1
|
von Rohden E, Jensen CFS, Andersen CY, Sønksen J, Fedder J, Thorup J, Ohl DA, Fode M, Hoffmann ER, Mamsen LS. Male fertility restoration: in vivo and in vitro stem cell-based strategies using cryopreserved testis tissue: a scoping review. Fertil Steril 2024; 122:828-843. [PMID: 38992744 DOI: 10.1016/j.fertnstert.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
IMPORTANCE Advances in the treatment of childhood cancer have significantly improved survival rates, with more than 80% of survivors reaching adulthood. However, gonadotoxic cancer treatments endanger future fertility, and prepubertal males have no option to preserve fertility by sperm cryopreservation. In addition, boys with cryptorchidism are at risk of compromised fertility in adulthood. OBJECTIVE To investigate current evidence for male fertility restoration strategies, explore barriers to clinical implementation, and outline potential steps to overcome these barriers, a scoping review was conducted. This knowledge synthesis is particularly relevant for prepubertal male cancer survivors and boys with cryptorchidism. EVIDENCE REVIEW The review was conducted after the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews criteria and previously published guidelines and examined studies using human testis tissue of prepubertal boys or healthy male adults. A literature search in PubMed was conducted, and 72 relevant studies were identified, including in vivo and in vitro approaches. FINDINGS In vivo strategies, such as testis tissue engraftment and spermatogonial stem cell transplantation, hold promise for promoting cell survival and differentiation. Yet, complete spermatogenesis has not been achieved. In vitro approaches focus on the generation of male germ cells from direct germ cell maturation in various culture systems, alongside human induced pluripotent stem cells and embryonic stem cells. These approaches mark significant advancements in understanding and promoting spermatogenesis, but achieving fully functional spermatozoa in vitro remains a challenge. Barriers to clinical implementation include the risk of reintroducing malignant cells and introduction of epigenetic changes. CONCLUSION Male fertility restoration is an area in rapid development. On the basis of the reviewed studies, the most promising and advanced strategy for restoring male fertility using cryopreserved testis tissue is direct testis tissue transplantation. RELEVANCE This review identifies persistent barriers to the clinical implementation of male fertility restoration. However, direct transplantation of frozen-thawed testis tissue remains a promising strategy that is on the verge of clinical application.
Collapse
Affiliation(s)
- Elena von Rohden
- Department of Urology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | - Claus Yding Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Sønksen
- Department of Urology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Fedder
- Department of Gynecology and Obstetrics, Centre of Andrology & Fertility Clinic, Odense University Hospital, Odense, Denmark; Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jørgen Thorup
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pediatric Surgery, Surgical Clinic, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Dana A Ohl
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Mikkel Fode
- Department of Urology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva R Hoffmann
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Molecular and Cellular Medicine, DNRF Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Damyanova KB, Nixon B, Johnston SD, Gambini A, Benitez PP, Lord T. Spermatogonial stem cell technologies: applications from human medicine to wildlife conservation†. Biol Reprod 2024; 111:757-779. [PMID: 38993049 PMCID: PMC11473898 DOI: 10.1093/biolre/ioae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.
Collapse
Affiliation(s)
- Katerina B Damyanova
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Stephen D Johnston
- School of Environment, The University of Queensland, Gatton, QLD 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Andrés Gambini
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Patricio P Benitez
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Tessa Lord
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
3
|
Duffin K, Neuhaus N, Andersen CY, Barraud-Lange V, Braye A, Eguizabal C, Feraille A, Ginsberg JP, Gook D, Goossens E, Jahnukainen K, Jayasinghe Y, Keros V, Kliesch S, Lane S, Mulder CL, Orwig KE, van Pelt AMM, Poirot C, Rimmer MP, Rives N, Sadri-Ardekani H, Safrai M, Schlatt S, Stukenborg JB, van de Wetering MD, Wyns C, Mitchell RT. A 20-year overview of fertility preservation in boys: new insights gained through a comprehensive international survey. Hum Reprod Open 2024; 2024:hoae010. [PMID: 38449521 PMCID: PMC10914450 DOI: 10.1093/hropen/hoae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
STUDY QUESTION Twenty years after the inception of the first fertility preservation programme for pre-pubertal boys, what are the current international practices with regard to cryopreservation of immature testicular tissue? SUMMARY ANSWER Worldwide, testicular tissue has been cryopreserved from over 3000 boys under the age of 18 years for a variety of malignant and non-malignant indications; there is variability in practices related to eligibility, clinical assessment, storage, and funding. WHAT IS KNOWN ALREADY For male patients receiving gonadotoxic treatment prior to puberty, testicular tissue cryopreservation may provide a method of fertility preservation. While this technique remains experimental, an increasing number of centres worldwide are cryopreserving immature testicular tissue and are approaching clinical application of methods to use this stored tissue to restore fertility. As such, standards for quality assurance and clinical care in preserving immature testicular tissue should be established. STUDY DESIGN SIZE DURATION A detailed survey was sent to 17 centres within the recently established ORCHID-NET consortium, which offer testicular tissue cryopreservation to patients under the age of 18 years. The study encompassed 60 questions and remained open from 1 July to 1 November 2022. PARTICIPANTS/MATERIALS SETTING METHODS Of the 17 invited centres, 16 completed the survey, with representation from Europe, Australia, and the USA. Collectively, these centres have cryopreserved testicular tissue from patients under the age of 18 years. Data are presented using descriptive analysis. MAIN RESULTS AND THE ROLE OF CHANCE Since the establishment of the first formal fertility preservation programme for pre-pubertal males in 2002, these 16 centres have cryopreserved tissue from 3118 patients under the age of 18 years, with both malignant (60.4%) and non-malignant (39.6%) diagnoses. All centres perform unilateral biopsies, while 6/16 sometimes perform bilateral biopsies. When cryopreserving tissue, 9/16 centres preserve fragments sized ≤5 mm3 with the remainder preserving fragments sized 6-20 mm3. Dimethylsulphoxide is commonly used as a cryoprotectant, with medium supplements varying across centres. There are variations in funding source, storage duration, and follow-up practice. Research, with consent, is conducted on stored tissue in 13/16 centres. LIMITATIONS REASONS FOR CAUTION While this is a multi-national study, it will not encompass every centre worldwide that is cryopreserving testicular tissue from males under 18 years of age. As such, it is likely that the actual number of patients is even higher than we report. Whilst the study is likely to reflect global practice overall, it will not provide a complete picture of practices in every centre. WIDER IMPLICATIONS OF THE FINDINGS Given the research advances, it is reasonable to suggest that cryopreserved immature testicular tissue will in the future be used clinically to restore fertility. The growing number of patients undergoing this procedure necessitates collaboration between centres to better harmonize clinical and research protocols evaluating tissue function and clinical outcomes in these patients. STUDY FUNDING/COMPETING INTERESTS K.D. is supported by a CRUK grant (C157/A25193). R.T.M. is supported by an UK Research and Innovation (UKRI) Future Leaders Fellowship (MR/S017151/1). The MRC Centre for Reproductive Health at the University of Edinburgh is supported by MRC (MR/N022556/1). C.L.M. is funded by Kika86 and ZonMW TAS 116003002. A.M.M.v.P. is supported by ZonMW TAS 116003002. E.G. was supported by the Research Program of the Research Foundation-Flanders (G.0109.18N), Kom op tegen Kanker, the Strategic Research Program (VUB_SRP89), and the Scientific Fund Willy Gepts. J.-B.S. is supported by the Swedish Childhood Cancer Foundation (TJ2020-0026). The work of NORDFERTIL is supported by the Swedish Childhood Cancer Foundation (PR2019-0123; PR2022-0115), the Swedish Research Council (2018-03094; 2021-02107), and the Birgitta and Carl-Axel Rydbeck's Research Grant for Paediatric Research (2020-00348; 2021-00073; 2022-00317; 2023-00353). C.E is supported by the Health Department of the Basque Government (Grants 2019111068 and 2022111067) and Inocente Inocente Foundation (FII22/001). M.P.R. is funded by a Medical Research Council Centre for Reproductive Health Grant No: MR/N022556/1. A.F. and N.R. received support from a French national research grant PHRC No. 2008/071/HP obtained by the French Institute of Cancer and the French Healthcare Organization. K.E.O. is funded by the University of Pittsburgh Medical Center and the US National Institutes of Health HD100197. V.B-L is supported by the French National Institute of Cancer (Grant Seq21-026). Y.J. is supported by the Royal Children's Hospital Foundation and a Medical Research Future Fund MRFAR000308. E.G., N.N., S.S., C.L.M., A.M.M.v.P., C.E., R.T.M., K.D., M.P.R. are members of COST Action CA20119 (ANDRONET) supported by COST (European Cooperation in Science and Technology). The Danish Child Cancer Foundation is also thanked for financial support (C.Y.A.). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Kathleen Duffin
- Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen & Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Virginie Barraud-Lange
- Department of Reproductive Biology CECOS, AP-HP Centre—University of Paris Cité, Cochin Hospital, Paris, France
- AYA Unit, Fertility Preservation Consultation, Haematology Department, AP-HP Nord, University of Paris Cité, Saint-Louis Hospital, Paris, France
| | - Aude Braye
- Department of Genetics, Reproduction and Development (GRAD), Biology of the Testis (BITE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Center for Blood Transfusion and Human Tissues, Bizkaia, Spain
- Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
| | - Aurélie Feraille
- NorDIC, Team “Adrenal and Gonadal Pathophysiology”, Biology of Reproduction-CECOS Laboratory, Rouen University Hospital, Université de Rouen Normandie, Rouen, France
| | - Jill P Ginsberg
- Division of Oncology, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Debra Gook
- Reproductive Services/Melbourne IVF, The Royal Women’s Hospital, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Ellen Goossens
- Department of Genetics, Reproduction and Development (GRAD), Biology of the Testis (BITE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kirsi Jahnukainen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, NORDFERTIL Research Lab Stockholm, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
- Division of Haematology-Oncology and Stem Cell Transplantation, New Children’s Hospital, Pediatric Research Center, Department of Pediatrics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Yasmin Jayasinghe
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, University of Melbourne, Parkville, VIC, Australia
- Oncofertility Program, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Victoria Keros
- Division of Gynecology and Reproduction, Department of Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Urology, Department of Clinical Science, Intervention and Technology—CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Sheila Lane
- Department of Paediatric Oncology and Haematology, Children’s Hospital Oxford, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Callista L Mulder
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Catherine Poirot
- Fertility Preservation Consultation, Haematology Department, AYA Unit, Saint Louis Hospital, AP-HP Médecine Sorbonne Université, Paris, France
- Department of Reproductive Biology, Cochin Hospital, Paris, France
| | - Michael P Rimmer
- MRC Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Nathalie Rives
- NorDIC, Team “Adrenal and Gonadal Pathophysiology”, Biology of Reproduction-CECOS Laboratory, Rouen University Hospital, Université de Rouen Normandie, Rouen, France
| | - Hooman Sadri-Ardekani
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Myriam Safrai
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Sackler Faculty of Medicine, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Tel Aviv University, Tel Aviv, Israel
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jan-Bernd Stukenborg
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, NORDFERTIL Research Lab Stockholm, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | | | - Christine Wyns
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Royal Hospital for Children and Young People, Edinburgh, UK
| |
Collapse
|
4
|
Mitchell RT, Ives J. Testicular tissue re-implantation and the 'hostile testis'. Hum Reprod 2024; 39:282-284. [PMID: 38140704 PMCID: PMC7615590 DOI: 10.1093/humrep/dead258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 12/24/2023] Open
Affiliation(s)
- Rod T. Mitchell
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Department of Paediatric Endocrinology, Royal Hospital for Children and Young People, Edinburgh, UK
| | - Jonathan Ives
- Centre for Ethics in Medicine, University of Bristol, Bristol, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
5
|
Shamhari A‘A, Jefferi NES, Abd Hamid Z, Budin SB, Idris MHM, Taib IS. The Role of Promyelocytic Leukemia Zinc Finger (PLZF) and Glial-Derived Neurotrophic Factor Family Receptor Alpha 1 (GFRα1) in the Cryopreservation of Spermatogonia Stem Cells. Int J Mol Sci 2023; 24:ijms24031945. [PMID: 36768269 PMCID: PMC9915902 DOI: 10.3390/ijms24031945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The cryopreservation of spermatogonia stem cells (SSCs) has been widely used as an alternative treatment for infertility. However, cryopreservation itself induces cryoinjury due to oxidative and osmotic stress, leading to reduction in the survival rate and functionality of SSCs. Glial-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger (PLZF) are expressed during the self-renewal and differentiation of SSCs, making them key tools for identifying the functionality of SSCs. To the best of our knowledge, the involvement of GFRα1 and PLZF in determining the functionality of SSCs after cryopreservation with therapeutic intervention is limited. Therefore, the purpose of this review is to determine the role of GFRα1 and PLZF as biomarkers for evaluating the functionality of SSCs in cryopreservation with therapeutic intervention. Therapeutic intervention, such as the use of antioxidants, and enhancement in cryopreservation protocols, such as cell encapsulation, cryoprotectant agents (CPA), and equilibrium of time and temperature increase the expression of GFRα1 and PLZF, resulting in maintaining the functionality of SSCs. In conclusion, GFRα1 and PLZF have the potential as biomarkers in cryopreservation with therapeutic intervention of SSCs to ensure the functionality of the stem cells.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
- Correspondence: ; Tel.: +603-928-97608
| |
Collapse
|
6
|
Tran KTD, Valli-Pulaski H, Colvin A, Orwig KE. Male fertility preservation and restoration strategies for patients undergoing gonadotoxic therapies†. Biol Reprod 2022; 107:382-405. [PMID: 35403667 PMCID: PMC9382377 DOI: 10.1093/biolre/ioac072] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Medical treatments for cancers or other conditions can lead to permanent infertility. Infertility is an insidious disease that impacts not only the ability to have a biological child but also the emotional well-being of the infertile individuals, relationships, finances, and overall health. Therefore, all patients should be educated about the effects of their medical treatments on future fertility and about fertility preservation options. The standard fertility preservation option for adolescent and adult men is sperm cryopreservation. Sperms can be frozen and stored for a long period, thawed at a later date, and used to achieve pregnancy with existing assisted reproductive technologies. However, sperm cryopreservation is not applicable for prepubertal patients who do not yet produce sperm. The only fertility preservation option available to prepubertal boys is testicular tissue cryopreservation. Next-generation technologies are being developed to mature those testicular cells or tissues to produce fertilization-competent sperms. When sperm and testicular tissues are not available for fertility preservation, inducing pluripotent stem cells derived from somatic cells, such as blood or skin, may provide an alternative path to produce sperms through a process call in vitro gametogenesis. This review describes standard and experimental options to preserve male fertility as well as the experimental options to produce functional spermatids or sperms from immature cryopreserved testicular tissues or somatic cells.
Collapse
Affiliation(s)
- Kien T D Tran
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Amanda Colvin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Correspondence: Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA. Tel: 412-641-2460; E-mail:
| |
Collapse
|
7
|
Willems M, Seβenhausen P, Gies I, Vloeberghs V, Tournaye H, Goossens E, Van Saen D. To graft or not to graft? Intratesticular xenografting of (pre)pubertal testicular tissue from Klinefelter patients as potential ex vivo model to study testicular fibrosis. Reprod Biomed Online 2022; 44:896-906. [DOI: 10.1016/j.rbmo.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 12/01/2022]
|
8
|
Li JT, Liu JJ, Song ZW, Lu XL, Wang HX, Zhang JM. Targeting against the activity of the NLRP3 inflammasome is a potential therapy for rat testicular tissue cryopreservation and transplantation. Andrologia 2021; 53:e14223. [PMID: 34423461 DOI: 10.1111/and.14223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/23/2021] [Accepted: 08/12/2021] [Indexed: 01/14/2023] Open
Abstract
The objective of the present experiment was to explore the role of NLRP3 inflammasome in the testicular tissue freezing, thawing and grafting; furthermore, the potential effect of a NLRP3 inhibitor on the function of testis transplant was explored. Tissues from male Wistar rats in pre-pubertal age were cryopreserved, thawed and auto-transplanted into the scrotum treated or not treated with the MCC950 (a NLRP3 inhibitor). After grafting, cryopreserved tissue was removed and analysed. Quantitative morphometric, immunohistochemical techniques and Western blotting were used to evaluate the survival of spermatogonia and the activation of the NLRP3 inflammasome after freezing/thawing/grafting. Moreover, serum IL-1β level was assessed with ELISA kits. The testicular transplants exhibited upregulated expression of the NLRP3 pathway meditors (NLRP3, IL-1β). In NLRP3 inhibition group, the rate of recovered grafts, the percentage of intact tubules and spermatogonial number were significantly higher than that in cryopreserved graft group. Moreover, serum concentration of IL-1β in NLRP3 inhibition group was significantly lower than that in cryopreserved graft group. Testicular tissue cryopreservation and transplantation exhibited upregulated expression of NLRP3 pathway and NLRP3 inflammasome blockade improves testicular graft function. These finding suggest that NLRP3 inflammasome is a therapeutic target for testicular tissue cryopreservation and transplantation.
Collapse
Affiliation(s)
- Jun-Tao Li
- Center for Reproductive Medicine, Jinan Central Hospital, Jinan, China
| | - Jing-Jing Liu
- Department of Plastic Surgery, Hospital for Maternity and Child Care of Shandong Province, Jinan, China
| | - Zhao-Wei Song
- Center for Reproductive Medicine, Jinan Central Hospital, Jinan, China
| | - Xi-Lan Lu
- Center for Reproductive Medicine, Jinan Central Hospital, Jinan, China
| | - Hong-Xia Wang
- Center for Reproductive Medicine, Jinan Central Hospital, Jinan, China
| | | |
Collapse
|
9
|
Li JT, Zhang L, Liu JJ, Lu XL, Wang HX, Zhang JM. Testicular damage during cryopreservation and transplantation. Andrologia 2021; 53:e14191. [PMID: 34278587 DOI: 10.1111/and.14191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 02/03/2023] Open
Abstract
The aim of this study is to do a study of cryoinjury and ischaemic injury on testicular graft during cryopreservation and transplantation. According to time at 1, 3, 7 and 14 days after transplantation, the grafts were collected for immunohistochemistry assay for CD34 (blood vessel marker), VEGF (neoangiogenesis marker), caspase-3 (apoptosis marker) MAGE-A4 (germ cell marker). A significant increase was observed in the density of VEGF-positive blood vessels on day 3, reached a peak on day 7. On post-transplant day 3, a sharp increase occurred in the rate of spermatogonia-expressing caspase-3 until the day 7. At 14th day after transplantation, the spermatogonia number per round tubule of nonfrozen grafts was 41 ± 5.9% from that of fresh control tissues, while, in frozen-thawed grafts, the spermatogonia number per round tubule was 36.8 ± 4.6% from that of fresh control tissues. In testicular grafts, angiogenesis initiated reperfusion from day 3, and the formation of new blood vessel generally is completed about 7 days after transplantation. Angiogenesis in grafts after transplantation plays a crucial role in the restoration of function. Therefore, minimising ischaemic injury as well as improvement of cryopreservation protocols are needed to improve testicular graft after freezing, thawing and grafting.
Collapse
Affiliation(s)
- Jun-Tao Li
- Center for Reproductive Medicine, Jinan Central Hospital, Jinan, China
| | - Li Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Traditional Chinese Medicine of Taian, Taian, China
| | - Jing-Jing Liu
- Department of plastic surgery, Hospital for Maternity and Child Care of Shandong Province, Jinan, China
| | - Xi-Lan Lu
- Center for Reproductive Medicine, Jinan Central Hospital, Jinan, China
| | - Hong-Xia Wang
- Center for Reproductive Medicine, Jinan Central Hospital, Jinan, China
| | | |
Collapse
|
10
|
Doungkamchan C, Orwig KE. Recent advances: fertility preservation and fertility restoration options for males and females. Fac Rev 2021; 10:55. [PMID: 34195694 PMCID: PMC8204761 DOI: 10.12703/r/10-55] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fertility preservation is the process of saving gametes, embryos, gonadal tissues and/or gonadal cells for individuals who are at risk of infertility due to disease, medical treatments, age, genetics, or other circumstances. Adult patients have the options to preserve eggs, sperm, or embryos that can be used in the future to produce biologically related offspring with assisted reproductive technologies. These options are not available to all adults or to children who are not yet producing mature eggs or sperm. Gonadal cells/tissues have been frozen for several thousands of those patients worldwide with anticipation that new reproductive technologies will be available in the future. Therefore, the fertility preservation medical and research communities are obligated to responsibly develop next-generation reproductive technologies and translate them into clinical practice. We briefly describe standard options to preserve and restore fertility, but the emphasis of this review is on experimental options, including an assessment of readiness for translation to the human fertility clinic.
Collapse
Affiliation(s)
- Chatchanan Doungkamchan
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Andrae CS, Oliveira ECS, Ferraz MAMM, Nagashima JB. Cryopreservation of grey wolf (Canis lupus) testicular tissue. Cryobiology 2021; 100:173-179. [PMID: 33482146 DOI: 10.1016/j.cryobiol.2021.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
Development of genomic preservation technologies for canids, especially for seasonally breeding species like the grey wolf (Canis lupus), is needed in advance of growing species conservation concerns. Here, we evaluated the efficacy of two cryopreservation protocols - needle immersion vitrification (NIV) and slow freezing (SF) on grey wolf (n = 7) testicular tissue morphology. NIV samples were equilibrated in a 7.5% v/v dimethyl sulfoxide (DMSO or Me2SO) + 7.5% ethylene glycol (EG) solution in minimum essential medium with 20% FBS for 10 min at 4 °C, then exposed to 15% DMSO + 15% EG + 0.5 M sucrose for 10 min at 4 °C before plunging into liquid nitrogen. For slow freezing, we assessed two cryoprotectant (CPA) strategies, DMSO, 15% v/v alone (SF-D) or 7.5% EG + 7.5% DMSO (SF-ED). Following thawing, there were no significant differences in seminiferous tubule area among treatment groups, although all cryopreserved tissues displayed reduced tubule size compared with fresh controls and increased apoptosis, the latter reaching significance for SF-D treated tissues. Slow freezing improved maintenance of testis architecture, with minimal detachment of seminiferous tubule basement membranes post-thaw. Spermatogonia densities were reduced in NIV tissues compared with fresh, with no differences in spermatocyte, spermatid, or Sertoli cell counts, or germ cell marker DDX4+ cell densities among groups. In sum, we conclude that slow freezing better maintained morphology of cryopreserved testicular tissues compared with needle vitrification with 15% each DMSO and EG and 0.5 M sucrose, and that DMSO + EG combination SF supports cell viability. This represents a first step in the development of male gonadal tissue preservation strategies for the grey wolf.
Collapse
Affiliation(s)
- Christopher S Andrae
- Smithsonian-Mason School of Conservation, George Mason University, 1500 Remount Rd., Front Royal, VA, 22630, USA
| | - Erika C S Oliveira
- University of Virginia, Department of Cell Biology, 200 Jeanette Lancaster Way, Charlottesville, VA, 22903, USA
| | - Marcia A M M Ferraz
- Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA, 22630, USA; Gene Center, Ludwig-Maximilians University, Feodor-Lynen Str. 25, D-81377, Munich, Germany
| | - Jennifer B Nagashima
- Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA, 22630, USA.
| |
Collapse
|
12
|
Wyns C, Kanbar M, Giudice MG, Poels J. Fertility preservation for prepubertal boys: lessons learned from the past and update on remaining challenges towards clinical translation. Hum Reprod Update 2020; 27:433-459. [PMID: 33326572 DOI: 10.1093/humupd/dmaa050] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Childhood cancer incidence and survivorship are both on the rise. However, many lifesaving treatments threaten the prepubertal testis. Cryopreservation of immature testicular tissue (ITT), containing spermatogonial stem cells (SSCs), as a fertility preservation (FP) option for this population is increasingly proposed worldwide. Recent achievements notably the birth of non-human primate (NHP) progeny using sperm developed in frozen-thawed ITT autografts has given proof of principle of the reproductive potential of banked ITT. Outlining the current state of the art on FP for prepubertal boys is crucial as some of the boys who have cryopreserved ITT since the early 2000s are now in their reproductive age and are already seeking answers with regards to their fertility. OBJECTIVE AND RATIONALE In the light of past decade achievements and observations, this review aims to provide insight into relevant questions for clinicians involved in FP programmes. Have the indications for FP for prepubertal boys changed over time? What is key for patient counselling and ITT sampling based on the latest achievements in animals and research performed with human ITT? How far are we from clinical application of methods to restore reproductive capacity with cryostored ITT? SEARCH METHODS An extensive search for articles published in English or French since January 2010 to June 2020 using keywords relevant to the topic of FP for prepubertal boys was made in the MEDLINE database through PubMed. Original articles on fertility preservation with emphasis on those involving prepubertal testicular tissue, as well as comprehensive and systematic reviews were included. Papers with redundancy of information or with an absence of a relevant link for future clinical application were excluded. Papers on alternative sources of stem cells besides SSCs were excluded. OUTCOMES Preliminary follow-up data indicate that around 27% of boys who have undergone testicular sampling as an FP measure have proved azoospermic and must therefore solely rely on their cryostored ITT to ensure biologic parenthood. Auto-transplantation of ITT appears to be the first technique that could enter pilot clinical trials but should be restricted to tissue free of malignant cells. While in vitro spermatogenesis circumvents the risk linked to cancer cell contamination and has led to offspring in mice, complete spermatogenesis has not been achieved with human ITT. However, generation of haploid germ cells paves the way to further studies aimed at completing the final maturation of germ cells and increasing the efficiency of the processes. WIDER IMPLICATIONS Despite all the research done to date, FP for prepubertal boys remains a relatively young field and is often challenging to healthcare providers, patients and parents. As cryopreservation of ITT is now likely to expand further, it is important not only to acknowledge some of the research questions raised on the topic, e.g. the epigenetic and genetic integrity of gametes derived from strategies to restore fertility with banked ITT but also to provide healthcare professionals worldwide with updated knowledge to launch proper multicollaborative care pathways in the field and address clinical issues that will come-up when aiming for the child's best interest.
Collapse
Affiliation(s)
- Christine Wyns
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Maria Grazia Giudice
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jonathan Poels
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
13
|
Sabetkish S, Kajbafzadeh AM, Sabetkish N. Recellularization of testicular feminization testis in C57bl6 as a natural bioreactor for creation of cellularized seminiferous tubules: an experimental study. Cell Tissue Bank 2020; 22:287-295. [PMID: 33146808 DOI: 10.1007/s10561-020-09877-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/22/2020] [Indexed: 11/24/2022]
Abstract
We determined histological aspects of implanted human decellularized testicular matrix (DTM) in C57BL6 as a primitive step for further testis tissue engineering. A total of 4 immature human testicles were obtained after bilateral orchiectomy from patients with testicular feminization syndrome. The optimal decellularization protocol was determined and the efficacy of decellularization was evaluated in two of the testicles. The remaining scaffolds were cut in 3 × 3 mm3 pieces and implanted between the tight muscles in 32 C57BL6. Biopsies were taken at 2, 4, 8, and 24 weeks postoperatively and stained with PLZF, protamine, and tekt1 markers. Histological examination of DTMs confirmed complete absence of nuclear remnants and preservation of the extracellular matrix. Successful cell seeding was observed in all follow-ups confirmed by H&E and IHC staining that increased continuously during the whole study. Interestingly, spermatogonial stem-like cells were observed on decellularized implants that were well differentiated during the follow-ups. Natural bioreactors may provide a good cell source for testes tissue regeneration. This technique may provide testis bioscaffold as a three-dimensional platform and further successful cell seeding to produce a functional testis. This novel technique may be beneficial for patients who require testicular supplementation.
Collapse
Affiliation(s)
- Shabnam Sabetkish
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.
| | - Nastaran Sabetkish
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran
| |
Collapse
|
14
|
Kim WJ, Kim BS, Kim HJ, Cho YD, Shin HL, Yoon HI, Lee YS, Baek JH, Woo KM, Ryoo HM. Intratesticular Peptidyl Prolyl Isomerase 1 Protein Delivery Using Cationic Lipid-Coated Fibroin Nanoparticle Complexes Rescues Male Infertility in Mice. ACS NANO 2020; 14:13217-13231. [PMID: 32969647 DOI: 10.1021/acsnano.0c04936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Male infertility is a multifactorial condition. Unexplained male infertility is often caused by spermatogenesis dysfunction. Knockout of Pin1, an important regulator of cell proliferation and differentiation, produces male infertility phenotypes such as testicular immaturity and azoospermia with spermatogonia depletion and blood-testis barrier (BTB) dysfunction. Gene therapy has been clinically considered for the treatment of male infertility, but it is not preferred because of the risks of adverse effects in germ cells. Direct intracellular protein delivery using nanoparticles is considered an effective alternative to gene therapy; however, in vivo testicular protein delivery remains a pressing challenge. Here, we investigated the direct intracellular protein delivery strategy using a fibroin nanoparticle-encapsulated cationic lipid complex (Fibroplex) to restore intratesticular PIN1. Local intratesticular delivery of PIN1 via Fibroplex in Pin1 knockout testes produced fertile mice, achieving recovery from the infertile phenotypes. Mechanistically, PIN1-loaded Fibroplex was successfully delivered into testicular cells, including spermatogonial cells and Sertoli cells, and the sustained release of PIN1 restored the gene expression required for the proliferation of spermatogonial cells and BTB integrity in Pin1 knockout testes. Collectively, testicular PIN1 protein delivery using Fibroplex might be an effective strategy for treating male infertility.
Collapse
Affiliation(s)
- Woo Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong Soo Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jung Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Dan Cho
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye Lim Shin
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee In Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Fertility Preservation in Childhood Cancer: Endocrine Activity in Prepubertal Human Testis Xenografts Exposed to a Pubertal Hormone Environment. Cancers (Basel) 2020; 12:cancers12102830. [PMID: 33008013 PMCID: PMC7600569 DOI: 10.3390/cancers12102830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Substantial strides have been made in treating childhood cancers; however, as a result of chemotherapy and radiotherapy, young males experience long-term side effects, including impaired fertility. Whilst prepubertal testicular tissue can be cryopreserved prior to gonadotoxic treatments, it remains to be determined how to generate mature gametes from the immature human testis tissue. Development of immature germ cells into sperm is a complex process, which is supported by mature Sertoli cells and testosterone produced from Leydig cells. We used an established testicular xenotransplantation model to investigate the effect of puberty hormones, known as gonadotrophins, on functional maturation of the spermatogonial stem cell (SSC) niche. Limited testosterone production and partial maturation of Sertoli cells occurred in prepubertal testis grafts, suggesting that longer periods of grafting and/or identification of additional factors are required to develop testicular transplantation as a model for fertility preservation in male survivors of childhood cancer. Abstract Survivors of childhood cancer are at risk for long-term treatment-induced health sequelae, including gonadotoxicity and iatrogenic infertility. At present, for prepubertal boys there are no viable clinical options to preserve future reproductive potential. We investigated the effect of a pubertal induction regimen with gonadotrophins on prepubertal human testis xenograft development. Human testis tissue was obtained from patients with cancer and non-malignant haematological disorders (n = 6; aged 1–14 years) who underwent testis tissue cryopreservation for fertility preservation. Fresh and frozen-thawed testis fragments were transplanted subcutaneously or intratesticularly into immunocompromised mice. Graft-bearing mice received injections of vehicle or exogenous gonadotrophins, human chorionic gonadotrophin (hCG, 20 IU), and follicle-stimulating hormone (FSH, 12.5 IU) three times a week for 12 weeks. The gross morphology of vehicle and gonadotrophin-exposed grafts was similar for both transplantation sites. Exposure of prepubertal human testis tissue xenografts to exogenous gonadotrophins resulted in limited endocrine function of grafts, as demonstrated by the occasional expression of the steroidogenic cholesterol side-chain cleavage enzyme (CYP11A1). Plasma testosterone concentrations (0.13 vs. 0.25 ng/mL; p = 0.594) and seminal vesicle weights (10.02 vs. 13.93 mg; p = 0.431) in gonadotrophin-exposed recipient mice were comparable to vehicle-exposed controls. Regardless of the transplantation site and treatment, initiation and maintenance of androgen receptor (AR) expression were observed in Sertoli cells, indicating commitment towards a more differentiated status. However, neither exogenous gonadotrophins (in castrated host mice) nor endogenous testosterone (in intact host mice) were sufficient to repress the expression of markers associated with immature Sertoli cells, such as anti-Müllerian hormone (AMH) and Ki67, or to induce the redistribution of junctional proteins (connexin 43, CX43; claudin 11, CLDN11) to areas adjacent to the basement membrane. Spermatogonia did not progress developmentally but remained the most advanced germ cell type in testis xenografts. Overall, these findings demonstrate that exogenous gonadotrophins promote partial activation and maturation of the somatic environment in prepubertal testis xenografts. However, alternative hormone regimens or additional factors for pubertal induction are required to complete the functional maturation of the spermatogonial stem cell (SSC) niche.
Collapse
|
16
|
Approaches and Technologies in Male Fertility Preservation. Int J Mol Sci 2020; 21:ijms21155471. [PMID: 32751826 PMCID: PMC7432867 DOI: 10.3390/ijms21155471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Male fertility preservation is required when treatment with an aggressive chemo-/-radiotherapy, which may lead to irreversible sterility. Due to new and efficient protocols of cancer treatments, surviving rates are more than 80%. Thus, these patients are looking forward to family life and fathering their own biological children after treatments. Whereas adult men can cryopreserve their sperm for future use in assistance reproductive technologies (ART), this is not an option in prepubertal boys who cannot produce sperm at this age. In this review, we summarize the different technologies for male fertility preservation with emphasize on prepubertal, which have already been examined and/or demonstrated in vivo and/or in vitro using animal models and, in some cases, using human tissues. We discuss the limitation of these technologies for use in human fertility preservation. This update review can assist physicians and patients who are scheduled for aggressive chemo-/radiotherapy, specifically prepubertal males and their parents who need to know about the risks of the treatment on their future fertility and the possible present option of fertility preservation.
Collapse
|
17
|
Ntemou E, Kadam P, Van Saen D, Wistuba J, Mitchell RT, Schlatt S, Goossens E. Complete spermatogenesis in intratesticular testis tissue xenotransplants from immature non-human primate. Hum Reprod 2020; 34:403-413. [PMID: 30753464 PMCID: PMC6389866 DOI: 10.1093/humrep/dey373] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Can full spermatogenesis be achieved after xenotransplantation of prepubertal primate testis tissue to the mouse, in testis or subcutaneously? SUMMARY ANSWER Intratesticular xenotransplantation supported the differentiation of immature germ cells from marmoset (Callithrix jacchus) into spermatids and spermatozoa at 4 and 9 months post-transplantation, while in subcutaneous transplants, spermatogenic arrest was observed at 4 months and none of the transplants survived at 9 months. WHAT IS KNOWN ALREADY Auto-transplantation of cryopreserved immature testis tissue (ITT) could be a potential fertility restoration strategy for patients with complete loss of germ cells due to chemo- and/or radiotherapy at a young age. Before ITT transplantation can be used for clinical application, it is a prerequisite to demonstrate the feasibility of the technique and identify the conditions required for establishing spermatogenesis in primate ITT transplants. Although xenotransplantation of ITT from several species has resulted in complete spermatogenesis, in human and marmoset, ITT has not been successful. STUDY DESIGN, SIZE, DURATION In this study, we used marmoset as a pre-clinical animal model. ITT was obtained from two 6-month-old co-twin marmosets. A total of 147 testis tissue pieces (~0.8-1.0 mm3 each) were transplanted into the testicular parenchyma (intratesticular; n = 40) or under the dorsal skin (ectopic; n = 107) of 4-week-old immunodeficient Swiss Nu/Nu mice (n = 20). Each mouse received one single marmoset testis tissue piece in each testis and 4-6 pieces subcutaneously. Xenotransplants were retrieved at 4 and 9 months post-transplantation and evaluations were performed with regards to transplant survival, spermatogonial quantity and germ cell differentiation. PARTICIPANTS/MATERIALS, SETTING, METHODS Transplant survival was histologically evaluated by haematoxylin-periodic acid Schiff (H/PAS) staining. Spermatogonia were identified by MAGE-A4 via immunohistochemistry. Germ cell differentiation was assessed by morphological identification of different germ cell types on H/PAS stained sections. Meiotically active germ cells were identified by BOLL expression. CREM immunohistochemistry was performed to confirm the presence of post-meiotic germ cells and ACROSIN was used to determine the presence of round, elongating and elongated spermatids. MAIN RESULTS AND THE ROLE OF CHANCE Four months post-transplantation, 50% of the intratesticular transplants and 21% of the ectopic transplants were recovered (P = 0.019). The number of spermatogonia per tubule did not show any variation. In 33% of the recovered intratesticular transplants, complete spermatogenesis was established. Overall, 78% of the intratesticular transplants showed post-meiotic differentiation (round spermatids, elongating/elongated spermatids and spermatozoa). However, during the same period, spermatocytes (early meiotic germ cells) were the most advanced germ cell type present in the ectopic transplants. Nine months post-transplantation, 50% of the intratesticular transplants survived, whilst none of the ectopic transplants was recovered (P < 0.0001). Transplants contained more spermatogonia per tubule (P = 0.018) than at 4 months. Complete spermatogenesis was observed in all recovered transplants (100%), indicating a progressive spermatogenic development in intratesticular transplants between the two time-points. Nine months post-transplantation, transplants contained more seminiferous tubules with post-meiotic germ cells (37 vs. 5%; P < 0.001) and fewer tubules without germ cells (2 vs. 8%; P = 0.014) compared to 4 months post-transplantation. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Although xenotransplantation of marmoset ITT was successful, it does not fully reflect all aspects of a future clinical setting. Furthermore, due to ethical restrictions, we were not able to prove the functionality of the spermatozoa produced in the marmoset transplants. WIDER IMPLICATIONS OF THE FINDINGS In this pre-clinical study, we demonstrated that testicular parenchyma provides the required microenvironment for germ cell differentiation and long-term survival of immature marmoset testis tissue, likely due to the favourable temperature regulation, growth factors and hormonal support. These results encourage the design of new experiments on human ITT xenotransplantation and show that intratesticular transplantation is likely to be superior to ectopic transplantation for fertility restoration following gonadotoxic treatment in childhood. STUDY FUNDING/COMPETING INTEREST(S) This project was funded by the ITN Marie Curie Programme 'Growsperm' (EU-FP7-PEOPLE-2013-ITN 603568) and the scientific Fund Willy Gepts from the UZ Brussel (ADSI677). D.V.S. is a post-doctoral fellow of the Fonds Wetenschappelijk Onderzoek (FWO; 12M2815N). No conflict of interest is declared.
Collapse
Affiliation(s)
- E Ntemou
- Biology of the Testis Lab, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - P Kadam
- Biology of the Testis Lab, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - D Van Saen
- Biology of the Testis Lab, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - J Wistuba
- Centre of Reproductive Medicine and Andrology (CeRA), University of Münster, Münster, Germany
| | - R T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, Scotland, UK.,Edinburgh Royal Hospital for Sick Children, Edinburgh, Scotland, UK
| | - S Schlatt
- Centre of Reproductive Medicine and Andrology (CeRA), University of Münster, Münster, Germany
| | - E Goossens
- Biology of the Testis Lab, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
18
|
Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N. In vitro transplantation of spermatogonial stem cells isolated from human frozen-thawed testis tissue can induce spermatogenesis under 3-dimensional tissue culture conditions. Biol Res 2019; 52:16. [PMID: 30917866 PMCID: PMC6438003 DOI: 10.1186/s40659-019-0223-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 01/15/2023] Open
Abstract
Background Sperm production is one of the most complex biological processes in the body. In vitro production of sperm is one of the most important goals of researches in the field of male infertility treatment, which is very important in male cancer patients treated with gonadotoxic methods and drugs. In this study, we examine the progression of spermatogenesis after transplantation of spermatogonial stem cells under conditions of testicular tissue culture. Results Testicular tissue samples from azoospermic patients were obtained and then these were freeze–thawed. Spermatogonial stem cells were isolated by two enzymatic digestion steps and the identification of these cells was confirmed by detecting the PLZF protein. These cells, after being labeled with DiI, were transplanted in azoospermia adult mice model. The host testes were placed on agarose gel as tissue culture system. After 8 weeks, histomorphometric, immunohistochemical and molecular studies were performed. The results of histomorphometric studies showed that the mean number of spermatogonial cells, spermatocytes and spermatids in the experimental group was significantly more than the control group (without transplantation) (P < 0.05) and most of the cells responded positively to the detection of DiI. Immunohistochemical studies in host testes fragments in the experimental group express the PLZF, SCP3 and ACRBP proteins in spermatogonial cells, spermatocyte and spermatozoa, respectively, which confirmed the human nature of these cells. Also, in molecular studies of PLZF, Tekt1 and TP1, the results indicated that the genes were positive in the test group, while not in the control group. Conclusion These results suggest that the slow freezing of SSCs can support the induction of spermatogenesis to produce haploid cells under the 3-dimensional testicular tissue culture.
Collapse
Affiliation(s)
- Mahdi Mohaqiq
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-331, Iran.,Stem Cell Department, Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Mansoureh Movahedin
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-331, Iran.
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| | - Naser Amirjannati
- Department of Andrology and Embryology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
19
|
Abofoul-Azab M, Lunenfeld E, Levitas E, Zeadna A, Younis JS, Bar-Ami S, Huleihel M. Identification of Premeiotic, Meiotic, and Postmeiotic Cells in Testicular Biopsies Without Sperm from Sertoli Cell-Only Syndrome Patients. Int J Mol Sci 2019; 20:E470. [PMID: 30678285 PMCID: PMC6387177 DOI: 10.3390/ijms20030470] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Sertoli cell-only syndrome (SCOS) affects about 26.3⁻57.8% of azoospermic men, with their seminiferous tubules containing only Sertoli cells. Recently, it was reported that testicular biopsies from nonobstructive azoospermic (NOA) patients contained germ cells, and that sperm could be found in the tubules of 20% of SCOS patients using testicular sperm extraction technology. Since the patients without sperm in their testicular biopsies do not have therapy to help them to father a biological child, in vitro maturation of spermatogonial stem cells (SSCs) isolated from their testis is a new approach for possible future infertility treatment. Recently, the induction of human and mice SSCs proliferation and differentiation was demonstrated using different culture systems. Our group reported the induction of spermatogonial cell proliferation and differentiation to meiotic and postmeiotic stages in mice, rhesus monkeys, and prepubertal boys with cancer using 3D agar and methylcellulose (MCS) culture systems. The aim of the study was to identify the type of spermatogenic cells present in biopsies without sperm from SCOS patients, and to examine the possibility of inducing spermatogenesis from isolated spermatogonial cells of these biopsies in vitro using 3D MCS. We used nine biopsies without sperm from SCOS patients, and the presence of spermatogenic markers was evaluated by PCR and specific immunofluorescence staining analyses. Isolated testicular cells were cultured in MCS in the presence of StemPro enriched media with different growth factors and the development of colonies/clusters was examined microscopically. We examined the presence of cells from the different stages of spermatogenesis before and after culture in MCS for 3⁻7 weeks. Our results indicated that these biopsies showed the presence of premeiotic markers (two to seven markers/biopsy), meiotic markers (of nine biopsies, cAMP responsive element modulator-1 (CREM-1) was detected in five, lactate dehydrogenase (LDH) in five, and BOULE in three) and postmeiotic markers (protamine was detected in six biopsies and acrosin in three). In addition, we were able to induce the development of meiotic and/or postmeiotic stages from spermatogonial cells isolated from three biopsies. Thus, our study shows for the first time the presence of meiotic and/or postmeiotic cells in biopsies without the sperm of SCOS patients. Isolated cells from some of these biopsies could be induced to meiotic and/or postmeiotic stages under in vitro culture conditions.
Collapse
Affiliation(s)
- Maram Abofoul-Azab
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University, Beer Sheva 8410501, Israel.
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
| | - Eitan Lunenfeld
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
- Fertility and IVF Unit, Department OB/GYN, Soroka Medical Center, Beer-Sheva 85025, Israel.
| | - Eliahu Levitas
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
- Fertility and IVF Unit, Department OB/GYN, Soroka Medical Center, Beer-Sheva 85025, Israel.
| | - Atif Zeadna
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
- Fertility and IVF Unit, Department OB/GYN, Soroka Medical Center, Beer-Sheva 85025, Israel.
| | - Johnny S Younis
- Reproductive Medicine Unit, Department OB/GYN, Poriya Medical Center, Tiberias; Azrieli Faculty of Medicine in Galilee, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Shalom Bar-Ami
- Reproductive Medicine Unit, Department OB/GYN, Poriya Medical Center, Tiberias; Azrieli Faculty of Medicine in Galilee, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University, Beer Sheva 8410501, Israel.
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
| |
Collapse
|
20
|
Tharmalingam MD, Jorgensen A, Mitchell RT. Experimental models of testicular development and function using human tissue and cells. Mol Cell Endocrinol 2018; 468:95-110. [PMID: 29309804 DOI: 10.1016/j.mce.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
The mammalian testis has two main roles, production of gametes for reproduction and synthesis of steroid- and peptide hormones for masculinization. These processes are tightly regulated and involve complex interactions between a number of germ and somatic cell-types that comprise a unique microenvironment known as the germ stem cell niche. In humans, failure of normal testicular development or function is associated with susceptibility to a variety of male reproductive disorders including disorders of sex development, infertility and testicular cancer. Whilst studies in rodent models have provided detailed insight into the signaling pathways and molecular mechanisms that regulate the testis, there are important species differences in testicular development, function and reproductive disorders that highlight the need for suitable experimental models utilising human testicular tissues or cells. In this review, we outline experimental approaches used to sustain cells and tissue from human testis at different developmental time-points and discuss relevant end-points. These include survival, proliferation and differentiation of cell lineages within the testis as well as autocrine, paracrine and endocrine function. We also highlight the utility of these experimental approaches for modelling the effects of environmental exposures on testicular development and function.
Collapse
Affiliation(s)
- Melissa D Tharmalingam
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Anne Jorgensen
- Department of Growth and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK; Department of Endocrinology and Diabetes, Edinburgh Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh, EH9 1LF, Scotland, UK.
| |
Collapse
|
21
|
Del Vento F, Vermeulen M, de Michele F, Giudice MG, Poels J, des Rieux A, Wyns C. Tissue Engineering to Improve Immature Testicular Tissue and Cell Transplantation Outcomes: One Step Closer to Fertility Restoration for Prepubertal Boys Exposed to Gonadotoxic Treatments. Int J Mol Sci 2018; 19:ijms19010286. [PMID: 29346308 PMCID: PMC5796232 DOI: 10.3390/ijms19010286] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Despite their important contribution to the cure of both oncological and benign diseases, gonadotoxic therapies present the risk of a severe impairment of fertility. Sperm cryopreservation is not an option to preserve prepubertal boys’ reproductive potential, as their seminiferous tubules only contain spermatogonial stem cells (as diploid precursors of spermatozoa). Cryobanking of human immature testicular tissue (ITT) prior to gonadotoxic therapies is an accepted practice. Evaluation of cryopreserved ITT using xenotransplantation in nude mice showed the survival of a limited proportion of spermatogonia and their ability to proliferate and initiate differentiation. However, complete spermatogenesis could not be achieved in the mouse model. Loss of germ cells after ITT grafting points to the need to optimize the transplantation technique. Tissue engineering, a new branch of science that aims at improving cellular environment using scaffolds and molecules administration, might be an approach for further progress. In this review, after summarizing the lessons learned from human prepubertal testicular germ cells or tissue xenotransplantation experiments, we will focus on the benefits that might be gathered using bioengineering techniques to enhance transplantation outcomes by optimizing early tissue graft revascularization, protecting cells from toxic insults linked to ischemic injury and exploring strategies to promote cellular differentiation.
Collapse
Affiliation(s)
- Federico Del Vento
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
| | - Maxime Vermeulen
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
| | - Francesca de Michele
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Maria Grazia Giudice
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Jonathan Poels
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials Unit, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Christine Wyns
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
- Correspondence: ; Tel.: +32-2-764-95-01
| |
Collapse
|
22
|
Sharma S, Sandhowe-Klaverkamp R, Schlatt S. Differentiation of Testis Xenografts in the Prepubertal Marmoset Depends on the Sex and Status of the Mouse Host. Front Endocrinol (Lausanne) 2018; 9:467. [PMID: 30210448 PMCID: PMC6123353 DOI: 10.3389/fendo.2018.00467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
This study investigates the effects of the endocrine milieu of immunodeficient mouse host (intact vs. castrated male, intact male vs. intact female) on prepubertal marmoset (Callithrix jacchus) testicular xenografts. Previous marmoset xenografting studies used castrated nude mouse hosts which did not support efficient graft survival and maturation. Due to the distinct endocrine milieu in marmosets with a deletion of exon 10 in the LH receptor, we wanted to explore whether the most efficient xenograft development occurs in intact male mouse hosts compared to intact females or castrated males. We xenografted freshly isolated tissue from prepubertal marmosets (age range 4-6 months) into the back skin of three groups of nude mice (intact male, castrated male, and intact female). We collected serum for endocrine determinations and grafts after 20 weeks and determined hormonal/reproductive status, graft survival, somatic cell development and initiation of germ cell differentiation. Graft development, tubular integrity, and germ cell differentiation status in the grafts retrieved from different hosts was scored by morphometric analysis. The influence of the different endocrine status was compared between groups of hosts. Endocrine readouts and histological endpoints in xenografts substantiate that grafts were exposed to different microenvironments and responded with host specific developmental patterns. The intact male hosts supported the most significant progression of germ cell development. Our data provide evidence for the important role of the host milieu on survival and differentiation of marmoset xenografts. The xenografting model offers innovative avenues to exploit development and endocrine effects in the primate marmoset testis using limited numbers of non-human primates for the experimental settings.
Collapse
|
23
|
Xenotransplantation as a model for human testicular development. Differentiation 2017; 97:44-53. [DOI: 10.1016/j.diff.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/08/2017] [Accepted: 09/05/2017] [Indexed: 11/20/2022]
|
24
|
Ibtisham F, Wu J, Xiao M, An L, Banker Z, Nawab A, Zhao Y, Li G. Progress and future prospect of in vitro spermatogenesis. Oncotarget 2017; 8:66709-66727. [PMID: 29029549 PMCID: PMC5630449 DOI: 10.18632/oncotarget.19640] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Infertility has become a major health issue in the world. It affects the social life of couples and of all infertility cases; approximately 40–50% is due to “male factor” infertility. Male infertility could be due to genetic factors, environment or due to gonadotoxic treatment. Developments in reproductive biotechnology have made it possible to rescue fertility and uphold biological fatherhood. In vitro production of haploid male germ cell is a powerful tool, not only for the treatment of infertility including oligozoospermic or azoospermic patient, but also for the fertility preservation in pre-pubertal boys whose gonadal function is threatened by gonadotoxic therapies. Genomic editing of in-vitro cultured germ cells could also potentially cure flaws in spermatogenesis due to genomic mutation. Furthermore, this ex-vivo maturation technique with genomic editing may be used to prevent paternal transmission of genomic diseases. Here, we summarize the historical progress of in vitro spermatogenesis research by using organ and cell culture techniques and the future clinical application of in vitro spermatogenesis.
Collapse
Affiliation(s)
- Fahar Ibtisham
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jiang Wu
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Mei Xiao
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Lilong An
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zachary Banker
- Foreign Language College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Aamir Nawab
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yi Zhao
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guanghui Li
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
25
|
Dysregulation of angiogenesis-specific signalling in adult testis results in xenograft degeneration. Sci Rep 2017; 7:2605. [PMID: 28572601 PMCID: PMC5454001 DOI: 10.1038/s41598-017-02604-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/12/2017] [Indexed: 01/17/2023] Open
Abstract
Ectopic xenografting of testis is a feasible option for preservation of male fertility and angiogenesis plays a pivotal role in xenograft survival and functionality. When compared to immature testis, the adult testis is unable to establish functional xenografts due to potentially lower efficiency to induce angiogenesis. The precise molecular mechanism, however, remains elusive. In the present study, we compared adult and immature testis xenografts for survival, maturation and germ cell differentiation. Further, we evaluated differential expression of angiogenesis signalling-specific proteins in adult and immature testis and their xenografts. Results showed that adult testis xenografts degenerated whereas immature testis xenografts survived and established spermatogenesis with the production of haploid germ cells. Protein expression analysis demonstrated that immature testis xenografts were able to establish angiogenesis either through eNOS activation via VEGF and PI3K/AKT or through EGFR-mediated STAT3 pathway. The role of ERK/MAPK pathway in xenograft angiogenesis was ruled out. The absence or reduced expression of angiogenesis-specific proteins in adult testis and its xenografts possibly resulted in poor angiogenesis and in their subsequent degeneration. This study provides insight into angiogenesis mechanism that can be utilized to augment testis xenografting efficiency.
Collapse
|
26
|
Pothana L, Devi L, Venna NK, Pentakota N, Varma VP, Jose J, Goel S. Replacement of serum with ocular fluid for cryopreservation of immature testes. Cryobiology 2016; 73:356-366. [PMID: 27693391 DOI: 10.1016/j.cryobiol.2016.09.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022]
Abstract
Cryopreservation of immature testis is a feasible approach for germplasm preservation of male animals. Combinations of dimethyl sulfoxide (DMSO) and foetal bovine serum (FBS) are used for testis cryopreservation. However, an alternative to FBS is needed, because FBS is expensive. Buffalo ocular fluid (BuOF), a slaughter house by-product, could be an economical option. The objective of the present study was to assess whether BuOF can replace FBS for cryopreservation of immature mouse (Mus musculus), rat (Rattus norvegicus), and buffalo (Bubalus bubalis) testes. Results showed that rodent and buffalo testes frozen in DMSO (10% for rodents and 20% for buffalo) with 20% FBS or BuOF had similar numbers of viable and DNA-damaged cells (P > 0.05). The expression of cell proliferation- (PCNA) and apoptosis-specific proteins (Annexin V and BAX/BCL2 ratio) were also comparable in mouse and buffalo testes frozen in DMSO with FBS or BuOF (P > 0.05). Interestingly, rat testis frozen in DMSO with BuOF had lower expression of Annexin V protein than testis frozen in DMSO with FBS (P < 0.05). The percentage of meiotic germ cells (pachytene-stage spermatocytes) in xenografts from testis frozen either in DMSO with BuOF or FBS did not significantly differ in rats or buffalo (P > 0.05). These findings provide evidence that BuOF has potential to replace FBS for cryopreservation of immature rodent and buffalo testis. Further investigation is needed to explore whether BuOF can replace FBS for testis cryopreservation of other species.
Collapse
Affiliation(s)
- Lavanya Pothana
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Lalitha Devi
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Naresh Kumar Venna
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Niharika Pentakota
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Vivek Phani Varma
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Jedy Jose
- Animal House, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Sandeep Goel
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India.
| |
Collapse
|
27
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|
28
|
Song W, Zhao W, Yang Q, Wang X, Jin H, Yao G, Peng Z, Shi S, Yang H, Sun Y. Effect of rapid cryopreservation on meiotic recombination in human spermatocytes. Microsc Res Tech 2016; 79:923-928. [PMID: 27427884 DOI: 10.1002/jemt.22723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/07/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To evaluate the safety of rapid cryopreservation for human testicular tissues by comparing the meiotic recombination in the fresh and thawed testis after rapid freezing. METHODS Twelve male patients with prostate cancer (PC) who had given birth to healthy children at youth and need to receive surgical removal of testicular tissue at present were selected in this study. Testicular tissues from 4 cases of PC patients were randomly divided into two parts, one part as fresh tissue and the other to receive rapid freezing treatment. Fidelity analysis for homologous genetic recombination and synapsis were performed by immunofluorescence after prepared by a micro-spreading technique. RESULTS The average number of MLH1 foci per cell, autosomal synaptonemal complex (SC) containing 0∼5 MLH1 foci and percent of cells with one MLH1 focus on XY chromosome showed no difference between the fresh and frozen thawed testicular tissues from the same case (P >0.05). And, no significant difference in the frequency of gaps and splits on SCs was observed in fresh and thawed spermatocytes (P > 0.05). CONCLUSION Rapid cryopreservation showed little effect on the frequency of meiotic recombination and fidelity of synapsis in human spermatocytes from PC patients, and acted as an effective method for preserving male fertility.
Collapse
Affiliation(s)
- Wenyan Song
- Reproductive Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhenzhou, 450052, Henan, People's Republic of China
| | - Wanli Zhao
- Reproductive Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhenzhou, 450052, Henan, People's Republic of China.,Reproductive Department, the Women&infants Hospital of Zhenzhou, Zhenzhou, 450000, Henan, People's Republic of China
| | - Qinglin Yang
- Reproductive Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhenzhou, 450052, Henan, People's Republic of China
| | - Xuegai Wang
- Reproductive Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhenzhou, 450052, Henan, People's Republic of China.,Reproductive Department, the Women&infants Hospital of Zhenzhou, Zhenzhou, 450000, Henan, People's Republic of China
| | - Haixia Jin
- Reproductive Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhenzhou, 450052, Henan, People's Republic of China
| | - Guidong Yao
- Reproductive Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhenzhou, 450052, Henan, People's Republic of China
| | - Zhaofeng Peng
- Reproductive Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhenzhou, 450052, Henan, People's Republic of China
| | - Senlin Shi
- Reproductive Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhenzhou, 450052, Henan, People's Republic of China
| | - Hongyi Yang
- Reproductive Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhenzhou, 450052, Henan, People's Republic of China
| | - Yingpu Sun
- Reproductive Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhenzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
29
|
Tada N, Kanai F, Nakamura E, Lu H, Sato M. Syngenic grafting of a whole juvenile male gonadal tissue into the adult testes confers successful spermatogenesis in mice. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
30
|
Palacios-González C. Ethical aspects of creating human-nonhuman chimeras capable of human gamete production and human pregnancy. Monash Bioeth Rev 2016; 33:181-202. [PMID: 26458367 PMCID: PMC4631712 DOI: 10.1007/s40592-015-0031-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this paper I explore some of the moral issues that could emerge from the creation of human-nonhuman chimeras (HNH-chimeras) capable of human gamete production and human pregnancy. First I explore whether there is a cogent argument against the creation of HNH-chimeras that could produce human gametes. I conclude that so far there is none, and that in fact there is at least one good moral reason for producing such types of creatures. Afterwards I explore some of the moral problems that could emerge from the fact that a HNH-chimera could become pregnant with a human conceptus. I focus on two sets of problems: problems that would arise by virtue of the fact that a human is gestated by a nonhuman creature, and problems that would emerge from the fact that such pregnancies could affect the health of the HNH-chimera.
Collapse
Affiliation(s)
- César Palacios-González
- Institute for Science Ethics and Innovation, The University of Manchester, Room 3.383, Stopford Building, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
31
|
Gassei K, Orwig KE. Experimental methods to preserve male fertility and treat male factor infertility. Fertil Steril 2015; 105:256-66. [PMID: 26746133 DOI: 10.1016/j.fertnstert.2015.12.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Infertility is a prevalent condition that has insidious impacts on the infertile individuals, their families, and society, which extend far beyond the inability to have a biological child. Lifestyle changes, fertility treatments, and assisted reproductive technology (ART) are available to help many infertile couples achieve their reproductive goals. All of these technologies require that the infertile individual is able to produce at least a small number of functional gametes (eggs or sperm). It is not possible for a person who does not produce gametes to have a biological child. This review focuses on the infertile man and describes several stem cell-based methods and gene therapy approaches that are in the research pipeline and may lead to new fertility treatment options for men with azoospermia.
Collapse
Affiliation(s)
- Kathrin Gassei
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
32
|
Picton HM, Wyns C, Anderson RA, Goossens E, Jahnukainen K, Kliesch S, Mitchell RT, Pennings G, Rives N, Tournaye H, van Pelt AMM, Eichenlaub-Ritter U, Schlatt S. A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys. Hum Reprod 2015; 30:2463-75. [PMID: 26358785 DOI: 10.1093/humrep/dev190] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/08/2015] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION What clinical practices, patient management strategies and experimental methods are currently being used to preserve and restore the fertility of prepubertal boys and adolescent males? SUMMARY ANSWER Based on a review of the clinical literature and research evidence for sperm freezing and testicular tissue cryopreservation, and after consideration of the relevant ethical and legal challenges, an algorithm for the cryopreservation of sperm and testicular tissue is proposed for prepubertal boys and adolescent males at high risk of fertility loss. WHAT IS KNOWN ALREADY A known late effect of the chemotherapy agents and radiation exposure regimes used to treat childhood cancers and other non-malignant conditions in males is the damage and/or loss of the proliferating spermatogonial stem cells in the testis. Cryopreservation of spermatozoa is the first line treatment for fertility preservation in adolescent males. Where sperm retrieval is impossible, such as in prepubertal boys, or it is unfeasible in adolescents prior to the onset of ablative therapies, alternative experimental treatments such as testicular tissue cryopreservation and the harvesting and banking of isolated spermatogonial stem cells can now be proposed as viable means of preserving fertility. STUDY DESIGN, SIZE, DURATION Advances in clinical treatments, patient management strategies and the research methods used to preserve sperm and testicular tissue for prepubertal boys and adolescents were reviewed. A snapshot of the up-take of testis cryopreservation as a means to preserve the fertility of young males prior to December 2012 was provided using a questionnaire. PARTICIPANTS/MATERIALS, SETTING, METHODS A comprehensive literature review was conducted. In addition, survey results of testis freezing practices in young patients were collated from 24 European centres and Israeli University Hospitals. MAIN RESULTS AND THE ROLE OF CHANCE There is increasing evidence of the use of testicular tissue cryopreservation as a means to preserve the fertility of pre- and peri-pubertal boys of up to 16 year-old. The survey results indicate that of the 14 respondents, half of the centres were actively offering testis tissue cryobanking as a means of safeguarding the future fertility of boys and adolescents as more than 260 young patients (age range less than 1 year old to 16 years of age), had already undergone testicular tissue retrieval and storage for fertility preservation. The remaining centres were considering the implementation of a tissue-based fertility preservation programme for boys undergoing oncological treatments. LIMITATIONS, REASONS FOR CAUTION The data collected were limited by the scope of the questionnaire, the geographical range of the survey area, and the small number of respondents. WIDER IMPLICATIONS OF THE FINDINGS The clinical and research questions identified and the ethical and legal issues raised are highly relevant to the multi-disciplinary teams developing treatment strategies to preserve the fertility of prepubertal and adolescent boys who have a high risk of fertility loss due to ablative interventions, trauma or genetic pre-disposition.
Collapse
Affiliation(s)
- Helen M Picton
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Christine Wyns
- Université Catholique de Louvain (UCL), Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique (IREC), 1200 Brussels, Belgium Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ellen Goossens
- Research Group Biology of the Testis (BITE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Kirsi Jahnukainen
- Children's Hospital, Helsinki University Central Hospital, Helsinki, Finland Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Münster, Domagkstraße 11, 48149 Münster, Germany
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - G Pennings
- Bioethics Institute Ghent (BIG), Faculty of Philosophy and Moral Science, Ghent University, Ghent, Belgium
| | - Natalie Rives
- Laboratoire de Biologie de la Reproduction - CECOS, Research Team EA 4308 'Gametogenesis and gamete quality', IRIB, Rouen University Hospital, University of Rouen, 76031 Rouen Cedex, France
| | - Herman Tournaye
- Centre for Reproductive Medicine, University Hospital of the Brussels Free University, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ursula Eichenlaub-Ritter
- Faculty of Biology, Gene Technology/Microbiology, University of Bielefeld, Bielefeld 33501, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, University Münster, Domagkstraße 11, 48149 Münster, Germany
| | | |
Collapse
|
33
|
Yokonishi T, Ogawa T. Cryopreservation of testis tissues and in vitro spermatogenesis. Reprod Med Biol 2015; 15:21-28. [PMID: 26709347 PMCID: PMC4686543 DOI: 10.1007/s12522-015-0218-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/06/2015] [Indexed: 01/15/2023] Open
Abstract
Cancer treatments, either chemo‐ or radiotherapy, may cause severe damage to gonads which could lead to the infertility of patients. In post‐pubertal male patients, semen cryopreservation is recommended to preserve the potential to have their own biological children in the future; however, it is not applicable to prepubertals. The preservation of testis tissue which contains spermatogonial stem cells (SSCs) but not sperm would be an alternative measure. The tissues or SSCs have to be transplanted back into patients to obtain sperm; however, this procedure remains experimental, invasive, and is accompanied with the potential risk of re‐implantation of cancer cells. Recently, we developed an organ culture system which supports the spermatogenesis of mice up to sperm formation from SSCs. It was also shown that the tissues could be frozen for later sperm production, which resulted in the generation of offspring. Thus, it could be useful as a clinical application for preserving the reproductive potential of male pediatric cancer patients. The establishment of an optimized cryopreservation method and the development of a culture system for human testis tissue are expected in the future.
Collapse
Affiliation(s)
- Tetsuhiro Yokonishi
- Department of UrologyYokohama City University Graduate School of Medicine236‐0004YokohamaJapan
| | - Takehiko Ogawa
- Department of UrologyYokohama City University Graduate School of Medicine236‐0004YokohamaJapan
- Laboratory of Proteomics, Institute of Molecular Medicine and Life ScienceYokohama City University Association of Medical Science236‐0004YokohamaJapan
| |
Collapse
|
34
|
Arregui L, Dobrinski I, Roldan ERS. Germ cell survival and differentiation after xenotransplantation of testis tissue from three endangered species: Iberian lynx (Lynx pardinus), Cuvier's gazelle (Gazella cuvieri) and Mohor gazelle (G. dama mhorr). Reprod Fertil Dev 2015; 26:817-26. [PMID: 23763851 DOI: 10.1071/rd12411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/13/2013] [Indexed: 01/21/2023] Open
Abstract
The use of assisted reproductive techniques for endangered species is a major goal for conservation. One of these techniques, testis tissue xenografting, allows for the development of spermatozoa from animals that die before reaching sexual maturity. To assess the potential use of this technique with endangered species, testis tissue from six Iberian lynxes (one fetus, two perinatal cubs, two 6-month-old and one 2-year-old lynx), two Cuvier's gazelle fetuses and one 8-month-old Mohor gazelle were transplanted ectopically into nude mice. Tissue from the lynx fetus, perinatal cubs and 2-year-old donors degenerated, whereas spermatogonia were present in 15% of seminiferous tubules more than 70 weeks after grafting in transplanted testis tissue from 6-month-old donors. Seminal vesicle weights (indicative of testosterone production) increased over time in mice transplanted with tissue from 6-month-old lynxes. Progression of spermatogenesis was observed in xenografts from gazelles and was donor age dependent. Tissue from Cuvier's gazelle fetuses contained spermatocytes 40 weeks after grafting. Finally, round spermatids were found 28 weeks after transplantation in grafts from the 8-month-old Mohor gazelle. This is the first time that xenotransplantation of testicular tissue has been performed with an endangered felid and the first successful xenotransplantation in an endangered species. Our results open important options for the preservation of biological diversity.
Collapse
Affiliation(s)
- Lucía Arregui
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), C/José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary AB T2N 4N1, Canada
| | - Eduardo R S Roldan
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), C/José Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
35
|
de Lambert G, Poirot C, Guérin F, Brugières L, Martelli H. La préservation de la fertilité dans les cancers de l’enfant. Bull Cancer 2015; 102:436-42. [DOI: 10.1016/j.bulcan.2015.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
|
36
|
Makala H, Pothana L, Sonam S, Malla A, Goel S. Regeneration of Leydig cells in ectopically autografted adult mouse testes. Reproduction 2015; 149:259-68. [DOI: 10.1530/rep-14-0576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ectopic autografting of testis tissue is a promising approach for studying testicular development, male germline preservation and restoration of male fertility. In this study, we examined the fate of various testicular cells in adult mouse testes following ectopic autografting at 1, 2, 4 and 8 weeks post grafting. Histological examination showed no evidence of re-establishment of spermatogenesis in autografts, and progressive degeneration of seminiferous tubules was detected. Expression of germ cell-specific proteins such as POU5F1, DAZL, TNP1, TNP2, PRM1 and PRM2 revealed that, although proliferating and differentiating spermatogenic germ cells such as spermatogonia, spermatocytes and spermatids could survive in autografts until 4 weeks, only terminally differentiated germ cells such as sperm persisted in autografts until 8 weeks. The presence of Sertoli and peritubular myoid cells, as indicated by expression of WT1 and ACTA2 proteins, respectively, was evident in the autografts until 8 weeks. Interestingly, seminal vesicle weight and serum testosterone level were restored in autografted mice by 8 weeks post grafting. The expression of Leydig cell-specific proteins such as CYP11A1, HSD3B2 and LHCGR showed revival of Leydig cell (LC) populations in autografts over time since grafting. Elevated expression of PDGFRA, LIF, DHH and NEFH in autografts indicated de novo regeneration of LC populations. Autografted adult testis can be used as a model for investigating Leydig cell regeneration, steroidogenesis and regulation of the intrinsic factors involved in Leydig cell development. The success of this rodent model can have therapeutic applications for adult human males undergoing sterilizing cancer therapy.
Collapse
|
37
|
Benavides-Garcia R, Joachim R, Pina NA, Mutoji KN, Reilly MA, Hermann BP. Granulocyte colony-stimulating factor prevents loss of spermatogenesis after sterilizing busulfan chemotherapy. Fertil Steril 2015; 103:270-80.e8. [PMID: 25439845 PMCID: PMC4282609 DOI: 10.1016/j.fertnstert.2014.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/24/2014] [Accepted: 09/15/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine whether granulocyte colony-stimulating factor (G-CSF) could prevent loss of spermatogenesis induced by busulfan chemotherapy via protection of undifferentiated spermatogonia, which might serve as an adjuvant approach to preserving male fertility among cancer patients. DESIGN Laboratory animal study. SETTING University. ANIMAL(S) Laboratory mice. INTERVENTION(S) Five-week-old mice were treated with a sterilizing busulfan dose and with 7 days of G-CSF or vehicle treatment and evaluated 10 weeks later (experiment 1) or 24 hours after treatment (experiment 2). MAIN OUTCOME MEASURE(S) Experiment 1: testis weights, epididymal sperm counts, testis histology. Experiment 2: PLZF immunofluorescent costaining with apoptotic markers. Molecular analysis of G-CSF receptor expression in undifferentiated spermatogonia. RESULT(S) Ten weeks after treatment, busulfan-treated mice that also received treatment with G-CSF exhibited significantly better recovery of spermatogenesis and epididymal sperm counts than animals receiving busulfan alone. G-CSF led to increased numbers of PLZF+ spermatogonia 24 hours after treatment that was not accompanied by changes in apoptosis. To address the cellular target of G-CSF, mRNA for the G-CSF receptor, Csf3r, was found in adult mouse testes and cultured THY1+ (undifferentiated) spermatogonia, and cell-surface localized CSF3R was observed on 3% of cultured THY1+ spermatogonia. CONCLUSION(S) These results demonstrate that G-CSF protects spermatogenesis from gonadotoxic insult (busulfan) in rodents, and this may occur via direct action on CSF3R+ undifferentiated spermatogonia. G-CSF treatment might be an effective adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.
Collapse
Affiliation(s)
| | - Rose Joachim
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Nancy A Pina
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Kazadi N Mutoji
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Matthew A Reilly
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas.
| |
Collapse
|
38
|
Arregui L, Dobrinski I. Xenografting of testicular tissue pieces: 12 years of an in vivo spermatogenesis system. Reproduction 2014; 148:R71-84. [PMID: 25150043 DOI: 10.1530/rep-14-0249] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Spermatogenesis is a dynamic and complex process that involves endocrine and testicular factors. During xenotransplantation of testicular tissue fragments into immunodecifient mice, a functional communication between host brain and donor testis is established. This interaction allows for the progression of spermatogenesis and recovery of fertilisation-competent spermatozoa from a broad range of mammalian species. In the last few years, significant progress has been achieved in testis tissue xenografting that improves our knowledge about the factors determining the success of grafting. The goal of this review is to provide up to date information about the role of factors such as donor age, donor species, testis tissue preservation or type of recipient mouse on the efficiency of this technique. Applications are described and compared with other techniques with similar purposes. Recent work has demonstrated that testicular tissue xenografting is used as a model to study gonadotoxicity of drugs and to obtain sperm from valuable young males.
Collapse
Affiliation(s)
- Lucía Arregui
- Department of BiologyFaculty of Science, Universidad Autónoma de Madrid, C/Darwin 2, Madrid 28049, SpainDepartment of Comparative Biology and Experimental MedicineFaculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Ina Dobrinski
- Department of BiologyFaculty of Science, Universidad Autónoma de Madrid, C/Darwin 2, Madrid 28049, SpainDepartment of Comparative Biology and Experimental MedicineFaculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
39
|
Jørgensen A, Young J, Nielsen JE, Joensen UN, Toft BG, Rajpert-De Meyts E, Loveland KL. Hanging drop cultures of human testis and testis cancer samples: a model used to investigate activin treatment effects in a preserved niche. Br J Cancer 2014; 110:2604-14. [PMID: 24781282 PMCID: PMC4021512 DOI: 10.1038/bjc.2014.160] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/10/2014] [Accepted: 03/04/2014] [Indexed: 12/15/2022] Open
Abstract
Background: Testicular germ cell tumours of young adults, seminoma or non-seminomas, are preceded by a pre-invasive precursor, carcinoma in situ (CIS), understood to arise through differentiation arrest of embryonic germ cells. Knowledge about the malignant transformation of germ cells is currently limited by the lack of experimental models. The aim of this study was to establish an experimental tissue culture model to maintain normal and malignant germ cells within their niche and allow investigation of treatment effects. Methods: Human testis and testis cancer specimens from orchidectomies were cultured in ‘hanging drops' and effects of activin A and follistatin treatment were investigated in seminoma cultures. Results: Testis fragments with normal spermatogenesis or CIS cells were cultured for 14 days with sustained proliferation of germ cells and CIS cells and without increased apoptosis. Seminoma cultures survived 7 days, with proliferating cells detectable during the first 5 days. Activin A treatment significantly reduced KIT transcript and protein levels in seminoma cultures, thereby demonstrating a specific treatment response. Conclusions: Hanging drop cultures of human testis and testis cancer samples can be employed to delineate mechanisms governing growth of normal, CIS and tumorigenic germ cells retained within their niche.
Collapse
Affiliation(s)
- A Jørgensen
- University Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - J Young
- 1] Department of Anatomy and Developmental Biology, Monash University, Melbourne, Clayton, Victoria 3800, Australia [2] Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Clayton, Victoria 3800, Australia
| | - J E Nielsen
- University Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - U N Joensen
- Department of Urology, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - B G Toft
- Department of Pathology, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - E Rajpert-De Meyts
- University Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - K L Loveland
- 1] Department of Anatomy and Developmental Biology, Monash University, Melbourne, Clayton, Victoria 3800, Australia [2] Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Clayton, Victoria 3800, Australia
| |
Collapse
|
40
|
Valli H, Phillips BT, Shetty G, Byrne JA, Clark AT, Meistrich ML, Orwig KE. Germline stem cells: toward the regeneration of spermatogenesis. Fertil Steril 2013; 101:3-13. [PMID: 24314923 DOI: 10.1016/j.fertnstert.2013.10.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 01/15/2023]
Abstract
Improved therapies for cancer and other conditions have resulted in a growing population of long-term survivors. Infertility is an unfortunate side effect of some cancer therapies that impacts the quality of life of survivors who are in their reproductive or prereproductive years. Some of these patients have the opportunity to preserve their fertility using standard technologies that include sperm, egg, or embryo banking, followed by IVF and/or ET. However, these options are not available to all patients, especially the prepubertal patients who are not yet producing mature gametes. For these patients, there are several stem cell technologies in the research pipeline that may give rise to new fertility options and allow infertile patients to have their own biological children. We will review the role of stem cells in normal spermatogenesis as well as experimental stem cell-based techniques that may have potential to generate or regenerate spermatogenesis and sperm. We will present these technologies in the context of the fertility preservation paradigm, but we anticipate that they will have broad implications for the assisted reproduction field.
Collapse
Affiliation(s)
- Hanna Valli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Bart T Phillips
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Gunapala Shetty
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James A Byrne
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, Los Angeles, California; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California
| | - Amander T Clark
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California
| | - Marvin L Meistrich
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
41
|
Préservation de la fertilité chez le garçon prépubère : transplantation de cellules souches spermatogoniales et greffe testiculaire. ACTA ACUST UNITED AC 2013; 41:529-31. [DOI: 10.1016/j.gyobfe.2013.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023]
|
42
|
Abstract
Due to remarkable advances in cancer therapies, we have seen great improvements in survival rates of pediatric and reproductive-age male patients. Unfortunately, fertility in adult life might be severely impaired by these treatments. Gonadotoxic therapy is also used to cure a variety of non-malignant disorders. Providing young people undergoing gonadotoxic treatment with adequate fertility preservation options is a challenging area of reproductive medicine and merits broader diffusion in clinical practice. This paper, therefore, aims to review current concepts and perspectives to restore fertility from germ cells or gonadal tissue cryostored prior to gonadotoxic therapies in pre- and post-pubertal patients. For patients rendered sterile after treatment, who did not benefit from fertility preservation measures before therapy, the reproductive potential of alternative sources of stem cells is also examined, although this is at the research stage.
Collapse
Affiliation(s)
- Christine Wyns
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium.
| |
Collapse
|
43
|
Restoring fertility in sterile childhood cancer survivors by autotransplanting spermatogonial stem cells: are we there yet? BIOMED RESEARCH INTERNATIONAL 2013; 2013:903142. [PMID: 23509797 PMCID: PMC3581117 DOI: 10.1155/2013/903142] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/11/2012] [Indexed: 12/29/2022]
Abstract
Current cancer treatment regimens do not only target tumor cells, but can also have devastating effects on the spermatogonial stem cell pool, resulting in a lack of functional gametes and hence sterility. In adult men, fertility can be preserved prior to cancer treatment by cryopreservation of ejaculated or surgically retrieved spermatozoa, but this is not an option for prepubertal boys since spermatogenesis does not commence until puberty. Cryopreservation of a testicular biopsy taken before initiation of cancer treatment, followed by in vitro propagation of spermatogonial stem cells and subsequent autotransplantation of these stem cells after cancer treatment, has been suggested as a way to preserve and restore fertility in childhood cancer survivors. This strategy, known as spermatogonial stem cell transplantation, has been successful in mice and other model systems, but has not yet been applied in humans. Although recent progress has brought clinical application of spermatogonial stem cell autotransplantation in closer range, there are still a number of important issues to address. In this paper, we describe the state of the art of spermatogonial stem cell transplantation and outline the hurdles that need to be overcome before clinical implementation.
Collapse
|
44
|
Van Saen D, Goossens E, Haentjens P, Baert Y, Tournaye H. Exogenous administration of recombinant human FSH does not improve germ cell survival in human prepubertal xenografts. Reprod Biomed Online 2012; 26:286-98. [PMID: 23352099 DOI: 10.1016/j.rbmo.2012.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 11/26/2022]
Abstract
In a previous study, meiotic activity was observed in human intratesticular xenografts from peripubertal patients. However, full spermatogenesis could not be established. The present study aimed to evaluate whether the administration of recombinant human FSH could improve the spermatogonial survival and the establishment of full spermatogenesis in intratesticular human xenografts. Human testicular tissue was obtained from six boys (aged 2.5-12.5years). The testicular biopsy was fragmented and one fragment of 1.5-3.0mm(3) was transplanted to the testis of immunodeficient nude mice. Transplanted mice were assigned to different experimental groups to enable evaluation of the effects of FSH administration and freezing. The structural integrity of the seminiferous tubules, the spermatogonial survival and the presence of differentiated cells were evaluated by histology and immunohistochemistry. Freezing or administration of FSH did not influence tubule integrity and germ cell survival in human xenografts. Meiotic germ cells were observed in the xenografts. More tubules containing only Sertoli cells were observed in frozen-thawed grafts, and more tubules with meiotic cells were present in fresh grafts. There was no clear influence of FSH treatment on meiotic differentiation. Administration of FSH did not improve the establishment of full spermatogenesis after intratesticular tissue grafting.
Collapse
Affiliation(s)
- Dorien Van Saen
- Research Group Biology of the Testis, Department of Embryology and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
45
|
Jahnukainen K, Stukenborg JB. Clinical review: Present and future prospects of male fertility preservation for children and adolescents. J Clin Endocrinol Metab 2012; 97:4341-51. [PMID: 23038680 DOI: 10.1210/jc.2012-3065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Rapid progress in fertility preservation strategies has led to the investigation of ways in which fertile gametes could be generated from cryopreserved immature testicular tissue. Childhood cancer patients remain the major group that can benefit from these techniques. Other potential candidates include patients undergoing gonadectomy and patients with Klinefelter's syndrome and cryptorchid testes. This review aims to present an overview of the current state of knowledge in experimental germ cell transplantation, testicular tissue transplantation, and germ cell culture as fertility preservation methods for males. METHODOLOGY We included English articles published in PubMed as well as personal files with the focus on studies including human or nonhuman material. MAIN FINDINGS Germ cell and testicular tissue transplantation demonstrate clinical options to mature germ cells from immature primate testicular tissue. The most promising approach involves autologous grafting of immature testicular tissue, whereas germ cell maturation in vitro provides the best strategies to overcome problems of cancer contamination in cryopreserved testicular tissue. Three-dimensional and organ culture systems offer the possibility to differentiate immature male germ cells up to the stage of elongated spermatids. Further characterization of early germ cell development in humans is needed to modify these systems for clinical use.
Collapse
Affiliation(s)
- Kirsi Jahnukainen
- Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska University Hospital and Karolinska Institutet, SE-17176 Stockholm, Sweden.
| | | |
Collapse
|
46
|
Dobrinski I. De novo morphogenesis of functional testis tissue after ectopic transplantation of isolated cells. Organogenesis 2012; 3:79-82. [PMID: 19279705 DOI: 10.4161/org.3.2.4944] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 08/28/2007] [Indexed: 01/15/2023] Open
Abstract
Development of the mammalian testis begins with sex specific differentiation of the bipotential gonad during fetal development, continues after birth with proliferation and differentiation of testicular somatic cells, and culminates at puberty with germ cell differentiation, meiotic divisions and production of sperm that continues throughout the adult life of the male. Recently, it was demonstrated that functional testicular tissue formed de novo when cells isolated from neonatal porcine or rodent testes were grafted ectopically to mouse hosts. The spermatogenic and interstitial compartments of the testis were regenerated form transplanted cells in a cell autonomous fashion and supported the production of functional haploid germ cells. This fascinating ability of testis cells to recreate the necessary structural and cellular associations to support tissue maturation and germ cell differentiation can now be harnessed to study aspects of mammalian spermatogenesis and testicular morphogenesis in an accessible in vivo system.
Collapse
|
47
|
Jahnukainen K, Ehmcke J, Nurmio M, Schlatt S. Autologous ectopic grafting of cryopreserved testicular tissue preserves the fertility of prepubescent monkeys that receive sterilizing cytotoxic therapy. Cancer Res 2012; 72:5174-8. [PMID: 22902414 DOI: 10.1158/0008-5472.can-12-1317] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Boys faced with future sterility as a result of the need of a sterilizing cancer therapy might avoid this fate by engraftment of cryopreserved immature testicular tissue after therapy is completed. Efforts to address this important survivorship issue have been encouraged by reports of the long-term survival and proliferation of human spermatogonia after xenotransplant of cryopreserved immature testicular tissue into immunocompromised murine hosts. However, spermatogenic arrest at the pachytene spermatocyte stage that occurs in this situation has been associated with a failure in sperm production. In this study, we used a prepubescent simian model to address the possibility that testicular tissue engraftment is insufficiently supported in the model to allow suitable maturation of germ cells. Briefly, we carried out autologous orthotopic grafting of cryopreserved testicular tissue from four prepubescent monkeys and one pubescent rhesus monkey after testicular irradiation and castration of the host animal. Five months after implantation of scrotal grafts, we determined that 3% to 7% of the autografts could be recovered with spermatogenesis proceeding through spermatozoa formation in 13% to 17% of the seminiferous tubules formed in the grafts. In contrast, Sertoli cell-only tubules were detected in parallel xenografts transplanted into immunocompromised mice. Our results show that cryopreservation of testicular tissue from prepubescent primates can maintain the fully functional capacity of spermatogonia to produce sperm, but that host conditions are critical for spermatogenic maturation. Furthermore, our results establish an initial perspective on the quantity of cryopreserved material needed to ensure success in preserving fertility through testicular tissue grafts.
Collapse
Affiliation(s)
- Kirsi Jahnukainen
- Department of Cell Biology and Physiology, Center for Research in Reproductive Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
48
|
Suppression of spermatogenesis before grafting increases survival and supports resurgence of spermatogenesis in adult mouse testis. Fertil Steril 2012; 97:1422-9. [PMID: 22464084 DOI: 10.1016/j.fertnstert.2012.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To test whether absence of complete spermatogenesis in mature testicular tissue before grafting will increase graft survival. DESIGN Prospective experimental study. SETTING Laboratory. ANIMAL(S) Donor testes were obtained from adult untreated mice, adult mice rendered cryptorchid, and adult mice treated with a GnRH antagonist (acyline). INTERVENTION(S) Donor testes were ectopically grafted to nude mice and recovered at three time points. MAIN OUTCOME MEASURE(S) Most advanced germ cell type and presence of spermatogonia were assessed. Donor testes and grafts were analyzed by histology and by immunocytochemistry for ubiquitin C-terminal hydrolase-L1 to mark germ cells. RESULT(S) Suppression of spermatogenesis by inducing cryptorchidism or acyline treatment resulted in improved survival of grafted tissue compared with controls and recovery of complete spermatogenesis, whereas control testis grafts mostly degenerated and did not restore complete spermatogenesis. CONCLUSION(S) These results indicate that complete spermatogenesis at the time of grafting has a negative effect on graft survival. Grafting of adult testis tissue from donors with suppressed spermatogenesis leads to spermatogenic recovery and may provide a tool to study and preserve fertility and for conservation of genetic resources in individuals that lack complete germ cell differentiation.
Collapse
|
49
|
Vlajković S, Cukuranović R, Bjelaković MD, Stefanović V. Possible therapeutic use of spermatogonial stem cells in the treatment of male infertility: a brief overview. ScientificWorldJournal 2012; 2012:374151. [PMID: 22536138 PMCID: PMC3317611 DOI: 10.1100/2012/374151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/07/2011] [Indexed: 12/31/2022] Open
Abstract
Development of germ cells is a process starting in fetus and completed only in puberty. Spermatogonial stem cells maintain spermatogenesis throughout the reproductive life of mammals. They are undifferentiated cells defined by their ability to both self-renew and differentiate into mature spermatozoa. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression as well as the extrinsic gene signals from the local tissue microenvironment. The human testis is prone to damage, either for therapeutic reasons or because of toxic agents from the environment. For preservation of fertility, patients who will undergo radiotherapy and/or chemotherapy have an attractive possibility to keep in store and afterwards make a transfer of spermatogonial stem cells. Germ cell transplantation is not yet ready for the human fertility clinic, but it may be reasonable for young cancer patients, with no other options to preserve their fertility. Whereas this technique has become an important research tool in rodents, a clinical application must still be regarded as experimental, and many aspects of the procedure need to be optimized prior to a clinical application in men. In future, a range of options for the preservation of male fertility will get a new significance.
Collapse
|
50
|
Ning L, Goossens E, Geens M, Saen DV, Tournaye H. Spermatogonial stem cells as a source for regenerative medicine. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2012. [DOI: 10.1016/j.mefs.2011.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|