1
|
Akbari-Gharalari N, Ghahremani-Nasab M, Naderi R, Chodari L, Nezhadshahmohammad F. The potential of exosomal biomarkers: Revolutionizing Parkinson's disease: How do they influence pathogenesis, diagnosis, and therapeutic strategies? AIMS Neurosci 2024; 11:374-397. [PMID: 39431275 PMCID: PMC11486621 DOI: 10.3934/neuroscience.2024023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the pathological accumulation of α-synuclein, which has driven extensive research into the role of exosomes in disease mechanisms. Exosomes are nanoscale vesicles enriched with proteins, RNA, and lipids that facilitate critical intercellular communication processes. Recent studies have elucidated the role of exosomes in transmitting misfolded proteins among neurons, which significantly impacts the progression of PD. The presence of disease-associated exosomes in cerebrospinal fluid and blood highlights their substantial diagnostic potential for PD. Specifically, exosomes derived from the central nervous system (CNS) have emerged as promising biomarkers because of their ability to accurately reflect pathological states. Furthermore, the isolation of exosomes from distinct brain cell types allows the identification of precise biomarkers, increasing diagnostic specificity and accuracy. In addition to being useful for diagnostics, exosomes hold therapeutic promise given their ability to cross the blood-brain barrier (BBB) and selectively modulate their cargo. These findings suggest that these materials could be used as delivery systems for therapeutic drugs for the treatment of neurodegenerative diseases. This review comprehensively examines the multifaceted roles of exosomes in PD pathogenesis, diagnosis, and treatment. It also addresses the associated clinical challenges and underscores the urgent need for further research and development to fully leverage exosome-based strategies in PD management.
Collapse
Affiliation(s)
- Naeimeh Akbari-Gharalari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Naderi
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
2
|
Filippini F, Galli T. Unveiling defects of secretion mechanisms in Parkinson's disease. J Biol Chem 2024; 300:107603. [PMID: 39059489 PMCID: PMC11378209 DOI: 10.1016/j.jbc.2024.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction and loss of specific sets of neurons. While extensive research has focused on elucidating the genetic and epigenetic factors and molecular mechanisms underlying these disorders, emerging evidence highlights the critical role of secretion in the pathogenesis, possibly even onset, and progression of neurodegenerative diseases, suggesting the occurrence of non-cell-autonomous mechanisms. Secretion is a fundamental process that regulates intercellular communication, supports cellular homeostasis, and orchestrates various physiological functions in the body. Defective secretion can impair the release of neurotransmitters and other signaling molecules, disrupting synaptic transmission and compromising neuronal survival. It can also contribute to the accumulation, misfolding, and aggregation of disease-associated proteins, leading to neurotoxicity and neuronal dysfunction. In this review, we discuss the implications of defective secretion in the context of Parkinson's disease, emphasizing its role in protein aggregation, synaptic dysfunction, extracellular vesicle secretion, and neuroinflammation. We propose a multiple-hit model whereby protein accumulation and secretory defects must be combined for the onset and progression of the disease.
Collapse
Affiliation(s)
- Francesca Filippini
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Paris, France.
| |
Collapse
|
3
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
4
|
Zhu Y, Wang F, Xia Y, Wang L, Lin H, Zhong T, Wang X. Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases. Rev Neurosci 2024; 0:revneuro-2024-0043. [PMID: 38889403 DOI: 10.1515/revneuro-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), pose significant global health risks and represent a substantial public health concern in the contemporary era. A primary factor in the pathophysiology of these disorders is aberrant accumulation and aggregation of pathogenic proteins within the brain and spinal cord. Recent investigations have identified extracellular vesicles (EVs) in the central nervous system (CNS) as potential carriers for intercellular transport of misfolded proteins associated with neurodegenerative diseases. EVs are involved in pathological processes that contribute to various brain disorders including neurodegenerative disorders. Proteins linked to neurodegenerative disorders are secreted and distributed from cell to cell via EVs, serving as a mechanism for direct intercellular communication through the transfer of biomolecules. Astrocytes, as active participants in CNS intercellular communication, release astrocyte-derived extracellular vesicles (ADEVs) that are capable of interacting with diverse target cells. This review primarily focuses on the involvement of ADEVs in the development of neurological disorders and explores their potential dual roles - both advantageous and disadvantageous in the context of neurological disorders. Furthermore, this review examines the current studies investigating ADEVs as potential biomarkers for the diagnosis and treatment of neurodegenerative diseases. The prospects and challenges associated with the application of ADEVs in clinical settings were also comprehensively reviewed.
Collapse
Affiliation(s)
- Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fangsheng Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yu Xia
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
5
|
Ilieva NM, Hoffman EK, Ghalib MA, Greenamyre JT, De Miranda BR. LRRK2 kinase inhibition protects against Parkinson's disease-associated environmental toxicants. Neurobiol Dis 2024; 196:106522. [PMID: 38705492 PMCID: PMC11332574 DOI: 10.1016/j.nbd.2024.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
Idiopathic Parkinson's disease (PD) is epidemiologically linked with exposure to toxicants such as pesticides and solvents, which comprise a wide array of chemicals that pollute our environment. While most are structurally distinct, a common cellular target for their toxicity is mitochondrial dysfunction, a key pathological trigger involved in the selective vulnerability of dopaminergic neurons. We and others have shown that environmental mitochondrial toxicants such as the pesticides rotenone and paraquat, and the organic solvent trichloroethylene (TCE) appear to be influenced by the protein LRRK2, a genetic risk factor for PD. As LRRK2 mediates vesicular trafficking and influences endolysosomal function, we postulated that LRRK2 kinase activity may inhibit the autophagic removal of toxicant damaged mitochondria, resulting in elevated oxidative stress. Conversely, we suspected that inhibition of LRRK2, which has been shown to be protective against dopaminergic neurodegeneration caused by mitochondrial toxicants, would reduce the intracellular production of reactive oxygen species (ROS) and prevent mitochondrial toxicity from inducing cell death. To do this, we tested in vitro if genetic or pharmacologic inhibition of LRRK2 (MLi2) protected against ROS caused by four toxicants associated with PD risk - rotenone, paraquat, TCE, and tetrachloroethylene (PERC). In parallel, we assessed if LRRK2 inhibition with MLi2 could protect against TCE-induced toxicity in vivo, in a follow up study from our observation that TCE elevated LRRK2 kinase activity in the nigrostriatal tract of rats prior to dopaminergic neurodegeneration. We found that LRRK2 inhibition blocked toxicant-induced ROS and promoted mitophagy in vitro, and protected against dopaminergic neurodegeneration, neuroinflammation, and mitochondrial damage caused by TCE in vivo. We also found that cells with the LRRK2 G2019S mutation displayed exacerbated levels of toxicant induced ROS, but this was ameliorated by LRRK2 inhibition with MLi2. Collectively, these data support a role for LRRK2 in toxicant-induced mitochondrial dysfunction linked to PD risk through oxidative stress and the autophagic removal of damaged mitochondria.
Collapse
Affiliation(s)
- Neda M Ilieva
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric K Hoffman
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammed A Ghalib
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Briana R De Miranda
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Ala U, Fagoonee S. RNA-binding protein transcripts as potential biomarkers for detecting Primary Sclerosing Cholangitis and for predicting its progression to Cholangiocarcinoma. Front Mol Biosci 2024; 11:1388294. [PMID: 38903178 PMCID: PMC11187294 DOI: 10.3389/fmolb.2024.1388294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Primary Sclerosing Cholangitis (PSC) is a persistent inflammatory liver condition that affects the bile ducts and is commonly diagnosed in young individuals. Despite efforts to incorporate various clinical, biochemical and molecular parameters for diagnosing PSC, it remains challenging, and no biomarkers characteristic of the disease have been identified hitherto. PSC is linked with an uncertain prognosis, and there is a pressing need to explore multiomics databases to establish a new biomarker panel for the early detection of PSC's gradual progression into Cholangiocarcinoma (CCA) and for the development of effective therapeutic interventions. Apart from non-coding RNAs, other components of the Ribonucleoprotein (RNP) complex, such as RNA-Binding Proteins (RBPs), also hold great promise as biomarkers due to their versatile expression in pathological conditions. In the present review, an update on the RBP transcripts that show dysregulated expression in PSC and CCA is provided. Moreover, by utilizing a bioinformatic data mining approach, we give insight into those RBP transcripts that also exhibit differential expression in liver and gall bladder, as well as in body fluids, and are promising as biomarkers for diagnosing and predicting the prognosis of PSC. Expression data were bioinformatically extracted from public repositories usingTCGA Bile Duct Cancer dataset for CCA and specific NCBI GEO datasets for both PSC and CCA; more specifically, RBPs annotations were obtained from RBP World database. Interestingly, our comprehensive analysis shows an elevated expression of the non-canonical RBPs, FANCD2, as well as the microtubule dynamics regulator, ASPM, transcripts in the body fluids of patients with PSC and CCA compared with their respective controls, with the same trend in expression being observed in gall bladder and liver cancer tissues. Consequently, the manipulation of tissue expression of RBP transcripts might be considered as a strategy to mitigate the onset of CCA in PSC patients, and warrants further experimental investigation. The analysis performed herein may be helpful in the identification of non-invasive biomarkers for the early detection of PSC and for predicting its progression into CCA. In conclusion, future clinical research should investigate in more depth the full potential of RBP transcripts as biomarkers for human pathologies.
Collapse
Affiliation(s)
- Ugo Ala
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center “Guido Tarone”, Turin, Italy
| |
Collapse
|
7
|
Tao H, Gao B. Exosomes for neurodegenerative diseases: diagnosis and targeted therapy. J Neurol 2024; 271:3050-3062. [PMID: 38605227 DOI: 10.1007/s00415-024-12329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW Neurodegenerative diseases are still challenging clinical issues, with no curative interventions available and early, accurate diagnosis remaining difficult. Finding solutions to them is of great importance. In this review, we discuss possible exosomal diagnostic biomarkers and explore current explorations in exosome-targeted therapy for some common neurodegenerative diseases, offering insights into the clinical transformation of exosomes in this field. RECENT FINDINGS The burgeoning research on exosomes has shed light on their potential applications in disease diagnosis and treatment. As a type of extracellular vesicles, exosomes are capable of crossing the blood - brain barrier and exist in various body fluids, whose components can reflect pathophysiological changes in the brain. In addition, they can deliver specific drugs to brain tissue, and even possess certain therapeutic effects themselves. And the recent advancements in engineering modification technology have further enabled exosomes to selectively target specific sites, facilitating the possibility of targeted therapy for neurodegenerative diseases. The unique properties of exosomes give them great potential in the diagnosis and treatment of neurodegenerative diseases, and provide novel ideas for dealing with such diseases.
Collapse
Affiliation(s)
- Hui Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Cai Y, Chen T, Cai Y, Liu J, Yu B, Fan Y, Su J, Zeng Y, Xiao X, Ren L, Tang Y. Surface protein profiling and subtyping of extracellular vesicles in body fluids reveals non-CSF biomarkers of Alzheimer's disease. J Extracell Vesicles 2024; 13:e12432. [PMID: 38602321 PMCID: PMC11007802 DOI: 10.1002/jev2.12432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Noninvasive and effortless diagnosis of Alzheimer's disease (AD) remains challenging. Here we report the multiplexed profiling of extracellular vesicle (EV) surface proteins at the single EV level in five types of easily accessible body fluids using a proximity barcoding assay (PBA). A total of 183 surface proteins were detected on the EVs from body fluids collected from APP/PS1 transgenic mice and patients with AD. The AD-associated differentially expressed EV proteins could discriminate between the control and AD/AD model samples with high accuracy. Based on machine learning predictive models, urinary EV proteins exhibited the highest diagnostic potential compared to those on other biofluid EVs, both in mice and humans. Single EV analysis further revealed AD-associated EV subpopulations in the tested body fluids, and a urinary EV subpopulation with the signature proteins PLAU, ITGAX and ANXA1 could diagnose patients with AD in blinded datasets with 88% accuracy. Our results suggest that EVs and their subpopulations from noninvasive body fluids, particularly urine, are potential diagnostic biomarkers for AD.
Collapse
Affiliation(s)
- You Cai
- Department of GeriatricsShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
- Shenzhen Key Laboratory for Systemic Aging and InterventionHealth Science CenterShenzhen UniversityShenzhenChina
| | - Ting Chen
- Department of NeurologyThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of UrologyThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenChina
| | - Jiabang Liu
- Department of GeriatricsShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
- Shenzhen Key Laboratory for Systemic Aging and InterventionHealth Science CenterShenzhen UniversityShenzhenChina
| | - Bin Yu
- Department of GeriatricsShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
- Shenzhen Key Laboratory for Systemic Aging and InterventionHealth Science CenterShenzhen UniversityShenzhenChina
| | - Yixian Fan
- Department of Biochemistry and Molecular BiologyTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jun Su
- Department of NeurologyThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Yixuan Zeng
- Department of NeurologyThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Xiaohua Xiao
- Department of GeriatricsShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Lijie Ren
- Department of NeurologyThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Yizhe Tang
- Department of GeriatricsShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
- Shenzhen Key Laboratory for Systemic Aging and InterventionHealth Science CenterShenzhen UniversityShenzhenChina
- Lead contact
| |
Collapse
|
9
|
Bergin CJ, Zouggar A, Mendes da Silva A, Fenouil T, Haebe JR, Masibag AN, Agrawal G, Shah MS, Sandouka T, Tiberi M, Auer RC, Ardolino M, Benoit YD. The dopamine transporter antagonist vanoxerine inhibits G9a and suppresses cancer stem cell functions in colon tumors. NATURE CANCER 2024; 5:463-480. [PMID: 38351181 DOI: 10.1038/s43018-024-00727-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/11/2024] [Indexed: 03/28/2024]
Abstract
Cancer stem cells (CSCs), functionally characterized by self-renewal and tumor-initiating activity, contribute to decreased tumor immunogenicity, while fostering tumor growth and metastasis. Targeting G9a histone methyltransferase (HMTase) effectively blocks CSC functions in colorectal tumors by altering pluripotent-like molecular networks; however, existing molecules directly targeting G9a HMTase activity failed to reach clinical stages due to safety concerns. Using a stem cell-based phenotypic drug-screening pipeline, we identified the dopamine transporter (DAT) antagonist vanoxerine, a compound with previously demonstrated clinical safety, as a cancer-specific downregulator of G9a expression. Here we show that gene silencing and chemical antagonism of DAT impede colorectal CSC functions by repressing G9a expression. Antagonizing DAT also enhanced tumor lymphocytic infiltration by activating endogenous transposable elements and type-I interferon response. Our study unveils the direct implication of the DAT-G9a axis in the maintenance of CSC populations and an approach to improve antitumor immune response in colon tumors.
Collapse
Affiliation(s)
- Christopher J Bergin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aïcha Zouggar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Amanda Mendes da Silva
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tanguy Fenouil
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Institut de Pathologie Multisite des Hospices Civils de Lyon, Site Est, Groupement Hospitalier Est, Bron, France
| | - Joshua R Haebe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelique N Masibag
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Gautam Agrawal
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Muhammad S Shah
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tamara Sandouka
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mario Tiberi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Rebecca C Auer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Centre for Infection, Inflammation and Immunity, University of Ottawa, Ottawa, Ontario, Canada
| | - Michele Ardolino
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Centre for Infection, Inflammation and Immunity, University of Ottawa, Ottawa, Ontario, Canada
| | - Yannick D Benoit
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
10
|
Wang Q, Wang H, Zhao X, Han C, Liu C, Li Z, Du T, Sui Y, Zhang X, Zhang J, Xiao Y, Cai G, Meng F. Transcriptome sequencing of circular RNA reveals the involvement of hsa-SCMH1_0001 in the pathogenesis of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14435. [PMID: 37664885 PMCID: PMC10916443 DOI: 10.1111/cns.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease. Exosomes are endosome-derived extracellular vesicles that can take part in intercellular communication. Circular RNAs (circRNAs) are noncoding RNAs characterized by covalently closed-loop structures, which perform a crucial function in many diseases. AIM To clarify the expression and function of exosomal circRNSs of PD patients and look for circRNAs that might be related to the pathogenesis of PD. MATERIALS AND METHODS We examined circRNA and mRNA expression profiles in peripheral exosomes from PD patients (n = 23) and healthy controls (n = 15) using next-generation sequencing (NGS) technology, functional annotation, and quantitative polymerase chain reaction. Correlation analysis was performed between the expression levels of the circRNAs and the clinical characteristics of PD patients. The binding miRNAs and target genes were predicted using TargetScanHuman, miRDB, and miRTarBase. The predicted target genes were compared with the differentially expressed mRNAs in sequencing results. RESULTS According to the NGS, 62 upregulated and 37 downregulated circRNAs in the PD group were screened out. Correlation analysis revealed that hsa-SCMH1_0001 has strong clinical relevance. We identified 17 potential binding miRNAs of hsa-SCMH1_0001 with 149 potential target genes. ARID1A and C1orf115 belong to the intersection of the predicted target genes and the differentially expressed mRNAs obtained by sequencing. CONCLUSION This study suggested that hsa-SCMH1_0001 and its target genes ARID1A and C1orf115 are downregulated in PD patients and may be involved in the occurrence of PD.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
- National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijing HospitalBeijingChina
| | - Huizhi Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Xuemin Zhao
- Department of Neurophysiology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Chunlei Han
- Beijing Key Laboratory of NeurostimulationBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chong Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Zhibao Li
- Department of Functional Neurosurgery, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Tingting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Yunpeng Sui
- Department of Functional Neurosurgery, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yilei Xiao
- Department of NeurosurgeryLiaocheng People's HospitalLiaochengChina
| | - Guoen Cai
- Department of NeurologyFujian Medical University Union HospitalFuzhouChina
- Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of NeuroscienceFujian Medical UniversityFuzhouChina
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
11
|
Gualerzi A, Picciolini S, Bedoni M, Guerini FR, Clerici M, Agliardi C. Extracellular Vesicles as Biomarkers for Parkinson's Disease: How Far from Clinical Translation? Int J Mol Sci 2024; 25:1136. [PMID: 38256215 PMCID: PMC10816807 DOI: 10.3390/ijms25021136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting about 10 million people worldwide with a prevalence of about 2% in the over-80 population. The disease brings in also a huge annual economic burden, recently estimated by the Michael J Fox Foundation for Parkinson's Research to be USD 52 billion in the United States alone. Currently, no effective cure exists, but available PD medical treatments are based on symptomatic prescriptions that include drugs, surgical approaches and rehabilitation treatment. Due to the complex biology of a PD brain, the design of clinical trials and the personalization of treatment strategies require the identification of accessible and measurable biomarkers to monitor the events induced by treatment and disease progression and to predict patients' responsiveness. In the present review, we strive to briefly summarize current knowledge about PD biomarkers, focusing on the role of extracellular vesicles as active or involuntary carriers of disease-associated proteins, with particular attention to those research works that envision possible clinical applications.
Collapse
Affiliation(s)
- Alice Gualerzi
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Silvia Picciolini
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Marzia Bedoni
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Mario Clerici
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Cristina Agliardi
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| |
Collapse
|
12
|
Shi Q, Kang W, Liu Z, Zhu X. The role of exosomes in the diagnosis of Parkinson's disease. Heliyon 2023; 9:e20595. [PMID: 37928387 PMCID: PMC10622621 DOI: 10.1016/j.heliyon.2023.e20595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/22/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Parkinson's disease is a common neurodegenerative disease characterized by intracellular aggregation of misfolded α-synuclein as a major pathological hallmark. Exosomes are cell-derived lipid bilayer membrane vesicles with various components, including proteins, RNA, and lipids, that mediate intercellular communication. Currently, exosomes are found to be responsible for transporting misfolded proteins from unhealthy neurons to nearby cells, spreading the disease from cell to cell. Such exosomes can also be found in the cerebrospinal fluid and blood. Thus, exosomes may serve as a potential tool to detect the pathology of Parkinson's disease for clinical diagnosis. In this article, the role and challenges of exosomes in the diagnosis of Parkinson's disease are outlined.
Collapse
Affiliation(s)
- Qingqing Shi
- Tianjin Medical University, General Hospital, 300000, Tianjin, China
| | - Wei Kang
- Beijing Conga Technology Co., LTD., Tianjin Branch, 300000, Tianjin, China
| | - Zhijun Liu
- Beijing Conga Technology Co., LTD., Tianjin Branch, 300000, Tianjin, China
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University, General Hospital, 300000, Tianjin, China
| |
Collapse
|
13
|
Islam MK, Khan M, Gidwani K, Witwer KW, Lamminmäki U, Leivo J. Lectins as potential tools for cancer biomarker discovery from extracellular vesicles. Biomark Res 2023; 11:85. [PMID: 37773167 PMCID: PMC10540341 DOI: 10.1186/s40364-023-00520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023] Open
Abstract
Extracellular vesicles (EVs) have considerable potential as diagnostic, prognostic, and therapeutic agents, in large part because molecular patterns on the EV surface betray the cell of origin and may also be used to "target" EVs to specific cells. Cancer is associated with alterations to cellular and EV glycosylation patterns, and the surface of EVs is enriched with glycan moieties. Glycoconjugates of EVs play versatile roles in cancer including modulating immune response, affecting tumor cell behavior and site of metastasis and as such, paving the way for the development of innovative diagnostic tools and novel therapies. Entities that recognize specific glycans, such as lectins, may thus be powerful tools to discover and detect novel cancer biomarkers. Indeed, the past decade has seen a constant increase in the number of published articles on lectin-based strategies for the detection of EV glycans. This review explores the roles of EV glycosylation in cancer and cancer-related applications. Furthermore, this review summarizes the potential of lectins and lectin-based methods for screening, targeting, separation, and possible identification of improved biomarkers from the surface of EVs.
Collapse
Affiliation(s)
- Md Khirul Islam
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Misba Khan
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Kamlesh Gidwani
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Urpo Lamminmäki
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Janne Leivo
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Jennings D, Huntwork-Rodriguez S, Vissers MFJM, Daryani VM, Diaz D, Goo MS, Chen JJ, Maciuca R, Fraser K, Mabrouk OS, van de Wetering de Rooij J, Heuberger JAAC, Groeneveld GJ, Borin MT, Cruz-Herranz A, Graham D, Scearce-Levie K, De Vicente J, Henry AG, Chin P, Ho C, Troyer MD. LRRK2 Inhibition by BIIB122 in Healthy Participants and Patients with Parkinson's Disease. Mov Disord 2023; 38:386-398. [PMID: 36807624 DOI: 10.1002/mds.29297] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising therapeutic approach for the treatment of Parkinson's disease (PD). OBJECTIVE The aim of this study was to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the potent, selective, CNS-penetrant LRRK2 inhibitor BIIB122 (DNL151) in healthy participants and patients with PD. METHODS Two randomized, double-blind, placebo-controlled studies were completed. The phase 1 study (DNLI-C-0001) evaluated single and multiple doses of BIIB122 for up to 28 days in healthy participants. The phase 1b study (DNLI-C-0003) evaluated BIIB122 for 28 days in patients with mild to moderate PD. The primary objectives were to investigate the safety, tolerability, and plasma pharmacokinetics of BIIB122. Pharmacodynamic outcomes included peripheral and central target inhibition and lysosomal pathway engagement biomarkers. RESULTS A total of 186/184 healthy participants (146/145 BIIB122, 40/39 placebo) and 36/36 patients (26/26 BIIB122, 10/10 placebo) were randomized/treated in the phase 1 and phase 1b studies, respectively. In both studies, BIIB122 was generally well tolerated; no serious adverse events were reported, and the majority of treatment-emergent adverse events were mild. BIIB122 cerebrospinal fluid/unbound plasma concentration ratio was ~1 (range, 0.7-1.8). Dose-dependent median reductions from baseline were observed in whole-blood phosphorylated serine 935 LRRK2 (≤98%), peripheral blood mononuclear cell phosphorylated threonine 73 pRab10 (≤93%), cerebrospinal fluid total LRRK2 (≤50%), and urine bis (monoacylglycerol) phosphate (≤74%). CONCLUSIONS At generally safe and well-tolerated doses, BIIB122 achieved substantial peripheral LRRK2 kinase inhibition and modulation of lysosomal pathways downstream of LRRK2, with evidence of CNS distribution and target inhibition. These studies support continued investigation of LRRK2 inhibition with BIIB122 for the treatment of PD. © 2023 Denali Therapeutics Inc and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Danna Jennings
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Sarah Huntwork-Rodriguez
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Maurits F J M Vissers
- Centre for Human Drug Research, Leiden, the Netherlands
- Department of Clinical Neuropharmacology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vinay M Daryani
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Dolores Diaz
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Marisa S Goo
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - John J Chen
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Romeo Maciuca
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | | | | | - Jeroen van de Wetering de Rooij
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
- PRA Health Sciences, Groningen, the Netherlands
| | | | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, the Netherlands
- Department of Clinical Neuropharmacology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie T Borin
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Andrés Cruz-Herranz
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | | | - Kimberly Scearce-Levie
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Javier De Vicente
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Anastasia G Henry
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Peter Chin
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Carole Ho
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Matthew D Troyer
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| |
Collapse
|
15
|
West AB, Schwarzschild MA. LRRK2-Targeting Therapies March Through the Valley of Death. Mov Disord 2023; 38:361-365. [PMID: 36942368 PMCID: PMC11076002 DOI: 10.1002/mds.29343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 03/23/2023] Open
Affiliation(s)
- Andrew B. West
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, 3 Genome court, Durham, NC, 27710, USA
| | - Michael A. Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129 USA
| |
Collapse
|
16
|
Mancini A, Stoops E, Demeyer L, Bellomo G, Paolini Paoletti F, Gaetani L, Di Filippo M, Parnetti L. LRRK2 Quantification in Cerebrospinal Fluid of Patients with Parkinson's Disease and Atypical Parkinsonian Syndromes. Mov Disord 2023; 38:682-688. [PMID: 36808643 DOI: 10.1002/mds.29336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND The alteration of leucine-rich repeat kinase 2 (LRRK2) kinase activity is thought to be involved in Parkinson's disease (PD) pathogenesis beyond familiar cases, and LRRK2 inhibitors are currently under investigation. Preliminary data suggest a relationship between LRRK2 alteration and cognitive impairment in PD. OBJECTIVE To investigate cerebrospinal fluid (CSF) LRRK2 levels in PD and other parkinsonian disorders, also correlating them with cognitive impairment. METHODS In this study, we retrospectively investigated by means of a novel highly sensitive immunoassay the levels of total and phosphorylated (pS1292) LRRK2 in CSF of cognitively unimpaired PD (n = 55), PD with mild cognitive impairment (n = 49), PD with dementia (n = 18), dementia with Lewy bodies (n = 12), atypical parkinsonian syndromes (n = 35), and neurological controls (n = 30). RESULTS Total and pS1292 LRRK2 levels were significantly higher in PD with dementia with respect to PD with mild cognitive impairment and PD, and also showed a correlation with cognitive performances. CONCLUSIONS The tested immunoassay may represent a reliable method for assessing CSF LRRK2 levels. The results appear to confirm an association of LRRK2 alteration with cognitive impairment in PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Giovanni Bellomo
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Federico Paolini Paoletti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Alterations in the LRRK2-Rab pathway in urinary extracellular vesicles as Parkinson's disease and pharmacodynamic biomarkers. NPJ Parkinsons Dis 2023; 9:21. [PMID: 36750568 PMCID: PMC9905493 DOI: 10.1038/s41531-023-00445-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/05/2023] [Indexed: 02/09/2023] Open
Abstract
Expression or phosphorylation levels of leucine-rich repeat kinase 2 (LRRK2) and its Rab substrates have strong potential as disease or pharmacodynamic biomarkers. The main objective of this study is therefore to assess the LRRK2-Rab pathway for use as biomarkers in human, non-human primate (NHP) and rat urine. With urine collected from human subjects and animals, we applied an ultracentrifugation based fractionation protocol to isolate small urinary extracellular vesicles (uEVs). We used western blot with antibodies directed against total and phosphorylated LRRK2, Rab8, and Rab10 to measure these LRRK2 and Rab epitopes in uEVs. We confirm the presence of LRRK2 and Rab8/10 in human and NHP uEVs, including total LRRK2 as well as phospho-LRRK2, phospho-Rab8 and phospho-Rab10. We also confirm LRRK2 and Rab expression in rodent uEVs. We quantified LRRK2 and Rab epitopes in human cohorts and found in a first cohort that pS1292-LRRK2 levels were elevated in individuals carrying the LRRK2 G2019S mutation, without significant differences between healthy and PD groups, whether for LRRK2 G2019S carriers or not. In a second cohort, we found that PD was associated to increased Rab8 levels and decreased pS910-LRRK2 and pS935-LRRK2. In animals, acute treatment with LRRK2 kinase inhibitors led to decreased pT73-Rab10. The identification of changes in Rab8 and LRRK2 phosphorylation at S910 and S935 heterologous phosphosites in uEVs of PD patients and pT73-Rab10 in inhibitor-dosed animals further reinforces the potential of the LRRK2-Rab pathway as a source of PD and pharmacodynamic biomarkers in uEVs.
Collapse
|
18
|
Song B, Chen Q, Li Y, Zhan S, Zhao R, Shen X, Liu M, Tong C. Functional Roles of Exosomes in Allergic Contact Dermatitis. J Microbiol Biotechnol 2022; 32:1506-1514. [PMID: 36377198 PMCID: PMC9843815 DOI: 10.4014/jmb.2206.06024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Allergic contact dermatitis (ACD) is an allergen-specific T-cell-mediated inflammatory response, albeit with unclear pathogenesis. Exosomes are nanoscale extracellular vesicles secreted by several cell types and widely distributed in various biological fluids. Exosomes affect the occurrence and development of ACD through immunoregulation among other ways. Nevertheless, the role of exosomes in ACD warrants further clarification. This review examines the progress of research into exosomes and their involvement in the pathogenesis, diagnosis, and treatment of ACD and provides ideas for exploring new diagnostic and treatment methods for this disease.
Collapse
Affiliation(s)
- Bocui Song
- Department of Pharmaceutical Engineering, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China,
B. Song Phone/ Fax: +86-6819296 E-mail:
| | - Qian Chen
- Molecular Mechanism of Disease and Research and Development of Bioactive Substances, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China
| | - Yuqi Li
- Molecular Mechanism of Disease and Research and Development of Bioactive Substances, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China
| | - Shuang Zhan
- Animal Husbandry and Veterinary Station of Yongji Economic Development Zone, Jilin 132200, Jilin Province, P.R. China
| | - Rui Zhao
- Department of Pharmaceutical Engineering, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China
| | - Xue Shen
- Molecular Mechanism of Disease and Research and Development of Bioactive Substances, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China
| | - Min Liu
- Department of Pharmaceutical Engineering, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China
| | - Chunyu Tong
- Department of Biological Science, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China,Corresponding authors C. Tong Phone/ Fax: +86-6819296 E-mail:
| |
Collapse
|
19
|
Vaz M, Soares Martins T, Henriques AG. Extracellular vesicles in the study of Alzheimer's and Parkinson's diseases: Methodologies applied from cells to biofluids. J Neurochem 2022; 163:266-309. [PMID: 36156258 PMCID: PMC9828694 DOI: 10.1111/jnc.15697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023]
Abstract
Extracellular vesicles (EVs) are gaining increased importance in fundamental research as key players in disease pathogenic mechanisms, but also in translational and clinical research due to their value in biomarker discovery, either for diagnostics and/or therapeutics. In the first research scenario, the study of EVs isolated from neuronal models mimicking neurodegenerative diseases can open new avenues to better understand the pathological mechanisms underlying these conditions or to identify novel molecular targets for diagnosis and/or therapeutics. In the second research scenario, the easy availability of EVs in body fluids and the specificity of their cargo, which can reflect the cell of origin or disease profiles, turn these into attractive diagnostic tools. EVs with exosome-like characteristics, circulating in the bloodstream and other peripheral biofluids, constitute a non-invasive and rapid alternative to study several conditions, including brain-related disorders. In both cases, several EVs isolation methods are already available, but each neuronal model or biofluid presents its own challenges. Herein, a literature overview on EVs isolation methodologies from distinct neuronal models (cellular culture and brain tissue) and body fluids (serum, plasma, cerebrospinal fluid, urine and saliva) was carried out. Focus was given to approaches employed in the context of Alzheimer's and Parkinson's diseases, and the main research findings discussed. The topics here revised will facilitate the choice of EVs isolation methodologies and potentially prompt new discoveries in EVs research and in the neurodegenerative diseases field.
Collapse
Affiliation(s)
- Margarida Vaz
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Tânia Soares Martins
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Ana Gabriela Henriques
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| |
Collapse
|
20
|
Bai C, Su M, Zhang Y, Lin Y, Sun Y, Song L, Xiao N, Xu H, Wen H, Zhang M, Ping J, Liu J, Hui R, Li H, Chen J. Oviductal Glycoprotein 1 Promotes Hypertension by Inducing Vascular Remodeling Through an Interaction With MYH9. Circulation 2022; 146:1367-1382. [PMID: 36172862 DOI: 10.1161/circulationaha.121.057178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Hypertension is a common cardiovascular disease that is related to genetic and environmental factors, but its mechanisms remain unclear. DNA methylation, a classic epigenetic modification, not only regulates gene expression but is also susceptible to environmental factors, linking environmental factors to genetic modification. Therefore, globally screening differential genomic DNA methylation in patients with hypertension is important for investigating hypertension mechanisms. METHODS Differential genomic DNA methylation in patients with hypertension, individuals with prehypertension, and healthy control individuals was screened using Illumina 450K BeadChip and verified by pyrosequencing. Plasma OVGP1 (oviduct glycoprotein 1) levels were determined using an enzyme-linked immunosorbent assay. Ovgp1 transgenic and knockout mice were generated to analyze the function of OVGP1. The blood pressure levels of the mouse models were measured using the tail-cuff system and radiotelemetry methods. The role of OVGP1 in vascular remodeling was determined by vascular relaxation studies. Protein-protein interactions were investigated using a pull-down/mass spectrometry assay and verified with coimmunoprecipitation and pull-down assays. RESULTS We found a hypomethylated site at cg20823859 in the promoter region of OVGP1 and plasma OVGP1 levels were significantly increased in patients with hypertension. This finding indicates that OVGP1 is associated with hypertension. In Ovgp1 transgenic mice, OVGP1 overexpression caused an increase in blood pressure, dysfunctional vasoconstriction and vasodilation, remodeling of arterial walls, and increased vascular superoxide stress and inflammation, and these phenomena were exacerbated by angiotensin II infusion. In contrast, OVGP1 deficiency attenuated angiotensin II-induced vascular oxidase stress, inflammation, and collagen deposition. These findings indicate that OVGP1 is a prohypertensive factor that directly promotes vascular remodeling. Pull-down and coimmunoprecipitation assays showed that MYH9 (nonmuscle myosin heavy chain IIA) interacted with OVGP1, whereas inhibition of MYH9 attenuated OVGP1-induced hypertension and vascular remodeling. CONCLUSIONS Hypomethylation at cg20823859 in the promoter region of OVGP1 is associated with hypertension and induces upregulation of OVGP1. The interaction between OVGP1 and MYH9 contributes to vascular remodeling and dysfunction. Therefore, OVGP1 is a prohypertensive factor that promotes vascular remodeling by binding with MYH9.
Collapse
Affiliation(s)
- Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China (C.B.)
| | - Ming Su
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China (M.S.)
| | - Yaohua Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China (Y.Z.)
| | - Yahui Lin
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases (Y.L.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Wen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiedan Ping
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China (J.C.)
| |
Collapse
|
21
|
Key role of exportin 6 in exosome-mediated viral transmission from insect vectors to plants. Proc Natl Acad Sci U S A 2022; 119:e2207848119. [PMID: 36037368 PMCID: PMC9457540 DOI: 10.1073/pnas.2207848119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exosomes play a key role in virus exocytosis and transmission. The exportin family is usually responsible for cargo nucleocytoplasmic trafficking, and they are frequently found in exosomes. However, the function of exportins sorted in exosomes remains unknown. Here, we successfully isolated "cup holder"-like exosomes from the saliva of ∼30,000 small brown planthoppers, which are vectors of rice stripe virus (RSV). RSV virions were packed in comparatively large exosomes. Four viral genomic RNAs at a certain ratio were identified in the saliva exosomes. The virions contained in the saliva exosomes were capable of replicating and causing disease in rice plants. Interference with each phase of the insect exosome system affected the transmission of RSV from the insect vectors to rice plants. Fragmented exportin 6 was coimmunoprecipitated with viral nucleocapsid protein in saliva and sorted to exosomes via interactions with the cargo sorting protein VPS37a. When the expression of exportin 6 was knocked down, the amounts of RSV secreted in saliva and rice plants were reduced by 60% and 74%, respectively. These results showed that exportin 6 acted as a vehicle for transporting RSV into exosomes to overcome the barrier of insect salivary glands for horizontal transmission. Exportin 6 would represent an ideal target that could be manipulated to control the outbreak of insect-borne viruses in the future.
Collapse
|
22
|
Wang S, Unnithan S, Bryant N, Chang A, Rosenthal LS, Pantelyat A, Dawson TM, Al‐Khalidi HR, West AB. Elevated Urinary Rab10 Phosphorylation in Idiopathic Parkinson Disease. Mov Disord 2022; 37:1454-1464. [PMID: 35521944 PMCID: PMC9308673 DOI: 10.1002/mds.29043] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pathogenic leucine-rich repeat kinase 2 LRRK2 mutations may increase LRRK2 kinase activity and Rab substrate phosphorylation. Genetic association studies link variation in LRRK2 to idiopathic Parkinson disease (iPD) risk. OBJECTIVES Through measurements of the LRRK2 kinase substrate pT73-Rab10 in urinary extracellular vesicles, this study seeks to understand how LRRK2 kinase activity might change with iPD progression. METHODS Using an immunoblotting approach validated in LRRK2 transgenic mice, the ratio of pT73-Rab10 to total Rab10 protein was measured in extracellular vesicles from a cross-section of G2019S LRRK2 mutation carriers (N = 45 participants) as well as 485 urine samples from a novel longitudinal cohort of iPD and controls (N = 85 participants). Generalized estimating equations were used to conduct analyses with commonly used clinical scales. RESULTS Although the G2019S LRRK2 mutation did not increase pT73-Rab10 levels, the ratio of pT73-Rab10 to total Rab10 nominally increased over baseline in iPD urine vesicle samples with time, but did not increase in age-matched controls (1.34-fold vs. 1.05-fold, 95% confidence interval [CI], 0.004-0.56; P = 0.046; Welch's t test). Effect estimates adjusting for sex, age, disease duration, diagnosis, and baseline clinical scores identified increasing total Movement Disorder Society-Sponsored Revision of the Unified (MDS-UPDRS) scores (β = 0.77; CI, 0.52-1.01; P = 0.0001) with each fold increase of pT73-Rab10 to total Rab10. Lower Montreal Cognitive Assessment (MoCA) score in iPD is also associated with increased pT73-Rab10. CONCLUSIONS These results provide initial insights into peripheral LRRK2-dependent Rab phosphorylation, measured in biobanked urine, where higher levels of pT73-Rab10 are associated with worse disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Shijie Wang
- Duke Center for Neurodegeneration and NeurotherapeuticsDuke UniversityDurhamNorth CarolinaUSA
| | - Shakthi Unnithan
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | - Nicole Bryant
- Duke Center for Neurodegeneration and NeurotherapeuticsDuke UniversityDurhamNorth CarolinaUSA
| | - Allison Chang
- Duke Center for Neurodegeneration and NeurotherapeuticsDuke UniversityDurhamNorth CarolinaUSA
| | | | | | - Ted M. Dawson
- Department of NeurologyThe Johns Hopkins UniversityBaltimoreMarylandUSA
- Neurodegeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hussein R. Al‐Khalidi
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | - Andrew B. West
- Duke Center for Neurodegeneration and NeurotherapeuticsDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
23
|
Yang L, Patel KD, Rathnam C, Thangam R, Hou Y, Kang H, Lee KB. Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104783. [PMID: 35132796 PMCID: PMC9344859 DOI: 10.1002/smll.202104783] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Indexed: 04/14/2023]
Abstract
Extracellular vesicles (e.g., exosomes) carrying various biomolecules (e.g., proteins, lipids, and nucleic acids) have rapidly emerged as promising platforms for many biomedical applications. Despite their enormous potential, their heterogeneity in surfaces and sizes, the high complexity of cargo biomolecules, and the inefficient uptake by recipient cells remain critical barriers for their theranostic applications. To address these critical issues, multifunctional nanomaterials, such as magnetic nanomaterials, with their tunable physical, chemical, and biological properties, may play crucial roles in next-generation extracellular vesicles (EV)-based disease diagnosis, drug delivery, tissue engineering, and regenerative medicine. As such, one aims to provide cutting-edge knowledge pertaining to magnetic nanomaterials-facilitated isolation, detection, and delivery of extracellular vesicles and their associated biomolecules. By engaging the fields of extracellular vesicles and magnetic nanomaterials, it is envisioned that their properties can be effectively combined for optimal outcomes in biomedical applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Pis cataway, NJ 08854, USA
| |
Collapse
|
24
|
Tönges L, Kwon EH, Klebe S. Monogenetic Forms of Parkinson’s Disease – Bridging the Gap Between Genetics and Biomarkers. Front Aging Neurosci 2022; 14:822949. [PMID: 35317530 PMCID: PMC8934414 DOI: 10.3389/fnagi.2022.822949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The therapy of neurodegenerative diseases such as Parkinson’s disease (PD) is still limited to the treatment of symptoms and primarily aimed at compensating for dopaminergic hypofunction. Numerous disease-modifying therapies currently in the pipeline attempt to modify the underlying pathomechanisms. In recent decades, the results of molecular genetics and biomarker research have raised hopes of earlier diagnosis and new neuroprotective therapeutic approaches. As the disease-causing processes in monogenetic forms of PD are better understood than in sporadic PD, these disease subsets are likely to benefit first from disease-modifying therapies. Recent studies have suggested that disease-relevant changes found in genetically linked forms of PD (i.e., PARK-LRRK2, PARK-GBA) can also be reproduced in patients in whom no genetic cause can be found, i.e., those with sporadic PD. It can, therefore, be assumed that as soon as the first causal therapy for genetic forms of PD is approved, more patients with PD will undergo genetic testing and counseling. Regarding future neuroprotective trials in neurodegenerative diseases and objective parameters such as biomarkers with high sensitivity and specificity for the diagnosis and course of the disease are needed. These biomarkers will also serve to monitor treatment success in clinical trials. Promising examples in PD, such as alpha-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain, are under investigation in blood and CSF. This paper provides an overview of the opportunities and current limitations of monogenetic diagnostic and biomarker research in PD and aims to build a bridge between current knowledge and association with PD genetics and biomarkers.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany
| | - Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
- *Correspondence: Stephan Klebe,
| |
Collapse
|
25
|
Picca A, Guerra F, Calvani R, Coelho-Junior HJ, Bucci C, Marzetti E. Circulating extracellular vesicles: friends and foes in neurodegeneration. Neural Regen Res 2022; 17:534-542. [PMID: 34380883 PMCID: PMC8504375 DOI: 10.4103/1673-5374.320972] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 12/01/2022] Open
Abstract
Extracellular vesicles have been identified as pivotal mediators of intercellular communication with critical roles in physiological and pathological conditions. Via this route, several molecules (e.g., nucleic acids, proteins, metabolites) can be transferred to proximal and distant targets to convey specific information. Extracellular vesicle-associated cargo molecules have been proposed as markers of several disease conditions for their potential of tracking down the generating cell. Indeed, circulating extracellular vesicles may represent biomarkers of dysfunctional cellular quality control systems especially in conditions characterized by the accrual of intracellular misfolded proteins. Furthermore, the identification of extracellular vesicles as tools for the delivery of nucleic acids or other cargo molecules to diseased tissues makes these circulating shuttles possible targets for therapeutic development. The increasing interest in the study of extracellular vesicles as biomarkers resides mainly in the fact that the identification of peripheral levels of extracellular vesicle-associated proteins might reflect molecular events occurring in hardly accessible tissues, such as the brain, thereby serving as a "brain liquid biopsy". The exploitation of extracellular vesicles for diagnostic and therapeutic purposed might offer unprecedented opportunities to develop personalized approaches. Here, we discuss the bright and dark sides of extracellular vesicles in the setting of two main neurodegenerative diseases (i.e., Parkinson's and Alzheimer's diseases). A special focus will be placed on the possibility of using extracellular vesicles as biomarkers for the two conditions to enable disease tracking and treatment monitoring.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Hélio José Coelho-Junior
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy
| |
Collapse
|
26
|
Kwon EH, Tennagels S, Gold R, Gerwert K, Beyer L, Tönges L. Update on CSF Biomarkers in Parkinson's Disease. Biomolecules 2022; 12:biom12020329. [PMID: 35204829 PMCID: PMC8869235 DOI: 10.3390/biom12020329] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Progress in developing disease-modifying therapies in Parkinson’s disease (PD) can only be achieved through reliable objective markers that help to identify subjects at risk. This includes an early and accurate diagnosis as well as continuous monitoring of disease progression and therapy response. Although PD diagnosis still relies mainly on clinical features, encouragingly, advances in biomarker discovery have been made. The cerebrospinal fluid (CSF) is a biofluid of particular interest to study biomarkers since it is closest to the brain structures and therefore could serve as an ideal source to reflect ongoing pathologic processes. According to the key pathophysiological mechanisms, the CSF status of α-synuclein species, markers of amyloid and tau pathology, neurofilament light chain, lysosomal enzymes and markers of neuroinflammation provide promising preliminary results as candidate biomarkers. Untargeted approaches in the field of metabolomics provide insights into novel and interconnected biological pathways. Markers based on genetic forms of PD can contribute to identifying subgroups suitable for gene-targeted treatment strategies that might also be transferable to sporadic PD. Further validation analyses in large PD cohort studies will identify the CSF biomarker or biomarker combinations with the best value for clinical and research purposes.
Collapse
Affiliation(s)
- Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
| | - Sabrina Tennagels
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
| | - Klaus Gerwert
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Léon Beyer
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Correspondence: ; Tel.: +49-234-509-2420; Fax: +49-234-509-2439
| |
Collapse
|
27
|
Cheng H, Yang Q, Wang R, Luo R, Zhu S, Li M, Li W, Chen C, Zou Y, Huang Z, Xie T, Wang S, Zhang H, Tian Q. Emerging Advances of Detection Strategies for Tumor-Derived Exosomes. Int J Mol Sci 2022; 23:ijms23020868. [PMID: 35055057 PMCID: PMC8775838 DOI: 10.3390/ijms23020868] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes derived from tumor cells contain various molecular components, such as proteins, RNA, DNA, lipids, and carbohydrates. These components play a crucial role in all stages of tumorigenesis and development. Moreover, they reflect the physiological and pathological status of parental tumor cells. Recently, tumor-derived exosomes have become popular biomarkers for non-invasive liquid biopsy and the diagnosis of numerous cancers. The interdisciplinary significance of exosomes research has also attracted growing enthusiasm. However, the intrinsic nature of tumor-derived exosomes requires advanced methods to detect and evaluate the complex biofluid. This review analyzes the relationship between exosomes and tumors. It also summarizes the exosomal biological origin, composition, and application of molecular markers in clinical cancer diagnosis. Remarkably, this paper constitutes a comprehensive summary of the innovative research on numerous detection strategies for tumor-derived exosomes with the intent of providing a theoretical basis and reference for early diagnosis and clinical treatment of cancer.
Collapse
Affiliation(s)
- Huijuan Cheng
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qian Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rongrong Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruhua Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Shanshan Zhu
- Public Health Institutes, Hangzhou Normal University, Hangzhou 311121, China;
| | - Minhui Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenqi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuqing Zou
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhihua Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuling Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (S.W.); (H.Z.); (Q.T.)
| | - Honghua Zhang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (S.W.); (H.Z.); (Q.T.)
| | - Qingchang Tian
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (S.W.); (H.Z.); (Q.T.)
| |
Collapse
|
28
|
Wang R, Wang X, Zhang Y, Zhao H, Cui J, Li J, Di L. Emerging prospects of extracellular vesicles for brain disease theranostics. J Control Release 2022; 341:844-868. [DOI: 10.1016/j.jconrel.2021.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
|
29
|
A sandwich-based evanescent wave fluorescent biosensor for simple, real-time exosome detection †. Biosens Bioelectron 2021; 200:113902. [PMID: 34954570 DOI: 10.1016/j.bios.2021.113902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022]
Abstract
Exosomes are regarded as a promising biomarker for the noninvasive diagnosis and treatment of diseases. The value of exosomes for medical research has promoted the search for a fast, efficient, and sensitive detection method. This study reported a sandwich-based evanescent wave fluorescent biosensor (S-EWFB) for exosome detection. A two-step strategy was implemented to take advantages of the simple binding of fluorescent probes with exosomes via the hydrophobic interaction between the cholesteryl and phospholipid bilayer membrane, as well as real-time detection on an evanescent wave liquid-solid interface based on CD63 aptamer-specific capture to form an exosome@fluorescence probe/aptamer sandwich structure. The one-to-many connection between exosomes and signal molecules and the aptamer-modified evanescent wave optical fiber detection platform reduced the detection limit of exosomes to 7.66 particles/mL, with a linear range of 47.5-4.75 × 106 particles/mL. The entire detection process was simple, rapid, and real-time and lasted about 1 h while requiring no separation and purification. Additionally, this platform showed excellent surface regeneration capability and exhibited good performance during the analysis of tumor and non-tumor-derived exosomes.
Collapse
|
30
|
Pathways to Parkinson's disease: a spotlight on 14-3-3 proteins. NPJ Parkinsons Dis 2021; 7:85. [PMID: 34548498 PMCID: PMC8455551 DOI: 10.1038/s41531-021-00230-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
14-3-3s represent a family of highly conserved 30 kDa acidic proteins. 14-3-3s recognize and bind specific phospho-sequences on client partners and operate as molecular hubs to regulate their activity, localization, folding, degradation, and protein-protein interactions. 14-3-3s are also associated with the pathogenesis of several diseases, among which Parkinson's disease (PD). 14-3-3s are found within Lewy bodies (LBs) in PD patients, and their neuroprotective effects have been demonstrated in several animal models of PD. Notably, 14-3-3s interact with some of the major proteins known to be involved in the pathogenesis of PD. Here we first provide a detailed overview of the molecular composition and structural features of 14-3-3s, laying significant emphasis on their peculiar target-binding mechanisms. We then briefly describe the implication of 14-3-3s in the central nervous system and focus on their interaction with LRRK2, α-Synuclein, and Parkin, three of the major players in PD onset and progression. We finally discuss how different types of small molecules may interfere with 14-3-3s interactome, thus representing a valid strategy in the future of drug discovery.
Collapse
|
31
|
Amrollahi P, Zheng W, Monk C, Li CZ, Hu TY. Nanoplasmonic Sensor Approaches for Sensitive Detection of Disease-Associated Exosomes. ACS APPLIED BIO MATERIALS 2021; 4:6589-6603. [PMID: 35006963 PMCID: PMC9130051 DOI: 10.1021/acsabm.1c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exosomes are abundantly secreted by most cells that carry membrane and cytosolic factors that can reflect the physiologic state of their source cells and thus have strong potential to serve as biomarkers for early diagnosis, disease staging, and treatment monitoring. However, traditional diagnostic or prognostic applications that might use exosomes are hindered by the lack of rapid and sensitive assays that can exploit their biological information. An array of assay approaches have been developed to address this deficit, including those that integrate immunoassays with nanoplasmonic sensors to measure changes in optical refractive indexes in response to the binding of low concentrations of their targeted molecules. These sensors take advantage of enhanced and tunable interactions between the electron clouds of nanoplasmonic particles and structures and incident electromagnetic radiation to enable isolation-free and ultrasensitive quantification of disease-associated exosome biomarkers present in complex biological samples. These unique advantages make nanoplasmonic sensing one of the most competitive approaches available for clinical applications and point-of-care tests that evaluate exosome-based biomarkers. This review will briefly summarize the origin and clinical utility of exosomes and the limitations of current isolation and analysis approaches before reviewing the specific advantages and limitations of nanoplasmonic sensing devices and indicating what additional developments are necessary to allow the translation of these approaches into clinical applications.
Collapse
Affiliation(s)
- Pouya Amrollahi
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Wenshu Zheng
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| | - Chandler Monk
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| | - Chen-Zhong Li
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| | - Tony Ye Hu
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
32
|
Xiong H, Huang Z, Yang Z, Lin Q, Yang B, Fang X, Liu B, Chen H, Kong J. Recent Progress in Detection and Profiling of Cancer Cell-Derived Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007971. [PMID: 34075696 DOI: 10.1002/smll.202007971] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/23/2021] [Indexed: 05/24/2023]
Abstract
Exosomes, known as nanometer-sized vesicles (30-200 nm), are secreted by many types of cells. Cancer-derived exosomes have great potential to be biomarkers for early clinical diagnosis and evaluation of cancer therapeutic efficacy. Conventional detection methods are limited to low sensitivity and reproducibility. There are hundreds of papers published with different detection methods in recent years to address these challenges. Therefore, in this review, pioneering researches about various detection strategies are comprehensively summarized and the analytical performance of these tests is evaluated. Furthermore, the exosome molecular composition (protein and nucleic acid) profiling, a single exosome profiling, and their application in clinical cancer diagnosis are reviewed. Finally, the principles and applications of machine learning method in exosomes researches are presented.
Collapse
Affiliation(s)
- Huiwen Xiong
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Zhipeng Huang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Zhejun Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Qiuyuan Lin
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Bin Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Xueen Fang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Hui Chen
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Jilie Kong
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
33
|
Leggio L, Paternò G, Vivarelli S, Falzone GG, Giachino C, Marchetti B, Iraci N. Extracellular Vesicles as Novel Diagnostic and Prognostic Biomarkers for Parkinson's Disease. Aging Dis 2021; 12:1494-1515. [PMID: 34527424 PMCID: PMC8407885 DOI: 10.14336/ad.2021.0527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
The elderly population will significantly increase in the next decade and, with it, the proportion of people affected by age-related diseases. Among them, one of the most invalidating is Parkinson's disease (PD), characterized by motor- and non-motor dysfunctions which strongly impair the quality of life of affected individuals. PD is characterized by the progressive degeneration of dopaminergic neurons, with consequent dopamine depletion, and the accumulation of misfolded α-synuclein aggregates. Although 150 years have passed since PD first description, no effective therapies are currently available, but only palliative treatments. Importantly, PD is often diagnosed when the neuronal loss is elevated, making difficult any therapeutic intervention. In this context, two key challenges remain unanswered: (i) the early diagnosis to avoid the insurgence of irreversible symptoms; and (ii) the reliable monitoring of therapy efficacy. Research strives to identify novel biomarkers for PD diagnosis, prognosis, and therapeutic follow-up. One of the most promising sources of biomarkers is represented by extracellular vesicles (EVs), a heterogeneous population of nanoparticles, released by all cells in the microenvironment. Brain-derived EVs are able to cross the blood-brain barrier, protecting their payload from enzymatic degradation, and are easily recovered from biofluids. Interestingly, EV content is strongly influenced by the specific pathophysiological status of the donor cell. In this manuscript, the role of EVs as source of novel PD biomarkers is discussed, providing all recent findings concerning relevant proteins and miRNAs carried by PD patient-derived EVs, from several biological specimens. Moreover, the contribution of mitochondria-derived EVs will be dissected. Finally, the promising possibility to use EVs as source of markers to monitor PD therapy efficacy will be also examined. In the future, larger cohort studies will help to validate these EV-associated candidates, that might be effectively used as non-invasive and robust source of biomarkers for PD.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Giovanna G Falzone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Carmela Giachino
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy.
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy.
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| |
Collapse
|
34
|
Busatto S, Morad G, Guo P, Moses MA. The role of extracellular vesicles in the physiological and pathological regulation of the blood-brain barrier. FASEB Bioadv 2021; 3:665-675. [PMID: 34485835 PMCID: PMC8409556 DOI: 10.1096/fba.2021-00045] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are a subclass of biological nanoparticles secreted by most cell types. Once secreted, EVs can travel long distances to deliver their content to target cells thereby playing a key role in cell-to-cell communication and supporting both physiological and pathological processes. In recent years, the functional versatility of EVs has come to be more widely appreciated. Their heterogeneous structure encloses solubilized bioactive cargoes including proteins and nucleic acids. EVs mirror the secreting cell in composition therefore representing a novel source of diagnostic and prognostic biomarkers. Moreover, due to their unique structure, EVs constitute a promising class of biocompatible nanovehicles for drug delivery as well. Importantly, and of burgeoning interest, is the fact that EVs have the intrinsic ability to breach biological barriers including the complex blood-brain barrier (BBB), whose restrictive nature represents a significant therapeutic challenge. EVs have been shown to contribute to the progression of a variety of brain diseases including metastatic brain cancer, neurodegenerative diseases, and acute pathologies including infections and ischemia. In this review, the role of EVs in the maintenance and regulation of the BBB under normal physiological and pathologic conditions are discussed. Applications of EVs as therapeutic and diagnostic tools in the treatment of diseases that affect the central nervous system are presented as are limitations hindering their broad translation and potential solutions to resolve them.
Collapse
Affiliation(s)
- Sara Busatto
- Vascular Biology ProgramBoston Children's HospitalBostonMAUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Golnaz Morad
- Department of Surgical OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Peng Guo
- Vascular Biology ProgramBoston Children's HospitalBostonMAUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Marsha A. Moses
- Vascular Biology ProgramBoston Children's HospitalBostonMAUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
35
|
Goričar K, Dolžan V, Lenassi M. Extracellular Vesicles: A Novel Tool Facilitating Personalized Medicine and Pharmacogenomics in Oncology. Front Pharmacol 2021; 12:671298. [PMID: 33995103 PMCID: PMC8120271 DOI: 10.3389/fphar.2021.671298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
Biomarkers that can guide cancer therapy based on patients' individual cancer molecular signature can enable a more effective treatment with fewer adverse events. Data on actionable somatic mutations and germline genetic variants, studied by personalized medicine and pharmacogenomics, can be obtained from tumor tissue or blood samples. As tissue biopsy cannot reflect the heterogeneity of the tumor or its temporal changes, liquid biopsy is a promising alternative approach. In recent years, extracellular vesicles (EVs) have emerged as a potential source of biomarkers in liquid biopsy. EVs are a heterogeneous population of membrane bound particles, which are released from all cells and accumulate into body fluids. They contain various proteins, lipids, nucleic acids (miRNA, mRNA, and DNA) and metabolites. In cancer, EV biomolecular composition and concentration are changed. Tumor EVs can promote the remodeling of the tumor microenvironment and pre-metastatic niche formation, and contribute to transfer of oncogenic potential or drug resistance during chemotherapy. This makes them a promising source of minimally invasive biomarkers. A limited number of clinical studies investigated EVs to monitor cancer progression, tumor evolution or drug resistance and several putative EV-bound protein and RNA biomarkers were identified. This review is focused on EVs as novel biomarker source for personalized medicine and pharmacogenomics in oncology. As several pharmacogenes and genes associated with targeted therapy, chemotherapy or hormonal therapy were already detected in EVs, they might be used for fine-tuning personalized cancer treatment.
Collapse
Affiliation(s)
| | | | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
18F-Labelled pyrrolopyrimidines reveal brain leucine-rich repeat kinase 2 expression implicated in Parkinson's disease. Eur J Med Chem 2021; 214:113245. [PMID: 33582389 DOI: 10.1016/j.ejmech.2021.113245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/22/2022]
Abstract
18F-Labelled pyrrolopyrimidines were synthesized and evaluated as positron emission tomography (PET) probes to determine leucine-rich repeat kinase 2 (LRRK2) expression in the brain. With pyrrolopyrimidine derivative PF-06447475 as the lead compound, two in vivo-stable 18F-labelled pyrrolopyrimidines ([18F]1 and [18F]2) were synthesized automatically at radiochemical yields 8-10% (non-decay-corrected) with molar activities of 0.95 and 0.5 GBq/μmol, respectively. The measured Kd of 6.90 nM for 1 and 14.27 nM for 2 demonstrated high affinities for LRRK2. The LRRK2 G2019S mice had higher uptakes (P < 0.01) of [18F]1 in the olfactory bulb, striatum, and hippocampus than WT mice during microPET/CT imaging, consistent with immunohistology results of LRRK2 distribution. [11C]CFT microPET/CT imaging demonstrated a lower expression of dopamine transporter in LRRK2 G2019S mice. Parkinson's disease-like deficits in dopamine transporter synthesis and cognitive declines were noticed along with LRRK2 expression increase in the olfactory bulb, striatum, and hippocampus. Therefore, 18F-labelled pyrrolopyrimidines can reflect real-time LRRK2 expression changes implicated in Parkinson's disease, which paves the way for LRRK2-related neurodegenerative precise therapy.
Collapse
|
37
|
Rastogi S, Sharma V, Bharti PS, Rani K, Modi GP, Nikolajeff F, Kumar S. The Evolving Landscape of Exosomes in Neurodegenerative Diseases: Exosomes Characteristics and a Promising Role in Early Diagnosis. Int J Mol Sci 2021; 22:E440. [PMID: 33406804 PMCID: PMC7795439 DOI: 10.3390/ijms22010440] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (ND) remains to be one of the biggest burdens on healthcare systems and serves as a leading cause of disability and death. Alzheimer's disease (AD) is among the most common of such disorders, followed by Parkinson's disease (PD). The basic molecular details of disease initiation and pathology are still under research. Only recently, the role of exosomes has been linked to the initiation and progression of these neurodegenerative diseases. Exosomes are small bilipid layer enclosed extracellular vesicles, which were once considered as a cellular waste and functionless. These nano-vesicles of 30-150 nm in diameter carry specific proteins, lipids, functional mRNAs, and high amounts of non-coding RNAs (miRNAs, lncRNAs, and circRNAs). As the exosomes content is known to vary as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection. Here we review exosomes, their biogenesis, composition, and role in neurodegenerative diseases. We have also provided details for their characterization through an array of available techniques. Their updated role in neurodegenerative disease pathology is also discussed. Finally, we have shed light on a novel field of salivary exosomes as a potential candidate for early diagnosis in neurodegenerative diseases and compared the biomarkers of salivary exosomes with other blood/cerebrospinal fluid (CSF) based exosomes within these neurological ailments.
Collapse
Affiliation(s)
- Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Komal Rani
- Department of Biotechnology, Amity University, Mumbai 410206, India;
| | - Gyan P. Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India;
| | - Fredrik Nikolajeff
- Department of Health Science, Lulea Technical University, 97187 Lulea, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| |
Collapse
|
38
|
Quiroz-Baez R, Hernández-Ortega K, Martínez-Martínez E. Insights Into the Proteomic Profiling of Extracellular Vesicles for the Identification of Early Biomarkers of Neurodegeneration. Front Neurol 2020; 11:580030. [PMID: 33362690 PMCID: PMC7759525 DOI: 10.3389/fneur.2020.580030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are involved in the development and progression of neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Moreover, EVs have the capacity to modify the physiology of neuronal circuits by transferring proteins, RNA, lipids, and metabolites. The proteomic characterization of EVs (exosomes and microvesicles) from preclinical models and patient samples has the potential to reveal new proteins and molecular networks that affect the normal physiology prior to the appearance of traditional biomarkers of neurodegeneration. Noteworthy, many of the genetic risks associated to the development of Alzheimer's and Parkinson's disease affect the crosstalk between mitochondria, endosomes, and lysosomes. Recent research has focused on determining the role of endolysosomal trafficking in the onset of neurodegenerative diseases. Proteomic studies indicate an alteration of biogenesis and molecular content of EVs as a result of endolysosomal and autophagic dysfunction. In this review, we discuss the status of EV proteomic characterization and their usefulness in discovering new biomarkers for the differential diagnosis of neurodegenerative diseases. Despite the challenges related to the failure to follow a standard isolation protocol and their implementation for a clinical setting, the analysis of EV proteomes has revealed the presence of key proteins with post-translational modifications that can be measured in peripheral fluids.
Collapse
Affiliation(s)
- Ricardo Quiroz-Baez
- Departamento de Investigación Básica, Dirección de Investigación, Instituto Nacional de Geriatría, Ciudad de México, Mexico
| | - Karina Hernández-Ortega
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication & Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| |
Collapse
|
39
|
Vandendriessche C, Bruggeman A, Van Cauwenberghe C, Vandenbroucke RE. Extracellular Vesicles in Alzheimer's and Parkinson's Disease: Small Entities with Large Consequences. Cells 2020; 9:cells9112485. [PMID: 33203181 PMCID: PMC7696752 DOI: 10.3390/cells9112485] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are incurable, devastating neurodegenerative disorders characterized by the formation and spreading of protein aggregates throughout the brain. Although the exact spreading mechanism is not completely understood, extracellular vesicles (EVs) have been proposed as potential contributors. Indeed, EVs have emerged as potential carriers of disease-associated proteins and are therefore thought to play an important role in disease progression, although some beneficial functions have also been attributed to them. EVs can be isolated from a variety of sources, including biofluids, and the analysis of their content can provide a snapshot of ongoing pathological changes in the brain. This underlines their potential as biomarker candidates which is of specific relevance in AD and PD where symptoms only arise after considerable and irreversible neuronal damage has already occurred. In this review, we discuss the known beneficial and detrimental functions of EVs in AD and PD and we highlight their promising potential to be used as biomarkers in both diseases.
Collapse
Affiliation(s)
- Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (C.V.); (A.B.); (C.V.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Arnout Bruggeman
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (C.V.); (A.B.); (C.V.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Caroline Van Cauwenberghe
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (C.V.); (A.B.); (C.V.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (C.V.); (A.B.); (C.V.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-3313730
| |
Collapse
|
40
|
Exosome markers of LRRK2 kinase inhibition. NPJ PARKINSONS DISEASE 2020; 6:32. [PMID: 33298972 PMCID: PMC7666125 DOI: 10.1038/s41531-020-00138-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Hyper-activated LRRK2 is linked to Parkinson’s disease susceptibility and progression. Quantitative measures of LRRK2 inhibition, especially in the brain, maybe critical in the development of successful LRRK2-targeting therapeutics. In this study, two different brain-penetrant and selective LRRK2 small-molecule kinase inhibitors (PFE-360 and MLi2) were orally administered to groups of cynomolgus macaques. Proposed pharmacodynamic markers in exosomes from urine and cerebrospinal fluid (CSF) were compared to established markers in peripheral blood mononuclear cells (PBMCs). LRRK2 kinase inhibition led to reductions in exosome-LRRK2 protein and the LRRK2-substrate pT73-Rab10 in urine, as well as reduced exosome-LRRK2 and autophosphorylated pS1292-LRRK2 protein in CSF. We propose orthogonal markers for LRRK2 inhibition in urine and CSF can be used in combination with blood markers to non-invasively monitor the potency of LRRK2-targeting therapeutics.
Collapse
|
41
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
42
|
Gonzalez-Hunt CP, Thacker EA, Toste CM, Boularand S, Deprets S, Dubois L, Sanders LH. Mitochondrial DNA damage as a potential biomarker of LRRK2 kinase activity in LRRK2 Parkinson's disease. Sci Rep 2020; 10:17293. [PMID: 33057100 PMCID: PMC7557909 DOI: 10.1038/s41598-020-74195-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for the treatment of Parkinson's disease (PD) and LRRK2 kinase inhibitors are currently being tested in early phase clinical trials. In order to ensure the highest chance of success, a biomarker-guided entry into clinical trials is key. LRRK2 phosphorylation, and phosphorylation of the LRRK2 substrate Rab10, have been proposed as target engagement biomarkers for LRRK2 kinase inhibition. However, a pharmacodynamic biomarker to demonstrate that a biological response has occurred is lacking. We previously discovered that the LRRK2 G2019S mutation causes mitochondrial DNA (mtDNA) damage and is LRRK2 kinase activity-dependent. Here, we have explored the possibility that measurement of mtDNA damage is a "surrogate" for LRRK2 kinase activity and consequently of kinase inhibitor activity. Mitochondrial DNA damage was robustly increased in PD patient-derived immune cells with LRRK2 G2019S mutations as compared with controls. Following treatment with multiple classes of LRRK2 kinase inhibitors, a full reversal of mtDNA damage to healthy control levels was observed and correlated with measures of LRRK2 dephosphorylation. Taken together, assessment of mtDNA damage levels may be a sensitive measure of altered kinase activity and provide an extended profile of LRRK2 kinase modulation in clinical studies.
Collapse
Affiliation(s)
- C P Gonzalez-Hunt
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - E A Thacker
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - C M Toste
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - S Boularand
- Rare & Neurologic Diseases Research, Sanofi, Chilly Mazarin, France
| | - S Deprets
- Rare & Neurologic Diseases Research, Sanofi, Chilly Mazarin, France
| | - L Dubois
- Rare & Neurologic Diseases Research, Sanofi, Chilly Mazarin, France
| | - L H Sanders
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
43
|
Leggio L, Paternò G, Vivarelli S, L’Episcopo F, Tirolo C, Raciti G, Pappalardo F, Giachino C, Caniglia S, Serapide MF, Marchetti B, Iraci N. Extracellular Vesicles as Nanotherapeutics for Parkinson's Disease. Biomolecules 2020; 10:E1327. [PMID: 32948090 PMCID: PMC7563168 DOI: 10.3390/biom10091327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring membranous structures secreted by normal and diseased cells, and carrying a wide range of bioactive molecules. In the central nervous system (CNS), EVs are important in both homeostasis and pathology. Through receptor-ligand interactions, direct fusion, or endocytosis, EVs interact with their target cells. Accumulating evidence indicates that EVs play crucial roles in the pathogenesis of many neurodegenerative disorders (NDs), including Parkinson's disease (PD). PD is the second most common ND, characterized by the progressive loss of dopaminergic (DAergic) neurons within the Substantia Nigra pars compacta (SNpc). In PD, EVs are secreted by both neurons and glial cells, with either beneficial or detrimental effects, via a complex program of cell-to-cell communication. The functions of EVs in PD range from their etiopathogenetic relevance to their use as diagnostic tools and innovative carriers of therapeutics. Because they can cross the blood-brain barrier, EVs can be engineered to deliver bioactive molecules (e.g., small interfering RNAs, catalase) within the CNS. This review summarizes the latest findings regarding the role played by EVs in PD etiology, diagnosis, prognosis, and therapy, with a particular focus on their use as novel PD nanotherapeutics.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Francesca L’Episcopo
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Cataldo Tirolo
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Gabriele Raciti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Fabrizio Pappalardo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Carmela Giachino
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Salvatore Caniglia
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Maria Francesca Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| |
Collapse
|
44
|
Rideout HJ, Chartier-Harlin MC, Fell MJ, Hirst WD, Huntwork-Rodriguez S, Leyns CEG, Mabrouk OS, Taymans JM. The Current State-of-the Art of LRRK2-Based Biomarker Assay Development in Parkinson's Disease. Front Neurosci 2020; 14:865. [PMID: 33013290 PMCID: PMC7461933 DOI: 10.3389/fnins.2020.00865] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Evidence is mounting that LRRK2 function, particularly its kinase activity, is elevated in multiple forms of Parkinson's disease, both idiopathic as well as familial forms linked to mutations in the LRRK2 gene. However, sensitive quantitative markers of LRRK2 activation in clinical samples remain at the early stages of development. There are several measures of LRRK2 activity that could potentially be used in longitudinal studies of disease progression, as inclusion/exclusion criteria for clinical trials, to predict response to therapy, or as markers of target engagement. Among these are levels of LRRK2, phosphorylation of LRRK2 itself, either by other kinases or via auto-phosphorylation, its in vitro kinase activity, or phosphorylation of downstream substrates. This is advantageous on many levels, in that multiple indices of elevated kinase activity clearly strengthen the rationale for targeting this kinase with novel therapeutic candidates, and provide alternate markers of activation in certain tissues or biofluids for which specific measures are not detectable. However, this can also complicate interpretation of findings from different studies using disparate measures. In this review we discuss the current state of LRRK2-focused biomarkers, the advantages and disadvantages of the current pallet of outcome measures, the gaps that need to be addressed, and the priorities that the field has defined.
Collapse
Affiliation(s)
- Hardy J. Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, U1172 - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | | | | | | | | | | | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, U1172 - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| |
Collapse
|
45
|
Kelly K, West AB. Pharmacodynamic Biomarkers for Emerging LRRK2 Therapeutics. Front Neurosci 2020; 14:807. [PMID: 32903744 PMCID: PMC7438883 DOI: 10.3389/fnins.2020.00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Genetic studies have identified variants in the LRRK2 gene as important components of Parkinson's disease (PD) pathobiology. Biochemical and emergent biomarker studies have coalesced around LRRK2 hyperactivation in disease. Therapeutics that diminish LRRK2 activity, either with small molecule kinase inhibitors or anti-sense oligonucleotides, have recently advanced to the clinic. Historically, there have been few successes in the development of therapies that might slow or halt the progression of neurodegenerative diseases. Over the past few decades of biomedical research, retrospective analyses suggest the broad integration of informative biomarkers early in development tends to distinguish successful pipelines from those that fail early. Herein, we discuss the biomarker regulatory process, emerging LRRK2 biomarker candidates, assays, underlying biomarker biology, and clinical integration.
Collapse
Affiliation(s)
- Kaela Kelly
- Duke Center for Neurodegeneration Research, Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC, United States
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC, United States
| |
Collapse
|
46
|
Melachroinou K, Kang MS, Liong C, Narayan S, Levers N, Joshi N, Kopil K, Hutten SJ, Baptista MAS, Padmanabhan S, Kang UJ, Stefanis L, Alcalay RN, Rideout HJ. Elevated In Vitro Kinase Activity in Peripheral Blood Mononuclear Cells of Leucine-Rich Repeat Kinase 2 G2019S Carriers: A Novel Enzyme-Linked Immunosorbent Assay-Based Method. Mov Disord 2020; 35:2095-2100. [PMID: 32652692 PMCID: PMC7754308 DOI: 10.1002/mds.28175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/17/2020] [Accepted: 05/11/2020] [Indexed: 01/20/2023] Open
Abstract
Background Leucine‐rich repeat kinase 2 kinase inhibitors are being vigorously pursued as potential therapeutic options; however, there is a critical need for sensitive and quantitative assays of leucine‐rich repeat kinase 2 function and target engagement. Objectives Our objective was to compare collection and storage protocols for peripheral blood mononuclear cells, and to determine the optimal conditions for downstream analyses of leucine‐rich repeat kinase 2 in PD cohorts. Methods Here, we describe enzyme‐linked immunosorbent assay–based assays capable of detecting multiple aspects of leucine‐rich repeat kinase 2 function at endogenous levels in human tissues. Results In peripheral blood mononuclear cells from both healthy and affected carriers of the G2019S mutation in leucine‐rich repeat kinase 2, we report, for the first time, significantly elevated in vitro kinase activity, while detecting a significant increase in pS935/leucine‐rich repeat kinase 2 in idiopathic PD patients. Conclusions Quantitative assays such as these described here could potentially uncover specific markers of leucine‐rich repeat kinase 2 function that are predictive of disease progression, aid in patient stratification, and be a critical component of upcoming clinical trials. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Katerina Melachroinou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Min Suk Kang
- Department of Neurology, Columbia University, New York, New York, USA
| | - Christopher Liong
- Department of Neurology, Columbia University, New York, New York, USA
| | - Sushma Narayan
- Department of Neurology, Columbia University, New York, New York, USA
| | - Najah Levers
- Department of Neurology, Columbia University, New York, New York, USA
| | - Neal Joshi
- Department of Neurology, Columbia University, New York, New York, USA
| | - Katie Kopil
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Samantha J Hutten
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Marco A S Baptista
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Shalini Padmanabhan
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Un Jung Kang
- Department of Neurology, NYU Langone Health, New York, New York, USA
| | - Leonidas Stefanis
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Neurology, University of Athens Medical School, Athens, Greece
| | - Roy N Alcalay
- Department of Neurology, Columbia University, New York, New York, USA
| | - Hardy J Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
47
|
Polissidis A, Petropoulou-Vathi L, Nakos-Bimpos M, Rideout HJ. The Future of Targeted Gene-Based Treatment Strategies and Biomarkers in Parkinson's Disease. Biomolecules 2020; 10:E912. [PMID: 32560161 PMCID: PMC7355671 DOI: 10.3390/biom10060912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Biomarkers and disease-modifying therapies are both urgent unmet medical needs in the treatment of Parkinson's disease (PD) and must be developed concurrently because of their interdependent relationship: biomarkers for the early detection of disease (i.e., prior to overt neurodegeneration) are necessary in order for patients to receive maximal therapeutic benefit and vice versa; disease-modifying therapies must become available for patients whose potential for disease diagnosis and prognosis can be predicted with biomarkers. This review provides an overview of the milestones achieved to date in the therapeutic strategy development of disease-modifying therapies and biomarkers for PD, with a focus on the most common and advanced genetically linked targets alpha-synuclein (SNCA), leucine-rich repeat kinase-2 (LRRK2) and glucocerebrosidase (GBA1). Furthermore, we discuss the convergence of the different pathways and the importance of patient stratification and how these advances may apply more broadly to idiopathic PD. The heterogeneity of PD poses a challenge for therapeutic and biomarker development, however, the one gene- one target approach has brought us closer than ever before to an unprecedented number of clinical trials and biomarker advancements.
Collapse
Affiliation(s)
| | | | | | - Hardy J. Rideout
- Laboratory of Neurodegenerative Diseases, Centre for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (A.P.); (L.P.-V.); (M.N.-B.)
| |
Collapse
|
48
|
Marchand A, Drouyer M, Sarchione A, Chartier-Harlin MC, Taymans JM. LRRK2 Phosphorylation, More Than an Epiphenomenon. Front Neurosci 2020; 14:527. [PMID: 32612495 PMCID: PMC7308437 DOI: 10.3389/fnins.2020.00527] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene are linked to autosomal dominant Parkinson's disease (PD), and genetic variations at the LRRK2 locus are associated with an increased risk for sporadic PD. This gene encodes a kinase that is physiologically multiphosphorylated, including clusters of both heterologous phosphorylation and autophosphorylation sites. Several pieces of evidence indicate that LRRK2's phosphorylation is important for its pathological and physiological functioning. These include a reduced LRRK2 heterologous phosphorylation in PD brains or after pharmacological inhibition of LRRK2 kinase activity as well as the appearance of subcellular LRRK2 accumulations when this protein is dephosphorylated at heterologous phosphosites. Nevertheless, the regulatory mechanisms governing LRRK2 phosphorylation levels and the cellular consequences of changes in LRRK2 phosphorylation remain incompletely understood. In this review, we present current knowledge on LRRK2 phosphorylation, LRRK2 phosphoregulation, and how LRRK2 phosphorylation changes affect cellular processes that may ultimately be linked to PD mechanisms.
Collapse
Affiliation(s)
- Antoine Marchand
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Matthieu Drouyer
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Alessia Sarchione
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Marie-Christine Chartier-Harlin
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Jean-Marc Taymans
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| |
Collapse
|
49
|
Loeffler DA, Aasly JO, LeWitt PA, Coffey MP. What Have We Learned from Cerebrospinal Fluid Studies about Biomarkers for Detecting LRRK2 Parkinson's Disease Patients and Healthy Subjects with Parkinson's-Associated LRRK2 Mutations? JOURNAL OF PARKINSONS DISEASE 2020; 9:467-488. [PMID: 31322581 PMCID: PMC6700639 DOI: 10.3233/jpd-191630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common known cause of autosomal dominant Parkinson’s disease (PD) and sporadic PD (sPD). The clinical presentation of LRRK2 PD is similar to sPD, and except for genetic testing, no biochemical or imaging markers can differentiate LRRK2 PD from sPD. Discovery of such biomarkers could indicate neuropathological mechanisms that are unique to or increased in LRRK2 PD. This review discusses findings in 17 LRRK2 - related CSF studies found on PubMed. Most of these studies compared analyte concentrations between four diagnostic groups: LRRK2 PD patients, sPD patients, asymptomatic control subjects carrying PD-associated LRRK2 mutations (LRRK2 CTL), and healthy control subjects lacking LRRK2 mutations (CTL). Analytes examined in these studies included Aβ1-42, tau, α-synuclein, oxidative stress markers, autophagy-related proteins, pteridines, neurotransmitter metabolites, exosomal LRRK2 protein, RNA species, inflammatory cytokines, mitochondrial DNA (mtDNA), and intermediary metabolites. FINDINGS: Pteridines, α-synuclein, mtDNA, 5-hydroxyindolacetic acid, β-D-glucose, lamp2, interleukin-8, and vascular endothelial growth factor were suggested to differentiate LRRK2 PD from sPD patients; 8-hydroxy-2’-deoxyguanosine (8-OHdG), 8-isoprostane (8-ISO), 2-hydroxybutyrate, mtDNA, lamp2, and neopterin may differentiate between LRRK2 CTL and LRRK2 PD subjects; and soluble oligomeric α-synuclein, 8-OHdG, and 8-ISO might differentiate LRRK2 CTL from CTL subjects. CONCLUSIONS: The low numbers of investigations of each analyte, small sample sizes, and methodological differences limit conclusions that can be drawn from these studies. Further investigations are indicated to determine the validity of the analytes identified in these studies as possible biomarkers for LRRK2 PD patients and/or LRRK2 CTL subjects.
Collapse
Affiliation(s)
- David A Loeffler
- Department of Neurology, Beaumont Hospital-Royal Oak, Beaumont Health, Royal Oak, MI, USA
| | - Jan O Aasly
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Peter A LeWitt
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mary P Coffey
- Department of Biostatistics, Beaumont Hospital-Royal Oak, Beaumont Health, Royal Oak, MI, USA
| |
Collapse
|
50
|
Mabrouk OS, Chen S, Edwards AL, Yang M, Hirst WD, Graham DL. Quantitative Measurements of LRRK2 in Human Cerebrospinal Fluid Demonstrates Increased Levels in G2019S Patients. Front Neurosci 2020; 14:526. [PMID: 32523511 PMCID: PMC7262382 DOI: 10.3389/fnins.2020.00526] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) mutations are among the most significant genetic risk factors for developing late onset Parkinson’s disease (PD). To understand whether a therapeutic can modulate LRRK2 levels as a potential disease modifying strategy, it is important to have methods in place to measure the protein with high sensitivity and specificity. To date, LRRK2 measurements in cerebrospinal fluid (CSF) have used extracellular vesicle enrichment via differential ultracentrifugation and western blot detection. Our goal was to develop a methodology which could be deployed in a clinical trial, therefore throughput, robustness and sensitivity were critical. To this end, we developed a Stable Isotope Standard Capture by Anti-peptide Antibody (SISCAPA) assay which is capable of detecting LRRK2 from 1 ml of human CSF. The assay uses a commercially available LRRK2 monoclonal antibody (N241A/34) and does not require extracellular vesicle enrichment steps. The assay includes stable isotope peptide addition which allows for absolute quantitation of LRRK2 protein. We determined that the assay performed adequately for CSF measurements and that blood contamination from traumatic lumbar puncture does not pose a serious analytical challenge. We then applied this technique to 106 CSF samples from the MJFF LRRK2 Cohort Consortium which includes healthy controls, sporadic PD patients and LRRK2 mutation carriers with and without PD. Of the 105 samples that had detectable LRRK2 signal, we found that the PD group with the G2019S LRRK2 mutation had significantly higher CSF LRRK2 levels compared to all other groups. We also found that CSF LRRK2 increased with the age of the participant. Taken together, this work represents a step forward in our ability to measure LRRK2 in a challenging matrix like CSF which has implications for current and future LRRK2 therapeutic clinical trials.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Clinical Sciences, Biomarkers, Biogen, Cambridge, MA, United States
| | - Siwei Chen
- Clinical Sciences, Biomarkers, Biogen, Cambridge, MA, United States
| | - Amanda L Edwards
- Clinical Sciences, Biomarkers, Biogen, Cambridge, MA, United States
| | - Minhua Yang
- Biostatistics, Biogen, Cambridge, MA, United States
| | - Warren D Hirst
- Neurodegeneration Research Unit, Biogen, Cambridge, MA, United States
| | | |
Collapse
|