1
|
Lori A, Patel AV, Westmaas JL, Diver WR. A novel smoking cessation behavior based on quit attempts may identify new genes associated with long-term abstinence. Addict Behav 2025; 161:108192. [PMID: 39504611 DOI: 10.1016/j.addbeh.2024.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Smoking cessation at any age has been shown to improve quality of life, decrease illness, and reduce mortality. About half of smokers attempt to quit each year, but only ∼ 7 % maintain long-term abstinence unaided. Few genetic factors have been consistently associated with smoking cessation, possibly due to poor phenotype definition. METHODS We performed a genome-wide association study (GWAS) with an alternative phenotype based on the difficulty of quitting smoking (DQS) in the Cancer Prevention Study-3 cohort. Difficult quitters were defined as having made at least ten quit attempts, whether successful or not, and easy quitters as having quit after only one attempt. Only individuals of European ancestry were selected for the study. Among 10,004 smokers (5,071 difficult quitters, 4,933 easy quitters), we assessed the genetic heritability of DQS and evaluated associations between DQS and each genome-wide variant using logistic regression while adjusting for confounders, including smoking intensity (cigarettes per day). RESULTS The genetic heritability of the DQS phenotype was 13 %, comparable to, or higher than, the reported heritability of other smoking behaviors (e.g., smoking intensity, cessation). Although no variants were genome-wide significant, several genes were identified at a subthreshold level (p < 10-4). A variant in MEGF9 (rs149760032), a transmembrane protein largely expressed in the central nervous system, showed the strongest association with DQS (OR = 0.60, p = 1.3x10-7). Additional variants associated with DQS independently by smoking intensity were also detected in GLRA3 (rs73006492, OR = 0.77, p = 5.6x10-7) and FOCAD (rs112251973, OR = 1.96, p = 1.8x10-6) and are plausibly related to smoking cessation through pathways in the brain and respiratory system. CONCLUSIONS The use of an alternative cessation phenotype based on difficulty quitting smoking facilitated the identification of new pathways that could lead to unique smoking treatments.
Collapse
Affiliation(s)
- Adriana Lori
- Department of Population Science, American Cancer Society, Atlanta, GA, USA.
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - J Lee Westmaas
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| |
Collapse
|
2
|
Mukhopadhyay S, Dixit P, Khanom N, Sanghera G, McGurk KA. The Genetic Factors Influencing Cardiomyopathies and Heart Failure across the Allele Frequency Spectrum. J Cardiovasc Transl Res 2024; 17:1119-1139. [PMID: 38771459 PMCID: PMC11519107 DOI: 10.1007/s12265-024-10520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) remains a major cause of mortality and morbidity worldwide. Understanding the genetic basis of HF allows for the development of disease-modifying therapies, more appropriate risk stratification, and personalised management of patients. The advent of next-generation sequencing has enabled genome-wide association studies; moving beyond rare variants identified in a Mendelian fashion and detecting common DNA variants associated with disease. We summarise the latest GWAS and rare variant data on mixed and refined HF aetiologies, and cardiomyopathies. We describe the recent understanding of the functional impact of titin variants and highlight FHOD3 as a novel cardiomyopathy-associated gene. We describe future directions of research in this field and how genetic data can be leveraged to improve the care of patients with HF.
Collapse
Affiliation(s)
- Srinjay Mukhopadhyay
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
- School of Medicine, Cardiff University, Wales, UK
| | - Prithvi Dixit
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Najiyah Khanom
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Gianluca Sanghera
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
3
|
Affiliation(s)
- Robert A Hegele
- Department of Medicine and Robarts Research Institute, Western University, 4288A-1151 Richmond Street North, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
4
|
Ryan B, Nirmalkanna A, Cigsar C, Yilmaz YE. Evaluation of Designs and Estimation Methods Under Response-Dependent Two-Phase Sampling for Genetic Association Studies. STATISTICS IN BIOSCIENCES 2023. [DOI: 10.1007/s12561-023-09369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Whole Exome Sequencing of Hemiplegic Migraine Patients Shows an Increased Burden of Missense Variants in CACNA1H and CACNA1I Genes. Mol Neurobiol 2023; 60:3034-3043. [PMID: 36786913 PMCID: PMC10122627 DOI: 10.1007/s12035-023-03255-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Hemiplegic migraine (HM) is a rare subtype of migraine with aura. Given that causal missense mutations in the voltage-gated calcium channel α1A subunit gene CACNA1A have been identified in a subset of HM patients, we investigated whether HM patients without a mutation have an increased burden of such variants in the "CACNA1x gene family". Whole exome sequencing data of an Australian cohort of unrelated HM patients (n = 184), along with public data from gnomAD, as controls, was used to assess the burden of missense variants in CACNA1x genes. We performed both a variant and a subject burden test. We found a significant burden for the number of variants in CACNA1E (p = 1.3 × 10-4), CACNA1H (p < 2.2 × 10-16) and CACNA1I (p < 2.2 × 10-16). There was also a significant burden of subjects with missense variants in CACNA1E (p = 6.2 × 10-3), CACNA1H (p < 2.2 × 10-16) and CACNA1I (p < 2.2 × 10-16). Both the number of variants and number of subjects were replicated for CACNA1H (p = 3.5 × 10-8; p = 0.012) and CACNA1I (p = 0.019, p = 0.044), respectively, in a Dutch clinical HM cohort (n = 32), albeit that CACNA1I did not remain significant after multiple testing correction. Our data suggest that HM, in the absence of a single causal mutation, is a complex trait, in which an increased burden of missense variants in CACNA1H and CACNA1I may contribute to the risk of disease.
Collapse
|
6
|
Baselli GA, Jamialahmadi O, Pelusi S, Ciociola E, Malvestiti F, Saracino M, Santoro L, Cherubini A, Dongiovanni P, Maggioni M, Bianco C, Tavaglione F, Cespiati A, Mancina RM, D'Ambrosio R, Vaira V, Petta S, Miele L, Vespasiani-Gentilucci U, Federico A, Pihlajamaki J, Bugianesi E, Fracanzani AL, Reeves HL, Soardo G, Prati D, Romeo S, Valenti LV. Rare ATG7 genetic variants predispose patients to severe fatty liver disease. J Hepatol 2022; 77:596-606. [PMID: 35405176 DOI: 10.1016/j.jhep.2022.03.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disorders and has a strong heritable component. The aim of this study was to identify new loci that contribute to severe NAFLD by examining rare variants. METHODS We performed whole-exome sequencing in individuals with NAFLD and advanced fibrosis or hepatocellular carcinoma (n = 301) and examined the enrichment of likely pathogenic rare variants vs. the general population. This was followed by validation at the gene level. RESULTS In patients with severe NAFLD, we observed an enrichment of the p.P426L variant (rs143545741 C>T; odds ratio [OR] 5.26, 95% CI 2.1-12.6; p = 0.003) of autophagy-related 7 (ATG7), which we characterized as a loss-of-function, vs. the general population, and an enrichment in rare variants affecting the catalytic domain (OR 13.9; 95% CI 1.9-612; p = 0.002). In the UK Biobank cohort, loss-of-function ATG7 variants increased the risk of cirrhosis and hepatocellular carcinoma (OR 3.30; 95% CI 1.1-7.5 and OR 12.30, 95% CI 2.6-36, respectively; p <0.001 for both). The low-frequency loss-of-function p.V471A variant (rs36117895 T>C) was also associated with severe NAFLD in the clinical cohort (OR 1.7; 95% CI 1.2-2.5; p = 0.003), predisposed to hepatocellular ballooning (p = 0.007) evolving to fibrosis in the Liver biopsy cohort (n = 2,268), and was associated with liver injury in the UK Biobank (aspartate aminotransferase levels, p <0.001), with a larger effect in severely obese individuals in whom it was linked to hepatocellular carcinoma (p = 0.009). ATG7 protein localized to periportal hepatocytes, particularly in the presence of ballooning. In the Liver Transcriptomic cohort (n = 125), ATG7 expression correlated with suppression of the TNFα pathway, which was conversely upregulated in p.V471A carriers. CONCLUSIONS We identified rare and low-frequency ATG7 loss-of-function variants that promote NAFLD progression by impairing autophagy and facilitating ballooning and inflammation. LAY SUMMARY We found that rare mutations in a gene called autophagy-related 7 (ATG7) increase the risk of developing severe liver disease in individuals with dysmetabolism. These mutations cause an alteration in protein function and impairment of self-renewal of cellular content, leading to liver damage and inflammation.
Collapse
Affiliation(s)
- Guido A Baselli
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Serena Pelusi
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Ester Ciociola
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Marco Saracino
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luigi Santoro
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Cherubini
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristiana Bianco
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Tavaglione
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Annalisa Cespiati
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosellina M Mancina
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Roberta D'Ambrosio
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salvatore Petta
- Gastroenterology and Hepatology, PROMISE, Università di Palermo, Palermo, Italy
| | - Luca Miele
- Department of Internal Medicine, Fondazione Policlinico A. Gemelli, Università Cattolica di Roma, Rome, Italy
| | - Umberto Vespasiani-Gentilucci
- Clinical Medicine and Hepatology Unit, Department of Internal Medicine and Geriatrics, Campus Bio-Medico University, Rome, Italy
| | - Alessandro Federico
- Division of Hepatogastroenterology, Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Jussi Pihlajamaki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, Università di Torino, Turin, Italy
| | - Anna L Fracanzani
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Helen L Reeves
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Giorgio Soardo
- Clinic of Internal Medicine - Liver Unit, Department of Medical Area (DAME), Università degli Studi di Udine, Udine, Italy; Italian Liver Foundation, Area Science Park, Basovizza Campus, Trieste, Italy
| | - Daniele Prati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, Italy; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Luca Vc Valenti
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
7
|
Charon C, Allodji R, Meyer V, Deleuze JF. Impact of pre- and post-variant filtration strategies on imputation. Sci Rep 2021; 11:6214. [PMID: 33737531 PMCID: PMC7973508 DOI: 10.1038/s41598-021-85333-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
Quality control (QC) methods for genome-wide association studies and fine mapping are commonly used for imputation, however they result in loss of many single nucleotide polymorphisms (SNPs). To investigate the consequences of filtration on imputation, we studied the direct effects on the number of markers, their allele frequencies, imputation quality scores and post-filtration events. We pre-phrased 1031 genotyped individuals from diverse ethnicities and compared the imputed variants to 1089 NCBI recorded individuals for additional validation. Without QC-based variant pre-filtration, we observed no impairment in the imputation of SNPs that failed QC whereas with pre-filtration there was an overall loss of information. Significant differences between frequencies with and without pre-filtration were found only in the range of very rare (5E-04-1E-03) and rare variants (1E-03-5E-03) (p < 1E-04). Increasing the post-filtration imputation quality score from 0.3 to 0.8 reduced the number of single nucleotide variants (SNVs) < 0.001 2.5 fold with or without QC pre-filtration and halved the number of very rare variants (5E-04). Thus, to maintain confidence and enough SNVs, we propose here a two-step filtering procedure which allows less stringent filtering prior to imputation and post-imputation in order to increase the number of very rare and rare variants compared to conservative filtration methods.
Collapse
Affiliation(s)
- Céline Charon
- CEA Paris-Saclay, Institut François Jacob, Centre National de Recherche en Génomique Humaine, 2 rue Gaston Crémieux, Evry, 91057, France.
| | - Rodrigue Allodji
- Radiation Epidemiology Group CESP, Inserm Unit 1018, Gustave Roussy Université Paris Saclay, 114 rue Edouard Vaillant, Villejuif, 94805, France
| | - Vincent Meyer
- CEA Paris-Saclay, Institut François Jacob, Centre National de Recherche en Génomique Humaine, 2 rue Gaston Crémieux, Evry, 91057, France
| | - Jean-François Deleuze
- CEA Paris-Saclay, Institut François Jacob, Centre National de Recherche en Génomique Humaine, 2 rue Gaston Crémieux, Evry, 91057, France
| |
Collapse
|
8
|
Identification of the potential type 2 diabetes susceptibility genetic elements in South Asian populations. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Whole-exome sequencing reveals ANO8 as a genetic risk factor for intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth 2020; 20:544. [PMID: 32942997 PMCID: PMC7499841 DOI: 10.1186/s12884-020-03240-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Intrahepatic cholestasis of pregnancy (ICP) is characterized by pruritus and cholestasis in late pregnancy and results in adverse pregnancy outcomes, including preterm delivery and birth weight, which are affected by the genetic and environmental background. However, until now, the genetic architecture of ICP has remained largely unclear. Methods Twenty-six clinical data points were recorded for 151 Chinese ICP patients. The data generated from whole-exome sequencing (WES) using the BGISEQ-500 platform were further analyzed by Burrows-Wheeler Aligner (BWA) software, Genome Analysis Toolkit (GATK), ANNOVAR tool, etc. R packages were used to conduct t-test, Fisher’s test and receiver operating characteristic (ROC) curve analyses. Results We identified eighteen possible pathogenic loci associated with ICP disease in known genes, covering ABCB4, ABCB11, ATP8B1 and TJP2. The loci Lys386Gln, Gly527Gln and Trp708Ter in ABCB4, Leu589Met, Gln605Pro and Gln1194Ter in ABCB11, and Arg189Ser in TJP2 were novel discoveries. In addition, WES analysis indicated that the gene ANO8 involved in the transport of bile salts is newly identified as associated with ICP. The functional network of the ANO8 gene confirmed this finding. ANO8 contained 8 rare missense mutations that were found in eight patients among the 151 cases and were absent from 1029 controls. Out of the eight SNPs, 3 were known, and the remaining five are newly identified. These variants have a low frequency, ranging from 0.000008 to 0.00001 in the ExAC, gnomAD – Genomes and TOPMED databases. Bioinformatics analysis showed that the sites and their corresponding amino acids were both highly conserved among vertebrates. Moreover, the influences of all the mutations on protein function were predicted to be damaging by the SIFT tool. Combining clinical data, it was found that the mutation group (93.36 µmol/L) had significantly (P = 0.038) higher total bile acid (TBA) levels than the wild-type group (40.81 µmol/L). Conclusions To the best of our knowledge, this is the first study to employ WES technology to detect genetic loci for ICP. Our results provide new insights into the genetic basis of ICP and will benefit the final identification of the underlying mutations.
Collapse
|
10
|
Hahn G, Lutz SM, Hecker J, Prokopenko D, Cho MH, Silverman EK, Weiss ST, Lange C. locStra: Fast analysis of regional/global stratification in whole-genome sequencing studies. Genet Epidemiol 2020; 45:82-98. [PMID: 32929743 DOI: 10.1002/gepi.22356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
locStra is an R -package for the analysis of regional and global population stratification in whole-genome sequencing (WGS) studies, where regional stratification refers to the substructure defined by the loci in a particular region on the genome. Population substructure can be assessed based on the genetic covariance matrix, the genomic relationship matrix, and the unweighted/weighted genetic Jaccard similarity matrix. Using a sliding window approach, the regional similarity matrices are compared with the global ones, based on user-defined window sizes and metrics, for example, the correlation between regional and global eigenvectors. An algorithm for the specification of the window size is provided. As the implementation fully exploits sparse matrix algebra and is written in C++, the analysis is highly efficient. Even on single cores, for realistic study sizes (several thousand subjects, several million rare variants per subject), the runtime for the genome-wide computation of all regional similarity matrices does typically not exceed one hour, enabling an unprecedented investigation of regional stratification across the entire genome. The package is applied to three WGS studies, illustrating the varying patterns of regional substructure across the genome and its beneficial effects on association testing.
Collapse
Affiliation(s)
- Georg Hahn
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Sharon M Lutz
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Julian Hecker
- Department of Medicine, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts, USA
| | - Dmitry Prokopenko
- Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Michael H Cho
- Department of Medicine, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts, USA
| | - Edwin K Silverman
- Department of Medicine, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts, USA
| | - Scott T Weiss
- Department of Medicine, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts, USA
| | - Christoph Lange
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | | |
Collapse
|
11
|
Does the CD33 rs3865444 Polymorphism Confer Susceptibility to Alzheimer’s Disease? J Mol Neurosci 2020; 70:851-860. [DOI: 10.1007/s12031-020-01507-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
|
12
|
Höglund J, Rafati N, Rask-Andersen M, Enroth S, Karlsson T, Ek WE, Johansson Å. Improved power and precision with whole genome sequencing data in genome-wide association studies of inflammatory biomarkers. Sci Rep 2019; 9:16844. [PMID: 31727947 PMCID: PMC6856527 DOI: 10.1038/s41598-019-53111-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified associations between thousands of common genetic variants and human traits. However, common variants usually explain a limited fraction of the heritability of a trait. A powerful resource for identifying trait-associated variants is whole genome sequencing (WGS) data in cohorts comprised of families or individuals from a limited geographical area. To evaluate the power of WGS compared to imputations, we performed GWAS on WGS data for 72 inflammatory biomarkers, in a kinship-structured cohort. When using WGS data, we identified 18 novel associations that were not detected when analyzing the same biomarkers with genotyped or imputed SNPs. Five of the novel top variants were low frequency variants with a minor allele frequency (MAF) of <5%. Our results suggest that, even when applying a GWAS approach, we gain power and precision using WGS data, presumably due to more accurate determination of genotypes. The lack of a comparable dataset for replication of our results is a limitation in our study. However, this further highlights that there is a need for more genetic epidemiological studies based on WGS data.
Collapse
Affiliation(s)
- Julia Höglund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Nima Rafati
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Torgny Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Weronica E Ek
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
D'Erasmo L, Di Costanzo A, Cassandra F, Minicocci I, Polito L, Montali A, Ceci F, Arca M. Spectrum of Mutations and Long-Term Clinical Outcomes in Genetic Chylomicronemia Syndromes. Arterioscler Thromb Vasc Biol 2019; 39:2531-2541. [PMID: 31619059 DOI: 10.1161/atvbaha.119.313401] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the prototypes of monogenic and polygenic conditions underlying genetically based severe hypertriglyceridemia. These conditions have been only partially investigated so that a systematic comparison of their characteristics remains incomplete. We aim to compare genetic profiles and clinical outcomes in FCS and MCS. Approach and Results: Thirty-two patients with severe hypertriglyceridemia (triglyceride >1000 mg/dL despite lipid-lowering treatments with or without history of acute pancreatitis) were enrolled. Rare and common variants were screened using a panel of 18 triglyceride-raising genes, including the canonical LPL, APOC2, APOA5, GP1HBP1, and LMF1. Clinical information was collected retrospectively for a median period of 44 months. Across the study population, 37.5% were classified as FCS due to the presence of biallelic, rare mutations and 59.4% as MCS due to homozygosity for nonpathogenic or heterozygosity for pathogenic variants in canonical genes, as well as for rare and low frequency variants in noncanonical genes. As compared with MCS, FCS patients showed a lower age of hypertriglyceridemia onset, higher levels of on-treatment triglycerides, and 3-fold higher incidence rate of acute pancreatitis. CONCLUSIONS Our data indicate that the genetic architecture and natural history of FCS and MCS are different. FCS expressed the most severe clinical phenotype as determined by resistance to triglyceride-lowering medications and higher incidence of acute pancreatitis episodes. The most common genetic abnormality underlying FCS was represented by biallelic mutations in LPL while APOA5 variants, in combination with high rare polygenic burden, were the most frequent genotype of MCS.
Collapse
Affiliation(s)
- Laura D'Erasmo
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| | - Alessia Di Costanzo
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| | - Francesca Cassandra
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| | - Ilenia Minicocci
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| | - Luca Polito
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| | - Anna Montali
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| | - Fabrizio Ceci
- Department of Experimental Medicine (F. Ceci), Sapienza University of Rome, Italy
| | - Marcello Arca
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| |
Collapse
|
14
|
Giuliani C, Garagnani P, Franceschi C. Genetics of Human Longevity Within an Eco-Evolutionary Nature-Nurture Framework. Circ Res 2019; 123:745-772. [PMID: 30355083 DOI: 10.1161/circresaha.118.312562] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human longevity is a complex trait, and to disentangle its basis has a great theoretical and practical consequences for biomedicine. The genetics of human longevity is still poorly understood despite several investigations that used different strategies and protocols. Here, we argue that such rather disappointing harvest is largely because of the extraordinary complexity of the longevity phenotype in humans. The capability to reach the extreme decades of human lifespan seems to be the result of an intriguing mixture of gene-environment interactions. Accordingly, the genetics of human longevity is here described as a highly context-dependent phenomenon, within a new integrated, ecological, and evolutionary perspective, and is presented as a dynamic process, both historically and individually. The available literature has been scrutinized within this perspective, paying particular attention to factors (sex, individual biography, family, population ancestry, social structure, economic status, and education, among others) that have been relatively neglected. The strength and limitations of the most powerful and used tools, such as genome-wide association study and whole-genome sequencing, have been discussed, focusing on prominently emerged genes and regions, such as apolipoprotein E, Forkhead box O3, interleukin 6, insulin-like growth factor-1, chromosome 9p21, 5q33.3, and somatic mutations among others. The major results of this approach suggest that (1) the genetics of longevity is highly population specific; (2) small-effect alleles, pleiotropy, and the complex allele timing likely play a major role; (3) genetic risk factors are age specific and need to be integrated in the light of the geroscience perspective; (4) a close relationship between genetics of longevity and genetics of age-related diseases (especially cardiovascular diseases) do exist. Finally, the urgent need of a global approach to the largely unexplored interactions between the 3 genetics of human body, that is, nuclear, mitochondrial, and microbiomes, is stressed. We surmise that the comprehensive approach here presented will help in increasing the above-mentioned harvest.
Collapse
Affiliation(s)
- Cristina Giuliani
- From the Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology (C.G.), University of Bologna, Italy.,School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom (C.G.).,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Italy (C.G.)
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) (P.G.), University of Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden (P.G.)
| | | |
Collapse
|
15
|
Pasipoularides A. Clinical-pathological correlations of BAV and the attendant thoracic aortopathies. Part 2: Pluridisciplinary perspective on their genetic and molecular origins. J Mol Cell Cardiol 2019; 133:233-246. [PMID: 31175858 DOI: 10.1016/j.yjmcc.2019.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022]
Abstract
Bicuspid aortic valve (BAV) arises during valvulogenesis when 2 leaflets/cusps of the aortic valve (AOV) are fused together. Its clinical manifestations pertain to faulty AOV function, the associated aortopathy, and other complications surveyed in Part 1 of the present bipartite-series. Part 2 examines mainly genetic and epigenetic causes of BAV and BAV-associated aortopathies (BAVAs) and disease syndromes (BAVD). Part 1 explored the heterogeneity among subsets of patients with BAV and BAVA/BAVD, and investigated abnormal fluid dynamic stress and strain patterns sustained by the cusps. Specific BAV morphologies engender systolic outflow asymmetries, associated with abnormal aortic regional wall-shear-stress distributions and the expression/localization of BAVAs. Understanding fluid dynamic factors besides the developmental mechanisms and underlying genetics governing these congenital anomalies is necessary to explain patient predisposition to aortopathy and phenotypic heterogeneity. BAV aortopathy entails complex/multifactorial pathophysiology, involving alterations in genetics, epigenetics, hemodynamics, and in cellular and molecular pathways. There is always an interdependence between organismic developmental signals and genes-no systemic signals, no gene-expression; no active gene, no next step. An apposite signal induces the expression of the next developmental gene, which needs be expressed to trigger the next signal, and so on. Hence, embryonic, then post-partum, AOV and thoracic aortic development comprise cascades of developmental genes and their regulation. Interdependencies between them arise, entailing reciprocal/cyclical mutual interactions and adaptive feedback loops, by which developmental morphogenetic processes self-correct responding to environmental inputs/reactions. This Survey can serve as a reference point and driver for further pluridisciplinary BAV/BAVD studies and their clinical translation.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Duke/NSF Center for Emerging Cardiovascular Technologies, Emeritus Faculty of Surgery and of Biomedical Engineering, Duke University School of Medicine and Graduate School, Durham, NC, USA.
| |
Collapse
|
16
|
Cuna A, George L, Sampath V. Genetic predisposition to necrotizing enterocolitis in premature infants: Current knowledge, challenges, and future directions. Semin Fetal Neonatal Med 2018; 23:387-393. [PMID: 30292709 PMCID: PMC6626706 DOI: 10.1016/j.siny.2018.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of genetics in the pathogenesis of necrotizing enterocolitis (NEC) was initially informed by epidemiological data indicating differences in prevalence among different ethnic groups as well as concordance in twins. These early observations, together with major advances in genomic research, paved the way for studies that begin to reveal the contribution of genetics to NEC. Using the candidate gene or pathway approach, several potential pathogenic variants for NEC in premature infants have already been identified. More recently, genome-wide association studies and exome-sequencing based studies for NEC have been reported. These advances, however, are tempered by the lack of adequately powered replication cohorts to validate the accuracy of these discoveries. Despite many challenges, genetic research in NEC is expected to increase, providing new insights into its pathogenesis and bringing the promise of personalized care closer to reality. In this review we provide a summary of genetic studies in NEC along with defining the challenges and possible future approaches.
Collapse
Affiliation(s)
| | | | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA.
| |
Collapse
|
17
|
Delgado-Vega AM, Martínez-Bueno M, Oparina NY, López Herráez D, Kristjansdottir H, Steinsson K, Kozyrev SV, Alarcón-Riquelme ME. Whole Exome Sequencing of Patients from Multicase Families with Systemic Lupus Erythematosus Identifies Multiple Rare Variants. Sci Rep 2018; 8:8775. [PMID: 29884787 PMCID: PMC5993790 DOI: 10.1038/s41598-018-26274-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/03/2018] [Indexed: 01/30/2023] Open
Abstract
In an effort to identify rare alleles associated with SLE, we have performed whole exome sequencing of the most distantly related affected individuals from two large Icelandic multicase SLE families followed by Ta targeted genotyping of additional relatives. We identified multiple rare likely pathogenic variants in nineteen genes co-segregating with the disease through multiple generations. Gene co-expression and protein-protein interaction analysis identified a network of highly connected genes comprising several loci previously implicated in autoimmune diseases. These genes were significantly enriched for immune system development, lymphocyte activation, DNA repair, and V(D)J gene recombination GO-categories. Furthermore, we found evidence of aggregate association and enrichment of rare variants at the FAM71E1/EMC10 locus in an independent set of 4,254 European SLE-cases and 4,349 controls. Our study presents evidence supporting that multiple rare likely pathogenic variants, in newly identified genes involved in known disease pathogenic pathways, segregate with SLE at the familial and population level.
Collapse
Affiliation(s)
- Angélica M Delgado-Vega
- Department of Immunology, Genetics and Pathology, Uppsala University, The Rudbeck Laboratory, Uppsala, Sweden
| | - Manuel Martínez-Bueno
- Pfizer/University of Granada/Andalusian Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Nina Y Oparina
- Institute for Environmental Medicine, Karolinska Institutet, Solna, Sweden.,Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - David López Herráez
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | | | - Sergey V Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Marta E Alarcón-Riquelme
- Pfizer/University of Granada/Andalusian Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain. .,Institute for Environmental Medicine, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
18
|
What Does This Mutation Mean? The Tools and Pitfalls of Variant Interpretation in Lymphoid Malignancies. Int J Mol Sci 2018; 19:ijms19041251. [PMID: 29677173 PMCID: PMC5979354 DOI: 10.3390/ijms19041251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/09/2018] [Accepted: 04/14/2018] [Indexed: 01/21/2023] Open
Abstract
High throughput sequencing (HTS) is increasingly important in determining cancer diagnoses, with subsequent prognostic and therapeutic implications. The biology of cancer is becoming increasingly deciphered and it is clear that therapy needs to be individually tailored. Whilst translational research plays an important role in lymphoid malignancies, few guidelines exist to guide biologists and routine laboratories through this constantly evolving field. In this article, we review the challenges of interpreting HTS in lymphoid malignancies and provide a toolkit to interpret single nucleotide variants obtained from HTS. We define the pre-analytical issues such as sequencing DNA obtained from formalin-fixed and paraffin-embedded tissue (FFPE), the acquisition of germline DNA, or the bioinformatic pitfalls, the analytical issues encountered and how to manage them. We describe the main constitutional and cancer databases, their characteristics and limitations, with an emphasis on variant interpretation in lymphoid malignancies. Finally, we discuss the challenges of predictions that one can make using in silico or in vitro modelling, pharmacogenomic screening, and the limits of those prediction tools. This description of the current status in genomic interpretation highlights the need for new large databases and international collaboration in the lymphoma field.
Collapse
|
19
|
Shakeel M, Irfan M, Khan IA. Estimating the mutational load for cardiovascular diseases in Pakistani population. PLoS One 2018; 13:e0192446. [PMID: 29420653 PMCID: PMC5805289 DOI: 10.1371/journal.pone.0192446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/23/2018] [Indexed: 02/05/2023] Open
Abstract
The deleterious genetic variants contributing to certain diseases may differ in terms of number and allele frequency from population to population depending on their evolutionary background. Here, we prioritize the deleterious variants from Pakistani population in manually curated gene list already reported to be associated with common, Mendelian, and congenital cardiovascular diseases (CVDs) using the genome/exome sequencing data of Pakistani individuals publically available in 1000 Genomes Project (PJL), and Exome Aggregation Consortium (ExAC) South Asia. By applying a set of tools such as Combined Annotation Dependent Depletion (CADD), ANNOVAR, and Variant Effect Predictor (VEP), we highlighted 561 potentially detrimental variants from PJL data, and 7374 variants from ExAC South Asian data. Likewise, filtration from ClinVar for CVDs revealed 03 pathogenic and 02 likely pathogenic variants from PJL and 112 pathogenic and 42 likely pathogenic variants from ExAC South Asians. The comparison of derived allele frequencies (DAF) revealed many of these prioritized variants having two fold and higher DAF in Pakistani individuals than in other populations. The highest number of deleterious variants contributing to common CVDs in descending order includes hypertension, atherosclerosis, heart failure, aneurysm, and coronary heart disease, and for Mendelian and congenital CVDs cardiomyopathies, cardiac arrhythmias, and atrioventricular septal defects.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Irfan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
20
|
Mutational analysis of IZUMO1R in women with fertilization failure and polyspermy after in vitro fertilization. J Assist Reprod Genet 2017; 35:539-544. [PMID: 29243140 DOI: 10.1007/s10815-017-1101-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The etiology of fertilization failure and polyspermy during assisted reproductive technology (ART) remains elusive. The aim of this study was to determine whether mutations in the IZUMO1 receptor (IZUMO1R) gene, which is essential for mammalian fertilization, contribute to the pathogenesis of fertilization failure or polyspermy in humans. METHODS We recruited 215 female subjects with fertilization failure/poor fertilization, 330 females with polyspermy, and 300 matched controls. All subjects underwent IVF treatment. Peripheral blood DNA of cases was extracted and screened for mutations in IZUMO1R gene. RESULTS Four rare single nucleotide polymorphisms (SNPs) of the IZUMO1R were identified among specimens from patients with fertilization failure and polyspermy but were absent in the 300 control subjects. These included a missense SNP (rs76779571 in exon 4), which was found in two fertilization failure patients, and a nonsynonymous SNP (rs61742524 in exon 1) and two synonymous SNPs (rs76781645 in exon 1 and rs377369966 in intron 2), which were found among three polyspermy cases. CONCLUSIONS The variations in IZUMO1R might play a role in the pathogenesis of fertilization failure and polyspermy, and the putative functions and effects of these rare variants require further studies.
Collapse
|
21
|
Chen MH, Yanek LR, Backman JD, Eicher JD, Huffman JE, Ben-Shlomo Y, Beswick AD, Yerges-Armstrong LM, Shuldiner AR, O'Connell JR, Mathias RA, Becker DM, Becker LC, Lewis JP, Johnson AD, Faraday N. Exome-chip meta-analysis identifies association between variation in ANKRD26 and platelet aggregation. Platelets 2017; 30:164-173. [PMID: 29185836 DOI: 10.1080/09537104.2017.1384538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previous genome-wide association studies (GWAS) have identified several variants associated with platelet function phenotypes; however, the proportion of variance explained by the identified variants is mostly small. Rare coding variants, particularly those with high potential for impact on protein structure/function, may have substantial impact on phenotype but are difficult to detect by GWAS. The main purpose of this study was to identify low frequency or rare variants associated with platelet function using genotype data from the Illumina HumanExome Bead Chip. Three family-based cohorts of European ancestry, including ~4,000 total subjects, comprised the discovery cohort and two independent cohorts, one of European and one of African American ancestry, were used for replication. Optical aggregometry in platelet-rich plasma was performed in all the discovery cohorts in response to adenosine diphosphate (ADP), epinephrine, and collagen. Meta-analyses were performed using both gene-based and single nucleotide variant association methods. The gene-based meta-analysis identified a significant association (P = 7.13 × 10-7) between rare genetic variants in ANKRD26 and ADP-induced platelet aggregation. One of the ANKRD26 SNVs - rs191015656, encoding a threonine to isoleucine substitution predicted to alter protein structure/function, was replicated in Europeans. Aggregation increases of ~20-50% were observed in heterozygotes in all cohorts. Novel genetic signals in ABCG1 and HCP5 were also associated with platelet aggregation to ADP in meta-analyses, although only results for HCP5 could be replicated. The SNV in HCP5 intersects epigenetic signatures in CD41+ megakaryocytes suggesting a new functional role in platelet biology for HCP5. This is the first study to use gene-based association methods from SNV array genotypes to identify rare variants related to platelet function. The molecular mechanisms and pathophysiological relevance for the identified genetic associations requires further study.
Collapse
Affiliation(s)
- Ming-Huei Chen
- a National Heart, Lung and Blood Institute's The Framingham Heart Study, Population Sciences Branch, Division of Intramural Research , National Heart, Lung and Blood Institute , Framingham , MA , USA
| | - Lisa R Yanek
- b GeneSTAR Research Program, Department of Medicine, Division of General Internal Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Joshua D Backman
- c School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - John D Eicher
- a National Heart, Lung and Blood Institute's The Framingham Heart Study, Population Sciences Branch, Division of Intramural Research , National Heart, Lung and Blood Institute , Framingham , MA , USA
| | - Jennifer E Huffman
- a National Heart, Lung and Blood Institute's The Framingham Heart Study, Population Sciences Branch, Division of Intramural Research , National Heart, Lung and Blood Institute , Framingham , MA , USA
| | - Yoav Ben-Shlomo
- d School of Social and Community Medicine , University of Bristol , Bristol , UK
| | - Andrew D Beswick
- e School of Clinical Sciences , University of Bristol , Bristol , UK
| | - Laura M Yerges-Armstrong
- c School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Alan R Shuldiner
- c School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Jeffrey R O'Connell
- c School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Rasika A Mathias
- f GeneSTAR Research Program, Department of Medicine, Divisions of Allergy and Clinical Immunology and General Internal Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Diane M Becker
- b GeneSTAR Research Program, Department of Medicine, Division of General Internal Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Lewis C Becker
- g GeneSTAR Research Program, Department of Medicine, Divisions of Cardiology and General Internal Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Joshua P Lewis
- c School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Andrew D Johnson
- a National Heart, Lung and Blood Institute's The Framingham Heart Study, Population Sciences Branch, Division of Intramural Research , National Heart, Lung and Blood Institute , Framingham , MA , USA
| | - Nauder Faraday
- h GeneSTAR Research Program, Department of Anesthesiology & Critical Care Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
22
|
Abstract
Understanding the genetic risk factors for stroke is an essential step to decipher the underlying mechanisms, facilitate the identification of novel therapeutic targets, and optimize the design of prevention strategies. A very small proportion of strokes are attributable to monogenic conditions, the vast majority being multifactorial, with multiple genetic and environmental risk factors of small effect size. Genome-wide association studies and large international consortia have been instrumental in finding genetic risk factors for stroke. While initial studies identified risk loci for specific stroke subtypes, more recent studies also revealed loci associated with all stroke and all ischemic stroke. Risk loci for ischemic stroke and its subtypes have been implicated in atrial fibrillation (PITX2 and ZFHX3), coronary artery disease (ABO, chr9p21, HDAC9, and ALDH2), blood pressure (ALDH2 and HDAC9), pericyte and smooth muscle cell development (FOXF2), coagulation (HABP2), carotid plaque formation (MMP12), and neuro-inflammation (TSPAN2). For hemorrhagic stroke, two loci (APOE and PMF1) have been identified.
Collapse
Affiliation(s)
- Ganesh Chauhan
- Inserm U1219 Bordeaux Population Health Research Center, 146, rue Léo Saignat, 33000, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Stéphanie Debette
- Inserm U1219 Bordeaux Population Health Research Center, 146, rue Léo Saignat, 33000, Bordeaux, France. .,University of Bordeaux, Bordeaux, France. .,Department of Neurology, Bordeaux University Hospital, Bordeaux, France.
| |
Collapse
|
23
|
Raghavan N, Tosto G. Genetics of Alzheimer's Disease: the Importance of Polygenic and Epistatic Components. Curr Neurol Neurosci Rep 2017; 17:78. [PMID: 28825204 PMCID: PMC5699909 DOI: 10.1007/s11910-017-0787-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW We aimed to summarize the recent advances in genetic findings of Alzheimer's disease (AD), focusing on traditional single-marker and gene approaches and non-traditional ones, i.e., polygenic and epistatic components. RECENT FINDINGS Genetic studies have progressed over the last few decades from linkage to genome-wide association studies (GWAS), and most recently studies utilizing high-throughput sequencing. So far, GWASs have identified several common variants characterized by small effect sizes (besides APOE-ε4). Sequencing has facilitated the study of rare variants with larger effects. Nevertheless, missing heritability for AD remains extensive; a possible explanation might lie in the existence of polygenic and epistatic components. We review findings achieved by single-marker approaches, but also polygenic and epistatic associations. The latter two are critical, yet-underexplored mechanisms. Genes involved in complex diseases are likely regulated by mechanisms and pathways involving many other genes, an aspect potentially missed by traditional approaches.
Collapse
Affiliation(s)
- Neha Raghavan
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 622 W. 168th Street PH 19-314, New York, NY, 10032, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY, 10032, USA
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| | - Giuseppe Tosto
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 622 W. 168th Street PH 19-314, New York, NY, 10032, USA.
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY, 10032, USA.
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 622 W. 168th Street PH 19-314, New York, NY, 10032, USA.
| |
Collapse
|
24
|
Li Q, Zhao Y, Wu G, Chen S, Zhou Y, Li S, Zhou M, Fan Q, Pu J, Hong K, Cheng X, Kenneth Wang Q, Tu X. De Novo FGF12 (Fibroblast Growth Factor 12) Functional Variation Is Potentially Associated With Idiopathic Ventricular Tachycardia. J Am Heart Assoc 2017; 6:JAHA.117.006130. [PMID: 28775062 PMCID: PMC5586455 DOI: 10.1161/jaha.117.006130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Idiopathic ventricular tachycardia (VT) is a type of cardiac arrhythmia occurring in structurally normal hearts. The heritability of idiopathic VT remains to be clarified, and numerous genetic factors responsible for development of idiopathic VT are as yet unclear. Variations in FGF12 (fibroblast growth factor 12), which is expressed in the human ventricle and modulates the cardiac Na+ channel NaV1.5, may play an important role in the genetic pathogenesis of VT. Methods and Results We tested the hypothesis that genetic variations in FGF12 are associated with VT in 2 independent Chinese cohorts and resequenced all the exons and exon–intron boundaries and the 5′ and 3′ untranslated regions of FGF12 in 320 unrelated participants with idiopathic VT. For population‐based case–control association studies, we chose 3 single‐nucleotide polymorphisms—rs1460922, rs4687326, and rs2686464—which included all the exons of FGF12. The results showed that the single‐nucleotide polymorphism rs1460922 in FGF12 was significantly associated with VT after adjusting for covariates of sex and age in 2 independent Chinese populations: adjusted P=0.015 (odds ratio: 1.54 [95% CI, 1.09–2.19]) in the discovery sample, adjusted P=0.018 (odds ratio: 1.64 [95% CI, 1.09–2.48]) in the replication sample, and adjusted P=2.52E‐04 (odds ratio: 1.59 [95% CI, 1.24–2.03]) in the combined sample. After resequencing all amino acid coding regions and untranslated regions of FGF12, 5 rare variations were identified. The result of western blotting revealed that a de novo functional variation, p.P211Q (1.84% of 163 patients with right ventricular outflow tract VT), could downregulate FGF12 expression significantly. Conclusions In this study, we observed that rs1460922 of FGF12 was significantly associated with VT and identified that a de novo variation of FGF12 may be an important genetic risk factor for the pathogenesis of VT.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Ministry of Education and Ministry of Health, Wuhan, China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchao Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Mengchen Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Fan
- The Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jielin Pu
- State Key Laboratory of Cardiovascular Disease, Physiology and Pathophysiology Laboratory, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University and Jiangxi Key Laboratory of Molecular Medicine, Jiangxi, China
| | - Xiang Cheng
- The Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qing Kenneth Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China .,Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Kulecka M, Habior A, Paziewska A, Goryca K, Dąbrowska M, Ambrozkiewicz F, Walewska-Zielecka B, Gabriel A, Mikula M, Ostrowski J. Clinical Applicability of Whole-Exome Sequencing Exemplified by a Study in Young Adults with the Advanced Cryptogenic Cholestatic Liver Diseases. Gastroenterol Res Pract 2017; 2017:4761962. [PMID: 28626473 PMCID: PMC5463139 DOI: 10.1155/2017/4761962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The proper use of new medical tests in clinical practice requires the establishment of their value and range of diagnostic usefulness. While whole-exome sequencing (WES) has already entered the medical practice, recognizing its diagnostic usefulness in multifactorial diseases has not yet been achieved. AIMS The objective of this study was to establish usability of WES in determining genetic background of chronic cholestatic liver disease (CLD) in young patients. METHODS WES was performed on six young patients (between 17 and 22 years old) with advanced fibrosis or cirrhosis due to CLD and their immediate families. Sequencing was performed on an Ion Proton sequencer. RESULTS On average, 19,673 variants were identified, of which from 7 to 14 variants of an individual were nonsynonymous, homozygous, recessively inherited, and considered in silico as pathogenic. Although monogenic cause of CLD has not been determined, several heterozygous rare variants and polymorphisms were uncovered in genes previously known to be associated with CLD, including ATP8B1, ABCB11, RXRA, and ABCC4, indicative of multifactorial genetic background. CONCLUSIONS WES is a potentially useful diagnostic tool in determining genetic background of multifactorial diseases, but its main limitation results from the lack of opportunities for direct linkage between the uncovered genetic variants and molecular mechanisms of disease.
Collapse
Affiliation(s)
- Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Andrzej Habior
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Cancer Center-Institute, Roentgena 5, 02-781 Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Cancer Center-Institute, Roentgena 5, 02-781 Warsaw, Poland
| | - Filip Ambrozkiewicz
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Bożena Walewska-Zielecka
- Department of Public Health, Faculty of Health Sciences, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Andrzej Gabriel
- Department of Pathomorphology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Michal Mikula
- Department of Genetics, Cancer Center-Institute, Roentgena 5, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
- Department of Genetics, Cancer Center-Institute, Roentgena 5, 02-781 Warsaw, Poland
| |
Collapse
|
26
|
Somers M, Olde Loohuis LM, Aukes MF, Pasaniuc B, de Visser KCL, Kahn RS, Sommer IE, Ophoff RA. A Genetic Population Isolate in The Netherlands Showing Extensive Haplotype Sharing and Long Regions of Homozygosity. Genes (Basel) 2017; 8:E133. [PMID: 28471380 PMCID: PMC5448007 DOI: 10.3390/genes8050133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022] Open
Abstract
Genetic isolated populations have features that may facilitate genetic analyses and can be leveraged to improve power of mapping genes to complex traits. Our aim was to test the extent to which a population with a former history of geographic isolation and religious endogamy, and currently with one of the highest fertility rates in The Netherlands, shows signs of genetic isolation. For this purpose, genome-wide genotype data was collected of 72 unrelated individuals from this population as well as in a sample of 104 random control subjects from The Netherlands. Additional reference data from different populations and population isolates was available through HapMap and the Human Genome Diversity Project. We performed a number of analyses to compare the genetic structure between these populations: we calculated the pairwise genetic distance between populations, examined the extent of identical-by-descent (IBD) sharing and estimated the effective population size. Genetic analysis of this population showed consistent patterns of a population isolate at all levels tested. We confirmed that this population is most closely related to the Dutch control subjects, and detected high levels of IBD sharing and runs of homozygosity at equal or even higher levels than observed in previously described population isolates. The effective population size of this population was estimated to be several orders of magnitude smaller than that of the Dutch control sample. We conclude that the geographic isolation of this population combined with rapid population growth has resulted in a genetic isolate with great potential value for future genetic studies.
Collapse
Affiliation(s)
- Metten Somers
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Maartje F Aukes
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Kees C L de Visser
- Department of General Practice, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherland.
| | - René S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
| | - Iris E Sommer
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
| | - Roel A Ophoff
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Hu Y, Ehli EA, Boomsma DI. MicroRNAs as biomarkers for psychiatric disorders with a focus on autism spectrum disorder: Current progress in genetic association studies, expression profiling, and translational research. Autism Res 2017; 10:1184-1203. [PMID: 28419777 DOI: 10.1002/aur.1789] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/20/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNA molecules, 18-25 nucleotides in length, which can negatively regulate gene expression at the post-transcriptional level by binding to messenger RNAs. About half of all identified miRNAs in humans are expressed in the brain and display regulatory functions important for many biological processes related to the development of the central nervous system (CNS). Disruptions in miRNA biogenesis and miRNA-target interaction have been related to CNS diseases, including psychiatric disorders. In this review, we focus on the role of miRNAs in autism spectrum disorder (ASD) and summarize recent findings about ASD-associated genetic variants in miRNA genes, in miRNA biogenesis genes, and miRNA targets. We discuss deregulation of miRNA expression in ASD and functional validation of ASD-related miRNAs in animal models. Including miRNAs in studies of ASD will contribute to our understanding of its etiology and pathogenesis and facilitate the discrimination between different disease subgroups. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1184-1203. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yubin Hu
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam (NCA), The Netherlands
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam (NCA), The Netherlands.,Avera Institute for Human Genetics, Sioux Falls, South Dakota
| |
Collapse
|
28
|
Loehlein Fier H, Prokopenko D, Hecker J, Cho MH, Silverman EK, Weiss ST, Tanzi RE, Lange C. On the association analysis of genome-sequencing data: A spatial clustering approach for partitioning the entire genome into nonoverlapping windows. Genet Epidemiol 2017; 41:332-340. [PMID: 28318110 DOI: 10.1002/gepi.22040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/20/2016] [Accepted: 02/04/2017] [Indexed: 12/16/2022]
Abstract
For the association analysis of whole-genome sequencing (WGS) studies, we propose an efficient and fast spatial-clustering algorithm. Compared to existing analysis approaches for WGS data, that define the tested regions either by sliding or consecutive windows of fixed sizes along variants, a meaningful grouping of nearby variants into consecutive regions has the advantage that, compared to sliding window approaches, the number of tested regions is likely to be smaller. In comparison to consecutive, fixed-window approaches, our approach is likely to group nearby variants together. Given existing biological evidence that disease-associated mutations tend to physically cluster in specific regions along the chromosome, the identification of meaningful groups of nearby located variants could thus lead to a potential power gain for association analysis. Our algorithm defines consecutive genomic regions based on the physical positions of the variants, assuming an inhomogeneous Poisson process and groups together nearby variants. As parameters are estimated locally, the algorithm takes the differing variant density along the chromosome into account and provides locally optimal partitioning of variants into consecutive regions. An R-implementation of the algorithm is provided. We discuss the theoretical advances of our algorithm compared to existing, window-based approaches and show the performance and advantage of our introduced algorithm in a simulation study and by an application to Alzheimer's disease WGS data. Our analysis identifies a region in the ITGB3 gene that potentially harbors disease susceptibility loci for Alzheimer's disease. The region-based association signal of ITGB3 replicates in an independent data set and achieves formally genome-wide significance. Software Implementation: An implementation of the algorithm in R is available at: https://github.com/heidefier/cluster_wgs_data.
Collapse
Affiliation(s)
- Heide Loehlein Fier
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America.,Working Group of Genomic Mathematics, University of Bonn, Bonn, Germany
| | - Dmitry Prokopenko
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Julian Hecker
- Working Group of Genomic Mathematics, University of Bonn, Bonn, Germany
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Christoph Lange
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
29
|
Duarte-Delgado D, Juyó D, Gebhardt C, Sarmiento F, Mosquera-Vásquez T. Novel SNP markers in InvGE and SssI genes are associated with natural variation of sugar contents and frying color in Solanum tuberosum Group Phureja. BMC Genet 2017; 18:23. [PMID: 28279167 PMCID: PMC5345157 DOI: 10.1186/s12863-017-0489-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background Potato frying color is an agronomic trait influenced by the sugar content of tubers. The candidate gene approach was employed to elucidate the molecular basis of this trait in Solanum tuberosum Group Phureja, which is mainly diploid and represents an important genetic resource for potato breeding. The objective of this research was to identify novel genetic variants related with frying quality in loci with key functions in carbohydrate metabolism, with the purpose of discovering genetic variability useful in breeding programs. Therefore, an association analysis was implemented with 109 SNP markers identified in ten candidate genes. Results The analyses revealed four associations in the locus InvGE coding for an apoplastic invertase and one association in the locus SssI coding for a soluble starch synthase. The SNPs SssI-C45711901T and InvGE-C2475454T were associated with sucrose content and frying color, respectively, and were not found previously in tetraploid genotypes. The rare haplotype InvGE-A2475187C2475295A2475344 was associated with higher fructose contents. Our study allowed a more detailed analysis of the sequence variation of exon 3 from InvGE, which was not possible in previous studies because of the high frequency of insertion-deletion polymorphisms in tetraploid potatoes. Conclusion The association mapping strategy using a candidate gene approach in Group Phureja allowed the identification of novel SNP markers in InvGE and SssI associated with frying color and the tuber sugar content measured by High Performance Liquid Chromatography (HPLC). These novel associations might be useful in potato breeding programs for improving quality traits and to increase crop genetic variability. The results suggest that some genes involved in the natural variation of tuber sugar content and frying color are conserved in both Phureja and tetraploid germplasm. Nevertheless, the associated variants in both types of germplasm were present in different regions of these genes. This study contributes to the understanding of the genetic architecture of tuber sugar contents and frying color at harvest in Group Phureja. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0489-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Duarte-Delgado
- Faculty of Agricultural Sciences, Agronomy Department, National University of Colombia, Bogotá, Colombia.,Present address: INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Deissy Juyó
- Faculty of Agricultural Sciences, Agronomy Department, National University of Colombia, Bogotá, Colombia
| | - Christiane Gebhardt
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Felipe Sarmiento
- Faculty of Sciences, Biology Department, National University of Colombia, Bogotá, Colombia
| | - Teresa Mosquera-Vásquez
- Faculty of Agricultural Sciences, Agronomy Department, National University of Colombia, Bogotá, Colombia.
| |
Collapse
|
30
|
Liu H, Luo X, Niu L, Xiao Y, Chen L, Liu J, Wang X, Jin M, Li W, Zhang Q, Yan J. Distant eQTLs and Non-coding Sequences Play Critical Roles in Regulating Gene Expression and Quantitative Trait Variation in Maize. MOLECULAR PLANT 2017; 10:414-426. [PMID: 27381443 DOI: 10.1016/j.molp.2016.06.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 05/20/2023]
Abstract
A detailed understanding of genetic architecture of mRNA expression by millions of genetic variants is important for studying quantitative trait variation. In this study, we identified 1.25M SNPs with a minor allele frequency greater than 0.05 by combining reduced genome sequencing (GBS), high-density array technologies (600K), and previous deep RNA-sequencing data from 368 diverse inbred lines of maize. The balanced allelic frequencies and distributions in a relatively large and diverse natural panel helped to identify expression quantitative trait loci (eQTLs) associated with more than 18 000 genes (63.4% of tested genes). We found that distant eQTLs were more frequent (∼75% of all eQTLs) across the whole genome. Thirteen novel associated loci affecting maize kernel oil concentration were identified using the new dataset, among which one intergenic locus affected the kernel oil variation by controlling expression of three other known oil-related genes. Altogether, this study provides resources for expanding our understanding of cellular regulatory mechanisms of transcriptome variation and the landscape of functional variants within the maize genome, thereby enhancing the understanding of quantitative variations.
Collapse
Affiliation(s)
- Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Luyao Niu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaqing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
31
|
Pazderska A, Oftedal BE, Napier CM, Ainsworth HF, Husebye ES, Cordell HJ, Pearce SHS, Mitchell AL. A Variant in the BACH2 Gene Is Associated With Susceptibility to Autoimmune Addison's Disease in Humans. J Clin Endocrinol Metab 2016; 101:3865-3869. [PMID: 27680876 PMCID: PMC5095240 DOI: 10.1210/jc.2016-2368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CONTEXT Autoimmune Addison's disease (AAD) is a rare but highly heritable condition. The BACH2 protein plays a crucial role in T lymphocyte maturation, and allelic variation in its gene has been associated with a number of autoimmune conditions. OBJECTIVE We aimed to determine whether alleles of the rs3757247 single nucleotide polymorphism (SNP) in the BACH2 gene are associated with AAD. DESIGN, SETTING, AND PATIENTS This case-control association study was performed in two phases using Taqman chemistry. In the first phase, the rs3757247 SNP was genotyped in 358 UK AAD subjects and 166 local control subjects. Genotype data were also available from 5154 healthy UK controls from the Wellcome Trust (WTCCC2) for comparison. In the second phase, the SNP was genotyped in a validation cohort comprising 317 Norwegian AAD subjects and 365 controls. RESULTS The frequency of the minor T allele was significantly higher in subjects with AAD from the United Kingdom compared to both the local and WTCCC2 control cohorts (58% vs 45 and 48%, respectively) (local controls, P = 1.1 × 10-4; odds ratio [OR], 1.68; 95% confidence interval [CI], 1.29-2.18; WTCCC2 controls, P = 1.4 × 10-6; OR, 1.44; 95% CI, 1.23-1.69). This finding was replicated in the Norwegian validation cohort (P = .0015; OR, 1.41; 95% CI, 1.14-1.75). Subgroup analysis showed that this association is present in subjects with both isolated AAD (OR, 1.53; 95% CI, 1.22-1.92) and autoimmune polyglandular syndrome type 2 (OR, 1.37; 95% CI, 1.12-1.69) in the UK cohort, and with autoimmune polyglandular syndrome type 2 in the Norwegian cohort (OR, 1.58; 95% CI, 1.22-2.06). CONCLUSION We have demonstrated, for the first time, that allelic variability at the BACH2 locus is associated with susceptibility to AAD. Given its association with multiple autoimmune conditions, BACH2 can be considered a "universal" autoimmune susceptibility locus.
Collapse
Affiliation(s)
- Agnieszka Pazderska
- Institute of Genetic Medicine (A.P., C.M.N., H.F.A., H.J.C., S.H.S.P., A.L.M.), Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom; Department of Clinical Science (B.E.O., E.S.H.), University of Bergen, 5021 Bergen, Norway; and Department of Medicine (E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway
| | - Bergithe E Oftedal
- Institute of Genetic Medicine (A.P., C.M.N., H.F.A., H.J.C., S.H.S.P., A.L.M.), Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom; Department of Clinical Science (B.E.O., E.S.H.), University of Bergen, 5021 Bergen, Norway; and Department of Medicine (E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway
| | - Catherine M Napier
- Institute of Genetic Medicine (A.P., C.M.N., H.F.A., H.J.C., S.H.S.P., A.L.M.), Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom; Department of Clinical Science (B.E.O., E.S.H.), University of Bergen, 5021 Bergen, Norway; and Department of Medicine (E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway
| | - Holly F Ainsworth
- Institute of Genetic Medicine (A.P., C.M.N., H.F.A., H.J.C., S.H.S.P., A.L.M.), Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom; Department of Clinical Science (B.E.O., E.S.H.), University of Bergen, 5021 Bergen, Norway; and Department of Medicine (E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway
| | - Eystein S Husebye
- Institute of Genetic Medicine (A.P., C.M.N., H.F.A., H.J.C., S.H.S.P., A.L.M.), Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom; Department of Clinical Science (B.E.O., E.S.H.), University of Bergen, 5021 Bergen, Norway; and Department of Medicine (E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway
| | - Heather J Cordell
- Institute of Genetic Medicine (A.P., C.M.N., H.F.A., H.J.C., S.H.S.P., A.L.M.), Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom; Department of Clinical Science (B.E.O., E.S.H.), University of Bergen, 5021 Bergen, Norway; and Department of Medicine (E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway
| | - Simon H S Pearce
- Institute of Genetic Medicine (A.P., C.M.N., H.F.A., H.J.C., S.H.S.P., A.L.M.), Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom; Department of Clinical Science (B.E.O., E.S.H.), University of Bergen, 5021 Bergen, Norway; and Department of Medicine (E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway
| | - Anna L Mitchell
- Institute of Genetic Medicine (A.P., C.M.N., H.F.A., H.J.C., S.H.S.P., A.L.M.), Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom; Department of Clinical Science (B.E.O., E.S.H.), University of Bergen, 5021 Bergen, Norway; and Department of Medicine (E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
32
|
Sanders AE, Sofer T, Wong Q, Kerr KF, Agler C, Shaffer JR, Beck JD, Offenbacher S, Salazar CR, North KE, Marazita ML, Laurie CC, Singer RH, Cai J, Finlayson TL, Divaris K. Chronic Periodontitis Genome-wide Association Study in the Hispanic Community Health Study / Study of Latinos. J Dent Res 2016; 96:64-72. [PMID: 27601451 DOI: 10.1177/0022034516664509] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chronic periodontitis (CP) has a genetic component, particularly its severe forms. Evidence from genome-wide association studies (GWASs) has highlighted several potential novel loci. Here, the authors report the first GWAS of CP among a large community-based sample of Hispanics/Latinos. The authors interrogated a quantitative trait of CP (mean interproximal clinical attachment level determined by full-mouth periodontal examinations) among 10,935 adult participants (mean age: 45 y, range: 18 to 76 y) from the Hispanic Community Health Study / Study of Latinos. Genotyping was done with a custom Illumina Omni2.5M array, and imputation to approximately 20 million single-nucleotide polymorphisms was based on the 1000 Genomes Project phase 1 reference panel. Analyses were based on linear mixed models adjusting for sex, age, study design features, ancestry, and kinship and employed a conventional P < 5 × 10-8 statistical significance threshold. The authors identified a genome-wide significant association signal in the 1q42.2 locus ( TSNAX-DISC1 noncoding RNA, lead single-nucleotide polymorphism: rs149133391, minor allele [C] frequency = 0.01, P = 7.9 × 10-9) and 4 more loci with suggestive evidence of association ( P < 5 × 10-6): 1q22 (rs13373934), 5p15.33 (rs186066047), 6p22.3 (rs10456847), and 11p15.1 (rs75715012). We tested these loci for replication in independent samples of European-American ( n = 4,402) and African-American ( n = 908) participants of the Atherosclerosis Risk in Communities study. There was no replication among the European Americans; however, the TSNAX-DISC1 locus replicated in the African-American sample (rs149133391, minor allele frequency = 0.02, P = 9.1 × 10-3), while the 1q22 locus was directionally concordant and nominally significant (rs13373934, P = 4.0 × 10-2). This discovery GWAS of interproximal clinical attachment level-a measure of lifetime periodontal tissue destruction-was conducted in a large, community-based sample of Hispanic/Latinos. It identified a genome-wide significant locus that was independently replicated in an African-American population. Identifying this genetic marker offers direction for interrogation in subsequent genomic and experimental studies of CP.
Collapse
Affiliation(s)
- A E Sanders
- 1 Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T Sofer
- 2 Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Q Wong
- 2 Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - K F Kerr
- 2 Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - C Agler
- 3 Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J R Shaffer
- 4 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - J D Beck
- 1 Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S Offenbacher
- 5 Department of Periodontology and Center for Oral and Systemic Diseases, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C R Salazar
- 6 Department of Epidemiology and Department of Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, New York City, NY, USA
| | - K E North
- 7 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M L Marazita
- 4 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,8 Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,9 Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,10 Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,11 Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - C C Laurie
- 2 Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - R H Singer
- 12 Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - J Cai
- 13 Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T L Finlayson
- 14 Graduate School of Public Health, San Diego State University, San Diego, CA, USA
| | - K Divaris
- 7 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,15 Department of Pediatric Dentistry, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
33
|
van de Leemput J, Hess JL, Glatt SJ, Tsuang MT. Genetics of Schizophrenia: Historical Insights and Prevailing Evidence. ADVANCES IN GENETICS 2016; 96:99-141. [PMID: 27968732 DOI: 10.1016/bs.adgen.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schizophrenia's (SZ's) heritability and familial transmission have been known for several decades; however, despite the clear evidence for a genetic component, it has been very difficult to pinpoint specific causative genes. Even so genetic studies have taught us a lot, even in the pregenomic era, about the molecular underpinnings and disease-relevant pathways. Recurring themes emerged revealing the involvement of neurodevelopmental processes, glutamate regulation, and immune system differential activation in SZ etiology. The recent emergence of epigenetic studies aimed at shedding light on the biological mechanisms underlying SZ has provided another layer of information in the investigation of gene and environment interactions. However, this epigenetic insight also brings forth another layer of complexity to the (epi)genomic landscape such as interactions between genetic variants, epigenetic marks-including cross-talk between DNA methylation and histone modification processes-, gene expression regulation, and environmental influences. In this review, we seek to synthesize perspectives, including limitations and obstacles yet to overcome, from genetic and epigenetic literature on SZ through a qualitative review of risk factors and prevailing hypotheses. Encouraged by the findings of both genetic and epigenetic studies to date, as well as the continued development of new technologies to collect and interpret large-scale studies, we are left with a positive outlook for the future of elucidating the molecular genetic mechanisms underlying SZ and other complex neuropsychiatric disorders.
Collapse
Affiliation(s)
- J van de Leemput
- University of California, San Diego, La Jolla, CA, United States
| | - J L Hess
- SUNY Upstate Medical University, Syracuse, NY, United States
| | - S J Glatt
- SUNY Upstate Medical University, Syracuse, NY, United States
| | - M T Tsuang
- University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
34
|
Morin A, Kwan T, Ge B, Letourneau L, Ban M, Tandre K, Caron M, Sandling JK, Carlsson J, Bourque G, Laprise C, Montpetit A, Syvanen AC, Ronnblom L, Sawcer SJ, Lathrop MG, Pastinen T. Immunoseq: the identification of functionally relevant variants through targeted capture and sequencing of active regulatory regions in human immune cells. BMC Med Genomics 2016; 9:59. [PMID: 27624058 PMCID: PMC5022205 DOI: 10.1186/s12920-016-0220-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 09/01/2016] [Indexed: 12/14/2022] Open
Abstract
Background The observation that the genetic variants identified in genome-wide association studies (GWAS) frequently lie in non-coding regions of the genome that contain cis-regulatory elements suggests that altered gene expression underlies the development of many complex traits. In order to efficiently make a comprehensive assessment of the impact of non-coding genetic variation in immune related diseases we emulated the whole-exome sequencing paradigm and developed a custom capture panel for the known DNase I hypersensitive site (DHS) in immune cells – “Immunoseq”. Results We performed Immunoseq in 30 healthy individuals where we had existing transcriptome data from T cells. We identified a large number of novel non-coding variants in these samples. Relying on allele specific expression measurements, we also showed that our selected capture regions are enriched for functional variants that have an impact on differential allelic gene expression. The results from a replication set with 180 samples confirmed our observations. Conclusions We show that Immunoseq is a powerful approach to detect novel rare variants in regulatory regions. We also demonstrate that these novel variants have a potential functional role in immune cells. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0220-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andréanne Morin
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada.,McGill University and Genome Québec Innovation Centre, Montréal, Quebec, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada.,McGill University and Genome Québec Innovation Centre, Montréal, Quebec, Canada
| | - Bing Ge
- McGill University and Genome Québec Innovation Centre, Montréal, Quebec, Canada
| | - Louis Letourneau
- McGill University and Genome Québec Innovation Centre, Montréal, Quebec, Canada
| | - Maria Ban
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Karolina Tandre
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Maxime Caron
- McGill University and Genome Québec Innovation Centre, Montréal, Quebec, Canada
| | - Johanna K Sandling
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jonas Carlsson
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada.,McGill University and Genome Québec Innovation Centre, Montréal, Quebec, Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - Alexandre Montpetit
- McGill University and Genome Québec Innovation Centre, Montréal, Quebec, Canada
| | - Ann-Christine Syvanen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Ronnblom
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Stephen J Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark G Lathrop
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada.,McGill University and Genome Québec Innovation Centre, Montréal, Quebec, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada. .,McGill University and Genome Québec Innovation Centre, Montréal, Quebec, Canada.
| |
Collapse
|
35
|
Oh SH, Baek J, Kim KM, Lee EJ, Jung Y, Lee YJ, Jin HS, Ye BD, Yang SK, Lee JK, Seo EJ, Lim HT, Lee I, Song K. Is Whole Exome Sequencing Clinically Practical in the Management of Pediatric Crohn's Disease? Gut Liver 2016; 9:767-75. [PMID: 26503572 PMCID: PMC4625707 DOI: 10.5009/gnl15176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background/Aims The aim of this study was to identify the profile of rare variants associated with Crohn’s disease (CD) using whole exome sequencing (WES) analysis of Korean children with CD and to evaluate whether genetic profiles could provide information during medical decision making. Methods DNA samples from 18 control individuals and 22 patients with infantile, very-early and early onset CD of severe phenotype were used for WES. Genes were filtered using panels of inflammatory bowel disease (IBD)-associated genes and genes of primary immunodeficiency (PID) and monogenic IBD. Results Eighty-one IBD-associated variants and 35 variants in PID genes were revealed by WES. The most frequently occurring variants were carried by nine (41%) and four (18.2%) CD probands and were ATG16L2 (rs11235604) and IL17REL (rs142430606), respectively. Twenty-four IBD-associated variants and 10 PID variants were predicted to be deleterious and were identified in the heterozygous state. However, their functions were unknown with the exception of a novel p.Q111X variant in XIAP (X chromosome) of a male proband. Conclusions The presence of many rare variants of unknown significance limits the clinical applicability of WES for individual CD patients. However, WES in children may be beneficial for distinguishing CD secondary to PID.
Collapse
Affiliation(s)
- Seak Hee Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiwon Baek
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Ju Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Yusun Jung
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeoun Joo Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun-Seung Jin
- Department of Pediatrics, GangNeung Asan Hospital, Gangneung, Seoul, Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong-Keuk Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul-Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Taek Lim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inchul Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Fuku N, Díaz-Peña R, Arai Y, Abe Y, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Zempo H, Naito H, Murakami H, Miyachi M, Venturini L, Ricevuti G, Nobuyoshi H, Emanuele E, Lucia A. rs2802292 polymorphism in the FOXO3A gene and exceptional longevity in two ethnically distinct cohorts. Maturitas 2016; 92:110-114. [PMID: 27621247 DOI: 10.1016/j.maturitas.2016.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Previous studies have indicated that the rs2802292 polymorphism in the human forkhead box O3A (FOXO3A) gene might be associated with exceptional longevity (EL, i.e., living 100+ years), although the results are conflicting. STUDY DESIGN AND MAIN OUTCOME MEASURES Using a case-control design, we investigated the distribution of the rs2802292 polymorphism in two ethnically distinct cohorts of centenarians (cases) and younger adults (controls). The first cohort included Japanese individuals (733 centenarians and 820 controls) and the second was from Northern Italy (79 disease-free centenarians and 316 controls). RESULTS No statistically significant association was found between the rs2802292 polymorphism and EL in either cohort (either examined in their entirety or in a sex-based analysis). CONCLUSIONS In light of our negative findings, further research and resequencing efforts are needed to shed more light on the potential association between EL and FOXO3A polymorphisms.
Collapse
Affiliation(s)
- Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Roberto Díaz-Peña
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile; Hospital Universitari Institut Pere Mata, IISPV, URV. CIBERSAM, Reus, Spain.
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yukiko Abe
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | - Hirofumi Zempo
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Haruka Murakami
- Department of Health Promotion and Exercise, National Institute of Health and Nutrition, NIBIOHN, Tokyo, Japan
| | - Motohiko Miyachi
- Department of Health Promotion and Exercise, National Institute of Health and Nutrition, NIBIOHN, Tokyo, Japan
| | - Letizia Venturini
- Department of Internal Medicine and Therapeutics, Cellular Pathophysiology and Clinical Immunology Laboratory, University of Pavia, Pavia, Italy
| | - Giovanni Ricevuti
- Department of Internal Medicine and Therapeutics, Cellular Pathophysiology and Clinical Immunology Laboratory, University of Pavia, Pavia, Italy
| | - Hirose Nobuyoshi
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | | | - Alejandro Lucia
- European University and Research Institute i + 12, Madrid, Spain
| |
Collapse
|
37
|
Haddad SA, Ruiz-Narváez EA, Haiman CA, Sucheston-Campbell LE, Bensen JT, Zhu Q, Liu S, Yao S, Bandera EV, Rosenberg L, Olshan AF, Ambrosone CB, Palmer JR, Lunetta KL. An exome-wide analysis of low frequency and rare variants in relation to risk of breast cancer in African American Women: the AMBER Consortium. Carcinogenesis 2016; 37:870-877. [PMID: 27267999 DOI: 10.1093/carcin/bgw067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/30/2016] [Indexed: 01/14/2023] Open
Abstract
A large percentage of breast cancer heritability remains unaccounted for, and most of the known susceptibility loci have been established in European and Asian populations. Rare variants may contribute to the unexplained heritability of this disease, including in women of African ancestry (AA). We conducted an exome-wide analysis of rare variants in relation to risk of overall and subtype-specific breast cancer in the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium, which includes data from four large studies of AA women. Genotyping on the Illumina Human Exome Beadchip yielded data for 170 812 SNPs and 8287 subjects: 3629 cases (1093 estrogen receptor negative (ER-), 1968 ER+, 568 ER unknown) and 4658 controls, the largest exome chip study to date for AA breast cancer. Pooled gene-based association analyses were performed using the unified optimal sequence kernel association test (SKAT-O) for variants with minor allele frequency (MAF) ≤ 5%. In addition, each variant with MAF >0.5% was tested for association using logistic regression. There were no significant associations with overall breast cancer. However, a novel gene, FBXL22 (P = 8.2×10(-6)), and a gene previously identified in GWAS of European ancestry populations, PDE4D (P = 1.2×10(-6)), were significantly associated with ER- breast cancer after correction for multiple testing. Cases with the associated rare variants were also negative for progesterone and human epidermal growth factor receptors-thus, triple-negative cancer. Replication is required to confirm these gene-level associations, which are based on very small counts at extremely rare SNPs.
Collapse
Affiliation(s)
| | | | - Christopher A Haiman
- Department of Preventive Medicine , Keck School of Medicine , University of Southern California/Norris Comprehensive Cancer Center , Los Angeles, CA 90033 , USA
| | - Lara E Sucheston-Campbell
- Department of Cancer Prevention and Control , Roswell Park Cancer Institute , Buffalo, NY 14263 , USA
| | - Jeannette T Bensen
- Department of Epidemiology , Gillings School of Global Public Health , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
| | - Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute , Buffalo, NY 14263 , USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute , Buffalo, NY 14263 , USA
| | - Song Yao
- Department of Cancer Prevention and Control , Roswell Park Cancer Institute , Buffalo, NY 14263 , USA
| | - Elisa V Bandera
- Cancer Prevention and Control, Rutgers Cancer Institute of New Jersey , New Brunswick, NJ 08903 , USA and
| | | | - Andrew F Olshan
- Department of Epidemiology , Gillings School of Global Public Health , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control , Roswell Park Cancer Institute , Buffalo, NY 14263 , USA
| | | | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health , Boston, MA 02118 , USA
| |
Collapse
|
38
|
Jeroncic A, Memari Y, Ritchie GR, Hendricks AE, Kolb-Kokocinski A, Matchan A, Vitart V, Hayward C, Kolcic I, Glodzik D, Wright AF, Rudan I, Campbell H, Durbin R, Polašek O, Zeggini E, Boraska Perica V. Whole-exome sequencing in an isolated population from the Dalmatian island of Vis. Eur J Hum Genet 2016; 24:1479-87. [PMID: 27049301 PMCID: PMC4950961 DOI: 10.1038/ejhg.2016.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 02/07/2016] [Accepted: 02/17/2016] [Indexed: 12/14/2022] Open
Abstract
We have whole-exome sequenced 176 individuals from the isolated population of the island of Vis in Croatia in order to describe exonic variation architecture. We found 290 577 single nucleotide variants (SNVs), 65% of which are singletons, low frequency or rare variants. A total of 25 430 (9%) SNVs are novel, previously not catalogued in NHLBI GO Exome Sequencing Project, UK10K-Generation Scotland, 1000Genomes Project, ExAC or NCBI Reference Assembly dbSNP. The majority of these variants (76%) are singletons. Comparable to data obtained from UK10K-Generation Scotland that were sequenced and analysed using the same protocols, we detected an enrichment of potentially damaging variants (non-synonymous and loss-of-function) in the low frequency and common variant categories. On average 115 (range 93–140) genotypes with loss-of-function variants, 23 (15–34) of which were homozygous, were identified per person. The landscape of loss-of-function variants across an exome revealed that variants mainly accumulated in genes on the xenobiotic-related pathways, of which majority coded for enzymes. The frequency of loss-of-function variants was additionally increased in Vis runs of homozygosity regions where variants mainly affected signalling pathways. This work confirms the isolate status of Vis population by means of whole-exome sequence and reveals the pattern of loss-of-function mutations, which resembles the trails of adaptive evolution that were found in other species. By cataloguing the exomic variants and describing the allelic structure of the Vis population, this study will serve as a valuable resource for future genetic studies of human diseases, population genetics and evolution in this population.
Collapse
Affiliation(s)
- Ana Jeroncic
- Department of Research in Biomedicine and Health, University of Split School of Medicine, Split, Croatia
| | - Yasin Memari
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Audrey E Hendricks
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Department of Mathematical and Statistical Sciences, University of Colorado, Denver, CO, USA
| | | | | | - Veronique Vitart
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ivana Kolcic
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Dominik Glodzik
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Igor Rudan
- Centre for Global Health Research, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, University of Edinburgh, Edinburgh, UK
| | | | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, Split, Croatia.,Centre for Global Health Research, University of Edinburgh, Edinburgh, UK
| | | | - Vesna Boraska Perica
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Department of Medical Biology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
39
|
Abstract
Gestational diabetes mellitus (GDM) is defined as abnormal glucose tolerance with onset or first recognition during pregnancy. Women with a history of GDM are at long-term risk for developing type 2 diabetes (T2DM), raising the question to what extent GDM and T2DM share a common genetic architecture. Meta-analysis of candidate gene studies and genome-wide association analysis (GWAS) have identified a number of genes which are reproducibly associated with GDM, including TCF7L2, GCK, KCNJ11, KCNQ1, CDKAL1, IGF2BP2, MTNR1B, and IRS1. These genes are also associated with T2DM. Candidate gene and GWAS have also identified genes associated with maternal metabolic traits, most of which are also associated with metabolic traits in the general population. Two genes, BACE2 and HKDC1, are uniquely associated with maternal metabolic traits. These studies suggest that there are similarities and differences between the genetic architecture of GDM and T2DM and metabolic quantitative traits in pregnant and non-pregnant populations.
Collapse
Affiliation(s)
- William L Lowe
- Division of Endocrinology, Metabolism, and Molecular Medicine and Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff Building 420 E. Superior St., 12th Floor, Chicago, IL, 60611, USA.
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Suite 1400 680 N Lake Shore Drive, Chicago, IL, 60611, USA.
| | - Victoria Sandler
- Division of Endocrinology, Metabolism, and Molecular Medicine and Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff Building 420 E. Superior St., 12th Floor, Chicago, IL, 60611, USA.
- Division of Endocrinology, Metabolism and Molecular Medicine, Suite 530, 645 N Michigan Avenue, Chicago, IL, 60611, USA.
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine and Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff Building 420 E. Superior St., 12th Floor, Chicago, IL, 60611, USA.
- Division of Endocrinology, Metabolism and Molecular Medicine, Tarry Building, Room 15-759, 300 E Chicago Ave, Chicago, IL, 60611, USA.
| |
Collapse
|
40
|
Zengini E, Finan C, Wilkinson JM. The Genetic Epidemiological Landscape of Hip and Knee Osteoarthritis: Where Are We Now and Where Are We Going? J Rheumatol 2015; 43:260-6. [PMID: 26628593 DOI: 10.3899/jrheum.150710] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a complex disease that affects the whole joint, with multiple biological and environmental factors contributing to its development. The heritable component for primary OA accounts for ∼50% of susceptibility. So far, candidate gene studies and genome-wide association scans have established 18 OA-associated loci. These findings account for 11% of the heritability, explaining a rather small fraction of the genetic component. To further unravel the genetic architecture of OA, the field needs to facilitate more precise phenotypic definitions, high genome coverage, and large sample metaanalyses, expecting the identification of rare and low frequency variants with potentially higher penetrance, and more accurate methods for calculating phenotype-genotype correlation. Expression analysis, epigenetics, and investigation of interactions can also help clarify the implicated transcriptional regulatory pathways and provide insights into further novel pathogenic OA mechanisms leading to diagnostic biomarker identification and new, more focused therapeutic disease approaches.
Collapse
Affiliation(s)
- Eleni Zengini
- From the Dromokaiteio Psychiatric Hospital of Athens, Athens, Greece; Department of Human Metabolism, University of Sheffield, Sheffield; Wellcome Trust Sanger Institute, Hinxton, UK.E. Zengini, BSc, PhD Student, Dromokaiteio Psychiatric Hospital of Athens, and Department of Human Metabolism, University of Sheffield; C. Finan, PhD, Research Excellence Fellow, PhD, Wellcome Trust Sanger Institute; J.M. Wilkinson, FRCS (Tr&Orth), PhD, Professor of Orthopaedics, Department of Human Metabolism, University of Sheffield, Honorary Consultant Orthopaedic Surgeon, Sheffield Teaching Hospitals National Health Service Foundation Trust
| | - Chris Finan
- From the Dromokaiteio Psychiatric Hospital of Athens, Athens, Greece; Department of Human Metabolism, University of Sheffield, Sheffield; Wellcome Trust Sanger Institute, Hinxton, UK.E. Zengini, BSc, PhD Student, Dromokaiteio Psychiatric Hospital of Athens, and Department of Human Metabolism, University of Sheffield; C. Finan, PhD, Research Excellence Fellow, PhD, Wellcome Trust Sanger Institute; J.M. Wilkinson, FRCS (Tr&Orth), PhD, Professor of Orthopaedics, Department of Human Metabolism, University of Sheffield, Honorary Consultant Orthopaedic Surgeon, Sheffield Teaching Hospitals National Health Service Foundation Trust
| | - J Mark Wilkinson
- From the Dromokaiteio Psychiatric Hospital of Athens, Athens, Greece; Department of Human Metabolism, University of Sheffield, Sheffield; Wellcome Trust Sanger Institute, Hinxton, UK.E. Zengini, BSc, PhD Student, Dromokaiteio Psychiatric Hospital of Athens, and Department of Human Metabolism, University of Sheffield; C. Finan, PhD, Research Excellence Fellow, PhD, Wellcome Trust Sanger Institute; J.M. Wilkinson, FRCS (Tr&Orth), PhD, Professor of Orthopaedics, Department of Human Metabolism, University of Sheffield, Honorary Consultant Orthopaedic Surgeon, Sheffield Teaching Hospitals National Health Service Foundation Trust.
| |
Collapse
|
41
|
Mammadov J, Sun X, Gao Y, Ochsenfeld C, Bakker E, Ren R, Flora J, Wang X, Kumpatla S, Meyer D, Thompson S. Combining powers of linkage and association mapping for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.). BMC Genomics 2015; 16:916. [PMID: 26555731 PMCID: PMC4641357 DOI: 10.1186/s12864-015-2171-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gray Leaf Spot (GLS causal agents Cercospora zeae-maydis and Cercospora zeina) is one of the most important foliar diseases of maize in all areas where the crop is being cultivated. Although in the USA the situation with GLS severity is not as critical as in sub-Saharan Africa or Brazil, the evidence of climate change, increasing corn monoculture as well as the narrow genetic base of North American resistant germplasm can turn the disease into a serious threat to US corn production. The development of GLS resistant cultivars is one way to control the disease. In this study we combined the high QTL detection power of genetic linkage mapping with the high resolution power of genome-wide association study (GWAS) to precisely dissect QTL controlling GLS resistance and identify closely linked molecular markers for robust marker-assisted selection and trait introgression. RESULTS Using genetic linkage analysis with a small bi-parental mapping population, we identified four GLS resistance QTL on chromosomes 1, 6, 7, and 8, which were validated by GWAS. GWAS enabled us to dramatically increase the resolution within the confidence intervals of the above-mentioned QTL. Particularly, GWAS revealed that QTLGLSchr8, detected by genetic linkage mapping as a locus with major effect, was likely represented by two QTL with smaller effects. Conducted in parallel, GWAS of days-to-silking demonstrated the co-localization of flowering time QTL with GLS resistance QTL on chromosome 7 indicating that either QTLGLSchr7 is a flowering time QTL or it is a GLS resistance QTL that co-segregates with the latter. As a result, this genetic linkage - GWAS hybrid mapping system enabled us to identify one novel GLS resistance QTL (QTLGLSchr8a) and confirm with more refined positions four more previously mapped QTL (QTLGLSchr1, QTLGLSchr6, QTLGLSchr7, and QTLGLSchr8b). Through the novel Single Donor vs. Elite Panel method we were able to identify within QTL confidence intervals SNP markers that would be suitable for marker-assisted selection of gray leaf spot resistant genotypes containing the above-mentioned GLS resistance QTL. CONCLUSION The application of a genetic linkage - GWAS hybrid mapping system enabled us to dramatically increase the resolution within the confidence interval of GLS resistance QTL by-passing labor- and time-intensive fine mapping. This method appears to have a great potential to accelerate the pace of QTL mapping projects. It is universal and can be used in the QTL mapping projects in any crops.
Collapse
Affiliation(s)
- Jafar Mammadov
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Xiaochun Sun
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Yanxin Gao
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Cherie Ochsenfeld
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Erica Bakker
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Ruihua Ren
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Jonathan Flora
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Xiujuan Wang
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Siva Kumpatla
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - David Meyer
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Steve Thompson
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| |
Collapse
|
42
|
Genetic Architecture of Complex Human Traits: What Have We Learned from Genome-Wide Association Studies? CURRENT GENETIC MEDICINE REPORTS 2015. [DOI: 10.1007/s40142-015-0083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Aloraifi F, McCartan D, McDevitt T, Green AJ, Bracken A, Geraghty J. Protein-truncating variants in moderate-risk breast cancer susceptibility genes: a meta-analysis of high-risk case-control screening studies. Cancer Genet 2015; 208:455-63. [PMID: 26250988 DOI: 10.1016/j.cancergen.2015.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023]
Abstract
Several "moderate-risk breast cancer susceptibility genes" have been conclusively identified. Pathogenic mutations in these genes are thought to cause a two to fivefold increased risk of breast cancer. In light of the current development and use of multigene panel testing, the authors wanted to systematically obtain robust estimates of the cancer risk associated with loss-of-function mutations within these genes. An electronic search was conducted to identify studies that sequenced the full coding regions of ATM, CHEK2, BRIP1, PALB2, NBS1, and RAD50 in a general and gene-targeted approach. Inclusion was restricted to studies that sequenced the germline DNA in both high-risk cases and geographically matched controls. A meta-analysis was then performed on protein-truncating variants (PTVs) identified in the studies for an association with breast cancer risk. A total of 10,209 publications were identified, of which 64 studies comprising a total of 25,418 cases and 52,322 controls in the 6 interrogated genes were eligible under our selection criteria. The pooled odds ratios for PTVs in the susceptibility genes were at least >2.6. Additionally, mutations in these genes have shown geographic and ethnic variation. This comprehensive study emphasizes the fact that caution should be taken when identifying certain genes as moderate susceptibility with the lack of sufficient data, especially with regard to the NBS1, RAD50, and BRIP1 genes. Further data from case-control sequencing studies, and especially family studies, are warranted.
Collapse
Affiliation(s)
- Fatima Aloraifi
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland; Smurfit Institute of Genetics, Trinity College Dublin, College Green, Dublin, Ireland.
| | - Damian McCartan
- St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Trudi McDevitt
- National Centre for Medical Genetics, Our Lady's Hospital, Crumlin, Dublin, Ireland
| | - Andrew J Green
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland; National Centre for Medical Genetics, Our Lady's Hospital, Crumlin, Dublin, Ireland
| | - Adrian Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, College Green, Dublin, Ireland.
| | - James Geraghty
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland; St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| |
Collapse
|
44
|
Wang J, Batmanov K. BayesPI-BAR: a new biophysical model for characterization of regulatory sequence variations. Nucleic Acids Res 2015. [PMID: 26202972 PMCID: PMC4666384 DOI: 10.1093/nar/gkv733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sequence variations in regulatory DNA regions are known to cause functionally important consequences for gene expression. DNA sequence variations may have an essential role in determining phenotypes and may be linked to disease; however, their identification through analysis of massive genome-wide sequencing data is a great challenge. In this work, a new computational pipeline, a Bayesian method for protein–DNA interaction with binding affinity ranking (BayesPI-BAR), is proposed for quantifying the effect of sequence variations on protein binding. BayesPI-BAR uses biophysical modeling of protein–DNA interactions to predict single nucleotide polymorphisms (SNPs) that cause significant changes in the binding affinity of a regulatory region for transcription factors (TFs). The method includes two new parameters (TF chemical potentials or protein concentrations and direct TF binding targets) that are neglected by previous methods. The new method is verified on 67 known human regulatory SNPs, of which 47 (70%) have predicted true TFs ranked in the top 10. Importantly, the performance of BayesPI-BAR, which uses principal component analysis to integrate multiple predictions from various TF chemical potentials, is found to be better than that of existing programs, such as sTRAP and is-rSNP, when evaluated on the same SNPs. BayesPI-BAR is a publicly available tool and is able to carry out parallelized computation, which helps to investigate a large number of TFs or SNPs and to detect disease-associated regulatory sequence variations in the sea of genome-wide noncoding regions.
Collapse
Affiliation(s)
- Junbai Wang
- Pathology Department, Oslo University Hospital-Norwegian Radium Hospital, Montebello 0310, Oslo, Norway
| | - Kirill Batmanov
- Pathology Department, Oslo University Hospital-Norwegian Radium Hospital, Montebello 0310, Oslo, Norway
| |
Collapse
|
45
|
Kirino Y, Remmers EF. Genetic architectures of seropositive and seronegative rheumatic diseases. Nat Rev Rheumatol 2015; 11:401-14. [PMID: 25907699 DOI: 10.1038/nrrheum.2015.41] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and some other rheumatic diseases are genetically complex, with evidence of familial clustering, but not of Mendelian inheritance. These diseases are thought to result from contributions and interactions of multiple genetic and nongenetic risk factors, which have small effects individually. Genome-wide association studies (GWAS) of large collections of data from cases and controls have revealed many genetic factors that contribute to non-Mendelian rheumatic diseases, thus providing insights into associated molecular mechanisms. This Review summarizes methods for the identification of gene variants that influence genetically complex diseases and focuses on what we have learned about the rheumatic diseases for which GWAS have been reported. Our review of the disease-associated loci identified to date reveals greater sharing of risk loci among the groups of seropositive (diseases in which specific autoantibodies are often present) or seronegative diseases than between these two groups. The nature of the shared and discordant loci suggests important similarities and differences among these diseases.
Collapse
Affiliation(s)
- Yohei Kirino
- Yokohama City University Graduate School of Medicine, Department of Internal Medicine and Clinical Immunology, 3-9 Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan
| | - Elaine F Remmers
- National Institutes of Health, National Human Genome Research Institute, Inflammatory Disease Section, 10 Center Drive, MSC 1849, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Two PALB2 germline mutations found in both BRCA1+ and BRCAx familial breast cancer. Breast Cancer Res Treat 2015; 151:219-24. [PMID: 25833210 DOI: 10.1007/s10549-015-3358-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Partner and localizer of BRCA2 (PALB2), plays an important functional role in DNA damage repair. Recent studies indicate that germline mutations in PALB2 predispose individuals to a high risk of developing familial breast cancer. Therefore, comprehensive identification of PALB2 germline mutations is potentially important for understanding their roles in tumorigenesis and for testing their potential utility as clinical targets. Most of the previous studies of PALB2 have focused on familial breast cancer cases with normal/wild-type BRCA1 and BRCA2 (BRCAx). We hypothesize that PALB2 genetic mutations also exist in individuals with BRCA mutations (BRCA+). To test this hypothesis, PALB2 germline mutations were screened in 107 exome data sets collected from familial breast cancer families who were either BRCA1+ or BRCAx. Two novel heterozygous mutations predicted to alter the function of PALB2 were identified (c.2014G>C, p.E672Q and c.2993G>A, p.G998E). Notably, both of these mutations co-existed in BRCA1+ and BRCA1x families. These studies show that mutations in PALB2 can occur independent of the status of BRCA1 mutations, and they highlight the importance to include BRCA1+ families in PALB2 mutation screens.
Collapse
|
47
|
Farlow JL, Lin H, Sauerbeck L, Lai D, Koller DL, Pugh E, Hetrick K, Ling H, Kleinloog R, van der Vlies P, Deelen P, Swertz MA, Verweij BH, Regli L, Rinkel GJE, Ruigrok YM, Doheny K, Liu Y, Broderick J, Foroud T. Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm. PLoS One 2015; 10:e0121104. [PMID: 25803036 PMCID: PMC4372548 DOI: 10.1371/journal.pone.0121104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/10/2015] [Indexed: 12/30/2022] Open
Abstract
Genetic risk factors for intracranial aneurysm (IA) are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES) in seven densely-affected families (45 individuals) recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B) was differentially expressed in aneurysmal samples (n=44) as compared to control samples (n=16) (false discovery rate adjusted p-value=0.023). We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.
Collapse
Affiliation(s)
- Janice L. Farlow
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hai Lin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Laura Sauerbeck
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Daniel L. Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Elizabeth Pugh
- Center for Inherited Disease Research, Johns Hopkins University; Baltimore, Maryland, United States of America
| | - Kurt Hetrick
- Center for Inherited Disease Research, Johns Hopkins University; Baltimore, Maryland, United States of America
| | - Hua Ling
- Center for Inherited Disease Research, Johns Hopkins University; Baltimore, Maryland, United States of America
| | - Rachel Kleinloog
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pieter van der Vlies
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Morris A. Swertz
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bon H. Verweij
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Luca Regli
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Gabriel J. E. Rinkel
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ynte M. Ruigrok
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kimberly Doheny
- Center for Inherited Disease Research, Johns Hopkins University; Baltimore, Maryland, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph Broderick
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | |
Collapse
|
48
|
Strike LT, Couvy-Duchesne B, Hansell NK, Cuellar-Partida G, Medland SE, Wright MJ. Genetics and Brain Morphology. Neuropsychol Rev 2015; 25:63-96. [DOI: 10.1007/s11065-015-9281-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/08/2015] [Indexed: 12/17/2022]
|
49
|
Hansen MC, Nyvold CG, Roug AS, Kjeldsen E, Villesen P, Nederby L, Hokland P. Nature and nurture: a case of transcending haematological pre-malignancies in a pair of monozygotic twins adding possible clues on the pathogenesis of B-cell proliferations. Br J Haematol 2015; 169:391-400. [PMID: 25752595 DOI: 10.1111/bjh.13305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/23/2014] [Indexed: 02/05/2023]
Abstract
We describe a comprehensive molecular analysis of a pair of monozygotic twins, who came to our attention when one experienced amaurosis fugax and was diagnosed with JAK2+ polycythaemia vera. He (Twin A) was also found to have an asymptomatic B-cell chronic lymphocytic leukaemia (B-CLL). Although JAK2-, Twin B was subsequently shown to have a benign monoclonal B-cell lymphocytosis (MBL). Flow cytometric and molecular analyses of the B-cell compartments revealed different immunoglobulin light and heavy chain usage in each twin. We hypothesized that whole exome sequencing could help delineating the pattern of germline B-cell disorder susceptibility and reveal somatic mutations potentially contributing to the differential patterns of pre-malignancy. Comparing bone marrow cells and T cells and employing in-house engineered integrative analysis, we found aberrations in Twin A consistent with a myeloid neoplasm, i.e. in TET2, RUNX1, PLCB1 and ELF4. Employing the method for detecting high-ranking variants by extensive annotation and relevance scoring, we also identified shared germline variants in genes of proteins interacting with B-cell receptor signalling mediators and the WNT-pathway, including IRF8, PTPRO, BCL9L, SIT1 and SIRPB1, all with possible implications in B-cell proliferation. Similar patterns of IGHV-gene usage to those demonstrated here have been observed in inherited acute lymphoblastic leukaemia. Collectively, these findings may help in facilitating identification of putative master gene(s) involved in B-cell proliferations in general and MBL and B-CLL in particular.
Collapse
Affiliation(s)
- Marcus C Hansen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Genome-wide association studies (GWAS) have been employed in the field of allergic disease, and significant associations have been published for nearly 100 asthma genes/loci. An outcome of GWAS in allergic disease has been the formation of national and international collaborations leading to consortia meta-analyses, and an appreciation for the specificity of genetic associations to sub-phenotypes of allergic disease. Molecular genetics has undergone a technological revolution, leading to next-generation sequencing strategies that are increasingly employed to hone in on the causal variants associated with allergic diseases. Unmet needs include the inclusion of diverse cohorts and strategies for managing big data.
Collapse
Affiliation(s)
- Romina A Ortiz
- Department of Medicine, The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Room 3A.62, Baltimore, MD 21224, USA
| | - Kathleen C Barnes
- Department of Medicine, The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Room 3A.62, Baltimore, MD 21224, USA.
| |
Collapse
|