1
|
Zaabaar E, Shing E, Zhang XJ, Wang Y, Kam KW, Zhang Y, Yip WWK, Young AL, Tam POS, Tham CC, Pang CP, Yam JC, Chen LJ. Associations of genetic variants for refractive error and axial length in adults with ocular endophenotypes in children: a cross-sectional and longitudinal study. Br J Ophthalmol 2024:bjo-2024-325606. [PMID: 39326895 DOI: 10.1136/bjo-2024-325606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
AIMS To investigate the associations of genetic variants previously linked to axial length (AL) and spherical equivalent refraction (SE) in adults with refractive error and related endophenotypes in children, at baseline and 3-year follow-up. METHODS 15 candidate single-nucleotide polymorphisms (SNPs), selected from previous Genome-Wide Association Studies and meta-analyses, were genotyped in 2819 Chinese children, who had undergone baseline and 3-year follow-up cycloplegic refraction, ocular biometry and ocular health examinations. Linear regression analyses were conducted to assess the associations of the SNPs with baseline measurements and longitudinal changes in SE, spherical power (SPH), AL, corneal radius of curvature (CR) and AL/CR ratio. RESULTS SNPs ZMAT4 rs7829127, ZMAT4 rs16890057, TOX rs7837791, GRIA4 rs11601239 and RDH5 rs3138142 were associated with SE (β=0.233, p=4.21×10-4; β=0.221, p=7.87×10-4; β=0.106, p=0.0076; β=0.084, p=0.041; β=0.14, p=0.013, respectively) and SPH (β=0.24, p=2.3×10-4; β=0.232, p=3.8×10-4; β=0.088, p=0.025; β=0.086, p=0.034; β=0.14, p=0.012, respectively). Among them, ZMAT4 rs7829127 and rs16890057, were also associated with AL (β=-0.128, p=5.6×10-4; β=-0.128, p=5.21×10-4) and AL/CR ratio (β=-0.014, p=0.0028; β=-0.014, p=0.0034), whereas TOX rs7837791 was associated with AL (β=-0.062, p=0.0058) and GRIA4 11 601 239 with AL/CR ratio (β=-0.0058, p=0.049). Additionally, CD55 rs1652333 and RDH5 rs3138142 were associated with 3-year longitudinal changes in AL (β=0.062, p=0.018; β=-0.079, p=0.029) and CR (β=0.014, p=0.027; β=-0.018, p=0.035). CONCLUSION Among SNPs previously associated with AL and SE in adults, variants in ZMAT4, TOX and GRIA4 were associated with AL, SE, SPH, and/or AL/CR ratio, while variants in RDH5 and CD55 showed associations with AL and CR changes in children.
Collapse
Affiliation(s)
- Ebenezer Zaabaar
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Erica Shing
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuyao Wang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Yuzhou Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wilson W K Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Pancy O S Tam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Eye Hospital, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Eye Hospital, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Eye Hospital, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Hao J, Yang Z, Zhang R, Ma Z, Liu J, Bi H, Guo D. Crosstalk between heredity and environment in myopia: An overview. Heliyon 2024; 10:e29715. [PMID: 38660258 PMCID: PMC11040123 DOI: 10.1016/j.heliyon.2024.e29715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 03/04/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, the prevalence of myopia has gradually increased, and it has become a significant global public health problem in the 21st century, posing a serious challenge to human eye health. Currently, it is confirmed that the development of myopia is attributed to the combined action of genes and environmental factors. Thus, elucidating the risk factors and pathogenesis of myopia is of great significance for the prevention and control of myopia. To elucidate the impact of gene-environment interaction on myopia, we used the Pubmed database to search for literature related to myopia. Search terms are as follows: myopia, genes, environmental factors, gene-environment interaction, and treatment. This paper reviews the effects of gene and environmental interaction on myopia.
Collapse
Affiliation(s)
- Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
- Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Jinan, 250002, China
- Shandong Engineering Technology Research Center of Visual Intelligence, Jinan, 250002, China
- Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
- Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Jinan, 250002, China
- Shandong Engineering Technology Research Center of Visual Intelligence, Jinan, 250002, China
- Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
3
|
He X, Lin C, Zhang F, Zhang S, Kang M, Wei S, Li H, Wang N, Li SM. Outdoor time influences VIPR2 polymorphism rs2071623 to regulate axial length in Han Chinese children. Mol Vis 2023; 29:266-273. [PMID: 38222453 PMCID: PMC10784227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/01/2023] [Indexed: 01/16/2024] Open
Abstract
Clinical relevance Identification of individuals with a higher risk of developing refractive error under specific gene and environmental backgrounds, especially myopia, could enable more personalized myopic control advice for patients. Background Refractive error is a common disease that affects visual quality and ocular health worldwide. Its mechanisms have not been elaborated, although both genes and the environment are known to contribute to the process. Interactions between genes and the environment have been shown to exert effects on the onset of refractive error, especially myopia. Axial length elongation is the main characteristic of myopia development and could indicate the severity of myopia. Thus, the purpose of the study was to investigate the interaction between environmental factors and genetic markers of VIPR2 and their impact on spherical equivalence and axial length in a population of Han Chinese children. Methods A total of 1825 children aged 13~15 years in the Anyang Childhood Eye Study (ACES) were measured for cycloplegic autorefraction, axial length, and height. Saliva DNA was extracted for genotyping three single-nucleotide polymorphisms (SNPs) in the candidate gene (VIPR2). The median outdoor time (2 h/day) was used to categorize children into high and low exposure groups, respectively. Genetic quality control and linear and logistic regressions were performed. Generalized multifactor dimensional reduction (GMDR) was used to investigate gene-environment interactions. Results There were 1391 children who passed genetic quality control. Rs2071623 of VIPR2 was associated with axial length (T allele, β=-0.11 se=0.04 p=0.006), while SNP nominally interacted with outdoor time (T allele, β=-0.17 se=0.08 p=0.029). Rs2071623 in children with high outdoor exposure had a significant interaction effect on axial length (p=0.0007, β=-0.19 se=0.056) compared to children with low outdoor exposure. GMDR further suggested the existence of an interaction effect between outdoor time and rs2071623. Conclusions Rs2071623 within VIPR2 could interact with outdoor time in Han Chinese children. More outdoor exposure could enhance the protective effect of the T allele on axial elongation.
Collapse
Affiliation(s)
- Xi He
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Caixia Lin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Fengchuan Zhang
- School of Mathematics Sciences, University of Chinese Academy of Science
| | - Sanguo Zhang
- School of Mathematics Sciences, University of Chinese Academy of Science
| | - Mengtian Kang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Shifei Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - He Li
- Anyang Eye Hospital, Henan Province, China
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Shi-Ming Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| |
Collapse
|
4
|
He X, Li SM. Gene-environment interaction in myopia. Ophthalmic Physiol Opt 2023; 43:1438-1448. [PMID: 37486033 DOI: 10.1111/opo.13206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
Myopia is a health issue that has attracted global attention due to its high prevalence and vision-threatening complications. It is well known that the onset and progression of myopia are related to both genetic and environmental factors: more than 450 common genetic loci have been found to be associated with myopia, while near work and outdoor time are the main environmental risk factors. As for many complex traits, gene-environment interactions are implicated in myopia development. To date, several genetic loci have been found to interact with near work or educational level. Gene-environment interaction research on myopia could yield models that provide more accurate risk predictions, thus improving targeted treatments and preventive strategies. Additionally, such investigations might have the potential to reveal novel genetic information. In this review, we summarised the findings in this field and proposed some topics for future investigations.
Collapse
Affiliation(s)
- Xi He
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Shi-Ming Li
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| |
Collapse
|
5
|
Lu Q, Du Y, Zhang Y, Chen Y, Li H, He W, Tang Y, Zhao Z, Zhang Y, Wu J, Zhu X, Lu Y. A Genome-Wide Association Study for Susceptibility to Axial Length in Highly Myopic Eyes. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:255-267. [PMID: 37325711 PMCID: PMC10260730 DOI: 10.1007/s43657-022-00082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
High myopia has long been highly prevalent worldwide with a largely yet unexplained genetic contribution. To identify novel susceptibility genes for axial length (AL) in highly myopic eyes, a genome-wide association study (GWAS) was performed using the genomic dataset of 350 deep whole-genome sequencing data from highly myopic patients. Top single nucleotide polymorphisms (SNPs) were functionally annotated. Immunofluorescence staining, quantitative polymerase chain reaction, and western blot were performed using neural retina of form-deprived myopic mice. Enrichment analyses were further performed. We identified the four top SNPs and found that ADAM Metallopeptidase With Thrombospondin Type 1 Motif 16 (ADAMTS16) and Phosphatidylinositol Glycan Anchor Biosynthesis Class Z (PIGZ) had the potential of clinical significance. Animal experiments confirmed that PIGZ expression could be observed and showed higher expression level in form-deprived mice, especially in the ganglion cell layer. The messenger RNA (mRNA) levels of both ADAMTS16 and PIGZ were significantly higher in the neural retina of form-deprived eyes (p = 0.005 and 0.007 respectively), and both proteins showed significantly upregulated expression in the neural retina of deprived eyes (p = 0.004 and 0.042, respectively). Enrichment analysis revealed a significant role of cellular adhesion and signal transduction in AL, and also several AL-related pathways including circadian entrainment and inflammatory mediator regulation of transient receptor potential channels were proposed. In conclusion, the current study identified four novel SNPs associated with AL in highly myopic eyes and confirmed that the expression of ADAMTS16 and PIGZ was significantly upregulated in neural retina of deprived eyes. Enrichment analyses provided novel insight into the etiology of high myopia and opened avenues for future research interest. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00082-x.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yu Du
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Ye Zhang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yuxi Chen
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Hao Li
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Wenwen He
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yating Tang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Zhennan Zhao
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yinglei Zhang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Jihong Wu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Xiangjia Zhu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Yi Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| |
Collapse
|
6
|
Applications of Genomics and Transcriptomics in Precision Medicine for Myopia Control or Prevention. Biomolecules 2023; 13:biom13030494. [PMID: 36979429 PMCID: PMC10046175 DOI: 10.3390/biom13030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Myopia is a globally emerging concern accompanied by multiple medical and socio-economic burdens with no well-established causal treatment to control thus far. The study of the genomics and transcriptomics of myopia treatment is crucial to delineate disease pathways and provide valuable insights for the design of precise and effective therapeutics. A strong understanding of altered biochemical pathways and underlying pathogenesis leading to myopia may facilitate early diagnosis and treatment of myopia, ultimately leading to the development of more effective preventive and therapeutic measures. In this review, we summarize current data about the genomics and transcriptomics of myopia in human and animal models. We also discuss the potential applicability of these findings to precision medicine for myopia treatment.
Collapse
|
7
|
Clark R, Pozarickij A, Hysi PG, Ohno-Matsui K, Williams C, Guggenheim JA. Education interacts with genetic variants near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C to confer susceptibility to myopia. PLoS Genet 2022; 18:e1010478. [PMID: 36395078 PMCID: PMC9671369 DOI: 10.1371/journal.pgen.1010478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
Abstract
Myopia most often develops during school age, with the highest incidence in countries with intensive education systems. Interactions between genetic variants and educational exposure are hypothesized to confer susceptibility to myopia, but few such interactions have been identified. Here, we aimed to identify genetic variants that interact with education level to confer susceptibility to myopia. Two groups of unrelated participants of European ancestry from UK Biobank were studied. A 'Stage-I' sample of 88,334 participants whose refractive error (avMSE) was measured by autorefraction and a 'Stage-II' sample of 252,838 participants who self-reported their age-of-onset of spectacle wear (AOSW) but who did not undergo autorefraction. Genetic variants were prioritized via a 2-step screening process in the Stage-I sample: Step 1 was a genome-wide association study for avMSE; Step 2 was a variance heterogeneity analysis for avMSE. Genotype-by-education interaction tests were performed in the Stage-II sample, with University education coded as a binary exposure. On average, participants were 58 years-old and left full-time education when they were 18 years-old; 35% reported University level education. The 2-step screening strategy in the Stage-I sample prioritized 25 genetic variants (GWAS P < 1e-04; variance heterogeneity P < 5e-05). In the Stage-II sample, 19 of the 25 (76%) genetic variants demonstrated evidence of variance heterogeneity, suggesting the majority were true positives. Five genetic variants located near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C had evidence of a genotype-by-education interaction in the Stage-II sample (P < 0.002) and consistent evidence of a genotype-by-education interaction in the Stage-I sample. For all 5 variants, University-level education was associated with an increased effect of the risk allele. In this cohort, additional years of education were associated with an enhanced effect of genetic variants that have roles including axon guidance and the development of neuronal synapses and neural circuits.
Collapse
Affiliation(s)
- Rosie Clark
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Alfred Pozarickij
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Pirro G. Hysi
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jeremy A. Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
8
|
Myopia Genetics and Heredity. CHILDREN 2022; 9:children9030382. [PMID: 35327754 PMCID: PMC8947159 DOI: 10.3390/children9030382] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022]
Abstract
Myopia is the most common eye condition leading to visual impairment and is greatly influenced by genetics. Over the last two decades, more than 400 associated gene loci have been mapped for myopia and refractive errors via family linkage analyses, candidate gene studies, genome-wide association studies (GWAS), and next-generation sequencing (NGS). Lifestyle factors, such as excessive near work and short outdoor time, are the primary external factors affecting myopia onset and progression. Notably, besides becoming a global health issue, myopia is more prevalent and severe among East Asians than among Caucasians, especially individuals of Chinese, Japanese, and Korean ancestry. Myopia, especially high myopia, can be serious in consequences. The etiology of high myopia is complex. Prediction for progression of myopia to high myopia can help with prevention and early interventions. Prediction models are thus warranted for risk stratification. There have been vigorous investigations on molecular genetics and lifestyle factors to establish polygenic risk estimations for myopia. However, genes causing myopia have to be identified in order to shed light on pathogenesis and pathway mechanisms. This report aims to examine current evidence regarding (1) the genetic architecture of myopia; (2) currently associated myopia loci identified from the OMIM database, genetic association studies, and NGS studies; (3) gene-environment interactions; and (4) the prediction of myopia via polygenic risk scores (PRSs). The report also discusses various perspectives on myopia genetics and heredity.
Collapse
|
9
|
van der Sande E, Haarman AEG, Quint WH, Tadema KCD, Meester-Smoor MA, Kamermans M, De Zeeuw CI, Klaver CCW, Winkelman BHJ, Iglesias AI. The Role of GJD2(Cx36) in Refractive Error Development. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35262731 PMCID: PMC8934558 DOI: 10.1167/iovs.63.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Refractive errors are common eye disorders characterized by a mismatch between the focal power of the eye and its axial length. An increased axial length is a common cause of the refractive error myopia (nearsightedness). The substantial increase in myopia prevalence over the last decades has raised public health concerns because myopia can lead to severe ocular complications later in life. Genomewide association studies (GWAS) have made considerable contributions to the understanding of the genetic architecture of refractive errors. Among the hundreds of genetic variants identified, common variants near the gap junction delta-2 (GJD2) gene have consistently been reported as one of the top hits. GJD2 encodes the connexin 36 (Cx36) protein, which forms gap junction channels and is highly expressed in the neural retina. In this review, we provide current evidence that links GJD2(Cx36) to the development of myopia. We summarize the gap junctional communication in the eye and the specific role of GJD2(Cx36) in retinal processing of visual signals. Finally, we discuss the pathways involving dopamine and gap junction phosphorylation and coupling as potential mechanisms that may explain the role of GJD2(Cx36) in refractive error development.
Collapse
Affiliation(s)
- Emilie van der Sande
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim H. Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kirke C. D. Tadema
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Biomedical Physics and Biomedical Photonics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Beerend H. J. Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adriana I. Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Lin Y, Jiang D, Li C, Huang X, Xiao H, Liu L, Chen Y. Interactions between genetic variants and near-work activities in incident myopia in schoolchildren: a 4-year prospective longitudinal study. Clin Exp Optom 2022; 106:303-310. [PMID: 35021948 DOI: 10.1080/08164622.2021.2024070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
CLINICAL RELEVANCE Knowledge of interactions between genetic variants and near-work activities at the onset of myopia can facilitate health education regarding myopia. BACKGROUND To investigate the interactions between genetic variants (PDE10A, AREG and GABRR1) and near-work activities in the onset of myopia in southeastern Chinese school children. METHODS A total of 458 non-myopic, grade 1 children aged 6-7 years were included in a 4-year follow-up examination; 409 children were assessed further. Manifest (non-cycloplegic) refraction and axial length (AL) were measured every year, and questionnaires were administered annually to assess information regarding the demographic characteristics of children, near-work activities, outdoor exposure and parental myopia. Oral mucosa was collected in the last year of follow-up, and Sanger sequencing was used to genotype single nucleotide polymorphisms (SNPs) in DNA. RESULTS The cumulative change in the spherical equivalent refraction (SER) over 4 years was -1.20 ± 1.00 D, and the proportion of children with incident myopia was 42.9%. Multivariate logistic regression analysis showed that an increased amount of time spent doing homework (>2 h/d) was an independent risk factor for incident myopia. The PDE10A rs12206610CT genotype and spending > 5 h/d on near-work activities showed an interaction for incident myopia (OR = 4.29, 95% CI: 1.27-14.53; Pinteraction = 0.02); moreover, the rs12206610CT genotype carriers who used electronic devices for > 1 h/d displayed an increased risk of incident myopia (OR = 3.43, 95% CI: 1.07-11.01; Pinteraction = 0.043). CONCLUSIONS The rs2206610CT genotype carriers with near-work activities of >5 h/d were more likely to show incident myopia, especially those who used electronic devices >1 h/d. However, interactions between the rs12206610 SNP and near-work activities require further verification in animal models and larger sample cohorts.
Collapse
Affiliation(s)
- Yaoyao Lin
- The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dandan Jiang
- The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunchun Li
- The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoqiong Huang
- The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haishao Xiao
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linjie Liu
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanyan Chen
- The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Mutational screening of AGRN, SLC39A5, SCO2, P4HA2, BSG, ZNF644, and CPSF1 in a Chinese cohort of 103 patients with nonsyndromic high myopia. Mol Vis 2021; 27:706-717. [PMID: 35002215 PMCID: PMC8684808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/05/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose High myopia (HM) is one of the leading causes of irreversible vision loss in the world. Many myopia loci have been uncovered with linkage analysis, genome-wide association studies, and sequencing analysis. Numerous pathogenic genes within these loci have been detected in a portion of HM cases. In the present study, we aimed to investigate the genetic basis of 103 patients with nonsyndromic HM, focusing on the reported causal genes. Methods A total of 103 affected individuals with nonsyndromic HM were recruited, including 101 patients with unrelated sporadic HM and a mother and son pair. All participants underwent comprehensive ophthalmic examinations, and genomic DNA samples were extracted from the peripheral blood. Whole exome sequencing was performed on the mother and son pair as well as on the unaffected father. Sanger sequencing was used to identify mutations in the remaining 101 patients. Bioinformatics analysis was subsequently applied to verify the mutations. Results An extremely rare mutation in AGRN (c.2627A>T, p.K876M) was identified in the mother and son pair but not in the unaffected father. Another two mutations in AGRN (c.4787C>T, p.P1596L/c.5056G>A, p.G1686S) were identified in two unrelated patients. A total of eight heterozygous variants potentially affecting the protein function were detected in eight of the remaining 99 patients, including c.1350delC, p.V451Cfs*76 and c.1023_1024insA, p.P342Tfs*41 in SLC39A5; c.244_246delAAG, p.K82del in SCO2; c.545A>G, p.Y182C in P4HA2; c.415C>T, p.P139S in BSG; c.3266A>G, p.Y1089C in ZNF644; and c.2252C>T, p.S751L and c.1708C>T, p.R570C in CPSF1. Multiple bioinformatics analyses were conducted, and a comparison to a group with geographically matched controls was performed, which supported the potential pathogenicity of these variants. Conclusions We provide further evidence for the potential role of AGRN in HM inheritance and enlarged the current genetic spectrum of nonsyndromic HM by comprehensively screening the reported causal genes.
Collapse
|
12
|
Plotnikov D, Cui J, Clark R, Wedenoja J, Pärssinen O, Tideman JWL, Jonas JB, Wang Y, Rudan I, Young TL, Mackey DA, Terry L, Williams C, Guggenheim JA. Genetic Variants Associated With Human Eye Size Are Distinct From Those Conferring Susceptibility to Myopia. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 34698770 PMCID: PMC8556552 DOI: 10.1167/iovs.62.13.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose Emmetropization requires coordinated scaling of the major ocular components, corneal curvature and axial length. This coordination is achieved in part through a shared set of genetic variants that regulate eye size. Poorly coordinated scaling of corneal curvature and axial length results in refractive error. We tested the hypothesis that genetic variants regulating eye size in emmetropic eyes are distinct from those conferring susceptibility to refractive error. Methods A genome-wide association study (GWAS) for corneal curvature in 22,180 adult emmetropic individuals was performed as a proxy for a GWAS for eye size. A polygenic score created using lead GWAS variants was tested for association with corneal curvature and axial length in an independent sample: 437 classified as emmetropic and 637 as ametropic. The genetic correlation between eye size and refractive error was calculated using linkage disequilibrium score regression for approximately 1 million genetic variants. Results The GWAS for corneal curvature in emmetropes identified 32 independent genetic variants (P < 5.0e-08). A polygenic score created using these 32 genetic markers explained 3.5% (P < 0.001) and 2.0% (P = 0.001) of the variance in corneal curvature and axial length, respectively, in the independent sample of emmetropic individuals but was not predictive of these traits in ametropic individuals. The genetic correlation between eye size and refractive error was close to zero (rg = 0.00; SE = 0.06; P = 0.95). Conclusions These results support the hypothesis that genetic variants regulating eye size in emmetropic eyes do not overlap with those conferring susceptibility to myopia. This suggests that distinct biological pathways regulate normal eye growth and myopia development.
Collapse
Affiliation(s)
- Denis Plotnikov
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom.,Central Research Laboratory, Kazan State Medical University, Kazan, Russia
| | - Jiangtian Cui
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rosie Clark
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Juho Wedenoja
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Olavi Pärssinen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - J Willem L Tideman
- Department of Ophthalmology, Erasmus Medical Centre, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Yaxing Wang
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Igor Rudan
- Centre for Global Health and WHO Collaborating Centre, University of Edinburgh, United Kingdom
| | - Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
| | - Louise Terry
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jeremy A Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
13
|
Zhang X, Fan Q, Zhang F, Liang G, Pan CW. Gene-environment Interaction in Spherical Equivalent and Myopia: An Evidence-based Review. Ophthalmic Epidemiol 2021; 29:435-442. [PMID: 34546856 DOI: 10.1080/09286586.2021.1958350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Association between gene-environment interaction and myopia/spherical equivalent has not been systematically reported. This paper reviewed nine studies concerning gene-environment interaction in myopia. METHODS We obtained relevant studies concerning gene-environment interaction in myopia by systematically searching the MEDLINE(PubMed), Cochrane, Web of Science, CNKI, Wanfang databases before 31 March 2020. Data were analyzed by STATA version 16.0 software, and figures were drawn by ArcGIS V.10.0 software. RESULTS Nine studies were included in this review concerning gene-environment interaction. Gene and education interaction in adult cohorts suggested a more significant genetic effect in higher education levels than lower education levels, using both candidate genes and PRS approaches. Several interacted genetic variants, including ZMAT4(rs2137277), GJD2(rs524952), TJP2 (rs11145488) from adult study and ZMAT4(rs7829127) from child study are pinpointed out, but the replication attempts were limited. Besides, the genetic effect was associated with a significant shift at a higher educational level (Pooled β = -0.15,95%CI = -0.19-0.11) towards myopia than that at a lower education level (Pooled β = -0.10,95%CI = -0.11-0.09). CONCLUSION This study summarizes the relationship between gene-environment interaction and myopia, and interaction effect of the gene or genetic risk score with the environment could be found in these studies. The effect of gene-environment (higher education) interaction substantially impacts myopia in adult studies. Evidence that environmental factors (Increased near-work time/decreased outdoor activities) increase the genetic risk is still limited, and specific SNPs contributing to gene-environment effect are not determined yet.
Collapse
Affiliation(s)
- Xiyan Zhang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qiao Fan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Fengyun Zhang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Gang Liang
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Quint WH, Tadema KCD, de Vrieze E, Lukowicz RM, Broekman S, Winkelman BHJ, Hoevenaars M, de Gruiter HM, van Wijk E, Schaeffel F, Meester-Smoor M, Miller AC, Willemsen R, Klaver CCW, Iglesias AI. Loss of Gap Junction Delta-2 (GJD2) gene orthologs leads to refractive error in zebrafish. Commun Biol 2021; 4:676. [PMID: 34083742 PMCID: PMC8175550 DOI: 10.1038/s42003-021-02185-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
Myopia is the most common developmental disorder of juvenile eyes, and it has become an increasing cause of severe visual impairment. The GJD2 locus has been consistently associated with myopia in multiple independent genome-wide association studies. However, despite the strong genetic evidence, little is known about the functional role of GJD2 in refractive error development. Here, we find that depletion of gjd2a (Cx35.5) or gjd2b (Cx35.1) orthologs in zebrafish, cause changes in the biometry and refractive status of the eye. Our immunohistological and scRNA sequencing studies show that Cx35.5 (gjd2a) is a retinal connexin and its depletion leads to hyperopia and electrophysiological changes in the retina. These findings support a role for Cx35.5 (gjd2a) in the regulation of ocular biometry. Cx35.1 (gjd2b) has previously been identified in the retina, however, we found an additional lenticular role. Lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. Our results provide functional evidence of a link between gjd2 and refractive error. Quint et al. use zebrafish lines deficient in one of two orthologs of the Gap Junction Delta-2 (GJD2) gene, which is associated with myopia by genome-wide association studies. They link gjd2 with refractive error and report evidence to suggest that gjd2a plays a role in ocular biometry whilst gjd2b, previously found in the retina, possesses an additional lenticular role.
Collapse
Affiliation(s)
- Wim H Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands. .,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Kirke C D Tadema
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rachel M Lukowicz
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Sanne Broekman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Beerend H J Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Melanie Hoevenaars
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Erwin van Wijk
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Schaeffel
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Magda Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adriana I Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands. .,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Morgan IG, Rose KA. Myopia: is the nature‐nurture debate finally over? Clin Exp Optom 2021; 102:3-17. [DOI: 10.1111/cxo.12845] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ian G Morgan
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia,
- State Key Laboratory of Ophthalmology and Division of Preventive Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‐Sen University, Guangzhou, China,
| | - Kathryn A Rose
- Discipline of Orthoptics, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia,
| |
Collapse
|
16
|
Ramamurthy D, Lin chua SY, Saw S. A review of environmental risk factors for myopia during early life, childhood and adolescence. Clin Exp Optom 2021; 98:497-506. [DOI: 10.1111/cxo.12346] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 01/01/2023] Open
Affiliation(s)
- Dharani Ramamurthy
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore,
| | | | - Seang‐mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore,
- Myopia Unit, Singapore Eye Research Institute, Singapore,
| |
Collapse
|
17
|
Chen LJ, Li FF, Lu SY, Zhang XJ, Kam KW, Tang SM, Tam PO, Yip WW, Young AL, Tham CC, Pang CP, Yam JC. Association of polymorphisms in ZFHX1B, KCNQ5 and GJD2 with myopia progression and polygenic risk prediction in children. Br J Ophthalmol 2021; 105:1751-1757. [PMID: 33811038 DOI: 10.1136/bjophthalmol-2020-318708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/03/2022]
Abstract
AIMS To assess the association of single-nucleotide polymorphisms (SNPs) with myopia progression for polygenic risk prediction in children. METHODS Six SNPs (ZC3H11B rs4373767, ZFHX1B rs13382811, KCNQ5 rs7744813, MET rs2073560, SNTB1 rs7839488 and GJD2 rs524952) were analysed in 1043 school children, who completed 3-year follow-up, using TaqMan genotyping assays. SNP associations with progression in spherical equivalent (SE) were analysed by logistic regression. Polygenic risk scores (PRS) were applied for computing the sum of the risk alleles of multiple SNPs corresponding to myopia progression, weighted by the effect sizes of corresponding SNPs. RESULTS GJD2 rs524952 showed significant association with fast progression (OR=1.32, 95% CI 1.10 to 1.59; p=0.003) and KCNQ5 rs7744813 had nominal association (OR=1.32, 95% CI 1.04 to 1.67; p=0.02). In quantitative traits locus analysis, GJD2 rs524952 and KCNQ5 rs7744813 were associated with progression in SE (β=-0.038 D/year, p=0.008 and β=-0.042 D/year, p=0.02) and axial elongation (β=0.016 mm/year, p=0.01 and β=0.017 mm/year, p=0.027). ZFHX1B rs13382811 also showed nominal association with faster progression in SE (β=-0.041 D/year, p=0.02). PRS analysis showed that children with the highest PRS defined by rs13382811, rs7744813 and rs524952 had a 2.26-fold of increased risk of fast myopia progression (p=4.61×10-5). PRS was also significantly associated with SE progression (R2=1.6%, p=3.15×10-5) and axial elongation (R2=1.2%, p=2.6×10-4). CONCLUSIONS In this study, multi-tiered evidence suggested SNPs in ZFHX1B, KCNQ5 and GJD2 as risk factors for myopia progression in children. Additional attention and appropriate interventions should be given for myopic children with high-risk PRS as defined by GJD2 rs524952, KCNQ5 rs7744813 and ZFHX1B rs13382811.
Collapse
Affiliation(s)
- Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Fen Fen Li
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi Yao Lu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Shu Min Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, First Affiliated Hospital of Fujian Medical University, Xiamen, China
| | - Pancy Os Tam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wilson Wk Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China
| |
Collapse
|
18
|
Abstract
Myopia, also known as short-sightedness or near-sightedness, is a very common condition that typically starts in childhood. Severe forms of myopia (pathologic myopia) are associated with a risk of other associated ophthalmic problems. This disorder affects all populations and is reaching epidemic proportions in East Asia, although there are differences in prevalence between countries. Myopia is caused by both environmental and genetic risk factors. A range of myopia management and control strategies are available that can treat this condition, but it is clear that understanding the factors involved in delaying myopia onset and slowing its progression will be key to reducing the rapid rise in its global prevalence. To achieve this goal, improved data collection using wearable technology, in combination with collection and assessment of data on demographic, genetic and environmental risk factors and with artificial intelligence are needed. Improved public health strategies focusing on early detection or prevention combined with additional effective therapeutic interventions to limit myopia progression are also needed.
Collapse
|
19
|
Steffens DC, Garrett ME, Soldano KL, McQuoid DR, Ashley-Koch AE, Potter GG. Genome-wide screen to identify genetic loci associated with cognitive decline in late-life depression. Int Psychogeriatr 2020:1-9. [PMID: 32641180 PMCID: PMC7794099 DOI: 10.1017/s1041610220001143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study sought to conduct a comprehensive search for genetic risk of cognitive decline in the context of geriatric depression. DESIGN A genome-wide association study (GWAS) analysis in the Neurocognitive Outcomes of Depression in the Elderly (NCODE) study. SETTING Longitudinal, naturalistic follow-up study. PARTICIPANTS Older depressed adults, both outpatients and inpatients, receiving care at an academic medical center. MEASUREMENTS The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropsychological battery was administered to the study participants at baseline and a minimum of twice within a subsequent 3-year period in order to measure cognitive decline. A GWAS analysis was conducted to identify genetic variation that is associated with baseline and change in the CERAD Total Score (CERAD-TS) in NCODE. RESULTS The GWAS of baseline CERAD-TS revealed a significant association with an intergenic single-nucleotide polymorphism (SNP) on chromosome 6, rs17662598, that surpassed adjustment for multiple testing (p = 3.7 × 10-7; false discovery rate q = 0.0371). For each additional G allele, average baseline CERAD-TS decreased by 8.656 points. The most significant SNP that lies within a gene was rs11666579 in SLC27A1 (p = 1.1 × 10-5). Each additional copy of the G allele was associated with an average decrease of baseline CERAD-TS of 4.829 points. SLC27A1 is involved with processing docosahexaenoic acid (DHA), an endogenous neuroprotective compound in the brain. Decreased levels of DHA have been associated with the development of Alzheimer's disease. The most significant SNP associated with CERAD-TS decline over time was rs73240021 in GRXCR1 (p = 1.1 × 10-6), a gene previously linked with deafness. However, none of the associations within genes survived adjustment for multiple testing. CONCLUSIONS Our GWAS of cognitive function and decline among individuals with late-life depression (LLD) has identified promising candidate genes that, upon replication in other cohorts of LLD, may be potential biomarkers for cognitive decline and suggests DHA supplementation as a possible therapy of interest.
Collapse
Affiliation(s)
- D C Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - M E Garrett
- Department of Medicine, Duke University Medicine Center, Durham, NC, USA
| | - K L Soldano
- Department of Medicine, Duke University Medicine Center, Durham, NC, USA
| | - D R McQuoid
- Department of Psychiatry, Duke University Medicine Center, Durham, NC, USA
| | - A E Ashley-Koch
- Department of Medicine, Duke University Medicine Center, Durham, NC, USA
| | - G G Potter
- Department of Psychiatry, Duke University Medicine Center, Durham, NC, USA
| |
Collapse
|
20
|
Wang J, Liu F, Song X, Li T. Association of 5p15.2 and 15q14 with high myopia in Tujia and Miao Chinese populations. BMC Ophthalmol 2020; 20:255. [PMID: 32586281 PMCID: PMC7318420 DOI: 10.1186/s12886-020-01516-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/12/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The polymorphisms rs6885224 and rs634990 have been reported to be associated with high myopia in many populations. As there is still no report on whether these two SNPs are associated with myopia in the Tujia and Miao minority areas of China, we conducted a replication study to evaluate the association of single-nucleotide polymorphisms in the regions 5p15.2 and 15q14 with high myopia in Tujia and Miao Chinese populations. METHODS We performed a comprehensive meta-analysis of 5831 cases and 7055 controls to assess whether rs6885224 in the 5p15.2 region and rs634990 in the 15q14 region are associated with high myopia. Our replication study enrolled 804 individuals. Genomic DNA was extracted from venous leukocytes, and these two SNPs were genotyped by Sanger sequencing. Allele and genotype frequencies were analysed using χ2 tests, and ORs and 95% CIs were calculated. RESULTS According to the results of the meta-analysis, rs6885224 in the CTNND2 gene showed no association with myopia [p = 0.222, OR = 1.154, 95% CI (0.917-1.452)]. Conversely, rs634990 in the 15q14 region did exhibit a significant correlation with myopia [p = 7.270 × 10- 7, OR = 0.817, 95% CI (0.754-0.885)]. In our replication study, no association with high myopia in the Tujia and Miao populations was found for rs634990 or rs6885224. The following were obtained by allele frequency analysis: rs6885224, p = 0.175, OR = 0.845, and 95% CI = 0.662-1.078; rs634990, p = 0.087, OR = 0.84, and the 95% CI = 0.687-1.026. Genotype frequency analysis yielded p = 0.376 for rs6885224 and p = 0.243 for rs634990. CONCLUSIONS Our meta-analysis results show that rs634990 was significantly associated with myopia but that rs6885224 was not. Nevertheless, in our replication study, these two SNPs showed no association with myopia in the Tujia and Miao Chinese populations. This is the first report involving Tujia and Miao ethnic groups from Enshi minority areas. However, the sample size needs to be expanded and more stringent inclusion and exclusion criteria need to be formulated to verify the findings.
Collapse
Affiliation(s)
- Junwen Wang
- Department of Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture, No.158, Wuyang Road, Enshi, 445000, Hubei Provence, China
| | - Fang Liu
- Department of Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture, No.158, Wuyang Road, Enshi, 445000, Hubei Provence, China.,Department of Eye Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiusheng Song
- Department of Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture, No.158, Wuyang Road, Enshi, 445000, Hubei Provence, China
| | - Tuo Li
- Department of Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture, No.158, Wuyang Road, Enshi, 445000, Hubei Provence, China.
| |
Collapse
|
21
|
Hung HD, Chinh DD, Tan PV, Duong NV, Anh NQ, Le NH, Tuan HX, Anh NT, Duong NTT, Kien VD. The Prevalence of Myopia and Factors Associated with It Among Secondary School Children in Rural Vietnam. Clin Ophthalmol 2020; 14:1079-1090. [PMID: 32368006 PMCID: PMC7183771 DOI: 10.2147/opth.s251218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose To assess the prevalence of myopia and associated factors among secondary school children in a rural area of Vietnam.
Methods A school-based cross-sectional study of children in grades six to nine was conducted in four secondary schools in Hoang Mai town, Nghe An Province, Vietnam, during December 2018 and January 2019. The status of myopia was defined as a spherical equivalent objective refractive error of −0.50 D or worse in either eye. A case–control study was conducted to explore factors associated with myopia, where children with myopia were considered to be cases, and children without myopia were considered to be controls. Factors associated with myopia were analyzed using univariate and multivariate logistic regression. Results The prevalence of myopia among secondary school children was 14.2% (95% CI: 12.7–15.7%) and tended to increase with grade, from 10.5% in grade six to 17.7% in grade nine. Myopia prevalence in girls was significantly higher than in boys. Factors associated with myopia were a mother with a college/university education (OR = 2.5, 95% CI = 1.2–5.3), parents who wore spectacles (OR = 2.0, 95% CI = 1.1–3.8), distance from near work (OR = 5.2, 95% CI = 3.5–7.9), and taking breaks after 30 minutes of continued reading (OR = 1.6, 95% CI = 1.1–2.5). However, there were inverse associations with myopia for children belonging to the wealthiest households (OR = 0.2, 95% CI = 0.1–0.5) and time spent performing outdoor activities (OR = 0.6, 95% CI = 0.4–0.9). Conclusion Our study showed that the prevalence of myopia is considerable among secondary children in rural areas of Vietnam. The prevalence of myopia tended to increase among children in higher grade levels. Thus, appropriate interventions should be developed and conducted to deal with the issue of school-age myopia.
Collapse
Affiliation(s)
- Ho Duc Hung
- Quynh Lap National Leprosy Dermatology Hospital, Hoang Mai Town, Nghe An, Vietnam
| | | | | | - Nguyen Viet Duong
- Quynh Lap National Leprosy Dermatology Hospital, Hoang Mai Town, Nghe An, Vietnam
| | | | | | - Ho Xuan Tuan
- School of Medicine and Pharmacy, The University of Da Nang, Da Nang City, Vietnam
| | | | | | - Vu Duy Kien
- OnCare Medical Technology Company Limited, Hanoi, Vietnam
| |
Collapse
|
22
|
Cheong KX, Yong RYY, Tan MMH, Tey FLK, Ang BCH. Association of VIPR2 and ZMAT4 with high myopia. Ophthalmic Genet 2020; 41:41-48. [PMID: 32166996 DOI: 10.1080/13816810.2020.1737951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: To investigate the associations of Single Nucleotide Polymorphisms (SNPs) in the VIPR2 and ZMAT4 genes with high myopia in a Han Chinese population.Materials and Methods: In this case-control genetic association study comprising 193 high myopia participants and 135 normal emmetropic controls from a Han Chinese population, 15 SNPs from the VIPR2 and ZMAT4 genes were selected for genotyping based on previous studies. Allelic frequencies of the SNPs and haplotypes were compared for association with high myopia and axial length (AL).Results: RS885863 (G-reference/A-effect) and RS7829127 (A-reference/G-effect) were significantly associated with high myopia (OR = 1.832, P = .045; OR = 0.539, P = .023 respectively). The associations of RS885863 with high myopia were observed under the dominant (GA+AA: OR = 1.972, P < .05) and co-dominant models (Heterozygous GA: OR = 1.874; Homozygous AA: OR = 5.310; P < .05) against GG (reference). The mean AL of GG was 25.94 mm, compared with that in GA and AA of 26.64 mm and 27.48 mm respectively. The associations of RS7829127 with high myopia were observed under the dominant (AG+GG: OR = 0.512, P < .05) and co-dominant models (Heterozygous AG: OR = 0.524; Homozygous GG: OR = 0.307; P < .05) against AA (reference). The mean AL of AA was 26.35 mm, compared with that in AG and GG of 25.62 mm and 25.17 mm respectively. The importance of RS885863 and RS7829127 were also highlighted by their being the constituent SNPs in the haplotypes (ACGA, P = .002; and GA, P = .008 respectively) that were significantly associated with high myopia.Conclusions: Our findings agree that RS885863 from VIPR2 and RS7829127 from ZMAT4 are significantly associated with high myopia in a Han Chinese population.
Collapse
Affiliation(s)
- Kai Xiong Cheong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Vision Performance Centre, Military Medicine Institute, Singapore Armed Forces, Singapore, Singapore
| | - Rita Yu Yin Yong
- DSO National Laboratories, Defence Medical and Environmental Research Institute, Singapore, Singapore
| | - Mellisa Mei Hui Tan
- Vision Performance Centre, Military Medicine Institute, Singapore Armed Forces, Singapore, Singapore
| | - Frederick Lian Kheng Tey
- DSO National Laboratories, Defence Medical and Environmental Research Institute, Singapore, Singapore
| | - Bryan Chin Hou Ang
- Vision Performance Centre, Military Medicine Institute, Singapore Armed Forces, Singapore, Singapore.,National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
23
|
Pozarickij A, Enthoven CA, Ghorbani Mojarrad N, Plotnikov D, Tedja MS, Haarman AEG, Tideman JWL, Polling JR, Northstone K, Williams C, Klaver CCW, Guggenheim JA. Evidence That Emmetropization Buffers Against Both Genetic and Environmental Risk Factors for Myopia. Invest Ophthalmol Vis Sci 2020; 61:41. [PMID: 32097480 PMCID: PMC7329625 DOI: 10.1167/iovs.61.2.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose To test the hypothesis that emmetropization buffers against genetic and environmental risk factors for myopia by investigating whether risk factor effect sizes vary depending on children's position in the refractive error distribution. Methods Refractive error was assessed in participants from two birth cohorts: Avon Longitudinal Study of Parents and Children (ALSPAC) (noncycloplegic autorefraction) and Generation R (cycloplegic autorefraction). A genetic risk score for myopia was calculated from genotypes at 146 loci. Time spent reading, time outdoors, and parental myopia were ascertained from parent-completed questionnaires. Risk factors were coded as binary variables (0 = low, 1 = high risk). Associations between refractive error and each risk factor were estimated using either ordinary least squares (OLS) regression or quantile regression. Results Quantile regression: effects associated with all risk factors (genetic risk, parental myopia, high time spent reading, low time outdoors) were larger for children in the extremes of the refractive error distribution than for emmetropes and low ametropes in the center of the distribution. For example, the effect associated with having a myopic parent for children in quantile 0.05 vs. 0.50 was as follows: ALSPAC: age 15, -1.19 D (95% CI -1.75 to -0.63) vs. -0.13 D (-0.19 to -0.06), P = 0.001; Generation R: age 9, -1.31 D (-1.80 to -0.82) vs. -0.19 D (-0.26 to -0.11), P < 0.001. Effect sizes for OLS regression were intermediate to those for quantiles 0.05 and 0.50. Conclusions Risk factors for myopia were associated with much larger effects in children in the extremes of the refractive error distribution, providing indirect evidence that emmetropization buffers against both genetic and environmental risk factors.
Collapse
Affiliation(s)
- Alfred Pozarickij
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Clair A. Enthoven
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Denis Plotnikov
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Milly S. Tedja
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annechien E G. Haarman
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J. Willem L. Tideman
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Roelof Polling
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Orthoptics & Optometry, University of Applied Sciences, Faculty of Health, Utrecht, The Netherlands
| | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Cathy Williams
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Jeremy A. Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
24
|
Cai XB, Shen SR, Chen DF, Zhang Q, Jin ZB. An overview of myopia genetics. Exp Eye Res 2019; 188:107778. [DOI: 10.1016/j.exer.2019.107778] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/27/2019] [Accepted: 08/23/2019] [Indexed: 11/15/2022]
|
25
|
Xu C, Wu J, Wang J. Associations of rs524952 and rs634990 gene polymorphisms in 15q14 with high myopia: A meta-analysis. Mol Vis 2019; 25:603-609. [PMID: 31673225 PMCID: PMC6798703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/12/2019] [Indexed: 11/09/2022] Open
Abstract
Purpose Many studies have been conducted to investigate the association between the rs524952 and rs634990 polymorphisms and high myopia (HM). However, the results were conflicting. Thus, a meta-analysis was needed to reveal the real association between the two single nucleotide polymorphisms (SNPs) and HM. Methods All eligible studies published in Pubmed, Embase, China Biologic Medicine (CBM), the China National Knowledge Infrastructure (CNKI), the Cochrane Library, and the Web of Science from 2010 to March 2019 were examined. Results Six comparison groups in four studies with 5,293 subjects for the rs524952 polymorphism and five studies with 6,750 subjects for the rs634990 polymorphism were included. No statistically significant associations were observed between the rs524952 and rs634990 polymorphisms and HM under the allelic model, recessive genetic model, and dominant genetic model in this meta-analysis. Subgroup analysis was conducted by dividing the studies into two groups according to the case sample size, which showed that the association between the rs524952 polymorphism and HM was found only in a subgroup of fewer than 300 cases under the dominant genetic model (OR=0.64; 95% confidence interval [CI]:0.43-0.96). Sensitivity analysis for the rs524952 polymorphism suggested the results of this study were stable under all the genetic models. However, the association between the rs634990 polymorphism and HM turned out to be statistically significant in the allelic, recessive, and dominant genetic models after the omission of Qiang et al.'s study. No publication bias was found. Conclusions The results of this meta-analysis suggested the rs524952 and rs634990 polymorphisms may have nothing to do with the development of HM. The present results must be confirmed with larger-scale studies in the future.
Collapse
|
26
|
Liao X, Tan QQ, Lan CJ. Myopia genetics in genome-wide association and post-genome-wide association study era. Int J Ophthalmol 2019; 12:1487-1492. [PMID: 31544047 DOI: 10.18240/ijo.2019.09.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWAS) of myopia and refractive error have generated exciting results and identified novel risk-associated loci. However, the interpretation of the findings of GWAS of complex diseases is not straightforward and has remained challenging. This review provides a brief summary of the main focus on the advantages and limitations of GWAS of myopia, with potential strategies that may contribute to further insight into the genetics of myopia in the post-GWAS or omics era.
Collapse
Affiliation(s)
- Xuan Liao
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College; Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Qing-Qing Tan
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College; Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Chang-Jun Lan
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College; Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
27
|
Yang GY, Liu FY, Li X, Zhu QR, Chen BJ, Liu LQ. Decreased expression of gap junction delta-2 (GJD2) messenger RNA and connexin 36 protein in form-deprivation myopia of guinea pigs. Chin Med J (Engl) 2019; 132:1700-1705. [PMID: 31283648 PMCID: PMC6759107 DOI: 10.1097/cm9.0000000000000319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND More than ten genome-wide association studies have identified the significant association between the gap junction delta-2 (GJD2) gene and myopia. However, no functional studies have been performed to confirm that this gene is correlated with myopia. This study aimed to observe how this gene changed in mRNA and protein level in the form-deprivation myopia (FDM) animal model. METHODS Four-week-old guinea pigs were randomly divided into two groups: control and FDM groups (n = 12 for each group). The right eyes of the FDM group were covered with opaque hemispherical plastic lenses for 3 weeks. For all the animals, refractive status, axial length (AL), and corneal radius of curvature were measured at baseline and 3 weeks later by streak retinoscope, A-scan ultrasonography, and keratometer, respectively. Retinal GJD2 mRNA expression and connexin 36 (Cx36) levels in FDM and control groups were measured by quantitative real-time PCR and Western blot analyses, respectively. Those results were compared using independent t test, Mann-Whitney U test, or paired t test. A significance level of P < 0.05 was used. RESULTS Three weeks later, the FDM group (form-deprived eyes) showed about a myopic shift of approximately -6.75 (-7.94 to -6.31) D, while the control group remained hyperopic with only a shift of -0.50 (-0.75 to 0.25) D (Z = -3.38, P < 0.01). The AL increased by 0.74 (0.61-0.76) and 0.10 (0.05-0.21) mm in FDM and control groups, respectively (Z = -3.37, P < 0.01). The relative mRNA expression of GJD2 in the FDM group decreased 31.58% more than the control group (t = 11.44, P < 0.01). The relative protein expression of CX36 on the retina was lowered by 37.72% in form-deprivation eyes as compared to the controls (t = 17.74, P < 0.01). CONCLUSION Both the mRNA expression of GJD2 and Cx36 protein amount were significantly decreased in the retina of FDM guinea pigs. This indicates that Cx36 is involved in FDM development, providing compensating evidence for the results obtained from genome-wide association studies.
Collapse
Affiliation(s)
- Guo-Yuan Yang
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng-Yang Liu
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xia Li
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiu-Rong Zhu
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing-Jie Chen
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Long-Qian Liu
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
28
|
Pozarickij A, Williams C, Hysi PG, Guggenheim JA. Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development. Commun Biol 2019; 2:167. [PMID: 31069276 PMCID: PMC6502837 DOI: 10.1038/s42003-019-0387-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/15/2019] [Indexed: 12/18/2022] Open
Abstract
A genetic contribution to refractive error has been confirmed by the discovery of more than 150 associated variants in genome-wide association studies (GWAS). Environmental factors such as education and time outdoors also demonstrate strong associations. Currently however, the extent of gene-environment or gene-gene interactions in myopia is unknown. We tested the hypothesis that refractive error-associated variants exhibit effect size heterogeneity, a hallmark feature of genetic interactions. Of 146 variants tested, evidence of non-uniform, non-linear effects were observed for 66 (45%) at Bonferroni-corrected significance (P < 1.1 × 10-4) and 128 (88%) at nominal significance (P < 0.05). LAMA2 variant rs12193446, for example, had an effect size varying from -0.20 diopters (95% CI -0.18 to -0.23) to -0.89 diopters (95% CI -0.71 to -1.07) in different individuals. SNP effects were strongest at the phenotype extremes and weaker in emmetropes. A parsimonious explanation for these findings is that gene-environment or gene-gene interactions in myopia are pervasive.
Collapse
Affiliation(s)
- Alfred Pozarickij
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, CF24 4HQ UK
| | - Cathy Williams
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
| | - Pirro G. Hysi
- Department of Ophthalmology, King’s College London, St. Thomas’ Hospital, London, SE1 7EH UK
- Department of Twin & Genetic Epidemiology, King’s College London, St. Thomas’ Hospital, London, SE1 7EH UK
| | | |
Collapse
|
29
|
Enthoven CA, Tideman JWL, Polling JR, Tedja MS, Raat H, Iglesias AI, Verhoeven VJM, Klaver CCW. Interaction between lifestyle and genetic susceptibility in myopia: the Generation R study. Eur J Epidemiol 2019; 34:777-784. [PMID: 30945054 PMCID: PMC6602996 DOI: 10.1007/s10654-019-00512-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/12/2019] [Indexed: 01/08/2023]
Abstract
Myopia is a refractive error of the eye caused by a complex interplay between nature and nurture. The aim of this study was to investigate whether environmental risk factors can influence the genetic effect in children developing myopia. A total of 3422 children participating in the birth-cohort study Generation R underwent an extensive eye examination at 9 years with measurements of refractive error and axial length corneal radius ratio (AL/CR). Environmental risk factors were evaluated using a questionnaire, and environmental risk scores (ERS) were calculated using backward regression analyses.
Genetic risk scores (GRS) were calculated based on all currently known risk variants for myopia. Gene-environment interaction (G×E) was investigated using linear and logistic regression analyses. The predictive value of G×E and parental myopia was estimated using receiver operating characteristic curves. Myopia prevalence was 12%. Both GRS (P < 0.01) and ERS (P < 0.01) were significantly associated with myopia and AL/CR, as was G×E interaction (P < 0.01 for myopia; P = 0.07 for AL/CR). The predictive value of parental myopia was 0.67 (95% CI 0.65–0.70), similar to the values of GRS (0.67; 95% CI 0.64–0.70; P = 0.98) and ERS (0.69; 95% CI 0.66–0.72; P = 0.98). Adding G×E interaction significantly improved the predictive value to 0.73 (95% CI 0.70–0.75; P < 0.01). This study provides evidence that nature and nurture are equally important for myopia and AL/CR; however, the combination has the strongest influence. Since myopia genes are common in the population, adjustment of lifestyle should be a major focus in the prevention of myopia.
Collapse
Affiliation(s)
- Clair A Enthoven
- Department of Ophthalmology, Erasmus University Medical Centre, Room Na-2808, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jan Willem Lodewijk Tideman
- Department of Ophthalmology, Erasmus University Medical Centre, Room Na-2808, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jan Roelof Polling
- Department of Ophthalmology, Erasmus University Medical Centre, Room Na-2808, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Orthoptics & Optometry, University of Applied Sciences, Utrecht, The Netherlands
| | - Milly S Tedja
- Department of Ophthalmology, Erasmus University Medical Centre, Room Na-2808, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Hein Raat
- Department of Public Health, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Adriana I Iglesias
- Department of Ophthalmology, Erasmus University Medical Centre, Room Na-2808, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Virginie J M Verhoeven
- Department of Ophthalmology, Erasmus University Medical Centre, Room Na-2808, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Centre, Room Na-2808, PO Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands. .,Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Tedja MS, Haarman AEG, Meester-Smoor MA, Kaprio J, Mackey DA, Guggenheim JA, Hammond CJ, Verhoeven VJM, Klaver CCW. IMI - Myopia Genetics Report. Invest Ophthalmol Vis Sci 2019; 60:M89-M105. [PMID: 30817828 PMCID: PMC6892384 DOI: 10.1167/iovs.18-25965] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
The knowledge on the genetic background of refractive error and myopia has expanded dramatically in the past few years. This white paper aims to provide a concise summary of current genetic findings and defines the direction where development is needed. We performed an extensive literature search and conducted informal discussions with key stakeholders. Specific topics reviewed included common refractive error, any and high myopia, and myopia related to syndromes. To date, almost 200 genetic loci have been identified for refractive error and myopia, and risk variants mostly carry low risk but are highly prevalent in the general population. Several genes for secondary syndromic myopia overlap with those for common myopia. Polygenic risk scores show overrepresentation of high myopia in the higher deciles of risk. Annotated genes have a wide variety of functions, and all retinal layers appear to be sites of expression. The current genetic findings offer a world of new molecules involved in myopiagenesis. As the missing heritability is still large, further genetic advances are needed. This Committee recommends expanding large-scale, in-depth genetic studies using complementary big data analytics, consideration of gene-environment effects by thorough measurement of environmental exposures, and focus on subgroups with extreme phenotypes and high familial occurrence. Functional characterization of associated variants is simultaneously needed to bridge the knowledge gap between sequence variance and consequence for eye growth.
Collapse
Affiliation(s)
- Milly S. Tedja
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - David A. Mackey
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jeremy A. Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Christopher J. Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - for the CREAM Consortium
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
- Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, London, United Kingdom
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
31
|
Chen L, Wei Y, Chi W, Fang D, Jiang X, Zhang S. Potential Mutations in Chinese Pathologic Myopic Patients and Contributions to Phenotype. Curr Mol Med 2019; 18:689-697. [PMID: 30747064 PMCID: PMC6635424 DOI: 10.2174/1566524019666190211120016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/02/2022]
Abstract
Purpose Pathologic myopia is a leading cause of visual impairment in East Asia. The aim of this study was to investigate the potential mutations in Chinese pathologic myopic patients and to analyze the correlations between genotype and clinical phenotype. Method One hundred and three patients with pathologic myopia and one hundred and nine unrelated healthy controls were recruited from Zhongshan Ophthalmic Center. Detailed clinical data, including ultra-widefield retinal images, measurements of best-corrected visual acuity, axial length, refractive error and ophthalmic examination results, were obtained. Blood samples were collected for high-throughput DNA targeted sequencing. Based on the screening results, phenotype-genotype correlations were analyzed. Results The study included 196 eyes of 103 patients (36 men and 67 women) with an average age of 52.19 (38.92 – 65.46) years, an average refractive error of -11.80 D (-16.38 – -7.22) and a mean axial length of 28.26 mm (25.79 – 30.73). The patients were subdivided into three groups: myopic chorioretinal atrophy (190 eyes of 101 patients), myopic choroidal neovascularization (17 eyes of 15 patients), and myopic traction retinopathy (71 eyes of 61 patients). Systematic analysis of variants in the 255 genes revealed six potential pathogenic mutations: PEX7, OCA2, LRP5 (rs545382, c.1647T>C), TSPAN12 (rs41623, c.765G>T), RDH5 (rs3138142, c.423C>T) and TTC21B (rs80225158, c.2385G>C). OCA2 mutations were primarily observed in patients with myopic traction maculopathy. Conclusion Genetic alterations contribute to various clinical characteristics in Chinese pathologic myopic patients. The study may provide new insights into the etiology of pathologic myopia and potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- L Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Y Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - W Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - D Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - X Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - S Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Huang Y, Kee CS, Hocking PM, Williams C, Yip SP, Guggenheim JA. A Genome-Wide Association Study for Susceptibility to Visual Experience-Induced Myopia. Invest Ophthalmol Vis Sci 2019; 60:559-569. [PMID: 30721303 PMCID: PMC6363377 DOI: 10.1167/iovs.18-25597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/18/2018] [Indexed: 01/18/2023] Open
Abstract
Purpose The rapid rise in prevalence over recent decades and high heritability of myopia suggest a role for gene-environment (G × E) interactions in myopia susceptibility. Few such G × E interactions have been discovered to date. We aimed to test the hypothesis that genetic analysis of susceptibility to visual experience-induced myopia in an animal model would identify novel G × E interaction loci. Methods Chicks aged 7 days (n = 987) were monocularly deprived of form vision for 4 days. A genome-wide association study (GWAS) was carried out in the 20% of chicks most susceptible and least susceptible to form deprivation (n = 380). There were 304,963 genetic markers tested for association with the degree of induced axial elongation in treated versus control eyes (A-scan ultrasonography). A GWAS candidate region was examined in the following three human cohorts: CREAM consortium (n = 44,192), UK Biobank (n = 95,505), and Avon Longitudinal Study of Parents and Children (ALSPAC; n = 4989). Results A locus encompassing the genes PIK3CG and PRKAR2B was genome-wide significantly associated with myopia susceptibility in chicks (lead variant rs317386235, P = 9.54e-08). In CREAM and UK Biobank GWAS datasets, PIK3CG and PRKAR2B were enriched for strongly-associated markers (meta-analysis lead variant rs117909394, P = 1.7e-07). In ALSPAC participants, rs117909394 had an age-dependent association with refractive error (-0.22 diopters [D] change over 8 years, P = 5.2e-04) and nearby variant rs17153745 showed evidence of a G × E interaction with time spent reading (effect size -0.23 D, P = 0.022). Conclusions This work identified the PIK3CG-PRKAR2B locus as a mediator of susceptibility to visually induced myopia in chicks and suggests a role for this locus in conferring susceptibility to myopia in human cohorts.
Collapse
Affiliation(s)
- Yu Huang
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
- School of Optometry, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Chea-Su Kee
- School of Optometry, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Paul M Hocking
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Cathy Williams
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Shea Ping Yip
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jeremy A Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
33
|
Nickels S, Hopf S, Pfeiffer N, Schuster AK. Myopia is associated with education: Results from NHANES 1999-2008. PLoS One 2019; 14:e0211196. [PMID: 30695049 PMCID: PMC6350963 DOI: 10.1371/journal.pone.0211196] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/09/2019] [Indexed: 11/20/2022] Open
Abstract
Purpose Myopia is increasing worldwide and possibly linked to education. In this study, we analyse the association of myopia and education in the U.S. and investigate its age-dependency. Methods We conducted a secondary data analysis using the public use files from the cross-sectional study National Health and Nutrition Examination Survey of the period from 1999 to 2008. 19,756 participants aged 20 to 85 years were included with data on education and ophthalmic parameters (distance visual acuity, objective refraction and keratometry). Spherical equivalent, astigmatism, corneal power and corneal astigmatism were evaluated for an association with education using linear regression analysis with adjustment of potential confounders. Results Analysis revealed an association between spherical equivalent and educational level in the univariate analysis (P < .001), and in the adjusted model (P < .001). Subjects who attend school to less than 9th grade had a mean spherical equivalent of 0.34 D, subjects with 9-11th grade -0.14 D, subjects that finished high school -0.33 D, subjects with partial college education -0.70 D, subjects that graduated from college or a higher formal education -1.22 D. Subjects that graduated from college or above were -1.47 D more myopic compared to subjects that completed less than 9th grade school in the adjusted analyses. Astigmatism and corneal curvature was not associated with education. Conclusions Myopia is associated with higher education in the U.S. Our analysis shows that corneal curvature does not contribute to this association, therefore axial elongation or lens power are likely to contribute to myopia.
Collapse
Affiliation(s)
- Stefan Nickels
- Center for Ophthalmic Epidemiology and Healthcare Research, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne Hopf
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander K. Schuster
- Center for Ophthalmic Epidemiology and Healthcare Research, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
34
|
Han SB, Jang J, Yang HK, Hwang JM, Park SK. Prevalence and risk factors of myopia in adult Korean population: Korea national health and nutrition examination survey 2013-2014 (KNHANES VI). PLoS One 2019; 14:e0211204. [PMID: 30677087 PMCID: PMC6345425 DOI: 10.1371/journal.pone.0211204] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/09/2019] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To evaluate the prevalence and risk factors of myopia in adult Korean population. METHODS Population-based cross-sectional data of 3,398 subjects aged 19 to 49 years was obtained using the Korea National Health and Nutrition Examination Survey 2013-2014 (KNHANES VI). Data, including refractive errors and potential risk factors were analyzed. The prevalence and risk factors of myopia, low myopia, and high myopia-defined as a spherical equivalent (SEQ) ≤ -0.5 diopters (D), -6.0 D < SEQ <-0.5 D, and SEQ ≤ -6.0 D, respectively-were evaluated. RESULTS The prevalence of myopia and high myopia were 70.6 (standard error (SE), ±1.1)% and 8.0 (SE, ±0.6)%, respectively. In multivariable analysis, younger age, higher education (≥12 years), parental myopia, lower serum 25-hydroxyvitamin D (25(OH)D) concentration (<9 ng/mL), longer time spent on near work (≥3 hours/day), and higher white blood cell (WBC) count (5-8.9 x 103) were associated with increased prevalence of both myopia and high myopia. Serum 25(OH)D concentration of ≥ 9 ng/ml was significantly associated with decreased prevalence of high myopia in participants with near work of ≥3 hours/day, although the effect was not significant in myopia and low myopia. CONCLUSIONS The prevalence of myopia and high myopia in Korean adults was substantially high, which increased with decreasing age. In addition to parental myopia, the serum 25(OH)D concentration, near work and inflammation reflected by WBC counts may be associated with myopia.
Collapse
Affiliation(s)
- Sang Beom Han
- Department of Ophthalmology, Kangwon National University Hospital, Kangwon National University Graduate School of Medicine, Chuncheon, Korea
| | - Jieun Jang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Kyung Yang
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong-Min Hwang
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- * E-mail: (J-MH); (SKP)
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- * E-mail: (J-MH); (SKP)
| |
Collapse
|
35
|
Murphy MJ, Riddell N, Crewther DP, Simpson D, Crewther SG. Temporal whole field sawtooth flicker without a spatial component elicits a myopic shift following optical defocus irrespective of waveform direction in chicks. PeerJ 2019; 7:e6277. [PMID: 30697484 PMCID: PMC6347968 DOI: 10.7717/peerj.6277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023] Open
Abstract
Purpose Myopia (short-sightedness) is the commonest visual disorder and greatest risk factor for sight threatening secondary pathologies. Myopia and hyperopia can be induced in animal models by rearing with optical lens defocus of opposite sign. The degree of refractive compensation to lens-induced defocus in chicks has been shown to be modified by directionally drifting sawtooth spatio-temporal luminance diamond plaids, with Fast-ON sawtooth spatio-temporal luminance profiles inhibiting the myopic shift in response to negative lenses, and Fast-OFF profiles inhibiting the hyperopic shift in response to positive lenses. What is unknown is whether similar sign-of-defocus dependent results produced by spatio-temporal modulation of sawtooth patterns could be achieved by rearing chicks under whole field low temporal frequency sawtooth luminance profiles at 1 or 4 Hz without a spatial component, or whether such stimuli would indiscriminately elicit a myopic shift such as that previously shown with symmetrical (or near-symmetrical) low frequency flicker across a range of species. Methods Hatchling chicks (n = 166) were reared from days five to nine under one of three defocus conditions (No Lens, +10D lens, or -10D lens) and five light conditions (No Flicker, 1 Hz Fast-ON/Slow-OFF sawtooth flicker, 4 Hz Fast-ON/Slow-OFF sawtooth flicker, 1 Hz Fast-OFF/Slow-ON sawtooth flicker, or 4Hz Fast-OFF/Slow-ON sawtooth flicker). The sawtooth flicker was produced by light emitting diodes (white LEDs, 1.2 -183 Lux), and had no measurable dark phase. Biometrics (refraction and ocular axial dimensions) were measured on day nine. Results Both 1 Hz and 4 Hz Fast-ON and Fast-OFF sawtooth flicker induced an increase in vitreous chamber depth that was greater in the presence of negative compared to positive lens defocus. Both sawtooth profiles at both temporal frequencies inhibited the hyperopic shift in response to +10D lenses, whilst full myopic compensation (or over-compensation) in response to -10D lenses was observed. Conclusions Whole field low temporal frequency Fast-ON and Fast-OFF sawtooth flicker induces a generalized myopic shift, similar to that previously shown for symmetrical sine-wave and square-wave flicker. Our findings highlight that temporal modulation of retinal ON/OFF pathways per se (without a spatial component) is insufficient to produce strong sign-of-defocus dependent effect.
Collapse
Affiliation(s)
- Melanie J Murphy
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Nina Riddell
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - David P Crewther
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - David Simpson
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Sheila G Crewther
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Molecular genetic aspects of complicated myopia pathogenesis. OPHTHALMOLOGY JOURNAL 2018. [DOI: 10.17816/ov11348-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Complicated myopia (CM) is not only a refractive error but a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and the axial length that causes the image to be focused off the retina. Genetic factors in progressive myopia play a key role in determining the impact of ecologic factors on refraction development. The majority of genetic variants underlying CM are characterized by modest effect and/or low frequency, which makes them difficult to identify using classic genetic approaches. The genes identified to date account for less than 10% of all myopia cases, suggesting the existence of a large number of yet unidentified low-frequency and/or small-effect variants, which underlie the majority of myopia cases. Genome analysis revealed dozens of loci associated with non-syndromic myopia, and showed that refractive errors are associated with mutations in genes that are involved in the growth and development of the eye by regulating ion transport, neurotransmission, remodeling of extracellular matrix of the retina and other ocular structures. Genetic study of refractive error provides a unique opportunity to detect key molecules that may play important roles in the development of refractive error. Identifying the molecular basis of refractive error helps to understand mechanisms, and subsequently to design rational therapeutic intervention for this condition.
Collapse
|
37
|
Guggenheim JA, Ghorbani Mojarrad N, Williams C, Flitcroft DI. Genetic prediction of myopia: prospects and challenges. Ophthalmic Physiol Opt 2018; 37:549-556. [PMID: 28836387 DOI: 10.1111/opo.12403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Cathy Williams
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - D Ian Flitcroft
- Department of Ophthalmology, Children's University Hospital, Dublin, Ireland
| |
Collapse
|
38
|
Abstract
PURPOSE The prevalence of myopia has increased dramatically worldwide within the last three decades. Recent studies have shown that refractive development is influenced by environmental, behavioral, and inherited factors. This review aims to analyze recent progress in the genetics of refractive error and myopia. METHODS A comprehensive literature search of PubMed and OMIM was conducted to identify relevant articles in the genetics of refractive error. RESULTS Genome-wide association and sequencing studies have increased our understanding of the genetics involved in refractive error. These studies have identified interesting candidate genes. All genetic loci discovered to date indicate that refractive development is a heterogeneous process mediated by a number of overlapping biological processes. The exact mechanisms by which these biological networks regulate eye growth are poorly understood. Although several individual genes and/or molecular pathways have been investigated in animal models, a systematic network-based approach in modeling human refractive development is necessary to understand the complex interplay between genes and environment in refractive error. CONCLUSION New biomedical technologies and better-designed studies will continue to refine our understanding of the genetics and molecular pathways of refractive error, and may lead to preventative and therapeutic measures to combat the myopia epidemic.
Collapse
|
39
|
Abstract
The epidemic of myopia in urban Asian cities has increased over recent generations and has become a significant public health concern. Considering the potential role of time outdoors in myopia prevention, and the differences in behavioral attitudes of individuals living in Urban East Asian (more indoor-centric) and Western countries, public policies should be developed in different countries accordingly to encourage children to go outdoors to counteract myopia. This is a short manuscript (presented at the International Myopia Conference-2015 by Prof. Seang Mei Saw) about public policies that should be developed to cope with the "myopia epidemic."
Collapse
|
40
|
Kearney S, O'Donoghue L, Pourshahidi LK, Cobice D, Saunders KJ. Myopes have significantly higher serum melatonin concentrations than non-myopes. Ophthalmic Physiol Opt 2017; 37:557-567. [PMID: 28721695 DOI: 10.1111/opo.12396] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Experimental animal models of myopia demonstrate that higher melatonin (Mel) and lower dopamine (DA) concentrations actively promote axial elongation. This study explored the association between myopia and serum concentrations of DA and Mel in humans. METHODS Morning serum concentrations of DA and Mel were measured by solid phase extraction-liquid chromatography-tandem mass spectrometry from 54 participants (age 19.1 ± 0.81 years) in September/October 2014 (phase 1) and March/April 2016 (phase 2). Axial length (AL), corneal radii (CR) and spherical equivalent refraction (SER) were also recorded. Participants were defined as myopic if non-cycloplegic spherical equivalent refractive error ≤-0.50 DS at phase 1. RESULTS Nine participants were lost to follow up. Mel concentrations were measurable for all myopes (phase 1 n = 25, phase 2 n = 22) and non-myopes (phase 1 n = 29, phase 2 n = 23). SER did not change significantly between phases (p = 0.51). DA concentrations were measurable for fewer myopes (phase 1 n = 13, phase 2 n = 12) and non-myopes (phase 1 n = 23, phase 2 n = 16). Myopes exhibited significantly higher Mel concentrations than non-myopes at phase 1 (Median difference: 10 pg mL-1 , p < 0.001) and at phase 2 (Median difference: 7.3 pg mL-1 , p < 0.001) and lower DA concentrations at phase 2 (Median difference: 4.7 pg mL-1 , p = 0.006). Mel concentrations were positively associated with more negative SER (all r ≥ -0.53, all p < 0.001), longer AL (all r ≥ 0.37, all p ≤ 0.008) and higher AL/CR ratio (all r ≥ 0.51, all p < 0.001). CONCLUSION This study reports for the first time in humans that myopes exhibit higher serum Mel concentrations than non-myopes. This may indicate a role for light exposure and circadian rhythm in the human myopic growth mechanism. Further research should focus on younger cohorts exhibiting more dynamic myopic progression and explore the profile of these neurochemicals alongside evaluation of sleep patterns in myopic and non-myopic groups.
Collapse
Affiliation(s)
- Stephanie Kearney
- Optometry and Vision Science Research Group, University of Ulster, Coleraine, UK
| | - Lisa O'Donoghue
- Optometry and Vision Science Research Group, University of Ulster, Coleraine, UK
| | - L Kirsty Pourshahidi
- Northern Ireland Centre for Food and Health (NICHE), University of Ulster, Coleraine, UK
| | - Diego Cobice
- Metabolomics and Proteomics Core Facility Unit, Biomedical Research Institute, University of Ulster, Coleraine, UK
| | - Kathryn J Saunders
- Optometry and Vision Science Research Group, University of Ulster, Coleraine, UK
| |
Collapse
|
41
|
Okui S, Meguro A, Takeuchi M, Yamane T, Okada E, Iijima Y, Mizuki N. Analysis of the association between the LUM rs3759223 variant and high myopia in a Japanese population. Clin Ophthalmol 2016; 10:2157-2163. [PMID: 27826181 PMCID: PMC5096747 DOI: 10.2147/opth.s104761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose Many studies have investigated the relationship of the lumican gene (LUM) rs3759223 variant with the risk of high myopia, but the results have been inconsistent and inconclusive. In this study, we investigated whether LUM rs3759223 is associated with high myopia in a Japanese population. Methods We recruited 1,585 Japanese patients with high myopia (spherical equivalent [SE] <−9.00 diopters [D]) and 1,011 Japanese healthy controls (SE ≥−1.00 D). The rs3759223 variant was genotyped using the TaqMan assay, and the allelic and genotypic diversity among cases and controls was analyzed according to the SE level. Results In the allelic tests, the odds ratio (OR) for the T allele of rs3759223 tended to increase with the progression of SE, and the highest OR (1.56) was found in patients with SE <−15 D in both eyes. The OR of the T allele tended to increase with the progression of SE in the additive, dominant, and recessive inheritance models. However, we found no significant associations for any of the alleles or genotype models. Conclusion These data support the possibility that the LUM rs3759223 T allele accelerates the progression of SE in the Japanese population, although no significant associations were observed in this study. Additional genetic studies with larger samples that take into account the degree of SE are needed to clarify the contribution of rs3759223 to the risk of high myopia.
Collapse
Affiliation(s)
- Shintaro Okui
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan; Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takahiro Yamane
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | | | | | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
42
|
Abstract
Myopia is a major cause of visual impairment worldwide. In particular, high myopia is associated with serious blinding complications, including retinal detachment, chorioretinal degeneration, and choroidal neovascularization. Myopia is multifactorial in etiology, resulting from the interaction of environmental and genetic risk factors. During the past 2 decades, a large number of gene loci and variants have been identified for myopia. There are more than 20 myopia-associated loci spanning all chromosomes. Earlier findings were obtained mainly from family linkage analyses and candidate gene studies, and more recent results are principally from genome-wide association studies and exome sequencing. Some genetic associations have been successfully validated and replicated in populations of different geographic localities and ethnicities, but some have not. Compared with Whites, Asian populations-in particular Japanese, Korean, and Chinese-have a much higher prevalence of myopia, especially high myopia. Both genetic and environmental factors contribute to such ethnic variations. This review attempts to summarize and compare the allelic frequencies of gene variants known to be associated with myopia in different ethnic groups, especially in the Asia-Pacific region.
Collapse
Affiliation(s)
- Shi Song Rong
- From the *Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong; and †Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
43
|
Fan Q, Guo X, Tideman JWL, Williams KM, Yazar S, Hosseini SM, Howe LD, Pourcain BS, Evans DM, Timpson NJ, McMahon G, Hysi PG, Krapohl E, Wang YX, Jonas JB, Baird PN, Wang JJ, Cheng CY, Teo YY, Wong TY, Ding X, Wojciechowski R, Young TL, Pärssinen O, Oexle K, Pfeiffer N, Bailey-Wilson JE, Paterson AD, Klaver CCW, Plomin R, Hammond CJ, Mackey DA, He M, Saw SM, Williams C, Guggenheim JA. Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Sci Rep 2016; 6:25853. [PMID: 27174397 PMCID: PMC4865831 DOI: 10.1038/srep25853] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022] Open
Abstract
Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7-15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E-08) and 2.3% (P = 6.9E-21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E-04).
Collapse
Affiliation(s)
- Qiao Fan
- Centre for Quantitative Medicine, Duke-NUS Medial School,
Singapore
| | - Xiaobo Guo
- Department of Statistical Science, School of Mathematics
& Computational Science, Sun Yat-Sen University, Guangzhou,
China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
Center, Sun Yat-sen University, Guangzhou, China
| | - J. Willem L. Tideman
- Department of Epidemiology, Erasmus Medical Center,
Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center,
Rotterdam, The Netherlands
| | - Katie M. Williams
- Department of Ophthalmology, King’s College London,
St Thomas’ Hospital campus, London, UK
- Department of Twin Research and Genetic Epidemiology,
King’s College London School of Medicine, London,
UK
| | - Seyhan Yazar
- Centre for Ophthalmology and Visual Science, Lions Eye
Institute, University of Western Australia, Perth,
Australia
| | - S. Mohsen Hosseini
- Genetics and Genome Biology Program, Hospital for Sick Children
and University of Toronto, Toronto, Ontario, Canada
| | - Laura D. Howe
- MRC Integrative Epidemiology Unit (IEU) at the University of
Bristol, Bristol, UK
- School of Social and Community Medicine, University of
Bristol, Bristol, UK
| | - Beaté St Pourcain
- MRC Integrative Epidemiology Unit (IEU) at the University of
Bristol, Bristol, UK
- Max Planck Institute for Psycholinguistics, Wundtlaan 1,
6525 XD Nijmegen, The Netherlands
| | - David M. Evans
- MRC Integrative Epidemiology Unit (IEU) at the University of
Bristol, Bristol, UK
- University of Queensland Diamantina Institute, Translational
Research Institute, Brisbane, Queensland, Australia
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit (IEU) at the University of
Bristol, Bristol, UK
| | - George McMahon
- MRC Integrative Epidemiology Unit (IEU) at the University of
Bristol, Bristol, UK
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology,
King’s College London School of Medicine, London,
UK
| | - Eva Krapohl
- MRC Social, Genetic and Developmental Psychiatry Centre,
Institute of Psychiatry, Psychology & Neuroscience, King’s
College London, London, UK
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital,
Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Science Key Lab,
Beijing, China
| | - Jost B. Jonas
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital,
Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Science Key Lab,
Beijing, China
- Department of Ophthalmology, Medical Faculty Mannheim,
Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Paul Nigel Baird
- Centre for Eye Research Australia (CERA), University of
Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria,
Australia
| | - Jie Jin Wang
- Centre for Eye Research Australia (CERA), University of
Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria,
Australia
- Centre for Vision Research, Department of Ophthalmology and
Westmead Institute for Medical Research, University of Sydney, Sydney,
Australia
| | - Ching-Yu Cheng
- Department of Ophthalmology, National University Health
Systems, National University of Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye
Centre, Singapore, Singapore
| | - Yik-Ying Teo
- Department of Statistics and Applied Probability, National
University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University
Health Systems, National University of Singapore, Singapore,
Singapore
| | - Tien-Yin Wong
- Department of Ophthalmology, National University Health
Systems, National University of Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye
Centre, Singapore, Singapore
| | - Xiaohu Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
Center, Sun Yat-sen University, Guangzhou, China
| | - Robert Wojciechowski
- Computational and Statistical Genomics Branch, National Human
Genome Research Institute, National Institutes of Health, Baltimore, MD,
USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of
Public Health, Baltimore, Maryland, USA
- Wilmer Eye Institute, Johns Hopkins School of Medicine,
Baltimore, MD
| | - Terri L. Young
- Ophthalmology and Visual Sciences, University of
Wisconsin-Madison, Madison, WI, USA
- Duke-National University of Singapore Graduate Medical
School, Singapore, Singapore
| | - Olavi Pärssinen
- Department of Health Sciences and Gerontology Research Center,
University of Jyväskylä,
Jyväskylä, Finland
- Department of Ophthalmology, Central Hospital of Central
Finland, Jyväskylä, Finland
| | - Konrad Oexle
- Institute of Human Genetics, Technical University Munich,
Munich, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center
Mainz, Mainz, Germany
| | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human
Genome Research Institute, National Institutes of Health, Baltimore, MD,
USA
| | - Andrew D. Paterson
- Genetics and Genome Biology Program, Hospital for Sick Children
and University of Toronto, Toronto, Ontario, Canada
| | - Caroline C. W. Klaver
- Department of Epidemiology, Erasmus Medical Center,
Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center,
Rotterdam, The Netherlands
| | - Robert Plomin
- MRC Social, Genetic and Developmental Psychiatry Centre,
Institute of Psychiatry, Psychology & Neuroscience, King’s
College London, London, UK
| | - Christopher J. Hammond
- Department of Ophthalmology, King’s College London,
St Thomas’ Hospital campus, London, UK
- Department of Twin Research and Genetic Epidemiology,
King’s College London School of Medicine, London,
UK
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye
Institute, University of Western Australia, Perth,
Australia
- Centre for Eye Research Australia (CERA), University of
Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria,
Australia
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
Center, Sun Yat-sen University, Guangzhou, China
- Centre for Eye Research Australia (CERA), University of
Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria,
Australia
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore National Eye
Centre, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University
Health Systems, National University of Singapore, Singapore,
Singapore
| | - Cathy Williams
- School of Social and Community Medicine, University of
Bristol, Bristol, UK
| | | | | |
Collapse
|
44
|
Jin GM, Zhao XJ, Chen AM, Chen YX, Li Q. Association of COL1A1 polymorphism with high myopia: a Meta-analysis. Int J Ophthalmol 2016; 9:604-9. [PMID: 27162737 DOI: 10.18240/ijo.2016.04.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/20/2015] [Indexed: 02/02/2023] Open
Abstract
AIM To investigate the association between collagen type I alpha 1 (COL1A1) gene and high myopia. METHODS In this Meta-analysis, we examined 5 published case-control studies that involved 1942 high myopia cases and 2929 healthy controls to assess the association between the COL1A1 rs2075555 polymorphism and high myopia risk. We calculated the pooled odds ratios (ORs) of COL1A1 rs2075555 polymorphism in high myopia cases vs healthy controls to evaluate the strength of the association. RESULTS Overall, there was no significant difference both in the genotype and allele distributions of COL1A1 rs2075555 polymorphism between high myopia cases and healthy controls: CC vs AA OR=1.10, 95% confidence interval (CI)=0.76-1.58; AC vs AA OR=0.98, 95%CI 0.80-1.20; CC/AC vs AA/OR=1.01, 95%CI 0.84-1.22; CC vs AC/AA OR=1.06, 95%CI=0.93-1.20; C vs A OR=1.06, 95%CI 0.91-1.23). In addition, in the stratified analyses by ethnicity, no significant associations were found in any genetic model both in European and Asia cohorts. CONCLUSION Our results indicate that the COL1A1 rs2075555 polymorphism may not affect susceptibility to high myopia.
Collapse
Affiliation(s)
- Guang-Ming Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Xiao-Jing Zhao
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Ai-Ming Chen
- Department of Pharmacy, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Yong-Xing Chen
- Department of Otorhinolaryngology, Jiangmen Central Hospital, Jiangmen 529030, Guangdong Province, China
| | - Qin Li
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
45
|
Fan Q, Verhoeven VJM, Wojciechowski R, Barathi VA, Hysi PG, Guggenheim JA, Höhn R, Vitart V, Khawaja AP, Yamashiro K, Hosseini SM, Lehtimäki T, Lu Y, Haller T, Xie J, Delcourt C, Pirastu M, Wedenoja J, Gharahkhani P, Venturini C, Miyake M, Hewitt AW, Guo X, Mazur J, Huffman JE, Williams KM, Polasek O, Campbell H, Rudan I, Vatavuk Z, Wilson JF, Joshi PK, McMahon G, St Pourcain B, Evans DM, Simpson CL, Schwantes-An TH, Igo RP, Mirshahi A, Cougnard-Gregoire A, Bellenguez C, Blettner M, Raitakari O, Kähönen M, Seppala I, Zeller T, Meitinger T, Ried JS, Gieger C, Portas L, van Leeuwen EM, Amin N, Uitterlinden AG, Rivadeneira F, Hofman A, Vingerling JR, Wang YX, Wang X, Tai-Hui Boh E, Ikram MK, Sabanayagam C, Gupta P, Tan V, Zhou L, Ho CEH, Lim W, Beuerman RW, Siantar R, Tai ES, Vithana E, Mihailov E, Khor CC, Hayward C, Luben RN, Foster PJ, Klein BEK, Klein R, Wong HS, Mitchell P, Metspalu A, Aung T, Young TL, He M, Pärssinen O, van Duijn CM, Jin Wang J, Williams C, Jonas JB, Teo YY, Mackey DA, Oexle K, Yoshimura N, Paterson AD, Pfeiffer N, Wong TY, Baird PN, Stambolian D, Wilson JEB, Cheng CY, Hammond CJ, Klaver CCW, Saw SM, Rahi JS, Korobelnik JF, Kemp JP, Timpson NJ, Smith GD, Craig JE, Burdon KP, Fogarty RD, Iyengar SK, Chew E, Janmahasatian S, Martin NG, MacGregor S, Xu L, Schache M, Nangia V, Panda-Jonas S, Wright AF, Fondran JR, Lass JH, Feng S, Zhao JH, Khaw KT, Wareham NJ, Rantanen T, Kaprio J, Pang CP, Chen LJ, Tam PO, Jhanji V, Young AL, Döring A, Raffel LJ, Cotch MF, Li X, Yip SP, Yap MK, Biino G, Vaccargiu S, Fossarello M, Fleck B, Yazar S, Tideman JWL, Tedja M, Deangelis MM, Morrison M, Farrer L, Zhou X, Chen W, Mizuki N, Meguro A, Mäkelä KM. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error. Nat Commun 2016; 7:11008. [PMID: 27020472 PMCID: PMC4820539 DOI: 10.1038/ncomms11008] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/10/2016] [Indexed: 02/07/2023] Open
Abstract
Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10(-5)), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia.
Collapse
Affiliation(s)
- Qiao Fan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Robert Wojciechowski
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland 21224, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 20205, USA
| | - Veluchamy A. Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, National University Health Systems, National University of Singapore Singapore 119228, Singapore
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, London SE1 7EH, UK
| | - Jeremy A. Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - René Höhn
- Department of Ophthalmology, University Medical Center Mainz, 55131 Mainz, Germany
- Department of Ophthalmology, Inselspital, University Hospital Bern, CH-3010 Bern, Switzerland
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| | - Anthony P. Khawaja
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SR, UK
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan
| | - S Mohsen Hosseini
- Program in Genetics and Genome Biology, The Hospital for Sick Children and Institute for Medical Sciences, University of Toronto, Toronto Ontario, Canada M5G 1X8
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine, University of Tampere, Tampere 33520, Finland
| | - Yi Lu
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland 4029, Australia
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Jing Xie
- Centre for Eye Research Australia (CERA), Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria 3002, Australia
| | - Cécile Delcourt
- Université de Bordeaux, ISPED (Institut de Santé Publique d'Épidémiologie et de Développement), Bordeaux 33000, France
- INSERM, U1219-Bordeaux Population Health Research Center, Bordeaux 33000, France
| | - Mario Pirastu
- Institute of Population Genetics, National Research Council, Sassari 07100, Italy
| | - Juho Wedenoja
- Department of Public Health, University of Helsinki, Helsinki 00014, Finland
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland
| | - Puya Gharahkhani
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland 4029, Australia
| | - Cristina Venturini
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, London SE1 7EH, UK
- UCL Institute of Ophthalmology, London SE1 7EH, UK
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan
| | - Alex W. Hewitt
- Centre for Eye Research Australia (CERA), Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria 3002, Australia
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Xiaobo Guo
- Department of Statistical Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Johanna Mazur
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, 55131 Mainz, Germany
| | - Jenifer E. Huffman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| | - Katie M. Williams
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, London SE1 7EH, UK
- Department of Ophthalmology, King's College London, London SE1 7EH, UK
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split 21000, Croatia
| | - Harry Campbell
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Igor Rudan
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Zoran Vatavuk
- Department of Ophthalmology, Sisters of Mercy University Hospital, Zagreb 10000, Croatia
| | - James F. Wilson
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Peter K. Joshi
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - George McMahon
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Beate St Pourcain
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
| | - David M. Evans
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Claire L. Simpson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland 21224, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Tae-Hwi Schwantes-An
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Robert P. Igo
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Alireza Mirshahi
- Department of Ophthalmology, University Medical Center Mainz, 55131 Mainz, Germany
- Dardenne Eye Hospital, Bonn-Bad Godesberg, 53177 Bonn, Germany
| | - Audrey Cougnard-Gregoire
- Université de Bordeaux, ISPED (Institut de Santé Publique d'Épidémiologie et de Développement), Bordeaux 33000, France
- INSERM, U1219-Bordeaux Population Health Research Center, Bordeaux 33000, France
| | - Céline Bellenguez
- Inserm, U1167, Lille 59000, France
- Univ. Lille, U1167, Lille 59000, France
- Université Lille 2, Lille 59000, France
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, 55131 Mainz, Germany
| | - Olli Raitakari
- Research Centre of Applied and Preventive Medicine, University of Turku, Turku 20520, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and School of Medicine, University of Tampere, Tampere 33520, Finland
| | - Ilkka Seppala
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine, University of Tampere, Tampere 33520, Finland
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | | | - Janina S. Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Laura Portas
- Institute of Population Genetics, National Research Council, Sassari 07100, Italy
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, 2518 AD Hague, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, 2518 AD Hague, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, 2518 AD Hague, The Netherlands
| | | | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100044, China
| | - Xu Wang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health Systems, Singapore 117549, Singapore
| | - Eileen Tai-Hui Boh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health Systems, Singapore 117549, Singapore
| | - M. Kamran Ikram
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Preeti Gupta
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
| | - Vincent Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
| | - Candice E. H. Ho
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
| | - Wan'e Lim
- Department of Ophthalmology, National University Health Systems, National University of Singapore Singapore 119228, Singapore
| | - Roger W. Beuerman
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, National University Health Systems, National University of Singapore Singapore 119228, Singapore
| | - Rosalynn Siantar
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - E-Shyong Tai
- Duke-NUS Medical School, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health Systems, Singapore 117549, Singapore
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Eranga Vithana
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, National University Health Systems, National University of Singapore Singapore 119228, Singapore
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health Systems, Singapore 117549, Singapore
- Division of Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| | - Robert N. Luben
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SR, UK
| | - Paul J. Foster
- Division of Genetics and Epidemiology, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, USA
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, USA
| | - Hoi-Suen Wong
- Program in Genetics and Genome Biology, The Hospital for Sick Children and Institute for Medical Sciences, University of Toronto, Toronto Ontario, Canada M5G 1X8
| | - Paul Mitchell
- Department of Ophthalmology, Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales 2145, Australia
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
- Department of Ophthalmology, National University Health Systems, National University of Singapore Singapore 119228, Singapore
| | - Terri L. Young
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Olavi Pärssinen
- Department of Ophthalmology, Central Hospital of Central Finland, Jyväskylä 40620, Finland
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Jie Jin Wang
- Department of Ophthalmology, Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales 2145, Australia
| | - Cathy Williams
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Jost B. Jonas
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100044, China
- Medical Faculty Mannheim, Department of Ophthalmology, Ruprecht-Karls-University Heidelberg, 69115 Mannheim, Germany
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health Systems, Singapore 117549, Singapore
- Division of Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore
| | - David A. Mackey
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Konrad Oexle
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children and Institute for Medical Sciences, University of Toronto, Toronto Ontario, Canada M5G 1X8
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, National University Health Systems, National University of Singapore Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health Systems, Singapore 117549, Singapore
| | - Paul N. Baird
- Centre for Eye Research Australia (CERA), Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria 3002, Australia
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joan E. Bailey Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, National University Health Systems, National University of Singapore Singapore 119228, Singapore
| | - Christopher J. Hammond
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, London SE1 7EH, UK
- Department of Ophthalmology, King's College London, London SE1 7EH, UK
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, National University Health Systems, National University of Singapore Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health Systems, Singapore 117549, Singapore
| | - Jugnoo S. Rahi
- Medical Research Council Centre of Epidemiology for Child Health, Institute of Child Health, University College London, London WC1E 6BT, UK
- Institute of Ophthalmology, Moorfields Eye Hospital, London EC1V 2PD, UK
- Ulverscroft Vision Research Group, University College London, London WC1E 6BT, UK
| | - Jean-François Korobelnik
- Université de Bordeaux, 33400 Talence, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), ISPED (Institut de Santé Publique d'épidémiologie et de Développement), Centre INSERM U897-Epidemiologie-Biostatistique, 33076 Bordeaux, France
| | - John P. Kemp
- MRC Integrative Epidemiology Unit (IEU), The University of Bristol, Bristol BS8 2BN, UK
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit (IEU), The University of Bristol, Bristol BS8 2BN, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), The University of Bristol, Bristol BS8 2BN, UK
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia 5001, Australia
| | - Kathryn P. Burdon
- Department of Ophthalmology, Flinders University, Adelaide, South Australia 5001, Australia
| | - Rhys D. Fogarty
- Department of Ophthalmology, Flinders University, Adelaide, South Australia 5001, Australia
| | - Sudha K. Iyengar
- Department of Epidemiology and Biostatistics, CaseWestern Reserve University, Cleveland, Ohio 44106, USA
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University and University Hospitals Eye Institute, Cleveland, Ohio 44106, USA
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Emily Chew
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sarayut Janmahasatian
- Department of Epidemiology and Biostatistics, CaseWestern Reserve University, Cleveland, Ohio 44106, USA
| | - Nicholas G. Martin
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland 4029, Australia
| | - Stuart MacGregor
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland 4029, Australia
| | - Liang Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100044, China
| | - Maria Schache
- Centre for Eye Research Australia (CERA), Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria 3002, Australia
| | - Vinay Nangia
- Suraj Eye Institute, Nagpur, Maharashtra 440001, India
| | | | - Alan F. Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| | - Jeremy R. Fondran
- Department of Epidemiology and Biostatistics, CaseWestern Reserve University, Cleveland, Ohio 44106, USA
| | - Jonathan H. Lass
- Department of Epidemiology and Biostatistics, CaseWestern Reserve University, Cleveland, Ohio 44106, USA
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University and University Hospitals Eye Institute, Cleveland, Ohio 44106, USA
| | - Sheng Feng
- Department of Pediatric Ophthalmology, Duke Eye Center For Human Genetics, Durham, North Carolina 27710, USA
| | - Jing Hua Zhao
- MRC Epidemiology Unit, Institute of Metabolic Sciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SR, UK
| | - Nick J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Taina Rantanen
- Gerontology Research Center, University of Jyväskylä, Jyväskylä Finland
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, Helsinki 00014, Finland
- Institute for Molecular Medicine, University of Helsinki, Helsinki 00014, Finland
- Department of Mental Health and Alcohol Abuse Services, National Institute for Health and Welfare, Helsinki 00271, Finland
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pancy O. Tam
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Vishal Jhanji
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Kowloon, Hong Kong
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alvin L. Young
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Kowloon, Hong Kong
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Angela Döring
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Leslie J. Raffel
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Mary-Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, Bethesda, Maryland 20892, USA
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Los Angeles, California 90502, USA
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Maurice K.H. Yap
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Simona Vaccargiu
- Institute of Population Genetics, National Research Council, Sassari 07100, Italy
| | - Maurizio Fossarello
- Institute of Population Genetics, National Research Council, Sassari 07100, Italy
| | - Brian Fleck
- Princess Alexandra Eye Pavilion, Edinburgh EH3 9HA, UK
| | - Seyhan Yazar
- Centre for Eye Research Australia (CERA), Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria 3002, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jan Willem L. Tideman
- Department of Ophthalmology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Milly Tedja
- Department of Ophthalmology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Margaret M. Deangelis
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA
| | - Margaux Morrison
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA
| | - Lindsay Farrer
- Departments of Medicine (Biomedical Genetics), Ophthalmology, Neurology, Epidemiology and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts 02118, USA
| | - Xiangtian Zhou
- School of ophthalmology and optometry, Wenzhou Medical University, Wenzhou 325035, China
| | - Wei Chen
- School of ophthalmology and optometry, Wenzhou Medical University, Wenzhou 325035, China
| | - Nobuhisa Mizuki
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0027, Japan
| | - Akira Meguro
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0027, Japan
| | - Kari Matti Mäkelä
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine, University of Tampere, Tampere 33014, Finland
| |
Collapse
|
46
|
Polling JR, Verhoeven VJ, Tideman JWL, Klaver CC. Duke-Elder’s Views on Prognosis, Prophylaxis, and Treatment of Myopia: Way Ahead of His Time. Strabismus 2016; 24:40-3. [DOI: 10.3109/09273972.2015.1137706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Williams KM, Hammond CJ. GWAS in myopia: insights into disease and implications for the clinic. EXPERT REVIEW OF OPHTHALMOLOGY 2016. [DOI: 10.1586/17469899.2016.1164597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Kanemaki N, Meguro A, Yamane T, Takeuchi M, Okada E, Iijima Y, Mizuki N. Study of association of PAX6 polymorphisms with susceptibility to high myopia in a Japanese population. Clin Ophthalmol 2015; 9:2005-11. [PMID: 26604670 PMCID: PMC4629984 DOI: 10.2147/opth.s95167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Many studies have investigated the relationship of paired box 6 (PAX6) gene polymorphisms with the risk of high myopia, but the results across studies remain inconsistent and ambiguous. In the present work, we investigated whether PAX6 polymorphisms are associated with high myopia in a Japanese population. METHODS A total of 1,585 Japanese patients with high myopia (spherical equivalent [SE] <-9.00 diopters [D]) and 1,011 Japanese healthy controls (SE≥-1.00 D) were recruited. To compare genotype frequencies between cases and controls, we genotyped five single nucleotide polymorphisms in the PAX6 gene that are reportedly associated with high/extreme myopia: rs662702, rs3026393, rs644242, rs3026390, and rs667773. RESULTS For rs662702, rs644242, and rs667773, odds ratios (ORs) for their risk alleles tended to increase with the progression of SE and axial length in the additive and recessive models. Of these, rs644242 had the highest OR (2.56) in patients with SE<-15 D in both eyes in the recessive model. On the other hand, for rs3026393 and rs3026390, the ORs for their risk alleles tended to increase according to the progression of SE and axial length in the dominant model. Of the two, rs3026393 had the highest OR (2.32) in patients with SE<-15 D in both eyes in the dominant model. However, no significant associations were identified in this study. CONCLUSION We found that these PAX6 single nucleotide polymorphisms were associated with an increased risk of extreme myopia. Although the results, which are in agreement with some previous studies, did not reach statistical significance, PAX6 single nucleotide polymorphisms may be important risk factors for the development of extreme myopia. Further genetic studies with larger sample sizes and taking into account the degree of myopia are needed to clarify the contribution of PAX6 variants in myopia development.
Collapse
Affiliation(s)
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takahiro Yamane
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan ; Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
49
|
Cuellar-Partida G, Lu Y, Kho PF, Hewitt AW, Wichmann HE, Yazar S, Stambolian D, Bailey-Wilson JE, Wojciechowski R, Wang JJ, Mitchell P, Mackey DA, MacGregor S. Assessing the Genetic Predisposition of Education on Myopia: A Mendelian Randomization Study. Genet Epidemiol 2015; 40:66-72. [PMID: 26497973 DOI: 10.1002/gepi.21936] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 01/01/2023]
Abstract
Myopia is the largest cause of uncorrected visual impairments globally and its recent dramatic increase in the population has made it a major public health problem. In observational studies, educational attainment has been consistently reported to be correlated to myopia. Nonetheless, correlation does not imply causation. Observational studies do not tell us if education causes myopia or if instead there are confounding factors underlying the association. In this work, we use a two-step least squares instrumental-variable (IV) approach to estimate the causal effect of education on refractive error, specifically myopia. We used the results from the educational attainment GWAS from the Social Science Genetic Association Consortium to define a polygenic risk score (PGRS) in three cohorts of late middle age and elderly Caucasian individuals (N = 5,649). In a meta-analysis of the three cohorts, using the PGRS as an IV, we estimated that each z-score increase in education (approximately 2 years of education) results in a reduction of 0.92 ± 0.29 diopters (P = 1.04 × 10(-3) ). Our estimate of the effect of education on myopia was higher (P = 0.01) than the observed estimate (0.25 ± 0.03 diopters reduction per education z-score [∼2 years] increase). This suggests that observational studies may actually underestimate the true effect. Our Mendelian Randomization (MR) analysis provides new evidence for a causal role of educational attainment on refractive error.
Collapse
Affiliation(s)
| | - Yi Lu
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pik Fang Kho
- Department of Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alex W Hewitt
- School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - H-Erich Wichmann
- Helmholtz Centre Munich, Institute of Epidemiology I, Neuherberg, Germany.,Institute of Medical Statistics and Epidemiology, Technical University Munich, Germany
| | - Seyhan Yazar
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Robert Wojciechowski
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jie Jin Wang
- Centre for Vision Research, Westmead Millennium Institute of Medical Research and Department of Ophthalmology, University of Sydney, Sydney, Australia
| | - Paul Mitchell
- Centre for Vision Research, Westmead Millennium Institute of Medical Research and Department of Ophthalmology, University of Sydney, Sydney, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
50
|
|