclusion, these data indicate that altered imprinted gene expression may affect glucose transport and cell proliferation, therefore play an important role in placental development.
Collapse
Affiliation(s)
- Asli Ozmen
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Dijle Kipmen-Korgun
- Department of Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Bekir Sitki Isenlik
- Department of Obstetrics and Gynecology, Training and Research Hospital, Health Sciences University, Antalya, Turkey
| | - Munire Erman
- Department of Obstetrics and Gynecology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Mehmet Sakinci
- Department of Obstetrics and Gynecology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | | | - Kevin Coetzee
- Antalya IVF, Halide Edip Cd. No:7, Kanal Mh., Antalya, Turkey
| | - Kemal Ozgur
- Antalya IVF, Halide Edip Cd. No:7, Kanal Mh., Antalya, Turkey
| | - Emre Cetindag
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Kerem Yanar
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
9
|
Scagliotti V, Esse R, Willis TL, Howard M, Carrus I, Lodge E, Andoniadou CL, Charalambous M. Dynamic Expression of Imprinted Genes in the Developing and Postnatal Pituitary Gland. Genes (Basel) 2021; 12:genes12040509. [PMID: 33808370 PMCID: PMC8066104 DOI: 10.3390/genes12040509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, imprinted genes regulate many critical endocrine processes such as growth, the onset of puberty and maternal reproductive behaviour. Human imprinting disorders (IDs) are caused by genetic and epigenetic mechanisms that alter the expression dosage of imprinted genes. Due to improvements in diagnosis, increasing numbers of patients with IDs are now identified and monitored across their lifetimes. Seminal work has revealed that IDs have a strong endocrine component, yet the contribution of imprinted gene products in the development and function of the hypothalamo-pituitary axis are not well defined. Postnatal endocrine processes are dependent upon the production of hormones from the pituitary gland. While the actions of a few imprinted genes in pituitary development and function have been described, to date there has been no attempt to link the expression of these genes as a class to the formation and function of this essential organ. This is important because IDs show considerable overlap, and imprinted genes are known to define a transcriptional network related to organ growth. This knowledge deficit is partly due to technical difficulties in obtaining useful transcriptomic data from the pituitary gland, namely, its small size during development and cellular complexity in maturity. Here we utilise high-sensitivity RNA sequencing at the embryonic stages, and single-cell RNA sequencing data to describe the imprinted transcriptome of the pituitary gland. In concert, we provide a comprehensive literature review of the current knowledge of the role of imprinted genes in pituitary hormonal pathways and how these relate to IDs. We present new data that implicate imprinted gene networks in the development of the gland and in the stem cell compartment. Furthermore, we suggest novel roles for individual imprinted genes in the aetiology of IDs. Finally, we describe the dynamic regulation of imprinted genes in the pituitary gland of the pregnant mother, with implications for the regulation of maternal metabolic adaptations to pregnancy.
Collapse
Affiliation(s)
- Valeria Scagliotti
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Ruben Esse
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Thea L. Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Mark Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE19RT, UK;
| | - Isabella Carrus
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Emily Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
- Correspondence:
| |
Collapse
|
10
|
|
11
|
Liang ZS, Cimino I, Yalcin B, Raghupathy N, Vancollie VE, Ibarra-Soria X, Firth HV, Rimmington D, Farooqi IS, Lelliott CJ, Munger SC, O’Rahilly S, Ferguson-Smith AC, Coll AP, Logan DW. Trappc9 deficiency causes parent-of-origin dependent microcephaly and obesity. PLoS Genet 2020; 16:e1008916. [PMID: 32877400 PMCID: PMC7467316 DOI: 10.1371/journal.pgen.1008916] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022] Open
Abstract
Some imprinted genes exhibit parental origin specific expression bias rather than being transcribed exclusively from one copy. The physiological relevance of this remains poorly understood. In an analysis of brain-specific allele-biased expression, we identified that Trappc9, a cellular trafficking factor, was expressed predominantly (~70%) from the maternally inherited allele. Loss-of-function mutations in human TRAPPC9 cause a rare neurodevelopmental syndrome characterized by microcephaly and obesity. By studying Trappc9 null mice we discovered that homozygous mutant mice showed a reduction in brain size, exploratory activity and social memory, as well as a marked increase in body weight. A role for Trappc9 in energy balance was further supported by increased ad libitum food intake in a child with TRAPPC9 deficiency. Strikingly, heterozygous mice lacking the maternal allele (70% reduced expression) had pathology similar to homozygous mutants, whereas mice lacking the paternal allele (30% reduction) were phenotypically normal. Taken together, we conclude that Trappc9 deficient mice recapitulate key pathological features of TRAPPC9 mutations in humans and identify a role for Trappc9 and its imprinting in controlling brain development and metabolism.
Collapse
Affiliation(s)
- Zhengzheng S. Liang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Irene Cimino
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, France
| | | | | | - Ximena Ibarra-Soria
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Helen V. Firth
- Department of Clinical Genetics, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Debra Rimmington
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Steven C. Munger
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Stephen O’Rahilly
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | | | - Anthony P. Coll
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Darren W. Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| |
Collapse
|
12
|
Wilkins JF, Bhattacharya T. Intragenomic conflict over bet-hedging. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180142. [PMID: 30966914 DOI: 10.1098/rstb.2018.0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genomic imprinting, where an allele's expression pattern depends on its parental origin, is thought to result primarily from an intragenomic evolutionary conflict. Imprinted genes are widely expressed in the brain and have been linked to various phenotypes, including behaviours related to risk tolerance. In this paper, we analyse a model of evolutionary bet-hedging in a system with imprinted gene expression. Previous analyses of bet-hedging have shown that natural selection may favour alleles and traits that reduce reproductive variance, even at the expense of reducing mean reproductive success, with the trade-off between mean and variance depending on the population size. In species where the sexes have different reproductive variances, this bet-hedging trade-off differs between maternally and paternally inherited alleles. Where males have the higher reproductive variance, alleles are more strongly selected to reduce variance when paternally inherited than when maternally inherited. We connect this result to phenotypes connected with specific imprinted genes, including delay discounting and social dominance. The empirical patterns are consistent with paternally expressed imprinted genes promoting risk-averse behaviours that reduce reproductive variance. Conversely, maternally expressed imprinted genes promote risk-tolerant, variance-increasing behaviours. We indicate how future research might further test the hypotheses suggested by our analysis. This article is part of the theme issue 'Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications'.
Collapse
Affiliation(s)
- Jon F Wilkins
- 1 Ronin Institute , Montclair, NJ 07043 , USA.,2 Santa Fe Institute , 1399 Hyde Park Road, Santa Fe, NM 87501 , USA
| | - Tanmoy Bhattacharya
- 2 Santa Fe Institute , 1399 Hyde Park Road, Santa Fe, NM 87501 , USA.,3 Group T2, Los Alamos National Laboratory , PO Box 1663, Los Alamos, NM 87545 , USA
| |
Collapse
|
13
|
Vincenz C, Lovett JL, Wu W, Shedden K, Strassmann BI. Loss of Imprinting in Human Placentas Is Widespread, Coordinated, and Predicts Birth Phenotypes. Mol Biol Evol 2020; 37:429-441. [PMID: 31639821 PMCID: PMC6993844 DOI: 10.1093/molbev/msz226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genomic imprinting leads to mono-allelic expression of genes based on parent of origin. Therian mammals and angiosperms evolved this mechanism in nutritive tissues, the placenta, and endosperm, where maternal and paternal genomes are in conflict with respect to resource allocation. We used RNA-seq to analyze allelic bias in the expression of 91 known imprinted genes in term human placentas from a prospective cohort study in Mali. A large fraction of the imprinted exons (39%) deviated from mono-allelic expression. Loss of imprinting (LOI) occurred in genes with either maternal or paternal expression bias, albeit more frequently in the former. We characterized LOI using binomial generalized linear mixed models. Variation in LOI was predominantly at the gene as opposed to the exon level, consistent with a single promoter driving the expression of most exons in a gene. Some genes were less prone to LOI than others, particularly lncRNA genes were rarely expressed from the repressed allele. Further, some individuals had more LOI than others and, within a person, the expression bias of maternally and paternally imprinted genes was correlated. We hypothesize that trans-acting maternal effect genes mediate correlated LOI and provide the mother with an additional lever to control fetal growth by extending her influence to LOI of the paternally imprinted genes. Limited evidence exists to support associations between LOI and offspring phenotypes. We show that birth length and placental weight were associated with allelic bias, making this the first comprehensive report of an association between LOI and a birth phenotype.
Collapse
Affiliation(s)
- Claudius Vincenz
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Jennie L Lovett
- Department of Anthropology, University of Michigan, Ann Arbor, MI
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, MI
| | - Beverly I Strassmann
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI
- Department of Anthropology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
14
|
|
15
|
Crippa M, Bonati MT, Calzari L, Picinelli C, Gervasini C, Sironi A, Bestetti I, Guzzetti S, Bellone S, Selicorni A, Mussa A, Riccio A, Ferrero GB, Russo S, Larizza L, Finelli P. Molecular Etiology Disclosed by Array CGH in Patients With Silver-Russell Syndrome or Similar Phenotypes. Front Genet 2019; 10:955. [PMID: 31749829 PMCID: PMC6843062 DOI: 10.3389/fgene.2019.00955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction: Silver–Russell syndrome (SRS) is an imprinting disorder primarily caused by genetic and epigenetic aberrations on chromosomes 11 and 7. SRS is a rare growth retardation disorder often misdiagnosed due to its heterogeneous and non-specific clinical features. The Netchine–Harbison clinical scoring system (NH-CSS) is the recommended tool for differentiating patients into clinical SRS or unlikely SRS. However, the clinical diagnosis is molecularly confirmed only in about 60% of patients, leaving the remaining substantial proportion of SRS patients with unknown genetic etiology. Materials and Methods: A cohort of 34 Italian patients with SRS or SRS-like features scored according to the NH-CSS and without any SRS-associated (epi)genetic alterations was analyzed by high-resolution array-based comparative genomic hybridization (CGH) in order to identify potentially pathogenic copy number variants (CNVs). Results and Discussion: In seven patients, making up 21% of the initial cohort, five pathogenic and two potentially pathogenic CNVs were found involving distinct genomic regions either previously associated with growth delay conditions (1q24.3-q25.3, 17p13.3, 17q22, and 22q11.2-q11.22) and with SRS spectrum (7p12.1 and 7p15.3-p14.3) or outlined for the first time (19q13.42), providing a better definition of reported and as yet unreported SRS overlapping syndromes. All the variants involve genes with a defined role in growth pathways, and for two genes mapping at 7p, IGF2BP3 and GRB10, the association with SRS turns out to be reinforced. The deleterious effect of the two potentially pathogenic variants, comprising GRB10 and ZNF331 genes, was explored by targeted approaches, though further studies are needed to validate their pathogenic role in the SRS etiology. In conclusion, we reconfirm the utility of performing a genome-wide scan to achieve a differential diagnosis in patients with SRS or similar features and to highlight novel chromosome alterations associated with SRS and growth retardation disorders.
Collapse
Affiliation(s)
- Milena Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Teresa Bonati
- Clinic of Medical Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luciano Calzari
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Chiara Picinelli
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Cristina Gervasini
- Medical Genetics, Department of Health Sciences, University of Milan, Milan, Italy
| | - Alessandra Sironi
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ilaria Bestetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Guzzetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simonetta Bellone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Alessandro Mussa
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli," Caserta, Italy.,Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | | | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Lidia Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Palma Finelli
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Millership SJ, Van de Pette M, Withers DJ. Genomic imprinting and its effects on postnatal growth and adult metabolism. Cell Mol Life Sci 2019; 76:4009-4021. [PMID: 31270580 PMCID: PMC6785587 DOI: 10.1007/s00018-019-03197-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
Imprinted genes display parent-of-origin-specific expression with this epigenetic system of regulation found exclusively in therian mammals. Historically, defined imprinted gene functions were almost solely focused on pregnancy and the influence on the growth parameters of the developing embryo and placenta. More recently, a number of postnatal functions have been identified which converge on resource allocation, both for animals in the nest and in adults. While many of the prenatal functions of imprinted genes that have so far been described adhere to the "parental conflict" hypothesis, no clear picture has yet emerged on the functional role of imprints on postnatal metabolism. As these roles are uncovered, interest in the potential for these genes to influence postnatal metabolism and associated adult-onset disease outcomes when dysregulated has gathered pace. Here, we review the published data on imprinted genes and their influence on postnatal metabolism, starting in the nest, and then progressing through to adulthood. When observing the functional effects of these genes on adult metabolism, we must always be careful to acknowledge the influence both of direct expression in the relevant metabolic tissue, but also indirect metabolic programming effects caused by their modulation of both in utero and postnatal growth trajectories.
Collapse
Affiliation(s)
- Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Mathew Van de Pette
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
17
|
Pilvar D, Reiman M, Pilvar A, Laan M. Parent-of-origin-specific allelic expression in the human placenta is limited to established imprinted loci and it is stably maintained across pregnancy. Clin Epigenetics 2019; 11:94. [PMID: 31242935 PMCID: PMC6595585 DOI: 10.1186/s13148-019-0692-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Background Genomic imprinting, mediated by parent-of-origin-specific epigenetic silencing, adjusts the gene expression dosage in mammals. We aimed to clarify parental allelic expression in the human placenta for 396 claimed candidate imprinted genes and to assess the evidence for the proposed enrichment of imprinted expression in the placenta. The study utilized RNA-Seq-based transcriptome and genotyping data from 54 parental-placental samples representing the three trimesters of gestation, and term cases of preeclampsia, gestational diabetes, and fetal growth disturbances. Results Almost half of the targeted genes (n = 179; 45%) were either not transcribed or showed limited expression in the human placenta. After filtering for the presence of common exonic SNPs, adequacy of sequencing reads and informative families, 91 genes were retained (43 loci form Geneimprint database; 48 recently proposed genes). Only 11/91 genes (12.1%) showed confident signals of imprinting (binomial test, Bonferroni corrected P < 0.05; > 90% transcripts originating from one parental allele). The confirmed imprinted genes exhibit enriched placental expression (PHLDA2, H19, IGF2, MEST, ZFAT, PLAGL1, AIM1) or are transcribed additionally only in the adrenal gland (MEG3, RTL1, PEG10, DLK1). Parental monoallelic expression showed extreme stability across gestation and in term pregnancy complications. A distinct group of additional 14 genes exhibited a statistically significant bias in parental allelic proportions defined as having 65–90% of reads from one parental allele (e.g., KLHDC10, NLRP2, RHOBTB3, DNMT1). Molecular mechanisms behind biased parental expression are still to be clarified. However, 66 of 91 (72.5%) analyzed candidate imprinted genes showed no signals of deviation from biallelic expression. Conclusions As placental tissue is not included in The Genotype-Tissue Expression (GTEx) project, the study contributed to fill the gap in the knowledge concerning parental allelic expression. A catalog of parental allelic proportions and gene expression of analyzed loci across human gestation and in term pregnancy complications is provided as additional files. The study outcome suggested that true imprinting in the human placenta is restricted to well-characterized loci. High expression of imprinted genes during mid-pregnancy supports their critical role in developmental programming. Consistent with the data on other GTEx tissues, the number of human imprinted genes appears to be overestimated. Electronic supplementary material The online version of this article (10.1186/s13148-019-0692-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Pilvar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Str, 19 50411, Tartu, Estonia
| | - Mario Reiman
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Str, 19 50411, Tartu, Estonia
| | - Arno Pilvar
- Veeuss OÜ, Jaama tn 185-49, 50705, Tartu, Tartu, Estonia
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Str, 19 50411, Tartu, Estonia.
| |
Collapse
|
18
|
Eggermann T, Begemann M, Kurth I, Elbracht M. Contribution of GRB10 to the prenatal phenotype in Silver-Russell syndrome? Lessons from 7p12 copy number variations. Eur J Med Genet 2019; 62:103671. [PMID: 31100449 DOI: 10.1016/j.ejmg.2019.103671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 11/19/2022]
Abstract
The growth factor binding protein 10 (GRB10) has been suggested as a candidate gene for Silver-Russell syndrome because of its localization in 7p12, its imprinting status, data from mice models and its putative role in growth. Based on a new patient with normal growth carrying a GRB10 deletion affecting the paternal allele and data from the literature, we conclude that the heterogeneous clinical findings in patients with copy number variations (CNVs) of GRB10 gene depend on the size and the gene content of the CNV. However, evidence from mouse and human cases indicate a growth suppressing role of GRB10 in prenatal development. As a result, an increase of active maternal GRB10 copies, e.g. by maternal uniparental disomy of chromosome 7 or duplications of the region results in intrauterine growth retardation. In contrast, a defective GRB10 copy might result in prenatal overgrowth, whereas the paternal GRB10 allele is not required for proper prenatal growth.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), Aachen, Germany.
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), Aachen, Germany
| |
Collapse
|
19
|
Khamlichi AA, Feil R. Parallels between Mammalian Mechanisms of Monoallelic Gene Expression. Trends Genet 2018; 34:954-971. [PMID: 30217559 DOI: 10.1016/j.tig.2018.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
Different types of monoallelic gene expression are present in mammals, some of which are highly flexible, whereas others are more rigid. These include allelic exclusion at antigen receptor loci, the expression of olfactory receptor genes, genomic imprinting, X-chromosome inactivation, and random monoallelic expression (MAE). Although these processes play diverse biological roles, and arose through different selective pressures, the underlying epigenetic mechanisms show striking resemblances. Regulatory transcriptional events are important in all systems, particularly in the specification of MAE. Combined with comparative studies between species, this suggests that the different MAE systems found in mammals may have evolved from analogous ancestral processes.
Collapse
Affiliation(s)
- Ahmed Amine Khamlichi
- Institute of Pharmacology and Structural Biology (IPBS), Centre National de la Recherche Scientifique (CNRS) and Paul Sabatier University (UPS), 205 route de Narbonne, 31077 Toulouse, France.
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and the University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
20
|
Dent CL, Humby T, Lewis K, Ward A, Fischer-Colbrie R, Wilkinson LS, Wilkins JF, Isles AR. Impulsive Choice in Mice Lacking Paternal Expression of Grb10 Suggests Intragenomic Conflict in Behavior. Genetics 2018; 209:233-239. [PMID: 29563147 PMCID: PMC5937175 DOI: 10.1534/genetics.118.300898] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Imprinted genes are expressed from one parental allele only as a consequence of epigenetic events that take place in the mammalian germ line and are thought to have evolved through intragenomic conflict between parental alleles. We demonstrate, for the first time, oppositional effects of imprinted genes on brain and behavior. Specifically, we show that mice lacking paternal Grb10 make fewer impulsive choices, with no dissociable effects on a separate measure of impulsive action. Taken together with previous work showing that mice lacking maternal Nesp55 make more impulsive choices, this suggests that impulsive choice behavior is a substrate for the action of genomic imprinting. Moreover, the contrasting effect of these two genes suggests that impulsive choices are subject to intragenomic conflict and that maternal and paternal interests pull this behavior in opposite directions. Finally, these data may also indicate that an imbalance in expression of imprinted genes contributes to pathological conditions such as gambling and drug addiction, where impulsive behavior becomes maladaptive.
Collapse
Affiliation(s)
- Claire L Dent
- Behavioural Genetics Group, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, CF24 4HQ United Kingdom
| | - Trevor Humby
- Behavioural Genetics Group, School of Psychology, Cardiff University, CF10 3AT United Kingdom
| | - Katie Lewis
- Behavioural Genetics Group, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, CF24 4HQ United Kingdom
| | - Andrew Ward
- Department of Biology and Biochemistry, University of Bath, BA2 7AX United Kingdom
| | | | - Lawrence S Wilkinson
- Behavioural Genetics Group, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, CF24 4HQ United Kingdom
- Behavioural Genetics Group, School of Psychology, Cardiff University, CF10 3AT United Kingdom
| | | | - Anthony R Isles
- Behavioural Genetics Group, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, CF24 4HQ United Kingdom
| |
Collapse
|
21
|
de Sá Machado Araújo G, da Silva Francisco Junior R, Dos Santos Ferreira C, Mozer Rodrigues PT, Terra Machado D, Louvain de Souza T, Teixeira de Souza J, Figueiredo Osorio da Silva C, Alves da Silva AF, Andrade CCF, da Silva AT, Ramos V, Garcia AB, Machado FB, Medina-Acosta E. Maternal 5 mCpG Imprints at the PARD6G-AS1 and GCSAML Differentially Methylated Regions Are Decoupled From Parent-of-Origin Expression Effects in Multiple Human Tissues. Front Genet 2018; 9:36. [PMID: 29545821 PMCID: PMC5838017 DOI: 10.3389/fgene.2018.00036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
A hallmark of imprinted genes in mammals is the occurrence of parent-of-origin-dependent asymmetry of DNA cytosine methylation (5mC) of alleles at CpG islands (CGIs) in their promoter regions. This 5mCpG asymmetry between the parental alleles creates allele-specific imprinted differentially methylated regions (iDMRs). iDMRs are often coupled to the transcriptional repression of the methylated allele and the activation of the unmethylated allele in a tissue-specific, developmental-stage-specific and/or isoform-specific fashion. iDMRs function as regulatory platforms, built through the recruitment of chemical modifications to histones to achieve differential, parent-of-origin-dependent chromatin segmentation states. Here, we used a comparative computational data mining approach to identify 125 novel constitutive candidate iDMRs that integrate the maximal number of allele-specific methylation region records overlapping CGIs in human methylomes. Twenty-nine candidate iDMRs display gametic 5mCpG asymmetry, and another 96 are candidate secondary iDMRs. We established the maternal origin of the 5mCpG imprints of one gametic (PARD6G-AS1) and one secondary (GCSAML) iDMRs. We also found a constitutively hemimethylated, nonimprinted domain at the PWWP2AP1 promoter CGI with oocyte-derived methylation asymmetry. Given that the 5mCpG level at the iDMRs is not a sufficient criterion to predict active or silent locus states and that iDMRs can regulate genes from a distance of more than 1 Mb, we used RNA-Seq experiments from the Genotype-Tissue Expression project and public archives to assess the transcriptional expression profiles of SNPs across 4.6 Mb spans around the novel maternal iDMRs. We showed that PARD6G-AS1 and GCSAML are expressed biallelically in multiple tissues. We found evidence of tissue-specific monoallelic expression of ZNF124 and OR2L13, located 363 kb upstream and 419 kb downstream, respectively, of the GCSAML iDMR. We hypothesize that the GCSAML iDMR regulates the tissue-specific, monoallelic expression of ZNF124 but not of OR2L13. We annotated the non-coding epigenomic marks in the two maternal iDMRs using data from the Roadmap Epigenomics project and showed that the PARD6G-AS1 and GCSAML iDMRs achieve contrasting activation and repression chromatin segmentations. Lastly, we found that the maternal 5mCpG imprints are perturbed in several hematopoietic cancers. We conclude that the maternal 5mCpG imprints at PARD6G-AS1 and GCSAML iDMRs are decoupled from parent-of-origin transcriptional expression effects in multiple tissues.
Collapse
Affiliation(s)
- Graziela de Sá Machado Araújo
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Ronaldo da Silva Francisco Junior
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Cristina Dos Santos Ferreira
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Pedro Thyago Mozer Rodrigues
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Douglas Terra Machado
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thais Louvain de Souza
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Faculdade de Medicina de Campos, Campos dos Goytacazes, Brazil
| | - Jozimara Teixeira de Souza
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Cleiton Figueiredo Osorio da Silva
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Antônio Francisco Alves da Silva
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Claudia Caixeta Franco Andrade
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Faculdade Metropolitana São Carlos, Bom Jesus do Itabapoana, Brazil
| | - Alan Tardin da Silva
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Victor Ramos
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Beatriz Garcia
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Filipe Brum Machado
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Enrique Medina-Acosta
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
22
|
Myatt L, Thornburg KL. Effects of Prenatal Nutrition and the Role of the Placenta in Health and Disease. Methods Mol Biol 2018; 1735:19-46. [PMID: 29380305 DOI: 10.1007/978-1-4939-7614-0_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epidemiologic studies identified the linkage between exposures to stresses, including the type and plane of nutrition in utero with development of disease in later life. Given the critical roles of the placenta in mediating transport of nutrients between the mother and fetus and regulation of maternal metabolism, recent attention has focused on the role of the placenta in mediating the effect of altered nutritional exposures on the development of disease in later life. In this chapter we describe the mechanisms of nutrient transport in the placenta, the influence of placental metabolism on this, and how placental energetics influence placental function in response to a variety of stressors. Further the recent "recognition" that the placenta itself has a sex which affects its function may begin to help elucidate the mechanisms underlying the well-known dimorphism in development of disease in adult life.
Collapse
Affiliation(s)
- Leslie Myatt
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA. .,Bob and Charlee Moore Institute for Nutrition & Wellness, Oregon Health & Science University, Portland, OR, USA.
| | - Kent L Thornburg
- Bob and Charlee Moore Institute for Nutrition & Wellness, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
23
|
Maternal GRB10 microdeletion is a novel cause of cystic placenta: Spectrum of genomic changes in the etiology of enlarged cystic placenta. Placenta 2017; 57:33-41. [DOI: 10.1016/j.placenta.2017.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/30/2023]
|
24
|
Boot A, Oosting J, de Miranda NFCC, Zhang Y, Corver WE, van de Water B, Morreau H, van Wezel T. Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells. J Pathol 2016; 240:72-83. [DOI: 10.1002/path.4756] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Arnoud Boot
- Department of Pathology; Leiden University Medical Center; Leiden The Netherlands
| | - Jan Oosting
- Department of Pathology; Leiden University Medical Center; Leiden The Netherlands
| | - Noel FCC de Miranda
- Department of Pathology; Leiden University Medical Center; Leiden The Netherlands
| | - Yinghui Zhang
- Division of Toxicology, Leiden Academic Center for Drug Research; Leiden University; The Netherlands
| | - Willem E Corver
- Department of Pathology; Leiden University Medical Center; Leiden The Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden Academic Center for Drug Research; Leiden University; The Netherlands
| | - Hans Morreau
- Department of Pathology; Leiden University Medical Center; Leiden The Netherlands
| | - Tom van Wezel
- Department of Pathology; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight the recent advances in epigenetic regulation and chromatin biology for a better understanding of gene regulation related to human disease. RECENT FINDINGS Alterations to chromatin influence genomic function, including gene transcription. At its most simple level, this involves DNA methylation and posttranscriptional histone modifications. However, recent developments in biochemical and molecular techniques have revealed that transcriptional regulation is far more complex, involving combinations of histone modifications and discriminating transcription factor binding, and long-range chromatin loops with enhancers, to generate a multifaceted code. Here, we describe the most recent advances, culminating in the example of genomic imprinting, the parent-of-origin monoallelic expression that utilizes the majority of these mechanisms to attain one active and one repressed allele. SUMMARY It is becoming increasingly evident that epigenetic mechanisms work in unison to maintain tight control of gene expression and genome function. With the wealth of knowledge gained from recent molecular studies, future goals should focus on the application of this information in deciphering their role in developmental diseases.
Collapse
|
26
|
Yuan H, Huang L, Hu X, Li Q, Sun X, Xie Y, Kong S, Wang X. FGFR3 gene mutation plus GRB10 gene duplication in a patient with achondroplasia plus growth delay with prenatal onset. Orphanet J Rare Dis 2016; 11:89. [PMID: 27370225 PMCID: PMC4930580 DOI: 10.1186/s13023-016-0465-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022] Open
Abstract
Background Achondroplasia is a well-defined and common bone dysplasia. Genotype- and phenotype-level correlations have been found between the clinical symptoms of achondroplasia and achondroplasia-specific FGFR3 mutations. Result A 2-year-old boy with clinical features consistent with achondroplasia and Silver-Russell syndrome-like symptoms was found to carry a mutation in the fibroblast growth factor receptor-3 (FGFR3) gene at c.1138G > A (p.Gly380Arg) and a de novo 574 kb duplication at chromosome 7p12.1 that involved the entire growth-factor receptor bound protein 10 (GRB10) gene. Using quantitative real-time PCR analysis, GRB10 was over-expressed, and, using enzyme-linked immunosorbent assays for IGF1 and IGF-binding protein-3 (IGFBP3), we found that IGF1 and IGFBP3 were low-expressed in this patient. Conclusions We demonstrate that a combination of uncommon, rare and exceptional molecular defects related to the molecular bases of particular birth defects can be analyzed and diagnosed to potentially explain the observed variability in the combination of molecular defects. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0465-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiming Yuan
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, 510330, Guangdong, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, Guangdong, China
| | - Linhuan Huang
- Fetal Medicine Centre, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong, 510080, China
| | - Xizi Hu
- Fairmont Preparatory Academy, Anaheim, CA, 92801, USA
| | - Qian Li
- Affymetrix Biotech Shanghai Ltd., Shanghai, 200020, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China
| | - Yingjun Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China.
| | - Shu Kong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China
| | - Xiaoman Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China
| |
Collapse
|
27
|
Wilkins JF, Úbeda F, Van Cleve J. The evolving landscape of imprinted genes in humans and mice: Conflict among alleles, genes, tissues, and kin. Bioessays 2016; 38:482-9. [PMID: 26990753 DOI: 10.1002/bies.201500198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Three recent genome-wide studies in mice and humans have produced the most definitive map to date of genomic imprinting (gene expression that depends on parental origin) by incorporating multiple tissue types and developmental stages. Here, we explore the results of these studies in light of the kinship theory of genomic imprinting, which predicts that imprinting evolves due to differential genetic relatedness between maternal and paternal relatives. The studies produce a list of imprinted genes with around 120-180 in mice and ~100 in humans. The studies agree on broad patterns across mice and humans including the complex patterns of imprinted expression at loci like Igf2 and Grb10. We discuss how the kinship theory provides a powerful framework for hypotheses that can explain these patterns. Finally, since imprinting is rare in the genome despite predictions from the kinship theory that it might be common, we discuss evolutionary factors that could favor biallelic expression.
Collapse
Affiliation(s)
| | - Francisco Úbeda
- School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Jeremy Van Cleve
- Department of Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
28
|
Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, Abu-Amero S, Frost JM, Stafford JL, Chaoqun Y, Duncan AJ, Baigel R, Brimioulle M, Iglesias-Platas I, Apostolidou S, Aggarwal R, Whittaker JC, Syngelaki A, Nicolaides KH, Regan L, Monk D, Stanier P. The role and interaction of imprinted genes in human fetal growth. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140074. [PMID: 25602077 PMCID: PMC4305174 DOI: 10.1098/rstb.2014.0074] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.
Collapse
Affiliation(s)
- Gudrun E Moore
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Miho Ishida
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Charalambos Demetriou
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Lara Al-Olabi
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Lydia J Leon
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Anna C Thomas
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Sayeda Abu-Amero
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Jennifer M Frost
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Jaime L Stafford
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Yao Chaoqun
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J Duncan
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Rachel Baigel
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Marina Brimioulle
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Isabel Iglesias-Platas
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Sophia Apostolidou
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Reena Aggarwal
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - John C Whittaker
- Noncommunicable Disease Epidemiology Unit, London School of Hygiene and Tropical Medicine, University of London, London WC1E 7HT, UK
| | - Argyro Syngelaki
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London SE5 9RS, UK
| | - Kypros H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London SE5 9RS, UK
| | - Lesley Regan
- Department of Obstetrics and Gynaecology, Imperial College London, St Mary's Campus, London W2 1NY, UK
| | - David Monk
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Philip Stanier
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
29
|
Mukhopadhyay A, Ravikumar G, Dwarkanath P, Meraaj H, Thomas A, Crasta J, Thomas T, Kurpad A, Sridhar T. Placental expression of the insulin receptor binding protein GRB10: Relation to human fetoplacental growth and fetal gender. Placenta 2015; 36:1225-30. [DOI: 10.1016/j.placenta.2015.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/13/2015] [Accepted: 09/08/2015] [Indexed: 11/27/2022]
|
30
|
Monk D. Genomic imprinting in the human placenta. Am J Obstet Gynecol 2015; 213:S152-62. [PMID: 26428495 DOI: 10.1016/j.ajog.2015.06.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022]
Abstract
With the launch of the National Institute of Child Health and Human Development/National Institutes of Health Human Placenta Project, the anticipation is that this often-overlooked organ will be the subject of much intense research. Compared with somatic tissues, the cells of the placenta have a unique epigenetic profile that dictates its transcription patterns, which when disturbed may be associated with adverse pregnancy outcomes. One major class of genes that is dependent on strict epigenetic regulation in the placenta is subject to genomic imprinting, the parent-of-origin-dependent monoallelic gene expression. This review discusses the differences in allelic expression and epigenetic profiles of imprinted genes that are identified between different species, which reflect the continuous evolutionary adaption of this form of epigenetic regulation. These observations divulge that placenta-specific imprinted gene that is reliant on repressive histone signatures in mice are unlikely to be imprinted in humans, whereas intense methylation profiling in humans has uncovered numerous maternally methylated regions that are restricted to the placenta that are not conserved in mice. Imprinting has been proposed to be a mechanism that regulates parental resource allocation and ultimately can influence fetal growth, with the placenta being the key in this process. Furthermore, I discuss the developmental dynamics of both classic and transient placenta-specific imprinting and examine the evidence for an involvement of these genes in intrauterine growth restriction and placenta-associated complications. Finally, I focus on examples of genes that are regulated aberrantly in complicated pregnancies, emphasizing their application as pregnancy-related disease biomarkers to aid the diagnosis of at-risk pregnancies early in gestation.
Collapse
Affiliation(s)
- David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain.
| |
Collapse
|
31
|
Maupetit-Méhouas S, Montibus B, Nury D, Tayama C, Wassef M, Kota SK, Fogli A, Cerqueira Campos F, Hata K, Feil R, Margueron R, Nakabayashi K, Court F, Arnaud P. Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive. Nucleic Acids Res 2015; 44:621-35. [PMID: 26400168 PMCID: PMC4737186 DOI: 10.1093/nar/gkv960] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/12/2015] [Indexed: 01/10/2023] Open
Abstract
Parental allele-specific expression of imprinted genes is mediated by imprinting control regions (ICRs) that are constitutively marked by DNA methylation imprints on the maternal or paternal allele. Mono-allelic DNA methylation is strictly required for the process of imprinting and has to be faithfully maintained during the entire life-span. While the regulation of DNA methylation itself is well understood, the mechanisms whereby the opposite allele remains unmethylated are unclear. Here, we show that in the mouse, at maternally methylated ICRs, the paternal allele, which is constitutively associated with H3K4me2/3, is marked by default by H3K27me3 when these ICRs are transcriptionally inactive, leading to the formation of a bivalent chromatin signature. Our data suggest that at ICRs, chromatin bivalency has a protective role by ensuring that DNA on the paternal allele remains unmethylated and protected against spurious and unscheduled gene expression. Moreover, they provide the proof of concept that, beside pluripotent cells, chromatin bivalency is the default state of transcriptionally inactive CpG island promoters, regardless of the developmental stage, thereby contributing to protect cell identity.
Collapse
Affiliation(s)
- Stéphanie Maupetit-Méhouas
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| | - Bertille Montibus
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| | - David Nury
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| | - Chiharu Tayama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Michel Wassef
- Institut Curie, 26 Rue d'Ulm, 75005 Paris, France; INSERM U934, 26 Rue d'Ulm, 75005 Paris, France; CNRS UMR3215, 26 Rue d'Ulm, 75005 Paris, France
| | - Satya K Kota
- Institute of Molecular Genetics, CNRS UMR-5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Anne Fogli
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| | - Fabiana Cerqueira Campos
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Robert Feil
- Institute of Molecular Genetics, CNRS UMR-5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Raphael Margueron
- Institut Curie, 26 Rue d'Ulm, 75005 Paris, France; INSERM U934, 26 Rue d'Ulm, 75005 Paris, France; CNRS UMR3215, 26 Rue d'Ulm, 75005 Paris, France
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Franck Court
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| | - Philippe Arnaud
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| |
Collapse
|
32
|
Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, Pirinen M, Gutierrez-Arcelus M, Smith KS, Kukurba KR, Zhang R, Eng C, Torgerson DG, Urbanek C, Li JB, Rodriguez-Santana JR, Burchard EG, Seibold MA, MacArthur DG, Montgomery SB, Zaitlen NA, Lappalainen T. The landscape of genomic imprinting across diverse adult human tissues. Genome Res 2015; 25:927-36. [PMID: 25953952 PMCID: PMC4484390 DOI: 10.1101/gr.192278.115] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
Abstract
Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues.
Collapse
Affiliation(s)
- Yael Baran
- The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Meena Subramaniam
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Anne Biton
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Taru Tukiainen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Emily K Tsang
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Biomedical Informatics Program, Stanford University, Stanford, California 94305, USA
| | - Manuel A Rivas
- Wellcome Trust Center for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Maria Gutierrez-Arcelus
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Kevin S Smith
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Kim R Kukurba
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Rui Zhang
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Dara G Torgerson
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Cydney Urbanek
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA
| | - Max A Seibold
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA; Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Denver, Denver, Colorado 80045, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Noah A Zaitlen
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, New York 10013, USA; Department of Systems Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
33
|
Stelzer Y, Bar S, Bartok O, Afik S, Ronen D, Kadener S, Benvenisty N. Differentiation of Human Parthenogenetic Pluripotent Stem Cells Reveals Multiple Tissue- and Isoform-Specific Imprinted Transcripts. Cell Rep 2015; 11:308-20. [DOI: 10.1016/j.celrep.2015.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/19/2015] [Accepted: 03/10/2015] [Indexed: 11/24/2022] Open
|
34
|
Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med 2015; 49:1567-78. [PMID: 25824446 DOI: 10.1136/bjsports-2014-094073] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). OBJECTIVE We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). DESIGN Gene ontology (ie, gene product elucidation)/meta-analysis. DATA SOURCES 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. DATA EXTRACTION g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. DATA SYNTHESIS Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. RESULTS Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. CONCLUSIONS Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. TRIAL REGISTRATION NUMBER CRD42014009800.
Collapse
|
35
|
Bhattacharyya S, Feferman L, Tobacman JK. Carrageenan Inhibits Insulin Signaling through GRB10-mediated Decrease in Tyr(P)-IRS1 and through Inflammation-induced Increase in Ser(P)307-IRS1. J Biol Chem 2015; 290:10764-74. [PMID: 25784556 DOI: 10.1074/jbc.m114.630053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 01/22/2023] Open
Abstract
Inflammation induced by exposure to the common food additive carrageenan leads to insulin resistance by increase in Ser(P)(307)-insulin receptor substrate 1 (IRS1) and subsequent decline in the insulin-stimulated increase in Ser(P)(473)-AKT. Inhibition of carrageenan-induced inflammation reversed the increase in Ser(P)(307)-IRS1 but did not completely reverse the carrageenan-induced decline in Ser(P)(473)-AKT. To identify the additional mechanism responsible for the decrease in Ser(P)(473)-AKT, studies were performed in human HepG2 cells and in C57BL/6J mice. Following carrageenan, expression of GRB10 (growth factor receptor-bound 10 protein), an adaptor protein that binds to the insulin receptor and inhibits insulin signaling, increased significantly. GRB10 silencing blocked the carrageenan-induced reduction of the insulin-stimulated increase in Tyr(P)-IRS1 and partially reversed the decline in Ser(P)(473)-AKT. The combination of GRB10 silencing with BCL10 silencing and the reactive oxygen species inhibitor Tempol completely reversed the decline in Ser(P)(473)-AKT. After carrageenan, GRB10 promoter activity was enhanced because of activation by GATA2. A direct correlation between Ser(P)(473)-AKT and Ser(P)(401)-GATA2 was evident, and inhibition of AKT phosphorylation by the PI3K inhibitor LY294002 blocked Ser(401)-GATA2 phosphorylation and the increase in GRB10 expression. Studies indicated that carrageenan inhibited insulin signaling by two mechanisms: through the inflammation-mediated increase in Ser(P)(307)-IRS1, a negative regulator of insulin signaling, and through a transcriptional mechanism leading to increase in GRB10 expression and GRB10-inhibition of Tyr(P)-IRS1, a positive regulator of insulin signaling. These mechanisms converge to inhibit the insulin-induced increase in Ser(P)(473)-AKT. They provide internal feedback, mediated by Ser(P)(473)-AKT, Ser(P)(401)-GATA2, and nuclear GATA2, which links the opposing effects of serine and tyrosine phosphorylations of IRS1 and can modulate insulin responsiveness.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- From the Department of Medicine, University of Illinois at Chicago and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Leo Feferman
- From the Department of Medicine, University of Illinois at Chicago and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Joanne K Tobacman
- From the Department of Medicine, University of Illinois at Chicago and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
36
|
Tissue-specific regulation and function of Grb10 during growth and neuronal commitment. Proc Natl Acad Sci U S A 2014; 112:6841-7. [PMID: 25368187 DOI: 10.1073/pnas.1411254111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth-factor receptor bound protein 10 (Grb10) is a signal adapter protein encoded by an imprinted gene that has roles in growth control, cellular proliferation, and insulin signaling. Additionally, Grb10 is critical for the normal behavior of the adult mouse. These functions are paralleled by Grb10's unique tissue-specific imprinted expression; the paternal copy of Grb10 is expressed in a subset of neurons whereas the maternal copy is expressed in most other adult tissues in the mouse. The mechanism that underlies this switch between maternal and paternal expression is still unclear, as is the role for paternally expressed Grb10 in neurons. Here, we review recent work and present complementary data that contribute to the understanding of Grb10 gene regulation and function, with specific emphasis on growth and neuronal development. Additionally, we show that in vitro differentiation of mouse embryonic stem cells into alpha motor neurons recapitulates the switch from maternal to paternal expression observed during neuronal development in vivo. We postulate that this switch in allele-specific expression is related to the functional role of Grb10 in motor neurons and other neuronal tissues.
Collapse
|
37
|
Prokopenko I, Poon W, Mägi R, Prasad B R, Salehi SA, Almgren P, Osmark P, Bouatia-Naji N, Wierup N, Fall T, Stančáková A, Barker A, Lagou V, Osmond C, Xie W, Lahti J, Jackson AU, Cheng YC, Liu J, O'Connell JR, Blomstedt PA, Fadista J, Alkayyali S, Dayeh T, Ahlqvist E, Taneera J, Lecoeur C, Kumar A, Hansson O, Hansson K, Voight BF, Kang HM, Levy-Marchal C, Vatin V, Palotie A, Syvänen AC, Mari A, Weedon MN, Loos RJF, Ong KK, Nilsson P, Isomaa B, Tuomi T, Wareham NJ, Stumvoll M, Widen E, Lakka TA, Langenberg C, Tönjes A, Rauramaa R, Kuusisto J, Frayling TM, Froguel P, Walker M, Eriksson JG, Ling C, Kovacs P, Ingelsson E, McCarthy MI, Shuldiner AR, Silver KD, Laakso M, Groop L, Lyssenko V. A central role for GRB10 in regulation of islet function in man. PLoS Genet 2014; 10:e1004235. [PMID: 24699409 PMCID: PMC3974640 DOI: 10.1371/journal.pgen.1004235] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 01/20/2014] [Indexed: 01/03/2023] Open
Abstract
Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father. In this paper, we report the first large genome-wide association study in man for glucose-stimulated insulin secretion (GSIS) indices during an oral glucose tolerance test. We identify seven genetic loci and provide effects on GSIS for all previously reported glycemic traits and obesity genetic loci in a large-scale sample. We observe paradoxical effects of genetic variants in the growth factor receptor-bound protein 10 (GRB10) gene yielding both reduced GSIS and reduced fasting plasma glucose concentrations, specifically showing a parent-of-origin effect of GRB10 on lower fasting plasma glucose and enhanced insulin sensitivity for maternal and elevated glucose and decreased insulin sensitivity for paternal transmissions of the risk allele. We also observe tissue-specific differences in DNA methylation and allelic imbalance in expression of GRB10 in human pancreatic islets. We further disrupt GRB10 by shRNA in human islets, showing reduction of both insulin and glucagon expression and secretion. In conclusion, we provide evidence for complex regulation of GRB10 in human islets. Our data suggest that tissue-specific methylation and imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.
Collapse
Affiliation(s)
- Inga Prokopenko
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Wenny Poon
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Reedik Mägi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Rashmi Prasad B
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - S Albert Salehi
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Peter Almgren
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Peter Osmark
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Nabila Bouatia-Naji
- University of Lille Nord de France, Lille, France; CNRS UMR8199, Institut Pasteur de Lille, Lille, France; INSERM U970, Paris Cardiovascular Research Center PARCC, Paris, France
| | - Nils Wierup
- Department of Clinical Science, Neuroendocrine Cell Biology, Lund University Diabetes Centre, Malmö, Sweden
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alena Stančáková
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Adam Barker
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Vasiliki Lagou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Clive Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
| | - Weijia Xie
- Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland; Folkhälsan Research Centre, Helsinki, Finland
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yu-Ching Cheng
- Division of Endocrinology Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jie Liu
- Division of Endocrinology Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeffrey R O'Connell
- Division of Endocrinology Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Paul A Blomstedt
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland; Department of Mathematics, Åbo Akademi University, Turku, Finland
| | - Joao Fadista
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Sami Alkayyali
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Tasnim Dayeh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Emma Ahlqvist
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Jalal Taneera
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Cecile Lecoeur
- University of Lille Nord de France, Lille, France; CNRS UMR8199, Institut Pasteur de Lille, Lille, France
| | - Ashish Kumar
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Ola Hansson
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Karin Hansson
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Benjamin F Voight
- Department of Pharmacology and Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Claire Levy-Marchal
- INSERM - Institut de Santé Publique, Paris, France; INSERM CIC EC 05, Hôpital Robert Debré, Paris, France
| | - Vincent Vatin
- University of Lille Nord de France, Lille, France; CNRS UMR8199, Institut Pasteur de Lille, Lille, France
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland; Program in Medical and Population Genetics and Genetics Analysis Platform, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusettes, United States of America
| | - Ann-Christine Syvänen
- Molecular Medicine, Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andrea Mari
- CNR Institute of Biomedical Engineering, Padova, Italy
| | - Michael N Weedon
- Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Ruth J F Loos
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Peter Nilsson
- Department of Clinical Science, Internal Medicine, Skåne University Hospital Malmö, Malmö, Sweden
| | - Bo Isomaa
- Folkhälsan Research Centre, Helsinki, Finland; Department of Social Service and Health Care, Jakobstad, Finland
| | - Tiinamaija Tuomi
- Folkhälsan Research Centre, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Michael Stumvoll
- University of Leipzig, Department of Medicine, Leipzig, Germany; University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Timo A Lakka
- Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio, Finland; Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Anke Tönjes
- University of Leipzig, Department of Medicine, Leipzig, Germany; University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland; Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timothy M Frayling
- Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Philippe Froguel
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, United Kingdom; University of Lille Nord de France, Lille, France; CNRS UMR8199, Institut Pasteur de Lille, Lille, France
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Johan G Eriksson
- Folkhälsan Research Centre, Helsinki, Finland; Helsinki University, Department of General Practice and Primary Health Care, Helsinki, Finland; Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Peter Kovacs
- University of Leipzig, Department of Medicine, Leipzig, Germany; University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Erik Ingelsson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, United Kindom
| | - Alan R Shuldiner
- Division of Endocrinology Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America; Baltimore Geriatric Research, Education and Clinical Center, Baltimore, Maryland, United States of America
| | - Kristi D Silver
- Division of Endocrinology Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America; Baltimore Geriatric Research, Education and Clinical Center, Baltimore, Maryland, United States of America
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Leif Groop
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Valeriya Lyssenko
- Department of Clinical Science, Diabetes & Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; Steno Diabetes Center A/S, Gentofte, Denmark
| |
Collapse
|
38
|
Smith AA, Huang YT, Eliot M, Houseman EA, Marsit CJ, Wiencke JK, Kelsey KT. A novel approach to the discovery of survival biomarkers in glioblastoma using a joint analysis of DNA methylation and gene expression. Epigenetics 2014; 9:873-83. [PMID: 24670968 DOI: 10.4161/epi.28571] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive of all brain tumors, with a median survival of less than 1.5 years. Recently, epigenetic alterations were found to play key roles in both glioma genesis and clinical outcome, demonstrating the need to integrate genetic and epigenetic data in predictive models. To enhance current models through discovery of novel predictive biomarkers, we employed a genome-wide, agnostic strategy to specifically capture both methylation-directed changes in gene expression and alternative associations of DNA methylation with disease survival in glioma. Human GBM-associated DNA methylation, gene expression, IDH1 mutation status, and survival data were obtained from The Cancer Genome Atlas. DNA methylation loci and expression probes were paired by gene, and their subsequent association with survival was determined by applying an accelerated failure time model to previously published alternative and expression-based association equations. Significant associations were seen in 27 unique methylation/expression pairs with expression-based, alternative, and combinatorial associations observed (10, 13, and 4 pairs, respectively). The majority of the predictive DNA methylation loci were located within CpG islands, and all but three of the locus pairs were negatively correlated with survival. This finding suggests that for most loci, methylation/expression pairs are inversely related, consistent with methylation-associated gene regulatory action. Our results indicate that changes in DNA methylation are associated with altered survival outcome through both coordinated changes in gene expression and alternative mechanisms. Furthermore, our approach offers an alternative method of biomarker discovery using a priori gene pairing and precise targeting to identify novel sites for locus-specific therapeutic intervention.
Collapse
Affiliation(s)
- Ashley A Smith
- Department of Pathology and Laboratory Medicine; Brown University; Providence, RI USA
| | - Yen-Tsung Huang
- Department of Epidemiology; Brown University; Providence, RI USA
| | - Melissa Eliot
- Department of Epidemiology; Brown University; Providence, RI USA
| | - E Andres Houseman
- Department of Public Health; Oregon State University; Corvallis, OR USA
| | - Carmen J Marsit
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Department of Community and Family Medicine and Section of Biostatistics and Epidemiology; Geisel School of Medicine at Dartmouth; Dartmouth, NH USA
| | - John K Wiencke
- Department of Neurological Surgery; University of California at San Francisco; San Francisco, CA USA
| | - Karl T Kelsey
- Department of Pathology and Laboratory Medicine; Brown University; Providence, RI USA; Department of Epidemiology; Brown University; Providence, RI USA
| |
Collapse
|
39
|
Post-natal imprinting: evidence from marsupials. Heredity (Edinb) 2014; 113:145-55. [PMID: 24595366 DOI: 10.1038/hdy.2014.10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 12/31/2022] Open
Abstract
Genomic imprinting has been identified in therian (eutherian and marsupial) mammals but not in prototherian (monotreme) mammals. Imprinting has an important role in optimising pre-natal nutrition and growth, and most imprinted genes are expressed and imprinted in the placenta and developing fetus. In marsupials, however, the placental attachment is short-lived, and most growth and development occurs post-natally, supported by a changing milk composition tailor-made for each stage of development. Therefore there is a much greater demand on marsupial females during post-natal lactation than during pre-natal placentation, so there may be greater selection for genomic imprinting in the mammary gland than in the short-lived placenta. Recent studies in the tammar wallaby confirm the presence of genomic imprinting in nutrient-regulatory genes in the adult mammary gland. This suggests that imprinting may influence infant post-natal growth via the mammary gland as it does pre-natally via the placenta. Similarly, an increasing number of imprinted genes have been implicated in regulating feeding and nurturing behaviour in both the adult and the developing neonate/offspring in mice. Together these studies provide evidence that genomic imprinting is critical for regulating growth and subsequently the survival of offspring not only pre-natally but also post-natally.
Collapse
|
40
|
Camprubí C, Iglesias-Platas I, Martin-Trujillo A, Salvador-Alarcon C, Rodriguez MA, Barredo DR, Court F, Monk D. Stability of genomic imprinting and gestational-age dynamic methylation in complicated pregnancies conceived following assisted reproductive technologies. Biol Reprod 2013; 89:50. [PMID: 23884645 DOI: 10.1095/biolreprod.113.108456] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For the past three decades, assisted reproductive technologies (ART) have revolutionized infertility treatments. The use of ART is thought to be safe. However, early investigations suggested that children born as a result of ART had higher risk of diseases with epigenetic etiologies, including imprinting disorders caused by a lack of maternal methylation at imprinting control elements. In addition, large epidemiology studies have highlighted an increased risk of obstetric complications, including severe intrauterine growth restriction (IUGR) in babies conceived using ART. It is plausible that the increased frequency of IUGR may be due to abnormal imprinting because these transcripts are key for normal fetal growth and development. To address this, we have collected a large cohort of placenta and cord blood samples from ART conceptions and compared the imprinting status with appropriate non-ART population. Using a custom DNA methylation array that simultaneously quantifies 25 imprinted differentially methylated regions, we observed similar epigenetic profiles between groups. A multiplex Sequenom iPLEX allelic expression assay revealed monoallelic expression for 11 imprinted transcripts in our placenta cohort. We also observe appropriate gestational age-dependent methylation dynamics at retrotransposable elements and promoters associated with growth genes in ART placental biopsies. This study confirms that children conceived by ART do not show variability in imprinted regulation and that loss-of-imprinting is not commonly associated with nonsyndromic IUGR or prematurity.
Collapse
Affiliation(s)
- Cristina Camprubí
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Eggermann T, Schneider-Rätzke B, Begemann M, Spengler S. Isolated hypermethylation of GRB10 (7p12.2) in a Silver-Russell syndrome patient carrying a 20p13 microdeletion. Clin Genet 2013; 85:399-400. [PMID: 23745689 DOI: 10.1111/cge.12186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 11/27/2022]
Affiliation(s)
- T Eggermann
- Institute of Human Genetics, Aachen, Germany
| | | | | | | |
Collapse
|
42
|
Wilkins JF. Phenotypic Plasticity, Pleiotropy, and the Growth-First Theory of Imprinting. ENVIRONMENTAL EPIGENOMICS IN HEALTH AND DISEASE 2013. [DOI: 10.1007/978-3-642-36827-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Epigenetic modifications and mRNA levels of the imprinted gene Grb10 in serially passaged fibroblast cells. Biochimie 2012; 94:2699-705. [DOI: 10.1016/j.biochi.2012.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022]
|
44
|
Eggermann T, Begemann M, Gogiel M, Palomares M, Vallespín E, Fernández L, Cazorla R, Spengler S, García-Miñaúr S. Heterogeneous growth patterns in carriers of chromosome 7p12.2 imbalances affecting GRB10. Am J Med Genet A 2012; 158A:2815-9. [PMID: 22987336 DOI: 10.1002/ajmg.a.35612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/17/2012] [Indexed: 11/06/2022]
Abstract
Chromosomal duplications and deletions in 7p12.2 have been described in patients with growth disturbance phenotypes, that is, Silver-Russell and Beckwith-Wiedemann syndrome (SRS, BWS). The region harbors the imprinted GRB10/Grb10 gene which has been postulated to belong to a major fetal growth pathway. Based on its genomic localization, its physiological function and its imprinting status, GRB10/Grb10 was considered as a candidate for growth disturbance disorders. However, based on case reports with imbalances of the GRB10 locus it has been suggested that the altered GRB10 copy number should be responsible for the aberrant growth phenotype rather than an altered imprinting status of the gene. We now report on a patient with an increased height and weight in his first years of life carrying a de-novo duplication (5.1 Mb) of paternal 7p12.2 material. The increased growth in this patient again contradicts the hypothesis that a gain of GRB10 copies leads to growth restriction. Indeed, it is necessary to compare the regions of imbalances in 7p12 and the affected genes in the different patients as other genes than GRB10 in 7p12 might cause these aberrant growth phenotypes.
Collapse
|
45
|
Stringer JM, Suzuki S, Pask AJ, Shaw G, Renfree MB. GRB10 imprinting is eutherian mammal specific. Mol Biol Evol 2012; 29:3711-9. [PMID: 22787282 DOI: 10.1093/molbev/mss173] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
GRB10 is an imprinted gene differently expressed from two promoters in mouse and human. Mouse Grb10 is maternally expressed from the major promoter in most tissues and paternally expressed from the brain-specific promoter within specific regions of the fetal and adult central nervous system. Human GRB10 is biallelically expressed from the major promoter in most tissues except in the placental villus trophoblast where it is maternally expressed, whereas the brain-specific promoter is paternally expressed in the fetal brain. This study characterized the ortholog of GRB10 in a marsupial, the tammar wallaby (Macropus eugenii) to investigate the origin and evolution of imprinting at this locus. The protein coding exons and predicted amino acid sequence of tammar GRB10 were highly conserved with eutherian GRB10. The putative first exon, which is located in the orthologous region to the eutherian major promoter, was found in the tammar, but no exon was found in the downstream region corresponding to the eutherian brain-specific promoter, suggesting that marsupials only have a single promoter. Tammar GRB10 was widely expressed in various tissues including the brain but was not imprinted in any of the tissues examined. Thus, it is likely that GRB10 imprinting evolved in eutherians after the eutherian-marsupial divergence approximately 160 million years ago, subsequent to the acquisition of a brain-specific promoter, which resides within the imprinting control region in eutherians.
Collapse
Affiliation(s)
- Jessica M Stringer
- ARC Centre of Excellence in Kangaroo Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
Turan N, Ghalwash MF, Katari S, Coutifaris C, Obradovic Z, Sapienza C. DNA methylation differences at growth related genes correlate with birth weight: a molecular signature linked to developmental origins of adult disease? BMC Med Genomics 2012; 5:10. [PMID: 22498030 PMCID: PMC3359247 DOI: 10.1186/1755-8794-5-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/12/2012] [Indexed: 12/26/2022] Open
Abstract
Background Infant birth weight is a complex quantitative trait associated with both neonatal and long-term health outcomes. Numerous studies have been published in which candidate genes (IGF1, IGF2, IGF2R, IGF binding proteins, PHLDA2 and PLAGL1) have been associated with birth weight, but these studies are difficult to reproduce in man and large cohort studies are needed due to the large inter individual variance in transcription levels. Also, very little of the trait variance is explained. We decided to identify additional candidates without regard for what is known about the genes. We hypothesize that DNA methylation differences between individuals can serve as markers of gene "expression potential" at growth related genes throughout development and that these differences may correlate with birth weight better than single time point measures of gene expression. Methods We performed DNA methylation and transcript profiling on cord blood and placenta from newborns. We then used novel computational approaches to identify genes correlated with birth weight. Results We identified 23 genes whose methylation levels explain 70-87% of the variance in birth weight. Six of these (ANGPT4, APOE, CDK2, GRB10, OSBPL5 and REG1B) are associated with growth phenotypes in human or mouse models. Gene expression profiling explained a much smaller fraction of variance in birth weight than did DNA methylation. We further show that two genes, the transcriptional repressor MSX1 and the growth factor receptor adaptor protein GRB10, are correlated with transcriptional control of at least seven genes reported to be involved in fetal or placental growth, suggesting that we have identified important networks in growth control. GRB10 methylation is also correlated with genes involved in reactive oxygen species signaling, stress signaling and oxygen sensing and more recent data implicate GRB10 in insulin signaling. Conclusions Single time point measurements of gene expression may reflect many factors unrelated to birth weight, while inter-individual differences in DNA methylation may represent a "molecular fossil record" of differences in birth weight-related gene expression. Finding these "unexpected" pathways may tell us something about the long-term association between low birth weight and adult disease, as well as which genes may be susceptible to environmental effects. These findings increase our understanding of the molecular mechanisms involved in human development and disease progression.
Collapse
Affiliation(s)
- Nahid Turan
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
47
|
Coster A, Madsen O, Heuven HCM, Dibbits B, Groenen MAM, van Arendonk JAM, Bovenhuis H. The imprinted gene DIO3 is a candidate gene for litter size in pigs. PLoS One 2012; 7:e31825. [PMID: 22393372 PMCID: PMC3290540 DOI: 10.1371/journal.pone.0031825] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 01/17/2012] [Indexed: 12/31/2022] Open
Abstract
Genomic imprinting is an important epigenetic phenomenon, which on the phenotypic level can be detected by the difference between the two heterozygote classes of a gene. Imprinted genes are important in both the development of the placenta and the embryo, and we hypothesized that imprinted genes might be involved in female fertility traits. We therefore performed an association study for imprinted genes related to female fertility traits in two commercial pig populations. For this purpose, 309 SNPs in fifteen evolutionary conserved imprinted regions were genotyped on 689 and 1050 pigs from the two pig populations. A single SNP association study was used to detect additive, dominant and imprinting effects related to four reproduction traits; total number of piglets born, the number of piglets born alive, the total weight of the piglets born and the total weight of the piglets born alive. Several SNPs showed significant (q-value < 0.10) additive and dominant effects and one SNP showed a significant imprinting effect. The SNP with a significant imprinting effect is closely linked to DIO3, a gene involved in thyroid metabolism. The imprinting effect of this SNP explained approximately 1.6% of the phenotypic variance, which corresponded to approximately 15.5% of the additive genetic variance. In the other population, the imprinting effect of this QTL was not significant (q-value > 0.10), but had a similar effect as in the first population. The results of this study indicate a possible association between the imprinted gene DIO3 and female fertility traits in pigs.
Collapse
Affiliation(s)
- Albart Coster
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
48
|
Moore GE. What is the evidence for causal epigenetic influences on the Silver–Russell syndrome phenotype? Epigenomics 2011; 3:529-31. [DOI: 10.2217/epi.11.79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Gudrun E Moore
- Institute of Child Health, University College London, 30 Guilford Street London, WC1C 1EH, UK
| |
Collapse
|
49
|
Curley JP. Is there a genomically imprinted social brain? Bioessays 2011; 33:662-8. [PMID: 21805481 DOI: 10.1002/bies.201100060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 06/05/2011] [Accepted: 06/06/2011] [Indexed: 01/24/2023]
Abstract
Imprinted genes (IGs) are expressed or silenced according to their parent-of-origin. These genes are known to play a role in regulating offspring growth, development and infant behaviors such as suckling and ultrasonic calls. In adults, neurally expressed IGs coordinate several behaviors including maternal care, sex, feeding, emotionality, and cognition. However, despite evidence from human psychiatric disorders and evolutionary theory that maternally and paternally expressed genes should also regulate social behavior, little empirical data from mouse research exists. This paper discusses data from a recent study (Garfield et al., 2011) that the IG Grb10 governs unique aspects of mouse social behavior and interprets the relevance of these findings for the future of this field.
Collapse
Affiliation(s)
- James P Curley
- Department of Psychology, Columbia University, New York, NY, USA.
| |
Collapse
|
50
|
Javierre BM, Rodriguez-Ubreva J, Al-Shahrour F, Corominas M, Graña O, Ciudad L, Agirre X, Pisano DG, Valencia A, Roman-Gomez J, Calasanz MJ, Prosper F, Esteller M, Gonzalez-Sarmiento R, Ballestar E. Long-range epigenetic silencing associates with deregulation of Ikaros targets in colorectal cancer cells. Mol Cancer Res 2011; 9:1139-51. [PMID: 21737484 DOI: 10.1158/1541-7786.mcr-10-0515] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcription factors are common targets of epigenetic inactivation in human cancer. Promoter hypermethylation and subsequent silencing of transcription factors can lead to further deregulation of their targets. In this study, we explored the potential epigenetic deregulation in cancer of Ikaros family genes, which code for essential transcription factors in cell differentiation and exhibit genetic defects in hematologic neoplasias. Unexpectedly, our analysis revealed that Ikaros undergoes very specific promoter hypermethylation in colorectal cancer, including in all the cell lines studied and around 64% of primary colorectal adenocarcinomas, with increasing proportions in advanced Duke's stages. Ikaros hypermethylation occurred in the context of a novel long-range epigenetic silencing (LRES) region. Reintroduction of Ikaros in colorectal cancer cells, ChIP-chip analysis, and validation in primary samples led us to identify a number of direct targets that are possibly related with colorectal cancer progression. Our results not only provide the first evidence that LRES can have functional specific effects in cancer but also identify several deregulated Ikaros targets that may contribute to progression in colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Biola M Javierre
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|