1
|
Qiu Q, Yang M, Gong D, Liang H, Chen T. Potassium and calcium channels in different nerve cells act as therapeutic targets in neurological disorders. Neural Regen Res 2025; 20:1258-1276. [PMID: 38845230 DOI: 10.4103/nrr.nrr-d-23-01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/07/2024] [Indexed: 07/31/2024] Open
Abstract
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channel-specific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood-brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Mengting Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Danfeng Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Haiying Liang
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Török F, Salamon S, Ortner NJ, Fernández-Quintero ML, Matthes J, Striessnig J. Inactivation induced by pathogenic Ca v1.3 L-type Ca 2+-channel variants enhances sensitivity for dihydropyridine Ca 2+ channel blockers. Br J Pharmacol 2024. [PMID: 39370994 DOI: 10.1111/bph.17357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Pathogenic gain-of-function mutations in Cav1.3 L-type voltage-gated Ca2+-channels (CACNA1D) cause neurodevelopmental disorders with or without endocrine symptoms. We aimed to confirm a pathogenic gain-of function phenotype of CACNA1D de novo missense mutations A749T and L271H, and investigated the molecular mechanism causing their enhanced sensitivity for the Ca2+-channel blocker isradipine, a potential therapeutic for affected patients. EXPERIMENTAL APPROACH Wildtype and mutant channels were expressed in tsA-201 cells and their gating analysed using whole-cell and single-channel patch-clamp recordings. The voltage-dependence of isradipine action was quantified using protocols inducing variable fractions of inactivated channels. The molecular basis for altered channel gating in the mutants was investigated using in silico modelling and molecular dynamics simulations. KEY RESULTS Both mutations were confirmed pathogenic due to characteristic shifts of voltage-dependent activation and inactivation towards negative potentials (~20 mV). At negative holding potentials both mutations showed significantly higher isradipine sensitivity compared to wildtype. The affinity for wildtype and mutant channels increased with channel inactivation as predicted by the modulated receptor hypothesis (30- to 40-fold). The IC50 was indistinguishable for wildtype and mutants when >50% of channels were inactivated. CONCLUSIONS AND IMPLICATIONS Mutations A749T and L271H induce pathogenic gating changes. Like wildtype, isradipine inhibition is strongly voltage-dependent. Our data explains their apparent higher drug sensitivity at a given negative voltage by the availability of more inactivated channels due to their more negative inactivation voltage range. Low nanomolar isradipine concentrations will only inhibit Cav1.3 channels in neurons during prolonged depolarized states without selectivity for mutant channels.
Collapse
Affiliation(s)
- Ferenc Török
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Sarah Salamon
- Center of Pharmacology, Institute II, University of Cologne, Cologne, Germany
| | - Nadine J Ortner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jan Matthes
- Center of Pharmacology, Institute II, University of Cologne, Cologne, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Liu X, Shen B, Zhou J, Hao J, Wang J. The L-type calcium channel CaV1.3: A potential target for cancer therapy. J Cell Mol Med 2024; 28:e70123. [PMID: 39365143 PMCID: PMC11451265 DOI: 10.1111/jcmm.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Cancer remains a prominent cause to life expectancy, and targeted cancer therapy stands as a pivotal approach in contemporary therapy. Calcium (Ca2+) signalling plays a multifaceted role in cancer progression, such as proliferation, invasion and distant metastasis. Otherwise, it also exerts an important influence on the efficacy of clinical treatment, including cancer therapy resistance. In this review we discuss the role of the L-type calcium channel CaV1.3 (calcium voltage-gated channel subunit alpha1 D) in different types of cancers, highlighting its potential as a therapeutic target for certain cancer types. The development of selective blockers of the CaV1.3 channel has been of great interest and is expected to be a new option for the treatment of cancers such as prostate cancer and endometrial cancer. We present the pharmacological properties of CaV1.3 and the current status of selective blocker development, and analyse the challenges and possible directions for breakthroughs in the development of tailored medicines.
Collapse
Affiliation(s)
- Xuerun Liu
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Boqiang Shen
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jingyi Zhou
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Juan Hao
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jianliu Wang
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| |
Collapse
|
4
|
Tang X, Ortner NJ, Nikonishyna YV, Fernández-Quintero ML, Kokot J, Striessnig J, Liedl KR. Pathogenicity of de novo CACNA1D Ca 2+ channel variants predicted from sequence co-variation. Eur J Hum Genet 2024; 32:1065-1073. [PMID: 38553610 PMCID: PMC11369236 DOI: 10.1038/s41431-024-01594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 09/04/2024] Open
Abstract
Voltage-gated L-type Cav1.3 Ca2+ channels support numerous physiological functions including neuronal excitability, sinoatrial node pacemaking, hearing, and hormone secretion. De novo missense mutations in the gene of their pore-forming α1-subunit (CACNA1D) induce severe gating defects which lead to autism spectrum disorder and a more severe neurological disorder with and without endocrine symptoms. The number of CACNA1D variants reported is constantly rising, but their pathogenic potential often remains unclear, which complicates clinical decision-making. Since functional tests are time-consuming and not always available, bioinformatic tools further improving pathogenicity potential prediction of novel variants are needed. Here we employed evolutionary analysis considering sequences of the Cav1.3 α1-subunit throughout the animal kingdom to predict the pathogenicity of human disease-associated CACNA1D missense variants. Co-variation analyses of evolutionary information revealed residue-residue couplings and allowed to generate a score, which correctly predicted previously identified pathogenic variants, supported pathogenicity in variants previously classified as likely pathogenic and even led to the re-classification or re-examination of 18 out of 80 variants previously assessed with clinical and electrophysiological data. Based on the prediction score, we electrophysiologically tested one variant (V584I) and found significant gating changes associated with pathogenic risks. Thus, our co-variation model represents a valuable addition to complement the assessment of the pathogenicity of CACNA1D variants completely independent of clinical diagnoses, electrophysiology, structural or biophysical considerations, and solely based on evolutionary analyses.
Collapse
Affiliation(s)
- Xuechen Tang
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Nadine J Ortner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Yuliia V Nikonishyna
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Janik Kokot
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria.
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria.
| |
Collapse
|
5
|
Salamon S, Kuzmenkina E, Fried C, Matthes J. CaM-dependent modulation of human Ca V1.3 whole-cell and single-channel currents by C-terminal CaMKII phosphorylation site S1475. J Physiol 2024; 602:3955-3973. [PMID: 39037941 DOI: 10.1113/jp284972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Phosphorylation enables rapid modulation of voltage-gated calcium channels (VGCC) in physiological and pathophysiological conditions. How phosphorylation modulates human CaV1.3 VGCC, however, is largely unexplored. We characterized modulation of CaV1.3 gating via S1475, the human equivalent of a phosphorylation site identified in the rat. S1475 is highly conserved in CaV1.3 but absent from all other high-voltage activating calcium channel types co-expressed with CaV1.3 in similar tissues. Further, it is located in the C-terminal EF-hand motif, which binds calmodulin (CaM). This is involved in calcium-dependent channel inactivation (CDI). We used amino acid exchanges that mimic either sustained phosphorylation (S1475D) or phosphorylation resistance (S1475A). Whole-cell and single-channel recordings of phosphorylation state imitating CaV1.3 variants in transiently transfected HEK-293 cells revealed functional relevance of S1475 in human CaV1.3. We obtained three main findings: (1) CaV1.3_S1475D, imitating sustained phosphorylation, displayed decreased current density, reduced CDI and (in-) activation kinetics shifted to more depolarized voltages compared with both wildtype CaV1.3 and the phosphorylation-resistant CaV1.3_S1475A variant. Corresponding to the decreased current density, we find a reduced open probability of CaV1.3_S1475D at the single-channel level. (2) Using CaM overexpression or depletion, we find that CaM is necessary for modulating CaV1.3 through S1475. (3) CaMKII activation led to CaV1.3_WT-current properties similar to those of CaV1.3_S1475D, but did not affect CaV1.3_S1475A, confirming that CaMKII modulates human CaV1.3 via S1475. Given the physiological and pathophysiological importance of CaV1.3, our findings on the S1475-mediated interplay of phosphorylation, CaM interaction and CDI provide hints for approaches on specific CaV1.3 modulation under physiological and pathophysiological conditions. KEY POINTS: Phosphorylation modulates activity of voltage-gated L-type calcium channels for specific cellular needs but is largely unexplored for human CaV1.3 channels. Here we report that S1475, a CaMKII phosphorylation site identified in rats, is functionally relevant in human CaV1.3. Imitating phosphorylation states at S1475 alters current density and inactivation in a calmodulin-dependent manner. In wildtype CaV1.3 but not in the phosphorylation-resistant variant S1475A, CaMKII activation elicits effects similar to constitutively mimicking phosphorylation at S1475. Our findings provide novel insights on the interplay of modulatory mechanisms of human CaV1.3 channels, and present a possible target for CaV1.3-specific gating modulation in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Sarah Salamon
- Center of Pharmacology, Institute II, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Elza Kuzmenkina
- Center of Pharmacology, Institute II, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Cora Fried
- Center of Pharmacology, Institute II, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jan Matthes
- Center of Pharmacology, Institute II, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Ezell KM, Tinker RJ, Furuta Y, Gulsevin A, Bastarache L, Hamid R, Cogan JD, Rives L, Neumann S, Corner B, Kozuria M, Phillips JA. Undiagnosed Disease Network collaborative approach in diagnosing rare disease in a patient with a mosaic CACNA1D variant. Am J Med Genet A 2024; 194:e63597. [PMID: 38511854 PMCID: PMC11161305 DOI: 10.1002/ajmg.a.63597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
The Undiagnosed Disease Network (UDN) is comprised of clinical and research experts collaborating to diagnose rare disease. The UDN is funded by the National Institutes of Health and includes 12 different clinical sites (About Us, 2022). Here we highlight the success of collaborative efforts within the UDN Clinical Site at Vanderbilt University Medical Center (VUMC) in utilizing a cohort of experts in bioinformatics, structural biology, and genetics specialists in diagnosing rare disease. Our UDN team identified a de novo mosaic CACNA1D variant c.2299T>C in a 5-year-old female with a history of global developmental delay, dystonia, dyskinesis, and seizures. Using a collaborative multidisciplinary approach, our VUMC UDN team diagnosed the participant with Primary Aldosteronism, Seizures, and Neurologic abnormalities (PASNA) OMIM: 615474 due to a rare mosaic CACNA1D variant (O'Neill, 2013). Interestingly, this patient was mosaic, a phenotypic trait previously unreported in PASNA cases. This report highlights the importance of a multidisciplinary approach in diagnosing rare disease.
Collapse
Affiliation(s)
- Kimberly M. Ezell
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rory J. Tinker
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yutaka Furuta
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alican Gulsevin
- Department of Chemistry, Center for Structural Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, Indiana, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rizwan Hamid
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joy D. Cogan
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lynette Rives
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Serena Neumann
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brian Corner
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary Kozuria
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A. Phillips
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
7
|
Araujo-Castro M, Ruiz-Sánchez JG, Parra Ramírez P, Martín Rojas-Marcos P, Aguilera-Saborido A, Gómez Cerezo JF, López Lazareno N, Torregrosa Quesada ME, Gorrin Ramos J, Oriola J, Poch E, Oliveras A, Méndez Monter JV, Gómez Muriel I, Bella-Cueto MR, Mercader Cidoncha E, Runkle I, Hanzu FA. Screening and diagnosis of primary aldosteronism. Consensus document of all the Spanish Societies involved in the management of primary aldosteronism. Endocrine 2024; 85:99-121. [PMID: 38448679 DOI: 10.1007/s12020-024-03751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
Primary aldosteronism (PA) is the most frequent cause of secondary hypertension (HT), and is associated with a higher cardiometabolic risk than essential HT. However, PA remains underdiagnosed, probably due to several difficulties clinicians usually find in performing its diagnosis and subtype classification. The aim of this consensus is to provide practical recommendations focused on the prevalence and the diagnosis of PA and the clinical implications of aldosterone excess, from a multidisciplinary perspective, in a nominal group consensus approach by experts from the Spanish Society of Endocrinology and Nutrition (SEEN), Spanish Society of Cardiology (SEC), Spanish Society of Nephrology (SEN), Spanish Society of Internal Medicine (SEMI), Spanish Radiology Society (SERAM), Spanish Society of Vascular and Interventional Radiology (SERVEI), Spanish Society of Laboratory Medicine (SEQC(ML)), Spanish Society of Anatomic-Pathology, Spanish Association of Surgeons (AEC).
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Endocrinology & Nutrition Department, Hospital Universitario Ramón y Cajal. Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS)., Madrid, Spain.
| | - Jorge Gabriel Ruiz-Sánchez
- Endocrinology & Nutrition Department. Hospital Universitario Fundación Jiménez Díaz, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Paola Parra Ramírez
- Endocrinology & Nutrition Department, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | | | | | | | - Nieves López Lazareno
- Biochemical Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Jorge Gorrin Ramos
- Biochemical department, Laboratori de Referència de Catalunya, Barcelona, Spain
| | - Josep Oriola
- Biochemistry and Molecular Genetics Department, CDB. Hospital Clínic. University of Barcelona, Barcelona, Spain
| | - Esteban Poch
- Nephrology Department. Hospital Clinic, IDIBAPS. University of Barcelona, Barcelona, Spain
| | - Anna Oliveras
- Nephrology Department. Hospital del Mar, Universitat Pompeu Fabra, Barcelona, ES, Spain
| | | | | | - María Rosa Bella-Cueto
- Pathology Department, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona. Sabadell, Barcelona, Spain
| | - Enrique Mercader Cidoncha
- General Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Fellow European Board of Surgery -Endocrine Surgery, Madrid, Spain
| | - Isabelle Runkle
- Endocrinology and Nutrition Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Felicia A Hanzu
- Endocrinology & Nutrition Department, Hospital Clinic. IDIBAPS. University of Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Zhu X, Jiang P, Ying X, Tang X, Deng Y, Gao X, Yang X. Pregnancy induced hypertension and umbilical cord blood DNA methylation in newborns: an epigenome-wide DNA methylation study. BMC Pregnancy Childbirth 2024; 24:433. [PMID: 38886689 PMCID: PMC11181590 DOI: 10.1186/s12884-024-06623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVIES Pregnancy induced hypertension (PIH) syndrome is a disease that unique to pregnant women and is associated with elevated risk of offspring cardiovascular diseases (CVDs) and neurodevelopmental disorders in their kids. Previous research on cord blood utilizing the Human Methylation BeadChip or EPIC array revealed that PIH is associated with specific DNA methylation site. Here, we investigate the whole genome DNA methylation landscape of cord blood from newborns of PIH mother. METHODS Whole-genome bisulfite sequencing (WGBS) was used to examine the changes in whole genome DNA methylation in the umbilical cord blood of three healthy (NC) and four PIH individuals. Using methylKit, we discovered Hypo- and hyper- differentially methylated probes (DMPs) or methylated regions (DMRs) in the PIH patients' cord blood DNA. Pathway enrichments were assessed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment assays. DMPs or DMRs relevant to the immunological, neurological, and circulatory systems were also employed for enrichment assay, Metascape analysis and PPI network analysis. RESULTS 520 hyper- and 224 hypo-DMPs, and 374 hyper- and 186 hypo-DMRs between NC and PIH group, respectively. Both DMPs and DMRs have enhanced pathways for cardiovascular, neurological system, and immune system development. Further investigation of DMPs or DMRs related to immunological, neurological, and circulatory system development revealed that TBK1 served as a hub gene for all three developmental pathways. CONCLUSION PIH-associated DMPs or DMRs in umbilical cord blood DNA may play a role in immunological, neurological, and circulatory system development. Abnormal DNA methylation in the immune system may also contribute to the development of CVDs and neurodevelopment disorders.
Collapse
Affiliation(s)
- Xiaojun Zhu
- Department of Obstetrics, Women's Hospital, Medicine School of Zhejiang University, Hangzhou, 310006, China
| | - Peiyue Jiang
- Department of Obstetrics, Women's Hospital, Medicine School of Zhejiang University, Hangzhou, 310006, China
| | - Xia Ying
- Department of Obstetrics, Women's Hospital, Medicine School of Zhejiang University, Hangzhou, 310006, China
| | - Xueling Tang
- Department of Obstetrics, Women's Hospital, Medicine School of Zhejiang University, Hangzhou, 310006, China
| | - Youcai Deng
- Department of Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Xinghong Gao
- School of Basic Medicine, Zunyi Medical University, Zunyi , Guizhou, 563006, China.
| | - Xiaofu Yang
- Department of Obstetrics, Women's Hospital, Medicine School of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
9
|
Lee B, Nasanovsky L, Shen L, Maglinte DT, Pan Y, Gai X, Schmidt RJ, Raca G, Biegel JA, Roytman M, An P, Saunders CJ, Farrow EG, Shams S, Ji J. Significance Associated with Phenotype Score Aids in Variant Prioritization for Exome Sequencing Analysis. J Mol Diagn 2024; 26:337-348. [PMID: 38360210 DOI: 10.1016/j.jmoldx.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Several in silico annotation-based methods have been developed to prioritize variants in exome sequencing analysis. This study introduced a novel metric Significance Associated with Phenotypes (SAP) score, which generates a statistical score by comparing an individual's observed phenotypes against existing gene-phenotype associations. To evaluate the SAP score, a retrospective analysis was performed on 219 exomes. Among them, 82 family-based and 35 singleton exomes had at least one disease-causing variant that explained the patient's clinical features. SAP scores were calculated, and the rank of the disease-causing variant was compared with a known method, Exomiser. Using the SAP score, the known causative variant was ranked in the top 10 retained variants for 94% (77 of 82) of the family-based exomes and in first place for 73% of these cases. For singleton exomes, the SAP score analysis ranked the known pathogenic variants within the top 10 for 80% (28 of 35) of cases. The SAP score, which is independent of detected variants, demonstrates comparable performance with Exomiser, which considers both phenotype and variant-level evidence simultaneously. Among 102 cases with negative results or variants of uncertain significance, SAP score analysis revealed two cases with a potential new diagnosis based on rank. The SAP score, a phenotypic quantitative metric, can be used in conjunction with standard variant filtration and annotation to enhance variant prioritization in exome analysis.
Collapse
Affiliation(s)
- Brian Lee
- Bionano Genomics, San Diego, California
| | | | - Lishuang Shen
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Dennis T Maglinte
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Yachen Pan
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ryan J Schmidt
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Gordana Raca
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jaclyn A Biegel
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Paul An
- Bionano Genomics, San Diego, California
| | - Carol J Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Emily G Farrow
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | | | - Jianling Ji
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
10
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+ -dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590962. [PMID: 38712260 PMCID: PMC11071484 DOI: 10.1101/2024.04.24.590962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Although considerable attention has been paid to the mechanisms underlying synaptic strengthening and new learning, little scrutiny has been given to those involved in the attenuation of synaptic strength that attends suppression of a previously learned association. Our studies revealed a novel, non-Hebbian, long-term, postsynaptic depression of glutamatergic SPN synapses induced by interneuronal nitric oxide (NO) signaling (NO-LTD) that was preferentially engaged at quiescent synapses. This form of plasticity was gated by local Ca 2+ influx through CaV1.3 Ca 2+ channels and stimulation of phosphodiesterase 1 (PDE1), which degraded cyclic guanosine monophosphate (cGMP) and blunted NO signaling. Consistent with this model, mice harboring a gain-of-function mutation in the gene coding for the pore-forming subunit of CaV1.3 channels had elevated depolarization-induced dendritic Ca 2+ entry and impaired NO-LTD. Extracellular uncaging of glutamate and intracellular uncaging of cGMP suggested that this Ca 2+ -dependent regulation of PDE1 activity allowed for local regulation of dendritic NO signaling. This inference was supported by simulation of SPN dendritic integration, which revealed that dendritic spikes engaged PDE1 in a branch-specific manner. In a mouse model of Parkinson's disease (PD), NO-LTD was absent not because of a postsynaptic deficit in NO signaling machinery, but rather due to impaired interneuronal NO release. Re-balancing intrastriatal neuromodulatory signaling in the PD model restored NO release and NO-LTD. Taken together, these studies provide novel insights into the mechanisms governing NO-LTD in SPN and its role in psychomotor disorders, like PD.
Collapse
|
11
|
Achiro JM, Tao Y, Gao F, Lin CH, Watanabe M, Neumann S, Coppola G, Black DL, Martin KC. Aging differentially alters the transcriptome and landscape of chromatin accessibility in the male and female mouse hippocampus. Front Mol Neurosci 2024; 17:1334862. [PMID: 38318533 PMCID: PMC10839115 DOI: 10.3389/fnmol.2024.1334862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic function. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE-1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Sex differences in gene expression and chromatin accessibility were amplified with aging, findings that may shed light on sex differences in aging-related and pathological memory loss.
Collapse
Affiliation(s)
- Jennifer M. Achiro
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Yang Tao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Fuying Gao
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Marika Watanabe
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Sylvia Neumann
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Douglas L. Black
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Kelsey C. Martin
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
12
|
Li AH, Kuo YY, Yang SB, Chen PC. Central Channelopathies in Obesity. CHINESE J PHYSIOL 2024; 67:15-26. [PMID: 38780269 DOI: 10.4103/ejpi.ejpi-d-23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024] Open
Abstract
As obesity has raised heightening awareness, researchers have attempted to identify potential targets that can be treated for therapeutic intervention. Focusing on the central nervous system (CNS), the key organ in maintaining energy balance, a plethora of ion channels that are expressed in the CNS have been inspected and determined through manipulation in different hypothalamic neural subpopulations for their roles in fine-tuning neuronal activity on energy state alterations, possibly acting as metabolic sensors. However, a remaining gap persists between human clinical investigations and mouse studies. Despite having delineated the pathways and mechanisms of how the mouse study-identified ion channels modulate energy homeostasis, only a few targets overlap with the obesity-related risk genes extracted from human genome-wide association studies. Here, we present the most recently discovered CNS-specific metabolism-correlated ion channels using reverse and forward genetics approaches in mice and humans, respectively, in the hope of illuminating the prospects for future therapeutic development.
Collapse
Affiliation(s)
- Athena Hsu Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ying Kuo
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
Fernando MB, Fan Y, Zhang Y, Kammourh S, Murphy AN, Ghorbani S, Onatzevitch R, Pero A, Padilla C, Flaherty EK, Prytkova IK, Cao L, Williams S, Fang G, Slesinger PA, Brennand KJ. Precise Therapeutic Targeting of Distinct NRXN1+/- Mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564543. [PMID: 37961635 PMCID: PMC10634884 DOI: 10.1101/2023.10.28.564543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As genetic studies continue to identify risk loci that are significantly associated with risk for neuropsychiatric disease, a critical unanswered question is the extent to which diverse mutations--sometimes impacting the same gene-- will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in NRXN1, a pre-synaptic cell adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of NRXN1 alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain, and are differentially impacted by unique (non-recurrent) deletions. We contrast the cell-type-specific impact of patient-specific mutations in NRXN1 using human induced pluripotent stem cells, finding that perturbations in NRXN1 splicing result in divergent cell-type-specific synaptic outcomes. Via distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, NRXN1+/- deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Stratification of patients by LOF and GOF mechanisms will facilitate individualized restoration of NRXN1 isoform repertoires; towards this, antisense oligonucleotides knockdown mutant isoform expression and alters synaptic transcriptional signatures, while treatment with β-estradiol rescues synaptic function in glutamatergic neurons. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disease, our findings add nuance to future considerations of precision medicine.
Collapse
Affiliation(s)
- Michael B. Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06520
| | - Yu Fan
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yanchun Zhang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sarah Kammourh
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Aleta N. Murphy
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sadaf Ghorbani
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06520
- Haukeland University Hospital, Bergen, Norway
| | - Ryan Onatzevitch
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adriana Pero
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Christopher Padilla
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Erin K. Flaherty
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Iya K. Prytkova
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lei Cao
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sarah Williams
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Gang Fang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kristen J. Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06520
| |
Collapse
|
14
|
Stanton AM, Heydarpour M, Williams JS, Williams GH, Adler GK. CACNA1D Gene Polymorphisms Associate With Increased Blood Pressure and Salt Sensitivity of Blood Pressure in White Individuals. Hypertension 2023; 80:2665-2673. [PMID: 37846579 PMCID: PMC10843263 DOI: 10.1161/hypertensionaha.123.21229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Disease-causing mutations in CACNA1D gene occur in aldosterone-producing adenomas and familial hyperaldosteronism. We determined whether single nucleotide polymorphisms in CACNA1D gene associate with higher aldosterone resulting in salt sensitivity of blood pressure (BP) and increased BP in men and women. METHODS Data were obtained from the HyperPATH (International Hypertension Pathotypes) cohort, where participants completed a cross-over intervention of liberal and restricted sodium diets. Multi-Ethnic Genotyping Array identified 104 CACNA1D single nucleotide polymorphisms that met quality control. Single nucleotide polymorphism is rs7612148 strongly associated with systolic BP and was selected for study in 521 White participants in 3 scenarios ([1] hypertensives; [2] normotensives; [3] total population=hypertensives+normotensives) using multivariate regression analysis. RESULTS In the total population and hypertensives, but not normotensives, risk allele carriers (CC, GC), as compared with nonrisk allele homozygotes (GG), exhibited higher salt sensitivity of BP and, on liberal sodium diet, higher systolic BP, lower baseline and angiotensin II-stimulated aldosterone, and lower plasma renin activity. On restricted sodium diet, BP was similar across genotypes, suggesting sodium restriction corrected/neutralized the genotype effect on BP. Because increased aldosterone did not seem to drive the increased salt sensitivity of BP and increased BP on liberal sodium diet, we assessed renal plasma flow. Renal plasma flow increase from restricted to liberal sodium diets was blunted in risk allele homozygotes in the total population and in hypertensives. A replication study in another cohort HyperPATH B (International Hypertension Pathotypes Cohort B) confirmed BP-genotype associations. CONCLUSIONS CACNA1D rs7612148 risk allele associated with increased BP and salt sensitivity of BP, likely due to an impaired ability to increase renal plasma flow in response to a liberal sodium diet and not to excess aldosterone.
Collapse
Affiliation(s)
- Ana Maria Stanton
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Mahyar Heydarpour
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jonathan S. Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Gordon H. Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Gail K. Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Charoensri S, Auchus RJ. Therapeutic management of congenital forms of endocrine hypertension. Eur J Endocrinol 2023; 189:R11-R22. [PMID: 37847213 DOI: 10.1093/ejendo/lvad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
Congenital forms of endocrine hypertension are rare and potentially life-threatening disorders, primarily caused by genetic defects affecting adrenal steroid synthesis and activation pathways. These conditions exhibit diverse clinical manifestations, which can be distinguished by their unique molecular mechanisms and steroid profiles. Timely diagnosis and customized management approach are crucial to mitigate unfavorable outcomes associated with uncontrolled hypertension and other related conditions. Treatment options for these disorders depend on the distinct underlying pathophysiology, which involves specific pharmacological therapies or surgical adrenalectomy in some instances. This review article summarizes the current state of knowledge on the therapeutic management of congenital forms of endocrine hypertension, focusing on familial hyperaldosteronism (FH), congenital adrenal hyperplasia, apparent mineralocorticoid excess, and Liddle syndrome. We provide an overview of the genetic and molecular pathogenesis underlying each disorder, describe the clinical features, and discuss the various therapeutic approaches available and their risk of adverse effects, aiming to improve outcomes in patients with these rare and complex conditions.
Collapse
Affiliation(s)
- Suranut Charoensri
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- Endocrinology & Metabolism Section, Medicine Service, LTC Charles S. Kettles VA Medical Center, Ann Arbor, MI 48104, United States
| |
Collapse
|
16
|
Lauerer RJ, Lerche H. Voltage-gated calcium channels in genetic epilepsies. J Neurochem 2023. [PMID: 37822150 DOI: 10.1111/jnc.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Voltage-gated calcium channels (VGCC) are abundant in the central nervous system and serve a broad spectrum of functions, either directly in cellular excitability or indirectly to regulate Ca2+ homeostasis. Ca2+ ions act as one of the main connections in excitation-transcription coupling, muscle contraction and excitation-exocytosis coupling, including synaptic transmission. In recent years, many genes encoding VGCCs main α or additional auxiliary subunits have been associated with epilepsy. This review sums up the current state of knowledge on disease mechanisms and provides guidance on disease-specific therapies where applicable.
Collapse
Affiliation(s)
- Robert J Lauerer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University and University Hospital Tuebingen, Tuebingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University and University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
17
|
Al-Mazidi S, Al-Ayadhi L, Alqahtany F, Abualnaja A, Alzarroug A, Alharbi T, Farhat K, AlMnaizel A, El-Ansary A. The possible role of sodium leakage channel localization factor-1 in the pathophysiology and severity of autism spectrum disorders. Sci Rep 2023; 13:9747. [PMID: 37328585 PMCID: PMC10275888 DOI: 10.1038/s41598-023-36953-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/13/2023] [Indexed: 06/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social, stereotypical, and repetitive behaviors. Neural dysregulation was proposed as an etiological factor in ASD. The sodium leakage channel (NCA), regulated by NLF-1 (NCA localization factor-1), has a major role in maintaining the physiological excitatory function of neurons. We aimed to examine the level of NLF-1 in ASD children and correlate it with the severity of the disease. We examined the plasma levels of NLF-1 in 80 ASD and neurotypical children using ELISA. The diagnosis and severity of ASD were based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), Childhood Autism Rating Score, Social Responsiveness Scale, and Short Sensory Profile. Then, we compared the levels of NLF-1 with the severity of the disease and behavioral and sensory symptoms. Our results showed a significant decrease in the plasma levels of NLF-1 in ASD children compared to neurotypical children (p < 0.001). Additionally, NLF-1 was significantly correlated with the severity of the behavioral symptoms of ASD (p < 0.05). The low levels of NLF-1 in ASD children potentially affect the severity of their behavioral symptoms by reducing neuron excitability through NCA. These novel findings open a new venue for pharmacological and possible genetic research involving NCA in ASD children.
Collapse
Affiliation(s)
- Sarah Al-Mazidi
- Physiology Department, College of Medicine, Imam Mohammad Ibn Saud Islamic University, P.O.Box: 5701, Riyadh, 11432, Saudi Arabia.
| | - Laila Al-Ayadhi
- Physiology, King Saud University College of Medicine, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Fatmah Alqahtany
- Hematopathology Unit, Department of Pathology, College of Medicine, King Saud University, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Amani Abualnaja
- College of Medicine, Imam Muhammad bin Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdullah Alzarroug
- College of Medicine, Imam Muhammad bin Saud Islamic University, Riyadh, Saudi Arabia
| | - Turki Alharbi
- College of Medicine, Imam Muhammad bin Saud Islamic University, Riyadh, Saudi Arabia
| | - Karim Farhat
- Cancer Research Chair, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad AlMnaizel
- Research office, John Hopkins Aramco Healthcare, Dahran, Saudi Arabia
| | - Afaf El-Ansary
- Autism Research and Treatment Center, King Saud University College of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Stott J, Wright T, Holmes J, Wilson J, Griffiths-Jones S, Foster D, Wright B. A systematic review of non-coding RNA genes with differential expression profiles associated with autism spectrum disorders. PLoS One 2023; 18:e0287131. [PMID: 37319303 PMCID: PMC10270643 DOI: 10.1371/journal.pone.0287131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
AIMS To identify differential expression of shorter non-coding RNA (ncRNA) genes associated with autism spectrum disorders (ASD). BACKGROUND ncRNA are functional molecules that derive from non-translated DNA sequence. The HUGO Gene Nomenclature Committee (HGNC) have approved ncRNA gene classes with alignment to the reference human genome. One subset is microRNA (miRNA), which are highly conserved, short RNA molecules that regulate gene expression by direct post-transcriptional repression of messenger RNA. Several miRNA genes are implicated in the development and regulation of the nervous system. Expression of miRNA genes in ASD cohorts have been examined by multiple research groups. Other shorter classes of ncRNA have been examined less. A comprehensive systematic review examining expression of shorter ncRNA gene classes in ASD is timely to inform the direction of research. METHODS We extracted data from studies examining ncRNA gene expression in ASD compared with non-ASD controls. We included studies on miRNA, piwi-interacting RNA (piRNA), small NF90 (ILF3) associated RNA (snaR), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), transfer RNA (tRNA), vault RNA (vtRNA) and Y RNA. The following electronic databases were searched: Cochrane Library, EMBASE, PubMed, Web of Science, PsycINFO, ERIC, AMED and CINAHL for papers published from January 2000 to May 2022. Studies were screened by two independent investigators with a third resolving discrepancies. Data was extracted from eligible papers. RESULTS Forty-eight eligible studies were included in our systematic review with the majority examining miRNA gene expression alone. Sixty-four miRNA genes had differential expression in ASD compared to controls as reported in two or more studies, but often in opposing directions. Four miRNA genes had differential expression in the same direction in the same tissue type in at least 3 separate studies. Increased expression was reported in miR-106b-5p, miR-155-5p and miR-146a-5p in blood, post-mortem brain, and across several tissue types, respectively. Decreased expression was reported in miR-328-3p in bloods samples. Seven studies examined differential expression from other classes of ncRNA, including piRNA, snRNA, snoRNA and Y RNA. No individual ncRNA genes were reported in more than one study. Six studies reported differentially expressed snoRNA genes in ASD. A meta-analysis was not possible because of inconsistent methodologies, disparate tissue types examined, and varying forms of data presented. CONCLUSION There is limited but promising evidence associating the expression of certain miRNA genes and ASD, although the studies are of variable methodological quality and the results are largely inconsistent. There is emerging evidence associating differential expression of snoRNA genes in ASD. It is not currently possible to say whether the reports of differential expression in ncRNA may relate to ASD aetiology, a response to shared environmental factors linked to ASD such as sleep and nutrition, other molecular functions, human diversity, or chance findings. To improve our understanding of any potential association, we recommend improved and standardised methodologies and reporting of raw data. Further high-quality research is required to shine a light on possible associations, which may yet yield important information.
Collapse
Affiliation(s)
- Jon Stott
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Thomas Wright
- Manchester Centre for Genomic Medicine, Clinical Genetics Service, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jannah Holmes
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| | - Julie Wilson
- Department of Mathematics, University of York, Heslington, York, United Kingdom
| | - Sam Griffiths-Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Deborah Foster
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Barry Wright
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| |
Collapse
|
19
|
Nagy ZF, Sonkodi B, Pál M, Klivényi P, Széll M. Likely Pathogenic Variants of Ca v1.3 and Na v1.1 Encoding Genes in Amyotrophic Lateral Sclerosis Could Elucidate the Dysregulated Pain Pathways. Biomedicines 2023; 11:933. [PMID: 36979911 PMCID: PMC10046311 DOI: 10.3390/biomedicines11030933] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal multisystem neurodegenerative disease associated with progressive loss of motor neurons, leading to death. Not only is the clinical picture of ALS heterogenous, but also the pain sensation due to different types of pain involvement. ALS used to be considered a painless disease, but research has been emerging and depicting a more complex pain representation in ALS. Pain has been detected even a couple years before the symptomatic stage of ALS, referring to primary pain associated with muscle denervation, although secondary pain due to nociceptive causes is also a part of the clinical picture. A new non-contact dying-back injury mechanism theory of ALS recently postulated that the irreversible intrafusal proprioceptive Piezo2 microinjury could be the primary damage, with underlying genetic and environmental risk factors. Moreover, this Piezo2 primary damage is also proposed to dysregulate the primary pain pathways in the spinal dorsal horn in ALS due to the lost imbalanced subthreshold Ca2+ currents, NMDA activation and lost L-type Ca2+ currents, leading to the lost activation of wide dynamic range neurons. Our investigation is the first to show that the likely pathogenic variants of the Cav1.3 encoding CACNA1D gene may play a role in ALS pathology and the associated dysregulation or loss of the pain sensation. Furthermore, our reanalysis also shows that the SCN1A gene might also contribute to the dysregulated pain sensation in ALS. Finally, the absence of pathogenic variants of Piezo2 points toward the new non-contact dying-back injury mechanism theory of ALS. However, molecular and genetic investigations are needed to identify the functionally diverse features of this proposed novel critical pathway.
Collapse
Affiliation(s)
- Zsófia Flóra Nagy
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Margit Pál
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, 6720 Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, 6720 Szeged, Hungary
| |
Collapse
|
20
|
Török F, Tezcan K, Filippini L, Fernández-Quintero ML, Zanetti L, Liedl KR, Drexel RS, Striessnig J, Ortner NJ. Germline de novo variant F747S extends the phenotypic spectrum of CACNA1D Ca2+ channelopathies. Hum Mol Genet 2023; 32:847-859. [PMID: 36208199 PMCID: PMC9941835 DOI: 10.1093/hmg/ddac248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
Germline gain-of-function missense variants in the pore-forming Cav1.3 α1-subunit (CACNA1D gene) confer high risk for a severe neurodevelopmental disorder with or without endocrine symptoms. Here, we report a 4-week-old new-born with the novel de novo missense variant F747S with a so far not described prominent jittering phenotype in addition to symptoms previously reported for CACNA1D mutations including developmental delay, elevated aldosterone level and transient hypoglycemia. We confirmed the pathogenicity of this variant in whole-cell patch-clamp experiments with wild-type and F747S mutant channels heterologously expressed together with α2δ1 and cytosolic β3 or membrane-bound β2a subunits. Mutation F747S caused the quantitatively largest shift in the voltage dependence of activation (-28 mV) reported so far for CACNA1D germline mutations. It also shifted inactivation to more negative voltages, slowed the time course of current inactivation and slowed current deactivation upon repolarization with both co-expressed β-subunits. In silico modelling and molecular docking, simulations revealed that this gain-of-function phenotype can be explained by formation of a novel inter-domain hydrogen bond between mutant residues S747 (IIS6) with N1145 (IIIS6) stabilizing selectively the activated open channel state. F747S displayed 2-6-fold increased sensitivity for the L-type Ca2+ channel blocker isradipine compared to wild type. Our data confirm the pathogenicity of the F747S variant with very strong gain-of-function gating changes, which may contribute to the novel jittering phenotype. Increased sensitivity for isradipine suggests this drug for potential symptomatic off-label treatment for carriers of this mutation.
Collapse
Affiliation(s)
- Ferenc Török
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Kamer Tezcan
- Department of Genetics, Kaiser Permanente, Sacramento, CA 95825, USA
| | - Ludovica Filippini
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Lucia Zanetti
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Raphaela S Drexel
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Nadine J Ortner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
21
|
Nunes EJ, Addy NA. L-type calcium channel regulation of dopamine activity in the ventral tegmental area to nucleus accumbens pathway: Implications for substance use, mood disorders and co-morbidities. Neuropharmacology 2023; 224:109336. [PMID: 36414149 PMCID: PMC11215796 DOI: 10.1016/j.neuropharm.2022.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
L-type calcium channels (LTCCs), including the Cav1.2 and Cav1.3 LTCC subtypes, are important regulators of calcium entry into neurons, which mediates neurotransmitter release and synaptic plasticity. Cav1.2 and Cav1.3 are encoded by the CACNA1C and CACNA1D genes, respectively. These genes are implicated in substance use disorders and depression in humans, as demonstrated by genetic-wide association studies (GWAS). Pre-clinical models have also revealed a critical role of LTCCs on drug and mood related behavior, including the co-morbidity of substance use and mood disorders. Moreover, LTCCs have been shown to regulate the neuronal firing of dopamine (DA) neurons as well as drug and stress-induced plasticity within the ventral tegmental area (VTA) to nucleus accumbens (NAc) pathway. Thus, LTCCs are interesting targets for the treatment of neuropsychiatric diseases. In this review, we provide a brief introduction to voltage-gated calcium channels, specifically focusing on the LTCCs. We place particular emphasis on the ability of LTCCs to regulate DA neuronal activity and downstream signaling in the VTA to NAc pathway, and how such processes mediate substance use and mood disorder-related behavioral responses. We also discuss the bi-directional control of VTA LTCCs on drug and mood-related behaviors in pre-clinical models, with implications for co-morbid psychiatric diagnosis. We conclude with a section on the clinical implications of LTCC blockers, many which are already FDA approved as cardiac medications. Thus, pre-clinical and clinical work should examine the potential of LTCC blockers to be repurposed for neuropsychiatric illness. This article is part of the Special Issue on 'L-type calcium channel mechanisms in neuropsychiatric disorders'.
Collapse
Affiliation(s)
- Eric J. Nunes
- Department of Psychiatry, Yale School of Medicine
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine
- Department of Cellular and Molecular Physiology, Yale School of Medicine
- Interdepartmental Neuroscience Program, Yale University
- Wu Tsai Institute, Yale University
| |
Collapse
|
22
|
Ortner NJ. CACNA1D-Related Channelopathies: From Hypertension to Autism. Handb Exp Pharmacol 2023. [PMID: 36592224 DOI: 10.1007/164_2022_626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tightly controlled Ca2+ influx through voltage-gated Ca2+ channels (Cavs) is indispensable for proper physiological function. Thus, it is not surprising that Cav loss and/or gain of function have been implicated in human pathology. Deficiency of Cav1.3 L-type Ca2+ channels (LTCCs) causes deafness and bradycardia, whereas several genetic variants of CACNA1D, the gene encoding the pore-forming α1 subunit of Cav1.3, have been linked to various disease phenotypes, such as hypertension, congenital hypoglycemia, or autism. These variants include not only common polymorphisms associated with an increased disease risk, but also rare de novo missense variants conferring high risk. This review provides a concise summary of disease-associated CACNA1D variants, whereas the main focus lies on de novo germline variants found in individuals with a neurodevelopmental disorder of variable severity. Electrophysiological recordings revealed activity-enhancing gating changes induced by these de novo variants, and tools to predict their pathogenicity and to study the resulting pathophysiological consequences will be discussed. Despite the low number of affected patients, potential phenotype-genotype correlations and factors that could impact the severity of symptoms will be covered. Since increased channel activity is assumed as the disease-underlying mechanism, pharmacological inhibition could be a treatment option. In the absence of Cav1.3-selective blockers, dihydropyridine LTCC inhibitors clinically approved for the treatment of hypertension may be used for personalized off-label trials. Findings from in vitro studies and treatment attempts in some of the patients seem promising as outlined. Taken together, due to advances in diagnostic sequencing techniques the number of reported CACNA1D variants in human diseases is constantly rising. Evidence from in silico, in vitro, and in vivo disease models can help to predict the pathogenic potential of such variants and to guide diagnosis and treatment in the clinical practice when confronted with patients harboring CACNA1D variants.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
23
|
Alzahrani A, Alshalan M, Alfurayh M, Bin Akrish A, Alsubeeh NA, Al Mutairi F. Case Report: Clinical delineation of CACNA1D mutation: New cases and literature review. Front Neurol 2023; 14:1131490. [PMID: 37122292 PMCID: PMC10140517 DOI: 10.3389/fneur.2023.1131490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Background Calcium ions are involved in several human cellular processes; nevertheless, the relationship between calcium channelopathies (CCs) and autism spectrum disorder (ASD) or intellectual disability (ID) has been previously investigated. We delineate the spectrum of clinical phenotypes and the symptoms associated with a syndrome caused by an inherited gain-of-function mutation in CACNA1D in a family with a history of neuropsychiatric disorders. We also review the clinical and molecular phenotype of previously reported variants of CACNA1D. Case presentation We report the case of a 9-year-old female patient, diagnosed with ASD, severe ID, hyperactivity, and aggressive impulsive behaviors. The father, who was a 65-year-old at the time of his death, had ID and developed major depressive disorder with catatonic features and nihilistic delusion, followed by rapidly progressive dementia. He died after experiencing prolonged seizures followed by post-cardiac arrest. The patient's sister was a 30-year-old woman, known to have a severe ID with aggressive behaviors and sleep disorders. The sister has been diagnosed with bipolar disorder and psychosis. Through whole exome sequencing, a heterozygous previously identified and functionally characterized missense likely pathogenic variant was identified in the CACNA1D gene NM_001128840.3: c.2015C > T (p.Ser672Leu). These findings are consistent with the genetic diagnosis of autosomal dominant primary aldosteronism, seizures, and neurological abnormalities. This variant was found in the heterozygous status in the patient, her father, and her affected sister. Conclusion This case report will help to determine the key clinical features of this syndrome, which exhibits variable clinical presentations.
Collapse
Affiliation(s)
- Alshaimaa Alzahrani
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Maha Alshalan
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Mohammed Alfurayh
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulaziz Bin Akrish
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Najlaa A. Alsubeeh
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- *Correspondence: Fuad Al Mutairi,
| |
Collapse
|
24
|
El Ghaleb Y, Flucher BE. Ca V3.3 Channelopathies. Handb Exp Pharmacol 2023; 279:263-288. [PMID: 36592228 DOI: 10.1007/164_2022_631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CaV3.3 is the third member of the low-voltage-activated calcium channel family and the last to be recognized as disease gene. Previously, CACNA1I, the gene encoding CaV3.3, had been described as schizophrenia risk gene. More recently, de novo missense mutations in CACNA1I were identified in patients with variable degrees of neurodevelopmental disease with and without epilepsy. Their functional characterization indicated gain-of-function effects resulting in increased calcium load and hyperexcitability of neurons expressing CaV3.3. The amino acids mutated in the CaV3.3 disease variants are located in the vicinity of the channel's activation gate and thus are classified as gate-modifying channelopathy mutations. A persistent calcium leak during rest and prolonged calcium spikes due to increased voltage sensitivity of activation and slowed kinetics of channel inactivation, respectively, may be causal for the neurodevelopmental defects. The prominent expression of CaV3.3 in thalamic reticular nucleus neurons and its essential role in generating the rhythmic thalamocortical network activity are consistent with a role of the mutated channels in the etiology of epileptic seizures and thus suggest T-type channel blockers as a viable treatment option.
Collapse
Affiliation(s)
- Yousra El Ghaleb
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
25
|
Bamgboye MA, Traficante MK, Owoyemi J, DiSilvestre D, Vieira DCO, Dick IE. Impaired Ca V1.2 inactivation reduces the efficacy of calcium channel blockers in the treatment of LQT8. J Mol Cell Cardiol 2022; 173:92-100. [PMID: 36272554 PMCID: PMC10583761 DOI: 10.1016/j.yjmcc.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022]
Abstract
Mutations in the CaV1.2 L-type calcium channel can cause a profound form of long-QT syndrome known as long-QT type 8 (LQT8), which results in cardiac arrhythmias that are often fatal in early childhood. A growing number of such pathogenic mutations in CaV1.2 have been identified, increasing the need for targeted therapies. As many of these mutations reduce channel inactivation; resulting in excess Ca2+ entry during the action potential, calcium channel blockers (CCBs) would seem to represent a promising treatment option. Yet CCBs have been unsuccessful in the treatment of LQT8. Here, we demonstrate that this lack of efficacy likely stems from the impact of the mutations on CaV1.2 channel inactivation. As CCBs are known to preferentially bind to the inactivated state of the channel, mutation-dependent deficits in inactivation result in a decrease in use-dependent block of the mutant channel. Further, application of the CCB verapamil to induced pluripotent stem cell (iPSC) derived cardiomyocytes from an LQT8 patient demonstrates that this loss of use-dependent block translates to a lack of efficacy in correcting the LQT phenotype. As a growing number of channelopathic mutations demonstrate effects on channel inactivation, reliance on state-dependent blockers may leave a growing population of patients without a viable treatment option. This biophysical understanding of the interplay between inactivation deficits and state-dependent block may provide a new avenue to guide the development of improved therapies.
Collapse
Affiliation(s)
- Moradeke A Bamgboye
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Maria K Traficante
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Josiah Owoyemi
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Deborah DiSilvestre
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Daiana C O Vieira
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Ivy E Dick
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
26
|
Autism associated mutations in β 2 subunit of voltage-gated calcium channels constitutively activate gene expression. Cell Calcium 2022; 108:102672. [PMID: 36427431 DOI: 10.1016/j.ceca.2022.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Membrane depolarization triggers gene expression through voltage-gated calcium channels (VGCC) in a process called Excitation-transcription (ET) coupling. Mutations in the channel subunits α11.2, or β2d, are associated with neurodevelopmental disorders such as ASD. Here, we found that two mutations S143F and G113S within the rat Cavβ2a corresponding to autistic related mutations Cavβ2dS197F and Cavβ2dG167S in the human Cavβ2d, activate ET-coupling via the RAS/ERK/CREB pathway. Membrane depolarization of HEK293 cells co-expressing α11.2 and α2δ with Cavβ2aS143F or Cavβ2aG113S triggers constitutive transcriptional activation, which is correlated with facilitated channel activity. Similar to the Timothy-associated autistic mutation α11.2G406R, constitutive gene activation is attributed to a hyperpolarizing shift in the activation kinetics of Cav1.2. Pulldown of RasGRF2 and RhoGEF by wt and the Cavβ2a autistic mutants is consistent with Cavβ2/Ras activation in ET coupling and implicates Rho signaling as yet another molecular pathway activated by Cavα11.2/Cavβ2 . Facilitated spontaneous channel activity preceding enhanced gene activation via the Ras/ERK/CREB pathway, appears a general molecular mechanism for Ca2+ channel mediated ASD and other neurodevelopmental disorders.
Collapse
|
27
|
Rinné S, Stallmeyer B, Pinggera A, Netter MF, Matschke LA, Dittmann S, Kirchhefer U, Neudorf U, Opp J, Striessnig J, Decher N, Schulze-Bahr E. Whole Exome Sequencing Identifies a Heterozygous Variant in the Cav1.3 Gene CACNA1D Associated with Familial Sinus Node Dysfunction and Focal Idiopathic Epilepsy. Int J Mol Sci 2022; 23:ijms232214215. [PMID: 36430690 PMCID: PMC9693521 DOI: 10.3390/ijms232214215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cav1.3 voltage-gated L-type calcium channels (LTCCs) are involved in cardiac pacemaking, hearing and hormone secretion, but are also expressed postsynaptically in neurons. So far, homozygous loss of function mutations in CACNA1D encoding the Cav1.3 α1-subunit are described in congenital sinus node dysfunction and deafness. In addition, germline mutations in CACNA1D have been linked to neurodevelopmental syndromes including epileptic seizures, autism, intellectual disability and primary hyperaldosteronism. Here, a three-generation family with a syndromal phenotype of sinus node dysfunction, idiopathic epilepsy and attention deficit hyperactivity disorder (ADHD) is investigated. Whole genome sequencing and functional heterologous expression studies were used to identify the disease-causing mechanisms in this novel syndromal disorder. We identified a heterozygous non-synonymous variant (p.Arg930His) in the CACNA1D gene that cosegregated with the combined clinical phenotype in an autosomal dominant manner. Functional heterologous expression studies showed that the CACNA1D variant induces isoform-specific alterations of Cav1.3 channel gating: a gain of ion channel function was observed in the brain-specific short CACNA1D isoform (Cav1.3S), whereas a loss of ion channel function was seen in the long (Cav1.3L) isoform. The combined gain-of-function (GOF) and loss-of-function (LOF) induced by the R930H variant are likely to be associated with the rare combined clinical and syndromal phenotypes in the family. The GOF in the Cav1.3S variant with high neuronal expression is likely to result in epilepsy, whereas the LOF in the long Cav1.3L variant results in sinus node dysfunction.
Collapse
Affiliation(s)
- Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Birgit Stallmeyer
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Muenster, 48149 Muenster, Germany
| | - Alexandra Pinggera
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Michael F. Netter
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Lina A. Matschke
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Sven Dittmann
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Muenster, 48149 Muenster, Germany
| | - Uwe Kirchhefer
- Institute of Pharmacology and Toxicology, University Hospital Muenster, 48149 Muenster, Germany
| | - Ulrich Neudorf
- Zentrum für Kinder-und Jugendmedizin, Klinik für Kinderheilkunde III-Bereich Kardiologie, University Hospital Essen, 45147 Essen, Germany
| | - Joachim Opp
- Ev. Krankenhaus Oberhausen, 46047 Oberhausen, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
- Correspondence: (N.D.); (E.S.-B.); Tel.: +49-(0)6421/28-62148 (N.D.); +49-(0)251/83-55326 (E.S.-B.)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Muenster, 48149 Muenster, Germany
- Correspondence: (N.D.); (E.S.-B.); Tel.: +49-(0)6421/28-62148 (N.D.); +49-(0)251/83-55326 (E.S.-B.)
| |
Collapse
|
28
|
Eraslan G, Drokhlyansky E, Anand S, Fiskin E, Subramanian A, Slyper M, Wang J, Van Wittenberghe N, Rouhana JM, Waldman J, Ashenberg O, Lek M, Dionne D, Win TS, Cuoco MS, Kuksenko O, Tsankov AM, Branton PA, Marshall JL, Greka A, Getz G, Segrè AV, Aguet F, Rozenblatt-Rosen O, Ardlie KG, Regev A. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 2022; 376:eabl4290. [PMID: 35549429 PMCID: PMC9383269 DOI: 10.1126/science.abl4290] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding gene function and regulation in homeostasis and disease requires knowledge of the cellular and tissue contexts in which genes are expressed. Here, we applied four single-nucleus RNA sequencing methods to eight diverse, archived, frozen tissue types from 16 donors and 25 samples, generating a cross-tissue atlas of 209,126 nuclei profiles, which we integrated across tissues, donors, and laboratory methods with a conditional variational autoencoder. Using the resulting cross-tissue atlas, we highlight shared and tissue-specific features of tissue-resident cell populations; identify cell types that might contribute to neuromuscular, metabolic, and immune components of monogenic diseases and the biological processes involved in their pathology; and determine cell types and gene modules that might underlie disease mechanisms for complex traits analyzed by genome-wide association studies.
Collapse
Affiliation(s)
- Gökcen Eraslan
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eugene Drokhlyansky
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shankara Anand
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Evgenij Fiskin
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiali Wang
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - John M. Rouhana
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thet Su Win
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michael S. Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Olena Kuksenko
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Philip A. Branton
- The Joint Pathology Center Gynecologic/Breast Pathology, Silver Spring, MD 20910, USA
| | | | - Anna Greka
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Cancer Research and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ayellet V. Segrè
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - François Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Lauffer M, Wen H, Myers B, Plumb A, Parker K, Williams A. Deletion of the voltage-gated calcium channel, Ca V 1.3, causes deficits in motor performance and associative learning. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12791. [PMID: 35044095 PMCID: PMC9744532 DOI: 10.1111/gbb.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
L-type voltage-gated calcium channels are important regulators of neuronal activity and are widely expressed throughout the brain. One of the major L-type voltage-gated calcium channel isoforms in the brain is CaV 1.3. Mice lacking CaV 1.3 are reported to have impairments in fear conditioning and depressive-like behaviors, which have been linked to CaV 1.3 function in the hippocampus and amygdala. Genetic variation in CaV 1.3 has been linked to a variety of psychiatric disorders, including autism and schizophrenia, which are associated with altered motor learning, associative learning and social function. Here, we explored whether CaV 1.3 plays a role in these behaviors. We found that CaV 1.3 knockout mice have deficits in rotarod learning despite normal locomotor function. Deletion of CaV 1.3 is also associated with impaired gait adaptation and associative learning on the Erasmus Ladder. We did not observe any impairments in CaV 1.3 knockout mice on assays of anxiety-like, depression-like or social preference behaviors. Our results suggest an important role for CaV 1.3 in neural circuits involved in motor learning and concur with previous data showing its involvement in associative learning.
Collapse
Affiliation(s)
- Marisol Lauffer
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA
| | - Hsiang Wen
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA,Department of PsychiatryUniversity of IowaIowa CityIowaUSA,Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Bryn Myers
- Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Ashley Plumb
- Department of Physical Therapy and Rehabilitation ScienceUniversity of IowaIowa CityIowaUSA
| | - Krystal Parker
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA,Department of PsychiatryUniversity of IowaIowa CityIowaUSA,Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Aislinn Williams
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA,Department of PsychiatryUniversity of IowaIowa CityIowaUSA,Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
30
|
Hofer NT, Pinggera A, Nikonishyna YV, Tuluc P, Fritz EM, Obermair GJ, Striessnig J. Stabilization of negative activation voltages of Cav1.3 L-Type Ca 2+-channels by alternative splicing. Channels (Austin) 2021; 15:38-52. [PMID: 33380256 PMCID: PMC7781618 DOI: 10.1080/19336950.2020.1859260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
-->Low voltage-activated Cav1.3 L-type Ca2+-channels are key regulators of neuronal excitability controlling neuronal development and different types of learning and memory. Their physiological functions are enabled by their negative activation voltage-range, which allows Cav1.3 to be active at subthreshold voltages. Alternative splicing in the C-terminus of their pore-forming α1-subunits gives rise to C-terminal long (Cav1.3L) and short (Cav1.3S) splice variants allowing Cav1.3S to activate at even more negative voltages than Cav1.3L. We discovered that inclusion of exons 8b, 11, and 32 in Cav1.3S further shifts activation (-3 to -4 mV) and inactivation (-4 to -6 mV) to more negative voltages as revealed by functional characterization in tsA-201 cells. We found transcripts of these exons in mouse chromaffin cells, the cochlea, and the brain. Our data further suggest that Cav1.3-containing exons 11 and 32 constitute a significant part of native channels in the brain. We therefore investigated the effect of these splice variants on human disease variants. Splicing did not prevent the gating defects of the previously reported human pathogenic variant S652L, which further shifted the voltage-dependence of activation of exon 11-containing channels by more than -12 mV. In contrast, we found no evidence for gating changes of the CACNA1D missense variant R498L, located in exon 11, which has recently been identified in a patient with an epileptic syndrome. Our data demonstrate that alternative splicing outside the C-terminus involving exons 11 and 32 contributes to channel fine-tuning by stabilizing negative activation and inactivation gating properties of wild-type and mutant Cav1.3 channels.
Collapse
Affiliation(s)
- Nadja T. Hofer
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Yuliia V. Nikonishyna
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Eva M. Fritz
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Gerald J. Obermair
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| |
Collapse
|
31
|
Progress on Genetic Basis of Primary Aldosteronism. Biomedicines 2021; 9:biomedicines9111708. [PMID: 34829937 PMCID: PMC8615950 DOI: 10.3390/biomedicines9111708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022] Open
Abstract
Primary aldosteronism (PA) is a heterogeneous group of disorders caused by the autonomous overproduction of aldosterone with simultaneous suppression of plasma renin activity (PRA). It is considered to be the most common endocrine cause of secondary arterial hypertension (HT) and is associated with a high rate of cardiovascular complications. PA is most often caused by a bilateral adrenal hyperplasia (BAH) or aldosterone-producing adenoma (APA); rarer causes of PA include genetic disorders of steroidogenesis (familial hyperaldosteronism (FA) type I, II, III and IV), aldosterone-producing adrenocortical carcinoma, and ectopic aldosterone-producing tumors. Over the last few years, significant progress has been made towards understanding the genetic basis of PA, classifying it as a channelopathy. Recently, a growing body of clinical evidence suggests that mutations in ion channels appear to be the major cause of aldosterone-producing adenomas, and several mutations within the ion channel encoding genes have been identified. Somatic mutations in four genes (KCNJ5, ATP1A1, ATP2B3 and CACNA1D) have been identified in nearly 60% of the sporadic APAs, while germline mutations in KCNJ5 and CACNA1H have been reported in different subtypes of familial hyperaldosteronism. These new insights into the molecular mechanisms underlying PA may be associated with potential implications for diagnosis and therapy.
Collapse
|
32
|
Jeong S, Rhee JS, Lee JH. Snapin Specifically Up-Regulates Ca v1.3 Ca 2+ Channel Variant with a Long Carboxyl Terminus. Int J Mol Sci 2021; 22:ijms222011268. [PMID: 34681928 PMCID: PMC8537452 DOI: 10.3390/ijms222011268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Ca2+ entry through Cav1.3 Ca2+ channels plays essential roles in diverse physiological events. We employed yeast-two-hybrid (Y2H) assays to mine novel proteins interacting with Cav1.3 and found Snapin2, a synaptic protein, as a partner interacting with the long carboxyl terminus (CTL) of rat Cav1.3L variant. Co-expression of Snapin with Cav1.3L/Cavβ3/α2δ2 subunits increased the peak current density or amplitude by about 2-fold in HEK-293 cells and Xenopus oocytes, without affecting voltage-dependent gating properties and calcium-dependent inactivation. However, the Snapin up-regulation effect was not found for rat Cav1.3S containing a short CT (CTS) in which a Snapin interaction site in the CTL was deficient. Luminometry and electrophysiology studies uncovered that Snapin co-expression did not alter the membrane expression of HA tagged Cav1.3L but increased the slope of tail current amplitudes plotted against ON-gating currents, indicating that Snapin increases the opening probability of Cav1.3L. Taken together, our results strongly suggest that Snapin directly interacts with the CTL of Cav1.3L, leading to up-regulation of Cav1.3L channel activity via facilitating channel opening probability.
Collapse
Affiliation(s)
- Sua Jeong
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea;
| | - Jeong-Seop Rhee
- Synaptic Physiology Group, Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany;
| | - Jung-Ha Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea;
- Correspondence: ; Tel.: +82-2-705-8791; Fax: +82-3-704-3601
| |
Collapse
|
33
|
Salim S, Banu A, Alwa A, Gowda SBM, Mohammad F. The gut-microbiota-brain axis in autism: what Drosophila models can offer? J Neurodev Disord 2021; 13:37. [PMID: 34525941 PMCID: PMC8442445 DOI: 10.1186/s11689-021-09378-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar.
| |
Collapse
|
34
|
Koschak A, Fernandez-Quintero ML, Heigl T, Ruzza M, Seitter H, Zanetti L. Cav1.4 dysfunction and congenital stationary night blindness type 2. Pflugers Arch 2021; 473:1437-1454. [PMID: 34212239 PMCID: PMC8370969 DOI: 10.1007/s00424-021-02570-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/04/2022]
Abstract
Cav1.4 L-type Ca2+ channels are predominantly expressed in retinal neurons, particularly at the photoreceptor terminals where they mediate sustained Ca2+ entry needed for continuous neurotransmitter release at their ribbon synapses. Cav1.4 channel gating properties are controlled by accessory subunits, associated regulatory proteins, and also alternative splicing. In humans, mutations in the CACNA1F gene encoding for Cav1.4 channels are associated with X-linked retinal disorders such as congenital stationary night blindness type 2. Mutations in the Cav1.4 protein result in a spectrum of altered functional channel activity. Several mouse models broadened our understanding of the role of Cav1.4 channels not only as Ca2+ source at retinal synapses but also as synaptic organizers. In this review, we highlight different structural and functional phenotypes of Cav1.4 mutations that might also occur in patients with congenital stationary night blindness type 2. A further important yet mostly neglected aspect that we discuss is the influence of alternative splicing on channel dysfunction. We conclude that currently available functional phenotyping strategies should be refined and summarize potential specific therapeutic options for patients carrying Cav1.4 mutations. Importantly, the development of new therapeutic approaches will permit a deeper understanding of not only the disease pathophysiology but also the physiological function of Cav1.4 channels in the retina.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium Channel Agonists/pharmacology
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Eye Diseases, Hereditary/genetics
- Eye Diseases, Hereditary/metabolism
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Humans
- Mutation/physiology
- Myopia/genetics
- Myopia/metabolism
- Night Blindness/genetics
- Night Blindness/metabolism
- Retina/drug effects
- Retina/metabolism
- Synapses/drug effects
- Synapses/genetics
- Synapses/metabolism
Collapse
Affiliation(s)
- Alexandra Koschak
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria.
| | - Monica L Fernandez-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Thomas Heigl
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Marco Ruzza
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Hartwig Seitter
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Lucia Zanetti
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| |
Collapse
|
35
|
Ihbe N, Le Prieult F, Wang Q, Distler U, Sielaff M, Tenzer S, Thal SC, Mittmann T. Adaptive Mechanisms of Somatostatin-Positive Interneurons after Traumatic Brain Injury through a Switch of α Subunits in L-Type Voltage-Gated Calcium Channels. Cereb Cortex 2021; 32:1093-1109. [PMID: 34411234 DOI: 10.1093/cercor/bhab268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022] Open
Abstract
Unilateral traumatic brain injury (TBI) causes cortical dysfunctions spreading to the primarily undamaged hemisphere. This phenomenon, called transhemispheric diaschisis, is mediated by an imbalance of glutamatergic versus GABAergic neurotransmission. This study investigated the role of GABAergic, somatostatin-positive (SST) interneurons in the contralateral hemisphere 72 h after unilateral TBI. The brain injury was induced to the primary motor/somatosensory cortex of glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mice at postnatal days 19-21 under anesthesia in vivo. Single GFP+ interneurons of the undamaged, contralateral cortex were isolated by fluorescence-activated cell sorting and analyzed by mass spectrometry. TBI caused a switch of 2 α subunits of pore-forming L-type voltage-gated calcium channels (VGCC) in GABAergic interneurons, an increased expression of CaV1.3, and simultaneous ablation of CaV1.2. This switch was associated with 1) increased excitability of single SST interneurons in patch-clamp recordings and (2) a recovery from early network hyperactivity in the contralateral hemisphere in microelectrode array recordings of acute slices. The electrophysiological changes were sensitive to pharmacological blockade of CaV1.3 (isradipine, 100 nM). These data identify a switch of 2 α subunits of VGCCs in SST interneurons early after TBI as a mechanism to counterbalance post-traumatic hyperexcitability.
Collapse
Affiliation(s)
- Natascha Ihbe
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Florie Le Prieult
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Qi Wang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Malte Sielaff
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Serge C Thal
- Clinic for Anesthesiology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
36
|
De Mingo Alemany MC, Mifsud Grau L, Moreno Macián F, Ferrer Lorente B, León Cariñena S. A de novo CACNA1D missense mutation in a patient with congenital hyperinsulinism, primary hyperaldosteronism and hypotonia. Channels (Austin) 2021; 14:175-180. [PMID: 32336187 PMCID: PMC7219433 DOI: 10.1080/19336950.2020.1761171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Congenital hyperinsulinemic hypoglycemia is the most frequent cause of persistent and recurrent hypoglycemia in the first years of life and in many patients rare genetic variants can be identified. Recently a case of congenital hyperinsulinemic hypoglycemia and a severe neurodevelopmental syndrome due to a mutation in the voltage-gated Cav1.3 Ca2+ channel CACNA1D gene has been reported which required long-term treatment with diazoxide. This suggested CACNA1D variants as a potential cause for this condition. Here we support this observation by presenting the case of a female child with congential hyperinsulinemic hypoglycemia and primary hyperaldosteronism, aortic insufficiency, pronounced developmental delay, muscle hypotonia, and facial dysmorphias but without seizures. Sequencing of the exome of the child and its parents identified a novel de novo CACNA1D missense mutation p.L271 H, replacing a highly conserved residue in a functionally relevant region of the voltage-gated Cav1.3 Ca2+ channel. The patient was treated with diazoxide and nifedipine with adequate control of glucose metabolism and blood pressure, and with improvement in muscle tone. Our findings further confirm the pathogenic role of CACNA1D for congentital hyperinsulinemic hypoglycemia and primary aldosteronism. Moreover, we provide evidence that the dihydropyridine Ca2+ channel blocker nifedipine, although not considered a first-line treatment for congenital hyperinsulinism, may be beneficial to control blood pressure and neurological symptoms in patients with CACNA1D mutations.
Collapse
Affiliation(s)
| | | | | | | | - Sara León Cariñena
- Pediatric Endocrinology Unit, Hospital Universitario la Fe, Valencia, Spain
| |
Collapse
|
37
|
Kessi M, Chen B, Peng J, Yan F, Yang L, Yin F. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis 2021; 16:219. [PMID: 33985586 PMCID: PMC8120735 DOI: 10.1186/s13023-021-01850-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium ions are involved in several human cellular processes including corticogenesis, transcription, and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability (ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium channel, GDD and calcium channel, developmental delay and calcium channel. MAIN BODY A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mechanisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of studies on treatment options for ID/GDD both in vivo and in vitro. CONCLUSION Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China.
| |
Collapse
|
38
|
Unravelling the Genetic Basis of Primary Aldosteronism. Nutrients 2021; 13:nu13030875. [PMID: 33800142 PMCID: PMC7999899 DOI: 10.3390/nu13030875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Primary aldosteronism (PA), a condition characterized by autonomous aldosterone hypersecretion, constitutes the most common cause of secondary hypertension. Over the last decade, major breakthroughs have been made in the field of genetics underpinning PA. The advent and wide application of Next Generation Sequencing (NGS) technology led to the identification of several somatic and germline mutations associated with sporadic and familial forms of PA. Somatic mutations in ion-channel genes that participate in aldosterone biosynthesis, including KCNJ5, CACNA1D, ATP1A1, and ATP2B3, have been implicated in the development of aldosterone-producing adenomas (APAs). On the other hand, germline variants in CLCN2, KCNJ5, CACNA1H, and CACNA1D genes have been implicated in the pathogenesis of the familial forms of PA, FH-II, FH-III, and F-IV, as well as PA associated with seizures and neurological abnormalities. However, recent studies have shown that the prevalence of PA is higher than previously thought, indicating the need for an improvement of our diagnostic tools. Further research is required to recognize mild forms of PA and to investigate the underlying molecular mechanisms.
Collapse
|
39
|
Striessnig J. Voltage-Gated Ca 2+-Channel α1-Subunit de novo Missense Mutations: Gain or Loss of Function - Implications for Potential Therapies. Front Synaptic Neurosci 2021; 13:634760. [PMID: 33746731 PMCID: PMC7966529 DOI: 10.3389/fnsyn.2021.634760] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes our current knowledge of human disease-relevant genetic variants within the family of voltage gated Ca2+ channels. Ca2+ channelopathies cover a wide spectrum of diseases including epilepsies, autism spectrum disorders, intellectual disabilities, developmental delay, cerebellar ataxias and degeneration, severe cardiac arrhythmias, sudden cardiac death, eye disease and endocrine disorders such as congential hyperinsulinism and hyperaldosteronism. A special focus will be on the rapidly increasing number of de novo missense mutations identified in the pore-forming α1-subunits with next generation sequencing studies of well-defined patient cohorts. In contrast to likely gene disrupting mutations these can not only cause a channel loss-of-function but can also induce typical functional changes permitting enhanced channel activity and Ca2+ signaling. Such gain-of-function mutations could represent therapeutic targets for mutation-specific therapy of Ca2+-channelopathies with existing or novel Ca2+-channel inhibitors. Moreover, many pathogenic mutations affect positive charges in the voltage sensors with the potential to form gating-pore currents through voltage sensors. If confirmed in functional studies, specific blockers of gating-pore currents could also be of therapeutic interest.
Collapse
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
40
|
Banono NS, Gawel K, De Witte L, Esguerra CV. Zebrafish Larvae Carrying a Splice Variant Mutation in cacna1d: A New Model for Schizophrenia-Like Behaviours? Mol Neurobiol 2021; 58:877-894. [PMID: 33057948 PMCID: PMC7843589 DOI: 10.1007/s12035-020-02160-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Persons with certain single nucleotide polymorphisms (SNPs) in the CACNA1D gene (encoding voltage-gated calcium channel subunit alpha 1-D) have increased risk of developing neuropsychiatric disorders such as bipolar, schizophrenia and autism. The molecular consequences of SNPs on gene expression and protein function are not well understood. Thus, the use of animal models to determine genotype-phenotype correlations is critical to understanding disease pathogenesis. Here, we describe the behavioural changes in larval zebrafish carrying an essential splice site mutation (sa17298) in cacna1da. Heterozygous mutation resulted in 50% reduction of splice variants 201 and 202 (haploinsufficiency), while homozygosity increased transcript levels of variant 201 above wild type (WT; gain-of-function, GOF). Due to low homozygote viability, we focused primarily on performing the phenotypic analysis on heterozygotes. Indeed, cacna1dasa17298/WT larvae displayed hyperlocomotion-a behaviour characterised in zebrafish as a surrogate phenotype for epilepsy, anxiety or psychosis-like behaviour. Follow-up tests ruled out anxiety or seizures, however, as neither thigmotaxis defects nor epileptiform-like discharges in larval brains were observed. We therefore focused on testing for potential "psychosis-like" behaviour by assaying cacna1dasa17298/WT larval locomotor activity under constant light, during light-dark transition and in startle response to dark flashes. Furthermore, exposure of larvae to the antipsychotics, risperidone and haloperidol reversed cacna1da-induced hyperactivity to WT levels while valproate decreased but did not reverse hyperactivity. Together, these findings demonstrate that cacna1da haploinsufficiency induces behaviours in larval zebrafish analogous to those observed in rodent models of psychosis. Future studies on homozygous mutants will determine how cacna1d GOF alters behaviour in this context.
Collapse
Affiliation(s)
- Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090, Lublin, Poland
| | - Linus De Witte
- Pharmaceutical and Biological Sciences, AP Hogeschool Antwerpen, Antwerp, Belgium
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway.
- School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælandsvei 24, 0371, Oslo, Norway.
| |
Collapse
|
41
|
Function of cone and cone-related pathways in Ca V1.4 IT mice. Sci Rep 2021; 11:2732. [PMID: 33526839 PMCID: PMC7851161 DOI: 10.1038/s41598-021-82210-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 11/09/2022] Open
Abstract
CaV1.4 L-type calcium channels are predominantly expressed in photoreceptor terminals playing a crucial role for synaptic transmission and, consequently, for vision. Human mutations in the encoding gene are associated with congenital stationary night blindness type-2. Besides rod-driven scotopic vision also cone-driven photopic responses are severely affected in patients. The present study therefore examined functional and morphological changes in cones and cone-related pathways in mice carrying the CaV1.4 gain-of function mutation I756T (CaV1.4-IT) using multielectrode array, patch-clamp and immunohistochemical analyses. CaV1.4-IT ganglion cell responses to photopic stimuli were seen only in a small fraction of cells indicative of a major impairment in the cone pathway. Though cone photoreceptors underwent morphological rearrangements, they retained their ability to release glutamate. Our functional data suggested a postsynaptic cone bipolar cell defect, supported by the fact that the majority of cone bipolar cells showed sprouting, while horizontal cells maintained contacts with cones and cone-to-horizontal cell input was preserved. Furthermore a reduction of basal Ca2+ influx by a calcium channel blocker was not sufficient to rescue synaptic transmission deficits caused by the CaV1.4-IT mutation. Long term treatments with low-dose Ca2+ channel blockers might however be beneficial reducing Ca2+ toxicity without major effects on ganglion cells responses.
Collapse
|
42
|
Reilly J, Gallagher L, Leader G, Shen S. Coupling of autism genes to tissue-wide expression and dysfunction of synapse, calcium signalling and transcriptional regulation. PLoS One 2020; 15:e0242773. [PMID: 33338084 PMCID: PMC7748153 DOI: 10.1371/journal.pone.0242773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous disorder that is often accompanied with many co-morbidities. Recent genetic studies have identified various pathways from hundreds of candidate risk genes with varying levels of association to ASD. However, it is unknown which pathways are specific to the core symptoms or which are shared by the co-morbidities. We hypothesised that critical ASD candidates should appear widely across different scoring systems, and that comorbidity pathways should be constituted by genes expressed in the relevant tissues. We analysed the Simons Foundation for Autism Research Initiative (SFARI) database and four independently published scoring systems and identified 292 overlapping genes. We examined their mRNA expression using the Genotype-Tissue Expression (GTEx) database and validated protein expression levels using the human protein atlas (HPA) dataset. This led to clustering of the overlapping ASD genes into 2 groups; one with 91 genes primarily expressed in the central nervous system (CNS geneset) and another with 201 genes expressed in both CNS and peripheral tissues (CNS+PT geneset). Bioinformatic analyses showed a high enrichment of CNS development and synaptic transmission in the CNS geneset, and an enrichment of synapse, chromatin remodelling, gene regulation and endocrine signalling in the CNS+PT geneset. Calcium signalling and the glutamatergic synapse were found to be highly interconnected among pathways in the combined geneset. Our analyses demonstrate that 2/3 of ASD genes are expressed beyond the brain, which may impact peripheral function and involve in ASD co-morbidities, and relevant pathways may be explored for the treatment of ASD co-morbidities.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of Ireland (NUI) Galway, Galway, Ireland
- * E-mail: (JR); (SS)
| | - Louise Gallagher
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences—Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of Ireland (NUI) Galway, Galway, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- * E-mail: (JR); (SS)
| |
Collapse
|
43
|
Masini E, Loi E, Vega-Benedetti AF, Carta M, Doneddu G, Fadda R, Zavattari P. An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity. Int J Mol Sci 2020; 21:ijms21218290. [PMID: 33167418 PMCID: PMC7663950 DOI: 10.3390/ijms21218290] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social interaction and communication, with restricted interests, activity and behaviors. ASD is highly familial, indicating that genetic background strongly contributes to the development of this condition. However, only a fraction of the total number of genes thought to be associated with the condition have been discovered. Moreover, other factors may play an important role in ASD onset. In fact, it has been shown that parental conditions and in utero and perinatal factors may contribute to ASD etiology. More recently, epigenetic changes, including DNA methylation and micro RNA alterations, have been associated with ASD and proposed as potential biomarkers. This review aims to provide a summary of the literature regarding ASD candidate genes, mainly focusing on synapse formation and functionality and relevant epigenetic and environmental aspects acting in concert to determine ASD onset.
Collapse
Affiliation(s)
- Elena Masini
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Ana Florencia Vega-Benedetti
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Marinella Carta
- Center for Pervasive Developmental Disorders, Azienda Ospedaliera Brotzu, 09121 Cagliari, Italy;
| | - Giuseppe Doneddu
- Centro per l’Autismo e Disturbi correlati (CADc), Nuovo Centro Fisioterapico Sardo, 09131 Cagliari, Italy;
| | - Roberta Fadda
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy;
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
- Correspondence:
| |
Collapse
|
44
|
Bekdash R, Klein AD, Yazawa M. Timothy syndrome iPSC modeling. Mol Cell Neurosci 2020; 107:103529. [PMID: 32629111 DOI: 10.1016/j.mcn.2020.103529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/23/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
L-type voltage-gated calcium channels play an essential role in various physiological systems including neuronal excitation and any mutation or dysfunction in the channel has significant impact on human brain function resulting in psychiatric diseases. Particular gain-of-function mutations in CACNA1C encoding CaV1.2 have been associated with Timothy Syndrome, a devastating disease with a multi-organ phenotype. Efforts to understand the underlying pathophysiology and find therapeutic strategy have been spurred recently with the advances in stem cell technology, in particular those arising from patient-derived sources. In this review, we report on the recent advances in Timothy Syndrome research and on the methods used to study this disease.
Collapse
Affiliation(s)
- Ramsey Bekdash
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Alison D Klein
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Masayuki Yazawa
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
45
|
Marcantoni A, Calorio C, Hidisoglu E, Chiantia G, Carbone E. Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome. Pflugers Arch 2020; 472:775-789. [PMID: 32621084 DOI: 10.1007/s00424-020-02430-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Cav1.2 L-type calcium channels play key roles in long-term synaptic plasticity, sensory transduction, muscle contraction, and hormone release. De novo mutations in the gene encoding Cav1.2 (CACNA1C) causes two forms of Timothy syndrome (TS1, TS2), characterized by a multisystem disorder inclusive of cardiac arrhythmias, long QT, autism, and adrenal gland dysfunction. In both TS1 and TS2, the missense mutation G406R is on the alternatively spliced exon 8 and 8A coding for the IS6-helix of Cav1.2 and is responsible for the penetrant form of autism in most TS individuals. The mutation causes specific gain-of-function changes to Cav1.2 channel gating: a "leftward shift" of voltage-dependent activation, reduced voltage-dependent inactivation, and a "leftward shift" of steady-state inactivation. How this occurs and how Cav1.2 gating changes alter neuronal firing and synaptic plasticity is still largely unexplained. Trying to better understanding the molecular basis of Cav1.2 gating dysfunctions leading to autism, here, we will present and discuss the properties of recently reported typical and atypical TS phenotypes and the effective gating changes exhibited by missense mutations associated with long QTs without extracardiac symptoms, unrelated to TS. We will also discuss new emerging views achieved from using iPSCs-derived neurons and the newly available autistic TS2-neo mouse model, both appearing promising for understanding neuronal mistuning in autistic TS patients. We will also analyze and describe recent proposals of molecular pathways that might explain mistuned Ca2+-mediated and Ca2+-independent excitation-transcription signals to the nucleus. Briefly, we will also discuss possible pharmacological approaches to treat autism associated with L-type channelopathies.
Collapse
Affiliation(s)
- Andrea Marcantoni
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Chiara Calorio
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Enis Hidisoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Giuseppe Chiantia
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
46
|
Ortner NJ, Kaserer T, Copeland JN, Striessnig J. De novo CACNA1D Ca 2+ channelopathies: clinical phenotypes and molecular mechanism. Pflugers Arch 2020; 472:755-773. [PMID: 32583268 PMCID: PMC7351864 DOI: 10.1007/s00424-020-02418-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
The identification of rare disease-causing variants in humans by large-scale next-generation sequencing (NGS) studies has also provided us with new insights into the pathophysiological role of de novo missense variants in the CACNA1D gene that encodes the pore-forming α1-subunit of voltage-gated Cav1.3 L-type Ca2+ channels. These CACNA1D variants have been identified somatically in aldosterone-producing adenomas as well as germline in patients with neurodevelopmental and in some cases endocrine symptoms. In vitro studies in heterologous expression systems have revealed typical gating changes that indicate enhanced Ca2+ influx through Cav1.3 channels as the underlying disease-causing mechanism. Here we summarize the clinical findings of 12 well-characterized individuals with a total of 9 high-risk pathogenic CACNA1D variants. Moreover, we propose how information from somatic mutations in aldosterone-producing adenomas could be used to predict the potential pathogenicity of novel germline variants. Since these pathogenic de novo variants can cause a channel-gain-of function, we also discuss the use of L-type Ca2+ channel blockers as a potential therapeutic option.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - J Nathan Copeland
- Duke Center for Autism and Brain Development, Duke Child and Family Mental Health and Developmental Neuroscience, Durham, USA
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
47
|
Zaccara G, Lattanzi S, Cincotta M, Russo E. Drug treatments in patients with cardiac diseases and epilepsy. Acta Neurol Scand 2020; 142:37-49. [PMID: 32259277 DOI: 10.1111/ane.13249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/06/2020] [Accepted: 03/29/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Comorbidity between epilepsy and heart diseases is frequent. METHODS All drugs classified within the group of drugs for cardiovascular system according to the Anatomical Therapeutic Chemical (ATC) classification system were reviewed for their effects on seizures or epilepsy. RESULTS Several agents showed antiseizure properties in animal models of seizures and/or in patients with epilepsy and only few were proconvulsant. Drugs with anticonvulsant effects include mecamylamine and guanfacine (antihypertensive drugs), indapamide, amiloride, furosemide and bumetanide (diuretics), fasudil (peripheral vasodilator), bioflavonoids (vasoprotective drug), propranolol (beta blocking agent), isradipine, nimodipine, verapamil and diltiazem (calcium channel blockers: CCBs), fosinopril and zofenopril (agents acting on the renin-angiotensin system), several statins, and fenofibrate (lipid-modifying agents). Drugs with proconvulsant properties in experimental models or in patients include reserpine, buflomedil, naftidrofuryl, and clonidine and propranolol at high doses. Drug-drug interactions (DDI) between antiseizure medications (ASMs) and drugs for cardiovascular system were also searched in two leading publicly accessible drug compendia. The most important DDIs occur between enzyme-inducing (EI) ASMs and ivabradine, ranolazine, macitenan and between EI-ASMs and the CCBs felodipine, nicardipine, nisoldipine, and verapamil. Simvastatin and atorvastatin are the lipid-modifying agents with more DDIs with EI-ASMs. Several pharmacodynamic interactions have been also documented. DISCUSSION AND CONCLUSIONS Available data show that the treatment of patients with epilepsy and vascular comorbidities is challenging and requires the appropriate knowledge of pharmacological properties of drugs and drug interactions.
Collapse
Affiliation(s)
| | - Simona Lattanzi
- Neurological Clinic Department of Experimental and Clinical Medicine Marche Polytechnic University Ancona Italy
| | - Massimo Cincotta
- Unit of Neurology of Florence Central Tuscany Local Health Authority Firenze Italy
| | - Emilio Russo
- Science of Health Department School of Medicine University “Magna Graecia” of Catanzaro Catanzaro Italy
| |
Collapse
|
48
|
Torrente AG, Mesirca P, Bidaud I, Mangoni ME. Channelopathies of voltage-gated L-type Cav1.3/α 1D and T-type Cav3.1/α 1G Ca 2+ channels in dysfunction of heart automaticity. Pflugers Arch 2020; 472:817-830. [PMID: 32601767 DOI: 10.1007/s00424-020-02421-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 10/24/2022]
Abstract
The heart automaticity is a fundamental physiological function in vertebrates. The cardiac impulse is generated in the sinus node by a specialized population of spontaneously active myocytes known as "pacemaker cells." Failure in generating or conducting spontaneous activity induces dysfunction in cardiac automaticity. Several families of ion channels are involved in the generation and regulation of the heart automaticity. Among those, voltage-gated L-type Cav1.3 (α1D) and T-type Cav3.1 (α1G) Ca2+ channels play important roles in the spontaneous activity of pacemaker cells. Ca2+ channel channelopathies specifically affecting cardiac automaticity are considered rare. Recent research on familial disease has identified mutations in the Cav1.3-encoding CACNA1D gene that underlie congenital sinus node dysfunction and deafness (OMIM # 614896). In addition, both Cav1.3 and Cav3.1 channels have been identified as pathophysiological targets of sinus node dysfunction and heart block, caused by congenital autoimmune disease of the cardiac conduction system. The discovery of channelopathies linked to Cav1.3 and Cav3.1 channels underscores the importance of Ca2+ channels in the generation and regulation of heart's automaticity.
Collapse
Affiliation(s)
- Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141, rue de la cardonille, 34094, Montpellier, France. .,LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France.
| |
Collapse
|
49
|
Liao X, Li Y. Genetic associations between voltage-gated calcium channels and autism spectrum disorder: a systematic review. Mol Brain 2020; 13:96. [PMID: 32571372 PMCID: PMC7310353 DOI: 10.1186/s13041-020-00634-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The present review systematically summarized existing publications regarding the genetic associations between voltage-gated calcium channels (VGCCs) and autism spectrum disorder (ASD). METHODS A comprehensive literature search was conducted to gather pertinent studies in three online databases. Two authors independently screened the included records based on the selection criteria. Discrepancies in each step were settled through discussions. RESULTS From 1163 resulting searched articles, 28 were identified for inclusion. The most prominent among the VGCCs variants found in ASD were those falling within loci encoding the α subunits, CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1F, CACNA1G, CACNA1H, and CACNA1I as well as those of their accessory subunits CACNB2, CACNA2D3, and CACNA2D4. Two signaling pathways, the IP3-Ca2+ pathway and the MAPK pathway, were identified as scaffolds that united genetic lesions into a consensus etiology of ASD. CONCLUSIONS Evidence generated from this review supports the role of VGCC genetic variants in the pathogenesis of ASD, making it a promising therapeutic target. Future research should focus on the specific mechanism that connects VGCC genetic variants to the complex ASD phenotype.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.,Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
50
|
Servili E, Trus M, Sajman J, Sherman E, Atlas D. Elevated basal transcription can underlie timothy channel association with autism related disorders. Prog Neurobiol 2020; 191:101820. [PMID: 32437834 DOI: 10.1016/j.pneurobio.2020.101820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/18/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023]
Abstract
Timothy syndrome (TS) is a neurodevelopmental disorder caused by mutations in the pore-forming subunit α11.2 of the L-type voltage-gated Ca2+-channel Cav1.2, at positions G406R or G402S. Although both mutations cause cardiac arrhythmias, only Cav1.2G406R is associated with the autism-spectrum-disorder (ASD). We show that transcriptional activation by Cav1.2G406R and Cav1.2G402S is driven by membrane depolarization through the Ras/ERK/CREB pathway in a process called excitation-transcription (ET) coupling, as previously shown for wt Cav1.2. This process requires the presence of the intracellular β-subunit of the channel. We found that only the autism-associated mutant Cav1.2G406R, as opposed to the non-autistic mutated channel Cav1.2G402S, exhibits a depolarization-independent CREB phosphorylation, and spontaneous transcription of cFos and MeCP2. A leftward voltage-shift typical of Cav1.2G406R activation, increases channel opening at subthreshold potentials, resulting in an enhanced channel activity, as opposed to a rightward shift in Cav1.2G402S. We suggest that the enhanced spontaneous Cav1.2G406R activity accounts for the increase in basal transcriptional activation. This uncontroled transcriptional activation may result in the manifestation of long-term dysregulations such as autism. Thus, gating changes provide a mechanistic framework for understanding the molecular events underlying the autistic phenomena caused by the G406R Timothy mutation. They might clarify whether a constitutive transcriptional activation accompanies other VGCC that exhibit a leftward voltage-shift of activation and are also associated with long-term cognitive disorders.
Collapse
Affiliation(s)
- Evrim Servili
- Dept. of Biological Chemistry, Institute of Life Sciences, Israel
| | - Michael Trus
- Dept. of Biological Chemistry, Institute of Life Sciences, Israel
| | - Julia Sajman
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Daphne Atlas
- Dept. of Biological Chemistry, Institute of Life Sciences, Israel.
| |
Collapse
|