1
|
Cohen-Adiv S, Amer-Sarsour F, Berdichevsky Y, Boxer E, Goldstein O, Gana-Weisz M, Tripathi U, Rike WA, Prag G, Gurevich T, Giladi N, Stern S, Orr-Urtreger A, Friedmann-Morvinski D, Ashkenazi A. TMEM16F regulates pathologic α-synuclein secretion and spread in cellular and mouse models of Parkinson's disease. Aging Cell 2024:e14387. [PMID: 39487963 DOI: 10.1111/acel.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
One of the main hallmarks of Parkinson's disease (PD) pathology is the spread of the aggregate-prone protein α-synuclein (α-syn), which can be detected in the plasma and cerebrospinal fluid of patients as well as in the extracellular environment of neuronal cells. The secreted α-syn can exhibit "prion-like" behavior and transmission to naïve cells can promote conformational changes and pathology. The precise role of plasma membrane proteins in the pathologic process of α-syn is yet to be fully resolved. The TMEM16 family of lipid scramblases and ion channels has been recently associated with cancer and infectious diseases but is less known for its role in aging-related diseases. To elucidate the role of TMEM16F in α-syn spread, we transduced neurons derived from TMEM16F knockout mice with a reporter system that enables the distinction between donor and recipient neurons of pathologic α-synA53T. We found that the spread of α-synA53T was reduced in neurons derived from TMEM16F-knockout mice. These findings were recapitulated in vivo in a mouse model of PD, where attenuated α-synA53T spread was observed when TMEM16F was ablated. Moreover, we identified a single nucleotide polymorphism in TMEM16F of Ashkenazi Jewish PD patients resulting in a missense Ala703Ser mutation with enhanced lipid scramblase activity. This mutation is associated with altered regulation of α-synA53T extracellular secretion in cellular models of PD. Our study highlights TMEM16F as a novel regulator of α-syn spread and as a potential therapeutic target in synucleinopathies.
Collapse
Affiliation(s)
- Stav Cohen-Adiv
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Fatima Amer-Sarsour
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yevgeny Berdichevsky
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Emily Boxer
- The School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orly Goldstein
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gali Prag
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Brain Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Avi Orr-Urtreger
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dinorah Friedmann-Morvinski
- The School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avraham Ashkenazi
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Shani S, Gana-Weisz M, Bar-Shira A, Thaler A, Gurevich T, Mirelman A, Giladi N, Alcalay RN, Goldstein O, Orr-Urtreger A. MAPT Locus in Parkinson's Disease Patients of Ashkenazi Origin: A Stratified Analysis. Genes (Basel) 2023; 15:46. [PMID: 38254936 PMCID: PMC10815687 DOI: 10.3390/genes15010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: MAPT locus is associated with Parkinson's disease (PD), which is located within a large inversion region of high linkage disequilibrium (LD). We aimed to determine whether the H2-haplotype protective effect and its effect size depends on the GBA1 or LRRK2 risk allele carrier status, and to further characterize genetic alterations that might contribute to its effect. Methods: LD analysis was performed using whole-genome sequencing data of 202 unrelated Ashkenazi Jewish (AJ) PDs. A haplotype-divergent variant was genotyped in a cohort of 1200 consecutively recruited AJ-PDs. The odd ratios were calculated using AJ-non-neuro cases from the gnomAD database as the controls in an un-stratified and a stratified manner according to the mutation carrier status, and the effect on the Age at Motor Symptom Onset (AMSO) was examined. Expression and splicing quantitative trait locus (eQTL and sQTL) analyses were carried out using brain tissues from a database. Results: The H2 haplotype exhibited significant association with PD protection, with a similar effect size in GBA1 carriers, LRRK2-G2019S carriers, and non-carriers (OR = 0.77, 0.69, and 0.82, respectively), and there was no effect on AMSO. The LD interval was narrowed to approximately 1.2 Mb. The H2 haplotype carried potential variants in candidate genes (MAPT and SPPL2C); structural deletions and segmental duplication (KANSL1); and variants affecting gene expression and intron excision ratio in brain tissues (LRRC37A/2). Conclusions: Our results demonstrate that H2 is associated with PD and its protective effect is not influenced by the GBA1/LRRK2 risk allele carrier status. This effect may be genetically complex, resulting from different levels of variations such as missense mutations in relevant genes, structural variations, epigenetic modifications, and RNA expression changes, which may operate independently or in synergy.
Collapse
Affiliation(s)
- Shachar Shani
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.S.); (A.T.); (T.G.); (A.M.); (N.G.); (A.O.-U.)
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (M.G.-W.); (A.B.-S.); (R.N.A.)
| | - Mali Gana-Weisz
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (M.G.-W.); (A.B.-S.); (R.N.A.)
| | - Anat Bar-Shira
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (M.G.-W.); (A.B.-S.); (R.N.A.)
| | - Avner Thaler
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.S.); (A.T.); (T.G.); (A.M.); (N.G.); (A.O.-U.)
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tanya Gurevich
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.S.); (A.T.); (T.G.); (A.M.); (N.G.); (A.O.-U.)
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anat Mirelman
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.S.); (A.T.); (T.G.); (A.M.); (N.G.); (A.O.-U.)
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nir Giladi
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.S.); (A.T.); (T.G.); (A.M.); (N.G.); (A.O.-U.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Roy N. Alcalay
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (M.G.-W.); (A.B.-S.); (R.N.A.)
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Orly Goldstein
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (M.G.-W.); (A.B.-S.); (R.N.A.)
| | - Avi Orr-Urtreger
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.S.); (A.T.); (T.G.); (A.M.); (N.G.); (A.O.-U.)
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (M.G.-W.); (A.B.-S.); (R.N.A.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Chen H, Naseri A, Zhi D. FiMAP: A fast identity-by-descent mapping test for biobank-scale cohorts. PLoS Genet 2023; 19:e1011057. [PMID: 38039339 PMCID: PMC10718418 DOI: 10.1371/journal.pgen.1011057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/13/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023] Open
Abstract
Although genome-wide association studies (GWAS) have identified tens of thousands of genetic loci, the genetic architecture is still not fully understood for many complex traits. Most GWAS and sequencing association studies have focused on single nucleotide polymorphisms or copy number variations, including common and rare genetic variants. However, phased haplotype information is often ignored in GWAS or variant set tests for rare variants. Here we leverage the identity-by-descent (IBD) segments inferred from a random projection-based IBD detection algorithm in the mapping of genetic associations with complex traits, to develop a computationally efficient statistical test for IBD mapping in biobank-scale cohorts. We used sparse linear algebra and random matrix algorithms to speed up the computation, and a genome-wide IBD mapping scan of more than 400,000 samples finished within a few hours. Simulation studies showed that our new method had well-controlled type I error rates under the null hypothesis of no genetic association in large biobank-scale cohorts, and outperformed traditional GWAS single-variant tests when the causal variants were untyped and rare, or in the presence of haplotype effects. We also applied our method to IBD mapping of six anthropometric traits using the UK Biobank data and identified a total of 3,442 associations, 2,131 (62%) of which remained significant after conditioning on suggestive tag variants in the ± 3 centimorgan flanking regions from GWAS.
Collapse
Affiliation(s)
- Han Chen
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ardalan Naseri
- Center for Artificial Intelligence and Genome Informatics, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Degui Zhi
- Center for Artificial Intelligence and Genome Informatics, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
4
|
Rahman MA, Liu J. A genome-wide association study coupled with machine learning approaches to identify influential demographic and genomic factors underlying Parkinson's disease. Front Genet 2023; 14:1230579. [PMID: 37842648 PMCID: PMC10570619 DOI: 10.3389/fgene.2023.1230579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background: Despite the recent success of genome-wide association studies (GWAS) in identifying 90 independent risk loci for Parkinson's disease (PD), the genomic underpinning of PD is still largely unknown. At the same time, accurate and reliable predictive models utilizing genomic or demographic features are desired in the clinic for predicting the risk of Parkinson's disease. Methods: To identify influential demographic and genomic factors associated with PD and to further develop predictive models, we utilized demographic data, incorporating 200 variables across 33,473 participants, along with genomic data involving 447,089 SNPs across 8,840 samples, both derived from the Fox Insight online study. We first applied correlation and GWAS analyses to find the top demographic and genomic factors associated with PD, respectively. We further developed and compared a variety of machine learning (ML) models for predicting PD. From the developed ML models, we performed feature importance analysis to reveal the predictability of each demographic or the genomic input feature for PD. Finally, we performed gene set enrichment analysis on our GWAS results to identify PD-associated pathways. Results: In our study, we identified both novel and well-known demographic and genetic factors (along with the enriched pathways) related to PD. In addition, we developed predictive models that performed robustly, with AUC = 0.89 for demographic data and AUC = 0.74 for genomic data. Our GWAS analysis identified several novel and significant variants and gene loci, including three intron variants in LMNA (p-values smaller than 4.0e-21) and one missense variant in SEMA4A (p-value = 1.11e-26). Our feature importance analysis from the PD-predictive ML models highlighted some significant and novel variants from our GWAS analysis (e.g., the intron variant rs1749409 in the RIT1 gene) and helped identify potentially causative variants that were missed by GWAS, such as rs11264300, a missense variant in the gene DCST1, and rs11584630, an intron variant in the gene KCNN3. Conclusion: In summary, by combining a GWAS with advanced machine learning models, we identified both known and novel demographic and genomic factors as well as built well-performing ML models for predicting Parkinson's disease.
Collapse
Affiliation(s)
- Md Asad Rahman
- Department of Engineering Management and Systems Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Jinling Liu
- Department of Engineering Management and Systems Engineering, Missouri University of Science and Technology, Rolla, MO, United States
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, United States
| |
Collapse
|
5
|
Goldstein O, Gana-Weisz M, Banfi S, Nigro V, Bar-Shira A, Thaler A, Gurevich T, Mirelman A, Giladi N, Alcalay RN, Orr-Urtreger A. Novel variants in genes related to vesicle-mediated-transport modify Parkinson's disease risk. Mol Genet Metab 2023; 139:107608. [PMID: 37201419 DOI: 10.1016/j.ymgme.2023.107608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVES VPS35 and VPS13 have been associated with Parkinson's disease (PD), and their shared phenotype in yeast when reduced in function is abnormal vacuolar transport. We aim to test if additional potentially deleterious variants in other genes that share this phenotype can modify the risk for PD. METHODS 77 VPS and VPS-related genes were analyzed using whole-genome-sequencing data from 202 PD patients of Ashkenazi Jewish (AJ) ancestry. Filtering was done based on quality and functionality scores. Ten variants in nine genes were further genotyped in 1200 consecutively recruited unrelated AJ-PD patients, and allele frequencies and odds ratio calculated compared to gnomAD-AJ-non-neuro database, in un-stratified (n = 1200) and stratified manner (LRRK2-G2019S-PD patients (n = 145), GBA-PD patients (n = 235), and non-carriers of these mutations (NC, n = 787)). RESULTS Five variants in PIK3C3, VPS11, AP1G2, HGS and VPS13D were significantly associated with PD-risk. PIK3C3-R768W showed a significant association in an un-stratified (all PDs) analysis, as well as in stratified (LRRK2, GBA, and NC) analyses (Odds ratios = 2.71, 5.32, 3.26. and 2.19 with p = 0.0015, 0.002, 0.0287, and 0.0447, respectively). AP1G2-R563W was significantly associated in LRRK2-carriers (OR = 3.69, p = 0.006) while VPS13D-D2932N was significantly associated in GBA-carriers (OR = 5.45, p = 0.0027). VPS11-C846G and HGS-S243Y were significantly associated in NC (OR = 2.48 and 2.06, with p = 0.022 and 0.0163, respectively). CONCLUSIONS Variants in genes involved in vesicle-mediated protein transport and recycling pathways, including autophagy and mitophagy, may differentially modify PD-risk in LRRK2-carriers, GBA carriers, or NC. Specifically, PIK3C3-R768W is a PD-risk allele, with the highest effect size in LRRK2-G2019S carriers. These results suggest oligogenic effect that may depends on the genetic background of the patient. An unbiased burden of mutations approach in these genes should be evaluated in additional PD and control groups. The mechanisms by which these novel variants interact and increase PD-risk should be researched in depth for better tailoring therapeutic intervention for PD prevention or slowing disease progression.
Collapse
Affiliation(s)
- Orly Goldstein
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy; Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy; Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anat Bar-Shira
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roy N Alcalay
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Avi Orr-Urtreger
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Shani S, Goldstein O, Gana-Weisz M, Bar-Shira A, Thaler A, Gurevich T, Mirelman A, Giladi N, Alcalay RN, Orr-Urtreger A. Variants in PSMB9 and FGR differentially affect Parkinson's disease risk in GBA and LRRK2 mutation carriers. Parkinsonism Relat Disord 2023; 111:105398. [PMID: 37116292 DOI: 10.1016/j.parkreldis.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 04/30/2023]
Abstract
INTRODUCTION Recent studies found an association between Parkinson's disease (PD) and alterations in the innate immune system. However, whether the involvement of this system in two of the known genetic forms of PD, GBA-PD and LRRK2-PD, and in patients who do not carry these mutations is different, is yet to be determined. We aimed to test if genetic variations in the innate immune genes are differentially associated with PD in these subgroups. METHODS Innate immune genes were identified and classified into sub-lists according to Reactome pathways. Whole-genome-sequencing (WGS) was performed on 201 unrelated Ashkenazi-Jewish (AJ) PD patients including 104 GBA-PD, 32 LRRK2-PD, and 65 non-carriers-PD (NC-PD). To identify genes with different burden between these subgroups of PD, gene-based Sequence kernel association optimal unified test (SKAT-O) analysis was performed on innate immune pathways. Candidate variants within the significant genes were further genotyped in a cohort of 1200 unrelated, consecutively recruited, AJ-PD patients, and to evaluate their association with PD-risk their allele frequencies were compared to AJ-non-neuro cases in gnomAD database, in a stratified and un-stratified manner. RESULTS SKAT-O analysis showed significantly different burden for PSMB9 (GBA-PD versus NC-PD) and FGR (GBA-PD versus LRRK2-PD). Two candidate variants in PSMB9 showed an association with GBA-PD-risk and NC-PD-risk while one FGR variant showed an association with LRRK2-PD-risk. CONCLUSION Our data supports differential involvement of innate immunity risk alleles in PD and emphasizes the differences between the GBA- and LRRK2-PD subgroups.
Collapse
Affiliation(s)
- Shachar Shani
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Orly Goldstein
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Mali Gana-Weisz
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Bar-Shira
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Brain Division Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Roy N Alcalay
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Avi Orr-Urtreger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Tang K, Naseri A, Wei Y, Zhang S, Zhi D. Open-source benchmarking of IBD segment detection methods for biobank-scale cohorts. Gigascience 2022; 11:giac111. [PMID: 36472573 PMCID: PMC9724555 DOI: 10.1093/gigascience/giac111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
In the recent biobank era of genetics, the problem of identical-by-descent (IBD) segment detection received renewed interest, as IBD segments in large cohorts offer unprecedented opportunities in the study of population and genealogical history, as well as genetic association of long haplotypes. While a new generation of efficient methods for IBD segment detection becomes available, direct comparison of these methods is difficult: existing benchmarks were often evaluated in different datasets, with some not openly accessible; methods benchmarked were run under suboptimal parameters; and benchmark performance metrics were not defined consistently. Here, we developed a comprehensive and completely open-source evaluation of the power, accuracy, and resource consumption of these IBD segment detection methods using realistic population genetic simulations with various settings. Our results pave the road for fair evaluation of IBD segment detection methods and provide an practical guide for users.
Collapse
Affiliation(s)
- Kecong Tang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Ardalan Naseri
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuan Wei
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Degui Zhi
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
8
|
Ruffini N, Klingenberg S, Heese R, Schweiger S, Gerber S. The Big Picture of Neurodegeneration: A Meta Study to Extract the Essential Evidence on Neurodegenerative Diseases in a Network-Based Approach. Front Aging Neurosci 2022; 14:866886. [PMID: 35832065 PMCID: PMC9271745 DOI: 10.3389/fnagi.2022.866886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
The common features of all neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease, are the accumulation of aggregated and misfolded proteins and the progressive loss of neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in their ultimate manifestation, the affected brain region, and the kind of proteinopathy. In the last decades, a vast number of processes have been described as associated with neurodegenerative diseases, making it increasingly harder to keep an overview of the big picture forming from all those data. In this meta-study, we analyzed genomic, transcriptomic, proteomic, and epigenomic data of the aforementioned diseases using the data of 234 studies in a network-based approach to study significant general coherences but also specific processes in individual diseases or omics levels. In the analysis part, we focus on only some of the emerging findings, but trust that the meta-study provided here will be a valuable resource for various other researchers focusing on specific processes or genes contributing to the development of neurodegeneration.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research, Leibniz Association, Mainz, Germany
| | - Susanne Klingenberg
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Raoul Heese
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | - Susann Schweiger
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
9
|
Zhao B, Li T, Smith SM, Xiong D, Wang X, Yang Y, Luo T, Zhu Z, Shan Y, Matoba N, Sun Q, Yang Y, Hauberg ME, Bendl J, Fullard JF, Roussos P, Lin W, Li Y, Stein JL, Zhu H. Common variants contribute to intrinsic human brain functional networks. Nat Genet 2022; 54:508-517. [PMID: 35393594 DOI: 10.1038/s41588-022-01039-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
The human brain forms functional networks of correlated activity, which have been linked with both cognitive and clinical outcomes. However, the genetic variants affecting brain function are largely unknown. Here, we used resting-state functional magnetic resonance images from 47,276 individuals to discover and validate common genetic variants influencing intrinsic brain activity. We identified 45 new genetic regions associated with brain functional signatures (P < 2.8 × 10-11), including associations to the central executive, default mode, and salience networks involved in the triple-network model of psychopathology. A number of brain activity-associated loci colocalized with brain disorders (e.g., the APOE ε4 locus with Alzheimer's disease). Variation in brain function was genetically correlated with brain disorders, such as major depressive disorder and schizophrenia. Together, our study provides a step forward in understanding the genetic architecture of brain functional networks and their genetic links to brain-related complex traits and disorders.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Di Xiong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuchen Yang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mads E Hauberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jaroslav Bendl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panagiotis Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Weili Lin
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Rikos D, Siokas V, Burykina TI, Drakoulis N, Dardiotis E, Zintzaras E. Replication of chromosomal loci involved in Parkinson's disease: A quantitative synthesis of GWAS. Toxicol Rep 2021; 8:1762-1768. [PMID: 34712594 PMCID: PMC8528647 DOI: 10.1016/j.toxrep.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/15/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
The first quantitative synthesis of GWAS regarding Parkinson’s Disease. Fifteen Parkinson’s Disease GWASs with 191.397 available SNPs pooled. User friendly software (METRADISC-XL) implemented. Seven chromosomal regions (bins) were replicated as associated with the Parkinson’s Disease trait.
Introduction Parkinson’s disease is a neurodegenerative disorder with a complex etiology coming from interactions between genetic and environmental factors. Research on Parkinson’s disease genetics has been an effortful struggle, while new technologies and novel study designs served as indispensable boosters. Until now, 90 loci and 20 disease-causing gene mutations have been identified. In this study we describe a novel non-parametric approach to GWAS meta-analysis and its application in PD genetics. Methods A literature search was conducted to identify Genome-Wide Association Studies (GWAS) regarding Parkinson’s disease. We applied predefined inclusion criteria and extracted the reported SNPs and their respective position and statistical significance. We divided all chromosomes in approximately equal genetic distance segments called bins and recorded the most significant SNP from each bin and each study and ranked them in terms of their p-value. Ranks from each bin were summed, averaged and added in a heterogeneity-based analysis using the METRADISC-XL software. Weighted and unweighted analysis was performed. Results Five-hundred and forty-three SNPs and their respective p-values from 15 studies were matched in their corresponding bins. The METRADISC-XL analysis resulted in 7 bins with a significant p-value. A bin on chromosome 4 where the SNCA gene is located found with genome-wide significant association with Parkinson’s Disease. Conclusion This is the first time a non-parametric method is applied in GWAS meta-analysis. The results add some insight on the overall understanding of Parkinson’s disease genetics and serve as a first step of further convergent analysis with Genome-wide linkage studies.
Collapse
Affiliation(s)
- Dimitrios Rikos
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Department of Biomathematics, Faculty of Medicine, University of Thessaly Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Tatyana I Burykina
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119048 Moscow, Russian Federation
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 17551 Athens, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Elias Zintzaras
- Department of Biomathematics, Faculty of Medicine, University of Thessaly Larissa, Greece.,The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
11
|
C9orf72-G 4C 2 Intermediate Repeats and Parkinson's Disease; A Data-Driven Hypothesis. Genes (Basel) 2021; 12:genes12081210. [PMID: 34440384 PMCID: PMC8391122 DOI: 10.3390/genes12081210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
Pathogenic C9orf72-G4C2 repeat expansions are associated with ALS/FTD, but not with Parkinson’s disease (PD); yet the possible link between intermediate repeat lengths and PD remains inconclusive. We aim to study the potential involvement of these repeats in PD. The number of C9orf72-repeats were determined by flanking and repeat-primed PCR assays, and the risk-haplotype was determined by SNP-array. Their association with PD was assessed in a stratified manner: in PD-patients-carriers of mutations in LRRK2, GBA, or SMPD1 genes (n = 388), and in PD-non-carriers (NC, n = 718). Allelic distribution was significantly different only in PD-NC compared to 600 controls when looking both at the allele with higher repeat’s size (p = 0.034) and at the combined number of repeats from both alleles (p = 0.023). Intermediate repeats (20–60 repeats) were associated with PD in PD-NC patients (p = 0.041; OR = 3.684 (CI 1.05–13.0)) but not in PD-carriers (p = 0.684). The C9orf72 risk-haplotype, determined in a subgroup of 588 PDs and 126 controls, was observed in higher frequency in PD-NC (dominant model, OR = 1.71, CI 1.04–2.81, p = 0.0356). All 19 alleles within the risk-haplotype were associated with higher C9orf72 RNA levels according to the GTEx database. Based on our data, we suggest a model in which intermediate repeats are a risk factor for PD in non-carriers, driven not only by the number of repeats but also by the variants’ genotypes within the risk-haplotype. Further studies are needed to elucidate this possible role of C9orf72 in PD pathogenesis.
Collapse
|
12
|
Wen X, Xu X, Luo X, Yin J, Liang C, Zhu J, Nong X, Zhu X, Ning F, Gu S, Xiong S, Fu J, Zhu D, Dai Z, Lv D, Lin Z, Lin J, Li Y, Ma G, Wang Y. Nucks1 gene polymorphism rs823114 is associated with the positive symptoms and neurocognitive function of patients with schizophrenia in parts of southern China. Psychiatr Genet 2021; 31:119-125. [PMID: 34030174 PMCID: PMC8265546 DOI: 10.1097/ypg.0000000000000285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/23/2021] [Indexed: 01/14/2023]
Abstract
Nuclear casein kinase and cyclin-dependent kinase substrate 1 (nucks1) are considered a potential susceptibility gene for certain neurological diseases, such as Parkinson's disease (PD). In our study, we genotyped three single nucleotide polymorphisms (SNPs) (rs4951261, rs823114 and rs951366) of the nucks1 gene in 774 schizophrenic patients and 819 healthy controls using the improved multiplex ligation detection reaction (imLDR) technique. Furthermore, we also studied the relationship between the above SNPs and the clinical psychiatric symptoms and neurocognitive function of the patients. Genotype distributions and allele frequencies of these SNPs showed no significant differences and were found between patients and healthy controls. However, in an analysis of the positive symptom score of rs823114 among male patients, we found that the score of the A/A genotype was lower than that of the G/A+G/G genotypes (P = 0.001, P(corr) = 0.003]. Additionally, we also found that among the female patients, G allele carriers with rs823114 had lower semantic fluency scores than subjects with the A/A genotype (P = 0.010, P(corr) = 0.030]. Our data show for the first time that rs823114 polymorphism of nucks1 may affect positive symptoms and neurocognitive function in patients with schizophrenia in parts of southern China.
Collapse
Affiliation(s)
- Xia Wen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan
| | - Xusan Xu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Jinwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Chunmei Liang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | | | | | - Xiudeng Zhu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Fan Ning
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Shanshan Gu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - You Li
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Guoda Ma
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan
| | - Yajun Wang
- Medical Genetics Laboratory, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
13
|
Freyman WA, McManus KF, Shringarpure SS, Jewett EM, Bryc K, Auton A. Fast and Robust Identity-by-Descent Inference with the Templated Positional Burrows-Wheeler Transform. Mol Biol Evol 2021; 38:2131-2151. [PMID: 33355662 PMCID: PMC8097300 DOI: 10.1093/molbev/msaa328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estimating the genomic location and length of identical-by-descent (IBD) segments among individuals is a crucial step in many genetic analyses. However, the exponential growth in the size of biobank and direct-to-consumer genetic data sets makes accurate IBD inference a significant computational challenge. Here we present the templated positional Burrows-Wheeler transform (TPBWT) to make fast IBD estimates robust to genotype and phasing errors. Using haplotype data simulated over pedigrees with realistic genotyping and phasing errors, we show that the TPBWT outperforms other state-of-the-art IBD inference algorithms in terms of speed and accuracy. For each phase-aware method, we explore the false positive and false negative rates of inferring IBD by segment length and characterize the types of error commonly found. Our results highlight the fragility of most phased IBD inference methods; the accuracy of IBD estimates can be highly sensitive to the quality of haplotype phasing. Additionally, we compare the performance of the TPBWT against a widely used phase-free IBD inference approach that is robust to phasing errors. We introduce both in-sample and out-of-sample TPBWT-based IBD inference algorithms and demonstrate their computational efficiency on massive-scale data sets with millions of samples. Furthermore, we describe the binary file format for TPBWT-compressed haplotypes that results in fast and efficient out-of-sample IBD computes against very large cohort panels. Finally, we demonstrate the utility of the TPBWT in a brief empirical analysis, exploring geographic patterns of haplotype sharing within Mexico. Hierarchical clustering of IBD shared across regions within Mexico reveals geographically structured haplotype sharing and a strong signal of isolation by distance. Our software implementation of the TPBWT is freely available for noncommercial use in the code repository (https://github.com/23andMe/phasedibd, last accessed January 11, 2021).
Collapse
|
14
|
Goldstein O, Gana-Weisz M, Casey F, Meltzer-Fridrich H, Yaacov O, Waldman YY, Lin D, Mordechai Y, Zhu J, Cullen PF, Omer N, Shiner T, Thaler A, Bar-Shira A, Mirelman A, John S, Giladi N, Orr-Urtreger A. PARK16 locus: Differential effects of the non-coding rs823114 on Parkinson’s disease risk, RNA expression, and DNA methylation. J Genet Genomics 2021; 48:341-345. [DOI: 10.1016/j.jgg.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
|
15
|
Golriz Khatami S, Domingo-Fernández D, Mubeen S, Hoyt CT, Robinson C, Karki R, Iyappan A, Kodamullil AT, Hofmann-Apitius M. A Systems Biology Approach for Hypothesizing the Effect of Genetic Variants on Neuroimaging Features in Alzheimer's Disease. J Alzheimers Dis 2021; 80:831-840. [PMID: 33554913 PMCID: PMC8075382 DOI: 10.3233/jad-201397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Neuroimaging markers provide quantitative insight into brain structure and function in neurodegenerative diseases, such as Alzheimer's disease, where we lack mechanistic insights to explain pathophysiology. These mechanisms are often mediated by genes and genetic variations and are often studied through the lens of genome-wide association studies. Linking these two disparate layers (i.e., imaging and genetic variation) through causal relationships between biological entities involved in the disease's etiology would pave the way to large-scale mechanistic reasoning and interpretation. OBJECTIVE We explore how genetic variants may lead to functional alterations of intermediate molecular traits, which can further impact neuroimaging hallmarks over a series of biological processes across multiple scales. METHODS We present an approach in which knowledge pertaining to single nucleotide polymorphisms and imaging readouts is extracted from the literature, encoded in Biological Expression Language, and used in a novel workflow to assist in the functional interpretation of SNPs in a clinical context. RESULTS We demonstrate our approach in a case scenario which proposes KANSL1 as a candidate gene that accounts for the clinically reported correlation between the incidence of the genetic variants and hippocampal atrophy. We find that the workflow prioritizes multiple mechanisms reported in the literature through which KANSL1 may have an impact on hippocampal atrophy such as through the dysregulation of cell proliferation, synaptic plasticity, and metabolic processes. CONCLUSION We have presented an approach that enables pinpointing relevant genetic variants as well as investigating their functional role in biological processes spanning across several, diverse biological scales.
Collapse
Affiliation(s)
- Sepehr Golriz Khatami
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
| | - Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
| | - Christine Robinson
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Reagon Karki
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Anandhi Iyappan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
16
|
Ruffini N, Klingenberg S, Schweiger S, Gerber S. Common Factors in Neurodegeneration: A Meta-Study Revealing Shared Patterns on a Multi-Omics Scale. Cells 2020; 9:E2642. [PMID: 33302607 PMCID: PMC7764447 DOI: 10.3390/cells9122642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are heterogeneous, progressive diseases with frequently overlapping symptoms characterized by a loss of neurons. Studies have suggested relations between neurodegenerative diseases for many years (e.g., regarding the aggregation of toxic proteins or triggering endogenous cell death pathways). We gathered publicly available genomic, transcriptomic, and proteomic data from 177 studies and more than one million patients to detect shared genetic patterns between the neurodegenerative diseases on three analyzed omics-layers. The results show a remarkably high number of shared differentially expressed genes between the transcriptomic and proteomic levels for all conditions, while showing a significant relation between genomic and proteomic data between AD and PD and AD and ALS. We identified a set of 139 genes being differentially expressed in several transcriptomic experiments of all four diseases. These 139 genes showed overrepresented gene ontology (GO) Terms involved in the development of neurodegeneration, such as response to heat and hypoxia, positive regulation of cytokines and angiogenesis, and RNA catabolic process. Furthermore, the four analyzed neurodegenerative diseases (NDDs) were clustered by their mean direction of regulation throughout all transcriptomic studies for this set of 139 genes, with the closest relation regarding this common gene set seen between AD and HD. GO-Term and pathway analysis of the proteomic overlap led to biological processes (BPs), related to protein folding and humoral immune response. Taken together, we could confirm the existence of many relations between Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis on transcriptomic and proteomic levels by analyzing the pathways and GO-Terms arising in these intersections. The significance of the connection and the striking relation of the results to processes leading to neurodegeneration between the transcriptomic and proteomic data for all four analyzed neurodegenerative diseases showed that exploring many studies simultaneously, including multiple omics-layers of different neurodegenerative diseases simultaneously, holds new relevant insights that do not emerge from analyzing these data separately. Furthermore, the results shed light on processes like the humoral immune response that have previously been described only for certain diseases. Our data therefore suggest human patients with neurodegenerative diseases should be addressed as complex biological systems by integrating multiple underlying data sources.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
- Leibniz Institute for Resilience Research, Leibniz Association, Wallstraße 7, 55122 Mainz, Germany
| | - Susanne Klingenberg
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| | - Susann Schweiger
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| |
Collapse
|
17
|
Botelho J, Mascarenhas P, Mendes JJ, Machado V. Network Protein Interaction in Parkinson's Disease and Periodontitis Interplay: A Preliminary Bioinformatic Analysis. Genes (Basel) 2020; 11:E1385. [PMID: 33238395 PMCID: PMC7700320 DOI: 10.3390/genes11111385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies supported a clinical association between Parkinson's disease (PD) and periodontitis. Hence, investigating possible interactions between proteins associated to these two conditions is of interest. In this study, we conducted a protein-protein network interaction analysis with recognized genes encoding proteins with variants strongly associated with PD and periodontitis. Genes of interest were collected via the Genome-Wide Association Studies (GWAS) database. Then, we conducted a protein interaction analysis, using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, with a highest confidence cutoff of 0.9 and sensitivity analysis with confidence cutoff of 0.7. Our protein network casts a comprehensive analysis of potential protein-protein interactions between PD and periodontitis. This analysis may underpin valuable information for new candidate molecular mechanisms between PD and periodontitis and may serve new potential targets for research purposes. These results should be carefully interpreted, giving the limitations of this approach.
Collapse
Affiliation(s)
- João Botelho
- Periodontology Department, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), 2829-511 Caparica, Portugal;
- Evidence-Based Hub, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), 2829-511 Caparica, Portugal; (P.M.); (J.J.M.)
| | - Paulo Mascarenhas
- Evidence-Based Hub, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), 2829-511 Caparica, Portugal; (P.M.); (J.J.M.)
- Center for Medical Genetics and Pediatric Nutrition Egas Moniz, Instituto Universitário Egas Moniz (IUEM), 2829-511 Caparica, Portugal
| | - José João Mendes
- Evidence-Based Hub, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), 2829-511 Caparica, Portugal; (P.M.); (J.J.M.)
| | - Vanessa Machado
- Periodontology Department, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), 2829-511 Caparica, Portugal;
- Evidence-Based Hub, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), 2829-511 Caparica, Portugal; (P.M.); (J.J.M.)
| |
Collapse
|
18
|
Morris J, Leung SSY, Bailey ME, Cullen B, Ferguson A, Graham N, Johnston KJA, Lyall DM, Lyall LM, Ward J, Smith DJ, Strawbridge RJ. Exploring the Role of Contactins across Psychological, Psychiatric and Cardiometabolic Traits within UK Biobank. Genes (Basel) 2020; 11:E1326. [PMID: 33182605 PMCID: PMC7697406 DOI: 10.3390/genes11111326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with severe mental illness have an increased risk of cardiometabolic diseases compared to the general population. Shared risk factors and medication effects explain part of this excess risk; however, there is growing evidence to suggest that shared biology (including genetic variation) is likely to contribute to comorbidity between mental and physical illness. Contactins are a family of genes involved in development of the nervous system and implicated, though genome-wide association studies, in a wide range of psychological, psychiatric and cardiometabolic conditions. Contactins are plausible candidates for shared pathology between mental and physical health. We used data from UK Biobank to systematically assess how genetic variation in contactin genes was associated with a wide range of psychological, psychiatric and cardiometabolic conditions. We also investigated whether associations for cardiometabolic and psychological traits represented the same or distinct signals and how the genetic variation might influence the measured traits. We identified: A novel genetic association between variation in CNTN1 and current smoking; two independent signals in CNTN4 for BMI; and demonstrated that associations between CNTN5 and neuroticism were distinct from those between CNTN5 and blood pressure/HbA1c. There was no evidence that the contactin genes contributed to shared aetiology between physical and mental illness.
Collapse
Affiliation(s)
- Julia Morris
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Soddy Sau Yu Leung
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Mark E.S. Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Breda Cullen
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Amy Ferguson
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Nicholas Graham
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Keira J. A. Johnston
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
- Deanery of Molecular, Genetic and Population Health Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Donald M. Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Laura M. Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Daniel J. Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Rona J. Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
- Health Data Research UK, Glasgow G12 8RZ, UK
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
19
|
Veny M, Grases D, Kucharova K, Lin WW, Nguyen J, Huang S, Ware CF, Ranscht B, Šedý JR. Contactin-1 Is Required for Peripheral Innervation and Immune Homeostasis Within the Intestinal Mucosa. Front Immunol 2020; 11:1268. [PMID: 32676079 PMCID: PMC7333639 DOI: 10.3389/fimmu.2020.01268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/19/2020] [Indexed: 01/23/2023] Open
Abstract
Neuronal regulation of diverse physiological functions requires complex molecular interactions in innervated tissues to maintain proper organ function. Here we show that loss of the neuronal cell surface adhesion/recognition molecule Contactin-1 (Cntn1) directly impairs intestinal function causing wasting that subsequently results in global immune defects. Loss of Cntn1 results in hematologic alterations and changes in blood metabolites associated with malnourishment. We found thymus and spleen of Cntn1-deficient animals atrophied with severe reductions in lymphocyte populations. Elevated thymic Gilz expression indicated ongoing glucocorticoid signaling in Cntn1-deficient animals, consistent with the malnourishment phenotype. Intestinal Contactin-1 was localized to neurons in the villi and the submucosal/myenteric plexus that innervates smooth muscle. Loss of Cntn1 was associated with reduced intestinal Bdnf and Adrb2, indicating reduced neuromuscular crosstalk. Additionally, loss of Cntn1 resulted in reduced recruitment of CD3+ T cells to villi within the small intestine. Together, these data illustrate the critical role of Contactin-1 function within the gut, and how this is required for normal systemic immune functions.
Collapse
Affiliation(s)
- Marisol Veny
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Daniela Grases
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Karolina Kucharova
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Wai Wai Lin
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Jennifer Nguyen
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sarah Huang
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Carl F Ware
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Barbara Ranscht
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - John R Šedý
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
20
|
Arbez N, He X, Huang Y, Ren M, Liang Y, Nucifora FC, Wang X, Pei Z, Tessarolo L, Smith WW, Ross CA. G2019S-LRRK2 mutation enhances MPTP-linked Parkinsonism in mice. Hum Mol Genet 2020; 29:580-590. [PMID: 31813996 PMCID: PMC7068031 DOI: 10.1093/hmg/ddz271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/03/2019] [Accepted: 11/04/2019] [Indexed: 01/30/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with a heterogeneous etiology that involves genetic and environmental factors or exogenous. Current LRRK2 PD animal models only partly reproduce the characteristics of the disease with very subtle dopaminergic neuron degeneration. We developed a new model of PD that combines a sub-toxic MPTP insult to the G2019S-LRRK2 mutation. Our newly generated mice, overexpressing mutant G2019S-LRRK2 protein in the brain, displayed a mild, age-dependent progressive motor impairment, but no reduction of lifespan. Cortical neurons from G2019S-LRRK2 mice showed an increased vulnerability to stress insults, compared with neurons overexpressing wild-type WT-LRRK2, or non-transgenic (nTg) neurons. The exposure of LRRK2 transgenic mice to a sub-toxic dose of MPTP resulted in severe motor impairment, selective loss of dopamine neurons and increased astrocyte activation, whereas nTg mice with MPTP exposure showed no deficits. Interestingly, mice overexpressing WT-LRRK2 showed a significant impairment that was milder than for the mutant G2019S-LRRK2 mice. L-DOPA treatments could partially improve the movement impairments but did not protect the dopamine neuron loss. In contrast, treatments with an LRRK2 kinase inhibitor significantly reduced the dopaminergic neuron degeneration in this interaction model. Our studies provide a novel LRRK2 gene-MPTP interaction PD mouse model, and a useful tool for future studies of PD pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - XiaoFei He
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Yong Huang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Mark Ren
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Yideng Liang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Frederick C Nucifora
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Xiaofang Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Zhong Pei
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Lino Tessarolo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Wanli W Smith
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
- Departments of Neurology, Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Wang X, Srivastava Y, Jankowski A, Malik V, Wei Y, Del Rosario RC, Cojocaru V, Prabhakar S, Jauch R. DNA-mediated dimerization on a compact sequence signature controls enhancer engagement and regulation by FOXA1. Nucleic Acids Res 2019; 46:5470-5486. [PMID: 29669022 PMCID: PMC6009666 DOI: 10.1093/nar/gky259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
FOXA1 is a transcription factor capable to bind silenced chromatin to direct context-dependent cell fate conversion. Here, we demonstrate that a compact palindromic DNA element (termed 'DIV' for its diverging half-sites) induces the homodimerization of FOXA1 with strongly positive cooperativity. Alternative structural models are consistent with either an indirect DNA-mediated cooperativity or a direct protein-protein interaction. The cooperative homodimer formation is strictly constrained by precise half-site spacing. Re-analysis of chromatin immunoprecipitation sequencing data indicates that the DIV is effectively targeted by FOXA1 in the context of chromatin. Reporter assays show that FOXA1-dependent transcriptional activity declines when homodimeric binding is disrupted. In response to phosphatidylinositol-3 kinase inhibition DIV sites pre-bound by FOXA1 such as at the PVT1/MYC locus exhibit a strong increase in accessibility suggesting a role of the DIV configuration in the chromatin closed-open dynamics. Moreover, several disease-associated single nucleotide polymorphisms map to DIV elements and show allelic differences in FOXA1 homodimerization, reporter gene expression and are annotated as quantitative trait loci. This includes the rs541455835 variant at the MAPT locus encoding the Tau protein associated with Parkinson's disease. Collectively, the DIV guides chromatin engagement and regulation by FOXA1 and its perturbation could be linked to disease etiologies.
Collapse
Affiliation(s)
- Xuecong Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yogesh Srivastava
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aleksander Jankowski
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore.,Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warszawa, Poland.,Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Vikas Malik
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanjie Wei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ricardo Ch Del Rosario
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge MA 02142, USA
| | - Vlad Cojocaru
- Computational Structural Biology Laboratory, Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Shyam Prabhakar
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Ralf Jauch
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
22
|
Granot-Hershkovitz E, Karasik D, Friedlander Y, Rodriguez-Murillo L, Dorajoo R, Liu J, Sewda A, Peter I, Carmi S, Hochner H. A study of Kibbutzim in Israel reveals risk factors for cardiometabolic traits and subtle population structure. Eur J Hum Genet 2018; 26:1848-1858. [PMID: 30108283 PMCID: PMC6244281 DOI: 10.1038/s41431-018-0230-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/24/2018] [Accepted: 07/17/2018] [Indexed: 11/09/2022] Open
Abstract
Genetic studies in isolated populations often increase power for identifying loci associated with complex diseases and traits. We present here the Kibbutzim Family Study (KFS), aimed at investigating the genetic basis of cardiometabolic traits in extended Israeli families characterized by long-term social stability and a homogeneous environment. Extensive information on cardiometabolic traits, as well as genome-wide genotypes, were collected on 901 individuals. We observed that most KFS participants were of Ashkenazi Jewish (AJ) genetic origin, confirmed a recent severe bottleneck in the AJ recent history, and detected a subtle within-AJ population structure. Focusing on genetic variants relatively common in the KFS but very rare in Europeans, we observed that AJ-enriched variants appear in cancer-related pathways more than expected by chance. We conducted an association study of the AJ-enriched variants against 16 cardiometabolic traits, and found seven loci (24 variants) to be significantly associated. The strongest association, which we also replicated in an independent study, was between a variant upstream of MSRA (frequency ≈1% in the KFS and nearly absent in Europeans) and weight (P = 3.6∙10-8). In conclusion, the KFS is a valuable resource for the study of the population genetics of Israel as well as the genetics of cardiometabolic traits.
Collapse
Affiliation(s)
| | - David Karasik
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Laura Rodriguez-Murillo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anshuman Sewda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shai Carmi
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Hagit Hochner
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
23
|
Audano M, Schneider A, Mitro N. Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration. J Neurochem 2018; 147:291-309. [DOI: 10.1111/jnc.14471] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Matteo Audano
- DiSFeB; Dipartimento di Scienze Farmacologiche e Biomolecolari; Università degli Studi di Milano; Milano Italy
| | - Anja Schneider
- German Center for Neurodegenerative Diseases; DZNE; Bonn Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry; University Clinic; Bonn Germany
| | - Nico Mitro
- DiSFeB; Dipartimento di Scienze Farmacologiche e Biomolecolari; Università degli Studi di Milano; Milano Italy
| |
Collapse
|
24
|
Kumar S, Yadav N, Pandey S, Thelma BK. Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. J Genet 2018. [DOI: 10.1007/s12041-018-0953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Kumar S, Yadav N, Pandey S, Thelma BK. Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. J Genet 2018; 97:625-648. [PMID: 30027900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neurodegenerative diseases constitute a large proportion of disorders in elderly, majority being sporadic in occurrence with ∼5-10% familial. A strong genetic component underlies the Mendelian forms but nongenetic factors together with genetic vulnerability contributes to the complex sporadic forms. Several gene discoveries in the familial forms have provided novel insights into the pathogenesis of neurodegeneration with implications for treatment. Conversely, findings from genetic dissection of the sporadic forms, despite large genomewide association studies and more recently whole exome and whole genome sequencing, have been limited. This review provides a concise account of the genetics that we know, the pathways that they implicate, the challenges that are faced and the prospects that are envisaged for the sporadic, complex forms of neurodegenerative diseases, taking four most common conditions, namely Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington disease as examples. Poor replication across studies, inability to establish genotype-phenotype correlations and the overall failure to predict risk and/or prevent disease in this group poses a continuing challenge. Among others, clinical heterogeneity emerges as the most important impediment warranting newer approaches. Advanced computational and system biology tools to analyse the big data are being generated and the alternate strategy such as subgrouping of case-control cohorts based on deep phenotyping using the principles of Ayurveda to overcome current limitation of phenotype heterogeneity seem to hold promise. However, at this point, with advances in discovery genomics and functional analysis of putative determinants with translation potential for the complex forms being minimal, stem cell therapies are being attempted as potential interventions. In this context, the possibility to generate patient derived induced pluripotent stem cells, mutant/gene/genome correction through CRISPR/Cas9 technology and repopulating the specific brain regions with corrected neurons, which may fulfil the dream of personalized medicine have been mentioned briefly. Understanding disease pathways/biology using this technology, with implications for development of novel therapeutics are optimistic expectations in the near future.
Collapse
Affiliation(s)
- Sumeet Kumar
- Department of Genetics, University of Delhi South Campus, New Delhi 110 021, India.
| | | | | | | |
Collapse
|
26
|
Martin AR, Karczewski KJ, Kerminen S, Kurki MI, Sarin AP, Artomov M, Eriksson JG, Esko T, Genovese G, Havulinna AS, Kaprio J, Konradi A, Korányi L, Kostareva A, Männikkö M, Metspalu A, Perola M, Prasad RB, Raitakari O, Rotar O, Salomaa V, Groop L, Palotie A, Neale BM, Ripatti S, Pirinen M, Daly MJ. Haplotype Sharing Provides Insights into Fine-Scale Population History and Disease in Finland. Am J Hum Genet 2018; 102:760-775. [PMID: 29706349 DOI: 10.1016/j.ajhg.2018.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/28/2018] [Indexed: 01/23/2023] Open
Abstract
Finland provides unique opportunities to investigate population and medical genomics because of its adoption of unified national electronic health records, detailed historical and birth records, and serial population bottlenecks. We assembled a comprehensive view of recent population history (≤100 generations), the timespan during which most rare-disease-causing alleles arose, by comparing pairwise haplotype sharing from 43,254 Finns to that of 16,060 Swedes, Estonians, Russians, and Hungarians from geographically and linguistically adjacent countries with different population histories. We find much more extensive sharing in Finns, with at least one ≥ 5 cM tract on average between pairs of unrelated individuals. By coupling haplotype sharing with fine-scale birth records from more than 25,000 individuals, we find that although haplotype sharing broadly decays with geographical distance, there are pockets of excess haplotype sharing; individuals from northeast Finland typically share several-fold more of their genome in identity-by-descent segments than individuals from southwest regions. We estimate recent effective population-size changes through time across regions of Finland, and we find that there was more continuous gene flow as Finns migrated from southwest to northeast between the early- and late-settlement regions than was dichotomously described previously. Lastly, we show that haplotype sharing is locally enriched by an order of magnitude among pairs of individuals sharing rare alleles and especially among pairs sharing rare disease-causing variants. Our work provides a general framework for using haplotype sharing to reconstruct an integrative view of recent population history and gain insight into the evolutionary origins of rare variants contributing to disease.
Collapse
Affiliation(s)
- Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Konrad J Karczewski
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sini Kerminen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland
| | - Mitja I Kurki
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Antti-Pekka Sarin
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; National Institute for Health and Welfare of Finland, Helsinki 00271, Finland
| | - Mykyta Artomov
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Johan G Eriksson
- National Institute for Health and Welfare of Finland, Helsinki 00271, Finland; Folkhälsan Research Center, Helsinki 00290, Finland; Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland
| | - Tõnu Esko
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Estonian Genome Center, University of Tartu, Tartu 50090, Estonia
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; National Institute for Health and Welfare of Finland, Helsinki 00271, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Department of Public Health, University of Helsinki, Helsinki 00014, Finland
| | - Alexandra Konradi
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia; National Research University of Information Technologies, Mechanics, and Optics, Saint Petersburg 197101, Russia
| | - László Korányi
- Heart Center Foundation, Drug Research Centre, Balatonfured H-8230, Hungary
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia; National Research University of Information Technologies, Mechanics, and Optics, Saint Petersburg 197101, Russia
| | - Minna Männikkö
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu 90014, Finland
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu 50090, Estonia
| | - Markus Perola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Estonian Genome Center, University of Tartu, Tartu 50090, Estonia; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku University Hospital, Turku 20520, Finland
| | - Rashmi B Prasad
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University CRC, Skåne University Hospital Malmö, SE-205 02, Malmö, Sweden
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku University Hospital, Turku 20520, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
| | - Oxana Rotar
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| | - Veikko Salomaa
- National Institute for Health and Welfare of Finland, Helsinki 00271, Finland
| | - Leif Groop
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Lund University Diabetes Centre, Department of Clinical Sciences, Lund University CRC, Skåne University Hospital Malmö, SE-205 02, Malmö, Sweden
| | - Aarno Palotie
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Department of Public Health, University of Helsinki, Helsinki 00014, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Department of Public Health, University of Helsinki, Helsinki 00014, Finland; Helsinki Institute for Information Technology and Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
27
|
Roles of NUCKS1 in Diseases: Susceptibility, Potential Biomarker, and Regulatory Mechanisms. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7969068. [PMID: 29619377 PMCID: PMC5830027 DOI: 10.1155/2018/7969068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Abstract
Nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) is a 27 kD chromosomal, highly conserved, and vertebrate-specific protein. NUCKS1 gene encodes a nuclear protein and the conserved regions of NUCKS1 contain several consensus phosphorylation sites for casein kinase II (CK2) and cyclin-dependent kinases (Cdk) and a basic DNA-binding domain. NUCKS1 is similar to the high mobility group (HMG) family which dominates chromatin remodeling and regulates gene transcription. Meanwhile, NUCKS1 is a RAD51 associated protein 1 (RAD51AP1) paralog that is significant for homologous recombination (HR) and genome stability and also a transcriptional regulator of the insulin signaling components. NUCKS1 plays an important role in DNA damage response and metabolism, participates in inflammatory immune response, and correlates with microRNA. Although there is still not enough functional information on NUCKS1, evidences suggest that NUCKS1 can be used as the biomarker of several cancers. This review summarizes the latest research on NUCKS1 about its susceptibility in diseases, expression levels, and regulatory mechanisms as well as the possible functions in reference to diseases.
Collapse
|
28
|
Hui KY, Fernandez-Hernandez H, Hu J, Schaffner A, Pankratz N, Hsu NY, Chuang LS, Carmi S, Villaverde N, Li X, Rivas M, Levine AP, Bao X, Labrias PR, Haritunians T, Ruane D, Gettler K, Chen E, Li D, Schiff ER, Pontikos N, Barzilai N, Brant SR, Bressman S, Cheifetz AS, Clark LN, Daly MJ, Desnick RJ, Duerr RH, Katz S, Lencz T, Myers RH, Ostrer H, Ozelius L, Payami H, Peter Y, Rioux JD, Segal AW, Scott WK, Silverberg MS, Vance JM, Ubarretxena-Belandia I, Foroud T, Atzmon G, Pe'er I, Ioannou Y, McGovern DPB, Yue Z, Schadt EE, Cho JH, Peter I. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Sci Transl Med 2018; 10:eaai7795. [PMID: 29321258 PMCID: PMC6028002 DOI: 10.1126/scitranslmed.aai7795] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 03/31/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022]
Abstract
Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10-10) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10-8). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases.
Collapse
Affiliation(s)
- Ken Y Hui
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | | | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Schaffner
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nai-Yun Hsu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling-Shiang Chuang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Nicole Villaverde
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianting Li
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manual Rivas
- Department of Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adam P Levine
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - Xiuliang Bao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe R Labrias
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Talin Haritunians
- Translational Genomics Group, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Darren Ruane
- Department of Immunology and Inflammation, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Kyle Gettler
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Ernie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dalin Li
- Translational Genomics Group, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Elena R Schiff
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - Nikolas Pontikos
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - Nir Barzilai
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven R Brant
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Susan Bressman
- Alan and Barbara Mirken Department of Neurology, Beth Israel Medical Center, New York, NY 10003, USA
| | - Adam S Cheifetz
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark J Daly
- Department of Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard H Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Seymour Katz
- New York University School of Medicine, New York City, NY 10016, USA
- North Shore University-Long Island Jewish Medical Center, Manhasset, NY, USA
- St. Francis Hospital, Roslyn, NY 11576, USA
| | - Todd Lencz
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Richard H Myers
- Department of Neurology, Boston University School of Medicine, Boston, MA 02114, USA
| | - Harry Ostrer
- Departments of Pathology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laurie Ozelius
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Deparment of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Haydeh Payami
- Departments of Neurology and Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35805, USA
| | - Yakov Peter
- Department of Biology, Touro College, Queens, NY 10033, USA
- Department of Pulmonary Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10033, USA
| | - John D Rioux
- Research Center, Montreal Heart Institute, Montreal, Quebec H1T1C8, Canada
- Faculté de Médecine, Université de Montréal, Montreal, Quebec H1T1C8, Canada
| | - Anthony W Segal
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - William K Scott
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario M5T3L9, USA
- Department of Medicine, University of Toronto, Toronto, Ontario M5G1X5, Canada
| | - Jeffery M Vance
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Iban Ubarretxena-Belandia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gil Atzmon
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Itsik Pe'er
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | - Yiannis Ioannou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dermot P B McGovern
- Translational Genomics Group, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhenyu Yue
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Genetics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Judy H Cho
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics, Yale University, New Haven, CT 06520, USA
- Section of Gastroenterology and Hepatology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Institute for Genetics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
29
|
Redenšek S, Dolžan V, Kunej T. From Genomics to Omics Landscapes of Parkinson's Disease: Revealing the Molecular Mechanisms. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:1-16. [PMID: 29356624 PMCID: PMC5784788 DOI: 10.1089/omi.2017.0181] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular mechanisms of Parkinson's disease (PD) have already been investigated in various different omics landscapes. We reviewed the literature about different omics approaches between November 2005 and November 2017 to depict the main pathological pathways for PD development. In total, 107 articles exploring different layers of omics data associated with PD were retrieved. The studies were grouped into 13 omics layers: genomics-DNA level, transcriptomics, epigenomics, proteomics, ncRNomics, interactomics, metabolomics, glycomics, lipidomics, phenomics, environmental omics, pharmacogenomics, and integromics. We discussed characteristics of studies from different landscapes, such as main findings, number of participants, sample type, methodology, and outcome. We also performed curation and preliminary synthesis of multiple omics data, and identified overlapping results, which could lead toward selection of biomarkers for further validation of PD risk loci. Biomarkers could support the development of targeted prognostic/diagnostic panels as a tool for early diagnosis and prediction of progression rate and prognosis. This review presents an example of a comprehensive approach to revealing the underlying processes and risk factors of a complex disease. It urges scientists to structure the already known data and integrate it into a meaningful context.
Collapse
Affiliation(s)
- Sara Redenšek
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
30
|
Guerreiro R, Ross OA, Kun-Rodrigues C, Hernandez DG, Orme T, Eicher JD, Shepherd CE, Parkkinen L, Darwent L, Heckman MG, Scholz SW, Troncoso JC, Pletnikova O, Ansorge O, Clarimon J, Lleo A, Morenas-Rodriguez E, Clark L, Honig LS, Marder K, Lemstra A, Rogaeva E, St George-Hyslop P, Londos E, Zetterberg H, Barber I, Braae A, Brown K, Morgan K, Troakes C, Al-Sarraj S, Lashley T, Holton J, Compta Y, Van Deerlin V, Serrano GE, Beach TG, Lesage S, Galasko D, Masliah E, Santana I, Pastor P, Diez-Fairen M, Aguilar M, Tienari PJ, Myllykangas L, Oinas M, Revesz T, Lees A, Boeve BF, Petersen RC, Ferman TJ, Escott-Price V, Graff-Radford N, Cairns NJ, Morris JC, Pickering-Brown S, Mann D, Halliday GM, Hardy J, Trojanowski JQ, Dickson DW, Singleton A, Stone DJ, Bras J. Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 2018; 17:64-74. [PMID: 29263008 PMCID: PMC5805394 DOI: 10.1016/s1474-4422(17)30400-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/17/2017] [Accepted: 11/03/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Dementia with Lewy bodies is the second most common form of dementia in elderly people but has been overshadowed in the research field, partly because of similarities between dementia with Lewy bodies, Parkinson's disease, and Alzheimer's disease. So far, to our knowledge, no large-scale genetic study of dementia with Lewy bodies has been done. To better understand the genetic basis of dementia with Lewy bodies, we have done a genome-wide association study with the aim of identifying genetic risk factors for this disorder. METHODS In this two-stage genome-wide association study, we collected samples from white participants of European ancestry who had been diagnosed with dementia with Lewy bodies according to established clinical or pathological criteria. In the discovery stage (with the case cohort recruited from 22 centres in ten countries and the controls derived from two publicly available database of Genotypes and Phenotypes studies [phs000404.v1.p1 and phs000982.v1.p1] in the USA), we performed genotyping and exploited the recently established Haplotype Reference Consortium panel as the basis for imputation. Pathological samples were ascertained following autopsy in each individual brain bank, whereas clinical samples were collected after participant examination. There was no specific timeframe for collection of samples. We did association analyses in all participants with dementia with Lewy bodies, and also only in participants with pathological diagnosis. In the replication stage, we performed genotyping of significant and suggestive results from the discovery stage. Lastly, we did a meta-analysis of both stages under a fixed-effects model and used logistic regression to test for association in each stage. FINDINGS This study included 1743 patients with dementia with Lewy bodies (1324 with pathological diagnosis) and 4454 controls (1216 patients with dementia with Lewy bodies vs 3791 controls in the discovery stage; 527 vs 663 in the replication stage). Results confirm previously reported associations: APOE (rs429358; odds ratio [OR] 2·40, 95% CI 2·14-2·70; p=1·05 × 10-48), SNCA (rs7681440; OR 0·73, 0·66-0·81; p=6·39 × 10-10), an GBA (rs35749011; OR 2·55, 1·88-3·46; p=1·78 × 10-9). They also provide some evidence for a novel candidate locus, namely CNTN1 (rs7314908; OR 1·51, 1·27-1·79; p=2·32 × 10-6); further replication will be important. Additionally, we estimate the heritable component of dementia with Lewy bodies to be about 36%. INTERPRETATION Despite the small sample size for a genome-wide association study, and acknowledging the potential biases from ascertaining samples from multiple locations, we present the most comprehensive and well powered genetic study in dementia with Lewy bodies so far. These data show that common genetic variability has a role in the disease. FUNDING The Alzheimer's Society and the Lewy Body Society.
Collapse
Affiliation(s)
- Rita Guerreiro
- UK Dementia Research Institute, University College London, London, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK; Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Celia Kun-Rodrigues
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD, USA; German Center for Neurodegenerative Diseases, Tubingen, Germany
| | - Tatiana Orme
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | | | - Claire E Shepherd
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Lee Darwent
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Juan C Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Jordi Clarimon
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Lleo
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Estrella Morenas-Rodriguez
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Lorraine Clark
- Taub Institute for Alzheimer Disease and the Aging Brain and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Lawrence S Honig
- Taub Institute for Alzheimer Disease and the Aging Brain and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Karen Marder
- Taub Institute for Alzheimer Disease and the Aging Brain and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Afina Lemstra
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada; Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Elisabet Londos
- Clinical Memory Research Unit, Institution of Clinical Sciences Malmo, Lund University, Sweden
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK; Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Molndal, Sweden
| | - Imelda Barber
- Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Anne Braae
- Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Kristelle Brown
- Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Kevin Morgan
- Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Safa Al-Sarraj
- Department of Basic and Clinical Neuroscience and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Janice Holton
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Yaroslau Compta
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK; Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clinic, IDIBAPS, CIBERNED, Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Vivianna Van Deerlin
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Suzanne Lesage
- Inserm U1127, CNRS UMR7225, Sorbonne Universites, UPMC Univ Paris 06, UMR, Paris, France; S1127, Institut du Cerveau et de la Moelle epiniere, Paris, France
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD, USA; Division of Neurosciences, National Institutes of Health, Bethesda, MD, USA
| | - Isabel Santana
- Neurology Service, University of Coimbra Hospital, Coimbra, Portugal
| | - Pau Pastor
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Memory Unit, Department of Neurology, University Hospital Mutua de Terrassa, University of Barcelona, Barcelona, Spain; Fundacio de Docencia I Recerca Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Monica Diez-Fairen
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Memory Unit, Department of Neurology, University Hospital Mutua de Terrassa, University of Barcelona, Barcelona, Spain; Fundacio de Docencia I Recerca Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Miquel Aguilar
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Memory Unit, Department of Neurology, University Hospital Mutua de Terrassa, University of Barcelona, Barcelona, Spain; Fundacio de Docencia I Recerca Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Pentti J Tienari
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland; HUSLAB, Helsinki, Finland
| | - Minna Oinas
- Department of Neurosurgery, University of Helsinki, Helsinki, Finland; Department of Neuropathology and Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Tamas Revesz
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Andrew Lees
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Brad F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Tanis J Ferman
- Department of Psychiatry, Mayo Clinic, Jacksonville, FL, USA
| | - Valentina Escott-Price
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stuart Pickering-Brown
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - David Mann
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - John Hardy
- UK Dementia Research Institute, University College London, London, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Andrew Singleton
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Jose Bras
- UK Dementia Research Institute, University College London, London, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK; Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
31
|
Guin D, Mishra MK, Talwar P, Rawat C, Kushwaha SS, Kukreti S, Kukreti R. A systematic review and integrative approach to decode the common molecular link between levodopa response and Parkinson's disease. BMC Med Genomics 2017; 10:56. [PMID: 28927418 PMCID: PMC5606117 DOI: 10.1186/s12920-017-0291-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/24/2017] [Indexed: 11/26/2022] Open
Abstract
Background PD is a progressive neurodegenerative disorder commonly treated by levodopa. The findings from genetic studies on adverse effects (ADRs) and levodopa efficacy are mostly inconclusive. Here, we aim to identify predictive genetic biomarkers for levodopa response (LR) and determine common molecular link with disease susceptibility. A systematic review for LR was conducted for ADR, and drug efficacy, independently. All included articles were assessed for methodological quality on 14 parameters. GWAS of PD were also reviewed. Protein-protein interaction (PPI) analysis using STRING and functional enrichment using WebGestalt was performed to explore the common link between LR and PD. Results From 37 candidate studies on levodopa toxicity, 18 genes were found associated, of which, CAn STR 13, 14 (DRD2) was most significantly associated with dyskinesia, followed by rs1801133 (MTHFR) with hyper-homocysteinemia, and rs474559 (HOMER1) with hallucination. Similarly, 8 studies on efficacy resulted in 4 genes in which rs28363170, rs3836790 (SLC6A3) and rs4680 (COMT), were significant. To establish the molecular connection between LR with PD, we identified 35 genes significantly associated with PD. With 19 proteins associated with LR and 35 with PD, two independent PPI networks were constructed. Among the 67 nodes (263 edges) in LR, and 62 nodes (190 edges) in PD pathophysiology, UBC, SNCA, FYN, SRC, CAMK2A, and SLC6A3 were identified as common potential candidates. Conclusion Our study revealed the genetically significant polymorphism concerning the ADRs and levodopa efficacy. The six common genes may be used as predictive markers for therapy optimization and as putative drug target candidates. Electronic supplementary material The online version of this article (10.1186/s12920-017-0291-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India.,Department of Chemistry, Nucleic Acids Research Lab, University of Delhi (North Campus), Delhi, India
| | - Puneet Talwar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR- Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India
| | - Suman S Kushwaha
- Institute of Human Behaviour and Allied Sciences, Dilshad Garden, Delhi, India
| | - Shrikant Kukreti
- Department of Chemistry, Nucleic Acids Research Lab, University of Delhi (North Campus), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India. .,Academy of Scientific & Innovative Research (AcSIR), CSIR- Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India.
| |
Collapse
|
32
|
Belbin GM, Odgis J, Sorokin EP, Yee MC, Kohli S, Glicksberg BS, Gignoux CR, Wojcik GL, Van Vleck T, Jeff JM, Linderman M, Schurmann C, Ruderfer D, Cai X, Merkelson A, Justice AE, Young KL, Graff M, North KE, Peters U, James R, Hindorff L, Kornreich R, Edelmann L, Gottesman O, Stahl EE, Cho JH, Loos RJ, Bottinger EP, Nadkarni GN, Abul-Husn NS, Kenny EE. Genetic identification of a common collagen disease in puerto ricans via identity-by-descent mapping in a health system. eLife 2017; 6:25060. [PMID: 28895531 PMCID: PMC5595434 DOI: 10.7554/elife.25060] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Achieving confidence in the causality of a disease locus is a complex task that often requires supporting data from both statistical genetics and clinical genomics. Here we describe a combined approach to identify and characterize a genetic disorder that leverages distantly related patients in a health system and population-scale mapping. We utilize genomic data to uncover components of distant pedigrees, in the absence of recorded pedigree information, in the multi-ethnic BioMe biobank in New York City. By linking to medical records, we discover a locus associated with both elevated genetic relatedness and extreme short stature. We link the gene, COL27A1, with a little-known genetic disease, previously thought to be rare and recessive. We demonstrate that disease manifests in both heterozygotes and homozygotes, indicating a common collagen disorder impacting up to 2% of individuals of Puerto Rican ancestry, leading to a better understanding of the continuum of complex and Mendelian disease. Diseases often run in families. These disease are frequently linked to changes in DNA that are passed down through generations. Close family members may share these disease-causing mutations; so may distant relatives who inherited the same mutation from a common ancestor long ago. Geneticists use a method called linkage mapping to trace a disease found in multiple members of a family over generations to genetic changes in a shared ancestor. This allows scientists to pinpoint the exact place in the genome the disease-causing mutation occurred. Using computer algorithms, scientists can apply the same technique to identify mutations that distant relatives inherited from a common ancestor. Belbin et al. used this computational technique to identify a mutation that may cause unusually short stature or bone and joint problems in up to 2% of people of Puerto Rican descent. In the experiments, the genomes of about 32,000 New Yorkers who have volunteered to participate in the BioMe Biobank and their health records were used to search for genetic changes linked to extremely short stature. The search revealed that people who inherited two copies of this mutation from their parents were likely to be extremely short or to have bone and joint problems. People who inherited one copy had an increased likelihood of joint or bone problems. This mutation affects a gene responsible for making a form of protein called collagen that is important for bone growth. The analysis suggests the mutation first arose in a Native American ancestor living in Puerto Rico around the time that European colonization began. The mutation had previously been linked to a disorder called Steel syndrome that was thought to be rare. Belbin et al. showed this condition is actually fairly common in people whose ancestors recently came from Puerto Rico, but may often go undiagnosed by their physicians. The experiments emphasize the importance of including diverse populations in genetic studies, as studies of people of predominantly European descent would likely have missed the link between this disease and mutation.
Collapse
Affiliation(s)
- Gillian Morven Belbin
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Jacqueline Odgis
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Elena P Sorokin
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Muh-Ching Yee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Sumita Kohli
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Benjamin S Glicksberg
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Harris Center for Precision Wellness, Icahn School of Medicine at Mt Sinai, New York, United States
| | - Christopher R Gignoux
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Genevieve L Wojcik
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Tielman Van Vleck
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Janina M Jeff
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Michael Linderman
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Douglas Ruderfer
- Broad Institute, Cambridge, United States.,Division of Psychiatric Genomics, Icahn School of Medicine at Mt Sinai, New York, United States.,Center for Statistical Genetics, Icahn School of Medicine at Mt Sinai, New York, United States
| | - Xiaoqiang Cai
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Amanda Merkelson
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Misa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Epidemiology, University of Washington School of Public Health, Seattle, United States
| | - Regina James
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, United States
| | - Lucia Hindorff
- National Human Genome Research Institute, National Institutes of Health, Bethesda, United States
| | - Ruth Kornreich
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Lisa Edelmann
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Omri Gottesman
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Eli Ea Stahl
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Harris Center for Precision Wellness, Icahn School of Medicine at Mt Sinai, New York, United States.,Broad Institute, Cambridge, United States
| | - Judy H Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Ruth Jf Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Noura S Abul-Husn
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Center for Statistical Genetics, Icahn School of Medicine at Mt Sinai, New York, United States
| |
Collapse
|
33
|
Zampieri S, Cattarossi S, Bembi B, Dardis A. GBA Analysis in Next-Generation Era: Pitfalls, Challenges, and Possible Solutions. J Mol Diagn 2017; 19:733-741. [PMID: 28727984 DOI: 10.1016/j.jmoldx.2017.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 01/11/2023] Open
Abstract
Mutations in the gene encoding the lysosomal enzyme acid β-glucosidase (GBA) are responsible for Gaucher disease and represent the main genetic risk factor for developing Parkinson disease. In past years, next-generation sequencing (NGS) technology has been applied for the molecular analysis of the GBA gene, both as a single gene or as part of gene panels. However, the presence of complex gene-pseudogene rearrangements, resulting from the presence of a highly homologous pseudogene (GBAP1) located downstream of the GBA gene, makes NGS analysis of GBA challenging. Therefore, adequate strategies should be adopted to avoid misdetection of GBA recombinant mutations. Here, we validated a strategy for the identification of GBA mutations using parallel massive sequencing and provide an overview of the major drawbacks encountered during GBA analysis by NGS. We implemented a NGS workflow, using a set of 38 patients with Gaucher disease carrying different GBA alleles identified previously by Sanger sequencing. As expected, the presence of the pseudogene significantly affected data output. However, the combination of specific procedures for the library preparation and data analysis resulted in maximal repeatability and reproducibility, and a robust performance with 97% sensitivity and 100% specificity. In conclusion, the pipeline described here represents a useful approach to deal with GBA sequencing using NGS technology.
Collapse
Affiliation(s)
- Stefania Zampieri
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Silvia Cattarossi
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Bruno Bembi
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy.
| |
Collapse
|
34
|
Lv Z, Tian W, Ma Q, Hao Y, Yang Y. Interactions between four gene polymorphisms and their association with patients with Parkinson's disease in a Chinese Han population. Int J Neurosci 2017; 127:1154-1160. [PMID: 28535700 DOI: 10.1080/00207454.2017.1332601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The four previously reported Parkinson's disease (PD)-related single-nucleotide polymorphisms (SNPs) - rs1775143, rs823114, rs2071746 and rs62063857 - have rarely been studied in Chinese Han populations. To examine the association between these SNPs and PD, we conducted a case-control study of 158 patients with PD and 210 controls. All participants were Chinese Han from Northern China. With covariate adjustment for clinical characteristics, logistic regression analysis revealed no differences in genotype or allele frequencies for the four SNPs. Stratified by age of disease onset, sex, smoking status, duration of disease, baseline UPDRS, Hoehn-Yahr Stage, PD subtypes, scores of Hamilton anxiety scale, Hamilton depression scale and activity of daily living, all of the p values did not remain significant after Bonferroni correction. However, the haplotype rs1775143T-rs823114G-rs2071746T-rs62063857A was associated with increased risk of developing PD (p = 0.003, OR = 456.88, 95% CI: 27.40-7619.75) in our case-control sample set. The haplotype rs1775143T-rs823114G-rs2071746T was also associated with increased risk of developing PD (p = 0.003, OR = 338.43, 95% CI: 20.68-5538.27). Although the haplotype rs1775143T-rs823114G-rs62063857A was associated with increased risk of PD (p = 0.03), the 95% CI was 0.993-22.469. Our data demonstrate that although specific SNPs were not related with PD patients, certain haplotypes were associated with increased risk for PD in the Chinese Han population. These results provide further evidence that the etiology of PD is multifactorial, although the underling mechanism needs further study.
Collapse
Affiliation(s)
- Zhanyun Lv
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining , People's Republic of China
| | - Wenjing Tian
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining , People's Republic of China
| | - Qianqian Ma
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining , People's Republic of China
| | - Yanlei Hao
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining , People's Republic of China
| | - Yan Yang
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining , People's Republic of China
| |
Collapse
|
35
|
Bjelland DW, Lingala U, Patel PS, Jones M, Keller MC. A fast and accurate method for detection of IBD shared haplotypes in genome-wide SNP data. Eur J Hum Genet 2017; 25:617-624. [PMID: 28176766 PMCID: PMC5437913 DOI: 10.1038/ejhg.2017.6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/22/2016] [Accepted: 12/24/2016] [Indexed: 11/08/2022] Open
Abstract
Identical by descent (IBD) segments are used to understand a number of fundamental issues in genetics. IBD segments are typically detected using long stretches of identical alleles between haplotypes in phased, whole-genome SNP data. Phase or SNP call errors in genomic data can degrade accuracy of IBD detection and lead to false-positive/negative calls and to under/overextension of true IBD segments. Furthermore, the number of comparisons increases quadratically with sample size, requiring high computational efficiency. We developed a new IBD segment detection program, FISHR (Find IBD Shared Haplotypes Rapidly), in an attempt to accurately detect IBD segments and to better estimate their endpoints using an algorithm that is fast enough to be deployed on very large whole-genome SNP data sets. We compared the performance of FISHR to three leading IBD segment detection programs: GERMLINE, refined IBD, and HaploScore. Using simulated and real genomic sequence data, we show that FISHR is slightly more accurate than all programs at detecting long (>3 cm) IBD segments but slightly less accurate than refined IBD at detecting short (~1 cm) IBD segments. More centrally, FISHR outperforms all programs in determining the true endpoints of IBD segments, which is crucial for several applications of IBD information. FISHR takes two to three times longer than GERMLINE to run, whereas both GERMLINE and FISHR were orders of magnitude faster than refined IBD and HaploScore. Overall, FISHR provides accurate IBD detection in unrelated individuals and is computationally efficient enough to be utilized on large SNP data sets >60 000 individuals.
Collapse
Affiliation(s)
- Douglas W Bjelland
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
| | - Uday Lingala
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
| | - Piyush S Patel
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
| | - Matt Jones
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
36
|
Liu TC, Naito T, Liu Z, VanDussen KL, Haritunians T, Li D, Endo K, Kawai Y, Nagasaki M, Kinouchi Y, McGovern DP, Shimosegawa T, Kakuta Y, Stappenbeck TS. LRRK2 but not ATG16L1 is associated with Paneth cell defect in Japanese Crohn's disease patients. JCI Insight 2017; 2:e91917. [PMID: 28352666 DOI: 10.1172/jci.insight.91917] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND. Morphological patterns of Paneth cells are a prognostic biomarker in Western Crohn's disease (CD) patients, and are associated with autophagy-associated ATG16L1 and NOD2 variants. We hypothesized that genetic determinants of Paneth cell phenotype in other ethnic CD cohorts are distinct but also involved in autophagy. METHODS. We performed a hypothesis-driven analysis of 56 single nucleotide polymorphisms (SNPs) associated with CD susceptibility or known to affect Paneth cell function in 110 Japanese CD patients who underwent ileal resection. We subsequently performed a genome-wide association analysis. Paneth cell phenotype was determined by defensin-5 immunofluorescence. Selected genotype-Paneth cell defect correlations were compared to a Western CD cohort (n = 164). RESULTS. The average percentage of abnormal Paneth cells in Japanese CD was similar to Western CD (P = 0.87), and abnormal Paneth cell phenotype was also associated with early recurrence (P = 0.013). In contrast to Western CD, ATG16L1 T300A was not associated with Paneth cell defect in Japanese CD (P = 0.20). Among the 56 selected SNPs, only LRRK2 M2397T showed significant association with Paneth cell defect (P = 3.62 × 10-4), whereas in the Western CD cohort it was not (P = 0.76). Pathway analysis of LRRK2 and other candidate genes with P less than 5 × 10-4 showed connections with known CD susceptibility genes and links to autophagy and TNF-α networks. CONCLUSIONS. We found dichotomous effects of ATG16L1 and LRRK2 on Paneth cell defect between Japanese and Western CD. Genes affecting Paneth cell phenotype in Japanese CD were also associated with autophagy. Paneth cell phenotype also predicted prognosis in Japanese CD. FUNDING. Helmsley Charitable Trust, Doris Duke Foundation (grant 2014103), Japan Society for the Promotion of Science (KAKENHI grants JP15H04805 and JP15K15284), Crohn's and Colitis Foundation grant 274415, NIH (grants 1R56DK095820, K01DK109081, and UL1 TR000448).
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Zhenqiu Liu
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Talin Haritunians
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dalin Li
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Katsuya Endo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Kawai
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoshitaka Kinouchi
- Health Administration Center, Center for the Advancement of Higher Education, Tohoku University, Sendai, Japan
| | - Dermot Pb McGovern
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
37
|
Redenšek S, Trošt M, Dolžan V. Genetic Determinants of Parkinson's Disease: Can They Help to Stratify the Patients Based on the Underlying Molecular Defect? Front Aging Neurosci 2017; 9:20. [PMID: 28239348 PMCID: PMC5301007 DOI: 10.3389/fnagi.2017.00020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a sporadic progressive neurodegenerative brain disorder with a relatively strong genetic background. We have reviewed the current literature about the genetic factors that could be indicative of pathophysiological pathways of PD and their applications in everyday clinical practice. Information on novel risk genes is coming from several genome-wide association studies (GWASs) and their meta-analyses. GWASs that have been performed so far enabled the identification of 24 loci as PD risk factors. These loci take part in numerous cellular processes that may contribute to PD pathology: protein aggregation, protein, and membrane trafficking, lysosomal autophagy, immune response, synaptic function, endocytosis, inflammation, and metabolic pathways are among the most important ones. The identified single nucleotide polymorphisms are usually located in the non-coding regions and their functionality remains to be determined, although they presumably influence gene expression. It is important to be aware of a very low contribution of a single genetic risk factor to PD development; therefore, novel prognostic indices need to account for the cumulative nature of genetic risk factors. A better understanding of PD pathophysiology and its genetic background will help to elucidate the underlying pathological processes. Such knowledge may help physicians to recognize subjects with the highest risk for the development of PD, and provide an opportunity for the identification of novel potential targets for neuroprotective treatment. Moreover, it may enable stratification of the PD patients according to their genetic fingerprint to properly personalize their treatment as well as supportive measures.
Collapse
Affiliation(s)
- Sara Redenšek
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana Ljubljana, Slovenia
| | - Maja Trošt
- Department of Neurology, University Medical Centre Ljubljana Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|
38
|
Török R, Zádori D, Török N, Csility É, Vécsei L, Klivényi P. An assessment of the frequency of mutations in the GBA and VPS35 genes in Hungarian patients with sporadic Parkinson's disease. Neurosci Lett 2015; 610:135-8. [PMID: 26547032 DOI: 10.1016/j.neulet.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, with cases of either familial or sporadic origin. Several polymorphisms in a number of genes have been proved to have an important role in the development of PD. Particular attention has recently been paid to genes of the glucocerebrosidase (GBA) and the vacuolar protein sorting-associated protein 35 (VPS35). In this study, the three most common mutations (L444P, N370S and R120W) of the GBA gene and the D620N mutation of the VPS35 gene were examined in 124 Hungarian patients diagnosed with sporadic PD (SPD) and 122 control subjects. The frequency of the L444P mutation of the GBA gene proved to be higher in the PD patients (2.4%) than in the controls (0%), although the difference was not statistically significant. All the patients who carried the mutant allele were in the early-onset PD (EOPD) group. However, neither the R120W nor the N370S variant of the GBA gene nor D620N mutation of the VPS35 gene were detected among the PD cases or the controls. Even though these results suggest that the studied mutations are quite rare in SPD patients, the most frequent L444P mutation of the GBA gene may be associated with the development of EOPD in the Hungarian population.
Collapse
Affiliation(s)
- Rita Török
- Department of Neurology, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary
| | - Dénes Zádori
- Department of Neurology, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary
| | - Nóra Török
- Department of Neurology, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary
| | - Éva Csility
- Department of Neurology, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary; MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
39
|
Gan-Or Z, Amshalom I, Bar-Shira A, Gana-Weisz M, Mirelman A, Marder K, Bressman S, Giladi N, Orr-Urtreger A. The Alzheimer disease BIN1 locus as a modifier of GBA-associated Parkinson disease. J Neurol 2015; 262:2443-7. [PMID: 26233692 DOI: 10.1007/s00415-015-7868-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/28/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
Abstract
GBA mutations are among the most common genetic risk factors for Parkinson disease (PD) worldwide. We aimed to identify genetic modifiers of the age at onset (AAO) in GBA-associated PD. The study included a genome-wide discovery phase, including a cohort of 79 patients with the GBA p.N370S mutation, and candidate validation and replication analyses of 8 SNPs in patients with mild (n = 113) and severe (n = 41) GBA mutations. Genotyping was performed using the Affymetrix human SNP 6.0 array and TaqMan assays. In the genome-wide phase, none of the SNPs passed the genome-wide significance threshold. Eight SNPs were selected for further analysis from the top hits. In all GBA-associated PD patients (n = 153), the BIN1 rs13403026 minor allele was associated with an older AAO (12.4 ± 5.9 years later, p = 0.0001), compared to patients homozygous for the major allele. Furthermore, the AAO was 10.7 ± 6.8 years later in patients with mild GBA mutations, (p = 0.005, validation group), and 17.1 ± 2.5 years later in patients with severe GBA mutations (p = 0.01, replication). Our results suggest that alterations in the BIN1 locus, previously associated with Alzheimer disease, may modify the AAO of GBA-associated PD. More studies in other populations are required to examine the role of BIN1-related variants in GBA-associated PD.
Collapse
Affiliation(s)
- Z Gan-Or
- The Genetic Institute, Tel Aviv Sourasky Medical Center, Weizmann Street, 64239, Tel Aviv, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Haim Levanon, 69978, Tel Aviv, Israel
| | - I Amshalom
- The Genetic Institute, Tel Aviv Sourasky Medical Center, Weizmann Street, 64239, Tel Aviv, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Haim Levanon, 69978, Tel Aviv, Israel
| | - A Bar-Shira
- The Genetic Institute, Tel Aviv Sourasky Medical Center, Weizmann Street, 64239, Tel Aviv, Israel
| | - M Gana-Weisz
- The Genetic Institute, Tel Aviv Sourasky Medical Center, Weizmann Street, 64239, Tel Aviv, Israel
| | - A Mirelman
- Movement Disorders Unit, Department of Neurology, Parkinson Center, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel
| | - K Marder
- Department of Neurology, Columbia Presbyterian Medical Center, Columbia University, West 168th Street, New York, NY, 10032, USA
| | - S Bressman
- Department of Neurology, Beth Israel Medical Center, Union Square East, New York, NY, 10003, USA
| | - N Giladi
- Movement Disorders Unit, Department of Neurology, Parkinson Center, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Haim Levanon, 69978, Tel Aviv, Israel
| | - A Orr-Urtreger
- The Genetic Institute, Tel Aviv Sourasky Medical Center, Weizmann Street, 64239, Tel Aviv, Israel. .,The Sackler Faculty of Medicine, Tel-Aviv University, Haim Levanon, 69978, Tel Aviv, Israel.
| |
Collapse
|
40
|
Sardi SP, Cheng SH, Shihabuddin LS. Gaucher-related synucleinopathies: the examination of sporadic neurodegeneration from a rare (disease) angle. Prog Neurobiol 2015; 125:47-62. [PMID: 25573151 DOI: 10.1016/j.pneurobio.2014.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/01/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
Gaucher disease, the most common lysosomal storage disease, is caused by a recessively inherited deficiency in glucocerebrosidase and subsequent accumulation of toxic lipid substrates. Heterozygous mutations in the lysosomal glucocerebrosidase gene (GBA1) have recently been recognized as the highest genetic risk factor for the development of α-synuclein aggregation disorders ("synucleinopathies"), including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Despite the wealth of experimental, clinical and genetic evidence that supports the association between mutant genotypes and synucleinopathy risk, the precise mechanisms by which GBA1 mutations lead to PD and DLB remain unclear. Decreased glucocerebrosidase activity has been demonstrated to promote α-synuclein misprocessing. Furthermore, aberrant α-synuclein species have been reported to downregulate glucocerebrosidase activity, which further contributes to disease progression. In this review, we summarize the recent findings that highlight the complexity of this pathogenetic link and how several pathways that connect glucocerebrosidase insufficiency with α-synuclein misprocessing have emerged as potential therapeutic targets. From a translational perspective, we discuss how various therapeutic approaches to lysosomal dysfunction have been explored for the treatment of GBA1-related synucleinopathies, and potentially, for non-GBA1-associated neurodegenerative diseases. In summary, the link between GBA1 and synucleinopathies has become the paradigm of how the study of a rare lysosomal disease can transform the understanding of the etiopathology, and hopefully the treatment, of a more prevalent and multifactorial disorder.
Collapse
Affiliation(s)
- S Pablo Sardi
- Genzyme, a Sanofi Company, 49 New York Avenue, Framingham, MA 01701, USA.
| | - Seng H Cheng
- Genzyme, a Sanofi Company, 49 New York Avenue, Framingham, MA 01701, USA
| | | |
Collapse
|