1
|
Gürsoy S, Yılmaz Uzman C, Erdoğan KM, Karaoğlu P, Sözen Türk T, Yılmaz Ü, Ünalp A, Hazan F. The Clinical and Molecular Spectrum of Patients With X-Linked Intellectual Disability and Novel Variations in Different Genes. Pediatr Neurol 2025; 165:43-51. [PMID: 39951932 DOI: 10.1016/j.pediatrneurol.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/12/2024] [Accepted: 01/19/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. In this study, we aimed to describe the clinical and molecular spectrum of patients with XLID. We also evaluated the clinical efficacy of a targeted gene panel in patients with suspected XLID. METHODS Eighty-four patients with suspected XLID were enrolled in the study. Array comparative genomic hybridization, fragile X fragman analysis, and targeted XLID gene panel were performed. RESULTS Genetic diagnosis was established in a total of 24 patients (22 male and two female) with XLID. Different copy number variations of the X chromosome were detected in four patients, including two duplications and two deletions. Fifteen patients had fragile X syndrome. Point mutations were detected in five unrelated patients. Variants detected in RPS6KA3 gene were previously reported by our team. A novel two-nucleotide deletion was shown in the MID1 gene. Additionally, novel missense variations were revealed in IL1RAPL1 and ATRX genes. The IL1RAPL1 variant was detected in additional five affected male patients in the same family. The patient, who had ATRX variation, had pachygyria in the cerebral cortex and hypoplasia of cerebellar vermis. CONCLUSIONS Our findings have broadened the spectrum of mutations and clinical manifestations of patients with XLID. Additionally, this represents the second reported missense variation in the IL1RAPL1 gene identified in patients with XLID. We also emphasized the importance of a stepwise diagnostic algorithm that incorporates chromosomal microarray analysis, FMR1 gene repeat analysis, and next-generation sequencing analysis for patients with XLID.
Collapse
Affiliation(s)
- Semra Gürsoy
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkiye.
| | - Ceren Yılmaz Uzman
- Department of Pediatric Genetics, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, University of Health Sciences Turkey, İzmir, Türkiye
| | - Kadri Murat Erdoğan
- Department of Medical Genetics, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Türkiye
| | - Pakize Karaoğlu
- Department of Pediatric Neurology, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, University of Health Sciences Turkey, İzmir, Türkiye
| | - Tuba Sözen Türk
- Department of Medical Genetics, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Türkiye
| | - Ünsal Yılmaz
- Department of Pediatric Neurology, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, University of Health Sciences Turkey, İzmir, Türkiye
| | - Aycan Ünalp
- Department of Pediatric Neurology, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, University of Health Sciences Turkey, İzmir, Türkiye
| | - Filiz Hazan
- Department of Medical Genetics, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, University of Health Sciences Turkey, İzmir, Türkiye
| |
Collapse
|
2
|
Shin T, Song JHT, Kosicki M, Kenny C, Beck SG, Kelley L, Antony I, Qian X, Bonacina J, Papandile F, Gonzalez D, Scotellaro J, Bushinsky EM, Andersen RE, Maury E, Pennacchio LA, Doan RN, Walsh CA. Rare variation in non-coding regions with evolutionary signatures contributes to autism spectrum disorder risk. CELL GENOMICS 2024; 4:100609. [PMID: 39019033 PMCID: PMC11406188 DOI: 10.1016/j.xgen.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
Little is known about the role of non-coding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of non-coding regions: human accelerated regions (HARs), which show signatures of positive selection in humans; experimentally validated neural VISTA enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole-genome analysis of >16,600 samples and >4,900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly contribute, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in VEs near OTX1 and SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved non-coding regions in ASD risk and suggest potential mechanisms of how regulatory changes can modulate social behavior.
Collapse
Affiliation(s)
- Taehwan Shin
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Janet H T Song
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Samantha G Beck
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lily Kelley
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA
| | - Irene Antony
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xuyu Qian
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Julieta Bonacina
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA
| | - Frances Papandile
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Dilenny Gonzalez
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Julia Scotellaro
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Evan M Bushinsky
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebecca E Andersen
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Eduardo Maury
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Len A Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Surana S, Villarroel-Campos D, Rhymes ER, Kalyukina M, Panzi C, Novoselov SS, Fabris F, Richter S, Pirazzini M, Zanotti G, Sleigh JN, Schiavo G. The tyrosine phosphatases LAR and PTPRδ act as receptors of the nidogen-tetanus toxin complex. EMBO J 2024; 43:3358-3387. [PMID: 38977849 PMCID: PMC11329502 DOI: 10.1038/s44318-024-00164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Tetanus neurotoxin (TeNT) causes spastic paralysis by inhibiting neurotransmission in spinal inhibitory interneurons. TeNT binds to the neuromuscular junction, leading to its internalisation into motor neurons and subsequent transcytosis into interneurons. While the extracellular matrix proteins nidogens are essential for TeNT binding, the molecular composition of its receptor complex remains unclear. Here, we show that the receptor-type protein tyrosine phosphatases LAR and PTPRδ interact with the nidogen-TeNT complex, enabling its neuronal uptake. Binding of LAR and PTPRδ to the toxin complex is mediated by their immunoglobulin and fibronectin III domains, which we harnessed to inhibit TeNT entry into motor neurons and protect mice from TeNT-induced paralysis. This function of LAR is independent of its role in regulating TrkB receptor activity, which augments axonal transport of TeNT. These findings reveal a multi-subunit receptor complex for TeNT and demonstrate a novel trafficking route for extracellular matrix proteins. Our study offers potential new avenues for developing therapeutics to prevent tetanus and dissecting the mechanisms controlling the targeting of physiological ligands to long-distance axonal transport in the nervous system.
Collapse
Affiliation(s)
- Sunaina Surana
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Elena R Rhymes
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
| | - Maria Kalyukina
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Chiara Panzi
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Sergey S Novoselov
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
| | - Federico Fabris
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Sandy Richter
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - James N Sleigh
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Martins-Costa C, Wiegers A, Pham VA, Sidhaye J, Doleschall B, Novatchkova M, Lendl T, Piber M, Peer A, Möseneder P, Stuempflen M, Chow SYA, Seidl R, Prayer D, Höftberger R, Kasprian G, Ikeuchi Y, Corsini NS, Knoblich JA. ARID1B controls transcriptional programs of axon projection in an organoid model of the human corpus callosum. Cell Stem Cell 2024; 31:866-885.e14. [PMID: 38718796 DOI: 10.1016/j.stem.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 06/09/2024]
Abstract
Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.
Collapse
Affiliation(s)
- Catarina Martins-Costa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Andrea Wiegers
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vincent A Pham
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jaydeep Sidhaye
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Balint Doleschall
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Thomas Lendl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marielle Piber
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Angela Peer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Paul Möseneder
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marlene Stuempflen
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, 153-8505 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, 153-8505 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Nina S Corsini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Shin T, Song JH, Kosicki M, Kenny C, Beck SG, Kelley L, Qian X, Bonacina J, Papandile F, Antony I, Gonzalez D, Scotellaro J, Bushinsky EM, Andersen RE, Maury E, Pennacchio LA, Doan RN, Walsh CA. Rare variation in noncoding regions with evolutionary signatures contributes to autism spectrum disorder risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.19.23295780. [PMID: 37790480 PMCID: PMC10543033 DOI: 10.1101/2023.09.19.23295780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Little is known about the role of noncoding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of noncoding regions: Human Accelerated Regions (HARs), which show signatures of positive selection in humans; experimentally validated neural Vista Enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole genome analysis of >16,600 samples and >4900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in a VE near SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved noncoding regions in ASD risk and suggest potential mechanisms of how changes in regulatory regions can modulate social behavior.
Collapse
Affiliation(s)
- Taehwan Shin
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Janet H.T. Song
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Michael Kosicki
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Samantha G. Beck
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Lily Kelley
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Xuyu Qian
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Julieta Bonacina
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Frances Papandile
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Irene Antony
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Dilenny Gonzalez
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Julia Scotellaro
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Evan M. Bushinsky
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Rebecca E. Andersen
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Eduardo Maury
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Len A. Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ryan N. Doan
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Moretto E, Miozzo F, Longatti A, Bonnet C, Coussen F, Jaudon F, Cingolani LA, Passafaro M. The tetraspanin TSPAN5 regulates AMPAR exocytosis by interacting with the AP4 complex. eLife 2023; 12:76425. [PMID: 36795458 PMCID: PMC9934860 DOI: 10.7554/elife.76425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Intracellular trafficking of AMPA receptors is a tightly regulated process which involves several adaptor proteins, and is crucial for the activity of excitatory synapses both in basal conditions and during synaptic plasticity. We found that, in rat hippocampal neurons, an intracellular pool of the tetraspanin TSPAN5 promotes exocytosis of AMPA receptors without affecting their internalisation. TSPAN5 mediates this function by interacting with the adaptor protein complex AP4 and Stargazin and possibly using recycling endosomes as a delivery route. This work highlights TSPAN5 as a new adaptor regulating AMPA receptor trafficking.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, CNRVedano al LambroItaly,NeuroMI Milan Center for Neuroscience, University of Milano-BicoccaMilanItaly
| | | | | | - Caroline Bonnet
- University of Bordeaux, Interdisciplinary Institute for NeuroscienceBordeauxFrance
| | - Francoise Coussen
- University of Bordeaux, Interdisciplinary Institute for NeuroscienceBordeauxFrance
| | - Fanny Jaudon
- Department of Life Sciences, University of TriesteTriesteItaly,IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Lorenzo A Cingolani
- Department of Life Sciences, University of TriesteTriesteItaly,Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia (IIT)GenoaItaly
| | - Maria Passafaro
- Institute of Neuroscience, CNRVedano al LambroItaly,NeuroMI Milan Center for Neuroscience, University of Milano-BicoccaMilanItaly
| |
Collapse
|
7
|
Ma S, Skarica M, Li Q, Xu C, Risgaard RD, Tebbenkamp AT, Mato-Blanco X, Kovner R, Krsnik Ž, de Martin X, Luria V, Martí-Pérez X, Liang D, Karger A, Schmidt DK, Gomez-Sanchez Z, Qi C, Gobeske KT, Pochareddy S, Debnath A, Hottman CJ, Spurrier J, Teo L, Boghdadi AG, Homman-Ludiye J, Ely JJ, Daadi EW, Mi D, Daadi M, Marín O, Hof PR, Rasin MR, Bourne J, Sherwood CC, Santpere G, Girgenti MJ, Strittmatter SM, Sousa AM, Sestan N. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. Science 2022; 377:eabo7257. [PMID: 36007006 PMCID: PMC9614553 DOI: 10.1126/science.abo7257] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The granular dorsolateral prefrontal cortex (dlPFC) is an evolutionary specialization of primates that is centrally involved in cognition. We assessed more than 600,000 single-nucleus transcriptomes from adult human, chimpanzee, macaque, and marmoset dlPFC. Although most cell subtypes defined transcriptomically are conserved, we detected several that exist only in a subset of species as well as substantial species-specific molecular differences across homologous neuronal, glial, and non-neural subtypes. The latter are exemplified by human-specific switching between expression of the neuropeptide somatostatin and tyrosine hydroxylase, the rate-limiting enzyme in dopamine production in certain interneurons. The above molecular differences are also illustrated by expression of the neuropsychiatric risk gene FOXP2, which is human-specific in microglia and primate-specific in layer 4 granular neurons. We generated a comprehensive survey of the dlPFC cellular repertoire and its shared and divergent features in anthropoid primates.
Collapse
Affiliation(s)
- Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Skarica
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Qian Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Chuan Xu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ryan D. Risgaard
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Xoel Mato-Blanco
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), MELIS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Rothem Kovner
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Željka Krsnik
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Xabier de Martin
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), MELIS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xavier Martí-Pérez
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), MELIS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Dan Liang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA, USA
| | - Danielle K. Schmidt
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary Gomez-Sanchez
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kevin T. Gobeske
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ashwin Debnath
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cade J. Hottman
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joshua Spurrier
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale School of Medicine, New Haven, CT 06536, USA
| | - Leon Teo
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Anthony G. Boghdadi
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - John J. Ely
- MAEBIOS, Alamogordo, NM 88310, USA
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Da Mi
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Marcel Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- Department of Cell Systems & Anatomy, Radiology, Long School of Medicine, UT Health San Antonio
- NeoNeuron LLC, Palo Alto, CA 94306, USA
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - James Bourne
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), MELIS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Matthew J. Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
- National Center for PTSD, US Department of Veterans Affairs, White River Junction, VT, USA
| | - Stephen M. Strittmatter
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale School of Medicine, New Haven, CT 06536, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - André M.M. Sousa
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Departments of Genetics and Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Maretina MA, Valetdinova KR, Tsyganova NA, Egorova AA, Ovechkina VS, Schiöth HB, Zakian SM, Baranov VS, Kiselev AV. Identification of specific gene methylation patterns during motor neuron differentiation from spinal muscular atrophy patient-derived iPSC. Gene 2022; 811:146109. [PMID: 34871761 DOI: 10.1016/j.gene.2021.146109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/08/2021] [Accepted: 11/16/2021] [Indexed: 11/04/2022]
Abstract
Spinal muscular atrophy is a progressive motor neuron disorder caused by deletions or point mutations in the SMN1 gene. It is not known why motor neurons are particularly sensitive to a decrease in SMN protein levels and what factors besides SMN2 underlie the high clinical heterogeneity of the disease. Here we studied the methylation patterns of genes on sequential stages of motor neuron differentiation from induced pluripotent stem cells derived from the patients with SMA type I and II. The genes involved in the regulation of pluripotency, neural differentiation as well as those associated with spinal muscular atrophy development were included. The results show that the PAX6, HB9, CHAT, ARHGAP22, and SMN2 genes are differently methylated in cells derived from SMA patients compared to the cells of healthy individuals. This study clarifies the specificities of the disease pathogenesis and extends the knowledge of pathways involved in the SMA progression.
Collapse
Affiliation(s)
- M A Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - K R Valetdinova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novsibirsk, Russia
| | - N A Tsyganova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - A A Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - V S Ovechkina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novsibirsk, Russia; Novosibirsk State University, 630090 Novosibirsk, Russia
| | - H B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, S-75124 Uppsala, Sweden; Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - S M Zakian
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novsibirsk, Russia; Meshalkin National Medical Research Center, Ministry of Healthcare of the Russian Federation, 630055 Novosibirsk, Russia
| | - V S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - A V Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| |
Collapse
|
9
|
Nimma S, Gu W, Manik MK, Ve T, Nanson JD, Kobe B. Crystal structure of the Toll/interleukin-1 receptor (TIR) domain of IL-1R10 provides structural insights into TIR domain signaling. FEBS Lett 2022; 596:886-897. [PMID: 35038778 DOI: 10.1002/1873-3468.14288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Abstract
The Toll/interleukin-1 receptor (TIR) domains are key innate immune signaling modules. Here, we present the crystal structure of the TIR domain of human Interleukin-1 receptor 10 (IL-1R10), also called IL-1RAPL2. It is similar to that of IL-1R9 (IL-1RAPL1) but shows significant structural differences to those from Toll-like receptors (TLRs) and the adaptor proteins MAL and MyD88. Interactions of TIR domains in their respective crystals and the higher-order assemblies (MAL and MyD88) reveal the presence of a common 'BCD surface', suggesting its functional significance. We also show that the TIR domains of IL-1R10 and IL-1R9 lack NADase activity, consistent with their structures. Our study provides a foundation for unraveling the functions of IL-1R9 and IL-1R10.
Collapse
Affiliation(s)
- Surekha Nimma
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute of Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| | - Weixi Gu
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute of Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| | - Mohammad K Manik
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute of Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| | - Thomas Ve
- Griffith University, Institute for Glycomics, Southport, Queensland, 4222, Australia
| | - Jeffrey D Nanson
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute of Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| | - Bostjan Kobe
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute of Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
10
|
Cornejo F, Cortés BI, Findlay GM, Cancino GI. LAR Receptor Tyrosine Phosphatase Family in Healthy and Diseased Brain. Front Cell Dev Biol 2021; 9:659951. [PMID: 34966732 PMCID: PMC8711739 DOI: 10.3389/fcell.2021.659951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.
Collapse
Affiliation(s)
- Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bastián I Cortés
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Greg M Findlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gonzalo I Cancino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
11
|
Longatti A, Ponzoni L, Moretto E, Giansante G, Lattuada N, Colombo MN, Francolini M, Sala M, Murru L, Passafaro M. Arhgap22 Disruption Leads to RAC1 Hyperactivity Affecting Hippocampal Glutamatergic Synapses and Cognition in Mice. Mol Neurobiol 2021; 58:6092-6110. [PMID: 34455539 PMCID: PMC8639580 DOI: 10.1007/s12035-021-02502-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 07/15/2021] [Indexed: 11/03/2022]
Abstract
Rho GTPases are a class of G-proteins involved in several aspects of cellular biology, including the regulation of actin cytoskeleton. The most studied members of this family are RHOA and RAC1 that act in concert to regulate actin dynamics. Recently, Rho GTPases gained much attention as synaptic regulators in the mammalian central nervous system (CNS). In this context, ARHGAP22 protein has been previously shown to specifically inhibit RAC1 activity thus standing as critical cytoskeleton regulator in cancer cell models; however, whether this function is maintained in neurons in the CNS is unknown. Here, we generated a knockout animal model for arhgap22 and provided evidence of its role in the hippocampus. Specifically, we found that ARHGAP22 absence leads to RAC1 hyperactivity and to an increase in dendritic spine density with defects in synaptic structure, molecular composition, and plasticity. Furthermore, arhgap22 silencing causes impairment in cognition and a reduction in anxiety-like behavior in mice. We also found that inhibiting RAC1 restored synaptic plasticity in ARHGAP22 KO mice. All together, these results shed light on the specific role of ARHGAP22 in hippocampal excitatory synapse formation and function as well as in learning and memory behaviors.
Collapse
Affiliation(s)
- Anna Longatti
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, 20133, Milan, Italy
| | | | - Edoardo Moretto
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Giorgia Giansante
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Norma Lattuada
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, 20129, Milan, Italy
| | - Maria Nicol Colombo
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, 20129, Milan, Italy
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, 20129, Milan, Italy
| | - Mariaelvina Sala
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Luca Murru
- Institute of Neuroscience, CNR, Milan, 20129, Italy.
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy.
| | - Maria Passafaro
- Institute of Neuroscience, CNR, Milan, 20129, Italy.
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy.
| |
Collapse
|
12
|
Type IIa RPTPs and Glycans: Roles in Axon Regeneration and Synaptogenesis. Int J Mol Sci 2021; 22:ijms22115524. [PMID: 34073798 PMCID: PMC8197235 DOI: 10.3390/ijms22115524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Type IIa receptor tyrosine phosphatases (RPTPs) play pivotal roles in neuronal network formation. It is emerging that the interactions of RPTPs with glycans, i.e., chondroitin sulfate (CS) and heparan sulfate (HS), are critical for their functions. We highlight here the significance of these interactions in axon regeneration and synaptogenesis. For example, PTPσ, a member of type IIa RPTPs, on axon terminals is monomerized and activated by the extracellular CS deposited in neural injuries, dephosphorylates cortactin, disrupts autophagy flux, and consequently inhibits axon regeneration. In contrast, HS induces PTPσ oligomerization, suppresses PTPσ phosphatase activity, and promotes axon regeneration. PTPσ also serves as an organizer of excitatory synapses. PTPσ and neurexin bind one another on presynapses and further bind to postsynaptic leucine-rich repeat transmembrane protein 4 (LRRTM4). Neurexin is now known as a heparan sulfate proteoglycan (HSPG), and its HS is essential for the binding between these three molecules. Another HSPG, glypican 4, binds to presynaptic PTPσ and postsynaptic LRRTM4 in an HS-dependent manner. Type IIa RPTPs are also involved in the formation of excitatory and inhibitory synapses by heterophilic binding to a variety of postsynaptic partners. We also discuss the important issue of possible mechanisms coordinating axon extension and synapse formation.
Collapse
|
13
|
Kamimura K, Maeda N. Glypicans and Heparan Sulfate in Synaptic Development, Neural Plasticity, and Neurological Disorders. Front Neural Circuits 2021; 15:595596. [PMID: 33679334 PMCID: PMC7928303 DOI: 10.3389/fncir.2021.595596] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are components of the cell surface and extracellular matrix, which bear long polysaccharides called heparan sulfate (HS) attached to the core proteins. HSPGs interact with a variety of ligand proteins through the HS chains, and mutations in HSPG-related genes influence many biological processes and cause various diseases. In particular, recent findings from vertebrate and invertebrate studies have raised the importance of glycosylphosphatidylinositol-anchored HSPGs, glypicans, as central players in the development and functions of synapses. Glypicans are important components of the synapse-organizing protein complexes and serve as ligands for leucine-rich repeat transmembrane neuronal proteins (LRRTMs), leukocyte common antigen-related (LAR) family receptor protein tyrosine phosphatases (RPTPs), and G-protein-coupled receptor 158 (GPR158), regulating synapse formation. Many of these interactions are mediated by the HS chains of glypicans. Neurexins (Nrxs) are also synthesized as HSPGs and bind to some ligands in common with glypicans through HS chains. Therefore, glypicans and Nrxs may act competitively at the synapses. Furthermore, glypicans regulate the postsynaptic expression levels of ionotropic glutamate receptors, controlling the electrophysiological properties and non-canonical BMP signaling of synapses. Dysfunctions of glypicans lead to failures in neuronal network formation, malfunction of synapses, and abnormal behaviors that are characteristic of neurodevelopmental disorders. Recent human genetics revealed that glypicans and HS are associated with autism spectrum disorder, neuroticism, and schizophrenia. In this review, we introduce the studies showing the roles of glypicans and HS in synapse formation, neural plasticity, and neurological disorders, especially focusing on the mouse and Drosophila as potential models for human diseases.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Nobuaki Maeda
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| |
Collapse
|
14
|
Kim HY, Um JW, Ko J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog Neurobiol 2021; 200:101983. [PMID: 33422662 DOI: 10.1016/j.pneurobio.2020.101983] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Trans-synaptic cell-adhesion molecules are critical for governing various stages of synapse development and specifying neural circuit properties via the formation of multifarious signaling pathways. Recent studies have pinpointed the putative roles of trans-synaptic cell-adhesion molecules in mediating various cognitive functions. Here, we review the literature on the roles of a diverse group of central synaptic organizers, including neurexins (Nrxns), leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs), and their associated binding proteins, in regulating properties of specific type of synapses and neural circuits. In addition, we highlight the findings that aberrant synaptic adhesion signaling leads to alterations in the structures, transmission, and plasticity of specific synapses across diverse brain areas. These results seem to suggest that proper trans-synaptic signaling pathways by Nrxns, LAR-RPTPs, and their interacting network is likely to constitute central molecular complexes that form the basis for cognitive functions, and that these complexes are heterogeneously and complexly disrupted in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea; Core Protein Resources Center, DGIST, Daegu, 42988, South Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
| |
Collapse
|
15
|
Takeda K, Watanabe T, Oyabu K, Tsukamoto S, Oba Y, Nakano T, Kubota K, Katsurabayashi S, Iwasaki K. Valproic acid-exposed astrocytes impair inhibitory synapse formation and function. Sci Rep 2021; 11:23. [PMID: 33420078 PMCID: PMC7794250 DOI: 10.1038/s41598-020-79520-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Valproic acid (VPA) is widely prescribed to treat epilepsy. Maternal VPA use is, however, clinically restricted because of the severe risk that VPA may cause neurodevelopmental disorders in offspring, such as autism spectrum disorder. Understanding the negative action of VPA may help to prevent VPA-induced neurodevelopmental disorders. Astrocytes play a vital role in neurodevelopment and synapse function; however, the impact of VPA on astrocyte involvement in neurodevelopment and synapse function has not been examined. In this study, we examined whether exposure of cultured astrocytes to VPA alters neuronal morphology and synapse function of co-cultured neurons. We show that synaptic transmission by inhibitory neurons was small because VPA-exposed astrocytes reduced the number of inhibitory synapses. However, synaptic transmission by excitatory neurons and the number of excitatory synapses were normal with VPA-exposed astrocytes. VPA-exposed astrocytes did not affect the morphology of inhibitory neurons. These data indicate that VPA-exposed astrocytes impair synaptogenesis specifically of inhibitory neurons. Our results indicate that maternal use of VPA would affect not only neurons but also astrocytes and would result in perturbed astrocyte-mediated neurodevelopment.
Collapse
Affiliation(s)
- Kotomi Takeda
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan. .,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.
| | - Kohei Oyabu
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Shuntaro Tsukamoto
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Yuki Oba
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Takafumi Nakano
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| |
Collapse
|
16
|
Fukai S, Yoshida T. Roles of type IIa receptor protein tyrosine phosphatases as synaptic organizers. FEBS J 2020; 288:6913-6926. [PMID: 33301645 DOI: 10.1111/febs.15666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
Neurons establish circuits for brain functions such as cognition, emotion, learning, and memory. Their connections are mediated by synapses, which are specialized cell-cell adhesions responsible for neuronal signal transmission. During neurodevelopment, synapse formation is triggered by interactions of cell adhesion molecules termed synaptic organizers or synapse organizers. Type IIa receptor protein tyrosine phosphatases (IIa RPTPs; also known as leukocyte common antigen-related receptor tyrosine phosphatases or LAR-RPTPs) play important roles in axon guidance and neurite extension, and also serve as presynaptic organizers. IIa RPTPs transsynaptically interact with multiple sets of postsynaptic organizers, mostly in a splicing-dependent fashion. Here, we review and update research progress on IIa RPTPs, particularly regarding their functional roles in vivo demonstrated using conditional knockout approach and structural insights into their extracellular and intracellular molecular interactions revealed by crystallography and other biophysical techniques. Future directions in the research field of IIa RPTPs are also discussed, including recent findings of the molecular assembly mechanism underlying the formation of synapse-specific nanostructures essential for synaptic functions.
Collapse
Affiliation(s)
- Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| |
Collapse
|
17
|
TSPAN5 Enriched Microdomains Provide a Platform for Dendritic Spine Maturation through Neuroligin-1 Clustering. Cell Rep 2020; 29:1130-1146.e8. [PMID: 31665629 PMCID: PMC6899445 DOI: 10.1016/j.celrep.2019.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/09/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
Tetraspanins are a class of evolutionarily conserved transmembrane proteins with 33 members identified in mammals that have the ability to organize specific membrane domains, named tetraspanin-enriched microdomains (TEMs). Despite the relative abundance of different tetraspanins in the CNS, few studies have explored their role at synapses. Here, we investigate the function of TSPAN5, a member of the tetraspanin superfamily for which mRNA transcripts are found at high levels in the mouse brain. We demonstrate that TSPAN5 is localized in dendritic spines of pyramidal excitatory neurons and that TSPAN5 knockdown induces a dramatic decrease in spine number because of defects in the spine maturation process. Moreover, we show that TSPAN5 interacts with the postsynaptic adhesion molecule neuroligin-1, promoting its correct surface clustering. We propose that membrane compartmentalization by tetraspanins represents an additional mechanism for regulating excitatory synapses. TSPAN5 is expressed in pyramidal neurons and localizes mainly to dendritic spines TSPAN5 interacts with neuroligin-1 and promotes its clustering TSPAN5-neuroligin-1 complex is fundamental for dendritic spine maturation
Collapse
|
18
|
Han Y, Huard A, Mora J, da Silva P, Brüne B, Weigert A. IL-36 family cytokines in protective versus destructive inflammation. Cell Signal 2020; 75:109773. [PMID: 32898612 DOI: 10.1016/j.cellsig.2020.109773] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
The IL-1 family of cytokines and receptors are critical regulators of inflammation. Within the IL-1 family and in contrast to its IL-1 and IL-18 subfamilies, the IL-36 subfamily is still poorly characterized. Three pro-inflammatory agonists IL-36α, IL-36β, IL-36γ, one IL-36 receptor (IL-1R6) antagonist, IL-36RA, and one putative IL-1R6 antagonist, IL-38, have been grouped into the IL-36 cytokine subfamily. IL-36 agonists signal through a common receptor complex to serve as early triggers of inflammatory responses by activating and cross-regulating a number of inflammatory pathways including NF-κB, MAPK and IFN signaling. IL-36RA binds to IL-1R6 to limit inflammatory signaling, while IL-38 may be an antagonist of more than one IL-1 family receptor. Expression patterns of IL-36 family cytokines, being most prominently expressed in epithelial barrier tissues such as the skin and intestines as well as in immune cells, suggest a role in protecting these barriers from infection. Dysregulation of IL-36 family cytokine signaling at physiological barriers, most prominently the skin, induces autoimmune inflammation. However, transferring the potential of IL-36 to induce tissue damage to tumors might benefit cancer patients. Here we summarize signaling pathways regulated by IL-36 family cytokines, including IL-38, and the consequences for physiological protective and pathophysiological destructive inflammation. Moreover, we discuss the limits of current knowledge on IL-36 family function to open potential avenues for research in the future.
Collapse
Affiliation(s)
- Yingying Han
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Special Key Laboratory of Oral Diseases Research, Higher Education Institutions of Guizhou Province, Zunyi Medical University, Zunyi 563006, Guizhou, China; School of Stomatology, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Arnaud Huard
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany
| | - Javier Mora
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Faculty of Microbiology, University of Costa Rica, San José 2060, Costa Rica
| | - Priscila da Silva
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.
| |
Collapse
|
19
|
Han KA, Lee HY, Lim D, Shin J, Yoon TH, Lee C, Rhee JS, Liu X, Um JW, Choi SY, Ko J. PTPσ Controls Presynaptic Organization of Neurotransmitter Release Machinery at Excitatory Synapses. iScience 2020; 23:101203. [PMID: 32516721 PMCID: PMC7284068 DOI: 10.1016/j.isci.2020.101203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
Leukocyte common antigen-related receptor tyrosine phosphatases (LAR-RPTPs) are evolutionarily conserved presynaptic organizers. The synaptic role of vertebrate LAR-RPTPs in vivo, however, remains unclear. In the current study, we analyzed the synaptic role of PTPσ using newly generated, single conditional knockout (cKO) mice targeting PTPσ. We found that the number of synapses was reduced in PTPσ cKO cultured neurons in association with impaired excitatory synaptic transmission, abnormal vesicle localization, and abnormal synaptic ultrastructure. Strikingly, loss of presynaptic PTPσ reduced neurotransmitter release prominently at excitatory synapses, concomitant with drastic reductions in excitatory innervations onto postsynaptic target areas in vivo. Furthermore, loss of presynaptic PTPσ in hippocampal CA1 pyramidal neurons had no impact on postsynaptic glutamate receptor responses in subicular pyramidal neurons. Postsynaptic PTPσ deletion had no effect on excitatory synaptic strength. Taken together, these results demonstrate that PTPσ is a bona fide presynaptic adhesion molecule that controls neurotransmitter release and excitatory inputs. Conditional PTPσ KO produces specifically impaired presynaptic functions Presynaptic PTPσ regulates glutamate release efficiency Presynaptic PTPσ does not transsynaptically regulate postsynaptic receptor responses
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea; Core Protein Resources Center, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Hee-Yoon Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Korea
| | - Dongseok Lim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Jungsu Shin
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Taek Han Yoon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Chooungku Lee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany
| | - Jeong-Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea; Core Protein Resources Center, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Se-Young Choi
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea.
| |
Collapse
|
20
|
Park H, Choi Y, Jung H, Kim S, Lee S, Han H, Kweon H, Kang S, Sim WS, Koopmans F, Yang E, Kim H, Smit AB, Bae YC, Kim E. Splice-dependent trans-synaptic PTPδ-IL1RAPL1 interaction regulates synapse formation and non-REM sleep. EMBO J 2020; 39:e104150. [PMID: 32347567 PMCID: PMC7265247 DOI: 10.15252/embj.2019104150] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing regulates trans‐synaptic adhesions and synapse development, but supporting in vivo evidence is limited. PTPδ, a receptor tyrosine phosphatase adhering to multiple synaptic adhesion molecules, is associated with various neuropsychiatric disorders; however, its in vivo functions remain unclear. Here, we show that PTPδ is mainly present at excitatory presynaptic sites by endogenous PTPδ tagging. Global PTPδ deletion in mice leads to input‐specific decreases in excitatory synapse development and strength. This involves tyrosine dephosphorylation and synaptic loss of IL1RAPL1, a postsynaptic partner of PTPδ requiring the PTPδ‐meA splice insert for binding. Importantly, PTPδ‐mutant mice lacking the PTPδ‐meA insert, and thus lacking the PTPδ interaction with IL1RAPL1 but not other postsynaptic partners, recapitulate biochemical and synaptic phenotypes of global PTPδ‐mutant mice. Behaviorally, both global and meA‐specific PTPδ‐mutant mice display abnormal sleep behavior and non‐REM rhythms. Therefore, alternative splicing in PTPδ regulates excitatory synapse development and sleep by modulating a specific trans‐synaptic adhesion.
Collapse
Affiliation(s)
- Haram Park
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Yeonsoo Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hyemin Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Suwon Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Woong Seob Sim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Frank Koopmans
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, CNCR, VU University and UMC Amsterdam, Amsterdam, The Netherlands
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, CNCR, VU University and UMC Amsterdam, Amsterdam, The Netherlands
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea.,Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
21
|
Sclip A, Südhof TC. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. eLife 2020; 9:53406. [PMID: 31985401 PMCID: PMC6984820 DOI: 10.7554/elife.53406] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
LAR-type receptor phosphotyrosine-phosphatases (LAR-RPTPs) are presynaptic adhesion molecules that interact trans-synaptically with multitudinous postsynaptic adhesion molecules, including SliTrks, SALMs, and TrkC. Via these interactions, LAR-RPTPs are thought to function as synaptogenic wiring molecules that promote neural circuit formation by mediating the establishment of synapses. To test the synaptogenic functions of LAR-RPTPs, we conditionally deleted the genes encoding all three LAR-RPTPs, singly or in combination, in mice before synapse formation. Strikingly, deletion of LAR-RPTPs had no effect on synaptic connectivity in cultured neurons or in vivo, but impaired NMDA-receptor-mediated responses. Deletion of LAR-RPTPs decreased NMDA-receptor-mediated responses by a trans-synaptic mechanism. In cultured neurons, deletion of all LAR-RPTPs led to a reduction in synaptic NMDA-receptor EPSCs, without changing the subunit composition or the protein levels of NMDA-receptors. In vivo, deletion of all LAR-RPTPs in the hippocampus at birth also did not alter synaptic connectivity as measured via AMPA-receptor-mediated synaptic responses at Schaffer-collateral synapses monitored in juvenile mice, but again decreased NMDA-receptor mediated synaptic transmission. Thus, LAR-RPTPs are not essential for synapse formation, but control synapse properties by regulating postsynaptic NMDA-receptors via a trans-synaptic mechanism that likely involves binding to one or multiple postsynaptic ligands.
Collapse
Affiliation(s)
- Alessandra Sclip
- Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Thomas C Südhof
- Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
22
|
Castora FJ. Mitochondrial function and abnormalities implicated in the pathogenesis of ASD. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:83-108. [PMID: 30599156 DOI: 10.1016/j.pnpbp.2018.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are the powerhouse that generate over 90% of the ATP produced in cells. In addition to its role in energy production, the mitochondrion also plays a major role in carbohydrate, fatty acid, amino acid and nucleotide metabolism, programmed cell death (apoptosis), generation of and protection against reactive oxygen species (ROS), immune response, regulation of intracellular calcium ion levels and even maintenance of gut microbiota. With its essential role in bio-energetic as well as non-energetic biological processes, it is not surprising that proper cellular, tissue and organ function is dependent upon proper mitochondrial function. Accordingly, mitochondrial dysfunction has been shown to be directly linked to a variety of medical disorders, particularly neuromuscular disorders and increasing evidence has linked mitochondrial dysfunction to neurodegenerative and neurodevelopmental disorders such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Rett Syndrome (RS) and Autism Spectrum Disorders (ASD). Over the last 40 years there has been a dramatic increase in the diagnosis of ASD and, more recently, an increasing body of evidence indicates that mitochondrial dysfunction plays an important role in ASD development. In this review, the latest evidence linking mitochondrial dysfunction and abnormalities in mitochondrial DNA (mtDNA) to the pathogenesis of autism will be presented. This review will also summarize the results of several recent `approaches used for improving mitochondrial function that may lead to new therapeutic approaches to managing and/or treating ASD.
Collapse
Affiliation(s)
- Frank J Castora
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA; Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
23
|
Lee H, Shin W, Kim K, Lee S, Lee EJ, Kim J, Kweon H, Lee E, Park H, Kang M, Yang E, Kim H, Kim E. NGL-3 in the regulation of brain development, Akt/GSK3b signaling, long-term depression, and locomotive and cognitive behaviors. PLoS Biol 2019; 17:e2005326. [PMID: 31166939 PMCID: PMC6550391 DOI: 10.1371/journal.pbio.2005326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/13/2019] [Indexed: 01/04/2023] Open
Abstract
Netrin-G ligand-3 (NGL-3) is a postsynaptic adhesion molecule known to directly interact with the excitatory postsynaptic scaffolding protein postsynaptic density-95 (PSD-95) and trans-synaptically with leukocyte common antigen-related (LAR) family receptor tyrosine phosphatases to regulate presynaptic differentiation. Although NGL-3 has been implicated in the regulation of excitatory synapse development by in vitro studies, whether it regulates synapse development or function, or any other features of brain development and function, is not known. Here, we report that mice lacking NGL-3 (Ngl3−/− mice) show markedly suppressed normal brain development and postnatal survival and growth. A change of the genetic background of mice from pure to hybrid minimized these developmental effects but modestly suppressed N-methyl-D-aspartate (NMDA) receptor (NMDAR)-mediated synaptic transmission in the hippocampus without affecting synapse development, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)-mediated basal transmission, and presynaptic release. Intriguingly, long-term depression (LTD) was near-completely abolished in Ngl3−/− mice, and the Akt/glycogen synthase kinase 3β (GSK3β) signaling pathway, known to suppress LTD, was abnormally enhanced. In addition, pharmacological inhibition of Akt, but not activation of NMDARs, normalized the suppressed LTD in Ngl3−/− mice, suggesting that Akt hyperactivity suppresses LTD. Ngl3−/− mice displayed several behavioral abnormalities, including hyperactivity, anxiolytic-like behavior, impaired spatial memory, and enhanced seizure susceptibility. Among them, the hyperactivity was rapidly improved by pharmacological NMDAR activation. These results suggest that NGL-3 regulates brain development, Akt/GSK3β signaling, LTD, and locomotive and cognitive behaviors.
Collapse
Affiliation(s)
- Hyejin Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Wangyong Shin
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center University of Ulsan, College of Medicine, Seoul, South Korea
| | - Jihye Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Haram Park
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
- * E-mail:
| |
Collapse
|
24
|
Ponzoni L, Sala C, Verpelli C, Sala M, Braida D. Different attentional dysfunctions in
eEF2K
−/−
, IL1RAPL1
−/−
and
SHANK3Δ11
−/−
mice. GENES BRAIN AND BEHAVIOR 2019; 18:e12563. [DOI: 10.1111/gbb.12563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Luisa Ponzoni
- CNR, Neuroscience Institute Milan Italy
- Department of Medical Biotechnology and Translational MedicineUniversità degli Studi di Milano Milan Italy
| | | | | | | | - Daniela Braida
- Department of Medical Biotechnology and Translational MedicineUniversità degli Studi di Milano Milan Italy
| |
Collapse
|
25
|
Bandura J, Feng ZP. Current Understanding of the Role of Neuronal Calcium Sensor 1 in Neurological Disorders. Mol Neurobiol 2019; 56:6080-6094. [PMID: 30719643 DOI: 10.1007/s12035-019-1497-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
Neuronal calcium sensor 1 (NCS-1) is a high-affinity calcium-binding protein and its ubiquitous expression in the nervous system implies a wide range of functions. To date, it has been implicated in regulation of calcium channels in both axonal growth cones and presynaptic terminals, pre- and postsynaptic plasticity mechanisms, learning and memory behaviors, dopaminergic signaling, and axonal regeneration. This review summarizes these functions and relates them to several diseases in which NCS-1 plays a role, such as schizophrenia and bipolar disorder, X-linked mental retardation and fragile X syndrome, and spinal cord injury. Many questions remain unanswered about the role of NCS-1 in these diseases, particularly as the genetic factors that control NCS-1 expression in both normal and diseased states are still poorly understood. The review further identifies the therapeutic potential of manipulating the interaction of NCS-1 with its many targets and suggests directions for future research on the role of NCS-1 in these disorders.
Collapse
Affiliation(s)
- Julia Bandura
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
26
|
Ha HTT, Leal-Ortiz S, Lalwani K, Kiyonaka S, Hamachi I, Mysore SP, Montgomery JM, Garner CC, Huguenard JR, Kim SA. Shank and Zinc Mediate an AMPA Receptor Subunit Switch in Developing Neurons. Front Mol Neurosci 2018; 11:405. [PMID: 30524232 PMCID: PMC6256285 DOI: 10.3389/fnmol.2018.00405] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022] Open
Abstract
During development, pyramidal neurons undergo dynamic regulation of AMPA receptor (AMPAR) subunit composition and density to help drive synaptic plasticity and maturation. These normal developmental changes in AMPARs are particularly vulnerable to risk factors for Autism Spectrum Disorders (ASDs), which include loss or mutations of synaptic proteins and environmental insults, such as dietary zinc deficiency. Here, we show how Shank2 and Shank3 mediate a zinc-dependent regulation of AMPAR function and subunit switch from GluA2-lacking to GluA2-containing AMPARs. Over development, we found a concomitant increase in Shank2 and Shank3 with GluA2 at synapses, implicating these molecules as potential players in AMPAR maturation. Since Shank activation and function require zinc, we next studied whether neuronal activity regulated postsynaptic zinc at glutamatergic synapses. Zinc was found to increase transiently and reversibly with neuronal depolarization at synapses, which could affect Shank and AMPAR localization and activity. Elevated zinc induced multiple functional changes in AMPAR, indicative of a subunit switch. Specifically, zinc lengthened the decay time of AMPAR-mediated synaptic currents and reduced their inward rectification in young hippocampal neurons. Mechanistically, both Shank2 and Shank3 were necessary for the zinc-sensitive enhancement of AMPAR-mediated synaptic transmission and act in concert to promote removal of GluA1 while enhancing recruitment of GluA2 at pre-existing Shank puncta. These findings highlight a cooperative local dynamic regulation of AMPAR subunit switch controlled by zinc signaling through Shank2 and Shank3 to shape the biophysical properties of developing glutamatergic synapses. Given the zinc sensitivity of young neurons and its dependence on Shank2 and Shank3, genetic mutations and/or environmental insults during early development could impair synaptic maturation and circuit formation that underlie ASD etiology.
Collapse
Affiliation(s)
- Huong T T Ha
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States.,Neurosciences Graduate Program, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sergio Leal-Ortiz
- Department of Material Science & Engineering, School of Engineering, Stanford University, Stanford, CA, United States
| | - Kriti Lalwani
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shreesh P Mysore
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Craig C Garner
- German Center for Neurodegenerative Diseases (DZNE), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - John R Huguenard
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sally A Kim
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
27
|
Sun Z, Chadwick BP. Loss of SETDB1 decompacts the inactive X chromosome in part through reactivation of an enhancer in the IL1RAPL1 gene. Epigenetics Chromatin 2018; 11:45. [PMID: 30103804 PMCID: PMC6088404 DOI: 10.1186/s13072-018-0218-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/10/2018] [Indexed: 01/04/2023] Open
Abstract
Background The product of dosage compensation in female mammals is the inactive X chromosome (Xi). Xi facultative heterochromatin is organized into two different types, one of which is defined by histone H3 trimethylated at lysine 9 (H3K9me3). The rationale for this study was to assess SET domain bifurcated 1 (SETDB1) as a candidate for maintaining this repressive modification at the human Xi. Results Here, we show that loss of SETDB1 does not result in large-scale H3K9me3 changes at the Xi, but unexpectedly we observed striking decompaction of the Xi territory. Close examination revealed a 0.5 Mb region of the Xi that transitioned from H3K9me3 heterochromatin to euchromatin within the 3′ end of the IL1RAPL1 gene that is part of a common chromosome fragile site that is frequently deleted or rearranged in patients afflicted with intellectual disability and other neurological ailments. Centrally located within this interval is a powerful enhancer adjacent to an ERVL-MaLR element. In the absence of SETDB1, the enhancer is reactivated on the Xi coupled with bidirectional transcription from the ERVL-MaLR element. Xa deletion of the enhancer/ERVL-MaLR resulted in loss of full-length IL1RAPL1 transcript in cis, coupled with trans decompaction of the Xi chromosome territory, whereas Xi deletion increased detection of full-length IL1RAPL1 transcript in trans, but did not impact Xi compaction. Conclusions These data support a critical role for SETDB1 in maintaining the ERVL-MaLR element and adjacent enhancer in the 3′ end of the IL1RAPL1 gene in a silent state to facilitate Xi compaction. Electronic supplementary material The online version of this article (10.1186/s13072-018-0218-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuo Sun
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA
| | - Brian P Chadwick
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA.
| |
Collapse
|
28
|
Won SY, Kim HM. Structural Basis for LAR-RPTP-Mediated Synaptogenesis. Mol Cells 2018; 41:622-630. [PMID: 30008201 PMCID: PMC6078854 DOI: 10.14348/molcells.2018.0202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/10/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022] Open
Abstract
Leukocyte common antigen-related protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that regulate neurite outgrowth and neuronal regeneration. LAR-RPTPs have also received particular attention as the major presynaptic hubs for synapse organization through selective binding to numerous postsynaptic adhesion partners. Recent structural studies on LAR-RPTP-mediated trans-synaptic adhesion complexes have provided significant insight into the molecular basis of their specific interactions, the key codes for their selective binding, as well as the higher-order clustering of LAR-RPTPs necessary for synaptogenic activity. In this review, we summarize the structures of LAR-RPTPs in complex with various postsynaptic adhesion partners and discuss the molecular mechanisms underlying LAR-RPTP-mediated synaptogenesis.
Collapse
Affiliation(s)
- Seoung Youn Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141,
Korea
| |
Collapse
|
29
|
PTPσ Drives Excitatory Presynaptic Assembly via Various Extracellular and Intracellular Mechanisms. J Neurosci 2018; 38:6700-6721. [PMID: 29934346 DOI: 10.1523/jneurosci.0672-18.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 11/21/2022] Open
Abstract
Leukocyte common antigen-receptor protein tyrosine phosphatases (LAR-RPTPs) are hub proteins that organize excitatory and inhibitory synapse development through binding to various extracellular ligands. Here, we report that knockdown (KD) of the LAR-RPTP family member PTPσ reduced excitatory synapse number and transmission in cultured rat hippocampal neurons, whereas KD of PTPδ produced comparable decreases at inhibitory synapses, in both cases without altering expression levels of interacting proteins. An extensive series of rescue experiments revealed that extracellular interactions of PTPσ with Slitrks are important for excitatory synapse development. These experiments further showed that the intracellular D2 domain of PTPσ is required for induction of heterologous synapse formation by Slitrk1 or TrkC, suggesting that interaction of LAR-RPTPs with distinct intracellular presynaptic proteins, drives presynaptic machinery assembly. Consistent with this, double-KD of liprin-α2 and -α3 or KD of PTPσ substrates (N-cadherin and p250RhoGAP) in neurons inhibited Slitrk6-induced, PTPσ-mediated heterologous synapse formation activity. We propose a synaptogenesis model in presynaptic neurons involving LAR-RPTP-organized retrograde signaling cascades, in which both extracellular and intracellular mechanisms are critical in orchestrating distinct synapse types.SIGNIFICANCE STATEMENT In this study, we sought to test the unproven hypothesis that PTPσ and PTPδ are required for excitatory and inhibitory synapse formation/transmission, respectively, in cultured hippocampal neurons, using knockdown-based loss-of-function analyses. We further performed extensive structure-function analyses, focusing on PTPσ-mediated actions, to address the mechanisms of presynaptic assembly at excitatory synaptic sites. Using interdisciplinary approaches, we systematically applied a varied set of PTPσ deletion variants, point mutants, and splice variants to demonstrate that both extracellular and intracellular mechanisms are involved in organizing presynaptic assembly. Strikingly, extracellular interactions of PTPσ with heparan sulfates and Slitrks, intracellular interactions of PTPσ with liprin-α and its associated proteins through the D2 domain, as well as distinct substrates are all critical.
Collapse
|
30
|
Rho GTPases in Intellectual Disability: From Genetics to Therapeutic Opportunities. Int J Mol Sci 2018; 19:ijms19061821. [PMID: 29925821 PMCID: PMC6032284 DOI: 10.3390/ijms19061821] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022] Open
Abstract
Rho-class small GTPases are implicated in basic cellular processes at nearly all brain developmental steps, from neurogenesis and migration to axon guidance and synaptic plasticity. GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Rho GTPases are highly regulated by a complex set of activating (GEFs) and inactivating (GAPs) partners, via protein:protein interactions (PPI). Misregulated RhoA, Rac1/Rac3 and cdc42 activity has been linked with intellectual disability (ID) and other neurodevelopmental conditions that comprise ID. All genetic evidences indicate that in these disorders the RhoA pathway is hyperactive while the Rac1 and cdc42 pathways are consistently hypoactive. Adopting cultured neurons for in vitro testing and specific animal models of ID for in vivo examination, the endophenotypes associated with these conditions are emerging and include altered neuronal networking, unbalanced excitation/inhibition and altered synaptic activity and plasticity. As we approach a clearer definition of these phenotype(s) and the role of hyper- and hypo-active GTPases in the construction of neuronal networks, there is an increasing possibility that selective inhibitors and activators might be designed via PPI, or identified by screening, that counteract the misregulation of small GTPases and result in alleviation of the cognitive condition. Here we review all knowledge in support of this possibility.
Collapse
|
31
|
Lie E, Li Y, Kim R, Kim E. SALM/Lrfn Family Synaptic Adhesion Molecules. Front Mol Neurosci 2018; 11:105. [PMID: 29674953 PMCID: PMC5895706 DOI: 10.3389/fnmol.2018.00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Synaptic adhesion-like molecules (SALMs) are a family of cell adhesion molecules involved in regulating neuronal and synapse development that have also been implicated in diverse brain dysfunctions, including autism spectrum disorders (ASDs). SALMs, also known as leucine-rich repeat (LRR) and fibronectin III domain-containing (LRFN) proteins, were originally identified as a group of novel adhesion-like molecules that contain LRRs in the extracellular region as well as a PDZ domain-binding tail that couples to PSD-95, an abundant excitatory postsynaptic scaffolding protein. While studies over the last decade have steadily explored the basic properties and synaptic and neuronal functions of SALMs, a number of recent studies have provided novel insights into molecular, structural, functional and clinical aspects of SALMs. Here we summarize these findings and discuss how SALMs act in concert with other synaptic proteins to regulate synapse development and function.
Collapse
Affiliation(s)
- Eunkyung Lie
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Ryunhee Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
32
|
Pozzi D, Menna E, Canzi A, Desiato G, Mantovani C, Matteoli M. The Communication Between the Immune and Nervous Systems: The Role of IL-1β in Synaptopathies. Front Mol Neurosci 2018; 11:111. [PMID: 29674955 PMCID: PMC5895746 DOI: 10.3389/fnmol.2018.00111] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
In the last 15 years, groundbreaking genetic progress has underlined a convergence onto coherent synaptic pathways for most psychiatric and neurodevelopmental disorders, which are now collectively called “synaptopathies.” However, the modest size of inheritance detected so far indicates a multifactorial etiology for these disorders, underlining the key contribution of environmental effects to them. Inflammation is known to influence the risk and/or severity of a variety of synaptopathies. In particular, pro-inflammatory cytokines, produced and released in the brain by activated astrocytes and microglia, may play a pivotal role in these pathologies. Although the link between immune system activation and defects in cognitive processes is nowadays clearly established, the knowledge of the molecular mechanisms by which inflammatory mediators specifically hit synaptic components implicated in synaptopathies is still in its infancy. This review summarizes recent evidence showing that the pro-inflammatory cytokine interleukin-1β (IL-1β) specifically targets synaptopathy molecular substrate, leading to memory defects and pathological processes. In particular, we describe three specific pathways through which IL-1β affects (1) synaptic maintenance/dendritic complexity, (2) spine morphology, and (3) the excitatory/inhibitory balance. We coin the term immune synaptopathies to identify this class of diseases.
Collapse
Affiliation(s)
- Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elisabetta Menna
- Humanitas Clinical and Research Center, Rozzano, Italy.,Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Alice Canzi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Genni Desiato
- Humanitas Clinical and Research Center, Rozzano, Italy.,School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | | | - Michela Matteoli
- Humanitas Clinical and Research Center, Rozzano, Italy.,Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
33
|
Ohtake Y, Saito A, Li S. Diverse functions of protein tyrosine phosphatase σ in the nervous and immune systems. Exp Neurol 2018; 302:196-204. [PMID: 29374568 PMCID: PMC6275553 DOI: 10.1016/j.expneurol.2018.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Tyrosine phosphorylation is a common means of regulating protein functions and signal transduction in multiple cells. Protein tyrosine phosphatases (PTPs) are a large family of signaling enzymes that remove phosphate groups from tyrosine residues of target proteins and change their functions. Among them, receptor-type PTPs (RPTPs) exhibit a distinct spatial pattern of expression and play essential roles in regulating neurite outgrowth, axon guidance, and synaptic organization in developmental nervous system. Some RPTPs function as essential receptors for chondroitin sulfate proteoglycans that inhibit axon regeneration following CNS injury. Interestingly, certain RPTPs are also important to regulate functions of immune cells and development of autoimmune diseases. PTPσ, a RPTP in the LAR subfamily, is expressed in various immune cells and regulates their differentiation, production of various cytokines and immune responses. In this review, we highlight the physiological and pathological significance of PTPσ and related molecules in both nervous and immune systems.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
34
|
Coley AA, Gao WJ. PSD95: A synaptic protein implicated in schizophrenia or autism? Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:187-194. [PMID: 29169997 PMCID: PMC5801047 DOI: 10.1016/j.pnpbp.2017.11.016] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/27/2017] [Accepted: 11/18/2017] [Indexed: 11/25/2022]
Abstract
The molecular components of the postsynaptic density (PSD) in excitatory synapses of the brain are currently being investigated as one of the major etiologies of neurodevelopmental disorders such as schizophrenia (SCZ) and autism. Postsynaptic density protein-95 (PSD-95) is a major regulator of synaptic maturation by interacting, stabilizing and trafficking N-methyl-d-aspartic acid receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isox-azoleproprionic acid receptors (AMPARs) to the postsynaptic membrane. Recently, there has been overwhelming evidence that associates PSD-95 disruption with cognitive and learning deficits observed in SCZ and autism. For instance, recent genomic and sequencing studies of psychiatric patients highlight the aberrations at the PSD of glutamatergic synapses that include PSD-95 dysfunction. In animal studies, PSD-95 deficiency shows alterations in NMDA and AMPA-receptor composition and function in specific brain regions that may contribute to phenotypes observed in neuropsychiatric pathologies. In this review, we describe the role of PSD-95 as an essential scaffolding protein during synaptogenesis and neurodevelopment. More specifically, we discuss its interactions with NMDA receptor subunits that potentially affect glutamate transmission, and the formation of silent synapses during critical time points of neurodevelopment. Furthermore, we describe how PSD-95 may alter dendritic spine morphologies, thus regulating synaptic function that influences behavioral phenotypes in SCZ versus autism. Understanding the role of PSD-95 in the neuropathologies of SCZ and autism will give an insight of the cellular and molecular attributes in the disorders, thus providing treatment options in patients affected.
Collapse
Affiliation(s)
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
35
|
Structural basis of SALM5-induced PTPδ dimerization for synaptic differentiation. Nat Commun 2018; 9:268. [PMID: 29348579 PMCID: PMC5773555 DOI: 10.1038/s41467-017-02414-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/29/2017] [Indexed: 12/29/2022] Open
Abstract
SALM5, a synaptic adhesion molecule implicated in autism, induces presynaptic differentiation through binding to the LAR family receptor protein tyrosine phosphatases (LAR-RPTPs) that have been highlighted as presynaptic hubs for synapse formation. The mechanisms underlying SALM5/LAR-RPTP interaction remain unsolved. Here we report crystal structures of human SALM5 LRR-Ig alone and in complex with human PTPδ Ig1–3 (MeA−). Distinct from other LAR-RPTP ligands, SALM5 mainly exists as a dimer with LRR domains from two protomers packed in an antiparallel fashion. In the 2:2 heterotetrameric SALM5/PTPδ complex, a SALM5 dimer bridges two separate PTPδ molecules. Structure-guided mutations and heterologous synapse formation assays demonstrate that dimerization of SALM5 is prerequisite for its functionality in inducing synaptic differentiation. This study presents a structural template for the SALM family and reveals a mechanism for how a synaptic adhesion molecule directly induces cis-dimerization of LAR-RPTPs into higher-order signaling assembly. Synaptic adhesion molecules mediate synaptic differentiation and formation. Here the authors present the structures of the synaptic adhesion molecule SALM5 alone and in complex with the LAR family receptor protein tyrosine phosphatase (LAR-RPTP) PTPδ, which reveals how SALM5 dimerization facilitates higher-order signaling assembly of LAR-RPTPs.
Collapse
|
36
|
The X-Linked Intellectual Disability Protein IL1RAPL1 Regulates Dendrite Complexity. J Neurosci 2017; 37:6606-6627. [PMID: 28576939 DOI: 10.1523/jneurosci.3775-16.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/17/2017] [Accepted: 05/04/2017] [Indexed: 11/21/2022] Open
Abstract
Mutations and deletions of the interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene, located on the X chromosome, are associated with intellectual disability (ID) and autism spectrum disorder (ASD). IL1RAPL1 protein is located at the postsynaptic compartment of excitatory synapses and plays a role in synapse formation and stabilization. Here, using primary neuronal cultures and Il1rapl1-KO mice, we characterized the role of IL1RAPL1 in regulating dendrite morphology. In Il1rapl1-KO mice we identified an increased number of dendrite branching points in CA1 and CA2 hippocampal neurons associated to hippocampal cognitive impairment. Similarly, induced pluripotent stem cell-derived neurons from a patient carrying a null mutation of the IL1RAPL1 gene had more dendrites. In hippocampal neurons, the overexpression of full-length IL1RAPL1 and mutants lacking part of C-terminal domains leads to simplified neuronal arborization. This effect is abolished when we overexpressed mutants lacking part of N-terminal domains, indicating that the IL1RAPL1 extracellular domain is required for regulating dendrite development. We also demonstrate that PTPδ interaction is not required for this activity, while IL1RAPL1 mediates the activity of IL-1β on dendrite morphology. Our data reveal a novel specific function for IL1RAPL1 in regulating dendrite morphology that can help clarify how changes in IL1RAPL1-regulated pathways can lead to cognitive disorders in humans.SIGNIFICANCE STATEMENT Abnormalities in the architecture of dendrites have been observed in a variety of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Here we show that the X-linked intellectual disability protein interleukin-1 receptor accessory protein like 1 (IL1RAPL1) regulates dendrite morphology of mice hippocampal neurons and induced pluripotent stem cell-derived neurons from a patient carrying a null mutation of IL1RAPL1 gene. We also found that the extracellular domain of IL1RAPL1 is required for this effect, independently of the interaction with PTPδ, but IL1RAPL1 mediates the activity of IL-1β on dendrite morphology. Our data reveal a novel specific function for IL1RAPL1 in regulating dendrite morphology that can help clarify how changes in IL1RAPL1-regulated pathways can lead to cognitive disorders in humans.
Collapse
|
37
|
Epilepsy and intellectual disability linked protein Shrm4 interaction with GABA BRs shapes inhibitory neurotransmission. Nat Commun 2017; 8:14536. [PMID: 28262662 PMCID: PMC5343488 DOI: 10.1038/ncomms14536] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
Shrm4, a protein expressed only in polarized tissues, is encoded by the KIAA1202 gene, whose mutations have been linked to epilepsy and intellectual disability. However, a physiological role for Shrm4 in the brain is yet to be established. Here, we report that Shrm4 is localized to synapses where it regulates dendritic spine morphology and interacts with the C terminus of GABAB receptors (GABABRs) to control their cell surface expression and intracellular trafficking via a dynein-dependent mechanism. Knockdown of Shrm4 in rat severely impairs GABABR activity causing increased anxiety-like behaviour and susceptibility to seizures. Moreover, Shrm4 influences hippocampal excitability by modulating tonic inhibition in dentate gyrus granule cells, in a process involving crosstalk between GABABRs and extrasynaptic δ-subunit-containing GABAARs. Our data highlights a role for Shrm4 in synaptogenesis and in maintaining GABABR-mediated inhibition, perturbation of which may be responsible for the involvement of Shrm4 in cognitive disorders and epilepsy. Mutations in the gene encoding Shrm4 are associated with epilepsy and intellectual disability. The authors show that Shrm4 interacts with GABAB receptors and regulates tonic inhibition in the hippocampus, and knockdown of Shrm4 in rats leads to anxiety-like behaviour and seizures.
Collapse
|
38
|
Amyloid-β Oligomers Interact with Neurexin and Diminish Neurexin-mediated Excitatory Presynaptic Organization. Sci Rep 2017; 7:42548. [PMID: 28211900 PMCID: PMC5304201 DOI: 10.1038/srep42548] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/12/2017] [Indexed: 01/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by excessive production and deposition of amyloid-beta (Aβ) proteins as well as synapse dysfunction and loss. While soluble Aβ oligomers (AβOs) have deleterious effects on synapse function and reduce synapse number, the underlying molecular mechanisms are not well understood. Here we screened synaptic organizer proteins for cell-surface interaction with AβOs and identified a novel interaction between neurexins (NRXs) and AβOs. AβOs bind to NRXs via the N-terminal histidine-rich domain (HRD) of β-NRX1/2/3 and alternatively-spliced inserts at splicing site 4 of NRX1/2. In artificial synapse-formation assays, AβOs diminish excitatory presynaptic differentiation induced by NRX-interacting proteins including neuroligin1/2 (NLG1/2) and the leucine-rich repeat transmembrane protein LRRTM2. Although AβOs do not interfere with the binding of NRX1β to NLG1 or LRRTM2, time-lapse imaging revealed that AβO treatment reduces surface expression of NRX1β on axons and that this reduction depends on the NRX1β HRD. In transgenic mice expressing mutated human amyloid precursor protein, synaptic expression of β-NRXs, but not α-NRXs, decreases. Thus our data indicate that AβOs interact with NRXs and that this interaction inhibits NRX-mediated presynaptic differentiation by reducing surface expression of axonal β-NRXs, providing molecular and mechanistic insights into how AβOs lead to synaptic pathology in AD.
Collapse
|
39
|
Booker CS, Grattan DR. IL1R9Is Evolutionarily Related toIL18BPand May Function as an IL-18 Receptor. THE JOURNAL OF IMMUNOLOGY 2016; 198:270-278. [DOI: 10.4049/jimmunol.1500648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/02/2016] [Indexed: 12/14/2022]
|
40
|
Laino L, Bottillo I, Piedimonte C, Bernardini L, Torres B, Grammatico B, Bargiacchi S, Mulargia C, Calvani M, Cardona F, Castori M, Grammatico P. Clinical and molecular characterization of a boy with intellectual disability, facial dysmorphism, minor digital anomalies and a complex IL1RAPL1 intragenic rearrangement. Eur J Paediatr Neurol 2016; 20:971-976. [PMID: 27470653 DOI: 10.1016/j.ejpn.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/22/2016] [Accepted: 07/02/2016] [Indexed: 01/16/2023]
Abstract
X-linked intellectual disability accounts for 10-12% of cases of cognitive impairment in males. Mutations in IL1RAPL1 are an emerging form of apparently non-syndromic X-linked intellectual disability. We report a 8-year-old intellectually disabled boy with speech delay, and unusual facial and digital anomalies who showed a novel and complex IL1RAPL1 rearrangement. It was defined by two intragenic non-contiguous duplications inherited from the unaffected mother. Chromosome X inactivation study on the mother's blood leukocytes, urinary sediment and buccal swab did not show a significant skewed inactivation. Comparison with previously described patients with IL1RAPL1 disruption was carried. Although data on craniofacial features were scanty in many papers, subtle facial dysmorphism with a thin upper lip seemed a quietly represented picture without any other genotype-phenotype correlations. Our study expands the molecular repertoire of IL1RAPL1 mutations in intellectual disability and points out the need of more accurate clinical descriptions to better define the related phenotype.
Collapse
Affiliation(s)
- Luigi Laino
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy.
| | - Irene Bottillo
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Caterina Piedimonte
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University, Policlinico Umberto I University Hospital, Rome, Italy
| | - Laura Bernardini
- Unit of Cytogenetics, Mendel Laboratory, Casa Sollievo della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Barbara Torres
- Unit of Cytogenetics, Mendel Laboratory, Casa Sollievo della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Barbara Grammatico
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Simone Bargiacchi
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Claudia Mulargia
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Mauro Calvani
- Division of Pediatrics, San Camillo-Forlanini Hospital, Rome, Italy
| | - Francesco Cardona
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University, Policlinico Umberto I University Hospital, Rome, Italy
| | - Marco Castori
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Paola Grammatico
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
41
|
Naito Y, Lee AK, Takahashi H. Emerging roles of the neurotrophin receptor TrkC in synapse organization. Neurosci Res 2016; 116:10-17. [PMID: 27697534 DOI: 10.1016/j.neures.2016.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
Abstract
Tropomyosin-receptor-kinase (Trk) receptors have been extensively studied for their roles in kinase-dependent signaling cascades in nervous system development. Synapse organization is coordinated by trans-synaptic interactions of various cell adhesion proteins, a representative example of which is the neurexin-neuroligin complex. Recently, a novel role for TrkC as a synapse organizing protein has been established. Post-synaptic TrkC binds to pre-synaptic type-IIa receptor-type protein tyrosine phosphatase sigma (PTPσ). TrkC-PTPσ specifically induces excitatory synapses in a kinase domain-independent manner. TrkC has distinct extracellular domains for PTPσ- and NT-3-binding and thus may bind both ligands simultaneously. Indeed, NT-3 enhances the TrkC-PTPσ interaction, thus facilitating synapse induction at the pre-synaptic side and increasing pre-synaptic vesicle recycling in a kinase-independent fashion. A crystal structure study has revealed the detailed structure of the TrkC-PTPσ complex as well as competitive modulation of TrkC-mediated synaptogenesis by heparan sulfate proteoglycans (HSPGs), which bind the same domain of TrkC as PTPσ. Thus, there is strong evidence supporting a role for the TrkC-PTPσ complex in mechanisms underlying the fine turning of neural connectivity. Furthermore, disruption of the TrkC-PTPσ complex may be the underlying cause of certain psychiatric disorders caused by mutations in the gene encoding TrkC (NTRK3), supporting its role in cognitive functions.
Collapse
Affiliation(s)
- Yusuke Naito
- Synapse Development and Plasticity, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alfred Kihoon Lee
- Synapse Development and Plasticity, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Hideto Takahashi
- Synapse Development and Plasticity, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
42
|
Connectome and molecular pharmacological differences in the dopaminergic system in restless legs syndrome (RLS): plastic changes and neuroadaptations that may contribute to augmentation. Sleep Med 2016; 31:71-77. [PMID: 27539027 DOI: 10.1016/j.sleep.2016.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/21/2016] [Accepted: 06/04/2016] [Indexed: 01/08/2023]
Abstract
Restless legs syndrome (RLS) is primarily treated with levodopa and dopaminergics that target the inhibitory dopamine receptor subtypes D3 and D2. The initial success of this therapy led to the idea of a hypodopaminergic state as the mechanism underlying RLS. However, multiple lines of evidence suggest that this simplified concept of a reduced dopamine function as the basis of RLS is incomplete. Moreover, long-term medication with the D2/D3 agonists leads to a reversal of the initial benefits of dopamine agonists and augmentation, which is a worsening of symptoms under therapy. The recent findings on the state of the dopamine system in RLS that support the notion that a dysfunction in the dopamine system may in fact induce a hyperdopaminergic state are summarized. On the basis of these data, the concept of a dynamic nature of the dopamine effects in a circadian context is presented. The possible interactions of cell adhesion molecules expressed by the dopaminergic systems and their possible effects on RLS and augmentation are discussed. Genome-wide association studies (GWAS) indicate a significantly increased risk for RLS in populations with genomic variants of the cell adhesion molecule receptor type protein tyrosine phosphatase D (PTPRD), and PTPRD is abundantly expressed by dopamine neurons. PTPRD may play a role in the reconfiguration of neural circuits, including shaping the interplay of G protein-coupled receptor (GPCR) homomers and heteromers that mediate dopaminergic modulation. Recent animal model data support the concept that interactions between functionally distinct dopamine receptor subtypes can reshape behavioral outcomes and change with normal aging. Additionally, long-term activation of one dopamine receptor subtype can increase the receptor expression of a different receptor subtype with opposite modulatory actions. Such dopamine receptor interactions at both spinal and supraspinal levels appear to play important roles in RLS. In addition, these interactions can extend to the adenosine A1 and A2A receptors, which are also prominently expressed in the striatum. Interactions between adenosine and dopamine receptors and dopaminergic cell adhesion molecules, including PTPRD, may provide new pharmacological targets for treating RLS. In summary, new treatment options for RLS that include recovery from augmentation will have to consider dynamic changes in the dopamine system that occur during the circadian cycle, plastic changes that can develop as a function of treatment or with aging, changes in the connectome based on alterations in cell adhesion molecules, and receptor interactions that may extend beyond the dopamine system itself.
Collapse
|
43
|
Abstract
Xp21.2 duplication syndrome is a rare genetic disorder of undetermined prevalence and clinical relevance. As the use of chromosomal microarray has become first line for the work-up of childhood developmental delay, more gene deletions and duplications have been recognized. To the best of our knowledge, the imaging findings of Xp21.2 duplication syndrome have not been reported. We report a case of a 33 month-old male referred for developmental delay that was found to have an Xp21.2 duplication containing IL1RAPL1 and multiple midline brain malformations.
Collapse
Affiliation(s)
- Matthew T Whitehead
- Department of Neuroradiology, Children's National Medical Center, Washington, D.C., USA
| | - Guy Helman
- Department of Neurology, Children's National Medical Center, Washington, D.C., USA
| | - Andrea L Gropman
- Department of Neurology, Children's National Medical Center, Washington, D.C., USA
| |
Collapse
|
44
|
Choi Y, Nam J, Whitcomb DJ, Song YS, Kim D, Jeon S, Um JW, Lee SG, Woo J, Kwon SK, Li Y, Mah W, Kim HM, Ko J, Cho K, Kim E. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development. Sci Rep 2016; 6:26676. [PMID: 27225731 PMCID: PMC4881023 DOI: 10.1038/srep26676] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/04/2016] [Indexed: 11/08/2022] Open
Abstract
Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LAR-RPTPs; LAR, PTPδ, and PTPσ). These interactions are strongly inhibited by the splice insert B in the Ig domain region of LAR-RPTPs, and mediate SALM5-dependent presynaptic differentiation in contacting axons. In addition, SALM5 regulates AMPA receptor-mediated synaptic transmission through mechanisms involving the interaction of postsynaptic SALM5 with presynaptic LAR-RPTPs. These results suggest that postsynaptic SALM5 promotes synapse development by trans-synaptically interacting with presynaptic LAR-RPTPs and is important for the regulation of excitatory synaptic strength.
Collapse
Affiliation(s)
- Yeonsoo Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jungyong Nam
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Daniel J. Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, 463–707, Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Sangmin Jeon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ji Won Um
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seong-Gyu Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jooyeon Woo
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Seok-Kyu Kwon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Won Mah
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Jaewon Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
- Centre for Synaptic Plasticity, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| |
Collapse
|
45
|
Han KA, Jeon S, Um JW, Ko J. Emergent Synapse Organizers: LAR-RPTPs and Their Companions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:39-65. [PMID: 27017006 DOI: 10.1016/bs.ircmb.2016.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Leukocyte common antigen-related receptor tyrosine phosphatases (LAR-RPTPs) have emerged as key players that organize various aspects of neuronal development, including axon guidance, neurite extension, and synapse formation and function. Recent research has highlighted the roles of LAR-RPTPs at neuronal synapses in mediating distinct synaptic adhesion pathways through interactions with a host of extracellular ligands and in governing a variety of intracellular signaling cascades through binding to various scaffolds and signaling proteins. In this chapter, we review and update current research progress on the extracellular ligands of LAR-RPTPs, regulation of their extracellular interactions by alternative splicing and heparan sulfates, and their intracellular signaling machineries. In particular, we review structural insights on complexes of LAR-RPTPs with their various ligands. These studies lend support to general molecular mechanisms underlying LAR-RPTP-mediated synaptic adhesion and signaling pathways.
Collapse
Affiliation(s)
- K A Han
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - S Jeon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - J W Um
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - J Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
46
|
Moysés-Oliveira M, Guilherme RS, Meloni VA, Di Battista A, de Mello CB, Bragagnolo S, Moretti-Ferreira D, Kosyakova N, Liehr T, Carvalheira GM, Melaragno MI. X-linked intellectual disability related genes disrupted by balanced X-autosome translocations. Am J Med Genet B Neuropsychiatr Genet 2015; 168:669-77. [PMID: 26290131 DOI: 10.1002/ajmg.b.32355] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022]
Abstract
Detailed molecular characterization of chromosomal rearrangements involving X-chromosome has been a key strategy in identifying X-linked intellectual disability-causing genes. We fine-mapped the breakpoints in four women with balanced X-autosome translocations and variable phenotypes, in order to investigate the corresponding genetic contribution to intellectual disability. We addressed the impact of the gene interruptions in transcription and discussed the consequences of their functional impairment in neurodevelopment. Three patients presented with cognitive impairment, reinforcing the association between the disrupted genes (TSPAN7-MRX58, KIAA2022-MRX98, and IL1RAPL1-MRX21/34) and intellectual disability. While gene expression analysis showed absence of TSPAN7 and KIAA2022 expression in the patients, the unexpected expression of IL1RAPL1 suggested a fusion transcript ZNF611-IL1RAPL1 under the control of the ZNF611 promoter, gene disrupted at the autosomal breakpoint. The X-chromosomal breakpoint definition in the fourth patient, a woman with normal intellectual abilities, revealed disruption of the ZDHHC15 gene (MRX91). The expression assays did not detect ZDHHC15 gene expression in the patient, thus questioning its involvement in intellectual disability. Revealing the disruption of an X-linked intellectual disability-related gene in patients with balanced X-autosome translocation is a useful tool for a better characterization of critical genes in neurodevelopment. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mariana Moysés-Oliveira
- Department of Morphology and Genetics, Genetics Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Roberta Santos Guilherme
- Department of Morphology and Genetics, Genetics Division, Universidade Federal de São Paulo, São Paulo, Brazil.,Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Vera Ayres Meloni
- Department of Morphology and Genetics, Genetics Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Adriana Di Battista
- Department of Morphology and Genetics, Genetics Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Silvia Bragagnolo
- Department of Morphology and Genetics, Genetics Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Danilo Moretti-Ferreira
- Departament of Genetics, Instituto de Biocincias de Botucatu, Universidade Estadual de São Paulo, São Paulo, Brazil
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Gianna Maria Carvalheira
- Department of Morphology and Genetics, Genetics Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Department of Morphology and Genetics, Genetics Division, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 2015; 16:469-86. [PMID: 26189694 DOI: 10.1038/nrn3978] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors--including autoimmunity, infection and fetal reactive antibodies--are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and in animal models of this disorder. Recently, several molecular signalling pathways--including pathways downstream of cytokines, the receptor MET, major histocompatibility complex class I molecules, microglia and complement factors--have been identified that link immune activation to ASD phenotypes. Together, these findings indicate that the immune system is a point of convergence for multiple ASD-related genetic and environmental risk factors.
Collapse
|
48
|
Splicing-Dependent Trans-synaptic SALM3-LAR-RPTP Interactions Regulate Excitatory Synapse Development and Locomotion. Cell Rep 2015; 12:1618-30. [PMID: 26321637 PMCID: PMC4578660 DOI: 10.1016/j.celrep.2015.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/10/2015] [Accepted: 07/31/2015] [Indexed: 12/02/2022] Open
Abstract
Synaptic adhesion molecules regulate diverse aspects of synapse development and plasticity. SALM3 is a PSD-95-interacting synaptic adhesion molecule known to induce presynaptic differentiation in contacting axons, but little is known about its presynaptic receptors and in vivo functions. Here, we identify an interaction between SALM3 and LAR family receptor protein tyrosine phosphatases (LAR-RPTPs) that requires the mini-exon B splice insert in LAR-RPTPs. In addition, SALM3-dependent presynaptic differentiation requires all three types of LAR-RPTPs. SALM3 mutant (Salm3−/−) mice display markedly reduced excitatory synapse number but normal synaptic plasticity in the hippocampal CA1 region. Salm3−/− mice exhibit hypoactivity in both novel and familiar environments but perform normally in learning and memory tests administered. These results suggest that SALM3 regulates excitatory synapse development and locomotion behavior.
Collapse
|
49
|
Abstract
To create a presynaptic terminal, molecular signaling events must be orchestrated across a number of subcellular compartments. In the soma, presynaptic proteins need to be synthesized, packaged together, and attached to microtubule motors for shipment through the axon. Within the axon, transport of presynaptic packages is regulated to ensure that developing synapses receive an adequate supply of components. At individual axonal sites, extracellular interactions must be translated into intracellular signals that can incorporate mobile transport vesicles into the nascent presynaptic terminal. Even once the initial recruitment process is complete, the components and subsequent functionality of presynaptic terminals need to constantly be remodeled. Perhaps most remarkably, all of these processes need to be coordinated in space and time. In this review, we discuss how these dynamic cellular processes occur in neurons of the central nervous system in order to generate presynaptic terminals in the brain.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
50
|
Estes ML, McAllister AK. Alterations in immune cells and mediators in the brain: it's not always neuroinflammation! Brain Pathol 2015; 24:623-30. [PMID: 25345893 DOI: 10.1111/bpa.12198] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/02/2023] Open
Abstract
Neuroinflammation was once a clearly defined term denoting pathological immune processes within the central nervous system (CNS). Historically, this term was used to indicate the four hallmarks of peripheral inflammaton that occur following severe CNS injuries, such as stroke, injury or infection. Recently, however, the definition of neuroinflammation has relaxed to the point that it is often now assumed to be present when even only a single classical hallmark of inflammation is measured. As a result, a wide range of disorders, from psychiatric to degenerative diseases, are now assumed to have an integral inflammatory component. Ironically, at the same time, research has revealed unexpected nonclassical immune actions of immune mediators and cells in the CNS in the absence of pathology, increasing the likelihood that homeostatic and adaptive immune processes in the CNS will be mistaken for neuroinflammation. Thus, we suggest reserving the term neuroinflammation for contexts where multiple signs of inflammation are present to avoid erroneously classifying disorders as inflammatory when they may instead be caused by nonimmune etiologies or secondary immune processes that serve adaptive roles.
Collapse
|